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We demonstrate how the framework of higher-order logic programming, as exemplified in the λProlog lan-

guage design, is a prime vehicle for rapid prototyping of implementations for programming languages with

sophisticated type systems. We present the literate development of a type checker for a language with a

number of complicated features, culminating in a standard ML-style core with algebraic datatypes and type

generalization, extended with staging constructs that are generic over a separately defined language of terms.

We add each new feature in sequence, with little to no changes to existing code. Scaling the higher-order logic

programming approach to this setting required us to develop approaches to challenges like complex variable

binding patterns in object languages and performing generic structural traversals of code, making use of novel

constructions in the setting of λProlog, such as GADTs and generic programming. For our development, we

make use of Makam, a new implementation of λProlog, which we introduce in tutorial style as part of our

(quasi-)literate development.
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1 IN WHICH OUR HEROES SET OUT ON A ROAD TO PROTOTYPE A TYPE SYSTEM

HAGOP (Student). (. . . ) So yes, I think my next step should be writing a toy implementation of the
type system we have in mind, so that we can try out some examples and see what works and
what does not.

ROZA (Advisor). Definitely ś trying out examples will help you refine your ideas, too.

HAGOP. Let’s see, though; we have the simply typed λ-calculus, some ML core features, a staging
construct, and contextual types like in Nanevski et al. [2008]. . . I guess I will need a few weeks?

ROZA. That sounds like a lot. Why don’t you use some kind of metalanguage to implement the
prototype?
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93:2 Antonis Stampoulis and Adam Chlipala

HAGOP. You mean a tool like Racket [Felleisen et al. 2015], PLT Redex [Felleisen et al. 2009], the K
Framework [Roşu and Şerbănută 2010] or Spoofax [Kats and Visser 2010]?

ROZA. Yes, all of those should be good choices. I was thinking though that we could use higher-order
logic programming. . . it’s a formalism that is well-suited to what we want to do, since we will
need all sorts of different binding constructs, and the type system we are thinking about is quite
advanced.

HAGOP. Oh, so you mean λProlog [Miller and Nadathur 2012] or LF [Harper et al. 1993].

ROZA. Yes. Actually, a few years back a friend of mine worked on this new implementation of
λProlog just for this purpose ś rapid prototyping of languages. It’s called Makam. It should be
able to handle our MetaML-like language nicely, and we should not need to spend more than a
few hours on it!

HAGOP. Sounds great! Anything I can read up on Makam then?

ROZA. Not much, unfortunately. . . But I know the language and its standard library quite well, so
let’s work on this together; it’ll be fun. I’ll tell you all the details along the way too ś I know
how you always want to understand things in depth!

(Our heroes install Makam from https://github.com/astampoulis/makam and figure out how

to run the REPL.)

2 IN WHICH OUR READERS GET A PREMONITION OF THINGS TO COME

Section 3 serves as a tutorial to λProlog/Makam, showing the basic usage of the language to encode
the static and dynamic semantics of the simply typed lambda calculus. Section 4 explores the question
of how to implement multiple-variable binding, culminating in a reusable polymorphic datatype.
Sections 5 and 6 present a novel account of how GADTs are directly supported in λProlog thanks to
the presence of ad-hoc polymorphism and showcase their use for accurate encodings of mutually
recursive definitions and pattern matching. Section 7 describes a novel way to define operations
by structural recursion in λProlog/Makam while only giving the essential cases, motivating them
through the example of encoding a simple conversion rule. The following sections make use of the
presented features to implement polymorphism and algebraic datatypes (Section 8), heterogeneous
staging constructs with contextual typing (Section 9) and Hindley-Milner type generalization
(Section 10). We then summarize and compare to related work.

We encourage readers to skim through the paper as a first pass, focusing on the highlighted code .

These highlights provide a rough picture of the Makam code needed to implement a typechecker
for a small ML-like language, along with a few key definitions from the standard library.

3 IN WHICH OUR HEROES GET THE EASY STUFF OUT OF THEWAY

HAGOP. OK, let’s just start with the simply typed lambda calculus to see how this works. Let’s
define just the basics: application, lambda abstraction, and the arrow type.

ROZA. Right. We will first need to define the two meta-types for these two sorts:

term : type.

typ : type.

HAGOP. Oh, so type is the reserved keyword for the meta-level kind of types, and we’ll use typ
for our object-level types?

ROZA. Exactly. And let’s do the easy constructors first:
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Prototyping a Functional Language using Higher-Order Logic Programming 93:3

app : term → term → term.

arrow : typ → typ → typ.

HAGOP. So we add constructors to a type at any point; we do not list them out when we define it
like in Haskell. But how about lambdas? I have heard that λProlog supports higher-order abstract
syntax [Pfenning and Elliott 1988], which should make those really easy to add, too, right?

ROZA. Yes, functions at the meta level are parametric, so they correspond exactly to single-variable
binding ś they cannot perform any computation such as pattern matching on their arguments
and thus we do not have to worry about exotic terms. So this works fine for Church-style lambdas:

lam : typ → (term → term) → term.

HAGOP. I see. And how about the typing judgment, Γ ⊢ e : τ ?

ROZA. Let’s add a predicate for that: a new constructor for the type of propositions. It will relate a
term e to its typ, τ . Only, no Γ, there is an implicit context of assumptions that will serve the
same purpose.

typeof : term → typ → prop.

HAGOP. I see. We now need to give the rules that make up the predicate, right? Let me see if I can
get the typing rule for application. I know that in Prolog we write the conclusion of a rule first,
and the premises follow the :− sign. Does something like this work?

typeof (app E1 E2) T' :− typeof E1 (arrow T T'), typeof E2 T.

ROZA. Yes! That’s exactly right. Makam uses capital letters for unification variables.

HAGOP. I will need help with the lambda typing rule, though. What’s the equivalent of extending
the context as in Γ, x : τ ?

ROZA. Simple: we introduce a fresh constructor for terms and a new typing rule for it:

typeof (lam T1 E) (arrow T1 T2) :−
(x:term → typeof x T1 → typeof (E x) T2).

HAGOP. Hmm, so ‘x:term →’ introduces the fresh constructor standing for the new variable, and
‘typeof x T1 →’ introduces the new assumption? Oh, and we need to get to the body of the
lambda function in order to type-check it, so that’s why you do E x.

ROZA. Yes. Note that the introductions are locally scoped, so they are only in effect for the recursive
call ‘typeof (E x) T2’.

HAGOP. Makes sense. So do we have a type checker already?

ROZA. We do! We can issue queries of the typeof predicate to type-check terms. Observe:

typeof (lam _ (fun x ⇒ x)) T ?

>> Yes:

>> T := arrow T1 T1.

HAGOP. Cool! So fun for metalevel functions, underscores for unification variables we don’t
care about, and ? for queries. But wait, last time I implemented unification in my toy STLC
implementation it was easy to make it go into an infinite loop with λx .xx . Does that work?

ROZA. Well, you were missing the occurs-check. λProlog unification includes it:

typeof (lam _ (fun x ⇒ app x x)) T' ?

>> Impossible.
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93:4 Antonis Stampoulis and Adam Chlipala

HAGOP. Right. So let’s see, what else can we do? How about adding tuples to our language? Can
we use something like a polymorphic list?

ROZA. Sure, λProlog has polymorphic types and higher-order predicates. Here’s how lists are
defined in the standard library:

list : type → type.

nil : list A.

cons : A → list A → list A.

map : (A → B → prop) → list A → list B → prop.

map P nil nil.

map P (cons X XS) (cons Y YS) :− P X Y, map P XS YS.

HAGOP. Nice! I guess that’s why you wanted to go with λProlog for doing this instead of LF, since
you cannot use polymorphism there?

ROZA. Indeed. We will see, once we figure out what our language should be, one thing we could do
is monomorphize our definitions to LF, and then we could even use Beluga [Pientka and Dunfield
2010] to do all of our metatheoretic proofs. Or maybe we could use Abella [Baelde et al. 2014]
directly.

HAGOP. Sounds good. So, for tuples, this should work:

tuple : list term → term.

product : list typ → typ.

typeof (tuple ES) (product TS) :− map typeof ES TS.

ROZA. Yes, and there is syntactic sugar for cons and nil too:

typeof (lam _ (fun x ⇒ lam _ (fun y ⇒ tuple [x, y]))) T ?

>> Yes:

>> T := arrow T1 (arrow T2 (product [T1, T2])).

HAGOP. So how about evaluation? Can we write the big-step semantics too?

ROZA. Why not? Let’s add a predicate and do the two easy rules:

eval : term → term → prop.

eval (lam T F) (lam T F).

eval (tuple ES) (tuple VS) :− map eval ES VS.

HAGOP. OK, let me try my hand at the beta-redex case. I’ll just do call-by-value. I know that when
using HOAS, function application is exactly capture-avoiding substitution, so this should be fine:

eval (app E E') V'' :− eval E (lam _ F), eval E' V', eval (F V') V''.

ROZA. Exactly! See, I told you this would be easy!

4 IN WHICH OUR HEROES ADD PARENTHESES AND DISCOVER HOW TO DO
MULTIPLE BINDING

HAGOP. Still, I feel like we’ve been playing to the strengths of λProlog. . . . Yes, single-variable
binding, substitutions, and so on work nicely, but how about any other form of binding? Say,
binding multiple variables at the same time?We are definitely going to need that for the language
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we have in mind. I was under the impression that HOAS encodings do not work for that ś for
example, I was reading Keuchel et al. [2016] recently, and I remember an observation to that end.

ROZA. That’s not really true; having first-class support for single-variable binders should be enough.
But let’s try it out, maybe adding multiple-argument functions for example ś I mean uncurried
ones. Want to give it a try?

HAGOP. Let me see. We want the terms to look roughly like this:

lammany (fun x ⇒ fun y ⇒ tuple [y, x])

For the type of lammany, I want to write something like this, but I know this is wrong.

lammany : (list term → term) → term.

ROZA. Yes, that doesn’t quite work. It would introduce a fresh variable for lists, not a number of
fresh variables for terms. HOAS functions are parametric, too, which means we cannot even get
to the potential elements of the fresh list inside the term.

HAGOP. Right. So I don’t know, instead we want to use a type that stands for term → term, term
→ term → term, and so on. Can we write term → ... → term?

ROZA. Well, not quite, but we have already seen something similar, a type that roughly stands for
term * ... * term, and we did not need anything special for that. . . .

HAGOP. You mean the list type?

ROZA. Exactly. What do you think about this definition?

bindmanyterms : type.

bindnil : term → bindmanyterms.

bindcons : (term → bindmanyterms) → bindmanyterms.

HAGOP. Hmm. That looks quite similar to lists; the parentheses in cons are different. nil gets an
extra term argument, too. . . .

ROZA. Yes. . . So what is happening here is that bindcons takes a single argument, introducing a
binder; and bindnil is when we get to the body and don’t need any more binders. Maybe we
should name them accordingly.

HAGOP. Right, and could we generalize their types? Maybe that will help me get a better grasp of
it. How is this?

bindmany : type → type → type.

body : Body → bindmany Variable Body.

bind : (Variable → bindmany Variable Body) → bindmany Variable Body.

ROZA. This looks great! That is exactly what’s in the Makam standard library, actually. And we
can now define lammany using it:

lammany : bindmany term term → term.

HAGOP. I see. So our example term from before would be:

lammany (bind (fun x ⇒ bind (fun y ⇒ body (tuple [y,x]))))

This bindmany datatype is quite interesting. Is there some reference about it?

ROZA. Not that I know of, at least where it is called out as a reusable datatype ś though the
construction is definitely part of PL folklore. After I started using this in Makam, I noticed
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93:6 Antonis Stampoulis and Adam Chlipala

similar constructions in the wild, for example in MTac [Ziliani et al. 2013], for parametric-HOAS
implementation of telescopes in Coq.

HAGOP. Interesting. So how do we work with bindmany? What’s the typing rule like?

ROZA. The rule is written like this, and I’ll explain what goes into it:

arrowmany : list typ → typ → typ.

typeof (lammany XS_E) (arrowmany TS T) :−
openmany XS_E (fun xs e ⇒ assumemany typeof xs TS (typeof e T)).

HAGOP. Let me see if I can read this. . . openmany somehow gives you fresh variables xs for
the binders, plus the body e of the lammany; and then the assumemany typeof part is what
corresponds to extending the Γ context with multiple typing assumptions?

ROZA. Yes, and then we typecheck the body in that local context that includes the fresh variables
and the typing assumptions. But let’s do one step at a time. openmany is simple; we iterate
through the nested binders, introducing one fresh variable at a time. We also substitute each
bound variable for the current fresh variable, so that when we get to the body, it only uses the
fresh variables we introduced.

openmany : bindmany A B → (list A → B → prop) → prop.

openmany (body Body) Q :− Q [] Body.

openmany (bind F) Q :− (x:A → openmany (F x) (fun xs ⇒ Q (x :: xs))).

HAGOP. I see. I guess assumemany is similar, introducing one assumption at a time?

assumemany : (A → B → prop) → list A → list B → prop → prop.

assumemany P [] [] Q :− Q.

assumemany P (X :: XS) (T :: TS) Q :− (P X T → assumemany P XS TS Q).

ROZA. Yes, exactly! Just a note, though ś λProlog typically does not allow the definition of
assumemany, where a non-concrete predicate like P X Y is used as an assumption, because
of logical reasons. Makam allows this form statically, and so does ELPI [Dunchev et al. 2015],
another λProlog implementation, though there are instantiations of P that will fail at run-time1.

HAGOP. I see. But in that case we could just manually inline assumemany typeof instead, so that’s
not a big problem, just more verbose. But can I try our typing rule out?

typeof (lammany (bind (fun x ⇒ bind (fun y ⇒ body (tuple [y, x]))))) T ?

>> Yes:

>> T := arrowmany [T1, T2] (product [T2, T1]).

Great, I think I got the hang of this. Let me try to see if I can add a multiple-argument application
construct appmany and its evaluation rules.

appmany : term → list term → term.

typeof (appmany E ES) T :−
typeof E (arrowmany TS T), map typeof ES TS.

eval (appmany E ES) V :−
eval E (lammany XS_E'), map eval ES VS, (...).

How can I do simultaneous substitution of all of the XS for VS?

1The logical reason why this is not allowed in λProlog is that it violates the property of existence of uniform proofs; see

Nadathur and Qi [2005] for more information. An example of a goal that will fail at runtime is one that starts with a

logical-or (denoted as ł;ž) as an assumption, like ł(typeof X T1; typeof X T2) → ...ž.
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ROZA. You’ll need another standard-library predicate for bindmany, which iteratively uses HOAS
function application to perform a number of substitutions:

applymany : bindmany A B → list A → B → prop.

applymany (body B) [] B.

applymany (bind F) (X :: XS) B :− applymany (F X) XS B.

eval (appmany E ES) V :−
eval E (lammany XS_E'), map eval ES VS,

applymany XS_E' VS E'', eval E'' V.

HAGOP. I see, that makes sense. Can I ask you something that worries me, though ś all these fancy
higher-order abstract binders, how do we. . . make them concrete? Say, how do we print them?

ROZA. That’s actually quite easy. We just add a concrete name to them, a plain old string. Our
typing rules etc. do not care about it, but we could use it for parsing concrete syntax into our
abstract binding syntax, or for pretty-printing. . . . All those are stories for another time, though;
let’s just say that we could have defined bind with an extra string argument, representing the
concrete name; and then openmany would just ignore it.

bind : string → (Var → bindmany Var Body) → bindmany Var Body.

HAGOP. Interesting. I would like to see more about this, but maybe some other time. I thought of
another thing that could be challenging: mutually recursive let recs?

ROZA. Sure. Let’s take this term for example:

let rec f = f_def and g = g_def in body

If we write this in a way where the binding structure is explicit, we would bind f and g simulta-
neously and then write the definitions and the body in that scope:

letrec (fun f ⇒ fun g ⇒ ([f_def, g_def], body))

HAGOP. I think I know how to do this then! How does this look?

letrec : bindmany term (list term * term) → term.

ROZA. Exactly! Want to try writing the typing rules?

HAGOP. Maybe something like this?

typeof (letrec XS_DefsBody) T' :−
openmany XS_DefsBody (fun xs (defs, body) ⇒

assumemany typeof xs TS (map typeof defs TS),

assumemany typeof xs TS (typeof body T')).

ROZA. Almost! You have used the syntax we use for writing rule premises in the fun argument of
openmany; the Makam grammar only allows that with the syntactic form pfun instead, which is
used to write anonymous predicates. Since this pfun argument will be a predicate and can thus
perform computation, you are also able to destructure parameters like you did here on (defs,

body) ś that doesn’t work for normal functions in the general case, since they need to treat
arguments parametrically. This works by performing unification of the parameter with the given
term ś so defs and body need to be capitalized so that they are understood to be unification
variables.
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93:8 Antonis Stampoulis and Adam Chlipala

typeof (letrec XS_DefsBody) T' :−
openmany XS_DefsBody (pfun XS (Defs, Body) ⇒

assumemany typeof XS TS (map typeof Defs TS),

assumemany typeof XS TS (typeof Body T')).

HAGOP. Ah, I see2. Let me ask you something, though: one thing I noticed with our representation
of letrec is that we have to be careful so that the number of binders matches the number of
definitions we give. Our typing rules disallow that, but I wonder if there’s a way to have a more
accurate representation for letrec which includes that requirement?

ROZA. Funny you should ask that. . . Let me tell you a story.

5 IN WHICH THE LEGEND OF THE GADTS AND THE AD-HOC POLYMORPHISM IS
RECOUNTED

Once upon a time, our republic lacked one of the natural wonders that it is now well-known for, and

which is now regularly enjoyed by tourists and inhabitants alike. I am talking of course about the Great

Arboretum of Dangling Trees, known as GADTs for short. Then settlers from the far-away land of the

Dependency started coming to the republic and started speaking of Lists that Knew Their Lengths, of

Terms that Knew Their Types, of Collections of Elements that were Heterogeneous, and about the other

magical beings of their home. And they set out to build a natural environment for these beings on the

republic, namely the GADTs that we know and love, to remind them of home a little. And their work

was good and was admired by many.

A long time passed, and dispatches from another far-away land came to the republic, written by

authors whose names are now lost in the sea of anonymity, and I fear might forever remain so. And the

dispatches went something like this.

ANONYMOUS AUTHOR. . . . In my land of λProlog that I speak of, the type system is a subset
of System Fω that should be familiar to you ś the simply typed lambda calculus, plus prenex
polymorphism, plus simple type constructors of the form type * ... * type → type. There is
also a limited form of rank-2 polymorphism, allowing types of the form forall A T, which are
inhabited by unapplied polymorphic constants through the notation @foo. There is a prop sort for
propositions, which is a normal type, but also a bit special: its terms are not just values but are also
computations, activated when queried upon.

However, the language of this land has a distinguishing feature, called Ad-Hoc Polymorphism. You
see, the different rules that define a predicate in our language can specialize their type arguments.
This can be used to define polymorphic predicates that behave differently for different types, like
this, where we are essentially doing a typecase and we choose a rule depending on the type of the
argument (as opposed to its value):

print : [A] A → prop.

print (I: int) :− (... code for printing integers ...)

print (S: string) :− (... code for printing strings ...)

2There is a subtlety here, having to do with the free variables that a unification variable can capture. In λProlog, a unification

variable is allowed to capture all the free variables in scope at the point where it is introduced, as well as any variables it is

explicitly applied to. Defs and Body are introduced as unification variables when we get to execute the pfun; otherwise,

all unification variables used in a rule get introduced when we check whether the rule fires. As a result, Defs and Body

can capture the xs variables that openmany introduces, whereas T’ cannot. In λProlog terms, the pfun notation of Makam

desugars to existential quantification of any (capitalized) unification variables that are mentioned while destructuring an

argument, like the variables Defs and Body.
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The local dialects Teyjus [Gacek et al. 2015; Nadathur and Mitchell 1999] and Makam include this
feature, while it is not encountered in other dialects like ELPI [Dunchev et al. 2015]. In the Makam
dialect in particular, type variables are understood to be parametric by default. In order to make
them ad-hoc and allow specializing them in rules, we need to denote them using the [A] notation.

Of course, this feature has both to do with the statics as well as the dynamics of our language: and
while dynamically it means something akin to a typecase, statically, it means that rules might
specialize their type variables, and this remains so for type-checking the whole rule.

But. . . aha! Is it not type specialization during pattern matching that is an essential feature of the
GADTs of your land? Maybe that means that we can use Ad-Hoc Polymorphism not just to do
typecase but also to work with GADTs in our land? Consider this! The venerable List that Knows
Its Length:

zero : type. succ : type → type.

vector : type → type → type.

vnil : vector A zero.

vcons : A → vector A N → vector A (succ N).

And now for the essential vmap:

vmap : [N] (A → B → prop) → vector A N → vector B N → prop.

vmap P vnil vnil.

vmap P (vcons X XS) (vcons Y YS) :− P X Y, vmap P XS YS.

In each rule, the first argument already specializes the N type ś in the first rule to zero, in the
second, to succ N. And so erroneous rules that do not respect this specialization would not be
accepted as well-typed sayings in our language:

vmap P vnil (vcons X XS) :− ...

And we should note that in this usage of Ad-Hoc Polymorphism for GADTs, it is only the increased
precision of the statics that we care about. Dynamically, the rules for vmap can perform normal
term-level unification and only look at the constructors vnil and vcons to see whether each rule
applies, rather than relying on the typecase aspects we spoke of before.

Coupling this with the binding constructs that I talked to you earlier about, we can build new
magical beings, like the Bind that Knows Its Length:

vbindmany : (Var: type) (N: type) (Body: type) → type.

vbody : Body → vbindmany Var zero Body.

vbind : (Var → vbindmany Var N Body) → vbindmany Var (succ N) Body.

(Whereby I am using notation of the Makam dialect in my definition of vbindmany that allows me
to name parameters, purely for the purposes of increased clarity.)

In the openmany version for vbindmany, the rules are exactly as before, though the static type is
more precise:

vopenmany : [N] vbindmany Var N Body → (vector Var N → Body → prop) → prop.

vopenmany (vbody Body) Q :− Q vnil Body.

vopenmany (vbind F) Q :−
(x:A → vopenmany (F x) (fun xs ⇒ Q (vcons x xs))).

We can also showcase the Accurate Encoding of the Letrec:

vletrec : vbindmany term N (vector term N * term) → term.
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93:10 Antonis Stampoulis and Adam Chlipala

And that is the way that it turns out that our land of λProlog supports GADTs, without needing the
addition of any feature. It is all thanks to the existing support for Ad-Hoc Polymorphism, which
has been a staple since the days of yore [Nadathur and Miller 1988]. Who knew!

6 IN WHICH OUR HERO HAGOP ADDS PATTERN MATCHING ON HIS OWN

(Roza had a meeting with another student, so Hagop took a small break and is now back at his

office. He is trying to work out on his own how to encode patterns. He is fairly confident at this point

that having explicit support for single-variable binding is enough to model most complicated forms

of binding, especially when making use of polymorphism and GADTs.)

HAGOP. OK, so let’s implement simple patterns and pattern-matching like in ML. . . First let’s
determine the right binding structure. For a branch like:

| cons(hd, tl) → ... hd .. tl ...

the pattern introduces 2 variables, hd and tl, which the body of the branch can refer to. But we
can’t really refer to those variables in the pattern itself, at least for simple patterns3. . . . So there’s
no binding going on really within the pattern; instead, once we figure out how many variables a
pattern introduces, we can do the actual binding all at once, when we get to the body of the branch:

branch(pattern,

bind [# of variables in pattern].( .. body of the branch .. ))

So we could write the above branch in Makam like this:

branch (patt_cons patt_var patt_var)

(bind (fun hd ⇒ bind (fun tl ⇒ body (.. hd .. tl ..))))

We do have to keep the order of variables consistent somehow, so hd here should refer to the
first occurrence of patt_var, and tl to the second. Based on these, I am thinking that the type of
branch should be something like:

branch : (Pattern: patt N) (Vars_Body: vbindmany term N term) → ...

Wait, before I get into the weeds let me just set up some things. First, let’s add a simple base type,
say nats, to have something to work with as an example. I’ll prefix their names with o for łobject
language,ž so as to avoid ambiguity. And I will also add case_or_else, standing for a single-branch
pattern-match construct. It should be easy to extend to a multiple-branch construct, but I want to
keep things as simple as possible. I’ll inline what I had written for branch above into the definition
of case_or_else.

onat : typ. ozero : term. osucc : term → term.

typeof ozero onat. typeof (osucc N) onat :− typeof N onat.

eval ozero ozero. eval (osucc E) (osucc V) :− eval E V.

case_or_else : (Scrutinee: term)

(Patt: patt N) (Vars_Body: vbindmany term N term)

(Else: term) → term.

Now for the typing rule ś it will be something like this:

3There are counterexamples, like for or-patterns in some ML dialects, or for dependent pattern matching, where consequent

uses of the same variable perform exact matches rather than unification. We choose to omit the handling of cases like those

in the present work for presentation purposes.
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typeof (case_or_else Scrutinee Pattern Vars_Body Else) BodyT :−
typeof Scrutinee T, typeof_patt Pattern T VarTypes,

vopenmany Vars_Body (pfun Vars Body ⇒

vassumemany typeof Vars VarTypes (typeof Body BodyT)),

typeof Else BodyT.

Right, so when checking a pattern, we’ll have to determine both what type of scrutinee it matches,
as well as the types of the variables that it contains. We will also need vassumemany that is just
like assumemany from before but which takes vector arguments instead of list.

typeof_patt : [N] patt N → typ → vector typ N → prop.

vassumemany : [N] (A → B → prop) → vector A N → vector B N → prop → prop.

(...)

Now, I can just go ahead and define the patterns, together with their typing relation, typeof_patt.

Let me just work one by one for each pattern.

patt_var : patt (succ zero).

typeof_patt patt_var T (vcons T vnil).

OK, that’s how we’ll write pattern variables, introducing a single variable of a specific typ into the
body of the branch. And the following should be good for the onats I defined earlier.

patt_ozero : patt zero.

typeof_patt patt_ozero onat vnil.

patt_osucc : patt N → patt N.

typeof_patt (patt_osucc P) onat VarTypes :− typeof_patt P onat VarTypes.

A wildcard pattern will match any value and should not introduce a variable into the body of the
branch.

patt_wild : patt zero.

typeof_patt patt_wild T vnil.

OK, and let’s do patterns for our n-tuples. . . . I guess I’ll need a type for lists of patterns too.

patt_tuple : pattlist N → patt N.

typeof_patt (patt_tuple PS) (product TS) VarTypes :−
typeof_pattlist PS TS VarTypes.

pattlist : (N: type) → type.

pnil : patt zero.

pcons : patt N → pattlist N' → pattlist (N + N').

Uh-oh. . . don’t think I can do that N + N', really. In this pcons case, my pattern basically looks
like (P, ...PS); and I want the overall pattern to have as many variables as P and PS combined.
But the GADTs support in λProlog seems to be quite basic. I do not think there’s any notion of
type-level functions like plus4. . . .

However. . . maybe I can work around that, if I change patt to include an łaccumulatorž argument,
say NBefore. Each constructor for patterns will now define how many pattern variables it adds to

4Since GADTs in λProlog have not been considered in the past, we only present what is already supported by the existing

language design and by many λProlog implementations in the present work. We are exploring extensions to λProlog to

support type-level computation as part of future work.
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that accumulator, yielding NAfter, rather than defining how many pattern variables it includes. . .
like this:

patt, pattlist : (NBefore: type) (NAfter: type) → type.

patt_var : patt N (succ N).

patt_ozero : patt N N.

patt_osucc : patt N N' → patt N N'.

patt_wild : patt N N.

patt_tuple : pattlist N N' → patt N N'.

pnil : pattlist N N.

pcons : patt N N' → pattlist N' N'' → pattlist N N''.

Yes, I think that should work. I have a little editing to do in my existing predicates to use this
representation instead. For top-level patterns, we should always start with the accumulator being
zero. . .

case_or_else : (Scrutinee: term)

(Patt: patt zero N) (Vars_Body: vbindmany term N term)

(Else: term) → term.

I also have to change typeof_patt, so that it includes an accumulator argument of its own:

typeof_patt : [NBefore NAfter] patt NBefore NAfter → typ →

vector typ NBefore → vector typ NAfter → prop.

typeof (case_or_else Scrutinee Pattern Vars_Body Else) BodyT :−
typeof Scrutinee T, typeof_patt Pattern T vnil VarTypes,

vopenmany Vars_Body (pfun Vars Body ⇒

vassumemany typeof Vars VarTypes (typeof Body BodyT)),

typeof Else BodyT.

All right, let’s proceed to the typing rules for patterns themselves:

typeof_patt patt_var T VarTypes VarTypes' :−
vsnoc VarTypes T VarTypes'.

OK, here I need vsnoc to add an element to the end of a vector. That should yield the correct order
for the types of pattern variables; I am visiting the pattern left-to-right after all.

vsnoc : [N] vector A N → A → vector A (succ N) → prop.

vsnoc vnil Y (vcons Y vnil).

vsnoc (vcons X XS) Y (vcons X XS_Y) :− vsnoc XS Y XS_Y.

The rest is easy to adapt. . . .

(Our hero finishes adapting the rest of the rules for typeof_patt, which are available in the unabridged

version of this story.)

Let me see if this works! I’ll try out the predecessor function:

typeof (lam _ (fun n ⇒ case_or_else n

(patt_osucc patt_var) (vbind (fun pred ⇒ vbody pred))

ozero)) T ?

>> Yes:

>> T := arrow onat onat.
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Great! Time to show this to Roza.

7 IN WHICH OUR HEROES REFLECT ON STRUCTURAL RECURSION

ROZA. Your pattern-matching encoding looks good! You seem to be getting the hang of this. How
about we do something challenging then? Say, type synonyms?

HAGOP. Type synonyms? You mean, introducing type definitions like type natpair = nat *

nat? That does not seem particularly tricky.

ROZA. I think we will face a couple of interesting issues with it, the main one being how to do
structural recursion in a nice way. But first, let me write out the necessary pen-and-paper rules,
so that we are on the same page. We’ll do top-level type definitions, so let’s add a top-level notion
of programs c and a well-formedness judgment ‘⊢ c wf’ for them. (We could do modules instead
of just programs, but I feel that would derail us a little.) We also need an additional environment
Σ to store type definitions:

WfProgram-Main

∅; Σ ⊢ e : τ

Σ ⊢ (main e ) wf

WfProgram-Type

Σ, α = τ ⊢ c wf

Σ ⊢ (type α = τ ; c ) wf

Typeof-Conv

Γ; Σ ⊢ e : τ
Σ ⊢ τ =δ τ

′

Γ; Σ ⊢ e : τ ′

TypEq-Def

α = τ ∈ Σ

Σ ⊢ α =δ τ
· · ·

HAGOP. Right, we will need the conversion rule, so that we identify types up to expanding their
definitions; that’s δ -equality. . . And I see you haven’t listed out all the rules for that, but those
are mostly standard.

ROZA. Still, there are quite a few of those rules. Want to give transcribing this to Makam a try?

HAGOP. Yes, I got this. I’ll add a new typedef predicate; I will only use it for local assumptions, to
correspond to the Σ context of type definitions. I will also do the well-formed program rules:

typedef : (NewType: typ) (Definition: typ) → prop.

program : type.

main : term → program.

lettype : (Definition: typ) (A_Program: typ → program) → program.

wfprogram : program → prop.

wfprogram (main E) :− typeof E T.

wfprogram (lettype T A_Program) :−
(a:typ → typedef a T → wfprogram (A_Program a)).

Well, I can do the conversion rule and the type-equality judgment too. . . . I will name that typeq.
I’ll just write the one rule for now, which should be sufficient for a small example:

typeq : (T1: typ) (T2: typ) → prop.

typeof E T :− typeof E T', typeq T T'.

typeq A T :− typedef A T.

wfprogram (lettype (arrow onat onat) (fun a ⇒

(main (lam a (fun f ⇒ (app f ozero)))))) ?

>> (Complete silence)

ROZA. Time to Ctrl-C out of the infinite loop?

HAGOP. Oh. Oh, right. I guess we hit a case where the proof-search strategy of Makam fails to
make progress?
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ROZA. Correct. The loop happens when the new typeof rule gets triggered: it has typeof E T' as
a premise, but the same rule still applies to solve that goal, so the rule will fire again, and so on.
Makam just does depth-first search right now; until my friend implements a more sophisticated
search strategy, we need to find another way to do this.

HAGOP. I see. I guess we should switch to an algorithmic type system then.

ROZA. Yes. Fortunately we can do that with relatively painless edits and additions. Consider this:
we only need to use the conversion rule in cases where we already know something about the
type T of an expression E, but the typing rules require that E has a type T' of some other form.
That was the case above ś for E = f, we knew that T = a, but the typing rule for app required
that T' = arrow T1 T2 for some T1, T2.

HAGOP. Oh. In that case we could try running the typing rules without the existing typing infor-
mation that we have, like T = a? We would get a new type T' that way and we can then check
whether it matches the original T type that we expect, up to δ -equality.

ROZA. Exactly. So we need to change the rule you wrote to apply only in the case where T starts
with a concrete constructor (so we already know something about it), rather than when it is an
uninstantiated unification variable. We will then check whether the resulting type T' is equal to
T, using our typeq predicate.

HAGOP. Is that even possible? Is there a way in λProlog to tell whether something is a unification
variable?

ROZA. There is! Most Prolog dialects have a predicate that does that ś it’s usually called var. In
Makam it is called refl.isunif, the refl namespace prefix standing for reflective predicates.
So, here’s how we can write it instead, where I’ll also use logical negation5:

typeof E T :− not(refl.isunif T), typeof E T', typeq T T'.

HAGOP. Interesting. If we ever made a paper submission out of this, some reviewers would not
be happy about this typeof rule. But sure. Oh, and we should add the conversion rule for
typeof_patt, but that’s almost the same as for terms. (. . . ) I’ll do typeq next.

typeq A T' :− typedef A T, typeq T T'.

typeq T' A :− typedef A T, typeq T T'.

ROZA. I like how you added the symmetric rule, but. . . this is subtle, but if A is a unification variable,
we don’t want to unify it with an arbitrary synonym. So we need to check that A is concrete
somehow6:

typeq A T' :− not(refl.isunif A), typedef A T, typeq T T'.

typeq T' A :− not(refl.isunif A), typedef A T, typeq T T'.

HAGOP. I see what you mean. OK, I’ll continue on to the rest of the cases. . . .

typeq (arrow T1 T2) (arrow T1' T2') :−
typeq T1 T1', typeq T2 T2'.

typeq (arrowmany TS T) (arrowmany TS' T') :−
map typeq TS TS', typeq T T'.

ROZA. Writing boilerplate is not fun, is it?

5Makam follows Kiselyov et al. [2005] closely in terms of the semantics for logical if-then-else and logical negation.
6Though not supported in Makam, an alternative to this in other languages based on higher-order logic programming

would be to add a mode (i o) declaration for typedef, so that typedef A T would fail if A is not concrete.
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HAGOP. It is not. I wish we could just write the first two rules that you wrote; they’re the important
ones, after all. All the others just propagate the structural recursion through. Also, whenever we
add a new constructor for types, we’ll have to remember to add a typeq rule for it. . . .

ROZA. Right. Let’s just use some magic instead.

(Roza changes the type definition of typeq to typeq : [Any] (T1: Any) (T2: Any) → prop,

and adds a few lines:)

typeq A T' :− not(refl.isunif A), typedef A T, typeq T T'.

typeq T' A :− not(refl.isunif A), typedef A T, typeq T T'.

typeq T T' :− structural_recursion @typeq T T'.

HAGOP. . . . What just happened. Is structural_recursion some special Makam trick I don’t
know about yet?

ROZA. Indeed. There is a little bit of trickery involved here, but you will see that there is much less of
it than youwould expect, upon close reflection. structural_recursion is just a normal standard-
library predicate like any other; it essentially applies a polymorphic predicate łstructurallyž to a
term. Its implementation will be a little special, of course. But let’s just think about how you
would write the rest of the rules of typeq generically, to perform structural recursion.

HAGOP. OK. Well, when looking at two typs together, we have to make sure that their constructors
are the same and also that any typs they contain as arguments are recursively typequal. So
something like this:

typeq (Constructor Arguments) (Constructor Arguments') :−
map typeq Arguments Arguments'.

ROZA. Right. Note, though, that the types of arguments might be different than typ. So even if we
start comparing two types at the top level, we might end up having to compare, say, two lists of
types that they contain ś as will be the case for arrowmany for example.

HAGOP. I see! That’s why you edited typeq to be polymorphic above; you have extended it to work
on any type (of the metalanguage) that might contain a typ.

ROZA. Exactly. Now, the list of Arguments ś can you come up with a type for them?

HAGOP. We can use the GADT of heterogeneous lists for them; not all the arguments of each
constructor need to be of the same type!

typenil : type. typecons : (T: type) (TS: type) → type.

hlist : (TypeList: type) → type.

hnil : hlist typenil. hcons : T → hlist TS → hlist (typecons T TS).

ROZA. Great! We will need a heterogeneous map for these lists, too. We’ll need a polymorphic
predicate as an argument, since we’ll have to use it for Arguments of different types:

hmap : [TS] (P: forall A (A → A → prop)) (XS: hlist TS) (YS: hlist TS) → prop.

hmap P hnil hnil.

hmap P (hcons X XS) (hcons Y YS) :− forall.apply P X Y, hmap P XS YS.

As I mentioned before, the rank-2 polymorphism support in Makam is limited, so you have to
use forall.apply explicitly to instantiate the polymorphic P predicate accordingly and call it.

HAGOP. Let me try out an example of that:

change : [A]A → A → prop. change 1 2. change "foo" "bar".

hmap @change (hcons 1 (hcons "foo" hnil)) YS ?
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>> Yes:

>> YS := hcons 2 (hcons "bar" hnil).

Looks good enough. So, going back to our generic rule ś is there a way to actually write it?
Maybe there’s a reflective predicate we can use, similar to how we used refl.isunif before to
tell if a term is an uninstantiated unification variable?

ROZA. Exactly ś there is refl.headargs. It relates a concrete term to its decomposition into
a constructor and a list of arguments7. This does not need an extra-logical feature save for
refl.isunif, though: we could define refl.headargs without any special support, if we main-
tained a discipline whenever we add a new constructor, roughly like this:

refl.headargs : (Term: TermT) (Constr: ConstrT) (Args: hlist ArgsTS) → prop.

arrowmany : (TS: list typ) (T: typ) → typ.

refl.headargs Term Constructor Args :−
not(refl.isunif Term), eq Term (arrowmany TS T),

eq Constructor arrowmany, eq Args (hcons TS (hcons T hnil)).

By the way, eq is a standard-library predicate that simply attempts unification of its two arguments:

eq : A → A → prop. eq X X.

HAGOP. I see. I think I can write the generic rule for typeq now, then!

typeq T T' :−
refl.headargs T Constr Args,

refl.headargs T' Constr Args',

hmap @typeq Args Args'.

ROZA. That looks great! Simple, isn’t it? You’ll see that there are a few more generic cases that
are needed, though. Should we do that? We can roll our own reusable structural_recursion
implementation ś that way we will dispel all magic from its use that I showed you earlier! I’ll
give you the type; you fill in the first case:

structural_recursion : [Any]

(RecursivePred: forall A (A → A → prop))

(X: Any) (Y: Any) → prop.

HAGOP. Let me see. Oh, so, the first argument is a predicate ś are we doing this in open-recursion
style? I see. Well, I can adapt the case I just wrote above.

structural_recursion Rec X Y :−
refl.headargs X Constructor Arguments,

refl.headargs Y Constructor Arguments',

hmap Rec Arguments Arguments'.

ROZA. Nice. Now, here you assume that X and Y are both concrete terms. What happens when X is
concrete and Y isn’t, or the other way around? Hint: you can use this happly predicate, to apply
a list of arguments to a constructor and thus reconstruct a term:

happly : [Constr Args Term] Constr → hlist Args → Term → prop.

happly Constr hnil Constr.

7Other versions of Prolog have predicates toward the same effect; for example, SWI-Prolog [Wielemaker et al. 2012] provides

‘compound_name_arguments’, which is quite similar.
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happly Constr (hcons A AS) Term :− happly (Constr A) AS Term.

HAGOP. How about this? This way, we will decompose the concrete X, perform the transformation
on the Arguments, and then reapply the Constructor to get the result for Y.

structural_recursion Rec X Y :−
refl.headargs X Constructor Arguments,

hmap Rec Arguments Arguments',

happly Constructor Arguments' Y.

ROZA. That is exactly right. You need the symmetric case, too, but that’s entirely similar. Also,
there is another type of concrete terms in Makam: meta-level functions! It does not make sense
to destructure functions using refl.headargs, so it fails in that case, and we have to treat them
specially:

structural_recursion Rec (X : A → B) (Y : A → B) :−
(x:A → structural_recursion Rec x x →

structural_recursion Rec (X x) (Y x)).

HAGOP. Ah, I see! Here you are actually relying on the typecase aspect of ad-hoc polymorphism,
right? To check if X and Y are of the meta-level function type.

ROZA. Exactly. And you know what, that’s all there is to it! So, we’ve minimized the boilerplate,
and we won’t need any adaptation when we add a new constructor ś even if we make use of all
sorts of new and complicated types.

HAGOP. That’s right: we do not need to do anything special for the binding forms we defined, like
bindmany. . . . quite a payoff for a small amount of code! But, wait, isn’t structural_recursion
missing a case: what happens if both X and Y are uninstantiated unification variables?

ROZA. You are correct; it would fail in that case. But in my experience, it’s better to define how to
handle unification variables as needed, in each new structurally recursive predicate. In this case,
we should never get into that situation based on how we have defined typeq.

(Roza and Hagop try out a few examples and convince themselves that this works OK and no endless

loops happen when things don’t typecheck correctly.)

8 IN WHICH OUR HEROES BREAK INTO SONG AND ADDMORE ML FEATURES

(Our heroes need a small break, so they work on a couple of features while improvising on a makam8.

Roza is singing lyrics from the folk songs of her land, and Hagop is playing the oud. Their friend

Lambros from the next office over joins them on the kemençe.)

łYou can skim this chapter / or skip it all the same.
It’s mostly for completeness / since ML as a name
requires some poly-lambdas / as well as ADTs
so here we are dotting our i’s / and crossing all our t’s.

System F is easy / but later we might do
some type generalizing / like Hindley-Milner too
but if you’re feeling tired / I told you just before
you can take a mini-break / like Lambros from next door.ž

8Makam is the system of melodic modes of traditional Arabic and Turkish music that is also used in the Greek rembetiko. It

is comprised of a set of scales, patterns of melodic development, and rules for improvisation.
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tforall : (typ → typ) → typ.

polylam : (typ → term) → term.

polyapp : term → typ → term.

typeof (polylam E) (tforall T) :− (a:typ → typeof (E a) (T a)).

typeof (polyapp E T) T' :− typeof E (tforall TF), eq T' (TF T).

“The algebraic datatypes / caused all sorts of trouble
in the previous version / and since it was a double-
blind submission process / reviewers quite diverse
wonder who’s the lunatic / who writes papers in verse.ž

datadef : type. datatype_bind : (Into: type) → type.

datatype : (Def: datadef) (Rest: datatype_bind program) → program.

łThe types seem fairly easy / the constructors might be hard.
So let’s go step-by-step for now / or we’ll be here next March.
We won’t support the poly-types / to keep the system simple,
and arguments to constructors? / They’ll all take just a single.ž

⇝ data nattree = Leaf of nat | Node of (nattree * nattree) ; rest

⇝ data nattree = [ ("Leaf", nat), ("Node", nattree * nattree) ] ; rest

⇝ data nattree = [ nat, nattree * nattree ] ; λLeaf. λNode. rest

⇝ data (λnattree. [nat, nattree * nattree]) ; λnattree. λLeaf. λNode. rest

⇝ data (λnattree. [nat, nattree * nattree]) ;

λnattree. bind (λLeaf. bind (λNode. body rest))

⇝ datatype (mkdatadef (fun nattree ⇒ [nat, nattree * nattree]))

(bind_datatype (fun nattree ⇒

bind (fun leaf ⇒ bind (fun node ⇒ body rest))))

łSometimes it just is better / to avoid all those words.
Just squint your eyes a little bit; / Hagop will strum some chords.ž

constructor : type.

mkdatadef : (typ → list typ) → datadef.

bind_datatype : (typ → bindmany constructor A) → datatype_bind A.

łWe are avoiding GADTs / they’re good but up the ante.
And we have MetaML to do / (in prose ’cause I’m no Dante.)
We’re almost there, we need to add / the wfprogram clause.
But first we’ll need an env. with types that / constructors expose.ž

constructor_typ : (DataType: typ) (C: constructor) (ArgType: typ) → prop.

łWe go through the constructors / populating our new prop.
DT stands for datatype / ś the page is just too cropped.ž

wfprogram (datatype (mkdatadef DT_ConstrArgTypes)

(bind_datatype DT_Constrs_Rest)) :−
(dt:typ → openmany (DT_Constrs_Rest dt) (pfun Constrs Rest ⇒

assumemany (constructor_typ dt) Constrs (DT_ConstrArgTypes dt)

(wfprogram Rest))).

łThat’s it, it’s almost over / there’s our wf-programs.
We can’t use the constructors, though / remember terms and patts ?ž
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constr : (C: constructor) (Arg: term) → term.

patt_constr : (C: constructor) (Arg: patt N N') → patt N N'.

typeof (constr C Arg) Datatype :−
constructor_typ Datatype C ArgType, typeof Arg ArgType.

typeof_patt (patt_constr C Arg) Datatype S S' :−
constructor_typ Datatype C ArgType, typeof_patt Arg ArgType S S'.

“That’s all, there’s no example / please, download Makam.
Trust me: you can run this code / and check that all tests pass.ž

9 IN WHICH OUR HEROES TACKLE A NEW LEVEL OF META, CONTEXTS AND
SUBSTITUTIONS

HAGOP. I’m fairly confident by now that Makam should be able to handle the research idea we
want to try out. Shall we get to it?

ROZA. Yes, it is time. So, what we are aiming to do is add a facility for type-safe, heterogeneous
metaprogramming to our object language, similar to MetaHaskell [Mainland 2012]. This way we
can manipulate the terms of a separate object language in a type-safe manner.

HAGOP. Exactly. For the research language we have in mind, we aim for our object language to be
a formal logic, so our language will be similar to Beluga [Pientka and Dunfield 2010] or VeriML
[Stampoulis 2013]. We will also need dependent functions and pattern-matching over the object
language. . . But we don’t need to do all of that; let’s just do a basic version for now, and I can do
the rest on my own.

ROZA. Sounds good. First, let’s agree on some terminology, because a lot of words are getting
overloaded a lot. Let us call objects o any sorts of terms of the object language that we will be
manipulating. And, for lack of a better word, let us call classes c the łtypesž that characterize
those objects through a typing relation of the form Ψ ⊢o o : c . It is unfortunate that these names
suggest object-orientation, but this is not the intent.

HAGOP. I see what you are saying. Let’s keep the objects simple ś to start, let’s just do the terms of
the simply typed lambda calculus (STLC). In that case our classes will just be the types of STLC.
The objects are run-time entities: essentially, our programs will be able to łcomputež objects. So
we need a way to return (or łliftž) an object o as a meta-level value ⟨o⟩.

ROZA. We are getting into many levels of meta ś there’s the metalanguage we’re using, Makam;
there’s the object language we are encoding, which is now becoming a metalanguage in itself,
let’s call that Heterogeneous Meta ML Light (HMML?); and there’s the łobject-objectž language
that HMML is manipulating. One option would be to have the object-object language be the full
HMML metalanguage itself, which would lead us to a homogeneous, multi-stage language like
MetaML [Taha and Sheard 1997]. But, I agree, we should keep the object-object language simple:
the STLC will suffice.

HAGOP. Great. How about we try to do the standard example of a staged power function? Here’s a
rough sketch, where I’m using ~I for antiquotation:

let rec power (n: onat): < stlc.arrow stlc.onat stlc.onat > =

match n with

0 ⇒ < stlc.lam (fun x ⇒ 1) >

| S n' ⇒ letobj I = power n' in

< stlc.lam (fun x ⇒ stlc.mult (stlc.app ~I x) x) >

ROZA. It’s a plan. So, let’s get to it. Should we write some of the system down on paper first?
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HAGOP. Yes, that would be very useful. For this example, we will need the lifting construct ⟨·⟩
and the letobj form. Here are their typing rules, which depend on an appropriately defined
typing judgment Ψ ⊢o o : c for objects. In our case, this will initially match the ∆ ⊢ ê : t̂ typing
judgment for STLC (I’ll use hats for terms of STLC, to disambiguate them from terms of HMML).
We use i for variables standing for objects, which we will call indices. And we will need a way to
antiquote indices inside STLC terms, which means that we will have to extend the STLC terms as
well as their typing judgment accordingly. We store indices in the Ψ context, so the STLC typing
judgment will end up having the form Ψ;∆ ⊢ ê : t̂ . Last, I’ll also write down the evaluation rules
of the new constructs, as they are quite simple.

Ob-Ob-Syntax HMML-Syntax

ê ::= λx : t̂ .ê | ê1 ê2 | x | n | ê1 ∗ ê2 | aq(i ) e ::= ... | ⟨o⟩ | letobj i = e in e ′

t̂ ::= t̂1 → t̂2 | ˆnat τ ::= ... | ⟨c⟩
o ::= ê c ::= t̂

Typeof-LiftObj

Ψ ⊢o o : c

Γ;Ψ ⊢ ⟨o⟩ : ⟨c⟩

Typeof-LetObj

Γ;Ψ ⊢ e : ⟨c⟩ Γ;Ψ, i : c ⊢ e ′ : τ i < fv(τ )

Γ;Ψ ⊢ letobj i = e in e ′ : τ

STLC-Typeof-Antiqote

i : t̂ ∈ Ψ

Ψ;∆ ⊢ aq(i ) : t̂

Eval-LiftObj

⟨o⟩ ⇓ ⟨o⟩

Eval-LetObj

e ⇓ ⟨o⟩ e
′[o/i] ⇓ v

letobj i = e in e ′ ⇓ v

SubstObj

e[o/i] = e
′ is defined by

structural recursion, save for:
aq(i )[ê/i] = ê

The typing rules should be quite simple to transcribe to Makam:

object, class, index : type.

classof : object → class → prop.

classof_index : index → class → prop.

subst_obj : (I_E: index → term) (O: object) (E_OforI: term) → prop.

liftobj : object → term. liftclass : class → typ.

letobj : term → (index → term) → term.

typeof (liftobj O) (liftclass C) :− classof O C.

typeof (letobj E EF') T :−
typeof E (liftclass C), (i:index → classof_index i C → typeof (EF' i) T).

eval (liftobj O) (liftobj O).

eval (letobj E I_E') V :−
eval E (liftobj O), subst_obj I_E' O E', eval E' V.

ROZA. Great. I’ll add the object language in a separate namespace prefix ś we can use ‘%extend’
for going into a namespace ś and I’ll just copy-paste our STLC code from earlier on, plus natural
numbers. Let me also add our new antiquote as a new STLC term constructor!

%extend stlc.

term : type. typ : type. typeof : term → typ → prop.

...

aq : index → term.

%end.
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HAGOP. Time to add STLC terms as objects and their types as classes. We can then give the
corresponding rule for classof. And I think that’s it for the typing rules!

obj_term : stlc.term → object. cls_typ : stlc.typ → class.

classof (obj_term E) (cls_typ T) :− stlc.typeof E T.

stlc.typeof (stlc.aq I) T :− classof_index I (cls_typ T).

(Hagop transcribes the example from before. Writing out the term takes several lines, so he finds

himself wishing that Makam supported some way to write terms of object languages in their native

syntax.)

typeof (letrec (bind (fun power ⇒ body ((* ..long term.. *), power)))) T ?

>> Yes:

>> T := arrow onat (liftclass (cls_typ (stlc.arrow stlc.onat stlc.onat))).

ROZA. That’s great! The only thing missing to try out an evaluation example too is implementing
subst_obj. Thanks to structural_recursion, though, that is very easy:

subst_obj_aux, subst_obj_cases : [Any]

(Var: index) (Replacement: object) (Where: Any) (Result: Any) → prop.

subst_obj I_Term O Term_OforI :−
(i:index → subst_obj_aux i O (I_Term i) Term_OforI).

subst_obj_aux Var Replacement Where Result :−
if (subst_obj_cases Var Replacement Where Result)

then success

else (structural_recursion @(subst_obj_aux Var Replacement) Where Result).

subst_obj_cases Var (obj_term Replacement) (stlc.aq Var) Replacement.

My definition here is quite subtle, so let me walk you through it. First, we extend the subst_obj
predicate to work on any type ś that’s what subst_obj_aux is for. We set up the structural
recursion, by attempting to see whether the łessentialž cases actually apply ś those are captured
in the subst_obj_cases predicate. If they don’t, that means we should proceed by structural
recursion. I did not mention it before, but the @ notation that we used to treat a polymorphic
constant as a term of type forall A T can be used with an arbitrary term as well, to assign it such
a type if possible. Finally, the essential case itself is a direct transcription of the pen-and-paper
version.

HAGOP. Let me go and reread that a little. (. . . ) I think it makes sense now. Well, is that all? Are we
done?

eval (letrec (bind (fun power ⇒ body ([ (* .. definition of power *) ],

(* body of letrec: *) app power (osucc (osucc ozero)))))) V ?

>> Yes!!!

>> V := < obj_term (λx.x * ((λa.a * (λb.1) a) x)) >.

ROZA. See, even the Makam REPL is excited9! That looks correct, even though there are a lot of
administrative redices. We should be able to fix that with the next kind of object in our check-list,
though: open STLC terms! That way, instead of having power return an object containing a
lambda function, it can return an open term. Here’s how I would write the same example from
before:

9We have taken the liberty here to transcribe the result to more meaningful syntax to make it easier to verify.
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let rec power_aux (n: onat): < [ stlc.onat ] stlc.onat > =

match n with

0 ⇒ < [x]. 1 >

| S n' ⇒ letobj I = power_aux n' in < [x]. stlc.mult ~(I/[x]) x >

We have to list out explicitly the variables that an open term depends on, so that’s the [x].

notation I use. Then, we can use contextual types [Nanevski et al. 2008] for the type of those
open terms.

HAGOP. Good thing I’ve already printed the paper out. (. . . ) OK, so it says here that we can use
contextual types to record, at the type level, the context that open terms depend on. So let’s say
an open stlc.term of type t that mentions variables of a ∆ context would have a contextual
type of the form [∆]t . This is some sort of modal typing, with a precise context.

ROZA. Right. We now get to the tricky part: referring to variables that stand for open terms within
other terms! You know what those are, right? Those are Object-level Object-level Meta-variables.

HAGOP. My head hurts; I’m getting OOM errors. Maybe this is easier to implement in Makam than
to talk about.

ROZA. Maybe so. Well, let me just say this: those variables will stand for open terms that depend
on a specific context ∆, but we might use them at a different context ∆′. We need a substitution
σ to go from the context of definition into the current context. I think writing down the rules on
paper will help:

Ob-Ob-Syntax

o ::= ... | [x1, ...,xn].ê c ::= ... | [t̂1, ..., t̂n]t̂
ê ::= ... | aqopen(i )/σ σ ::= [ê1, ..., ên]

Classof-OpenTerm

Ψ;x1 : t̂1, ...,xn : t̂n ⊢ ê : t̂

Ψ ⊢o [x1, ...,xn].ê : [t̂1, ..., t̂n]t̂

STLC-TypeOf-AntiqoteOpen

i : [t̂1, ..., t̂n]t̂ ∈ Ψ ∀i .Ψ;∆ ⊢ êi : t̂i

Ψ;∆ ⊢ aqopen(i )/[ê1, ..., ên] : t̂

SubstObj

(aqopen(i )/σ )[[x1, ...,xn].ê/i] = ê[ê1/x1, ..., ên/xn] if σ [[x1, ...,xn].ê/i] = [ê1, ..., ên]

HAGOP. I’ve seen that rule for SubstObj before, and it is still tricky. . . We need to replace the open
variables in e through the substitution σ = [ê∗1 , ..., ê

∗
n]. However, the terms ê∗1 through ê

∗
n might

mention the i index themselves, so we first need to apply the top-level substitution for i to σ

itself! After that, we do replace the open variables in ê .

ROZA. I feel that we are getting to the point where it’s easier to write things down in Makam rather
than on paper:

obj_openterm : bindmany stlc.term stlc.term → object.

cls_ctxtyp : list stlc.typ → stlc.typ → class.

%extend stlc.

aqopen : index → list term → term.

typeof (aqopen I ES) T :−
classof_index I (cls_ctxtyp TS T), map typeof ES TS.

%end.

classof (obj_openterm XS_E) (cls_ctxtyp TS T) :−
openmany XS_E (fun xs e ⇒

assumemany stlc.typeof xs TS (stlc.typeof e T)).
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subst_obj_cases I (obj_openterm XS_E) (stlc.aqopen I ES) Result :−
subst_obj_aux I (obj_openterm XS_E) ES ES',

applymany XS_E ES' Result.

HAGOP. I think that’s all! This is exciting ś let me try it out:

(eq _TERM (letrec (bind (fun power ⇒ body ([

lam onat (fun n ⇒

case_or_else n (patt_ozero)

(vbody (liftobj (obj_openterm (bind (fun x ⇒

body (stlc.osucc stlc.ozero))))))

(case_or_else n (patt_osucc patt_var)

(vbind (fun n' ⇒ vbody (

letobj (app power n') (fun i ⇒

liftobj (obj_openterm (bind (fun x ⇒

body (stlc.mult x (stlc.aqopen i [x])))))))))

(liftobj (obj_openterm (bind (fun x ⇒ body stlc.ozero))))

))], app power (osucc (osucc ozero)))))),

typeof _TERM T, eval _TERM V) ?

>> Yes:

>> T := liftclass (cls_ctxtyp (cons stlc.onat nil) stlc.onat),

>> V := liftobj (obj_openterm (bind (fun x ⇒ body (

stlc.mult x (stlc.mult x (stlc.osucc stlc.ozero)))))).

It works! That’s it! I cannot believe how easy this was!

AUDIENCE. We cannot possibly believe that you are claiming this was easy!

ANONYMOUS AUTHOR. Still, try implementing something like this without a metalanguage. . .
It takes a long time! As a result, it limits our ability to experiment with and iterate on new
language-design ideas. That’s why we started working on Makam. That took a few years, but
now we can at least show a type system like this in 28 pages of a single-column PDF!

ROZA. I wonder where all these voices are coming from?

HAGOP. They somehow sound like the ghosts of people who left academia for industry?

10 IN WHICH OUR HERO ROZA IMPLEMENTS TYPE GENERALIZATION, TYING
LOOSE ENDS

łWe mentioned Hindley-Milner / we don’t want you to be sad.
This paper’s going to end soon / and it wasn’t all that bad.

(Before we get to that, though / it’s time to take a break.
If taksims seem monotonous / then put on some Nick Drake.)

We’ll gather unif-variables / with structural recursion
and if you haven’t guessed it yet / we’ll get to use reflection.ž

ROZA. Let me now show you how to implement type generalization for polymorphic let in the
style of Damas [1984]; Hindley [1969]; Milner [1978]. I’ve done this before10, and I need to leave

10There is existing work that has considered the problem of ML type generalization in the λProlog setting [Dietzen and

Pfenning 1991; Liang 1995]. Our presentation here follows a different approach based on reflective and generic predicates.
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for home soon, so bear with me for a bit. The gist will be to reuse the unification support of our
metalanguage, capturing the metalevel unification variables and generalizing over them. That
way we will have a very short implementation, and we won’t have to do a deep embedding of
unification!

HAGOP. So ś you’re saying that in λProlog, other than reusing the metalevel function type for
implementing object-level substitution, we can also reuse metalevel unification for the object
level as well.

ROZA. Exactly! First of all, the typing rule for a generalizing let looks like this:

Γ ⊢ e : τ a⃗ = fv(τ ) − fv(Γ) Γ,x : ∀a⃗.τ ⊢ e ′ : τ ′

Γ ⊢ let x = e in e
′ : τ ′

We don’t have any side-effectful operations, so there is no need for a value restriction. Transcribing
this to Makam is easy, if we assume a predicate for generalizing the type, for now:

generalize : (Type: typ) (GeneralizedType: typ) → prop.

let : term → (term → term) → term.

typeof (let E F) T' :−
typeof E T, generalize T Tgen,

(x:term → typeof x Tgen → typeof (F x) T').

Now, for generalization itself, we need the following ingredients based on the typing rule:

ś something that picks out free variables from a type, standing for the fv(τ ) part ś or, in
our setting, this should really be read as uninstantiated unification variables. Those are the
Makam-level unification variables that have not been forced to unify with concrete types
because of the rest of the typing rules.

ś something that picks out free variables from the local context: the fv(Γ) part. Again, these
are the uninstantiated unification variables rather than the free variables. In our case, the
context Γ is represented by the local typeof assumptions that our typing rules add, so we’ll
have to look at those somehow.

ś a way to turn something that includes unification variables into a ∀ type, corresponding to
the ∀a⃗.τ part. This essentially abstracts over a number of variables and uses them as the
replacement for the unification variables inside τ .

All of those look like things that we should be able to do with our generic recursion and with the
reflective predicates we’ve been using! However, to make the implementation simpler, we will
generalize over one variable at a time, instead of all at once ś but that should be entirely equivalent
to what’s described in the typing rule.

First, we will define a findunif predicate that returns one unification variable of the right type from
a term, if at least one such variable exists. To implement it, we will make use of a generic operation
in the Makam standard library, called generic_fold. It is quite similar to structural_recursion,
but it does a fold through a term, carrying an accumulator through. Pretty standard, really, and its
code is similar to what we did already for structural_recursion, with no new surprises.

findunif_aux : [Any VarType]

(Var: option VarType) (Current: Any) (Var': option VarType) → prop.

findunif_aux (some Var) _ (some Var).

findunif_aux none (Current : CurrentType) (Result: option VarType) :−
refl.isunif Current,
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if (dyn.eq Result (some Current)) then success

else (eq Result none).

findunif_aux (In: option B) Current Out :−
generic_fold @findunif_aux In Current Out.

findunif : [Any VarType] (Search: Any) (Found: VarType) → prop.

findunif Search Found :− findunif_aux none Search (some Found).

Here, the second rule of findunif_aux is the important one ś it will only succeed when we
encounter a unification variable of the same type VarType as the one we require. This rule relies on
the dynamic typecase aspect of the ad-hoc polymorphism in λProlog, making use of the dyn.eq
standard-library predicate, which has a lax typing:

dyn.eq : [A B] A → B → prop.

dyn.eq X X.

Though this predicate succeeds for the same case as the standard eq does (when its two arguments
are unifiable), the difference is that dyn.eq only forces the types A and B to be unified at runtime,
rather than statically, too. Otherwise, our rule would only apply when the type CurrentType of
the current unification variable we are visiting already matches the type that we are searching for,
VarType.

With findunif defined, we should already be able to find one (as opposed to all, as described above)
uninstantiated unification variable from a type. Here is an example of its use:

findunif (arrowmany TS T) (X: typ) ?

>> Yes:

>> X := T.

Now we add a predicate replaceunif that, given a specific unification variable and a specific term,
replaces the variable’s occurrences with the term. This will be needed as part of the ∀a⃗.τ operation
of the rule. Here I’ll need another reflective predicate, refl.sameunif, that succeeds when its two
arguments are the same exact unification variable; eq would just unify them, which is not what we
want.

replaceunif : [VarType Any]

(Which: VarType) (ToWhat: VarType) (Where: Any) (Result: Any) → prop.

replaceunif Which ToWhat Where ToWhat :−
refl.isunif Where, refl.sameunif Which Where.

replaceunif Which ToWhat Where Where :−
refl.isunif Where, not(refl.sameunif Which Where).

replaceunif Which ToWhat Where Result :− not(refl.isunif Where),

structural_recursion @(replaceunif Which ToWhat) Where Result.

Last, we’ll need an auxiliary predicate that tells us whether a unification variable exists within a
term. This is easy; it’s similar to the above.

hasunif_aux : [VarType Any] VarType → bool → Any → bool → prop.

hasunif_aux _ true _ true.

hasunif_aux X false Y true :− refl.sameunif X Y.

hasunif_aux X In Y Out :− generic_fold @(hasunif_aux X) In Y Out.

hasunif : [VarType Any] VarType → Any → prop.

hasunif Var Term :− hasunif_aux Var false Term true.
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We are now mostly ready to implement generalize. We’ll do this recursively. The base case is
when there are no unification variables within a type left:

generalize T T :− not(findunif T (X: typ)).

For the recursive case, we will pick out the first unification variable that we come upon using
findunif. We will generalize over it using replaceunif and then proceed to the rest. Still, there
is a last hurdle: we have to skip over the unification variables that are in the Γ environment. For
the time being, let’s assume a predicate that gives us all the types in the environment, so we can
write the recursive case down:

get_types_in_environment : [A] A → prop.

generalize T Res :−
findunif T Var, get_types_in_environment GammaTypes,

(x:typ → (replaceunif Var x T (T' x), generalize (T' x) (T'' x))),

if (hasunif Var GammaTypes) then (eq Res (T'' Var))

else (eq Res (tforall T'')).

HAGOP. Oh, clever. But what should get_types_in_environment be? Don’t we have to go back
and thread a list of types through our typeof predicate, to which we add a type T every time we
introduce a new typeof x T assumption?

ROZA. Well, we came this far without significantly rewriting our rules, so it’s a shame to do that
now! Maybe we’ll be excused to use yet another reflective predicate that does what we want?
There is a way to get a list of all the local assumptions for a predicate, through the reflexive
predicate refl.assume_get. It turns out that all the rules and connectives we have been using
are normal λProlog terms like any other, so there’s not really much magic to it. And those
assumptions will include all the types in Γ. . . .

get_types_in_environment Assumptions :−
refl.assume_get typeof Assumptions.

HAGOP. Wait. It can’t be.

typeof (let (lam _ (fun x ⇒ let x (fun y ⇒ y))) (fun id ⇒ id)) T ?

>> Yes:

>> T := tforall (fun a ⇒ arrow a a).

ROZA. And yet, it can.

11 IN WHICH OUR HEROES SUMMARIZE WHAT THEY’VE DONE AND OUR STORY
CONCLUDES BEFORE THE CREDITS START ROLLING

HAGOP. I feel like we’ve done a lot here. And some of the things we did I don’t think I’ve seen in
the literature before, but then again, it’s not clear to me what’s Makam-specific and what isn’t.
In any case, I think a lot of people would find that quickly prototyping their PL research ideas
using this style of higher-order logic programming is very useful.

ROZA. I agree, though it would be hard for somebody to publish a paper on this. Some of it is novel,
some of it is folklore, some of it, we just did in a pleasant way; and we did also use a couple of
not-so-pleasant hacks. But let’s make a list of what’s what.

ś We defined HOAS encodings of complicated binding forms, including mutually recursive
definitions and patterns, while only having explicit support in our metalanguage for single-
variable binding. These encodings seem to have been part of PL folklore, but we believe that a
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type like bindmany has never been shown as a reusable datatype that λProlog makes possible.
We have made use of GADTs to encode some of these binding structures precisely, which
we show are supported in λProlog through ad-hoc polymorphism. Definining GADTs is a
novel usage for this λProlog feature. Our binding constructions should be replicable in other
λProlog implementations like Teyjus [Gacek et al. 2015; Nadathur and Mitchell 1999] and
ELPI [Dunchev et al. 2015].

ś We defined a generic predicate to perform structural recursion using a very concise definition.
It allows us to define structurally recursive predicates that only explicitly list out the important
cases, in what we believe is a novel encoding for the λProlog setting. Any new definitions,
such as constructors or datatypes we introduce later, do not need any special provision to be
covered by the same predicates. They depend on a number of reflective predicates, most of
which are available in other Prolog and λProlog dialects. These predicates are used to reflect
on the structure of Makam terms and to get the list of local assumptions; for the most part,
their use is limited to predicates that would be part of the standard library, not in user code.

ś The above encodings are reusable and have been made part of the Makam standard library.
As a result, we were able to develop the type checker for quite an advanced type system, in
very few lines of code specific to it, using rules that we believe do not, presentation-wise,
stray far from their pen-and-paper versions. Our development includes mutually recursive
definitions, polymorphism, datatypes, pattern matching, a conversion rule, Hindley-Milner
type generalization, and staging constructs that allow the computation of contextually typed
open terms of the simply typed lambda calculus. We are not aware of another metalinguistic
framework that allows this level of expressivity and has been used to encode such type-system
features with the same level of concision.

ś We have also shown that higher-order logic programming allows not just meta-level func-
tions to be reused for encoding object-level binding; there are also cases where meta-level
unification can be reused to encode certain object-level features: for example, doing type
generalization as in Algorithm W.

HAGOP. Well, that was very interesting; thank you for working with me on this!

ROZA. I enjoyed this, too. Say, if you want to relax, there’s a new staging of the classic play by
Fischer et al. [2010] downtown ś I saw it yesterday, and it is really good!

HAGOP. That’s a great idea! You know, I wish there were more plays like it. . . . Well, good night,
and see you on Monday!

12 IN WHICH OUR HEROES ARE NOWHERE TO BE FOUND, LOST IN A SEA OF
REFERENCES TO RELATED WORK

The Racket programming language was designed to support creation of new programming
languages [Felleisen et al. 2015] and has been used to implement a very wide variety of DSLs,
including typed languages such as Typed Racket by Tobin-Hochstadt et al. [2011]. We believe that
one of the key characteristics of the Racket approach to language implementation is the ability to
create towers of abstraction through programmatic manipulation of code. Makam is inspired by
this approach to a large extent, and our plan for future work follows similar lines with regards to
manipulating Makam code within Makam. Still, there is a lot of potential for cross-fertilization since
the presence of first-class binding support in the form of higher-order abstract syntax, together with
the built-in support for higher-order unification, makes the λProlog setting significantly different.

The recent development of a method for implementing type systems as macros by Chang et al.
[2017] is a great validation of the Racket approach and is especially relevant to our use case, as it has
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been used to encode type systems similar to ML. The integration that this methodology provides
with the rest of the Racket ecosystem offers a number of advantages, as does the Turnstile DSL
for writing typing rules close to the pen-and-paper versions. We do believe that the higher-order
logic programming setting allows for more expressivity and genericity ś for example, we have
used the same techniques to define not only typing rules but evaluation rules as well; also, it is
not immediately clear to us whether examples such as our MetaML fragment or Hindley-Milner
type inference would be as easy to implement in Turnstile, especially since the latter presently
lacks support for unification. We are exploring an approach similar to Turnstile to implement a
higher-level surface language for writing typing rules using Makam itself.

Evaluation rules can be implemented using another DSL of the Racket ecosystem, namely PLT

Redex [Felleisen et al. 2009], so a change of framework is required. We believe that staying within
the same framework for both typing and evaluation semantics offers advantages, especially for
encoding languages where the two aspects are more linked, such as dependently typed languages
with the conversion rule. We give one small example of that in the form of the type synonyms
example. We also find that the presence of first-class substitution support and the support for
structural recursion in Makam offers advantages over PLT Redex.

The Spoofax languageworkbench [Kats and Visser 2010] offers a series of DSLs for implementing
different aspects of a language, such as parsing, binding, typing and dynamic semantics. We have
found that some of these DSLs have restrictions that would make the implementation of type
systems similar to the ones we demonstrate in the present work challenging. Our intention with
the design of Makam as a language prototyping tool is for it to be a single expressive core, where all
different aspects of a language can be implemented. The K Framework [Roşu and Şerbănută 2010]
is a semantics framework based on rewriting and has been used to implement the dynamic semantics
of a wide variety of languages. It has also been shown to be effective for the implementation of type
systems [Ellison et al. 2008], treating them as abstract machines that compute types rather than
values. The recent addition of a builtin unification procedure has made this approach significantly
more effective, allowing the definition of ML type inference; however, the fact that λProlog supports
higher-order unification as well renders it applicable in further situations such as dependently
typed systems.

Future work. We are exploring the addition of a staging construct to Makam, which allows us to
implement extensions to the language within the language itself, by implementing predicates that
produce new Makam definitions, rules, etc. Examples of this approach are a library for defining
surface syntax for object languages; also, a language for describing the binding structure of an object
language, alleviating the non-intuitive aspects of some of our encodings. This approach can also
help reduce the reliance on reflective predicates in some of the examples we show (e.g. structural
recursion), by restricting the use of reflection within staged code.
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