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Abstract
I introduce a new functional programming language, called La-
conic/Web, for rapid development of web applications. Its strong
static type system guarantees that entire sequences of interaction
with these applications “can’t go wrong.” Moreover, a higher-
order dependent type system is used to enable statically-checked
metaprogramming. In contrast to most dependently-typed program-
ming languages, Laconic/Web can be used by programmers with
no knowledge of proof theory. Instead, more expert developers
develop libraries that extend the Laconic/Web type checker with
type rewrite rules that have proofs of soundness. I compare La-
conic/Web against Ruby on Rails, the most well-known representa-
tive of a popular class of web application frameworks based around
dynamic languages and runtime reflection, and show that my ap-
proach leads both to more concise programs and to better runtime
efficiency.

1. Introduction
A pervasive flaw in computer programs, considered across most all
domains, is the repetition of the same “boilerplate” code in many
places. This boilerplate expresses “implementation details” that are
usually irrelevant to what the programmer thinks of as his problem
statement and its solution. When someone new comes along and
tries to understand a boilerplate-heavy program, he needs to do
some mental decompilation to extract his predecessor’s original
intent. In a way, the history of programming language design is
the history of finding better ways to let programmers write more
exactly what it is that they really mean, through the use of well-
chosen abstraction mechanisms.

The domain of web application development is particularly in-
teresting in this light. Web applications (“web apps” for short) are
programs that live on a World-Wide-Web server, processing re-
quests for URLs by returning HTML pages and other documents.
Historically, they were often uniformly called “CGI scripts,” de-
spite the fact that CGI is just one possible protocol for interfac-
ing web applications with web servers, and the fact that these page
generation programs can as easily be compiled as interpreted. The
social practice of web app development has a number of charac-
teristics that make it a good proving ground for efforts to raise the
level of abstraction in programming:

• There is an amazing amount of similarity among web apps be-
ing developed today. As researchers in programming languages,
we’re used to writing fundamentally new programs with novel
algorithms on a regular basis, yet most of traditional web app
development involves doing the same thing over and over again.
A good portion of all of these applications serve mostly as
graphical interfaces to relational databases, interacting with rel-
atively small amounts of truly novel code. The common patterns

are mostly informal, but we should seek to design programming
languages that make it possible to reify them.

• Web app development is perhaps the most common kind of pro-
gramming done today by people who think of themselves as
programmers. These applications are big business, from high-
volume electronic commerce sites, to intranet sites used by
handfuls of people, to personal information management sys-
tems with single users. An improvement to web programmer
productivity can have a massive combined effect.

• Last but not least, a web app is executed on a small set of
Internet servers but accessible to users around the world through
a standardized interface. The server administrators have the
freedom to choose programming languages and tools without
worrying about compatibility with client environments. This is
quite attractive for language research, because we have a much
better chance than usual at getting our ideas adopted “in the real
world.”

In this paper, I will suggest a general approach to ameliorating
dependence on boilerplate code, along with an instantiation of that
approach to web development and a prototype implementation for
it. The idea is based around a family of dependently-typed func-
tional programming languages called Laconic, instantiated to web
apps as Laconic/Web. “Design patterns” are reified as parameter-
ized “metaprograms” that produce code. In contrast to macro-style
approaches that involve the programmatic construction of abstract
syntax trees, I use a higher-order language allowing computation
over types. Compilation involves partially evaluating applications
of these metaprograms.

Laconic has a strong static type system that guarantees that
any legal application of a metaprogram partial-evaluates to a type-
correct program. For Laconic/Web, beyond the usual properties,
type safety guarantees that all SQL queries and generated HTML
will be legal and free of code injection vulnerabilities, all intra-
application links will be valid, and the generation of HTML form
fields is properly matched up with the code to use the field values.
An alternate statement is that Laconic/Web provides the traditional
“well-typed programs can’t go wrong” guarantee, but in a setting
where we consider an execution of the program to consist of all
of its interactions with an unlimited set of users over time, even if
those interactions span many executions of the program proper.

Providing these guarantees is quite non-trivial. In my setting, it
involves dependent type checking and type inference that share the
main challenges of mechanized theorem checking and proving in
general. The Laconic type checker must find proofs that metapro-
grams can only generate programs of the proper types. At the same
time, we want to avoid asking programmers to construct explicit
proof objects, especially if the language is to be widely adopted.
I have taken a middle ground where Laconic programmers effec-
tively extend the type checker with type rewrite rules and proofs of
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their correctness. Authors of metaprogram libraries write a handful
of these rules and proofs and include them in their libraries. This
makes it possible for client developers to use these libraries without
ever seeing a formal proof. Experiments with my implementation
show that this approach really is sufficient to support the develop-
ment of real applications.

A recurring idea in the design of Laconic/Web is a reliance on a
higher-order analogue of “row types” or “extensible records.” I use
these at the type level to represent and compute over such objects
as records of types, which are used to describe the schemas of
relational databases, the reified field environments introduced by
HTML forms, and more. The type language is a lambda calculus
of its own where the evaluation of every term terminates. Thanks
to the central use of extensible records, it is sufficient to allow
recursive definitions in types only through a record fold operation.

I’ll begin by introducing the core of Laconic/Web in the next
section, and I introduce the Laconic approach to metaprogramming
in Section 3. I summarize the issues involved in typechecking
Laconic/Web in Section 4 and formalize the core of the language
and its type system in Section 5. In Section 6, I describe my
prototype implementation and the results of a case study comparing
against the Ruby on Rails web application framework. Section 7
surveys related work.

2. The Basics of Laconic/Web
The foundation of Laconic/Web is a sub-language with a first-order
type system, based on ideas pioneered in other web programming
language projects (which I survey in Section 7), though I often
make different syntactic choices. The interesting new elements are
related to support for “metaprogramming,” which inspires some
modifications to this first-order type system so that it is more
amenable to automated reasoning. I start by setting the stage in this
section with a description of this first-order foundation, leading into
an introduction to metaprogramming in the next section.

In the general spirit of statically-typed functional programming,
the design at this level follows two main principles.

First, avoid implicit constraints between different pieces of an
application. This idea most commonly takes the form of assign-
ing types to functions and checking that these functions are passed
properly typed arguments. The world of web programming pro-
vides us with a wealth of additional dependencies to worry about,
including the connection between a relational database schema and
an application’s view of it, the connections between sections of
an application (represented by hyperlinks), and the connection be-
tween an HTML form and the server-side function that is meant to
process its results. In the spirit of strong static type systems, I’ve
chosen to design Laconic/Web to validate all of these connections
statically.

The second principle is to reify high-level ideas into single pro-
gramming language objects whenever possible. By doing this, we
win the ability to use libraries of higher-order functions and com-
binators to express complicated ideas very succinctly. A common
paradigm in mainstream web app development is the Model-View-
Controller design pattern, which uses an object-oriented separation
of data handling, presentation, and core processing code into sep-
arate objects, often in separate files or otherwise separated textu-
ally. This has some modularity advantages, but I believe that its
benefits are outweighed by the potential of metaprogramming. I
chose to reify entire applications and all of their major pieces as sin-
gle values whose types express their roles. This makes it possible
to describe metaprogramming with functions of higher-order type,
in stark contrast to the ad-hoc code generation popular in object-
oriented web frameworks today.

val rec loop = fn count : integer =>
fn inputs : {Name : text, Color : text} =>
<html><body>

This is iteration number
<integer value={count}/>.<br/>

The current name is
<text value={#Name inputs}/>.<br/>

The current color is
<text value={#Color inputs}/>.<br/>

<form>
Next name: <input{#Name}/><br/>
Next color: <input{#Color}/><br/>
<submit handler={loop (count+1)}/>

</form>
</body></html>

val main = fn () => loop 1
{Name = "Anonymous", Color = "blue"}

Figure 1. A basic Laconic/Web program demonstrating use of
closures to track state

Without further ado, I’ll introduce the core language with two
short examples. The first example program, in Figure 1, implements
a contrived interaction where a web site visitor is prompted repeat-
edly to enter a name and a color in form fields. Each time he sub-
mits this form, the application echoes his entries back to him. Inde-
pendently, it tracks how many times the form has been submitted,
displaying this count on each new page.

The first thing to notice about the syntax is that, so far, it follows
Standard ML, with an extension for building XML documents
(HTML in this example). The main value is a function from the
unit type to HTML documents; this is the standard type required
of the value that represents a web app. main proceeds by calling
the loop function, which implements the main interaction loop,
seeding it with a starting count of 1 and a starting name and color.
The latter two are passed separately in a record, for reasons that
should become clear soon.

The loop function uses the special embedded XML syntax to
describe an HTML document. It displays the required information
using special integer and text tags. For these uses, we give
values of XML attributes between curly braces instead of double
quotes to “escape out of” the XML view and embed evaluations
of expressions from the core language. It’s worth noting that these
tags do the work of avoiding code injection attacks. Laconic/Web
doesn’t provide a way to coerce arbitrary strings into values of
XML types.

Next we have the most interesting part, the form. Each input
tag defines a textbox for user input. In Laconic/Web, tags can take
type arguments as well as expression arguments. Here the argu-
ments #Name and #Color give the names for these textboxes to use
in forming a reified environment record. That is, input tags are
binding constructs, and the current binding environment is repre-
sented explicitly with a typed Laconic value, which will turn out to
be important for enabling statically-checked metaprogramming.

The submit tag closes out the form by associating a server-
side action with a button presented to the user. Pressing the button
triggers a call to loop, with the first argument given explicitly as
count+1. Notice that this means that we are using closures, stored
on the client side, to track state. The second argument to loop is
passed implicitly; it is the reified environment generated based on
the input tags.
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dbtable Person = {Id : integer, Name : text,
Height : integer}

val main = fn () => <html><body>
<table>

<tr><th>Name</th> <th>Height</th></tr>

{(SELECT Person.Name, Person.Height
FROM Person)

(fn row : {Person.Name : text,
Person.Height : integer} =>

fn document => <table>
<tr>

<td><text
value={#Person.Name row}/></td>

<td><integer
value={#Person.Height row}/></td>

</tr>
{document}

</table>)
<table></table>}

</table>
</body></html>

Figure 2. A Laconic/Web program demonstrating an SQL query

As a final note for this example, I’ll point out that it’s easy for
the Laconic/Web compiler to prove that page generation always
terminates for this application. In fact, besides folding over SQL
query results, which I introduce in the next example, the only
runtime recursion or iteration allowed by Laconic/Web is through
val rec mutually recursive definitions where every cycle in the
call graph is broken through a case where a recursive reference is
only found in a handler attribute. Handlers are only called after
user input, so this guarantees termination of individual page request
responses.

The next example, in Figure 2, shows how to interact with a
relational database using statically-checked SQL. This application
produces a table of information on a set of people. Each person is
represented by a row of a relational database table, Person. The
columns of Person are unique integer identifiers Id and people’s
textual names and integer heights. Notice that the program text
includes the schema of the database that it will interact with. When
the compiled code starts up, it performs an analogue of dynamic
linking where it connects to the database and verifies that the tables
it expects exist with the proper types. Tables that don’t exist are
created automatically, while those that exist but have the wrong
types trigger “link-time errors.” All of the program’s possible SQL
queries (actually, query templates or “prepared statements” that
retain “holes” to be filled with values of primitive data types) are
also compiled and optimized once and for all during this linking
phase.

The main function generates an HTML document containing
the table we want. An arbitrary expression with the right XML
tags type is spliced into the body by enclosing it in curly braces.
In this case, we splice in the result of folding over an SQL query.
The SELECT expression is an embedded SQL query that produces
a relation by projecting out the Name and Height fields from the
Person relation. The type of an SQL query expression is like the
type of a standard list fold function, though here we avoid actually
materializing a list. The elements of the (conceptual) list are records
of the tuples of the relation returned by the query.

Here, we use the fold to build an HTML fragment. The first
argument to the query is the recursive case of the fold. It takes

val main = interaction [[Name : (), Color : ()]]
{Name = "name", Color = "color"}
{Name = "Anonymous", Color = "blue"}

Figure 3. Metaprogramming version of Figure 1

con allText =
fold (fn row :: {Unit} => {Type})
(fn name :: FieldName =>

fn u :: Unit =>
fn tail :: {Unit} =>
fn acc :: {Type} =>
[name : text] ++ acc)

[]

val interaction : fields :: {Unit}
-> $(allText fields) (* Display names for fields *)
-> $(allText fields) (* Initial field values *)
-> unit -> htmlTags

Figure 4. Signature of library code for first example

as input the data for the next tuple returned by the query and the
HTML fragment that we’ve built up so far. The fragment is updated
by adding another HTML table row before it, containing the name
and height of a person. The old fragment is spliced in with nested
curly braces. The base case of the fold is just an empty fragment.

3. Introduction to Metaprogramming
The examples from the last section were small and manageable,
but most web app development involves a great many bits of code
like these. There tend not to be too many fundamentally different
varieties of code in an application or the range of applications in a
particular domain, so we’d like to do better and avoid rewriting the
same boilerplate each time. As I’ve alluded to, Laconic language
features with the flavor of metaprogramming make this possible.
In this section, I’ll revisit the previous examples and show how
they can be implemented more effectively with metaprogramming.
I defer a discussion of static type checking of metaprograms to the
next section.

3.1 Computing with Row Types
We can consider a whole class of web applications like the one in
Figure 1 that continuously prompt the user for a set of textual input
fields and echo the values back to him. Rather than keeping our con-
ception of this class informal, we can reify it with a Laconic/Web
metaprogram. Figure 3 shows a new implementation that relies on
just such a library metaprogram, called interaction.

The new, short program consists of a single call to interaction.
The arguments are a list of fields to query the user about, a record
of display names for those fields, and a record of initial field values.

The first argument is a type, as shown syntactically by its inclu-
sion between an extra pair of brackets. Actually, it’s not a type, but
a constructor. I follow a standard convention for higher-order type
systems, where expressions are classified statically by types, types
are a subset of the constructors, and kinds classify constructors
statically. The kind of interaction’s first argument is {Unit},
indicating a record of named constructors of kind Unit, which is
the trivial kind whose only constructor is (). Since constructors of
Unit kind carry no information, interaction’s first argument is
effectively a list of field names.
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Figure 4 shows the type signature of the library. Throughout
Laconic, I follow the convention that a single colon (after a function
formal parameter and elsewhere) gives the type of an expression,
while a double colon gives the kind of a constructor. The first
element of this signature is a constructor allText of kind {Unit}
-> {Type}; that is, a constructor-level function from lists of field
names to records of types. allText produces a record that keeps
the field names from its input and gives each field type text. It’s
implemented using the constructor-level fold operation, which is
a dependently-typed iterator over record constructors.

Its first argument is a type schema written with function nota-
tion, giving the relationship between the constructor to fold over
and the kind of the result constructor. Next come the recursive and
base cases for the fold. The recursive case is a constructor function
having as its respective arguments the name of the current field,
the value of the current field, the suffix (tail) of the record that has
already been processed, and the current accumulator. In the im-
plementation of allText, the recursive case adds the current field
name with type text to the start of the accumulator, and the base
case is simply the empty record.

allText is purely a definitional abbreviation, but it is conve-
nient for expressing the type of interaction. We can see that its
first argument is a list of field names, based on the x :: K -> T
notation. This indicates a function taking as input a constructor of
kind K and returning an expression of type T, where the variable x
is bound in T and refers to the argument. The next two arguments of
interaction have type $(allText fields). $ is an operation
of kind {Type} -> Type; that is, it builds a type from a record of
types. The values of type $(allText fields) are records having
the field names from fields and where each field has type text.

Figure 5 shows the implementation of the library. It starts with
the same definitional abbreviation allText. Next we have the
definition of interaction, which follows the same basic structure
as the original code in Figure 1, but parameterized over the list
fields.

The generalizations are localized at the two places in the recur-
sive definition of loop that depend on the fields. We splice in the
results of folds for the echoing of the previous field values and the
construction of the input textboxes to query for the next values.

The first fold builds the listing of the previous values. This time
we are folding to produce a result at the expression level, but the
fold syntax is almost identical to the constructor case. Instantiat-
ing the type schema, we see that this fold produces a function of
type {Names : $(allText fields), Inputs : $(allText
fields)} -> bodyTags; that is, given names and prior inputs
for all of the fields, we get back a chunk of HTML that is suit-
able for use in a document’s body. The fold is applied to fields
and an appropriate record of these values to produce the actual
HTML. Notice that some non-trivial record subtyping is needed to
typecheck the fold.

The next fold builds the inputs of the form. Giving a sense of
the meaning of its result type requires a brief summary of how
XML typing works in Laconic/Web. Each XML tag that allows
different child tags than its parent is assigned a constructor of kind
{Type} -> {Type} -> Type. For some tag foo, a value of type
foo in out represents a legal child of foo that has inputs in and
outputs out. More precisely, in is a record of the environment
fields consumed by handler attributes of submits and some other
tags, and out is a record of the environment produced by inputs
in this tag and its children. We generalize from single XML tags
to blocks of tags using the constructor tags of kind ({Type} ->
{Type} -> Type) -> {Type} -> {Type} -> Type.

No doubt the library implementation stands out as involved and
complicated compared to the original application code from Fig-

dbtable Person = {Id : idField,
Name : textField["Name"],
Height : intField["Height"]}

val main = tabulate[@Person]

Figure 6. Metaprogramming version of Figure 2

con tabulateField = fn t :: Type =>
{Name : text,
Display : t -> htmlTags}

val intFieldBody : text -> tabulateField integer
val textFieldBody : text -> tabulateField text

con intField = fn name : text =>
pack integer

with intFieldBody name
as tabulateField

end

con idField = intField["ID"]

con textField = fn name : text =>
pack text

with textFieldBody name
as tabulateField

end

val tabulate : fields ::: {Exists tabulateField}
-> tab :: Table([Id : idField] ++ fields)
-> unit -> htmlTags

Figure 7. Signature of library code for second example

ure 1. Nonetheless, we see a key benefit of the Laconic approach:
the client code in Figure 3 can be written without any deep under-
standing of dependent types. Furthermore, even the implementation
avoids the manipulation of explicit proof objects, which often show
up in expressive dependently-typed languages.

3.2 Existential Kinds
Now let’s reconsider the example in Figure 2 and look at a new
implementation based on a library for tabular HTML display of
SQL table contents. Figure 6 gives the new implementation.

First, let’s take an informal look at what this code says. The
SQL table definition from Figure 2 is modified slightly: besides
a type, columns are assigned constructors that also specify their
human-readable names and how to render their values as HTML.
I’ll get to exactly what is going on there shortly, but the construc-
tors idField, textField, and intField do indeed carry this ad-
ditional information. Since the table itself now carries in its type
all of the information needed for rendering, we build main with a
single easy application of a metaprogram tabulate to the table
name. We can consider many metrics for programming language
expressivity, but I believe that this example program demonstrates
a case where Laconic/Web makes it possible to write a program by
writing no more than exactly what it is you want.

The basic feature behind making this work smoothly is ex-
istential kinds. These are the natural generalization of existen-
tial types [Pie02]; an existential kind describes a constructor-level
package of a constructor and an expression. In the setting of La-
conic, this means that the contents of all existential constructors
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con allText =
fold (fn row :: {Unit} => {Type})
(fn name :: FieldName =>

fn u :: Unit =>
fn tail :: {Unit} =>
fn acc :: {Type} =>
[name : text] ++ acc)

[]

val interaction = fn fields :: {Unit} =>
fn names : $(allText fields) =>
fn defaults : $(allText fields) =>

let
val rec loop = fn count : integer =>

fn inputs : $(allText fields) =>
<html><body>

This is iteration number <integer value={count}/>.<br/>
{fold (fn r :: {Unit} => {Names : $(allText r), Inputs : $(allText r)} -> bodyTags)

(fn name :: FieldName =>
fn u :: Unit =>
fn tail :: {Unit} =>
fn acc : ({Names : $(allText tail), Inputs : $(allText tail)} -> bodyTags) =>

fn fieldInfo : {Names : $([name : text] ++ allText tail),
Inputs : $([name : text] ++ allText tail)} => <body>

The current <text value={#name (#Names fieldInfo)}/> is
<text value={#name (#Inputs fieldInfo)}/>.<br/>

{acc fieldInfo}
</body>)

(fn fieldInfo : {Names : unit, Inputs : unit} => <body></body>)
[fields] {Names = names, Inputs = inputs}}

<form>
{fold (fn r :: {Unit} => tags form [] (allText r))

(fn name :: FieldName =>
fn u :: Unit =>
fn tail :: {Unit} =>
fn acc : tags form [] (allText tail) => <form>

Next name: <input{name}/><br/>
{acc}

</form>)
<form></form>
[fields]}

<submit handler={loop (count+1)}/>
</form>

</body></html>
in

fn () => loop 1 defaults
end

Figure 5. Implementation of library code for first example
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(constructors that have existential kinds) will be resolved at com-
pile time, during partial evaluation. Each field of the table in our
example is described with an existential package of the type for
representing values in the field, a human-readable name for that
field, and a function for formatting values of the field for HTML
display. The function’s type is dependent on the type that is the first
component of the package.

Figure 7 illustrates more detail. It gives the signature of the li-
brary used in Figure 6. The shape of our existential packages is
described with the higher-kind constructor tabulateField. The
library implementation provides two functions intFieldBody and
textFieldBody, which map human-readable field names to real-
izations of tabulateField for integer and text, respectively.
intField, idField, and textField are particular packagings of
this functionality. For instance, the pack syntax for intField says
that we are building a package with integer for its constructor
component, intFieldBody name for its expression component,
and tabulateField describing the particular kind of “informa-
tion hiding” to use. Any application of intField to a name has
kind Exists tabulateField.

Next, we have the type of the tabulate function, which returns
an HTML page generator when passed two arguments. The first is
a record of existential packages, and the second is a table whose
fields match up with that record, plus an additional unique identifier
field Id. The first argument is declared with a triple colon, which
indicates that that argument is implicit; like type arguments in
ML, it is inferred and needn’t be passed explicitly. In the example
application of tabulate, fields is inferred easily by looking
up the type of the Person table, “crossing off” the Id field, and
keeping the remaining fields as the value of fields.

Figure 8 gives the library implementation. It demonstrates three
new elements that are worth explaining.

First, we have unpack expressions, which are the counterparts
to the pack constructors seen in Figure 7. There are two forms:
unpack con, which unpacks a constructor; and plain unpack,
which unpacks a constructor and a value of its type simultane-
ously, preserving the typing relationship between them. “unpack
con t as t2 with r in ... end” binds t2 as a name for the
constructor in package t and r as a name for the expression in the
package. Plain unpack takes an expression of an existential type as
its first argument instead and also has an extra position for binding
a new version of that expression known to have the packaged type.

The SQL query uses the notation T.*fields to denote select-
ing every field named in the record fields from the table T. This
is not standard SQL syntax, and indeed SQL has no concept of
first-class field lists. This syntax is necessary to support metapro-
gramming. In fact, the SQL syntax is just syntactic sugar for a form
where the list of fields to project out of a relation is a {Type}, a
record of types, denoted in the usual way.

The SQL query also binds a local name T for the unknown table
tab. I elected to require known names for all relations involved in
a query, since this makes it easier to do static checking for naming
conflicts. The constructor function enter implements some of the
associated functionality: modifying every field name of a record to
reflect that it belongs to a particular table. In general, reflecting
table information in record field names is important because a
query may even join two copies of the same relation, which would
lead to duplicate fields.

4. Static Type Checking
All of the features whose usage I’ve sketched in the last section
must be validated with static type checking. The algorithmic chal-
lenges here go beyond even those associated with most research
type systems. The type checking problem starts to look like gen-

eral theorem proving, especially the kind based on constructive
type theory as found in Coq [BC04] and similar systems. Simple
syntax-directed or unification-based algorithms are insufficient to
discharge obligations which may require inductive reasoning about
operations on arbitrary records.

In the rest of this section, I’ll discuss the major techniques of
Laconic type-checking, to be followed in the next section with a
formalization for the core of the language.

4.1 Basic Reduction Rules
The basic judgment involved in Laconic type-checking is subtyp-
ing. Simple syntactic techniques are used to determine a type for
an expression. To compare this type against, for instance, the do-
main of a function, it’s necessary to normalize both types. This can
involve an arbitrary amount of lambda calculus-style computation
via reduction rules.

Laconic is modeled closely after Coq, and the same reduction
rules determine their definitional equality judgments. While Coq
requires explicit coercions to take advantage of known equality
facts in type-checking, I’ve designed Laconic to be more conve-
nient to use. Since Laconic is meant to deal with much narrower
domains than the formalization of mathematics, it turns out to be
possible to automate the important equality reasoning in a way that
works in practice.

The basic foundation shared with the Coq type checker is
the use of the definitional equality reduction rules: β-reduction,
which is the usual rule for simplifying applications of function
abstractions; δ-reduction, which expands named definitions; and
ι-reduction, which simplifies uses of the recursion principles of in-
ductive types. For Laconic/Web, the only relevant inductive types
are records and existential packages, and the respective “recursion
principles” are the fold and unpacking constructors.

As an example, let’s say that we are checking an application
of a function f with type fs :: {Unit} -> $(allText fs)
-> htmlTags, where allText is the constructor defined in Fig-
ure 4. The type directly apparent for the application of f to the
record [A : (), B : ()] is $(allText [A : (), B : ()])
-> htmlTags. Say that the next argument is {A = "1", B =
"2"}, whose type is $[A : text, B : text]. This is equivalent
to the expected argument type, but it’s not immediately apparent
syntactically. We normalize the formal argument type into this form
by: first, using a δ-reduction to expand the definition of allText;
and then applying a sequence of ι- and β-reductions to simplify
fold constructors.

4.2 Record Subtyping
For programming convenience, Laconic/Web supports traditional
width and depth subtyping of records [Pie02]. However, type in-
ference is more interesting than usual because it must deal with
non-constant records. We may need to compare constructors of
record kind that involve multiple constructor variables standing for
unknown records, combined with the concatenation operator ++,
which is commutative and associative.

The client code in Figure 6 provides a concrete example. The
function tabulate takes an implicit {Exists tabulateField}
parameter, and its value must be determined through unification of
record constructors, as sketched in Section 3.2.

4.3 Inductive Reasoning
Even if we forget subtyping for now and concentrate on type equal-
ity, there are some thorny issues left to consider. The definitional
equality relation based on reductions from Section 4.1 is precisely
what we mean by equality, and, happily enough, it is decidable. The
catch is that it is decidable for fully determined terms only; when
constructors have variables in them, equality becomes undecidable.
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con tabulateField = fn t :: Type => {Name : text,
Display : t -> htmlTags}

val intFieldBody = fn name : text => {Name = name,
Display = fn n => <html><integer value={n}/></html>}

con intField = fn name : text => pack integer
with intFieldBody name
as tabulateField

end

con idField = intField["ID"]

val textFieldBody = fn name : text => {Name = name,
Display = fn t => <html><text value={t}/></html>}

con textField = fn name : text => pack text
with textFieldBody name
as tabulateField

end

val tabulate = fn fields ::: {Exists tabulateField} =>
fn tab :: Table([Id : idField] ++ fields) =>
fn () => <html><body>

<table>
<tr>

{fold con (fn r :: {Exists tabulateField} => trTags)
(fn name :: FieldName =>

fn t :: Exists tabulateField =>
fn tail :: {Exists tabulateField} =>
fn acc : trTags =>

unpack con t as t2 with record in
<tr>

<th><text value={#Name record}/></th>
{acc}

</tr>
end)

<tr></tr>
[fields]}

</tr>

{(SELECT T.*fields FROM tab AS T)
(fn row : $(enter T fields) => fn doc =>
<table><tr>

{fold (fn t :: {Exists tabulateField} => trTags)
(fn name :: FieldName =>

fn t :: Exists tabulateField =>
fn tail :: {Exists tabulateField} =>
fn v : t => fn doc : trTags =>
unpack v as v2 : t2 with record in

<tr>
<td>{#Display record v2}</td>
{doc}

</tr>
end)

<tr></tr>
[enter T fields] row}
</tr>
{doc}

</table>)
<table></table>}

</table>
</body></html>

Figure 8. Implementation of library code for second example
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In the more expressive setting of Coq, it’s easy to see why: Con-
sider implementing a constructor-level Turing machine simulator
parameterized on the number of simulation steps to run. The halt-
ing problem is equivalent to checking whether a constant “it didn’t
halt yet” answer is equivalent to an application of the simulator to
a variable number of steps. Laconic may not be as expressive as
Coq, but fully automatic type equality reasoning is still likely to be
intractable.

Purely theoretical considerations aside, here’s an example of
a tricky type equality constraint that comes up in practice. I’ll
simplify the situation slightly, since I don’t have enough space to
go into the details that aren’t fundamental to metaprogramming.
In Laconic/Web, legal expressions to use in SQL queries have
their own type exp. There is a built-in operator typeof : exp ->
Type that maps SQL expressions to their Laconic/Web types.

Figure 8 demonstrated the T.*fs syntax, for projecting a vari-
able set of fields from a table. This syntax is compiled into:

fold (fn ([name : t] ++ tail) => fn acc =>
[name : T.name] ++ acc) [] fs

I use an abbreviated syntax for the function argument of fold. This
fold takes a record of types and replaces the value of each field with
a projection of that field from the table T.

At a later point in typechecking, we need to figure out the result
type of the entire query. Part of that type is determined by the record
produced by the above fold. We need to use this equality, which
involves the unknown record fs that is compatible with the fields
of table T:

fold (fn ([name : e] ++ tail) => fn acc =>
[name : typeof(e)] ++ acc) []
(fold (fn ([name : t] ++ tail) => fn acc =>

[name : T.name] ++ acc) [] fs)
= fs

This theorem is easy to prove inductively, using the definitional
equality reductions to do the meat of the work in the base and
inductive cases, plus a suitable lemma to the effect that typeof
and field projection are inverses. Yet it seems intractable to per-
form type-checking in a setting where inductive proofs must be
considered at most points. At the same time, following the lead of
other dependently-typed programming languages and asking pro-
grammers to construct proof objects themselves seems impractical.

Instead, I chose a stratified approach, where library authors
package useful identities along with the rest of their code. Each
identity has a proof of correctness, constructed in a proof assistant
like Coq. The individual proofs aren’t hard for someone with train-
ing in such tools, since facts like these about functional programs
are just the kinds of theorems that proof tools based on construc-
tive logic were built to handle. When a client of the library uses its
packaged functions, the Laconic type checker applies the identities
automatically. The end-programmer doesn’t even need to under-
stand what a formal proof is. At the same time, he can rest assured
that none of the identities introduce type-checking unsoundness.

5. A Formalization of Core Laconic
In this section, I’ll present a formal account of a simplified version
of Laconic/Web, without any of the web app-specific features. This
small calculus mostly illustrates the features of Laconic in general,
with the specific examples of records and existential constructors
included. My formalization is directly inspired by the design and
metatheory of the Calculus of Constructions [CH88] and related
dependently-typed languages.

Figure 9 gives the grammar for Core Laconic. As in the full lan-
guage, the main syntactic categories are kinds, constructors, and
expressions. A program is a sequence of named definitions of con-

Variables x
Names X
Proofs ϕ

Kinds κ ::= Unit | Name | Type
| Πx :: κ. κ | {κ} | ∃c

Constructors c, τ ::= () | X
| τ → τ | Πx :: κ. τ | $c
| x | λx :: κ. c | c c
| [] | [c : c] | c⊕ c
| fold(λx :: {κ}. κ)
| 〈c, e〉c | π1c

Expressions e ::= x | λx : τ. e | e e
| λx :: κ. e | e@c
| {Xi = ei}n

i=1 | πc

| foldκ | π2c
Programs p ::= · | p, x = c | p, x = e | p, ϕ

Figure 9. The syntax of Core Laconic

structors and expressions as well as proofs. These are proofs in a
proof system that I leave unspecified here, though Coq’s Calcu-
lus of Inductive Constructions is the canonical model. It need only
support proofs of universally quantified equalities, to be used in au-
tomatic rewriting during constructor normalization; and, of course,
it must be sound with respect to the language semantics that I in-
troduce here. A facility for giving inductive proofs is essential to
completeness, but not soundness. Note that, unlike in most other
dependently typed programming languages, proofs are segregated
from the other syntactic term categories and may only occur at the
top level of a program. This means that we don’t need to deal with
issues that arise in assigning “computational” semantics to proofs
or programs that manipulate proofs. A need for proof irrelevance is
one common wrinkle that would show up in such a setting.

In the class of kinds, we have base kinds for the trivial con-
structor, record field names, and types; dependent function kinds Π;
record kinds; and existential kinds, parameterized by constructors
of function kind. I’ll sometimes abbreviate the kind Πx :: κ1. κ2

as κ1 → κ2 when x is not free in κ2.
Constructors consist of the trivial (unit) constructor; constant

field names; non-dependent function types over expressions; de-
pendent function types over constructors; record types; constructor
variables, function abstractions, and applications; the empty record,
singleton records, and record concatenation; the record fold opera-
tion, parameterized over a kind schema relating the constructor to
fold over to the kind of the result; existential constructor packages
〈c1, e〉c2 , packaging constructor c1 and expression e according to
the package signature c2; and projection π1 of the constructor in an
existential package.

Expressions are variables; function abstraction and application
for expression and constructor arguments; record construction and
projection; expression-level record folding; and projection π2 of
the expression in an existential package. Fold expressions can
be denoted more simply than fold constructors because Laconic
doesn’t support kind polymorphism, necessitating the use of spe-
cial kind schemas in the second case.

Figures 10 and 11 give the basic static validity judgments for
Core Laconic. Γ ` c :: κ indicates that constructor c has kind κ in
context Γ, where contexts are an extension of the class of programs
to allow abstract bindings of constructor (x :: κ) and expression
(x : τ ) variables. Similarly, Γ ` e : τ says that expression e has
type τ in Γ. I use the notational shorthand Γ ` κ ok to mean that
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Γ ` () :: Unit Γ ` X :: Name

Γ ` τ1 :: Type Γ ` τ2 :: Type

Γ ` τ1 → τ2 :: Type

Γ ` κ ok Γ, x :: κ ` τ :: Type

Γ ` Πx :: κ. τ :: Type

Γ, x :: κ, Γ′ ` x :: κ

Γ ` c :: {Type}

Γ ` $c :: Type

Γ ` κ ok Γ, x :: κ ` c :: κ′

Γ ` λx :: κ. c :: Πx :: κ. κ′

Γ ` c1 :: Πx :: κ. κ′ Γ ` c2 :: κ

Γ ` c1 c2 :: [x 7→ c2]κ
′

Γ ` κ ok

Γ ` [] :: {κ}
Γ ` c1 :: Name Γ ` c2 :: κ

Γ ` [c1 : c2] :: {κ}

Γ ` c1 :: {κ} Γ ` c2 :: {κ}

Γ ` c1 ⊕ c2 :: {κ}
Γ ` c :: ∃c′ Γ ` c′ :: Πx :: κ. κ′

Γ ` π1c :: κ

Γ ` c2 :: Πx :: κ. κ′ Γ ` c1 :: κ Γ ` e : c2 c1

Γ ` 〈c1, e〉c2 :: ∃c2

Γ ` κ ok Γ, x :: {κ} ` κ′ ok

Γ ` fold(λx :: {κ}. κ′)
:: (Πn :: Name.Πv :: κ.Πtl :: {κ}.Πacc :: [x 7→ tl]κ′.
[x 7→ [n : v]⊕ tl]κ′) → [x 7→ []]κ′ → Πx :: {κ}. κ′

Figure 10. Kinding judgment for Core Laconic

Γ, x : τ, Γ′ ` x : τ

Γ ` τ :: Type Γ, x : τ ` e : τ ′

Γ ` λx : τ. e : τ → τ ′

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ ′
1 Γ ` τ ′

1 ≤ τ1

Γ ` e1 e2 : τ2

Γ ` κ ok Γ, x :: κ ` e : τ

Γ ` λx :: κ. e : Πx :: κ. τ

Γ ` e : Πx :: κ. τ Γ ` c :: κ

Γ ` e@c : [x 7→ c]τ

For each i ∈ 1..n: Γ ` ei : τi

Γ ` {Xi = ei}n
i=1 : $[Xi : τi]

n
i=1

Γ ` πc : Πτ :: Type.Πr :: {Type}.$([c : τ ]⊕ r) → τ

Γ ` κ ok

Γ ` foldκ :: Πs :: ({κ} → Type).
(Πn :: Name.Πv :: κ.Πtl :: {κ}.Πacc :: s tl.

s ([n : v]⊕ tl)) → s [] → Πx :: {κ}. s x

Γ ` c :: ∃c′

Γ ` π2c : c′ (π1c)

Figure 11. Typing judgment for Core Laconic

Γ ` c v c

Γ ` τ ′
1 v τ1 Γ ` τ2 v τ ′

2

Γ ` τ1 → τ2 v τ ′
1 → τ ′

2

Γ, x :: κ ` τ v τ ′

Γ ` Πx :: κ. τ v Πx :: κ. τ ′

Γ ` c v []

Γ ` c1 v c2

Γ ` [n : c1] v [n : c2]

Γ ` r1 ∈ c c′ Γ ` c′ ≤ r2

Γ ` c v r1 ⊕ r2

Γ ` c ∈ r1  r′
1

Γ ` c ∈ r1 ⊕ r2  r′
1 ⊕ r2

Γ ` c ∈ r2  r′
2

Γ ` c ∈ r1 ⊕ r2  r1 ⊕ r′
2

Γ ` c v c′

Γ ` c′ ∈ c []

Γ ` c1 ⇓ c′
1 Γ ` c2 ⇓ c′

2 Γ ` c′
1 v c′

2

Γ ` c1 ≤ c2

Figure 12. Selected constructor subsumption rules for Core La-
conic

there exists a c such that Γ ` c :: κ; κ is well-formed because it
describes some constructor.

The rules I present in this section are algorithmic. That is, their
interpretation as a logic program defines an algorithm. Running the
logic program on a judgment about fully-determined terms checks
that the judgment really holds. The logic program can also be used
to do type inference by running it on a goal with some unification
variables.

I make the standard assumptions about freshness of variables. I
overload the notation [x 7→ t1]t2 to denote the capture-avoiding
substitution of t1 for x in t2 for different classes of terms. For
simplicity here, I ignore issues of uniqueness of field names within
a record.

A crucial element of the typing judgment is the use of a subtyp-
ing relation Γ ` c1 ≤ c2 in the expression function application rule
of Figure 11. All of the “theorem proving” style reasoning is done
to support this judgment, which is defined partly in Figure 12. The
omitted rules are simple congruences in the standard style.

Subtyping is split into three judgments: the basic syntax-
directed subtyping judgment Γ ` c1 v c2; the syntactic record
matching judgment Γ ` c1 ∈ c2  c3, which says that a com-
ponent matching c1 was found inside record constructor c2, and c3

is the result of removing that component; and the main judgment
Γ ` c1 ≤ c2, which first normalizes the two constructors and then
verifies that they belong to v. The main points of interest are in
record subtyping, where a componentwise matching is performed
between trees of ⊕ operations in a way that takes commutativity
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Γ ` τ1 ⇓ τ ′
1 Γ ` τ2 ⇓ τ ′

2

Γ ` τ1 → τ2 ↓ τ ′
1 → τ ′

2

Γ ` c1 ⇓ (λx :: κ.c′
1) Γ ` c2 ⇓ c′

2 Γ ` [x 7→ c′
2]c

′
1 ⇓ c′

Γ ` c1 c2 ↓ c′

x = c ∈ Γ Γ ` c ⇓ c′

Γ ` x ↓ c′

Γ ` c1 ⇓ [] Γ ` c2 ⇓ c′
2

Γ ` c1 ⊕ c2 ↓ c′
2

Γ ` c1 ⇓ [n : c]⊕ c′
1 Γ ` c2 ⇓ c′

2 Γ ` (c′
1 ⊕ c′

2) ⇓ c′

Γ ` c1 ⊕ c2 ↓ [n : c]⊕ c′

Γ ` r ⇓ [] Γ ` base ⇓ c′

Γ ` fold(λx :: {κ}. κ′) ind base r ↓ c′

Γ ` r ⇓ [n : c]⊕ r′

Γ ` base n c r′ (fold(λx :: {κ}. κ′) ind base r′) ⇓ c′

Γ ` fold(λx :: {κ}. κ′) ind base r ↓ c′

Γ ` c ⇓ 〈c1, e〉c2
Γ ` π1c ↓ c1

Γ ` c ↓ c′ Γ]c′

Γ ` c ⇓ c′

Γ ` c ↓ c′ Γ ` c′ = c′′ Γ ` c′′ ⇓ c′′′

Γ ` c ⇓ c′′′

Figure 13. Selected constructor reduction rules for Core Laconic

into account. This matching approach works with record variables
as well as constant records.

Now we come to the most interesting and novel part, normal-
ization of constructors. This is handled via a pair of judgments par-
tially defined in Figure 13. The basic idea is that we normalize con-
structors by visiting their abstract syntax trees starting at the leaves
and moving up. At each node that is visited, we first perform stan-
dard reductions based on definitional equality; e.g., β-reductions.
Once the node is reduced as far as possible by these rules, we check
for user-provided rewrite rules whose lefthand sides unify directly
against this node. If a rule matches, we apply it and restart the nor-
malization process for the node’s new form. When no rule matches,
we are done with this node, and we can move on to its parent if all
of its siblings have also been handled already.

The two judgments capture the different stages of this process.
Γ ` c ↓ c′ means that c is normalized to c′ using full normalization
on all but the root of c’s abstract syntax tree, and using definitional
reductions at the root, if applicable. Γ ` c ⇓ c′ is the full reduction
relation that adds usage of user rewrite rules. Γ]c denotes that no
rewrite rule corresponding to a proof in Γ has a lefthand side that
unifies with c. Γ ` c = c′ denotes that there is a proof in Γ
whose universally quantified conclusion can be instantiated to yield
c = c′.

Figure 14 completes the picture by giving the overall validity
judgment for Core Laconic programs. It simply steps through a pro-

· ok

Γ ok Γ ` c :: κ

Γ, x = c ok

Γ ok Γ ` e : τ

Γ, x = e ok

Γ ok Γ ` ϕ ok

Γ, ϕ ok

Figure 14. Program type correctness judgment for Core Laconic

gram, checking each definition in the context of the previous defi-
nitions. The case for proofs uses an auxiliary judgment Γ ` ϕ ok,
which can be used to enforce a number of useful properties of
proofs. Its basic role is to check that a proof is logically valid. If
the proof language is expressive enough to prove more than univer-
sally quantified equalities between constructors, then this judgment
should rule out the alternatives, and it should disallow proofs of
equalities where some quantified variable appears on the righthand
side of the equation but not the left. To make it easier for Laconic
programmers to use compositional reasoning, the judgment should
probably disallow the binding of a proof that could apply in the
same case as an already-bound proof; the programmer doesn’t want
to have to remember complicated precedence rules to understand
typechecking. Finally, we would like typechecking to terminate in
any environment, so we should enforce that every rewrite rule de-
creases the size of a constructor according to an appropriate global
well-founded relation.

I won’t give a dynamic semantics for Core Laconic here; there
aren’t any surprises in how expressions should be executed. We ob-
tain a standard language safety theorem, where every well-typed
expression evaluates to a value whose form is determined by that
type. Since Laconic programs are usually compiled by using spe-
cialization and partial evaluation to remove higher-order types, an-
other important property is that normalization of constructors (and
expressions, via a similar judgment that I haven’t given here) pre-
serves kinding and typing judgments.

6. Implementation and Experiments
I’ve implemented a prototype Laconic/Web compiler in Standard
ML. Compilation works through specialization that converts pro-
grams into a form without higher-order types. These programs are
easy to translate to Standard ML, in which form they are com-
piled by version 20060213 of the MLton whole-program optimiz-
ing compiler1. SQL interaction uses version 8.1 of the PostgreSQL
relational database management system2, and Laconic/Web pro-
grams interface with web servers through the FastCGI protocol3.

The only omission in my prototype implementation compared
to the Core Laconic language from the last section is the facility for
extending the type-checker with proven rewrite rules. Instead, I’ve
added each required rule manually into the compiler. It was through
experimentation with my prototype that I came to the conclusion
that the rewrite rule mechanism that I’ve described is sufficient to
support practical web app development. I’ve only needed to add on
the order of ten rewrite rules to allow type-checking of all of the
Laconic/Web programs I’ve written so far, including the case study
that I am about to present. There are practical issues left to figure
out about how to integrate rewrite rule correctness proofs with the
rest of the development process, through use of a proof assistant or
otherwise, but my experience to date makes me confident that proof
construction can be kept to a minimum in practice.

1 http://mlton.org/
2 http://www.postgresql.org/
3 http://www.fastcgi.com/
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Rails Laconic
Lines of code 91 65

Directory size 51K 2K
Throughput (pages/minute) 5k 42k

Virtual memory usage 25MB 5MB
Resident set size 22MB 2MB

Table 1. Comparison of the Rails and Laconic solutions

6.1 Case Study: Comparison with Ruby on Rails
Ruby on Rails4 is a very popular web application development
framework based around the Ruby programming language. Its de-
signers say that their goal is to make developers more productive by
letting them write more nearly what they really mean to say, avoid-
ing lots of plumbing and complicated XML configuration files. Key
elements include a Model-View-Controller paradigm with conven-
tions determining which classes’ methods are called for which URL
requests, an object-relational database interface providing an OO
view of SQL database interaction, and common use of code gener-
ation scripts whose outputs are edited by humans.

My comparison is based on a Laconic/Web reimplementation
of the application developed in the course of a popular Rails tuto-
rial5. The result is a simple management system for the financial
accounts of a fictitious company. The standard database operations
are provided on accounts: creation of new accounts, listing existing
accounts, and display, editing, and deletion of individual accounts,
including validation of user inputs. In addition, each account has
a list of expenses associated with it, which are listed and added
on that account’s display page. My Laconic/Web reimplementation
duplicates all of the functionality of the Rails original, with the ex-
ception of treating one field as arbitrary text instead of a specialized
type of dates.

Appendix A gives the code for this application, called “Ex-
penses.” It relies on a library of generally useful functions. The
actual application-specific code fits on a single page. This is in con-
trast to the Rails implementation, which exists as a complicated di-
rectory structure generated by a script, where on the order of ten of
the files have been modified from their original versions.

The Rails tutorial can be read as a sort of informal program,
with instructions meant to be executed by the reader. The result-
ing program isn’t represented in a single file, but, for comparison
purposes, we can follow this analogy of the tutorial to a program
and see how long and complex a program it is. It asks the reader to
invoke code generation scripts 5 times and make 12 different mod-
ifications to 7 different files, demonstrated with 74 lines of code.
This last number is surprisingly close to 65, the number of lines
of code in the Laconic/Web implementation in Appendix A plus
the associated configuration file (which I haven’t included in this
paper).

Besides conciseness and maintainability of code, runtime per-
formance is another serious consideration in many cases, so I also
benchmarked the performance of the Rails and Laconic imple-
mentations. Both applications were run through the LightTPD web
server6 via FastCGI, with the Rails application running in “produc-
tion” mode.

I used Apache JMeter7 to drive a stress test and record through-
put figures. Somewhat arbitrarily, I chose to allocate 20 parallel
request handler processes in each test. Each test involved 100 local

4 http://www.rubyonrails.org/
5 http://developer.apple.com/tools/rubyonrails.html
6 http://www.lighttpd.net/
7 http://jakarta.apache.org/jmeter/

threads acting as clients, repeatedly requesting pages from the web
server. The requests alternated at random between requesting six
representative pages of the application. I ran all experiments on a
3.2 GHz Pentium 4 with 2 GB of RAM.

Table 1 summarizes the overall comparison results. The “Lines
of code” row follows the methodology I described for treating
the text of the tutorial as a program. “Directory size” gives the
size of a gzipped tarball of all of the application-specific files
in an implementation. “Throughput” displays how many pages
per minute each implementation was serving when it reached a
quiescent state. The last two rows give the average total virtual
memory usage and actual usage of physical memory per request
handling process, after the stress test had completed.

In summary, this case study demonstrates preliminary support
for the assertion that Laconic compares favorably to Rails for
productivity. While I don’t have any comparison on how hard it
was to write the two applications, the Laconic application specific
program code is shorter than its Rails counterpart, and the total
source tree is much smaller, which makes it easier to read and
understand a new application’s code. Moreover, through the use
of a modern optimizing compiler, the Laconic version is able to
achieve a roughly 10x throughput improvement over Rails, and
its memory footprint is several times smaller. This translates into
needing to purchase less hardware to run a web application with a
fixed amount of traffic.

7. Related Work
There has been a flurry of interest lately in programming lan-
guage solutions to the “impedance mismatch” problem (in web
development and elsewhere), which roughly refers to issues of im-
plicit dependencies among pieces of software arising from the mix-
ing of multiple languages, multiple executions of a program in
what is conceptually a single interaction, etc.. New languages like
Links [CLWY06] and Hop [SGL] address these concerns, with a
special focus on supporting the “AJAX” style of web application
development, which uses JavaScript to drive asynchronous com-
munication between web browser and web server. The WASH/CGI
framework [Thi02] achieves many of the same benefits for tradi-
tional CGI programming using a Haskell library. The LINQ lan-
guage [MBB06] from Microsoft focuses on integration of features
related to relational databases and XML. Queinnec’s influential
paper [Que00] first proposed using the language mechanism of
continuations to encapsulate web application state in a way that
supports easy backtracking. These ideas have provided inspiration
for the base fragment of Laconic/Web, but none address issues of
metaprogramming, which I believe has a critical role to play in en-
abling productive web development.

Practical dependently-typed programming languages are an-
other popular subject of study today. Recent proposals include
ATS [CX05], Cayenne [Aug98], Epigram [MM04], Ωmega [SP04],
and RSP [WSW05]. Each language can be viewed as an attempt
to make Coq-style programming more convenient, along with the
inclusion of some traditional programming language features usu-
ally considered too unruly for a theorem proving system’s logic.
To my knowledge, all significant applications of these languages
to date have dealt with theoretical computer science. In contrast,
I designed Laconic/Web to be a viable competitor in the popu-
lar and mainstream domain of web application development. The
mechanisms that I use to allow “naive” programmers to write La-
conic/Web programs without any knowledge of proof theory are
novel. The extension of the type checker with user-provided rewrite
rules and their inductive proofs seems to be the biggest departure
from past work. There is discussion in the literature about the im-
portance of equality reasoning, but I’ve found no mention of prag-
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matic methods for automatic equality reasoning that is able to use
arbitrary inductively-proved facts. My results here are interesting
as evidence that the simple technique that I suggest is effective in
practice.

The Lisp and Scheme communities have long been using
macros to automate the construction of code. Of course, they op-
erate in a dynamically typed setting, where there are no guaran-
tees that individual macros will always behave properly and no
compiler-checked documentation (e.g., type signatures) on how to
use particular macros. Languages like MetaML [TS00] provide a
statically-typed answer to the same problems in terms of multi-
stage programming. In contrast, Laconic has no notion of multiple
stages. Similar effects come from applying partial evaluation to a
language with a higher-order type system, where a compile-time
error is signaled when higher-order constructs survive partial eval-
uation. On the other hand, Laconic/Web does have an element of
explicit construction of code, but only when the final web appli-
cations is meant to interact with the outside world through pro-
grammatic interfaces. Concrete examples include SQL queries and
HTML fragments with forms. In both cases, these “embedded lan-
guages” are encoded with dependent type theory instead of through
specialized meta-language mechanisms, similar to, e.g., implemen-
tation of metaprogramming in Coq and some studies carried out
with Ωmega [PL04].

8. Conclusion
I have presented the programming language Laconic/Web and
shown that it is useful in practice for developing web applications
with static guarantees of good behavior. Laconic is notable for its
combination of an expressive dependent type system with good us-
ability compared to other proposed dependently-typed languages.
In particular, most Laconic/Web programmers shouldn’t need to
do any explicit manipulation of proof objects, thanks to a language
design that allows the type checker to be extended with proven
rewrite rules packaged in libraries, as well as some simplifications
made possible by Laconic/Web’s design as a domain-specific lan-
guage rather than a general theorem proving tool. Through a case
study comparing Laconic/Web against one of today’s most popu-
lar frameworks for rapid coding of web applications, I’ve demon-
strated that Laconic/Web can enable more concise programs, as
well as considerably better runtime performance. These results
provide a helpful counterpoint to a common “folk belief” in the
mainstream development world that dynamic typing and runtime
reflection are critical for effective “agile” programming.

As mentioned earlier, the mechanism for integrating formal
proofs of rewriting rule correctness remains to be designed. There
are many newer web application features that Laconic/Web doesn’t
handle yet, including the AJAX style of asynchronous client/server
communication and other uses of XML-based “web services.” I
hope to include support for these in a future version.

The mechanism I suggest for usage of rewrite rules in type
checking can be unsatisfying for its lack of simple completeness
guarantees. Type inference in dependently typed languages is usu-
ally undecidable, but that doesn’t mean that there aren’t restricted
languages that prove useful in practice. Whether or not such lan-
guages exist for the domain of web application programming that
I’ve treated here is an open problem. On the other hand, it could be
fruitful to formalize the essences of problems that occur in this and
similar domains and attempt to prove undecidability or intractabil-
ity results, justifying the open approach to using programmer-
provided proofs.

I plan to build a toolkit for the effective construction of practical
compilers for languages in the Laconic family. Each new domain
targeted by a Laconic language will share many features with the
Laconic family or with subsets of it, so enabling re-use is critical for

effective “language-oriented programming.” I believe that a good
common basis for this framework would be Coq and its Calculus
of Inductive Constructions (CIC). Language features can be given
semantics in terms of a translation into CIC, and proofs of rewrite
rule correctness can be expressed in the same language.
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(* Existential type body for the fields of a table *)
con crudField = fn t :: Type =>

{ (* Record of field-specific code *) }

(* Default integer field handling *)
val intFieldBody : text -> crudField integer
con intField = (* ... *)

(* Dollar-amount field handling *)
val dollarFieldBody : text -> crudField real
con dollarField = (* ... *)

(* ... other pre-defined field constructors ... *)

(* Parameters used in generating CRUD pages *)
con crudParams = {

Title : text, (* Title for this section of the application *)
Singular : text, (* Singular version of database table name *)
Plural : text, (* Plural version of database table name *)
ShowExtra : integer -> (unit -> htmlTags) -> bodyTags

(* Extra HTML code to include at the bottom
* of the display page for a row. *)

}

(* Generate the CRUD web site *)
val crud : fs ::: {Exists crudField}

-> tab :: Table([Id : idField] ++ fs)
-> seq :: Sequence
-> crudParams
-> unit -> htmlTags

(* Build table rows for all SQL rows of a table *)
val listAllRows : fname :: FieldName (* Sort by this field *)

-> ftype :: Exists crudField (* Type of fname *)
-> fsShow :: {Exists crudField} (* Remaining fields to display *)
-> fsSkip ::: {Exists crudField} (* All other fields *)
-> tab :: Table([fname : ftype] ++ fsShow ++ fsSkip)
-> tableTags

(* Sum up the real-valued fields of a table in rows with a particular key value *)
val sumByKey : keyName :: FieldName (* Name of key field *)

-> keyType ::: Type (* Type of key field *)
-> amount :: FieldName (* Name of real-valued amount field *)
-> rest ::: {Type} (* The rest of the fields in the table *)
-> tab :: Table([keyName : keyType] ++ [amount : real] ++ rest)
-> keyType -> real

(* Count the number of rows with a particular key value *)
val countByKey : keyName :: FieldName (* Name of key field *)

-> keyType ::: Type (* Type of key field *)
-> rest ::: {Type} (* The rest of the fields in the table *)
-> tab :: Table([keyName : keyType] ++ rest)
-> keyType -> integer

(* Look up a single table field by primary key *)
val getField : keyName :: FieldName

-> keyType ::: Type
-> getMe :: FieldName
-> getMeType ::: Type
-> rest ::: {Type}
-> tab :: Table([keyName : keyType] ++ [getMe : getMeType] ++ rest)
-> keyType -> getMeType

Figure 15. Signature of the library used for the Expenses example
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dbtable Account = {
Id : idField,
Name : textField["Name"],
Budget : realField["Budget"]

}
sequence AccountSeq

dbtable Expense = {
Id : idField,
PaidOn : textField["Paid on"],
PayableTo : textField["Payable to"],
Amount : dollarField["Amount"],
AccountId : intField["Account#"]

}
sequence ExpenseSeq

val showExtra = fn id : integer => fn genPage : (unit -> htmlTags) =>
let

val addExpense = fn input : {PaidOn : text, PayableTo : text, Amount : text} =>
((INSERT INTO Expense (Id, PaidOn, PayableTo, Amount, AccountId)
VALUES ({nextval(@(ExpenseSeq))},

{#PaidOn input},
{#PayableTo input},
{realFromString (#Amount input)},
{id})) ();

genPage ())
in

if countByKey[#AccountId][@Expense] id = 0 then
<body></body>

else <body>
<h3>Itemized Expenses</h3>
<table>

{listAllRows[#PaidOn]
[(textField["Paid on"])]
[[PayableTo : textField["Payable to"],
Amount : dollarField["Amount"]]]

[@Expense]}
<tr><td align="right" colspan="3">

{let
val total = sumByKey[#AccountId][#Amount][@Expense] id
val style = if total > getField[#Id][#Budget][@Account] id then

"color: red"
else

"color: black"
in

<tr><b>Total</b>: <span style={style}>$<text value={dollarToString total}/></span></tr>
end}

</td></tr>
</table>

<form><p>
On <input{#PaidOn} size="10" />
to <input{#PayableTo} size="25" />
in the amount of $<input{#Amount} size="9" />
<submit value="Record!" handler={addExpense}/>

</p></form>
</body>

end

val main = crud[@Account][@(AccountSeq)]
{Title = "Expenses",
Singular = "account",
Plural = "accounts",
ShowExtra = showExtra}

Figure 16. Implementation of the Expenses application
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A. Code for the Case Study
Figures 15 and 16 give the signature of the library and the actual
application code used for the “Expenses” case study, respectively.
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