
Live Verification in an Interactive Proof Assistant

SAMUEL GRUETTER, VIKTOR FUKALA, and ADAM CHLIPALA,MIT, USA

We present a prototype for a tool that enables programmers to verify their code as they write it in real-time.

After each line of code that the programmer writes, the tool tells the programmer whether it was able to

prove absence of undefined behavior so far, and it displays a concise representation of the symbolic state of

the program right after the added line. The user can then either write the next line of code, or if needed or

desired, write a specially marked comment that provides hints on how to solve side conditions or on how to

represent the symbolic state more nicely. Once the programmer has finished writing the program, it is already

verified with a mathematical correctness proof. Other tools providing real-time feedback already exist, but

ours is the first one that only relies on a small trusted proof checker and that provides a concise summary of

the symbolic state at the point in the program currently being edited, as opposed to only indicating whether

user-stated assertions or postconditions hold.

Program verification requires loop invariants, which are hard to find and tedious to spell out. We explore a

middle ground in the design space between the two extremes of requiring users to spell out loop invariants

manually and attempting to infer loop invariants automatically: Since a loop invariant often looks quite similar

to the symbolic state right before the loop, our tool asks the user to express the desired loop invariant as a diff

from the symbolic state before the loop, which has the potential to lead to shorter, more maintainable proofs.

We prototyped our technique in the interactive proof assistant Coq, so our framework creates machine-

checked proofs that the developed functions satisfy their specifications when executed according to the

formal semantics of the source language. Using a verified compiler proven against the same source-language

semantics, we can ensure that the behavior of the compiled program matches the program’s behavior as

represented by the framework during the proof. Additionally, since our polyglot source files can be viewed as

Coq or C files at the same time, users willing to accept a larger trusted code base can compile them with GCC.

CCS Concepts: • Software and its engineering→ Formal software verification.

Additional Key Words and Phrases: software verification, symbolic execution, interactive proof assistants

ACM Reference Format:

Samuel Gruetter, Viktor Fukala, and Adam Chlipala. 2024. Live Verification in an Interactive Proof Assistant.

Proc. ACM Program. Lang. 8, PLDI, Article 209 (June 2024), 24 pages. https://doi.org/10.1145/3656439

1 INTRODUCTION

Software verification has the potential to cut down significantly on bugs in software. In particular,
if one proves that a program implemented in an optimized way in an efficient low-level language
behaves according to a specification written in a high-level specification language, a large class of
bugs can be excluded that could arise from the optimizations or from delicate, performance-minded
design choices of the low-level language.
However, writing proofs about software can be a repetitive task, but fortunately, like many

repetitive tasks, it can be automated by writing programs that perform it. But often, it is hard to
find the right level of automation: One might think that the more automation, the better, but the
more automated a prover is, the more it is at risk of going down a wrong route in its proof search
and wasting time on proof steps that a human could easily recognize as useless. The reason is that,

Authors’ address: Samuel Gruetter; Viktor Fukala; Adam Chlipala, MIT, Cambridge, MA, USA.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/6-ART209

https://doi.org/10.1145/3656439

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 209. Publication date: June 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0001-8369-9117
HTTPS://ORCID.ORG/0009-0000-2074-7329
HTTPS://ORCID.ORG/0000-0001-7085-9417
https://doi.org/10.1145/3656439
https://orcid.org/0000-0001-8369-9117
https://orcid.org/0009-0000-2074-7329
https://orcid.org/0000-0001-7085-9417
https://doi.org/10.1145/3656439


209:2 Samuel Grue�er, Viktor Fukala, and Adam Chlipala

for a typical nontrivial program, the programmer has some (potentially domain-specific) insight
about its correctness and about promising strategies to try, but the verification tool might not have
this knowledge. An important question is therefore (a) how users can convey insight to the verifier.
Equally important, but often neglected, is the opposite direction, i.e. (b) how the verifier can convey
everything it knows to the user. If, while the user is writing a program, the verifier constantly
provides a concise summary of everything it knows to be true at the current cursor position (also
known as a symbolic state), this summary can be useful in three ways: It can help the user decide
whether the program is correct up to that point, it can hint at what the right next command in the
program might be, and if the verifier fails to verify that an instruction is safe (e.g. that an array
access is within bounds), it can help the user guess more quickly why the verifier failed.

Our answer to (a) is to use Coq’s tactic language Ltac both to implement the verifier and as the
language in which users express their domain-specific insights, which leads to smooth cooperation
between the two; and our answer to (b) is to use Coq’s proof-goal display (which consists of a list
of hypotheses that can be assumed and a conclusion that has to be proven) to display the current
symbolic state of the program that the user is writing.

We start with some “clever tricks” to allow single source files to be accepted as legal code in both
Coq and C, where interactive proof scripts appear amidst lines of normal C code. Then we add
features that take advantage of the proof assistant, providing snapshots of “just right” complexity,
describing what the framework inferred about all possible program states at particular code points.
Along the way, we develop ideas that may mitigate some of the classic usability challenges of
verification with Hoare logics, like the need to invent loop invariants out of whole cloth.

More specifically, we make the following contributions:
• We present a prototype of a framework that supports symbolic live debugging of (a subset of)
C. It runs entirely within the Coq proof assistant and produces ASTs of the functions’ source
code as objects in Coq, with a correctness lemma for each function. Our tool’s correctness need
not be trusted, because it produces proofs that are verified by Coq’s kernel. The correctness
lemmas are expressed in terms of Bedrock2’s source-language semantics [Erbsen et al. 2021],
so our programs can be compiled with Bedrock2’s verified RISC-V compiler.

• Most software-verification tools require users to provide loop invariants, which can become
quite long and tedious to write down. We present a way to express a loop invariant as a
diff from the inferred symbolic state at the beginning of the loop (§ 3.1.7 and § 4.4). Using
some tactics, users can generalize and/or strengthen the symbolic state, and our framework
can then use this modified symbolic state as the loop invariant. So the user still needs to
provide the insight that leads to a suitable loop invariant, but it is not necessary to spell out
the whole loop invariant. This solution potentially leads to an easier, more intuitive, and
more enjoyable user experience and to proofs that are more robust against code changes,
because diffs (edits) tend to be smaller than whole invariants.

• We argue that proof automation should optimize the user experience for failing proofs (the
default case in a proof developer’s day-to-day work) rather than for proofs where everything
works, andwe describe three principles that emerge from this focus (§ 4.8), including centering
automation of side-condition solving around the notion of safe steps (§ 4.8.3), i.e. proof steps
that do not turn provable goals into unprovable goals. We provide users with means to
register domain-specific proof steps, enabling proofs that rely on backtracking only very
locally and thus are both automated and easy to debug at the same time.

• If one is willing to trust our tool’s notation-based parser, our polyglot Coq source files can
also be viewed as C files and compiled with GCC, or if one is willing to trust Bedrock2’s C
pretty-printer, one can pretty-print the ASTs to C and compile with GCC (§ 3.2).

• We developed and verified a small but promising set of functions (§ 6) in our framework.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 209. Publication date: June 2024.



Live Verification in an Interactive Proof Assistant 209:3

1 (* -*- eval: (load-file "../LiveVerif/live_verif_setup.el"); -*- *)

2 Require Import LiveVerif.LiveVerifLib.

3 Load LiveVerif.

4 #[export] Instance spec_of_memset: fnspec := .**/

5

6 void memset(uintptr_t a, uintptr_t b, uintptr_t n) /**#

7 ghost_args := bs (R: mem→ Prop);

8 requires t m := <{ * array (uint 8) \[n] bs a

9 * R }> m ∧

10 \[b] < 2 ^ 8;

11 ensures t' m' := t' = t ∧

12 <{ * array (uint 8) \[n] (List.repeatz \[b] \[n]) a

13 * R }> m' #**/ /**.

14 Derive memset SuchThat (fun_correct! memset) As memset_ok. .**/

15 { /**. .**/

16 uintptr_t i = 0; /**.···.**/

22 while (i < n) /* decreases (n ^- i) */ { /**. .**/

23 store8(a + i, b); /**. .**/

24 i = i + 1; /**. .**/

25 } /**. .**/

26 } /**. Qed.

27 End LiveVerif. Comments .**/ //.

Fig. 1. memset example, as displayed in Emacs, with lines 5 of Ltac (lines 17-21) folded away into ···

1.1 A First Glance At an Example

Figure 1 shows an example of a verified memset function. The file is a Coq file, but if we prefix it
with an opening C comment /*, it becomes a C file. Lines 15 to 26 look like C code but are in fact
just notations for proof tactics that gradually build the abstract syntax tree (AST) of the function,
along with its correctness proof. The proof is completely automated, except for 5 lines of tactic
code (lines 17-21, shown in Figure 3c) that express the desired loop invariant as a diff from the
symbolic state before the loop. We will discuss this example in more detail in § 3.1, but we first
provide some background in § 2.

2 BACKGROUND

This section provides some background to make the paper accessible to readers without prior
knowledge of proof assistants, Coq, or program verification inside proof assistants. For each
subsection, it should be safe to decide whether to skip it based on its title.

2.1 Editing Coq Proofs: Proof Goals and the Proof Cursor

The central notion for interactive proof development in Coq is that of a proof goal. On paper, we
write proof goals as Γ ⊢ % , where Γ is a list of variables and hypotheses that can be assumed, and
% is the conclusion to be proven. In the actual Coq implementation, each variable and hypothesis is
printed on a separate line, and the ⊢ is printed as a horizontal line (for example, see Figure 3a & b).
ProofGeneral is an Emacs extension for developing Coq proofs. For each Coq file being edited,

it shows three windows: a window for the file itself, a window for the current proof goals, and a
window to display error messages. In addition to the regular text-editing cursor, the file window

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 209. Publication date: June 2024.



209:4 Samuel Grue�er, Viktor Fukala, and Adam Chlipala

also has a proof cursor that can be moved forward and backward using separate key bindings (or
GUI buttons), and the proof-goal window always displays the proof goals that remain open at the
current position of the proof cursor. If a proof contains an error, ProofGeneral ensures that the
proof cursor can never be advanced past that error.

We will see in § 3.1 how we can repurpose the proof-goal window to serve as a debugger window
displaying the symbolic values of all variables and memory, and how the proof cursor can be seen
as the indicator of a debugger pointing to the next instruction to be executed.

2.2 Evars in Coq: Lazily Instantiated Existential Variables

While writing proofs in Coq, it is sometimes desirable to delay choosing some term until a later
point where the updated proof goal makes it more obvious what the right choice for that term is.
For example, if we have the proof goal 0 : Z, 1 : Z, 2 : Z, �1 : 0 < 1, �2 : 2 > 1 ⊢ 0 < 2 and want
to apply the lemma Z.lt_trans, which says ∀ = < ?. = < < ⇒< < ? ⇒ = < ? , Coq can infer (by
unifying the lemma’s conclusion with the goal’s conclusion) that = has to be instantiated to 0 and
? to 2 , but it is not immediately clear what term< should be instantiated with. So either the user
has to provide it explicitly by running the tactic apply Z.lt_trans with (< := 1), which results
in two subgoals with the same hypotheses as the original goal and conclusions 0 < 1 and 1 < 2

respectively; or the user can delay the choice of< by running eapply Z.lt_trans. The eapply tactic
is a variant of the apply tactic that creates so-called evars (short for existential variables) for terms
that cannot be determined yet. On this example, it results in two subgoals with conclusions 0 < ?<

and ?< < 2 , respectively, where the question mark is used to mark< as an evar, i.e. as some hole

that will be filled in later. Note that the two occurrences of ?< in the two subgoals are linked:
As soon as ?< is instantiated to some term in one goal, it is also instantiated to the same term in
the other goal. To continue the example, one could now run the eassumption tactic on the first goal,
which applies any assumption from the list of hypotheses that matches the conclusion. The e at
the beginning of the tactic’s name means that it can instantiate evars in order to unify a hypothesis
with the conclusion, so it will pick �1 and instantiate ?< to 1.

2.3 A Use Case of Evars: Deriving a Definition Based on its Proof

Coq’s Derive command can be used to create a definition and a proof about it at the same time. For ex-
ample, if we want to define a list myList such that it contains (at least) 1 and 2 as its elements, we can
start with the the command Derive myList SuchThat (In 1 myList ∧ In 2 myList) As myLemma.
It starts the definition of a list named myList, along with a lemma named myLemma. Note that the
definition of myList is not yet given at this point and will only be filled in gradually while writing the
proof. This command creates an evar ?myList for the definition being made and opens the proof goal
⊢ In 1 ?myList ∧ In 2 ?myList. Using the split tactic turns it into two goals, ⊢ In 1 ?myList

and ⊢ In 2 ?myList. Given the lemma in_eq which says ∀ (A : Type) (a : A) (l : list A),

In a (cons a l), we can run eapply in_eq on the first subgoal, which unifies the conclusion of
that lemma with In 1 ?myList. This step partially instantiates the evar ?myList, namely to the
term (cons 1 ?l), which in turn contains a new evar ?l. Therefore, the second subgoal now be-
comes ⊢ In 2 (cons 1 ?l). Then, the proof can be completed by applying in_cons which says
that ∀ (A : Type) (a b : A) (l : list A), In b l ⇒ In b (cons a l), leading to ⊢ In 2 ?l

and then applying in_singleton : ∀ (A : Type) (x : A), In x (cons x nil), which instantiates
the remaining evar ?l to the singleton list containing just 2.
So, through this series of proof steps, the list myList was defined to be (cons 1 (cons 2 nil))

solely based on its proof, without ever having to spell out this term as a whole.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 209. Publication date: June 2024.



Live Verification in an Interactive Proof Assistant 209:5

3 OVERVIEW: WRITING AND COMPILING A SAMPLE PROGRAM

3.1 Guided Tour Through the memset Example

This subsection gives an overview of our approach by means of a detailed discussion of the sample
program in Figure 1. The sample program contains many notations, and in this section, we are not
yet attempting to explain what exactly each notation unfolds to. Instead, we are just trying to give
an intuitive understanding of their meanings. For reference, a listing of all notations can be found
in Appendix A.

3.1.1 Polyglot Source File Can be Read as C or Coq at the Same Time [Lines 1-27]. The code in
Figure 1 is a Coq file accepted by unmodified Coq 8.17.1. By (ab)using Coq’s notation system, we
can insert program snippets that look like C code. If the file is preceded by our framework-specific
C header and an opening C comment, it becomes a C file that can be compiled with GCC.

3.1.2 Function Signature Using Only One Type [Line 6]. Since we only support the subset of C
that is also supported by Bedrock2, all variables have the same type, namely uintptr_t (defined
in stdint.h). According to the standard, that is an unsigned integer type large enough to hold a
pointer value, but we rely on the observation that in practice, compiler implementations define it
as 32-bit and 64-bit unsigned int on 32-bit and 64-bit machines, respectively.

3.1.3 Specifications Using Separation Logic and Z [Lines 7-13]. The C signature is followed by a
function specification enclosed in a /**# #**/ comment that lists ghost arguments, a precondition
over the initial event trace t and the initial memory m, and a postcondition over the final event
trace t' and final memory m'. The parts between <{ }> are separation-logic assertions. We use *

symbols as bullet points for lists of separation-logic clauses to be joined by separating conjunction,
so * can also be read as the traditional star operator from separation logic, just with the additional
liberty of allowing a series of separating conjunctions to start with a superfluous initial *. The
array predicate takes as arguments the predicate for its elements (uint 8), followed by its number
of elements, its list of elements, and its start address.
To make our specifications as trustworthy as possible, we need to avoid accidential integer

overflows in the specifications, so we generally use unbounded integers (Z) in our specifications
rather than bounded integers (word), except in situations with many bitwise operations and where
integer overflow is the desired outcome. Therefore, we often need to interpret bounded integers
(values that were computed by our programs) as unbounded integers in order to mention them
in specifications. To interpret a word value x as an unsigned Z, we use the notation \[x] (which
expands to the word.unsigned function), and there is also a word.signed function (for which we
have not yet invented a notation because we use it less frequently). The reverse direction, coercing
a Z into a word, does not need to distinguish between signed and unsigned integers, because in both
cases, it simply takes the 32 least significant bits of the unbounded integer’s binary representation
(where a negative number is considered to start with an infinite series of 1s on the left). We call
this coercion word.of_Z and abbreviate it with /[x], but since it drops the more significant bits, we
try to use it as little as possible.

3.1.4 The Initial Proof Goal [Line 14]. We use Coq’s Derive1 command (§ 2.3) to start the correctness
proof of a function that has not yet been defined but will be defined at the same time as we write the
proof. The Derive command opens a proof goal which could be summarized, using the notation from
§ 2.1, as ⊢ % (C, B,<) → wp (C, B,<) ?1>3~ & , where % stands for the precondition from lines 8-10,
& stands for the postcondition from lines 11-13, and ?1>3~ is an evar (§ 2.2) acting as a placeholder

1A note for Haskell users: Unlike in Haskell, the Derive keyword in Coq is in no way related to the Instance keyword. We

mark specifications as type-class instances to enable our tactics to look up the spec of a callee by its string name.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 209. Publication date: June 2024.



209:6 Samuel Grue�er, Viktor Fukala, and Adam Chlipala

for the function body that is going to be defined. The state triple (C, B,<) contains an event trace C ,
a partial mapping B from variable names to values, and a memory<. The initial B contains just the
function arguments, so in this example, it equals map.of_list [|("a", a); ("b", b); ("n", n)|].2

The wp judgment takes an initial state, a command, and a desired postcondition, and it tells us
what we have to prove in order to ensure that after running the command on the initial state, the
postcondition holds.3

3.1.5 C Snippets Acting As Proof-Script Steps [Lines 15-26]. Each C snippet is enclosed between a
closing comment .**/ and an opening comment /**. and is actually just a notation for a tactic.
The first proof step, .**/ { /**., introduces the precondition as hypotheses and performs some
setup to start the proof.

wp-set

eval_expr B < 4 E

wp (C, B [G := E],<) A4BC %

wp (C, B,<) (G := 4; A4BC) %

wp-while

�=E f

∀f ′. �=E f ′ ⇒ ∃1.

eval_expr f ′ 4 1 ∧

(1 ≠ 0 ⇒ wp f ′ 2 �=E) ∧

(1 = 0 ⇒ wp f ′ A4BC %)

wp f (while 4 do 2; A4BC) %

Fig. 2. Some weakest-precondition rules

3.1.6 Applying Weakest-Precondition Rules [Lines 16-24].
The assignment on line 16 is a notation for a tactic that
applies the wp rule for assignment shown on the right.4 It
has a built-in sequence command, so applying it to awp goal
whose command is an evar instantiates that evar and leaves
behind a new evar ?rest for the subsequent commands.

The snippet on line 22 applies the wp-while rule shown
on the right.5 It requires an invariant �=E , a proof that �=E
holds for the initial state; a proof that �=E implies that eval-
uating the condition 4 is safe; a proof that if the condition
is nonzero (true), running the loop body 2 always leads to a
state that satisfies �=E again; and a proof that if the condition
is zero (false), the code after the loop is correct.

Our framework contains rules for all language constructs,
and they are all proven sound with respect to the semantics of Bedrock2 (expressed in omniseman-
tics [Charguéraud et al. 2023]).

3.1.7 Expressing the Loop Invariant as a Diff from the Current Symbolic State [Lines 17-21 in
Figure 3c]. The wp-while lemma requires a loop invariant. Automatically inferring loop invariants
is a hard problem, and we do not attempt to solve it. But spelling out loop invariants manually is
also quite cumbersome. Therefore, we use an approach in-between these two extremes, based on
the observation that the loop invariant often looks quite similar to the symbolic state just before
the loop. Instead of requiring that the user spells out the whole invariant, we only require that
the user expresses the insight needed to obtain the right invariant, expressed as a tactic script
(Figure 3c) that transforms the symbolic state before the loop (Figure 3a) into a generalized and/or
strengthened symbolic state (Figure 3b) which our framework then mechanically packages into a
loop invariant (Figure 3d).

2Note that for list literals, we use the notation [|x; y; z|] instead of Coq’s standard notation [x; y; z], because we

want to use bracket notation to index into lists, so the term f [b] would become ambiguous: It could be the application of

function f to the singleton list containing b, or it could be the b-th element of list f. We experimented with type-based

operator overloading (§ 5.7.2), but it did not seem worth the trouble.
3Note that even though weakest-precondition generators are often presented as threading a postcondition through a

program backwards, we can actually also use them to step through a program in forward direction – we just need to evaluate

the weakest-precondition generator under normal-order evaluation (i.e. left-to-right) instead of the standard call-by-value

order where arguments get evaluated first.
4The rule that actually gets applied is specially tailored to work well with our proof automation, see § 5.2.
5For simplicity, we show a termination-insensitive variant, but the real lemma also requires a termination argument and is

specially tailored for our proof automation, see § 5.2.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 209. Publication date: June 2024.



Live Verification in an Interactive Proof Assistant 209:7

state : currently displaying

... 6 lines of section vars omitted ...

fs : list (string * func)

fs_ok : functions_correct fs ?Goal

Scope0 : ____ FunctionParams ____

a, b, n : word

bs : list Z

R : mem→ Prop

Scope1 : ____ FunctionBody ____

t : trace

i : word

m, m0, m1 : mem

H0 : m0 |= array (uint 8) \[n] bs a

H1 : m1 |= R

D : m0 \*/ m1 = m

Hp1 : \[b] < 2 ^ 8

Def0 : i = /[0]

============================

ready

(a) Symbolic state (proof goal) a�er processing

the first line of the function body in Figure 1

state : currently displaying

... 6 lines of section vars omitted ...

fs : list (string * func)

fs_ok : functions_correct fs ?Goal

Scope0 : ____ FunctionParams ____

a, b, n : word

bs : list Z

R : mem→ Prop

Scope1 : ____ FunctionBody ____

t : trace

Scope2 : ____ LoopInvOrPreOrPost ____

i : word

m, m0, m1 : mem

H0 : m0 |= array (uint 8) \[n]

(List.repeatz \[b] \[i] ++ bs[\[i]:]) a

H1 : m1 |= R

D : m0 \*/ m1 = m

Hp1 : \[b] < 2 ^ 8

============================

ready

(b) Symbolic state (proof goal) a�er processing

the Ltac code in (c)

17 swap bs with

18 (List.repeatz \[b] \[i] ++ bs[\[i]:])

19 in #(array (uint 8)).

20 loop invariant above i.

21 delete #(i = ??).

(c) Snippet of Ltac code that was folded into ··· in

Figure 1. The # notation is used to reference a hy-

pothesis matching a pa�ern, instead of using its

autogenerated (and thus subject-to-change) name.

fun (measure : word) (ti : trace)

(mi : mem) (li : locals)⇒

exists i : word, ands [|

measure = n ^- i; ti = t;

li = map.of_list [|("a", a); ("b", b);

("i", i); ("n", n)|];

seps [|array (uint 8) \[n]

(List.repeatz \[b] \[i]

++ bs[\[i]:]) a; R|] mi;

\[b] < 2 ^ 8|]

(d) Loop invariant automatically built by packaging

everything below __LoopInvOrPreOrPost__ in (b)

Fig. 3. Loop-invariant definition using a diff script (c) instead of explicitly spelling it out

3.1.8 Heapletwise Separation Logic [Background for Line 23]. It is useful to name each separation-
logic clause and to make it available to Ltac’s match command, which finds hypotheses matching a
given pattern. Therefore, instead of using one big separation-logic clause (P ∗ Q ∗ R) m, we split
it into one hypothesis per clause. This strategy requires explicitly splitting the memory m into a
heaplet corresponding to each clause, which takes up some space in the display of the proof goal,
but it can be handled completely automatically and therefore does not affect the user experience
too negatively. This splitting then leads to three new heaplets m0, m1, m2; an equation saying that
their disjoint union equals m, written as m0 \*/ m1 \*/ m2 = m; and three hypotheses P m0, Q m1

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 209. Publication date: June 2024.



209:8 Samuel Grue�er, Viktor Fukala, and Adam Chlipala

Table 1. Different Ways of Compiling

Feed Coq File to GCC Bedrock2’s
Ugly-Printer & GCC

Bedrock2 Compiler

Readability of
exported code

OK (see e.g. Figure 1) Decipherable (many
casts & parentheses)

It is assembly

Instruction-set
architecture support

Everything supported
by GCC

Everything supported
by GCC

Only RISC-V

Performance of
compiled code

Good Good Bad

Additions to trusted
code base

Notations to parse C
into Bedrock2, GCC,
load/store C header

Bedrock2’s
ugly-printer, GCC,
load/store C header

Only the riscv-coq
specification

and R m2. To make them more easily recognizable as memory hypotheses, we use the mi |= Pi

notation, which just expands to Pi mi. See for example hypotheses H0, H1, and D in Figure 3a, and
compare them to the precondition of the memset function on line 8 in Figure 1.

3.1.9 AccessingMemory That Is Part of a Bigger Separation-Logic Clause [Line 23]. store8(a + i, b)

stores the lowest 8 bits of b to the i-th element of the array at a. According to the loop invariant,
we have the following separation-logic clause:

H0 : m0 |= array (uint 8) \[n] (List.repeatz \[b] \[i] ++ bs[\[i]:]) a

However, the wp lemma for the store commands (omitted for space reasons) expects a separation-
logic clause with just one (uint 8) element, so we need to split the array appropriately. Our tactics
take care of this automatically, leading to the following three clauses:

H2 : m0 |= array (uint 8) \[i] (List.repeatz \[b] \[i]) a

H3 : m2 |= uint 8 bs[\[i]] (a ^+ i)

H7 : m4 |= array (uint 8) (\[n] - \[i] - 1) bs[\[i] + 1 :] (a ^+ i ^+ /[1])

The store then replaces bs[\[i]] with b in H3, and since the splitting tactic posed a hypothesis
that acts as a reminder to merge the three clauses back together later, we end up with the following
clause after the store:

H1 : m |= array (uint 8) \[n] (List.repeatz \[b] \[i] ++ [|\[b]|] ++ bs[\[i] + 1 :]) a

3.1.10 Proving That the Current Symbolic State Satisfies Expectations [Lines 25 and 26]. The closing
brace at the end of the loop body creates a proof that the symbolic state obtained by executing
the loop body satisfies the loop invariant again, and the closing brace at the end of the function
body creates a proof that the final symbolic state satisfies the postcondition given on lines 11-13. In
this example, the proofs are found completely automatically, but in more complex examples, the
automation might leave some goals open for the user to prove manually. This completes our tour
of the memset example.

3.2 Tradeoffs Between Three Different Ways of Compiling

Finally, we might also want to compile and run our code. Table 1 compares three different ways of
compiling code that was verified in our framework. The C-parsing notations of our framework
expand to Bedrock2 ASTs, defined as a Coq inductive datatype, so the correctness proofs are
statements about these ASTs. The verified Bedrock2 compiler consumes the sameASTs and is proven

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 209. Publication date: June 2024.



Live Verification in an Interactive Proof Assistant 209:9

correct against the same semantics as used by our framework, so when it comes to minimizing the
TCB, this is the preferred approach. For better performance and support of ISAs other than just
RISC-V, one can choose to compromise on TCB minimality: If one trusts our notations to parse C
as well as Coq’s implementation of its notation system, one can feed our Coq files (which are also
C files if preceded by our header defining loads and stores and an opening comment /*) to GCC
(and likely also to other C compilers), or if one prefers to trust Bedrock2’s pretty-printer (called
ugly-printer by its author), one gets less readable C code but otherwise similar characteristics.

One might also wonder whether it would make sense to compile our programs with CompCert.
In practice, this would probably work, but we do not have a compatibility proof between Bedrock2
semantics and CompCert C semantics, and such a statement would not be provable because of
differences such as e.g. that comparisons between integers that were obtained by casting pointers
are undefined behavior in CompCert C.

4 USER INTERFACE

4.1 New Separation-Logic Concepts

To better drive separation-logic proof automation and make some expressions more concise, we
introduce a few properties of separation-logic predicates:

4.1.1 Predicate Size. Often a separation-logic predicate P occupies some range of memory addresses,
and we need to know the length in bytes of that range. Therefore, we define PredicateSize P to
be an alias of Z, mark it as a type class, and register a hint for each predicate, so that we can use
type-class search to find the size of a predicate. The predicate (array elemPred n xs a) can then
use an implicit, automatically inferred argument elemSize of type (PredicateSize elemPred), to
state that at address a, we have an array of the n elements in list xs, where the i-th element of xs is
asserted using (elemPred xs[i] (a+i*elemSize)).

4.1.2 Support for Adjacent Sep Clauses: sepapp and sepapps. Often, we want to lay out several
predicates adjacent to each other.6 To avoid having to write out offsets explicitly, we introduce a new
definition that we call separating append, written sepapp P1 P2 addr. It takes two separation-logic
predicates P1 and P2 of type word → mem → Prop, where the word stands for the address at which
the predicate begins, and also takes an implicitly inserted argument P1size of type PredicateSize P1

(which can be found by type-class search as explained above) and an address addr, and it is defined as
the separating conjunction P1 addr ∗ P2 (addr ^+ /[P1size]). We also define a sepapps predicate
that takes a list of predicates, infers their sizes, and lays them out adjacently.

4.1.3 =-Fillable Predicates. We call a predicate % =-fillable if for any =-byte buffer at address 0,
there exists a value E such that the predicate % E 0 holds. This concept is useful to know whether
we can cast the byte buffer returned by malloc into a predicate % .

4.2 Defining Record Predicates Using C Syntax

Our framework supports defining separation-logic predicates using C syntax. For example, given
a Coq record type for nodes of singly linked lists, Record node := { data: word; next: word },
we can create a separation-logic predicate called node_t that asserts that at a given address, a
representation of a given node record is found. Using sepapps and some custom notations, we can
define a predicate that looks like a C struct definition (first definition in Figure 4). The two other
definitions in that Figure express the same predicate but using a notation for sepapps or sepapps
directly, respectively.

6So far, we have only considered packed records, so we do not automatically insert spacing to respect alignment constraints.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 209. Publication date: June 2024.



209:10 Samuel Grue�er, Viktor Fukala, and Adam Chlipala

Definition node_t(r: node):

word→ mem→ Prop := .**/

typedef struct

__attribute__ ((__packed__)) {

uintptr_t data;

uintptr_t next;

} node_t;

/**.

Definition node_t(r: node): word→ mem→ Prop :=

<{ + uintptr (data r)

+ uintptr (next r) }>.

Definition node_t(r: node): word→ mem→ Prop :=

sepapps

(cons (mk_sized_predicate (uintptr (data r)) 4)

(cons (mk_sized_predicate (uintptr (next r)) 4)

nil)).

Fig. 4. Three equivalent definitions, using different notations

4.3 IDE Extensions

Our framework can be used in any IDE for Coq. However, there are three very common operations
for which we implemented keyboard shortcuts in 40 lines of Emacs Lisp: Showing/hiding of the Ltac
block under the cursor (i.e. folding tactics into ···), inserting spaces until the end of line followed by
a C-closing/Ltac-opening marker /**. and then processing the line, and inserting and processing
one step command (§ 4.8.3).

4.4 Expressing a Loop Invariant as a Diff from the Current Symbolic State

Before each loop, the user of our framework must turn the symbolic state into a shape that our
framework can use as a loop invariant. The example in Figure 3 should be helpful to illustrate the
general process that we are going to explain in detail now. All modifications are expressed in Ltac
and are of two kinds:
The first is that the user needs to separate variables and hypotheses that remain unchanged

during the loop from those that may change during the loop, by using the command loop invariant

above x, where x is the name of a variable or hypothesis. This command adds a LoopInvOrPreOrPost
marker above x to separate unchanged (above) from changing (below) variables and hypotheses.
After adding this marker, one can use Coq’s builtin Ltac commands move x before y and move x

after y to move hypotheses and variables up and down, until each is on the correct side of the
separating marker. The variables below the marker will turn into existentials in the loop invariant,
and the hypotheses will turn into a big conjunction (expressed as ands [|...|]). The variables and
hypotheses above the marker do not appear in the loop invariant, except that the local variables
above the marker are asserted to keep their values throughout the loop, and the hypotheses naturally
remain available during the proof of the loop body without requiring further intervention.
The second kind of modification is related to generalizing the state. For instance, a variable i

that equals one particular value before the loop might need to be generalized to be within a range
by prove (0 <= i < n); and by delete #(i = ??), which finds the first hypothesis of shape i = ??

and deletes it. Other common modifications of this kind include viewing a list of unprocessed
items as the concatenation of an empty processed list and a remainder of unprocessed items, then
forgetting that the unprocessed and processed list are the empty and whole list, respectively. A
similar example is also in Figure 3c, where we replace the list bs of initial garbage data by the
concatenation of repeating \[b] zero times (zero being the initial value of i) and the suffix of bs
starting at i. And finally, it is sometimes also needed to introduce additional variables, so that a
value that happens to be the same in two hypotheses can differ during the loop, which can be
achieved using the pose (a := b) command, and change b with a in H, and finally, clearbody a

to forget that a equals b.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 209. Publication date: June 2024.



Live Verification in an Interactive Proof Assistant 209:11

4.5 Treating While Loops as Tail-Recursive Calls

Certain loops can be more easily verified by viewing them as tail-recursive functions with pre-
and postconditions parameterized over ghost variables [Tuerk 2010]. Before each loop iteration,
the precondition must hold, and at the end of the loop body, one has to show that the current
state implies the precondition with smaller ghost variables, and one also has to show that the
postcondition with small ghost variables implies the postcondition with bigger ghost variables.

For instance, when iterating over a data structure, the ghost variables can include a representation
of the data structure and a frame, and the former shrinks with each iteration, while the latter grows
with each iteration, so that we can forget the parts of the memory that are not relevant anymore.

We implement support for while and do-while loops in this style, using the symbolic state
before the loop, appropriately generalized and strengthened through a diff script by the user, as a
precondition, and the function’s postcondition as the postcondition of the tail-recursive view of
the loop. Since we do not want users to spell out loop postconditions manually, we do not support
yet this tail-recursive view for cases where the code after the loop still needs to access the memory
that was “forgotten” (pushed into the frame) during the loop. In such cases, one would have to
factor the code into two functions or resort to a traditional while loop with just one invariant. For
an example of using this verification style, see Appendix C.

4.6 Variable-Naming Scheme

Our tactics make sure that a program variable named "x" always has its corresponding value bound
to a Coq variable named x. When a variable gets reassigned, the old value is renamed into x', and x

is used for the new value.

4.7 Context Packaging and Merging for if-then-else

For if-then-else, we use the lemma wp-if.7 Note that the if below the line belongs to the object
language (Bedrock2), whereas the if above the line belongs to the metalanguage (Coq).

wp-if

eval_expr_as_bool f 4 1

(1 = true → wp f Cℎ= &1)

(1 = false → wp f 4;B &2)

∀f ′. (if 1 then &1 f
′ else &2 f

′) → wp f ′ A4BC %

wp f (if(4){Cℎ=}else{4;B}; A4BC) %

When wp-if gets applied, evars are cre-
ated for the result 1 of evaluating the con-
dition 4 , for the code snippets Cℎ=, 4;B ,
and A4BC , as well as for the postconditions
of the two branches, &1 and &2. The tac-
tics first evaluate the condition 4 into a
Boolean 1. Then, the user can provide more snippets that make up the code of the then-branch.
When providing the snippet .**/ } else { /**., the then-branch is closed, and the evar ?&1 is
instantiated by our tactics to a conjunction of all the hypotheses in the current context. When
the user closes the else-branch, ?&2 is instantiated in the same way, and before the first command
after the if-then-else is processed, the two symbolic states (expressed by &1 and &2) are merged by
pushing down the metalanguage if as far as possible by detecting parts in &1 and &2 that have
the same structure. The tactics bind the value of 1 to a fresh variable, so that we can mention it
many times without becoming overly verbose. This merging results in symbolic states containing
hypotheses with many if-then-else expressions like e.g. in the following:

H1 : m0 |= uint 32 (if c' then in1 else if c then in2 else in0) a0

Def7 : w1 = (if c' then /[in0] else /[in1])

A /* split */ option is available that can be inserted after the if condition if one prefers to
continue the proof separately after the if-then-else rather than using a merged state. However, this

7The lemma that we actually use is specially tailored to work well with our tactics, as described in § 5.2.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 209. Publication date: June 2024.



209:12 Samuel Grue�er, Viktor Fukala, and Adam Chlipala

option is only available if the if-then-else is at the end of a block with a concrete postcondition (i.e.
a loop invariant or the function’s postcondition), because splitting the proof of the code after the
if-then-else into two separate proofs would require writing down all the code snippets (which drive
the proof) twice, which would not result in the desired C code when treating the Coq file as a C file.

4.8 Optimize the User Experience for Failing Proofs Instead of Working Proofs

In the past, most frameworks for automated program proofs have focused on presenting automated
proofs that work. However, wemust recognize that the default case that users of program verification
tools face is the case where the prover fails or seems to run forever, either because the program
or the specification contains a bug, or because a user-provided invariant is not strong enough, or
because the prover lacks some domain-specific insight or hint that needs to be provided by the user.
We believe that debugging these situations, and being able to determine quickly which of the

above is the case, is the primary usability criterion for a program-verification tool, much more
important than the number of lines of proof script that users need to provide manually.
Therefore, we adhere to three principles described in the following subsections.

4.8.1 Do Not Run “Forever” on Failing Proofs. We carefully designed our proof automation in such
a way that it never runs for longer than a few seconds, and if it does, we consider it a bug.

4.8.2 Actionable Error Messages. If the tool fails to prove a goal, it should provide the user with an
error message containing information on what it tried and what (currently unprovable) conditions
might enable it to make more progress.
As an example, let us look more closely at separation-logic cancellation, which is required e.g.

before function calls, to match the caller’s symbolic heap to the callee’s symbolic heap. The strategy
is repeatedly to delete separation clauses that appear both in the caller’s heap and in the callee’s
heap. Since the clauses in the callee’s heap typically contain evars for the callee’s ghost arguments
(because ghost arguments do not get mentioned in the source code), our procedure carefully only
instantiates an evar if there is a unique choice. Sometimes, e.g. when a record field or a slice of an
array is passed to the callee, cancellation needs to split a caller’s clause before it can proceed. So, if
the callee expects a chunk of memory covering the range starting at address 0 of size =, we need
to find a clause in the caller’s heap covering a superrange of that range, starting at an address 0′

and of a size =′ such that the subset relation on half-open intervals [0, 0 + =[⊆ [0′, 0′ + =′[ holds,
written in Coq as subrange a n a' n'.

Say we want to implement and verify a function with the following signature:

uintptr_t safeCopySlice(uintptr_t src, uintptr_t srcOfs, uintptr_t srcLen,

uintptr_t unsafeN, uintptr_t dst, uintptr_t dstOfs, uintptr_t dstLen)

Its full specification spans 25 lines of code and is given in Appendix E but is more easily expressed
in English: Given a byte array of length srcLen at address src and a byte array of length dstLen at
address dst, we want to copy unsafeN bytes starting at offset srcOfs in the source array to offset
dstOfs in the destination array. We already know that srcOfs and dstOfs are within bounds, but
unsafeN comes from an untrusted origin and needs to be checked. We might start with the following:

Derive safeCopySlice SuchThat (fun_correct! safeCopySlice) As safeCopySlice_ok. .**/

{ /**. .**/

if (srcOfs + unsafeN <= srcLen && dstOfs + unsafeN <= dstLen) /*split*/ { /**. .**/

Memcpy(dst + dstOfs, src + srcOfs, unsafeN); /**.

After processing the proof just until before the Memcpy call, our symbolic state contains 16
uninteresting lines listing variables that we elide, followed by some more interesting lines shown
in Figure 5.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 209. Publication date: June 2024.



Live Verification in an Interactive Proof Assistant 209:13

H0 : m0 |= array (uint 8) \[srcLen]

srcData src

H2 : m2 |= array (uint 8) \[dstLen]

(dstData ++ dstUninit) dst

H3 : m3 |= R

D : m0 \*/ (m2 \*/ m3) = m

Hp1 : \[srcOfs] <= \[srcLen]

Hp2 : len dstData = \[dstOfs]

Scope2 : ____ IfCondition ____

H : \[srcOfs ^+ unsafeN] <= \[srcLen]

H1 : \[dstOfs ^+ unsafeN] <= \[dstLen]

Scope3 : ____ ThenBranch ____

============================

ready

Fig. 5. Proof goal before Memcpy

At this point, the user could start won-
dering whether the word addition in hypoth-
esis H, i.e. \[srcOfs ^+ unsafeN], could also
be expressed as an addition on Z, i.e. as
\[srcOfs] + \[unsafeN], and why the tool did
not do that, even though it usually does, or
the user can also just carry on and move
the proof cursor past the Memcpy call. Do-
ing so changes the conclusion of the goal
to (find_hyp_for_range (dst ^+ dstOfs)

(\[unsafeN] * 1) -), where - is a bigger
goal that we elided for presentation purposes.
find_hyp_for_range is a Gallina definition of
an identity function that takes two phantom
arguments that it ignores, plus a third one, - ,
that it returns. It serves as a marker to inform
the tactics as well as the user that the tool is performing cancellation and looking for a separation-
logic clause in the caller’s symbolic heap whose range starts at (dst ^+ dstOfs) and spans
(\[unsafeN] * 1) bytes. The tool also emits the following error message: "Exactly one of the

following claims should hold:" [|subrange (dst ^+ dstOfs) (\[unsafeN] * 1) src (\[srcLen]

* 1); inrange src (dst ^+ dstOfs) (\[unsafeN] * 1); subrange (dst ^+ dstOfs) (\[unsafeN] *

1) dst (\[dstLen] * 1); inrange dst (dst ^+ dstOfs) (\[unsafeN] * 1)|] ! This message might
look quite unintelligible at first, but we will show how it is actionable in the sense that it points the
user to something to try to prove that is unprovable and will make the user understand the bug.
The message contains four semicolon-separated claims and says that exactly one of them should
hold. We can ignore the two inrange claims, because they are only needed to split separation-logic
clauses on the callee side, which we do not expect to happen here, so we are left with just two
subrange claims, and the second one looks like it should be provable (whereas the first one tries to
relate completely unrelated ranges, one in dst, the other in src). Since we are in Coq’s proof mode,
right after the call to Memcpy, we can insert the following Ltac snippet to try to prove the subrange

claim that we think should hold:

assert (subrange (dst ^+ dstOfs) (\[unsafeN] * 1) dst (\[dstLen] * 1)). {

unfold subrange. bottom_up_simpl-in_goal.

It leads to a new goal with conclusion \[dstOfs] + \[unsafeN] <= \[dstLen], but the most
closely matching hypothesis is H1 (see Figure 5), which performs the addition on word instead
of on Z. So now, the user might complain about how limited the proof automation of this Live
Verification tool is and attempt to prove the goal manually, by invoking Coq’s standard Search

command with the pattern \[_ ^+ _] as its argument, whose top two results are a lemma which
shows that for all words x and y, \[x ^+ y] = word.wrap (\[x] + \[y]); and one which shows that
if \[x] + \[y] < 2 ^ width, then \[x ^+ y] = \[x] + \[y]. By this point, it should have become
clear that the program contains an overflow bug: If unsafeN is very big, the addition overflows
and results in a small number that might satisfy the condition tested by the if on the first line
of safeCopySlice, but the Memcpy will still copy unsafeN bytes and overwrite out-of-bounds data,
which could be exploited by attackers for arbitrary code execution. In fact, this (seemingly simple)
type of bug (overflow on unsigned integer addition that computes the required amount of memory)
led to the stagefright bugs, which in 2015 exposed the majority of Android users to no-click remote

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 209. Publication date: June 2024.



209:14 Samuel Grue�er, Viktor Fukala, and Adam Chlipala

code execution on mere reception of a malicious MMSmessage.8 Replacing the test by the following,
overflow-safe variant resolves the problem:

if (unsafeN <= srcLen - srcOfs && unsafeN <= dstLen - dstOfs) /*split*/ { /**. .**/

For reference, the corrected full program (which does not do anything more in addition to what
was already shown except returning 1 or 0 depending on whether unsafeN was accepted) is given
in Appendix E. We note that all its proof steps are completely automated, including the splitting of
the source and destination arrays before the Memcpy call, pasting them back together after the call,
and matching that result to the desired postcondition.

4.8.3 Safe Steps – Avoiding Backtracking for Be�er Proof Debuggability. To make our proof automa-
tion more debuggable, we avoid backtracking as much as possible and instead use mechanisms that
allow us to know whether a proof step is safe, i.e. will not turn a provable goal into an unprovable
one. We expose a tactic called step to the user, and when a proof does not work, the user can disable
the automatic invocation of side-condition solving by replacing the /**. after a snippet by /*?.

and then manually invoke step many times and watch step-by-step what the prover does and how
it affects the proof goal.
To give an example of safe and unsafe steps, if we have a goal ?xs ++ ?ys = vs1 ++ vs2, i.e.

two evars on the left and normal variables on the right, it would be tempting to just instantiate
?xs to vs1 and ?ys to vs2. However, this choice might make another goal in which the two evars
appear as well unsolvable, because the correct choice for ?xs might be vs1 ++ vs2[:1], and the
correct choice for ?ys would then be vs2[1:]. On the other hand, on a very similar-looking goal,
vs1 ++ ?ys = vs1 ++ vs2, it is safe to instantiate ?ys to vs2, because that is the only possible choice.

We use a user-extensible hint database of judments of the form safe_implication P Q, which
is defined as P implies Q. The opposite direction usually also holds, but in some cases, Q does
not quite imply P, yet the only reasonable way to prove Q is to reduce it to proving P, so we
do not require the opposite implication direction. For examples like the above, our hint data-
base of safe steps contains the rules safe_implication (ys1 = ys2) (xs ++ ys1 = xs ++ ys2) and
safe_implication (xs1 = xs2) (xs1 ++ ys = xs2 ++ ys).
As an example of how safe steps can help debug failing proofs, consider the last proof step of

the insert function of a binary search tree, in the case where a new leaf had to be allocated for the
value to be added. Assume that the programmer correctly initialized all fields of the new leaf but
forgot to link the leaf to the parent node. The return value of the function is specified to be 0 if the
memory allocator failed and 1 if it succeeded. Figure 6 shows the postcondition that needs to be
proven in this case.

To debug why this postcondition cannot be proven automatically, the user can insert and process9

many invocations of step and see how they try to solve the goal step-by-step. Each step also prints
a short description of what it did. Here, we just summarize the most interesting steps. The full log
of all steps is given in Appendix F. One of the first steps gets rid of the trivial equality t = t, and a
subsequent step notices that since \[/[1]] = 0 can never hold, it is safe to attempt proving only the
right-hand side of the disjunction. Further steps then start cancelling the separation-logic formula
with clauses from the hypotheses (not shown in this paper) and manage to prove everything except
a remaining goal (is_empty_set (fun x : Z ⇒ x = \[vAdd] ∨ s x)), which asks us to prove that
a set, expressed as a lambda returning a proposition, is empty, even though it clearly contains at
least one element, namely \[vAdd]. Here we see a case where reducing unprovability to the smallest

8https://en.wikipedia.org/wiki/Stagefright_(bug), https://nvd.nist.gov/vuln/detail/CVE-2015-3864, https://www.exploit-

db.com/docs/39527
9We provide an Emacs macro to do so efficiently (see § 4.3), but simple copy-paste works as well.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 209. Publication date: June 2024.

https://en.wikipedia.org/wiki/Stagefright_(bug)
https://nvd.nist.gov/vuln/detail/CVE-2015-3864
https://www.exploit-db.com/docs/39527
https://www.exploit-db.com/docs/39527


Live Verification in an Interactive Proof Assistant 209:15

(t = t ∧

(\[/[1]] = 0 ∧

<{ * allocator_failed_below 12

* (EX rootp : word, <{ * uintptr rootp p

* (EX sk : tree_skeleton, bst' sk s rootp) }>)

* R }> m4 ∨

\[/[1]] = 1 ∧

<{ * allocator

* (EX rootp : word,

<{ * uintptr rootp p

* (EX sk : tree_skeleton, bst' sk (fun x : Z⇒ x = \[vAdd] ∨ s x) rootp) }>)

* R }> m4))

Fig. 6. Postcondition that needs to be proven in one case at the end of a (buggy) binary-search-tree insert,

where bst' sk s a asserts that at address a is found a binary search tree whose tree structure is sk and

whose contents correspond to the set s, represented as a propostion over values.

possible core is actually too much, so that it is not easily understandable anymore why the tool
asks us to prove this contradictory goal. But, fortunately, one of the intermediate goals that the
user encounters while invoking step repeatedly is more enlightening: It asks the user to prove
bst' ?x (fun x : Z ⇒ x = \[vAdd] ∨ s x) /[0], i.e. that at address 0, there is a binary search
tree containing vAdd, the value being inserted. However, what we expect to prove is that this binary
search tree is at some nonzero address p, which points us directly to our bug, namely that the
pointer that should point to our newly allocated leaf still is 0 instead of p.

So, to summarize, this example shows that sometimes (in fact, often, in our experience), neither
the full initial unprovable goal nor its smallest unprovable core is very enlightening, but the most
enlightening goal is somewhere in-between during the automated proof process, and giving the
users a means of running this automated proof process step-by-step enables them to understand
more quickly why a goal cannot be proven.

5 IMPLEMENTATION NOTES

5.1 Parsing C in Coq

Using Coq’s notation system , we can declaratively write a parser for a big enough subset of C. Our
ASTs use strings to represent identifiers, but we do not want double quotes around these strings to
appear in our C code. Unfortunately, there is no officially supported way of getting rid of these
quotes in Coq, so we resort to a somewhat sinister trick by Pit-Claudel and Bourgeat [2021, §3].

5.2 Tailored Weakest-Precondition Lemmas

Based on wp rules like the ones in Figure 2, we prove another layer of wp rules (two of which are
shown in Figure 7) that is tailored to work well with the proof-automation tactics.
While wp-set uses two separate hypotheses for the evaluation of the expression 4 and the

remainder of the program A4BC , wp_set uses a judgment called dexpr1 whose last argument is a
proposition that needs to hold after evaluating e, so that changes to the symbolic state (i.e. changes
to the hypotheses of the proof goal) that are made while evaluating e are also visible to the proof
code for the rest of the program. For instance, if the evaluation of e contained some memory access
that treats some byte buffer as a record, the proof for e will change the corresponding hypothesis

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 209. Publication date: June 2024.



209:16 Samuel Grue�er, Viktor Fukala, and Adam Chlipala

Lemma wp_set: forall fs x e v t m l rest post,

dexpr1 m l e v (update_locals [|x|] [|v|] l (fun l'⇒ wp_cmd fs rest t m l' post))→

wp_cmd fs (cmd.seq (cmd.set x e) rest) t m l post.

Lemma wp_while {measure: Type} (v0: measure) (e: expr) (c: cmd) t (m: mem) l fs rest

(Inv: measure→ trace→ mem→ locals→ Prop) {lt} {post: trace→ mem→ locals→ Prop}:

Inv v0 t m l→

well-founded lt→

(∀ v t m l, Inv v t m l→

∃ b, dexpr_bool3 m l e b

(loop_body_marker (wp_cmd fs c t m l (fun t m l⇒∃ v', Inv v' t m l ∧ lt v' v)))

(pop_scope_marker (after_loop fs rest t m l post))

True)→

wp_cmd fs (cmd.seq (cmd.while e c) rest) t m l post.

Fig. 7. Tailored Weakest-Precondition Lemmas

from a byte-array predicate to a record predicate, and it is usually desirable to preserve this change
for the rest of the program.
Lemma wp_while (Figure 7) is based on wp-while (Figure 2) but adds a termination measure

that needs to decrease at the end of each iteration according to a user-provided less-than predicate
lt which needs to be well-founded. The lemma contains some markers such as loop_body_marker,
pop_scope_marker, and after_loop (an alias of wp_cmd) that inform the tactics what to do. It uses
a judgment called dexpr_bool3, whose last three arguments are propositions that need to hold
in case the Boolean b obtained from evaluating the expression e turns out to be true, false, or
either, respectively. For example, a loop searching through a tree where null pointers are used for
leaves might start with while (p && load(p) != key), and during the evaluation of the condition,
in the case where p is non-null, this fact allows us to turn the memory assertion which says that
at p, we either have a leaf or a node into one that says we certainly have a node at p, and using
dexpr_bool3 instead of a simple conjunction that gets split into separate subgoals allows us to keep
this modification visible to the evaluation of the loop body.

5.3 Extracting Pure Facts From Sep Clauses

A separation-logic formula often contains some pure (i.e. heap-indepenent) facts, either by explicitly
asserting them or because its definition implies them. For example, a (ring_buffer cap vs a)

judgment declaring a circular buffer of capacity cap at address a containing the elements in list vs
might imply the pure fact len vs <= cap.

In order to make such pure facts available to our solver for arithmetic side conditions, we define
the judgment purify R P := ∀ (m: mem), R m → P, and whenever we define a new separation-logic
predicate R, we also prove a corresponding purify lemma and register it in a custom hint database.
Before running side-condition solvers, our framework searches the hint database for a purification
rule of the form (purify R _) for each separation-logic clause R and applies all the rules it finds.

5.4 Pa�ern-Based Selective Warning Suppression

If the framework encounters a separation-logic clause for which it cannot find a purify hint or a
PredicateSize, it emits a warning, because often, this is the reason a proof does not go through. But
some clauses do not contain pure facts or do not have constant sizes. For these, we want to suppress

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 209. Publication date: June 2024.



Live Verification in an Interactive Proof Assistant 209:17

the warning selectively. To do so, we use a Coq hint database to which we add the patterns of all
warnings that should be suppressed. Compared to most other warning-suppression mechanisms,
which only allow warnings to be suppressed by their kinds, ours also allows suppressing them
based on their arguments, without any additional implementation effort: We just piggy-back on
Coq’s very general building blocks.

5.5 Mixed Word/Integer Arithmetic Side Conditions

When reasoning about array accesses and simplifying symbolic expressions indexing into lists,
many arithmetic side conditions need to be solved. Since our specifications are written in terms of
Z, but the programs operate on a bounded word type, we obtain side conditions that mix the two.
We solve such a goal as follows: First, if it is an equality or inequality on words, we use an injectivity
lemma to reduce it to an equality or inequality on Z. Next, we push down all conversions from word
to Z (written as \[x]), transforming them into modulos. For instance, \[a ^+ b] gets rewritten to
(\[a] + \[b]) mod 2 ^ 32. Then, we eliminate modulos using the Euclidean equations, leading
to terms like \[a] + \[b] - 2 ^ 32 * k, where k is (\[a] + \[b]) / 2 ^ 32. For efficiency, our
implementation merges these two steps into one. This push-down of \[_ OP _] into \[_] OP \[_]

with modulos is applied recursively until only variables or unintepreted functions are wrapped
in \[_]. Bounds are then asserted, since interpreting a word as an unsigned Z always leads to a
number between 0 and 2 ^ 32. Finally, we invoke Coq’s linear-arithmetic solver lia.

5.6 Undoable, Reusable Zification

We call the preprocessing described in the previous subsection Zification. Before solving arithmetic
side conditions, it has to be applied to the conclusion, as well as to all arithmetic hypotheses.
Our bottom-up term-simplification procedure needs to invoke arithmetic-side-condition solving
hundreds of times in order to find which simplifications to apply. For instance, when encountering
a list slice starting at i of a list append like (xs ++ ys ++ zs)[i:], we need to test whether i is ≤ 0,
points somewhere into xs, ys, or zs, or whether it exceeds the whole length, which already amounts
to 5 separate queries. Zifying all hypotheses from scratch for each arithmetic side condition would
be unacceptably slow. Instead, we implement Zification in such a way that it does not modify any
hypotheses but just makes a Zified copy of each arithmetic hypothesis. Each time the user adds a
new C snippet, we run hypothesis Zification once and reuse the Zified hypotheses for many side
conditions, and just as the last step before marking the goal as ready for the next C snippet, we
clear all the Zified hypotheses, so that a clean and concise context is presented to the user.

5.7 Discussion

In the following, we discuss a few design alternatives that we decided not to pursue further.

5.7.1 Why Not a Stand-Alone Tool? Building our framework inside Coq required us to go through
some contortions, especially to make tactic invocations look like C snippets – clearly, Coq was not
designed to do this.

In order to build a software-verification tool that provides a live display of the current symbolic
state, we could also have built a stand-alone tool from scratch, which might have saved us some
trouble and, if implemented well, might also have been more performant because it could be more
specialized to our task, thus not having to pay the cost of being run inside a tool as generic as Coq.
However, Coq still has several advantages that made us choose it: Coq provides many term-

manipulation facilities, including concise term matching, and its foundational proofs, i.e. proofs
that are checked by its small proof-checking kernel, guarantee soundness, so that bugs in our
framework cannot lead to wrong proofs, which allows us to modify the tool more freely and

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 209. Publication date: June 2024.



209:18 Samuel Grue�er, Viktor Fukala, and Adam Chlipala

confidently, without worrying about soundness at each modification. Finally, working with Coq
paves the way for connecting to the many other interesting verified artifacts in the Coq ecosystem.

5.7.2 Limiting the Number of Conversions and Avoiding Operator Overloading. To avoid accidential
overflows in our specifications, we write them using unbounded integers Z, but the values treated
by our programs are bounded 32-bit integers, and loading and storing 8-bit and 16-bit values is
supported as well. Moreover, certain values in the specifications cannot be negative, so they would
belong to N. We tried using separate types for N, Z, 8-bit, 16-bit, and 32-bit words, but it led to two
problems:
First, since Coq does not support subtyping natively, coercion functions are needed between

different number types. Writing and displaying them explicitly becomes very verbose quickly,
and relying on Coq’s implicit-coercion feature did not work well. Coercions are inserted during
type-checking, so patterns, which are untyped, do not have them inserted, which can lead to
confusion. Coercions also make it harder to copy-paste a term from the goal into the proof script,
because one might miss a coercion that only gets inserted because of the surrounding context.
The second problem was operator overloading: We would like to use some short infix notation

for common operators like addition, subtraction, etc. Coq provides a mechanism called notation
scopes that works well as long as no polymorphic functions are used, because when parsing the
arguments of a function, Coq relies on the signature of the function to determine in which notation
scope (e.g. the notation scope for N or for Z) to parse the arguments. Another popular mechanism
for operator overloading is to use type classes. For instance, the infix notation (a + b) might be
defined as (TypeclassBasedAdd a b), where TypeclassBasedAdd takes an implicit argument that is
a type-class instance implementing addition on the type of a and b. However, if we simplify terms
or obtain terms from third-party libraries not using such a type class-based notation system, they
contain the plain (Nat.add a b) instead of our type class-based one, so they will not be printed the
same and will not match our terms syntactically. Similar problems occur with a related approach
based on canonical structures. We also tried an operator-overloading approach using notations with
tactics in terms that type-checks the operands and picks the right operator based on the type of
the operands, resulting in plain terms like (Nat.add a b), combined with ambiguous printing-only
notations that use the same + symbol for addition on all types. It was a bit heavy-weight and did
not work in patterns (because they are not type-checked), so we stopped using it.
Finally, we decided to restrict ourselves to just two number types: 32-bit words and Z. This

approach only requires three coercions: truncating aZ to a bounded integer (whichwewrite as /[x]),
interpreting a word as a signed integer (which we use less frequently and write as word.signed x),
and interpreting a word as an unsigned integer (which we write as \[x]). It also only requires two
sets of infix arithmetic operators, so we use the regular operators for Z and operators prefixed by ^

such as ^+, ^-, etc. for words.

5.7.3 Implementation Language. Our framework is implemented using a mix of tactic scripts and
lemmas and definitions in Gallina (Coq’s specification language) that are specifically tailored to
work well with our tactic scripts. For compatibility with other code from the Bedrock2 ecosystem,
we refrain from modifying Coq itself (even though such modifications might have simplified
certain parts); and for easy compatibility with new Coq versions, we refrain from writing any
OCaml plugins, because Coq’s OCaml API tends to change with each Coq version. The tactics are
implemented in a mix of Ltac1 and Ltac2.

5.7.4 Ltac1 vs Ltac2: When to Prefer an Untyped Language With Undocumented Semantics. Ltac1 is
an untyped language without clearly specified semantics. For instance, whether a variable refers to
a binder declared in Ltac, to a binder declared in a Gallina term quoted inside Ltac code, or to the

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 209. Publication date: June 2024.



Live Verification in an Interactive Proof Assistant 209:19

name of a hypothesis in the current proof context is decided at runtime, in a barely documented
manner. It can also happen that a thunk being passed to a function and meant to be evaluated lazily
can accidentally be evaluated eagerly. Another common source of surprises is that whether a tactic
is a pure function returning a term or an imperative program modifying the current proof goal is
also decided at runtime.

Ltac2 addresses these shortcomings by being a typed language with straightforward call-by-value
semantics and unambiguous quotation mechanisms to make it clear what variables refers to. In
addition, it offers some low-level APIs that Ltac1 does not have.
Given this situation, one might expect that the unambiguously preferred choice for the whole

framework would be Ltac2. However, this is not the case in our experience:
First, even though Ltac2 has been developed over several years now, it still lacks support for many

tasks that can be done in Ltac1 much more easily, so when writing Ltac2, a considerable amount of
time is spent working around non-fundamental limitations related to not-yet-implemented features.
And second, Ltac1 code is exceptionally concise, in a manner that really matters: In our experience,
there seems to be a certain verbosity threshold below which a tactic programmer can read and
understand tactic code very quickly and easily, and Ltac1 is the only programming language we
know to be below this verbosity threshold. The reason for Ltac2 often being above it seems to be on
one hand that it is typed and more principled, i.e. it requires being explicit about many things that
are implicit in Ltac1; and on the other hand, that less effort has been spent yet on defining concise
notations for Ltac2. We are curious to see how future evolution of Ltac2 affects these considerations.
For now, we use a mix of Ltac1 and Ltac2, preferring Ltac2 for bigger, more complex functions,

where the benefit of catching errors before tactic runtime is considerable, and for situations where
low-level term APIs are needed.

6 EVALUATION

6.1 Scope of Sample Programs

We used our tool to verify a few sample functions listed in Table 2, trying to cover an interesting set
of low-level memory-handling patterns. It includes splitting a byte buffer into a linked list of free
blocks in the init function of a simple malloc library with a fixed block allocation size, lookup and
insertion functions for a binary search tree and a crit-bit tree [Bernstein 2006] where we exploit the
pre-/postcondition loop verification style by Tuerk [2010] to avoid the need for “tree-with-a-hole”
predicates, passing record fields and subarrays to functions with automatic splitting of the callers’
record or array predicates, and functions with up to three if-then-else constructs.
The crit-bit tree example shows that we can also support data structures with more involved

validity constraints, at the expense of more manual proof lines, though we believe that a more
automated proof style could reduce the number of lines of proof. This example also provides a
datapoint on usability of our framework, because the example was developed by an undergraduate
student who did not participate in the development of the framework and had started to learn Coq
less than three months before completing this proof of crit-bit lookup and insert functions.

6.2 �alitative Discussion of Loop-Invariants-as-Diff Approach

As illustrated by the example in § 3.1.7, in our framework, users express loop invariants as diffs
from symbolic state before loops. Table 3 shows why we prefer this middle ground over the two
extremes in the design space, manually spelled-out invariants or automatically inferred invariants.
By robustness, we mean how likely it is that after a small modification of the program, the

proof still works. Manually spelled-out loop invariants are very likely to require some update after
a program modification, whereas an invariant expressed as a diff that just encodes the insight

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 209. Publication date: June 2024.



209:20 Samuel Grue�er, Viktor Fukala, and Adam Chlipala

Table 2. Statistics on our case studies. The two numbers in the Loops column indicate the number of

invariant-based loop proofs and the number of of pre-/post-based loop proofs, respectively.

File Funcs Snippets Lines Time[s] Loops

onesize_malloc 3 24 345 20.25 1 + 0

tree_set 4 66 389 73.63 0 + 2

swap 2 10 44 3.77 −

swap_record_fields 2 6 83 4.00 −

fibonacci 1 17 83 8.74 1 + 0

memset 1 7 41 9.29 1 + 0

sort3 1 22 51 36.31 −

critbit 8 122 1881 255.11 2 + 2

swap_subarrays 1 3 48 15.77 −

sort3_separate_args 1 22 58 22.87 −

linked_list 2 16 252 10.06 1 + 1

nt_uint8_string 1 11 299 60.76 0 + 1

min 3 32 71 6.97 −

and avoids mentioning irrelevant details is more likely to remain applicable. Automated invariant
inference tends to be not so stable under modification of the proof context, because the presence of
a new but unrelated term might send the invariant search down a wrong path, so that an invariant
that was found within reasonable time before the program change might time out after the change.

By proof performance, we mean the running time it takes to produce and check the correctness
proof. Executing the diff script corresponds to proving that the symbolic state before the loop
implies the loop invariant, i.e. proof work that any framework needs to do, so we do not count it.

The expressivity of themanual and the diff approach ismaximal, because any invariant expressible
in the logic can be used, whereas in the automatic approach, only those that the heuristics find
within a reasonable time limit can be used.

Another advantage of our approach (shared with the approach of manually providing loop
invariants) is that we can display a symbolic state at any point inside the loop body even if the loop
body has not been completely written yet or some parts of the proof fail because of a bug in the
code or because of a missing hint or tweak. In contrast, the fully automatic approach only knows
that it picked a reasonable loop invariant if the correctness proof of the whole loop worked out.

Currently, the star ratings in Table 3 are not based on measurements but on anecdotal evidence, so
it is cautious to view them as conjectures. In the future, we hope to back them upwithmeasurements,
but currently, our framework is still in an early prototype phase where most new examples that
we verify point us to some bugs and limitations in the framework that we fix on the fly, but for a
meaningful evaluation, one should not make fixes to the framework while evaluating it.

6.3 Some Statistics

Some file-by-file statistics are shown in Table 2. The first column lists the number of functions in
each file, and the second lists the number of snippets, which typically corresponds to the number
of lines of C code. The total number of lines of each file (third column) is much bigger, because
the files also contain specifications, definitions needed to state the specifications, helper lemmas,
file-specific proof automation and hints, as well as proof code interspersed between the C snippets.

Table 2 also shows the total time Coq takes to verify each file. Typically, processing each snippet
takes just a couple of seconds, and in our experience, it is just right below the threshold of what is

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 209. Publication date: June 2024.



Live Verification in an Interactive Proof Assistant 209:21

Table 3. Tradeoffs in the design space around loop-invariant automation. Conjectured ratings on a one-star

(worst) to three-star (best) rating scale.

manual by diff automatic

verbosity ⋆ ⋆⋆ ⋆⋆⋆

robustness ⋆ ⋆⋆ ⋆⋆

proof performance ⋆⋆⋆ ⋆⋆⋆ ⋆

fully expressive ✓ ✓ ✗

can display state ✓ ✓ ✗

total 5⋆ + 2✓ 7⋆ + 2✓ 6⋆ + 0✓

bearable for interactive development (and whenever it exceeded that perceived threshold, we spent
more effort on speeding up the proof automation).
The final column shows the number of loops in each file, expressed as G + ~, where G is the

number of loops proven with an invariant expressed as a diff script from the symbolic state before
the loop, and ~ is the number of loops proven with a family of pre/postcondition pairs (in the style
popularized by Tuerk [2010]) by expressing the precondition as a diff script and automatically
generalizing the function’s postcondition to use it as the loop’s postcondition.

So far, our experience seems to confirm our conjectures from Table 3. Once our framework has
matured to a point where we do not anymore feel compelled to make framework improvements
with every new sample program, we plan to evaluate our conjectures from Table 3 more rigorously.

7 RELATED WORK

Dafny [Leino 2013, 2017] is a high-level programming language with a specification language and
SMT-based, highly automated proving of verification conditions. The development experience is
very interactive, as the IDE continuously checks the verification conditions. Our framework is still
far from reaching the level of automation of Dafny but does have a few advantages over Dafny:

• It allows to reason about (a subset of) C, which is more low-level and more efficient, and can
reason about low-level operations like casting byte arrays to records.

• Users can extend the proof automation with domain-specific verification procedures.
• By repeatedly invoking our step tactic, users can watch how our system solves side conditions
and can easily debug cases where our solver fails.

• The correctness of the tool itself need not be trusted, only Coq’s kernel, which is much
smaller than Coq’s tactic system and our tool’s tactics, and also much smaller than the Dafny
tool and the SMT solver it uses.

• Finally, and perhaps most importantly, our tool can provide a concise representation of
everything the prover knows, in the form of the proof context (list of hypotheses) of Coq’s
current proof goal. We believe that such a concise summary of all known facts is similar to
what attentive programmers need to keep track of in their minds while programming, so
displaying it on-screen can assist the programmer. In Dafny, there is no such representation,
and the only way to find out whether the prover knows a given fact is to write it down as an
assertion at the program point in question and see if Dafny can prove it.

VeriFast [Jacobs et al. 2011] is a separation-logic-based C verification tool. Its symbolic debugger
can display the current symbolic state to the user at any program point, and users can affect the
symbolic state by invoking lemma functions in ghost code (comments) in the source program.
VeriFast is implemented in OCaml. As far as we know, there is no easy way to add domain-specific
verification automation on a per-function or per-module basis, while our own approach provides

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 209. Publication date: June 2024.



209:22 Samuel Grue�er, Viktor Fukala, and Adam Chlipala

various Ltac hooks and hint databases that users can extend and provides smooth integration
between framework code and user code, because both are written in the same language (Ltac).
Boogie, the intermediate verification language powering Dafny, used to have a verification

debugger [Le Goues et al. 2011] providing counterexamples for failed verification conditions.
However, it appears that it was not popular enough to be maintained, and was eventually removed
from the codebase [Qadeer 2020]. In the design space between automatically inferred and manually
spelled-out loop invariants, Boogie chooses an interesting middle ground: It infers some simple
loop invariants and combines them with those written explicitly by the user [Barnett et al. 2006].
Rupicola [Pit-Claudel et al. 2022] and its predecessor Fiat [Delaware et al. 2015] are extensible,

user-configurable compilers from functional programs written in Coq to Bedrock2 and Bedrock1
code, respectively. The user specifies the compilation strategy and lets the framework derive
the code accordingly. The Isabelle Refinement Framework [Lammich 2015, 2017] applies similar
techniques in Isabelle/HOL. In contrast, our framework is designed for users who already have a
clear idea of what low-level code they want and feel that configuring the compiler until it emits
the desired low-level code would be more work than just writing down the code.
The Verified Software Toolchain (VST) [Cao et al. 2018] is a tool based on Hoare logic and

separation logic, implemented in Coq, for proving correctness of C programs. It uses a similar style
of stepping through a program line-by-line, using Coq’s context of hypotheses to keep track of
the symbolic state. Instead of using Hoare triples {%}2{&} like VST, we use wp judgments of the
form ∀B . % B ⇒ wp 2 B & , so the precondition is already separated and can more easily be moved
into Coq’s context of hypotheses. In VST, one has to recompile the source program and reload the
whole proof each time one wants to change the source program, and sometimes, it is hard to relate
the positions in the proof script to positions in the source code.

Like Bedrock2 (which our Live Verification framework targets), CakeML can also be used to create
end-to-end-verified software-hardware stacks [Lööw et al. 2019]. All their program verification
happens at the ML level, whereas we believe that certain performance-critical pieces of software
need to be written in more imperative and low-level languages, which is the subject of our paper.

Why3 [Bobot et al. 2015; Filliâtre and Paskevich 2013] is a tool for interactive development and
verification of programs. It provides a programming and specification language called WhyML and
can also be used as an intermediate language to verify C, Java, and Ada programs. It discharges its
verification conditions to automated as well as interactive external theorem provers.

CAPS [Chaudhari and Damani 2014, 2015], which stands for Calculational Style of Programming,
uses a tactic-based approach to derive programs from specifications and uses Why3 as its backend.

8 CONCLUSION AND FUTURE WORK

We have presented a tool for verifying low-level programs using the Coq proof assistant, in a way
that continually provides a concise representation of the current symbolic state as the user writes
the program. Additionally, our tool stands out by its support for diff-based loop invariants, its
option to allow users to extend the proof automation with domain-specific procedures, its small
trusted code base that does not include the tool itself, and its compatibility with the Bedrock2
ecosystem that enables end-to-end proofs, which also check that the assumptions that the different
tools make about each other are compatible.

It seems to us that the size of the biggest case study in Bedrock2 [Erbsen et al. 2021] was mostly
bottlenecked by the lack of automation and usability of the program logic. Similar limitations
apply to other Coq-based C verification tools like e.g. VST [Cao et al. 2018] as well. With our
live-verification framework, we hope to make a step towards more convenient verification of
low-level code in Coq, eventually enabling bigger end-to-end verified stacks.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 209. Publication date: June 2024.



Live Verification in an Interactive Proof Assistant 209:23

ACKNOWLEDGMENTS

This research was supported by the National Science Foundation under grants CNS-2130671,
CCF-2217064, and CCF-2313023 and gifts from Amazon and Google.

DATA-AVAILABILITY STATEMENT

All our code is available at https://github.com/mit-plv/bedrock2/tree/LiveVerifPLDI24.
An artifact [Gruetter et al. 2024] associated with this paper was evaluated and is available at
https://doi.org/10.5281/zenodo.10806323.

REFERENCES

Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino. 2006. Boogie: A Modular Reusable

Verifier for Object-Oriented Programs. In Formal Methods for Components and Objects. Vol. 4111. Springer Berlin

Heidelberg, Berlin, Heidelberg, 364–387. https://doi.org/10.1007/11804192_17

Daniel J. Bernstein. 2006. Crit-Bit Trees. https://cr.yp.to/critbit.html

François Bobot, Jean-Christophe Filliâtre, Claude Marché, and Andrei Paskevich. 2015. Let’s Verify This with Why3.

International Journal on Software Tools for Technology Transfer 17, 6 (Nov. 2015), 709–727. https://doi.org/10.1007/s10009-

014-0314-5

Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and Andrew W. Appel. 2018. VST-Floyd: A Separation

Logic Tool to Verify Correctness of C Programs. Journal of Automated Reasoning 61, 1-4 (June 2018), 367–422. https:

//doi.org/10.1007/s10817-018-9457-5

Arthur Charguéraud, Adam Chlipala, Andres Erbsen, and Samuel Gruetter. 2023. Omnisemantics: Smooth Handling of

Nondeterminism. ACM Transactions on Programming Languages and Systems 45, 1 (March 2023), 5:1–5:43. https:

//doi.org/10.1145/3579834

Dipak L. Chaudhari and Om Damani. 2014. Automated Theorem Prover Assisted Program Calculations. In Integrated

Formal Methods, Elvira Albert and Emil Sekerinski (Eds.). Vol. 8739. Springer International Publishing, Cham, 205–220.

https://link.springer.com/10.1007/978-3-319-10181-1_13

Deepak L. Chaudhari and Om P. Damani. 2015. CAPS, A Calculational Assistant for Programming from Specifications.

https://www.cse.iitb.ac.in/~dipakc/CAPS/

Benjamin Delaware, Clément Pit-Claudel, Jason Gross, and Adam Chlipala. 2015. Fiat: Deductive Synthesis of Abstract Data

Types in a Proof Assistant. In POPL 2015. ACM, New York, NY, USA, 689–700. https://doi.org/10.1145/2676726.2677006

Andres Erbsen, Samuel Gruetter, Joonwon Choi, Clark Wood, and Adam Chlipala. 2021. Integration Verification Across

Software and Hardware for a Simple Embedded System. PLDI’21 (2021). https://doi.org/10.1145/3453483.3454065

Jean-Christophe Filliâtre andAndrei Paskevich. 2013. Why3—Where ProgramsMeet Provers. In Programming Languages and

Systems (Lecture Notes in Computer Science), Matthias Felleisen and Philippa Gardner (Eds.). Springer, Berlin, Heidelberg,

125–128. https://doi.org/10.1007/978-3-642-37036-6_8

Samuel Gruetter, Viktor Fukala, and Adam Chlipala. 2024. Code Artifact for Live Verification in an Interactive Proof

Assistant. https://doi.org/10.5281/zenodo.10806323

Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank Piessens. 2011. VeriFast: A

Powerful, Sound, Predictable, Fast Verifier for C and Java. In NASA Formal Methods. Vol. 6617. Springer Berlin Heidelberg,

Berlin, Heidelberg, 41–55. http://link.springer.com/10.1007/978-3-642-20398-5_4

Peter Lammich. 2015. The Isabelle Refinement Framework. Kolloquium Programmiersprachen (2015). https://www.complang.

tuwien.ac.at/kps2015/proceedings/KPS_2015_submission_13.pdf

Peter Lammich. 2017. Refinement to Imperative HOL. Journal of Automated Reasoning 62, 4 (2017), 481–503. https:

//doi.org/10.1007/s10817-017-9437-1

Claire Le Goues, K. Rustan M. Leino, and Michał Moskal. 2011. The Boogie Verification Debugger (Tool Paper). In Software

Engineering and Formal Methods (Lecture Notes in Computer Science), Gilles Barthe, Alberto Pardo, and Gerardo Schneider

(Eds.). Springer, Berlin, Heidelberg, 407–414. https://doi.org/10.1007/978-3-642-24690-6_28

K. Rustan M. Leino. 2013. Developing Verified Programs with Dafny. In 2013 35th International Conference on Software

Engineering (ICSE). 1488–1490. https://doi.org/10.1109/ICSE.2013.6606754

K. Rustan M. Leino. 2017. Accessible Software Verification with Dafny. IEEE Software 34, 6 (Nov. 2017), 94–97. https:

//doi.org/10.1109/MS.2017.4121212

Andreas Lööw, Ramana Kumar, Yong Kiam Tan, Magnus O. Myreen, Michael Norrish, Oskar Abrahamsson, and Anthony

Fox. 2019. Verified Compilation on a Verified Processor. In PLDI 2019. Association for Computing Machinery, New York,

NY, USA, 1041–1053. https://doi.org/10.1145/3314221.3314622

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 209. Publication date: June 2024.

https://github.com/mit-plv/bedrock2/tree/LiveVerifPLDI24
https://doi.org/10.5281/zenodo.10806323
https://doi.org/10.1007/11804192_17
https://cr.yp.to/critbit.html
https://doi.org/10.1007/s10009-014-0314-5
https://doi.org/10.1007/s10009-014-0314-5
https://doi.org/10.1007/s10817-018-9457-5
https://doi.org/10.1007/s10817-018-9457-5
https://doi.org/10.1145/3579834
https://doi.org/10.1145/3579834
https://link.springer.com/10.1007/978-3-319-10181-1_13
https://www.cse.iitb.ac.in/~dipakc/CAPS/
https://doi.org/10.1145/2676726.2677006
https://doi.org/10.1145/3453483.3454065
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.5281/zenodo.10806323
http://link.springer.com/10.1007/978-3-642-20398-5_4
https://www.complang.tuwien.ac.at/kps2015/proceedings/KPS_2015_submission_13.pdf
https://www.complang.tuwien.ac.at/kps2015/proceedings/KPS_2015_submission_13.pdf
https://doi.org/10.1007/s10817-017-9437-1
https://doi.org/10.1007/s10817-017-9437-1
https://doi.org/10.1007/978-3-642-24690-6_28
https://doi.org/10.1109/ICSE.2013.6606754
https://doi.org/10.1109/MS.2017.4121212
https://doi.org/10.1109/MS.2017.4121212
https://doi.org/10.1145/3314221.3314622


209:24 Samuel Grue�er, Viktor Fukala, and Adam Chlipala

Clément Pit-Claudel and Thomas Bourgeat. 2021. An Experience Report on Writing Usable DSLs in Coq. In CoqPL’21: The

Seventh International Workshop on Coq for PL, Assia Mahboubi and Amin Timany (Eds.). https://pit-claudel.fr/clement/

papers/koika-dsls-CoqPL21.pdf

Clément Pit-Claudel, Jade Philipoom, Dustin Jamner, Andres Erbsen, and Adam Chlipala. 2022. Relational Compilation for

Performance-Critical Applications: Extensible Proof-Producing Translation of Functional Models into Low-Level Code. In

PLDI 2022. Association for Computing Machinery, New York, NY, USA, 918–933. https://doi.org/10.1145/3519939.3523706

Shaz Qadeer. 2020. ModelViewer and BVD Projects. https://github.com/boogie-org/boogie/issues/293

Thomas Tuerk. 2010. Local Reasoning about While-Loops. VSTTE 2010 (2010).

Received 2023-11-16; accepted 2024-03-31

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 209. Publication date: June 2024.

https://pit-claudel.fr/clement/papers/koika-dsls-CoqPL21.pdf
https://pit-claudel.fr/clement/papers/koika-dsls-CoqPL21.pdf
https://doi.org/10.1145/3519939.3523706
https://github.com/boogie-org/boogie/issues/293

	Abstract
	1 Introduction
	1.1 A First Glance At an Example

	2 Background
	2.1 Editing Coq Proofs: Proof Goals and the Proof Cursor
	2.2 Evars in Coq: Lazily Instantiated Existential Variables
	2.3 A Use Case of Evars: Deriving a Definition Based on its Proof

	3 Overview: Writing and Compiling a Sample Program 
	3.1 Guided Tour Through the memset Example 
	3.2 Tradeoffs Between Three Different Ways of Compiling

	4 User Interface 
	4.1 New Separation-Logic Concepts
	4.2 Defining Record Predicates Using C Syntax
	4.3 IDE Extensions
	4.4 Expressing a Loop Invariant as a Diff from the Current Symbolic State
	4.5 Treating While Loops as Tail-Recursive Calls
	4.6 Variable-Naming Scheme
	4.7 Context Packaging and Merging for if-then-else
	4.8 Optimize the User Experience for Failing Proofs Instead of Working Proofs

	5 Implementation Notes
	5.1 Parsing C in Coq
	5.2 Tailored Weakest-Precondition Lemmas 
	5.3 Extracting Pure Facts From Sep Clauses
	5.4 Pattern-Based Selective Warning Suppression
	5.5 Mixed Word/Integer Arithmetic Side Conditions
	5.6 Undoable, Reusable Zification
	5.7 Discussion 

	6 Evaluation
	6.1 Scope of Sample Programs
	6.2 Qualitative Discussion of Loop-Invariants-as-Diff Approach
	6.3 Some Statistics

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References

