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Abstract
Some important domains of software demand concrete bounds
on how long functions may run, for instance for real-time
cyberphysical systems where missed deadlines may damage
industrial machinery. Such programs may interact with ex-
ternal devices throughout execution, where time deadlines
ought to depend on, for instance, sensor readings (e.g. we
only scramble to close a valve immediately when a sensor
reports that a tank is about to overflow). We present the first
software-development toolchain that delivers first-principles
proofs of meaningful time bounds for interactive machine
code, while allowing all per-application programming and
verification to happen at the source-code level. We allow C-
like programs to be proved against separation-logic specifica-
tions that also constrain their running time, and such proofs
are composed with verification of a compiler to RISC-V ma-
chine code. All components are implemented and proved
inside the Rocq proof assistant, producing final theorems
whose statements depend only on machine-language formal
semantics and some elementary specification constructions
for describing running time. As a capstone case study, we
extended a past verification (of a real microcontroller-based
cyberphysical system) to bound time between arrival of net-
work packets and actuation of an attached device.

CCS Concepts: • Theory of computation → Program
verification; • Software and its engineering → Formal
software verification; Compilers.

Keywords: compiler verification, omnisemantics, bounding
running time

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
CPP ’26, Rennes, France
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2341-4/2026/01
https://doi.org/10.1145/3779031.3779088

ACM Reference Format:
Andy Tockman, Pratap Singh, Andres Erbsen, Samuel Gruetter,
and Adam Chlipala. 2026. Foundational Verification of Running-
Time Bounds for Interactive Programs. In Proceedings of the 15th
ACM SIGPLAN International Conference on Certified Programs and
Proofs (CPP ’26), January 12–13, 2026, Rennes, France. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3779031.3779088

1 Introduction
University students in computer science are quickly asked
to reason about the running times of the programs they
write, yet, despite increasing adoption of formal methods, we
rarely find programs proved to meet running-time bounds.
The problem is hard enough with the asymptotic bounds
that populate a traditional introductory algorithms class.
However, it is no comfort if a safety feature fails to trigger
thanks to a flawed linear-time algorithm that in practice runs
for several seconds longer than is safe. Developers of real-
time and embedded systems have been dealing in concrete
timing deadlines since small, general-purpose computers
were feasible to ship.

Where a cadre of today’s formal-methods researchers de-
part from embedded-systems practitioners is in even greater
paranoia along a certain dimension: why should we trust
the programming tools used to establish time bounds? There
may be a bug in a static analysis that establishes bounds
automatically. Even worse, Turing taught us that any in-
teresting property of program behavior, timing included,
may be understandable only via program-specific reason-
ing that is hard to automate, motivating the use of tools
based on Hoare logic and semi-automated proof... which are
even more complex bits of software liable to be full of bugs
themselves. And when we are done convincing ourselves
of a source-level timing property, will the compiler make
a mess of it by generating machine code in an unexpected
way? These concerns are the natural timing-centric exten-
sions of motivations for foundational verification, where not
just applications but also verification and compilation tools
are proved together in a common formal framework with
machine checking of proofs.
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Finally, textbook notions of running-time specification are
insufficient, even when we swap out asymptotics for con-
crete bounds. The reason is that many systems of interest are
interactive, engaging in input and output with their environ-
ments, where proper time bounds depend on inputs received.
For instance, a cyberphysical system may be forgiven for tak-
ing a while to complete one step of interaction when it is just
that an actuator is taking a long time to signal completion
via an input routine. As another example, a network server
should be permitted to take longer to return responses when
it receives longer requests, though a more refined specifica-
tion might enforce a policy about not accepting inputs that
are so long as to figure in denial-of-service attacks.

In this paper, we report on our project perhaps best under-
stood in terms of two somewhat-independent contributions.

• We demonstrate the first approach to verifying intricate
time bounds for interactive programs, meaning we han-
dle cases where time specifications must use arbitrary
logic to bound time between I/O interactions in terms
of what interactions came before.

• We implement the first foundational toolchain support-
ing time-bound proof for interactive programs.

We present a toolchain for proving time bounds of inter-
active source programs and then passing them through a
compiler guaranteed to preserve time bounds – with all rea-
soning carried out in the Rocq proof assistant. We introduce
a novel specification style that combines I/O event traces
with ghost state tracking timing-relevant metrics. When an
application has passed through our pipeline, the result is
a Rocq theorem whose statement only depends on RISC-V
semantics and relatively basic specification constructions.
It is noteworthy that we require little in the way of new

conceptual devices. The existing omnisemantics [9] style of
Bedrock2 (to be explained more shortly) turns out to adapt
very naturally to tracking of time metrics. From that per-
spective, our work can be seen as continued exploration of
omnisemantics and its generality, complementing another
recent study on timing-side-channel security [10].

We follow the long tradition of foundational verifications
that start with certain simplifications beyond leading-edge
production systems. Most importantly, our measurement
of time is coarse-grained, and we expose a source-level cost
model that could be said to leak details of compilation. For
the former, our semantics (of source, intermediate, and tar-
get languages) track such high-level metrics as numbers of
assembly instructions, numbers of memory accesses, and
numbers of jumps. For any real processor, those counters
allow us to conclude conservative upper bounds on wall-
clock time, but those bounds may be very pessimistic. While
we are concerned here with microcontrollers where these
simple bounds actually do let us derive relatively precise
wall-clock bounds (e.g. processors with very minimal use of

memory caches), we look forward to future work tracking
metrics to support greater precision.
We also ask that source programs be proved against a

cost semantics that somewhat telegraphs how the compiler
expects to work, revealing costs motivated by the expected
mixes of assembly instructions. Indeed, it is an inherent chal-
lenge in this domain to allow precise bounds to be proved
at the source level without dependence on compiler details,
since often compiler optimizations are crucial to meeting
deadlines (or, often enough, engineers or certification agen-
cies distrust higher compiler optimization levels and just
force system design with laxer deadlines). A common flow
is to use source-level analysis to annotate loops with infor-
mation on how many times they run, which can then be
pushed down to assembly code, where detailed worst-case
execution time (WCET) analysis is carried out. A downside
of that approach is the difficulty of debugging timing issues
at the assembly level, whereas we allow timing problems
to be found while stepping through Hoare-logic proofs of
source files. In any case, it does clearly simplify the program-
mer’s workflow to do per-application reasoning just at the
level of source code, and we may find ourselves moving more
toward established WCET-analysis styles in future work.

The next section reviews Bedrock2, the preexisting Rocq
framework that we chose to extend in this work. Then sec-
tion 3 sketches the whole story of how we extend Bedrock2,
from proofs about source programs to guarantees derived
about their compilations. The following sections go back
to present the pieces in more detail: extended operational
semantics (section 4), compiler verification (section 5), and
proof of source programs (section 6). We evaluate the frame-
work on a capstone case study (subsection 6.4) and compare
it with related work (section 7).

Our Rocq implementation and case study are available in
the metriclightbulb branch of the Bedrock2 project:

https://github.com/mit-plv/bedrock2/tree/metriclightbulb

2 Bedrock2: The Framework We Extend
Bedrock2 is a Rocq-based framework for writing C-like pro-
grams (with loops, functions, and access to stack and heap
memory), verifying their correctness with separation logic,
and translating them to RISC-V machine code with a verified
compiler. It has been evaluated in two main case studies: a
simple embedded system controlling a lightbulb based on
network messages [13], proved down to the level of a Verilog
processor description and its initial memory contents of ma-
chine code; and a moderately more complex network server
speaking a cryptographic protocol [14], proved just down
to the level of machine-code semantics. These case studies
belong roughly to the equivalence class of the most thorough
end-to-end, foundational system verifications carried out to-
date. Though the work we report in this paper does not link
with verified hardware, by choosing Bedrock2 as our starting
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point, we can build reasonable confidence that our methods
are likely to extend to comprehensive end-to-end proof. Our
prototype implementation is still relatively end-to-end, as
source/intermediate languages, compiler, and verification
tools remain outside the trusted base.

Our summary of Bedrock2 so far is reminiscent of better-
known competitors like the Verified Software Toolchain [2],
based on the CompCert verified compiler [23]. Bedrock2
is interesting for a few central simplifications compared to
CompCert. First, like CompCert, it presents a unified mem-
ory model through all languages and compilation stages –
but instead of CompCert’s structured model based on the C
standard, it is instead amachine language-style flat model, re-
vealing pointers as machine words. As a result, implementing
and verifying memory-management libraries in Bedrock2 is
relatively straightforward [17]. While this feature is largely
orthogonal to the questions we study in this paper, the under-
lying mechanism is front-and-center in the way our proofs
work, related to how Bedrock2 approaches nondeterminism.

We have called out the importance of timing specifications
that depend on a program’s I/O interactions. Bedrock2 treats
I/O calls as nondeterministic, extending a ghost-state log
with their parameters and return values, much in the style
of process algebra, and much like how CompCert and others
model I/O. However, the CompCert proof approach exerts
back pressure on their whole framework toward forced de-
terminism of most languages. For instance, the CompCert
memory model enforces that memory allocation is determin-
istic in producing symbolic pointers, where attempting to
compare symbolic pointers triggers undefined behavior, to
stop programs from noticing real nondeterminism. Some-
what similarly, while CompCert’s semantics do model arbi-
trary runtime input, all languages in that stack are subject to
technical obligations of determinacy modulo input choices
and receptiveness to all input choices so that deterministic
reasoning can be applied throughout compiler-correctness
proofs. In contrast, Bedrock2 embraces nondeterminism in
every language semantics, for both internal choices (like mem-
ory allocation) and external choices (like I/O). This modeling
difference is important for reasoning about compiler correct-
ness in the presence of I/O, as well as compiler correctness
of stack allocation and verification of memory-management
routines within the source language (as mentioned earlier).
CompCert carefully avoids nondeterminism to simplify

proofs of semantics-preservation for compiler phases. How
does Bedrock2 avoid the pain that CompCert dodges? The
key semantics technique is omnisemantics [9]. Every lan-
guage above machine code receives a big-step semantics,
allowing simple compiler-phase proofs that proceed by in-
duction on execution judgments, without the complications
of CompCert’s family of simulation diagrams, accounting
for how small-step executions may go locally out-of-sync
but then resynchronize. However, nondeterminism in tra-
ditional big-step semantics would be a nonstarter for such

eval-store
(𝑥, 𝑎) ∈ ℓ (𝑎 + 𝑛) ∈ dom𝑚

(𝑦, 𝑣) ∈ ℓ 𝑄 (𝑚[(𝑎 + 𝑛) := 𝑣]/ℓ/𝜏)
𝑥 [𝑛] = 𝑦/𝑚/ℓ/𝜏 ⇓ 𝑄

eval-input
∀𝑛. 𝑄 (𝑚/ℓ [𝑥 := 𝑛]/𝜏 :: IN 𝑛)
𝑥 = input()/𝑚/ℓ/𝜏 ⇓ 𝑄

eval-seq
𝑐1/𝑚/ℓ/𝜏 ⇓ 𝑄1

(∀𝑚′ ℓ ′ 𝜏 ′ . 𝑄1 (𝑚′/ℓ ′/𝜏 ′) =⇒ 𝑐2/𝑚′/ℓ ′/𝜏 ′ ⇓ 𝑄)
𝑐1; 𝑐2/𝑚/ℓ/𝜏 ⇓ 𝑄

Figure 1. Sample rules of original Bedrock2 semantics

proofs. Hence the omnisemantics principle of big-step se-
mantics that describe overapproximations of sets of possible
final states, rather than just single states. Compiler phases
are proved to preserve sets of possible outcomes, which are
treated as overapproximations of possible behaviors, sup-
porting compiler phases that resolve nondeterminism (e.g.
by substituting in concrete memory-management routines).
Figure 1 shows a few sample rules from the baseline se-

mantics. The judgment ⇓ takes in states of the form 𝑐/𝑚/ℓ/𝑡
for program commands 𝑐 , memories 𝑚 (partial functions
from machine words to bytes), local-variable environments
ℓ , and I/O traces 𝑡 . An output of the judgment is a set 𝑄 of
such configurations, overapproximating possible outcomes.
Rule eval-store demonstrates the handling of atomic

deterministic steps: simply assert that the modified state sat-
isfies the postcondition 𝑄 . (For simplicity, we show here a
rule for byte-level memory access, though Bedrock2 actually
supports multiple word sizes.) Rule eval-seq demonstrates
threading through of postconditions in control flow, requir-
ing an intermediate postcondition 𝑄1 for the first part of a
sequence 𝑐1; 𝑐2, such that 𝑐2 must be proved to achieve the
overall postcondition 𝑄 , starting from any configuration in
the intermediate postcondition 𝑄1. Most interestingly, rule
eval-input showcases the treatment of atomic nondetermin-
istic steps: use universal quantification to ensure that the
postcondition holds for any way the nondeterminism may be
resolved. In this case, we consider all possible return values
of input(), in each case writing the result into local variable
𝑥 and adding it to the I/O trace 𝜏 . Bedrock2 is parameterized
over a set of available external calls, which actually receive
uniform treatment via a rule that generalizes eval-input.
It may be apparent that omnisemantics are quite similar

to Hoare logic and inductively defined weakest-precondition
judgments. The key difference is that loop rules look much
more like those of classic big-step semantics, without loop
invariants. To prove compiler phases, rule induction over big-
step omnisemantics judgments is more straightforward than
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over Hoare-logic judgments. For instance, there is no need
to “compile” loop invariants to construct target-language
judgments. There is also no need to consider proof cases for
structural rules like a rule of consequence (which need not
be included in omnisemantics but can be proved as derived
rules). The specifics of omnisemantics are also tuned to be ac-
cepted as inductive predicate definitions by proof assistants.
While omnisemantics is basically an inductive formulation
of weakest preconditions, the more-standard definitions of
weakest preconditions fail strict-positivity checks in proof
assistants. It is also important that omnisemantics maintain
the convention from e.g. separation logic [29] that a program
that may hit undefined behavior under even a single possible
resolution of nondeterminism has no semantics.
Bedrock2 is also presented as including a program logic,

which just means that the baseline omnisemantics of source
and intermediate languages are already so close to Hoare
triples that a simple wrapper definition suffices. A library
of notations and tactics is developed to allow conventional
separation-logic proofs to be carried out. While alternative
approaches like interaction trees [31] reformulate the shape
of specifications, Bedrock2 retains the simple structure of
Hoare logic, just enriching state with the ghost I/O log.
It is also worth reviewing how to reason about infinitely

reactive programs in Bedrock2. The core language semantics
actually enforces termination. Intentional nontermination is
built with top-level combinators (implemented directly in
machine code) that have their own associated correctness
theorems. The main example is an event loop, iterating a
terminating body indefinitely. A (total-correctness) Hoare
triple proved for the body is lifted to a temporal property for
the loop (see subsubsection 6.4.3).

3 Overview of Metrics Logging
Now we are ready to summarize how we extend Bedrock2
with support for upper-bounding running time. The central
idea is addition of ghost state to track different monotonic
counters, to complement the prior ghost state logging I/O.
While this idea is familiar from past work not treating I/O
(e.g. Haslbeck and Lammich [18]), we found it notable how
omnisemantics already provides all the plumbing needed to
generalize to I/O. There are also new twists coming from the
combination of theorems down to machine code and sound
foundational verification of bounds solely at the source level
(which we believe has not been achieved before).

The basic structure used to track metrics throughout the
program logic and compiler is the MetricLog object, which is
a 4-tuple of integers (instructions, stores, loads, jumps). These
components refer to the number of RISC-V instructions,
memory stores, memory loads (including instruction fetches),
and jump instructions respectively. Most of our development
can be considered parametric in the details of metrics to
track, setting the stage for follow-on work that tracks more

detailed metrics as needed for more precise modeling of mod-
ern processors. For instance, we might want to store some
information on memory locality, to predict cache behavior.
We track metrics at this granularity because it is coarse

enough to be reasonable to work with in practice, while
simultaneously being precise enough to derive nontrivial
wall-clock time upper bounds on realistic hardware. For in-
stance, for load and store instructions, we can account for
memory caches by using worst-case latencies for access-
ing main memory. For microcontrollers with modest use of
caches, these bounds may be precise enough to be useful.

It is important to note that we only concern ourselves with
upper bounds on program metrics. An alternative extension
of omnisemantics [10] seems to be more suitable for cases
like cryptography where timing must be controlled more
tightly, if in a less quantitatively precise way.
Recall from section 2 that Bedrock’s baseline semantics

works with configurations of the form 𝑐/𝑚/ℓ/𝜏 . To imple-
ment metrics logging, we augment the configuration type to
a 5-tuple 𝑐/𝑚/ℓ/𝜏/𝜇. The new entry 𝜇 is a MetricLog object,
as detailed above. Like the I/O trace, it can be thought of as
the metrics “used so far.”
With metric logs in the configuration type, we may now

simply use the same proof machinery as for prior correct-
ness proofs, while also allowing postconditions to talk about
the difference between starting and ending metrics after an
evaluation. Crucially, the postcondition remains an arbitrary
Rocq expression – which means timing statements have
complete access to the memory state, local variables, and
I/O trace of the program. Metrics bounds may therefore be
as coarse- or fine-grained as desired, from static constant
bounds to highly specific predicates that incorporate the
entire I/O history of the program execution.

4 Metrics-Aware Operational Semantics
Now we can present in more detail how we modify the oper-
ational semantics of the several languages in the Bedrock2
stack. One challenge is formulating source-level costs that
are as tight as possible while remaining accurate, in the face
of all compiler optimizations that we plan for.

4.1 Semantics of Expressions
Bedrock2 features a language of pure expressions, which is
simple enough that semantics can be deterministic and gen-
erally standard. They make a good opportunity to introduce
the main ideas of how we model metrics.
The baseline semantics includes a function evalexpr that

computes values of expressions. For instance:

evalexpr(𝑚, ℓ, literal 𝑣) = 𝑣

evalexpr(𝑚, ℓ [𝑥 ↦→ 𝑣], var𝑥) = 𝑣

190



Foundational Verification of Running-Time Bounds for Interactive Programs CPP ’26, January 12–13, 2026, Rennes, France

We extend evalexpr with metrics 𝜇 as an extra input and
output.

evalexpr(𝑚, ℓ, literal 𝑣, 𝜇) = (𝑣,𝐶lit (𝜇))
evalexpr(𝑚, ℓ [𝑥 ↦→ 𝑣], var𝑥, 𝜇) = (𝑣,𝐶get (𝜇))

Functions 𝐶lit and 𝐶get compute worst-case timing ef-
fects of all of the ways we anticipate their respective opera-
tions might be compiled. At the lower levels of the compiler
pipeline, the language semantics can determine the appropri-
ate value of the𝐶− cost functions directly, by simply writing
down the appropriate numbers based on the instructions
emitted. In order to enable metrics proofs about Bedrock2
source programs that transfer fully down to the RISC-V level,
we then propagate these costs up the compiler pipeline with
as tight of bounds as is possible in each compiler stage. This
flow leads to various peculiarities in the top-level definitions
for the Bedrock2 semantics.

For instance, the precise number of memory accesses for
a basic arithmetic operation at the Bedrock2 level depends
on whether the operands are already stored in registers. We
could simply assume no variables will be stored in registers
and give pessimal bounds on each use of a variable, but the
resulting bounds would be much looser than desired. Instead,
we do slightly better by establishing a naming convention on
Bedrock2-level variables. Specifically, any Bedrock2 variable
whose name is prefixed with reg_ is required to be placed
in a register by the register allocator, or else the register-
allocation compiler phase fails. This way, a Bedrock2-level
metrics proof can safely use the tighter bounds for these
variables, and the proof will correctly propagate down the
pipeline. This feature is actually quite reminiscent of the
register keyword from C standards before C++17, which
hinted (but did not require) that variables be allocated to reg-
isters, relatedly forbidding taking of their addresses (which
Bedrock2 simply does not support for any variable).
In order to implement this strategy in practice, the se-

mantics of all languages in the Bedrock2 stack are param-
eterized over a value isReg, which is a Boolean function
on variable names that determines whether they should be
considered to be “register variables.” At the Bedrock2 level,
we use isRegStr, which simply checks whether the (string)
name starts with reg_. Bedrock2 also includes an intermedi-
ate language FlatImp, where operators only accept variables
as arguments (instead of expressions). At that level, string
variable names are turned into integer variable names (by
the register allocator), and we use isRegZ, which checks
whether the integer is less than 32 (the ones that compile to
RISC-V registers).
Hence, we finally amend the evalexpr rule for variable

assignment:

evalexpr(𝑚, ℓ [𝑥 ↦→ 𝑣], var𝑥, 𝜇) = (𝑣,𝐶get (isReg, 𝑥, 𝜇))

4.2 Semantics of Commands
The approach above adapts quite directly to the omniseman-
tics of commands, where in a sense it picks up compatibility
with I/O-trace reasoning “for free.” For instance, here is one
of the two original loop rules and howwe adapt it for metrics.
(For simplicity, we only show the case where the loop condi-
tion is a variable, but in the implementation, expressions are
also allowed.)

eval-while-done
(𝑥, 0) ∈ ℓ 𝑄 (𝑚, ℓ, 𝜏)
(while𝑥 do 𝑐)/𝑚/ℓ/𝜏 ⇓𝑄

eval-while-done-metrics
(𝑥, 0) ∈ ℓ 𝑄 (𝑚, ℓ, 𝜏,𝐶while-done (isReg, 𝑥, 𝜇))

(while𝑥 do 𝑐)/𝑚/ℓ/𝜏/𝜇 ⇓𝑄

In addition to the isReg parameter, each language seman-
tics is also parameterized over a value phase (not shown ex-
plicitly above), representing the compiler phase to compute
metrics bounds with respect to. This mechanism is necessary
because in some cases, compiler phases can increase metrics
costs. In particular, the spilling phase adds a preamble and
postamble to every function body and function call.

Therefore, we currently pass a phase that is simply either
PreSpill or PostSpill. If the phase is PreSpill, then the
relevant cost functions in the semantics are artificially more
expensive, and the specification of a function call also has
added padding. In other words, to prove a metrics bound
on a high-level source program, the user must write a proof
with respect to a semantics where these operations take
longer than they “should.” Then, we arrange the compiler
pipeline so that phase changes exactly once, from PreSpill
to PostSpill exactly at the spilling phase.

4.3 Design Alternatives
One possibly more natural style one might imagine is to
attach metrics to the inference rules of the semantics itself,
since the semantics corresponds so closely to the execution of
a program. As an arbitrary example, it may be more intuitive
to write the branch rule reproduced here:

eval-if-true
evalexpr(𝑚, ℓ, 𝑒, 𝜇) = (𝑣, 𝜇′)

𝑣 ≠ 0 𝑐1/𝑚/ℓ/𝜏/𝐶if (𝜇′) ⇓𝑄
(if 𝑒 then 𝑐1 else 𝑐2)/𝑚/ℓ/𝜏/𝜇 ⇓𝑄

as instead an ordinary omni-big-step rule with a single met-
rics object threaded through, where for each operation and
inductive constructor, instead of taking a starting metrics
and giving an ending metrics, we simply return an upper
bound on how long that step took:

eval-if-true’
evalexpr(𝑚, ℓ, 𝑒) = (𝑣, 𝜇1) 𝑣 ≠ 0 𝑐1/𝑚/ℓ/𝜏 ⇓𝜇2 𝑄

(if 𝑒 then 𝑐1 else 𝑐2)/𝑚/ℓ/𝜏 ⇓𝐶if (𝜇1+𝜇2 ) 𝑄
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There are two reasons this approach is markedly less con-
venient. First, we can directly observe that in the eval-if-
true rule, the metrics modifications are made in series: first
𝜇 to 𝜇′, then 𝜇′ to 𝐶if (𝜇′), then 𝐶if (𝜇′) to the argument of
the postcondition. Conversely, in the eval-if-true’ rule,
the metrics modifications are made in parallel: 𝜇1 from the
expression evaluation and 𝜇2 from the recursive semantic
judgment are added together. In practice, when proving con-
crete programs, our style makes it easier to simplify large
metrics expressions via simple proof automation, as it places
opaque metrics objects at the bottoms of long right-leaning
expression trees (e.g. cost1 + (cost2 + · · · + (cost𝑛 + 𝜇) · · · )).
These expressions can be simplified naively by repeatedly
adding the first two literal costs, rather than needing to apply
commutativity or associativity correctly in order to move
literals next to each other.
The second advantage to our style is that it mirrors the

structure of the inductive proofs used internally in e.g. the
compiler-correctness proof. When proving a fact by struc-
tural induction on the evaluation judgment, our style au-
tomatically relates the metrics of the goal judgment with
precisely the desired starting point in the inductive hypothe-
ses. The precise meaning of this difference is more evident
in subsection 5.1.

4.4 Machine-Language Semantics
In contrast, the semantics that we inherit and extend for
RISC-V machine language follows a small-step style. How-
ever, it still uses omnisemantics to characterize nondetermin-
ism. The small-step relation steps to a set of possible next
states, dependent on how nondeterminismmight be resolved.
One example of a context where nondeterminism arises is
reading from a memory address that is mapped to a device,
where the device gets to choose what value is read. Com-
piler verification must bridge the gap from a higher-level
notion of external calls to lower-level interactions, where
one external call may actually become multiple accesses to
device-mapped addresses.

5 Verifying the Compiler
The Bedrock2 compiler consists of several compiler phases, in
each of which a “higher-level” input program 𝑝𝐻 is compiled
to a “lower-level” output program 𝑝𝐿 . Without consideration
of metrics, the statement of the correctness of a compiler
stage is relatively simple:(

𝑝𝐻/𝑚/ℓ/𝜏 ⇓𝑄
)
→ 𝑝𝐿/𝑚/ℓ/𝜏 ⇓𝑄

It is worth pausing to reflect on how this simplicity is
justified. We start from an arbitrary postcondition 𝑄 proven
for source program 𝑝𝐻 , deriving that the same postcondition
holds for the target program 𝑝𝐿 . (In general, the postcon-
dition must be composed with the right relation to model
change in state types across languages, but here we elide

that complexity, which is orthogonal to the challenges of tim-
ing bounds.) In general, 𝑄 may be an overapproximation of
reachable final states, but the metatheory of omnisemantics
establishes that it includes all truly reachable states. Thus, if
we simply instantiate 𝑄 as the set of source-level reachable
states, the conclusion guarantees that any possible final state
of 𝑝𝐿 matches one from running 𝑝𝐻 .

The version extended to consider metrics is:(
𝑝𝐻/𝑚/ℓ/𝜏/𝜇𝐻 ⇓𝑄

)
→ 𝑝𝐿/𝑚/ℓ/𝜏/𝜇𝐿 ⇓

{
(𝑚′, ℓ ′, 𝜏 ′, 𝜇′𝐿) | 𝑄 (𝑚′, ℓ ′, 𝜏 ′, 𝜇′𝐻 ),

𝜇′𝐿 − 𝜇𝐿 ≤ 𝜇′𝐻 − 𝜇𝐻
}

(Arithmetic and comparison operations on metric logs are
defined pointwise.) Such theorems still compose transitively
for phase sequences: if we perform a compilation phase from
𝑝𝐻 to 𝑝𝑀 followed by 𝑝𝑀 to 𝑝𝐿 , the predicate 𝑄 becomes

∃𝜇′𝑀 .
(
∃𝜇′𝐻 . 𝑄 (𝑚′, ℓ ′, 𝜏 ′, 𝜇′𝐻 ) ∧ 𝜇′𝑀 − 𝜇𝑀 ≤ 𝜇′𝐻 − 𝜇𝐻

)
∧ 𝜇′𝐿 − 𝜇𝐿 ≤ 𝜇′𝑀 − 𝜇𝑀

⇔ ∃𝜇′𝐻 , 𝜇′𝑀 . 𝑄 (𝑚′, ℓ ′, 𝜏 ′, 𝜇′𝐻 ) ∧ 𝜇′𝐿−𝜇𝐿 ≤ 𝜇′𝑀−𝜇𝑀 ≤ 𝜇′𝐻−𝜇𝐻
⇔ ∃𝜇′𝐻 . 𝑄 (𝑚′, ℓ ′, 𝜏 ′, 𝜇′𝐻 ) ∧ 𝜇′𝐿 − 𝜇𝐿 ≤ 𝜇′𝐻 − 𝜇𝐻 ,

where the equivalence holds in the forward direction because
we can arbitrarily choose e.g. 𝜇′

𝑀
= 𝜇′

𝐿
− 𝜇𝐿 + 𝜇𝑀 .

Importantly, the evaluation judgment ⇓ is a parameter of
the compiler stage and may have a different meaning on
either side of the implication. In particular, some evalua-
tion judgments for the same language (Bedrock2, FlatImp, or
RISC-V) are defined with differing cost semantics. This vari-
ation allows us to account for compiler phases that may in-
crease timing bounds, such as register spilling, without mak-
ing it necessary to modify the postcondition, as described
in subsubsection 5.2.4. Accounting for compiler phases that
decrease timing bounds, like inlining and dead-code elimi-
nation, is automatic, since we only deal with upper bounds.

5.1 Design Alternatives
Notably, the given version of the metrics statement is more
general and nicer to work with than this ostensibly simpler
formulation.(

𝑝𝐻/𝑚/ℓ/𝜏/𝜇 ⇓𝑄
)
→ 𝑝𝐿/𝑚/ℓ/𝜏/𝜇 ⇓ {(𝑚′, ℓ ′, 𝜏 ′, 𝜇′𝐿) |

(𝑚′, ℓ ′, 𝜏 ′, 𝜇′𝐻 ) ∈ 𝑄 ∧ 𝜇′𝐿 ≤ 𝜇′𝐻 }
The critical difference is that our formulation allows the

“starting metrics” of the high-level program and low-level
program to differ. In particular, this choice has the technical
advantage that we can prove such a statement directly by
structural induction on the omni-big-step judgment in the
hypothesis. Note that the shape of an induction proof on
the “simpler” form gives inductive hypotheses with the same
starting metrics as the original program, whereas what we
need to verify the compiler phase is for the ending metrics
in the inductive hypotheses to match the starting metrics of
the original program.
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5.2 Compiler Phases
We modified the proofs of all of the phases to add metrics
bounds in this style. Some changes to the compiler itself
were required in register allocation, but all other phases of
the compiler remain unchanged from the original Bedrock2
code base.
Recall that the Bedrock2 compiler uses an intermediate

language called FlatImp. FlatImp ASTs are parameterized by
a type for tracking binders: prior to register allocation, these
temporaries are strings corresponding to Bedrock2 variables;
in later phases, these are integer indices, where an index less
than 32 corresponds to one of the 32 architectural registers
of RISC-V, while an index greater than 32 identifies a stack
slot in the present function’s stack frame.

5.2.1 FlattenExpr phase. This phase flattens nested ex-
pressions to use assignments to new temporary variables. It
was the easiest proof to adapt, as something of a sanity check
for our correctness condition. Essentially, we chose the cost
functions for nested expressions to match up with the costs
introduced by new assignments for their subexpressions.

5.2.2 UseImmediate andDeadCodeElimphases. These
phases are exclusively compiler optimizations, so no interest-
ing innovations were needed. The only necessary changes
were to thread metrics through the existing correctness
proofs, verifying along the way that the metrics cannot in-
advertently increase. In other words, we prove that these
optimizations never make a program slower than specified
in the semantics, but these optimization-pass proofs do not
provide any guarantees about the desired effects of the opti-
mization (if any) for use in program-specific WCET proofs.
Such guarantees are desirable in principle, and we will now
discuss some optimizations for which we do achieve them.
(We expect that improving the proof of UseImmediate to do
the same would be feasible; the case of DeadCodeElim is less
clear.)

5.2.3 RegAlloc phase. The register-allocation phase of
the compiler is responsible for assigning the source-level vari-
ables of Bedrock2 to registers in a way that provides good
performance. Register allocation in Bedrock2 transforms the
binders from strings to integers, with integers below 32 corre-
sponding to registers and integers above 32 used as abstract
handles to stack slots. Importantly, the register-allocation
phase does not modify the FlatImp AST, apart from chang-
ing the string temporaries to explicit registers. Instead, the
emitted AST uses the same operations on registers and stack
slots. The spilling phase (next in the pipeline) is responsible
for emitting loads and stores for temporaries stored on the
stack.
Following prior work on verified compilers (e.g. Comp-

Cert [23]), the Bedrock2 register allocator uses translation

validation [28], in which the code that maps source tempo-
raries to RISC-V registers and stack slots is not itself verified
but instead has its output checked by a verified checker.

Modifications for metrics. Our chief modification to the
register-allocation phase is to update the register-allocation
procedure to attempt to respect source-level directives about
which temporaries should go in registers. As discussed in
section 4, we modified the Bedrock2 source language to
allow the programmer to annotate a source variable to say
that it should be placed in a register, which triggers lower
metric costs for operations on that variable. Currently, our
annotation scheme simply requires the source programmer
to prefix a variable’s namewith reg_ to indicate that it should
go in a register. Correspondingly, the definition of isRegStr
(subsection 4.1) simply checks for the presence of this prefix.

We modified the register-allocation algorithm to priori-
tize placing these register variables in RISC-V registers. The
register allocator does not guarantee that it will find such an
assignment; indeed, no such guarantee is possible since noth-
ing prevents the source programmer from defining a program
with more than 32 simultaneously live register variables.
Conversely, the register allocator may choose to place non-
register variables in registers, should they be available. Such
placements do not affect metrics bounds since the source
semantics provide only an upper bound on costs.

We further modified the verified checker to check that all
source register variables are indeed assigned to architectural
registers. With this modification, we were able to establish
preservation of metrics bounds in register allocation with
only straightforward, administrative modifications.

In none of our experiments so far did compilation fail due
to inability to place requested variables in registers. The task
is significantly easier for RISC-V, with 32 general-purpose
registers, than it would be for e.g. classic x86.

5.2.4 Spilling phase. Once register allocation is complete,
the spilling phase is responsible for inserting explicit load
and store instructions for stack variables, as required by
RISC-V’s addressing modes. Spilling also inserts moves to
copy the arguments and return values of function calls to and
from the registers designated for function arguments. The
prior Bedrock2 proof for spilling established an invariant
that after spilling, all temporaries that appear in the AST are
registers (i.e., have values less than 32).

Modifications for metrics. We did not modify the im-
plementation of the spilling phase, since no changes were
required to account for metrics bounds.

The correctness proof for spilling required somewhat sig-
nificant modifications to account for metrics. Since our cost
semantics are parameterized by isReg, we do not need spe-
cial machinery to reason about the extra costs of operations
on stack-allocated variables—in fact, the additional cost at
the source level is determined by the costs of the loads and
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stores added during spilling. It is thus relatively straight-
forward to add metrics proofs that account for the costs of
spilled vs. register operations.
On the other hand, the costs of moving arguments and

return values into and out of the function-argument registers
do not arise automatically from our register-aware cost se-
mantics. Instead, we must additionally parameterize the cost
semantics by whether spilling has occurred or not—we add
a flag phase which can be either PreSpill or PostSpill.
The PreSpill costs add a conservative upper bound to all
function calls to account for these moves.

5.2.5 FlatToRiscv phase. The final phase of the compiler,
FlatToRiscv, compiles FlatImp programs with all variables
in registers (FlatImp.stmt Z) to RISC-V instructions. The
post-spilling FlatImp AST, with all temporaries in registers,
is low-level enough that the translation to RISC-V is a simple
recursive traversal of the AST. The main complexities in
this pass come from handling the various addressing modes
and operand formats of RISC-V, and transforming FlatImp’s
structured control flow into jumps and conditional branches.
The proof for this pass in Bedrock2 is quite long and involved,
mostly due to conceptually uninteresting details relating to
control flow and data layouts.

Modifications for metrics. We did not modify the imple-
mentation of the FlatToRiscv phase. However, the correct-
ness proof did require modifications to add metrics bounds.
In particular, this phase ultimately determines the costs for
each FlatImp AST node, since those costs count RISC-V oper-
ations. Once we added these costs, the proofs required some
administrative modifications to solve the metrics goals. How-
ever, since a metric goal in this phase typically compares one
FlatImp AST node to a small number of RISC-V instructions,
these goals could typically be dispatched straightforwardly.

6 Source-Level Timing Proofs
6.1 Compatibility with Prior Proofs
One structural advantage of our framework is that source-
program proofs have complete freedom as to what extent
to employ it. Indeed, the metrics-instrumented proof frame-
work can be used for correctness proofs that do not say
anything about metrics at all. If the program specification
does not mention anything about metrics, then no metrics
proof obligations will be generated, and the proof will look
identical to a proof written without the framework.

As a result, the process of turning an existing correctness
proof into a proof-with-metrics is very streamlined. Nev-
ertheless, it is sometimes desirable for non-metrics proofs
to coexist in the same codebase, so that metrics develop-
ments can live side-by-side with unrelated endeavors that
do not need them. We therefore separate the program logic,
semantics, weakest-precondition predicate, and loop lemmas

Definition ipow := func! (x, e) ∼> ret {

ret = $1; while (e) {

if (e & $1) { ret = ret * x };

e = e >> $1; x = x * x } }.

Figure 2. Exponentiation by squaring

into separate modules, compatible with the rest of the code-
base. While this structure results in some code duplication
between the metrics and non-metrics versions of these mod-
ules, it allows timing proofs to live in the same code base
without affecting existing proofs.

Another side benefit of structuring the framework this
way is that correctness and timing proofs can often work off
of each other in tandem. As a simple example, proving that a
loop terminates and proving a time bound on a loop can reuse
the same machinery: the same decreasing measure used for
the termination proof can appear in the timing portion of the
loop invariant, since they are highly conceptually similar.

6.2 Proving Metric Bounds
Adding metrics to a fully straightline program proof is nearly
fully automated. The straightline tactic used for correct-
ness proofs will automatically carry metrics through purely
straightline code, thanks to the semantics structure described
in subsection 4.3. The only additional task for the program-
mer is to discharge the final metrics goal, which is trivial via
the automation described in subsection 6.3.
Adding metrics to slightly more complicated programs

is quite easy. For example, the sample program in Figure 2,
which raises an integer x to the e-th power by repeated squar-
ing, can be shown to have a time bound of some constant plus
another constant times the bit length of the exponent. The
difference between the correctness proof and the correctness-
plus-metrics proof is only switching the framework from
the non-metrics version to the metrics version, adding the
metrics bound in the specification, and 13 real lines of proof
code (plus one arithmetic lemma about bit length).

By way of example, we show two modifications of specifi-
cations to existing programs that add time bounds. First we
again look at integer power, whose specifications without
and with time bounds are given in Figure 3. This program is
simple enough that we prove the tightest possible bounds
that can be proved in the framework. The time bound is
given in terms of the bit length of the input, which is one
off from its base-2 logarithm. The specification itself sim-
ply adds a clause to the postcondition, describing an upper
bound on how much the metrics log could have changed.
The second example comes from the much larger-scale

proof of concept described in detail in subsection 6.4. The
specific example in Figure 4 comes from a function in the
lowest-level driver. It performs a basic write operation by
first busylooping until an I/O device is ready. Each query to
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(* spec without metrics *)

#[export] Instance spec_of_ipow : spec_of "ipow" :=

fnspec! "ipow" x e ∼> v,

{ requires t m mc := True;

ensures t' m' mc' :=

unsigned v = unsigned x ^ unsigned e mod 2^64 }.

(* definitions for metrics *)

Definition initCost := {| instructions := 12;

stores := 2; loads := 13; jumps := 0 |}.

Definition iterCost := {| instructions := 76;

stores := 16; loads := 98; jumps := 2 |}.

Definition endCost := {| instructions := 6;

stores := 1; loads := 9; jumps := 1 |}.

Definition bitlength z

:= match z with Zpos _⇒ Z.log2 z + 1 | _⇒ 0 end.

(* spec with metrics *)

#[export] Instance spec_of_ipow : spec_of "ipow" :=

fnspec! "ipow" x e ∼> v,

{ requires t m mc := True;

ensures t' m' mc' :=

unsigned v = unsigned x ^ unsigned e mod 2^64 ∧
(mc' - mc <= initCost + bitlength (unsigned e)

* iterCost + endCost)%metricsH }.

Figure 3. Comparison of the specification of exponentiation
by squaring with and without metrics

the devices leaves an entry in the I/O trace; therefore, the
specification can be written in terms of the length of the trace
to account for the amount of time spent looping. In particular,
our metrics specification here is a constant bound for the
non-loop portion of the function plus a multiplicative bound
with respect to the length of the (high-level abstracted) trace.

6.3 Proof Automation
We have developed a moderately large array of tactics to
streamline the process of discharging metrics goals.

At the lowest level, the tactics that operate directly on met-
ric logs – namely, unfold_MetricLog and simpl_MetricLog
– culminate in solve_MetricLog, where after the metric log
objects are sufficiently unpacked, we simply apply the linear-
arithmetic solver lia to solve the resulting systems of linear
inequalities automatically. Note that this approach does not
eliminate manual proof effort entirely, as not all bounds are
linear; but it does save substantial effort in the final steps,
which tend to be the uninteresting ones. Not only is the
programmer freed from spelling out arguments that are not
illuminating, but an amusing method of confirming tightness
of bounds is enabled: keep tweaking the specification with
tighter and tighter bounds until automated proof no longer

succeeds. (The failure does manifest in a way that is helpful
for understanding why it occurs, focusing in on one formula
of linear arithmetic that could not be proved.)

Over the course of a program proof, a metrics object will
often accumulate a long chain of addition operations, since
each straightline command adds on to the previous met-
rics. Conveniently, these are highly linear and nonbranching
chains, as explained in subsection 4.3. We can therefore em-
ploy a tactic flatten_MetricLog, which turns these long
chains of additions into a single one, combining all constants.
At a higher level, we also have several tactics that deal

with the cost functions denoted 𝐶− in this paper. Notably,
these functions are often deeply nested as a result of the
aforementioned long chains of additions, and internal details
related to the Rocq kernel cause severe performance issues at
Qed-time when they are unfolded naively. We therefore pro-
vide a carefully crafted cost_unfold tactic, which performs
these unfolds in a manner that placates the kernel.

6.4 Full-Stack Verification of Responsiveness
We equipped the Bedrock2 lightbulb-controller [13] software
stack with concrete bounds on the computation required to
handle a command: about 10 million instructions, plus retry-
ing accesses to peripheral devices when they are busy. This
bound is rather loose due to adding up the maximum cost
of each language construct without regard for context, but
even so it is tight enough to satisfy the exercise of verify-
ing an application-relevant latency bound (specifically, the
40ms latency implied by reasonable assumptions about the
peripherals, bus hierarchy, and instructions-per-cycle of the
Rocket-derived [3] FE310 microcontroller is still faster than
the mechanical response times of the electromechanical re-
lay and the lightbulb it controls). We will now describe the
components of the software stack, the specifications that
budget their contribution to the overall execution time, the
system-level specification, and the integration proof.
The Bedrock2 lightbulb system is intended to serve as

a stand-in for control systems of industrial appliances de-
signed for simplicity and reliability. A single processor core
performs input and output using peripheral-control registers
mapped at fixed locations in the address space. Interrupts
are disabled; instead a top-level event loop poll peripherals
when waiting for input. As Bedrock2 C semantics only sup-
port programs that always terminate, this top-level loop is
written in machine code. The body of the loop and the ini-
tialization code that runs before it are written in Bedrock2 C,
and the machine code generated by the Bedrock2 compiler
relies on invariants set up and maintained by the assembly
wrapper. The source code falls into three broad categories:
chip-peripheral drivers, the Ethernet driver, and lightbulb-
specific logic for handling network packets. All three are
relevant to the worst-case running-time bound, all three
perform I/O, the first two contain loops, and the last two
manipulate variable-size data in memory.
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(* function definition *)

Definition spi_write := func! (b) ∼> busy {

busy = $-1; i = $patience; while i { i = i - $1;

io! busy = MMIOREAD($0x10024048); if !(busy >> $31) { i = i^i } };

if !(busy >> $31) { output! MMIOWRITE($0x10024048, b); busy = (busy ^ busy) } }.

(* spec without metrics *)

Global Instance spec_of_spi_write : spec_of "spi_write" := fun functions⇒
forall t m b mc, word.unsigned b < 2 ^ 8→
MetricWeakestPrecondition.call functions "spi_write" t m [b] mc (fun T M RETS MC⇒

M = m ∧ exists iol, T = t ;++ iol ∧ exists ioh, mmio_trace_abstraction_relation ioh iol

∧ exists err, RETS = [err] ∧
((word.unsigned err <> 0 ∧ lightbulb_spec.spi_write_full _ ^* ioh ∧ Z.of_nat (length ioh) = patience) ∨
(word.unsigned err = 0 ∧ lightbulb_spec.spi_write word (byte.of_Z (word.unsigned b)) ioh)).

(* definitions for metrics *)

Definition mc_spi_write_const := mkMetricLog 348 227 381 204.

Definition mc_spi_mul := mkMetricLog 157 109 169 102.

(* spec with metrics *)

Global Instance spec_of_spi_write : spec_of "spi_write" := fun functions⇒
forall t m b mc, word.unsigned b < 2 ^ 8→
MetricWeakestPrecondition.call functions "spi_write" t m [b] mc (fun T M RETS MC⇒

M = m ∧ exists iol, T = t ;++ iol ∧ exists ioh, mmio_trace_abstraction_relation ioh iol

∧ exists err, RETS = [err] ∧
((word.unsigned err <> 0 ∧ lightbulb_spec.spi_write_full _ ^* ioh ∧ Z.of_nat (length ioh) = patience) ∨
(word.unsigned err = 0 ∧ lightbulb_spec.spi_write word (byte.of_Z (word.unsigned b)) ioh ∧

(MC - mc <= mc_spi_write_const + Z.of_nat (length ioh) * mc_spi_mul)%metricsH).

Figure 4. SPI write example

6.4.1 System Specification. For handling each request,
the specification proven in past work covers the reading of
the packet from the network controller, computing on its
content to figure out the appropriate response, and enact-
ing it. This sequence of events is naturally captured as a
regular-expression-like predicate 𝑃 on MMIO traces. Our ad-
dition is to bound the worst-case metric cost associated with
producing these events (modulo polling). However, with-
out metrics, the system-level theorem has been stated as an
invariant that each state individually must satisfy: the I/O
trace is always (a prefix of) some number of repetitions of
handling a request, 𝑃 ′ ++ 𝑃∗. An invariant relating metrics to
I/O can be meaningful as a worst-case cost specification, but
it would capture amortized costs: e.g., any 𝑛 requests can be
processed in 𝑘 · 𝑛 instructions. As the use case our system
is a stand-in for may not be able to tolerate every millionth
request taking a million times longer than usual, we present
the system-level specification in a different format.

Intuitively, we want to say that, if the system is just about
to receive a request and has already accumulated I/O trace 𝑡
and metrics 𝜇, it shall proceed until it has a trace Δ𝑡 ++ 𝑡 (our
actual implementation extends traces at the beginning rather

than the end, to line up better with standard list operations)
such that Δ𝑡 satisfies the trace predicate for handling at that
request, andmetrics 𝜇′ at that point must satisfy 𝜇′−𝜇 ≤ 𝐶req.
A quantifier-free invariant could reference either 𝜇 or 𝜇′
but not both. The standard trick of existentially quantifying
the future state (creating an invariant that says that the
system will reach a good state soon enough) is also not
straightforwardly applicable because 𝑃 specifies an entire
request-action interaction and would not accept a proper
suffix of it. Considering the suffix-completion of 𝑃 instead
would unfortunately weaken the worst-case-cost aspect of
the specification to guarantee only the ability to complete
some suffix of 𝑃 in time.

Lacking a straightforwardly applicable general framework,
we instead formalize the bounded-cost-reactive behavior of
the system as an ad-hoc transition system in the style of
linear temporal logic. Handling one entire request forms (by
executing many instructions) one transition of the specifica-
tion, and we assert that it is an invariant always throughout
these steps that the next step will complete with acceptable
cost. To accommodate start-up code for which we have not
proven worst-case bounds, we wrap that entire specification
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in the eventually operator: eventually the system will boot
up and then handle each successive request as fast as speci-
fied. The last notion is captured using an omni-small-step
combinator defined in terms of always and eventually:

Definition successively (R : State→ State→ Prop)

: State→ Prop := always (fun s post⇒ eventually step

(fun s'⇒ R s s' ∧ post s') s) (fun _⇒ True).

For the per-step specification 𝑅, we use the metric-adapted
version of the specification of the body of the event-handler
loop from the original case study, minus information about
local variables. It is called handle_request_spec and shown
in Figure 5. It relies on the loop_cost definition that speci-
fies how long execution of one loop iteration may take at
most, expressed as a function of the packet length and the
I/O interaction trace length. The latter argument is needed
because in the protocol used to talk to the network-interface
card, reading each byte of the network packet has to start by
polling the SPI peripheral to know whether it has received
the next byte from the network card, and we do not know (or
make any assumptions about) how long the response takes.
Instead, we simply allow our implementation to spend an
execution cost of mc_spi_mul per I/O interaction that was
necessary to read the packet. The number of instructions pre-
sented at the beginning of subsection 6.4 was computed by
evaluating the loop_cost definition for the largest supported
packet length (and a 0 trace_length).

The conclusion of the final end-to-end theorem we proved
is formalized as a straightforward combination of successively
and handle_request_spec and preceded by eventually to ac-
count for the fact that we did not prove bounds for the bring-
up code. It is shown at the bottom of Figure 5. This theorem
also assumes bring-up-related and administrative properties
about initial_state, similarly to its metrics-free counter-
part in Erbsen et al. [13].

6.4.2 Component Specifications. The compiler specifi-
cation is adapted as in section 5, and the specification of
the machine-code loop is adapted similarly to specifications
of looping constructs generated by the compiler. Specifi-
cations of Bedrock2 C functions are adapted as discussed
in section 6. After some experimentation with specifying the
SPI-peripheral driver (see Figure 4), the same specification
pattern was applied uniformly throughout the case study.
We found the costs of some subroutines to be best char-

acterized in terms of the runtime input they receive. For
example, reading a packet from the network card takes time
proportional to the packet length. However, as we sought
to establish true worst-case bounds, we also included the
maximum range of that variation in the specification of the
function: Thus, the postcondition of the Ethernet receive
function which returns the number of bytes_written:

exists recv buf, m =* bytes p_addr recv *

bytes (word.add p_addr bytes_written) buf * R ∧

lan9250_recv _ recv ioh ∧
word.unsigned bytes_written + length buf = 1520 ∧
length recv = word.unsigned bytes_written ∧
mc' - mc <= (55+7*bytes_written)*spi_xchg_const +

(length ioh)*spi_poll-cost

6.4.3 Proof Techniques and Proof Reuse. We use the
following proof rule (coinduction principle) to establish suc-
cessive completion of requests:

forall R s invariant, invariant s→
(forall s, invariant s→ eventually step (fun s'⇒

R s s' ∧ invariant s') s)→ successively R s.

To instantiate this proof rule, we reuse the memory- and
local-state invariant from the non-metrics-equipped light-
bulb case study (removing the trace-related part that is now
handled separately). Even though we completely changed
the meaning of the top-level specification of the event loop,
we were able to reuse the low-level invariant and the proof
scripts that drive the symbolic execution of that machine
code almost entirely, only making nontrivial changes in the
final proof of the (new) postcondition.

Either way, the key step is instantiating eventually step

with the low-level execution judgement in the postcondition
of the compiler-correctness theorem.

These system-theorem changes were devised, formalized,
debugged, and provedwithin two person-days ofwork, chang-
ing about 1000 lines of code. Even though the introduction
of metric bounds did require a shift of perspective, the spec-
ification style we chose for conveniently including metric
bounds is well within the design space that would be on
the table without considering metrics, and our new system-
spec-level proofs are about half the size of the previous ones.
Anecdotally, the main challenges in adapting the proofs were
similar to those of legacy-software engineering in nature
and can be attributed to adapting somebody else’s code from
years ago, rather than the change itself. Thus, it seems that
adding worst-case bounds on cost metrics to a whole-system
theorem is not particularly costly.

7 Related Work
To our knowledge, no past project has supported running-
time specifications that may depend on details of I/O in-
teraction with the outside world, not just on sizes of data
structures passed as inputs to functions. However, some of
the other relatively unusual benefits of our approach are also
found in past work, as we now survey.

There has been plenty of work on static analysis to bound
running time of programs, for instance on type systems
for functional programs with effective inference of linear
space [21] and then polynomial time [20] bounds. The results
have been extended and applied to languages as complex as
OCaml [19] and to complications like programs that adapt
incrementally to changes in their inputs [7, 8]. Such ideas
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Definition loop_cost(packet_length trace_length: Z): RiscvMetrics := (60 + 7*packet_length) * mc_spi_xchg_const +

lightbulb_handle_cost + trace_length * mc_spi_mul + loop_compilation_overhead.

Definition handle_request_spec (t t': trace) (mc mc': RiscvMetrics) :=

exists dt, t' = dt ++ t ∧ exists ioh, metric_SPI.mmio_trace_abstraction_relation ioh dt ∧ (

(* Case 1: Received packet with valid command: *)

(exists packet cmd, (lan9250_recv packet +++ gpio_set 23 cmd) ioh ∧
lightbulb_packet_rep cmd packet ∧ (mc' - mc <= loop_cost (length packet) (length ioh))) ∨

(* Case 2: Received invalid packet: *)

(exists packet, (lan9250_recv packet) ioh ∧
not (exists cmd, lightbulb_packet_rep cmd packet) ∧ (mc'-mc <= loop_cost (length packet) (length ioh))) ∨

(* Case 3: Polled, but no new packet was available: *)

(lan9250_recv_no_packet ioh ∧ mc' - mc <= loop_cost 0 (length ioh)) ∨
(* Case 4: Received too-long packet *)

lan9250_recv_packet_too_long ioh ∨
(* Case 5: SPI protocol timeout *)

(TracePredicate.any +++ spi_timeout) ioh).

Theorem metric_lightbulb_correct: forall (initial : MetricRiscvMachine) R,

valid_machine initial→ getLog initial = []→ regs_initialized.regs_initialized (getRegs initial)→
getNextPc initial = word.add (getPc initial) (word.of_Z 4)→ getPc initial = code_start ml→
(program RV32IM (code_start ml) (fst (fst out)) * R *

LowerPipeline.mem_available (heap_start ml) (heap_pastend ml) *

LowerPipeline.mem_available (stack_start ml) (stack_pastend ml))%sep (getMem initial)→
subset (footpr (program RV32IM (code_start ml) (fst (fst out)))) (of_list (getXAddrs initial))→
eventually riscv.run1 (successively riscv.run1 (fun s s' : MetricRiscvMachine⇒

handle_request_spec (getLog s) (getLog s') (getMetrics s) (getMetrics s'))) initial.

Figure 5. End-to-end theorem and its two most important supporting definitions

have been combined with advanced type-system features
like refinement types to infer time bounds for classic data-
structure operations [30]. Verified time-preserving compila-
tion to lower-level languages complements these projects,
and the past work we have mentioned also rarely tackles
functional-correctness verification as well, though some im-
portant program properties intertwine functional and tim-
ing requirements, as we support in our program-logic-style
proofs.

A notable freestanding tool for pushing time bounds through
compilation is from Bonenfant et al. [6], translating the func-
tional source language Hume to assembly. Using an empiri-
cally validated model of costs of low-level instructions, they
automatically produce bounds that make sense at the source
level but are accurate about compiled code.

The earliest work on proof-carrying code in the literature
already considered certification of running-time bounds [26],
via instrumented semantics of incrementing counters, not
too different from our own new operational semantics. How-
ever, no certifying compiler was presented that can pro-
duce the required assembly-level proof annotations from
annotated source programs. Crary and Weirich [11] added
that ingredient, though targeting a typed assembly language

rather than annotations to drive Hoare logic-style proofs.
They support rich timing specifications tied to data-structure
invariants but still no connection to I/O histories. Further-
more, this tradition of certifying compilers retains its usual
tradeoffs compared to compiler verification as in our work:
building a certifying compiler can be easier than verifying a
compiler, but there is always the risk of lurking completeness
bugs, where a compiler run produces an invalid certificate.
None of the results just summarized are foundational, in

the sense of leading to proofs in a minimal, general-purpose
logic (as underlie proof assistants). However, a notable exam-
ple to the contrary is a verified worst-case-execution-time
(WCET) analysis for CompCert [25]. Their analysis statically
infers loop bounds on programs in an intermediate language
and bounds time by combining that information with costs of
basic blocks computed by further static analysis on assembly
code. The whole analysis pipeline is automatic, a significant
attraction. However, analysis bounds are only constant inte-
gers, not even able to depend on input data-structure sizes,
let alone I/O interactions.
Another worst-case-execution time project with founda-

tional guarantees is RefinedProsa [5]. However, its proofs
end at the C level and do not reason about the C compiler.
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Instead, it splits the C code into basic actions, assumes that a
worst-case-execution time for each of them exists, and makes
those bounds a parameter of the verification. In a sense, this
approach is similar to ours, but at a different level: Our basic
actions are assembly instructions, loads, stores, and jumps,
whereas theirs are snippets of C code.

The Certified Complexity (CerCo) project [1, 4] specifies
the costs of instructions by instrumenting the source code
with code that increases instruction counters, whereas in our
approach, we instrument the semantics. The instrumented
source code is then verified with Frama-C [12]. The compiler
obtains the execution cost of each basic block by looking at
the concrete machine code that it generated. Thus, proof of
bounds for specific source programs relies on timing infor-
mation ported back from compilation results. The compiler
pipeline, including generation of instrumentation code, is
fully verified in proof assistants, but analysis of source pro-
grams is done with non-foundational tools, whereas our own
pipeline produces end-to-end Rocq proofs from relational
specifications (which may combine functional and timing
requirements) to operational semantics of machine code.
The CakeML project [22] centers on a HOL4 verification

of a compiler from an ML-family functional language. Its
verification has been extended to end-to-end results about
compiled code running on verified hardware [24]. Most rele-
vantly, the results have been extended to include bounds on
space usage [15, 16], though it does not seem time bounds
have been incorporated yet. The CertiCoq project [27] has
covered preservation of both time and space in the presence
of garbage collection, specifically for a closure-conversion
optimization. One challenge these projects tackle that we
avoid (through the usual coding conventions of embedded
systems) is predicting the behavior of a garbage collector.

Probablymost closely related to ourwork is that of Haslbeck
and Lammich [18] extending the Isabelle Refinement Frame-
work. One relatively shallow difference is that their mecha-
nized proofs (in Isabelle/HOL) bottom out in LLVMprograms,
not machine code, though we did face additional challenges
in spanning that gap, for instance related to the time conse-
quences of compiler-introduced spilling. This work is notable
in being the only prior one we are aware of that involves
reasoning about nondeterminism. However, the style of non-
determinism was more oriented toward program derivation
by stepwise refinement, for instance in postponing decisions
on which specific data structures to choose, among those
satisfying high-level specifications. In other words, they han-
dled internal nondeterminism that gives developers flexibil-
ity in planning out programs, while we also handle external
nondeterminism from I/O interactions and demonstrate new
patterns for effective specification-writing in that setting. A
satisfying proof innovation in their work, which we might
benefit from adopting, is the idea of abstract currencies of
different metrics to collect during execution, where it is pos-
sible to “exchange” more abstract measurements for more

concrete ones, for instance first to measure how many times
each LLVM instruction is executed and then substitute upper
bounds for time taken to run the compiled versions.

8 Future Work
While this framework for time bounds on interactive pro-
grams is already usable in practice, plenty of opportunities
remain for further research. The most immediate direction is
to tighten bounds. In particular, there are at present several
places where our framework makes more conservative esti-
mates than it could, as for function calls and nested expres-
sions. An orthogonal direction that could also be interesting
is to allow the framework also to prove lower bounds on
programs, as alluded to in section 3.
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