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Omnisemantics: Smooth Handling of Nondeterminism
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This article gives an in-depth presentation of the omni-big-step and omni-small-step styles of semantic judg-
ments. These styles describe operational semantics by relating starting states to sets of outcomes rather than
to individual outcomes. A single derivation of these semantics for a particular starting state and program
describes all possible nondeterministic executions (hence the name omni), whereas in traditional small-step
and big-step semantics, each derivation only talks about one single execution. This restructuring allows for
straightforward modeling of both nondeterminism and undefined behavior as commonly encountered in se-
quential functional and imperative programs. Specifically, omnisemantics inherently assert safety (i.e., they
guarantee that none of the execution branches gets stuck), while traditional semantics need either a separate
judgment or additional error markers to specify safety in the presence of nondeterminism.

Omnisemantics can be understood as an inductively defined weakest-precondition semantics (or more gen-
erally, predicate-transformer semantics) that does not involve invariants for loops and recursion but instead
uses unrolling rules like in traditional small-step and big-step semantics. Omnisemantics were previously
described in association with several projects, but we believe the technique has been underappreciated and
deserves a well-motivated, extensive, and pedagogical presentation of its benefits. We also explore several
novel aspects associated with these semantics, in particular, their use in type-safety proofs for lambda cal-
culi, partial-correctness reasoning, and forward proofs of compiler correctness for terminating but potentially
nondeterministic programs being compiled to nondeterministic target languages. All results in this article are
formalized in Coq.
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1 INTRODUCTION

Today, a typical project in rigorous reasoning about programming languages begins with an op-
erational semantics (or maybe several), with proofs of key lemmas proceeding by induction on
derivations of the semantics judgment. An extensive toolbox has been built up for formulating
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5:2 A. Charguéraud et al.

these relations, with common wisdom on the style to choose for each situation. With decades hav-
ing passed since operational semantics became the standard technique in the 1980s, one might
expect that the base of wisdom is sufficient. Yet, a style that we call omnisemantics has emerged in
recent years as a new, powerful technique with numerous applications.

In short, omnisemantics relate starting states to their sets of possible outcomes, rather than to
individual outcomes. The omni-big-step judgment takes the form t/s ⇓ Q and asserts that every
possible evaluation starting from the configuration t/s reaches a final configuration that belongs
to the set Q . This set Q is isomorphic to a postcondition from a Hoare triple. The omni-small-step
judgment takes the form t/s −→ P . It asserts both that the configuration t/s can take one reduction
step and that, for any step it might take, the resulting configuration belongs to the set P . On top
of this judgment, one may define the eventually judgment t/s −→♦ P , which asserts that every
possible evaluation of t/s is safe and eventually reaches a configuration in the set P .

On the one hand, omnisemantics can be viewed as operational semantics, because they are
not far from traditional operational semantics or executable interpreters. On the other hand,
omnisemantics can be viewed as axiomatic semantics, because they are not far form reasoning
rules; in particular, they directly give a practical, usable definition of a weakest-precondition
judgment, which can be used for verifying concrete programs. The fact that they are both
closely related to operational semantics and to axiomatic semantics is precisely the strength of
omnisemantics.

To the best of our knowledge, the ideas of omnisemantics have been studied prior to the writ-
ing of this article by three different groups of researchers. First, Schäfer et al. [2016] present an
omni-big-step judgment for a nondeterministic source language of guarded commands, as well as
for a deterministic target language with named continuations, using the term axiomatic semantics

to refer to this style of semantics. They establish the correctness of a function that compiles ter-
minating programs from the source language into the target language. Their proof is by induction
on the derivation of an omni-big-step judgment for the source program rather than on a deriva-
tion for the target program, a key insight that we will discuss in Sections 1.3 and 6. They also
present characterizations of program equivalence and present a proof of equivalence with tradi-
tional small-step semantics, though only in the case of a deterministic semantics. Second, Erbsen
et al. [2021] make use of both omni-big-step semantics, applied to a high-level, core imperative lan-
guage with external calls, and omni-small-step semantics, applied to a low-level, RISC-V machine
language. They call this style of semantics CPS semantics. They establish end-to-end compiler-
correctness results for terminating programs. They also set up Separation Logic reasoning rules in
weakest-precondition style. Third, Charguéraud’s [2020] course notes make use of omni-big-step
semantics for the purpose of deriving Separation Logic triples, for both partial and total correctness.
The language considered is a nondeterministic, imperative λ-calculus, with a substitution-based
semantics. In particular, that work establishes the relationship between omni-big-step semantics
and traditional big-step semantics, in the presence of nondeterminism.

Throughout the three pieces of work, the fundamental feature of omnisemantics being exploited
is the ability to carry out proofs by induction on derivations that follow the flow of program
execution, with smooth handling of nondeterminism. Indeed, nondeterministic choices result in
universally quantified induction hypotheses at steps where nondeterministic choices are made.
Before further presenting omnisemantics, we believe that it is useful to begin by presenting in
more detail the several important problems that omnisemantics solve.

1.1 Feature #1: Stuck Terms and Nondeterminism

In an impure language, an execution may get stuck, for instance, due to a division by zero or an
out-of-bounds array access. In a nondeterministic language, some executions may get stuck while
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Omnisemantics: Smooth Handling of Nondeterminism 5:3

others do not. Thus, for an impure, nondeterministic language, the existence of a traditional big-
step derivation for a starting configuration is not a proof that getting stuck is impossible.

How to fix the problem? A popular but cumbersome approach is to add errors as explicit out-
comes (written err in the rules below), so that we can state theorems ruling out stuck terms. For
example, if the semantics of an impure functional language includes the rule big-let, it needs to
be augmented with two additional rules for propagating errors: big-let-err-1 and big-let-err-2.

t1/s ⇓ v1/s
′ ([v1/x] t2)/s

′ ⇓ v/s ′′

(letx = t1 in t2)/s ⇓ v/s ′′
big-let

t1/s ⇓ err

(letx = t1 in t2)/s ⇓ err
big-let-err-1

t1/s ⇓ v1/s
′ ([v1/x] t2)/s

′ ⇓ err

(letx = t1 in t2)/s ⇓ err
big-let-err-2

The set of inference rules grows significantly, and the very type signature of the relation is
complicated. Omni-big-step semantics provide a way to reason, in big-step style, about the absence
of stuck terms in nondeterministic languages without introducing error-propagation rules.

1.2 Feature #2: Termination and Nondeterminism

In a nondeterministic language, a total-correctness Hoare triple, written total{H } t {Q}, asserts
that in any state satisfying the preconditionH , any execution of the term t terminates and reaches
a final state satisfying the postcondition Q . In foundational approaches, Hoare triples must be
defined in terms of or otherwise formally related to the operational semantics of languages.

When the (nondeterministic) semantics is expressed using the standard small-step relation,
there are two classical approaches to defining total-correctness Hoare triples. The first one in-
volves bounding the length of the execution. This approach not only involves tedious manipula-
tion of integer bounds but also is restricted to finitely branching forms of nondeterminism. The
second approach is to define total correctness as the conjunction of a partial-correctness property
(if t terminates, then it satisfies the postcondition) and of a separate, inductively defined termi-
nation judgment. With both of these approaches, deriving reasoning rules for total-correctness
Hoare triples becomes much more tedious than in the case of partial correctness.

One may hope for simpler proofs using a big-step judgment. Indeed, Hoare triples inherently
have a big-step flavor. Moreover, for deterministic, sequential languages, the most direct way to
derive reasoning rules for Hoare triples is from the big-step evaluation rules. Yet, when the seman-
tics of a nondeterministic language is expressed using a traditional big-step judgment, we do not
know of any direct way to capture the fact that all executions terminate. Omni-big-step seman-
tics provide a direct definition of total-correctness Hoare triples with respect to a big-step-style,
nondeterministic semantics, in a way that leads to simple proofs of the Hoare-logic rules.

1.3 Feature #3: Simulation Arguments with Nondeterminism and Undefined Behavior

Many compiler transformations map source programs to target programs that require more steps
to accomplish the same work, because they must make do with lower-level primitives. Intuitively,
we like to think of a compiler transformation being correct in terms of forward simulation: the
transformation maps each step from the source program to a number of steps in the target program.
Yet, in the context of a nondeterministic language, such a result is famously insufficient even in
the special case of safely terminating programs. Concretely, compiler correctness requires showing
that all possible behaviors of the target program correspond to possible behaviors of the source
program. A tempting approach is to establish a backward simulation, by showing that any step in
the target program can be matched by some number of steps in the source program. The trouble
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5:4 A. Charguéraud et al.

is that all intermediate target-level states during a single source-level step need to be related to a
source-level state, severely complicating the simulation relation.

To avoid that hassle, most compilation phases from CompCert [Leroy 2009] are carried out on
deterministic intermediate languages, for which forward simulation implies backward simulation.
Yet, many realistic languages (C included) are not naturally seen as deterministic. CompCert in-
volves special effort to maintain determinism, through its celebrated memory model [Blazy and
Leroy 2009]. Rather than revealing pointers as integers, CompCert semantics allocate pointers de-
terministically, taking care to trigger undefined behavior for any coding pattern that would be
sensitive to the literal values of pointers. As a result, any compiler transformations that modify
allocation order require the complex machinery of memory injections, to connect executions that
use different deterministic pointer values. Omnisemantics make it possible to retain the simplicity
of forward simulation, while keeping nondeterminism explicit.

1.4 Feature #4: Linear-Size Type-Safety Proofs

Type safety asserts that if a closed term is well typed, then none of its possible evaluations get
stuck. A type-safety proof in the syntactic style [Wright and Felleisen 1994] reduces to a pair of
lemmas: preservation and progress.

preservation: E � t : T ∧ t −→ t ′ ⇒ E � t ′ : T
progress: ∅ � t : T ⇒ (isvalue t) ∨ (∃t ′. t −→ t ′)

The Wright and Felleisen approach, although widely used, suffers from two limitations that can
be problematic at the scale of real-world languages with hundreds of syntactic constructs.

The first limitation is that this approach requires performing two inductions over the typing
judgment. Nontrivial language constructs are associated with nontrivial statements of their in-
duction hypotheses, for which the same manual work needs to be performed twice, once in the
preservation proof and once in the progress proof. Factoring out the cases makes a huge difference
in terms of proof effort and maintainability.

The second limitation is associated with the case inspection involved in the preservation proof.
Concretely, for each possible rule that derives the typing judgment (E � t : T ), one needs to select
the applicable rules that can derive the reduction rule (t −→ t ′) for that same term t . Typically,
only a few reduction rules are applicable. The trouble is that fully rigorous checking of the proof
must still inspect all of those cases to confirm their irrelevance. A direct Coq proof, of the form
“induction H1; inversion H2”, results in a proof term of size quadratic in the size of the lan-
guage.1As we expect to handle each possible transition at most once, a proof that takes only linear
work would be more satisfying. It would also avoid potential blow-up in the proof-checking time
for languages involving hundreds of constructs.

Interestingly, in the particular case of a deterministic language, there exists a strategy [Rompf
and Amin 2016] for deriving type safety through a single inductive proof, which moreover avoids
the quadratic case inspection. The key idea is to carry out an induction over the following state-
ment: a well-typed term either is a value or can step to a term that admits the same type.

∅ � t : T ⇒
(
isvalue t

)
∨

(∃t ′. (t −→ t ′) ∧ (∅ � t ′ : T )
)

Omnisemantics allow to generalize this approach to the case of nondeterministic languages. As we
show in one of this article’s original contributions, practical proofs of type safety can be carried
out with respect to both omni-small-step and omni-big-step semantics.

1Lean matches Coq, and a proof based on Agda’s flexible dependent pattern matching still takes superlinear time to check.
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1.5 Contributions and Contents of the Article

The contributions of this article are as follows:

• We present big-step and small-step omnisemantics for a standard imperative λ-calculus as
well as for a standard imperative while language, which we believe should make the presen-
tation more accessible than in prior publications. Moreover, we accompany this presentation
with a Coq formalization of all definitions and proofs.2

• We explain four key beneficial features of omnisemantics: They provide a convenient way to
reason about the absence of stuck terms (feature #1) and the absence of diverging terms (fea-
ture #2) in nondeterministic languages, they enable forward-simulation-based correctness
proofs for compilers with nondeterministic target languages (feature #3), and they enable
type-safety proofs that avoid quadratic case inspection even in the case of a nondeterminis-
tic language (feature #4).

• We introduce the coinductive variant of omni-big-step semantics, which yields a partial-
correctness judgment. This possibility was left as future work by Schäfer et al. [2016].

• We present numerous properties of omnisemantics, as well as their relationship to tradi-
tional operational semantics. Some of these properties were described in Erbsen et al. [2021]
but only briefly. For example, the connection between traditional and omnisemantics only
covered traditional small-step semantics with no undefined behavior, and small-step omnise-
mantics themselves were given one paragraph of description.

• We present in detail the proof techniques from two case studies on compiler-correctness
results, adapted from Erbsen et al.’s [2021] prior work.

• We present a new case study illustrating an example of a correctness proof for a compiler
transformation that increases the amount of nondeterminism. In contrast, work by Schäfer
et al. [2016] and Erbsen et al. [2021] only considered transformations that decrease the
amount of nondeterminism.

The article is organized as follows:

• In Section 2, we introduce the omni-big-step judgment, which can be defined either induc-
tively, to capture termination of all executions, or coinductively, in partial-correctness fashion.
We also state and prove properties about the judgment, including the notion of smallest and
largest admissible sets of outcomes.

• In Section 3, we introduce the omni-small-step judgment, as well as the eventually judgment
defined on top of it and three practical reasoning rules associated with these judgments.

• In Section 4, we present type-safety proofs carried out with respect to either omni-small-step
or omni-big-step semantics. We explain the improvement over the prior state of the art, as
suggested in the earlier discussion of features #1 and #4.

• In Section 5, we explain how the omni-big-step judgment or the omni-small-step eventu-
ally judgment can be used to define Hoare triples and weakest-precondition predicates. We
consider both partial and total correctness, and we show how the associated reasoning rules
can be established via one-line proofs (recall feature #2). Moreover, we explain how one may
derive the frame rule from Separation Logic.

• In Section 6, we demonstrate how omnisemantics can be used to prove that a compiler cor-
rectly compiles terminating programs, via forward-simulation proofs (recall feature #3). We

2The present article would, in particular, provide a formal publication of the results covered by the chapter on nondeter-
minism and the chapter on partial correctness from Charguéraud’s Separation Logic Foundations course, Volume 6 of the
Software Foundations series. These results originally covered only omni-big-step semantics but have been extended in
2021 to cover omni-small-step semantics as well.
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5:6 A. Charguéraud et al.

illustrate this possibility through two case studies carried out on a while-language. The first
one, “heapification” of pairs, increases the amount of nondeterminism; it involves omni-big-
step semantics for both the source and the target language. The second one, introduction
of stack allocation, decreases the amount of nondeterminism; it involves an omni-big-step
semantics for the source language and an omni-small-step semantics for the target language.

Note that we leave it to future work to investigate how omnisemantics may be exploited to es-
tablish full compiler correctness, that is, not just the correctness of compilation for terminating
programs but also that of programs that may crash, diverge, or perform infinitely many I/O
interactions.

2 OMNI-BIG-STEP SEMANTICS

In the section, we introduce the omni-big-step judgment, written t/s ⇓ Q . We use this judgment in
particular for establishing type safety (Section 4.3), for setting up program logics (Section 5), and for
establishing compiler verification results (Section 6). To present the definition of this judgment, we
consider an imperative, nondeterministic lambda-calculus, for which we first present the semantics
in standard big-step style (Section 2.1). We then discuss the properties and interpretation of the
omni-big-step judgment (Section 2.2). In particular, we focus on why the set Q that appears in
t/s ⇓ Q is interpreted as an overapproximation of the set of possible results, rather than as the exact

set of possible results. We next present the corresponding coinductive judgment, written t/s ⇓co Q ,
which captures partial correctness in the sense that it allows for diverging executions (Section 2.4).
We conclude this section by presenting the bind rule for handling programs that are not in A-
normal form (Section 2.5).

2.1 Definition of the Omni-Big-Step Judgment

Syntax. As a running example, we consider an imperative lambda-calculus, including a random-
number generator rand. Both this operator and allocation are nondeterministic.

The grammar of the language appears next. The metavariable π ranges over primitive opera-
tions, v ranges over values, t ranges over terms, and x and f range over program variables. A
value can be the unit value tt, a Boolean b, a natural number n, a pointer p, a primitive operator,
or a closure.3

π := add | rand | ref | free | get | set
v := tt | b | n | p | π | μ f .λx .t

t := v | x | (t t) | letx = t in t | if t then t else t

For simplicity, we present evaluation rules by focusing first on programs in A-normal form: the
let-binding construct is the only one that involves evaluation under a context. In an application
(t1 t2), the two terms must be either variables or values. Similarly, the condition of an if-statement
must be either a variable or a value, and likewise for arguments of primitive operations. In
Section 2.5, we present the bind rule, which enables the evaluation of subterms under all valid
evaluation contexts.

Evaluation judgments. The standard big-step-semantics judgment for this language appears in
Figure 1. States s are finite partial maps from pointers p to values v . The evaluation judgment

3In our Coq formalization, the grammar of values is restricted to closed values (i.e., values without free variables). This de-
sign choice significantly simplifies the reasoning about substitutions. One minor consequence is that the function construct
needs to appear twice: once in the grammar of closed values and once in the grammar of terms.
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Omnisemantics: Smooth Handling of Nondeterminism 5:7

Fig. 1. Standard big-step semantics (for terms in A-normal form).

t/s ⇓ v/s ′ asserts that the configuration t/s , made of a term t and an initial state s , may evaluate
to the final configuration v/s ′, made of a value v and a final state s ′.

The corresponding omni-big-step semantics appears in Figure 2. Its evaluation judgment, writ-
ten t/s ⇓ Q , asserts that all possible evaluations starting from the configuration t/s reach final
configurations that belong to the set Q . Observe how the standard big-step judgment t/s ⇓ v/s ′

describes the behavior of one possible execution of t/s , whereas the omni-big-step judgment de-
scribes the behavior of all possible executions of t/s . The setQ that appears in t/s ⇓ Q corresponds
to an overapproximation of the set of final configurations: it may contain configurations that are
not actually reachable by executing t/s . We return to that aspect in Section 2.3.

The set Q contains pairs made of values and states. Such a set can be described equivalently by
a predicate of type “val → state → Prop” or by a predicate of type “(val × state) → Prop”. In this
article, in order to present definitions in the most idiomatic style, we use set-theoretic notation
such as (v, s) ∈ Q for stating semantics and typing rules, and we use the logic-oriented notation
Q v s when discussing program logics. (The type ofQ may be generalized for languages that include
exceptions; see Appendix C.)

Description of the evaluation rules. The base case is the rule omni-big-val: a final configuration
v/s satisfies the postcondition Q if this configuration belongs to the set Q .

The let-binding rule omni-big-let ensures that all possible evaluations of an expression letx =
t1 in t2 in state s terminate and satisfy the postcondition Q . First of all, we need all possible eval-
uations of t1 to terminate. Let Q1 denote (an overapproximation of) the set of results that t1 may
reach, as captured by the first premise t1/s ⇓ Q1. One can think of Q1 as the type of t1, in a very
precise type system where any set of values can be treated as a type. The second premise asserts
that, for any configurationv ′/s ′ in that setQ1, we need all possible evaluations of the term [v ′/x] t2
in state s ′ to satisfy the postcondition Q .

The evaluation rule omni-big-add for an addition operation is almost like that of a value: it
asserts that the evaluation of addn1 n2 in state s satisfies the postconditionQ if the pair ((n1+n2), s)
belongs to the set Q . The nondeterministic rule omni-big-rand is more interesting. The term
randn evaluates safely only if n > 0. Under this assumption, its result, named m in the rule, may
be any integer in the range [0,n). Thus, to guarantee that every possible evaluation of randn in a
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5:8 A. Charguéraud et al.

Fig. 2. Omni-big-step semantics (for terms in A-normal form).

state s produces a result satisfying the postcondition Q , it must be the case that every pair of the
form (m, s) withm ∈ [0,n) belongs to the set Q .

The evaluation rule omni-big-ref, which describes allocation at a nondeterministically chosen,
fresh memory address, follows a similar pattern. For every possible new addressp, the pair made of
p and the extended state s[p := v] needs to belong to the setQ . The remaining rules, omni-big-free,
omni-big-get, and omni-big-set, are deterministic and follow the same pattern as omni-big-add,
only with a side condition p ∈ dom s to ensure that the address being manipulated does belong to
the domain of the current state.

2.2 Properties of the Omni-Big-Step Judgment

In this section, we discuss some key properties of the omni-big-step judgment t/s ⇓ Q . Recall that
the metavariable Q denotes an overapproximation of the set of possible final configurations.

Total correctness. The predicate t/s ⇓ Q captures total correctness in the sense that it captures
the conjunction of termination (all executions terminate) and partial correctness (if an execution
terminates, then its final state satisfies the postcondition Q). Formally, let t/s ⇓ v/s ′ denote the
standard big-step evaluation judgment, and let terminates(t , s) be a predicate that captures the fact
that all executions of t/s terminate (a formal definition is given in Appendix D). We prove:

omni-big-step-iff-terminates-and-correct :
t/s ⇓ Q ⇐⇒ terminates(t , s) ∧

(∀vs ′. (t/s ⇓ v/s ′) ⇒ (v, s ′) ∈ Q
)

In particular, if we instantiate the postcondition Q with the always-true predicate, we obtain the
predicate t/s ⇓ {(v, s ′) | True}, which captures only the termination property.

Consequence rule. The judgment t/s ⇓ Q still holds when the postcondition Q is replaced with
a larger set. In other words, the postcondition can always be weakened, like in Hoare logic.

omni-big-conseqence : t/s ⇓ Q ∧ Q ⊆ Q ′ ⇒ t/s ⇓ Q ′

Strongest postcondition. If the omni-big-step judgment holds for at least one set, then there exists
a smallest possible set Q for which t/s ⇓ Q holds. This set corresponds to the strongest possible
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postcondition Q , in the terminology of Hoare logic. Formally, if t/s ⇓ Q holds for at least one Q ,
then t/s ⇓ (strongest-post t s) holds, where the strongest postcondition is equal to the intersection
of all valid postconditions.

strongest-post t s =
⋂

Q | (t/s ⇓Q )

Q =
{
(v, s ′)

�� ∀Q, (t/s ⇓ Q) =⇒ (v, s ′) ∈ Q
}

No derivations for terms that may get stuck. The fact that rand 0 is a stuck term is captured by the
fact that (rand 0)/s ⇓ Q does not hold for anyQ . More generally, if one or more nondeterministic
executions of t may get stuck, then we have ∀Q . ¬ (t/s ⇓ Q).

Relationship to standard big-step semantics. The standard big-step judgment t/s ⇓ v/s ′ relates
one input configuration t/s to one single result configuration v/s ′. The omni-big-step judgment,
which relates inputs to sets of results, thus appears as an immediate generalization of the standard
big-step judgment. The following two results formalize their relationship.

First, if t/s ⇓ Q holds, then any final configuration for which the standard big-step judgment
holds necessarily belongs to the set Q .

omni-big-and-big-inv: t/s ⇓ Q ∧ t/s ⇓ v/s ′ ⇒ (v, s ′) ∈ Q

Second, if t/s ⇓ Q holds, then there exists at least one evaluation according to the standard
big-step judgment whose final configuration belongs to the set Q .

omni-big-to-one-big: t/s ⇓ Q ⇒ ∃vs ′. t/s ⇓ v/s ′ ∧ (v, s ′) ∈ Q

A corollary asserts that if t/s ⇓ Q holds with Q being a singleton set made of a unique final
configuration v/s ′, then the standard big-step judgment holds for that configuration.

omni-big-singleton: t/s ⇓ {(v, s ′)} ⇒ t/s ⇓ v/s ′

Particular case of deterministic languages. In a deterministic language, an input configuration
t/s may evaluate to at most one configuration v/s ′. In such a case, the strongest postcondition is
reduced to the singleton set {(v, s ′)}.

Nonempty outcome sets. Observe that the judgment t/s ⇓ Q , as defined in Figure 2, can only
hold for a nonempty set Q . When designing omni-big-step rules for a new language, one has to
be careful not to accidentally include rules that allow derivations of empty outcome sets for some
programs. To illustrate the matter, consider the term “rand 0”. According to the standard big-step
semantics, this term is stuck because the rule big-rand requires a positive argument to rand. In
the omni-big-step semantics, if we were to omit the premise n > 0 in the rule omni-big-rand, we
would be able to derive (rand 0)/s ⇓ Q for any s and Q . Indeed, the premise ∀m. 0 ≤ m < n ⇒

(m, s) ∈ Q becomes vacuously true when n is nonpositive.
A similar subtlety appears in the rule omni-big-ref, where the fresh location p must be picked

fresh from the domain of s . This quantification could become vacuously true if the semantics
allowed for infinite states or if the set of memory locations were finite. (We discuss in Section 6.5
the treatment of a language whose semantics account for a finite memory.)

The likelihood of inadequate formalization due to missing premises might be viewed as the main
weakness of omnisemantics. Yet, if needed, additional confidence can easily be restored at the cost
of minor additional work: one may consider a standard small-step semantics as reference (i.e., as
part of the trusted code base), then relate it to the corresponding omni-big-step semantics and use
the latter to carry out big-step-style, inductive proofs on nondeterministic executions.
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5:10 A. Charguéraud et al.

Fig. 3. Selected rules defining a precise variant of omni-big-step semantics, written t/s ⇓′ Q .

2.3 About the Overapproximation of the Set of Results

The omni-big-step judgment t/s ⇓ Q associates an initial configuration t/s with a postconditionQ ,
which denotes an overapproximation of the set of possible final configurations. One may thus won-
der: why not associate it with a precise set of results? In this section, we show that it is technically
possible to define a precise judgment, but at the same time we argue why that judgment is much
less practical to work with than the overapproximating omni-big-step judgment.

The precise judgment, written t/s ⇓′ Q , is precise in the sense that it relates a configuration t/s
to at most one set of results Q . This precise judgment, like the overapproximating omni-big-step
judgment, guarantees safety: a judgment t/s ⇓′ Q can be derived for someQ if and only if none of
the possible executions of t/s can get stuck. Thus, the precise judgment relates a safe configuration
t/s to exactly one Q .

Figure 3 shows selected rules from the definition of the precise judgment, written t/s ⇓′ Q . The
rule precise-big-val relates a value v in a state s to the singleton set made of the pair (v, s). The
rule precise-big-ref relates the term (refv) in a state s to the set of pairs made of a location p
fresh from s and of the state s updated at location p with the value v . Observe how this compares
with the rule omni-big-ref, which only requires that set of pairs to be included in the result setQ .
The rule precise-big-rand follows a similar pattern, only with the premise n > 0 to ensure that
the term is not stuck.

Most interesting is the rule precise-big-let. Its first premise involves an intermediate set Q1,
which denotes exactly the set of results that t1 can produce when executed in the input state s . The
second premise describes, for each result (v ′, s ′) from the set Q1, the evaluation of ([v ′/x] t2) in
state s ′. The result of the execution is asserted to be exactly a set of configurations writtenQ ′

(v ′,s ′)
.

HereQ ′ denotes a (possibly infinite) family of postconditions, indexed by the possible results of t1.
The final postcondition of the term (letx = t1 in t2) is obtained by taking the union over that family
of postconditions.4

In practice, working with indexed families of postconditions introduces significant overhead,
compared with the overapproximating omni-big-step judgment. Moreover, for practical appli-
cations such as type-checking or program verification (using either weakest preconditions or
Hoare triples), we are only interested in overapproximations of the semantics. For such appli-
cations, building the overapproximation on top of a precise judgment would only introduce a
level of indirection. For other situations where a notion of an exact set of results might be desir-
able, typically for metatheoretical results (e.g., completeness results), we can always refer to the
strongest postcondition, which, as explained earlier, can be formalized as the intersection of all valid
postconditions.

4In Coq, we model sets with elements of type A as functions from A to propositions, and thus Q1 is represented as a function
that takes a value and a state and returns a proposition; Q ′ is a function that takes a value, a state, another value, and another
state and returns a proposition; and the union over the family of results is written λ v ′′ s′′. ∃v ′ s′. Q1 v ′ s′ ∧Q ′ v ′ s′ v ′′ s′′.
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In summary, we believe that it is interesting to know that a precise judgment can be defined, as
it might be useful in other contexts, but for the applications that we have in mind the overapprox-
imating omni-big-step judgment appears much better suited.

2.4 Coinductive Interpretation of the Omni-Big-Step Judgment

Let t/s ⇓co Q denote the judgment defined by the coinductive interpretation of the same set of
rules as for the inductively defined judgment t/s ⇓ Q , i.e., rules from Figure 2. The coinductive
interpretation allows for infinite derivation trees, and thus the coinductive omni-big-step judgment
can be used to capture properties of nonterminating executions.

More precisely, the judgment t/s ⇓co Q asserts that every possible execution of configuration
t/s either diverges or terminates in a final configuration satisfying Q . In particular, this judgment
rules out the possibility for an execution of t/s to get stuck, and it can be used to express type safety,
as detailed in Section 4. The judgment t/s ⇓co Q can also be used to define partial-correctness
Hoare triples, as detailed in Section 5.

Formally, we can relate the meaning of t/s ⇓co Q to the small-step characterization of partial
correctness as follows: for every execution prefix, the configuration reached is either a value sat-
isfying the postcondition or a term that can be reduced further. Below, t/s −→ t ′/s ′ denotes the
standard small-step evaluation judgment (defined in Appendix G), and val denotes the constructor
that injects values into the grammar of terms.

co-omni-big-iff-safe-and-correct

t/s ⇓co Q ⇐⇒ ∀s ′t ′. (t/s −→∗ t ′/s ′) ⇒

(∃v . t ′ = valv ∧ (v, s ′) ∈ Q
)

∨
(∃t ′′s ′′. t ′/s ′ −→ t ′′/s ′′

)

The judgment t/s ⇓co Q can also be used to characterize divergence, by instantiating Q as the
empty set: the predicate t/s ⇓co ∅ asserts that every possible execution of t/s diverges. Because
the judgment t/s ⇓co Q is covariant inQ , the predicate t/s ⇓co ∅ holds if and only if the predicate
t/s ⇓co Q holds for any Q . In summary, we formally characterize divergence as follows:

diverges t s ≡ (t/s ⇓co ∅) diverges t s ⇐⇒ ∀Q . (t/s ⇓co Q)

2.5 The Bind Rule for Reasoning about Evaluation Contexts

In this section, we explain how to reason about programs that are not in A-normal form. We follow
the approach of the bind rule, popularized by Iris [Jung et al. 2018] in the context of program logics.
The bind rule follows the pattern of the let-binding rule but allows for evaluation of a subterm
t that appears in an evaluation context E. For the syntax introduced in Section 2.1, we can define
evaluation contexts by the following grammar, where � denotes the hole, i.e., the empty context:

E := � | letx = E in t | (E t) | (v E) | if E then t else t

We write E[t] for the context E whose hole is filled with the term t . We write value t for the
predicate that asserts that t is a value. The bind rule describes how to evaluate or reason about
subterms that appear in evaluation contexts and that are not already values. The omni-big-step
bind rule takes the following form:

¬ value t t/s ⇓ Q1
(∀vs ′. Q1v s

′ ⇒ E[v] / s ′ ⇓ Q
)

E[t] / s ⇓ Q
omni-big-bind

The premise ¬ value t could be omitted for the inductive interpretation of the omni-big-step
rules. It is required, however, for the coinductive interpretation, to prevent the construction of
infinite derivations for terms that do not diverge.
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Fig. 4. Omni-small-step semantics (for terms in A-normal form).

3 OMNI-SMALL-STEP SEMANTICS

In this section, we present the omni-small-step judgment, written t/s −→ P . Here, P denotes a
set of pairs each made of a term and a state. We then present the eventually judgment, written
t/s −→♦ P . We use these judgments in particular for establishing type-safety (Section 4.1) and
compiler-verification (Section 6.6) results.

3.1 The Omni-Small-Step Judgment

The omni-small-step judgment, written t/s −→ P , asserts that the configuration t/s can take
one reduction step and that, for any step it might take, the resulting configuration belongs to the
set P . It is defined by the rules from Figure 4. There is one per small-step transition. The interesting
rules are those involving nondeterminism, namely omni-small-rand and omni-small-ref, which
follow a pattern similar to the corresponding omni-big-step rules. Observe also how the rule omni-
small-let-ctx handles the case of a reduction that takes place in the evaluation context of a let-
binding, by quantifying over an intermediate set of results named P1.

We prove that the judgment t/s −→ P captures the expected property w.r.t. the standard small-
step judgment: the configuration t/s can make a step, and for every step it might take, it reaches
a configuration in P .

omni-small-step-iff-progress-and-correct
t/s −→ P ⇐⇒

(∃t ′s ′. t/s −→ t ′/s ′
)
∧

(∀t ′s ′. t/s −→ t ′/s ′ ⇒ (t ′, s ′) ∈ P
)

3.2 The “Eventually” Judgment

The judgment t/s −→♦ P captures the property that every possible evaluation of t/s is safe and
eventually reaches a configuration in the set P . Here, P denotes a set of configurations—it is not
limited to being a set of final configurations like in the previous section. The judgment t/s −→♦ P is
defined inductively by the following two rules. The first one asserts that the judgment is satisfied if
t/s belongs to P . The second one asserts that the judgment is satisfied if t/s is not stuck and that for
any configuration t ′/s ′ that it may reduce to, the predicate t ′/s ′ −→♦ P holds. The latter property is
expressed using the omni-small-step judgment t/s −→ P ′, where P ′ denotes an overapproximation
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of the set of configurations t ′/s ′ to which t/s may reduce.

eventually-here
(t , s) ∈ P

t/s −→♦ P

eventually-step
t/s −→ P ′

(∀(t ′, s ′) ∈ P ′. t ′/s ′ −→♦ P
)

t/s −→♦ P

If Q denotes a set of final configurations, then the judgment t/s −→♦ Q can be viewed as a
particular case of the judgment t/s −→♦ P , where P denotes a set of configurations. We prove that
t/s −→♦ Q matches our omni-big-step judgment t/s ⇓ Q .

eventually-iff-omni-big-step: t/s −→♦ Q ⇐⇒ t/s ⇓ Q

3.3 Chained Rule and Cut Rule for the “Eventually” Judgment

To apply the rule eventually-step, one needs to provide upfront an intermediate postcondition P ′.
Doing so is not always convenient. It turns out that we can leverage the omni-small-step judgment
t/s −→ P ′ to provide an introduction rule for t/s −→♦ P that does not require providing P ′ upfront.
This rule, which we call the chained version of eventually-step, admits the statement shown
below. It reads as follows: if every possible step of t/s reduces in one step to a configuration that
eventually reaches a configuration from the set P , then every possible evaluation of t/s eventually
reaches a configuration from the set P .

eventually-step-chained : t/s −→
{
(t ′, s ′)

�� t ′/s ′ −→♦ P} ⇒ t/s −→♦ P

One may wonder why we did not use this rule directly in the inductively defined judgment, and
the reason is Coq’s strict positivity requirement. The considerations for encoding sequencing here
are similar to those discussed in Appendix A in the context of the omni-big-step let-binding rule.

Another interesting property of the judgment t/s −→♦ P is its cut rule, which is derivable. It
asserts the following: if every possible evaluation of t/s eventually reaches a configuration in the
set P ′, and if every configuration from the set P ′ eventually reaches a configuration from the set
P , then every possible evaluation of t/s eventually reaches a configuration from the set P .

eventually-cut : t/s −→♦ P ′ ∧
(∀(t ′, s ′) ∈ P ′. t ′/s ′ −→♦ P

)
⇒ t/s −→♦ P

This cut rule also admits a chained version, which reads as follows: if every possible evaluation of
t/s eventually reaches a configuration that itself eventually reaches a configuration from the set P ,
then every possible evaluation of t/s eventually reaches a configuration from the set P .

eventually-cut-chained : t/s −→♦
{
(t ′, s ′)

�� t ′/s ′ −→♦ P} ⇒ t/s −→♦ P

The cut rule and the chained rules are particularly handy to work with, as we illustrate in
Section 6.6.

3.4 Coinductive Interpretation of the Omni-Small-Step Judgment

Let t/s −→♦co P denote the coinductive interpretation of the two rules that define t/s −→♦ P . Diver-
gence can be captured by instantiating P as the empty set. We prove that the judgment t/s −→♦co ∅

is equivalent to the standard small-step characterization of divergence, which asserts that any
execution prefix may be extended with at least one additional step.

co-eventually-empty-iff-small-step-diverges
t/s −→♦co ∅ ⇐⇒ ∀s ′t ′. (t/s −→∗ t ′/s ′) ⇒

(∃t ′′s ′′. t ′/s ′ −→ t ′′/s ′′
)

Besides, we can relate the coinductive omni-small-step judgment t/s −→♦co P to the coinductive
omni-big-step judgment t/s ⇓co Q defined in Section 2.4. Here again, we letQ denote a set of final
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configurations. We prove the following equivalence:

co-eventually-iff-co-omni-big-step: t/s −→♦co Q ⇐⇒ t/s ⇓co Q

The proofs of these two equivalences co-eventually-iff-co-omni-big-step and co-
eventually-empty-iff-small-step-diverges, as well as the proof of co-omni-big-iff-safe-and-
correct from Section 3.4, are interesting in that they involve yet another judgment. This judg-
ment, written t/s −→−→∗

co Q , is defined in terms of the standard small-step semantics, by taking the
coinductive interpretation of the following two rules:

eventually’-here
(v, s) ∈ Q

v/s −→−→∗
co Q

eventually’-step(∃t ′s ′. t/s −→ t ′/s ′
) (∀t ′s ′. (t/s −→ t ′/s ′) ⇒ (t ′/s ′ −→−→∗

co Q)
)

t/s −→−→∗
co Q

The desired equivalences are established in three steps. First, we prove that the standard small-
step characterization of partial correctness that appears in the statement of co-omni-big-iff-safe-
and-correct (Section 3.4) is equivalent to this new coinductive judgment t/s −→−→∗

co Q . The proof
is relatively straightforward because both of these characterizations are expressed using small-step
transitions.

Second, we prove that the co-eventually judgment t/s −→♦co Q is equivalent to t/s −→−→∗
co Q . The

proof is relatively straightforward because the coinductive definitions for these two judgments
share a similar structure. As a corollary, by instantiating Q as the empty set, we establish co-
eventually-empty-iff-small-step-diverges.

Third, we prove that the co-omni-big-step judgment t/s ⇓co Q is equivalent to t/s −→−→∗
co Q . This

third proof is the most challenging, especially for establishing the implication from the small-step-
style judgment to the big-step-style judgment. The proof involves a key intermediate lemma, which
consists of an inversion rule for let-bindings: if (letx = t1 in t2)/s −→−→∗

co Q holds, then there exists a
set Q1 such that t1/s −→−→∗

co Q1 and ∀(v1, s
′) ∈ Q1. ([v1/x] t2)/s

′ −→−→∗
co Q hold. The proof of this key

lemma itself relies on two auxiliary results, whose purpose is to justify that we can take as witness
for Q1 the strongest postcondition of t1/s . The first one asserts that (letx = t1 in t2)/s −→−→∗

co Q
implies t1/s −→−→∗

co {(v1, s
′) | t1/s −→

∗ v1/s
′}. The second one asserts that (letx = t1 in t2)/s −→−→∗

co
Q and t1/s −→

∗ v1/s
′ imply ([v1/x] t2)/s

′ −→−→∗
co Q . We refer to our Coq development for details.

A key observation about all the proofs involved in Sections 2 and 3 is that they are constructive.5

In particular, we are able to establish equivalences betweeen coinductive omni-big-step semantics

and small-step style semantics without recourse to classical logic. This contrasts with coinductive

big-step semantics [Leroy and Grall 2009], whose connection to small-step semantics requires clas-
sical logic. We discuss this aspect further in the related work section (Section 8).

4 TYPE-SAFETY PROOFS USING OMNISEMANTICS

In this section, we show how the omni-small-step and omni-big-step judgments may be used to
carry out type-safety proofs. We illustrate the proof structures using simple types (STLC). As a
warm-up, we begin with a presentation of type safety on the restriction to the state-free fragment
of our running-example language.

For this section, we need to consider a different semantics for the random-number generator.
Indeed, the current rule omni-big-rand asserts that the program is stuck if randn is invoked with
an argument n ≤ 0. Since here we are interested in proving that well-typed programs do not

5The proofs that we present do not exploit classical logic axioms. However, we do not provide a machine-checked proof

that our proofs are constructive. Indeed, our Coq development is building on top of general-purpose libraries that exploit
classical logic in various places.
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get stuck, let us consider a modified semantics, where randn is turned into a total function that
returns 0 when n ≤ 0.

omni-big-rand-complete
∀m. 0 ≤ m < max(n, 1) ⇒ (m, s) ∈ Q

(randn)/s ⇓ Q

omni-small-rand-complete
∀m. 0 ≤ m < max(n, 1) ⇒ (m, s) ∈ P

(randn)/s −→ P

Additionally, for this section, we also exclude the primitive operation free, which is not type-safe.
The grammar of types, written T , appears below:

T := unit | bool | int | T → T | refT

A typing environment, written E, maps variable names to types. The judgment � v : T asserts that
the closed value v admits the type T . The judgment E � t : T asserts that the term t admits type
T in the environment E. We let V denote the set of terms that are either values or variables—recall
that we consider A-normal forms to simplify the presentation. The typing rules are essentially
standard, apart from the fact that they involve side conditions of the form t ∈ V to constrain
terms to be in A-normal form. We include here two example rules; the other rules are given in
Appendix E.

typ-let
E � t1 : T1 E, x : T1 � t2 : T2

E � (letx = t1 in t2) : T2

typ-rand
E � t1 : int t1 ∈ V

E � (rand t1) : int

4.1 Omni-Small-Step Type-Safety Proof for a State-Free Language

A stuck term is a term that is not a value and that cannot take a step. Type safety asserts that if
a closed term t is well-typed, then none of its possible evaluations get stuck. In other words, if t
reduces in a number of steps to t ′, then t ′ either is a value or can further reduce.

type-safety (state-free language):
(∅ � t : T ) ∧ (t −→∗ t ′) ⇒ (isvalue t ′) ∨ (∃t ′′. t ′ −→ t ′′)

The traditional approach to establishing type safety is by proving the preservation and progress

properties [Pierce 2002; Wright and Felleisen 1994].

preservation (state-free language): E � t : T ∧ t −→ t ′ ⇒ E � t ′ : T
progress (state-free language): ∅ � t : T ⇒ (isvalue t) ∨ (∃t ′. t −→ t ′)

Each of these proofs is most typically carried out by induction on the typing judgment. One diffi-
culty that might arise in the type-preservation proof for a large language with dozens (if not hun-
dreds) of typing rules is the fact that one needs, for each case of the typing judgment E � t : T ,
to inspect all the potential cases of the reduction judgment t −→ t ′. This inspection is not really
quadratic in practice, because one can filter out applicable rules based on the shape of the term t .
Nevertheless, a typical Coq proof performing “intros HT HR; induction HT; inversion HR”
does produce a proof term whose size is quadratic in the number of term constructs. Coq users have
experienced performance challenges with quadratic-complexity proof terms when formalizing PL
metatheory [Monin and Shi 2013].

Interestingly, in the particular case of a deterministic language, there exists a known strategy
(e.g., of Rompf and Amin [2016]) to reformulate the preservation and progress statements in a way
that not only factors out the two into a single statement but also can be proved with a linear-size
proof term. This combined statement, shown below, asserts that a well-typed term t either is a
value or can make a step toward a term t ′ that admits the same type.

induction-for-type-safety, state-free, standard small-step, deterministic
∅ � t : T ⇒

(
isvalue t

)
∨

(∃t ′. (t −→ t ′) ∧ (∅ � t ′ : T )
)
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As we explain next, this approach can be generalized to the case of nondeterministic languages
using the omni-small-step judgment. Let us write t −→ P for the judgment that corresponds to
t/s −→ P without the state argument. We can state type safety by considering for the postcondi-
tion P the set of terms t ′ that admit the same type as t .

Lemma 4.1 (Induction-for-type-safety, State-free, Omni-small-step, Nondeterministic).

∅ � t : T ⇒
(
isvalue t

)
∨

(
t −→

{
t ′
�� (∅ � t ′ : T )

})

Proof. The proof is carried out by induction on the typing judgment. For the case where
t is a value, the left part of the disjunction applies. For all other cases, the right part needs to
be established. We next detail two representative proof cases.

Case 1: The term t has been typed using rule typ-rand. In this case, the term t has the form
“rand t1”. The rule concludes ∅ � (rand t1) : int, from the premise ∅ � t1 : int and the premise
t1 ∈ V. The latter means that t1 is either a value or a variable (recall that we assume A-normal
form to simplify the presentation). Because t1 typechecks in the empty environment, it cannot be
a variable. Thus, it must be a value, and because this value has type int, it must be an integer value.
(In other words, ∅ � t1 : int must have been derived using the rules typ-val and vtyp-int stated
in Appendix E.) Let us call n this integer. We need to establish (randn) −→

{
t ′

�� (∅ � t ′ : int)
}
.

Recall the rule omni-small-rand-complete introduced at the start of Section 4. We apply this
rule (ignoring the state component) and need to establish its premise: ∀m. 0 ≤ m < max(n, 1) ⇒

m ∈
{
t ′
�� (∅ � t ′ : int)

}
. Consider an integerm such that 0 ≤ m < max(n, 1). We are left to prove

∅ � m : int, which is derivable from the rules typ-val and vtyp-int.
Case 2: The term t has been typed using rule typ-let. In this case, the term t has the form

“letx = t1 in t2”. The rule concludes ∅ � (letx = t1 in t2) : T , from the two premises ∅ � t1 : T1

and x : T1 � t2 : T . We need to prove (letx = t1 in t2) −→
{
t ′

�� (∅ � t ′ : T )
}
. By the induction

hypothesis applied to the first assumption, either t1 is a value or t1 −→
{
t ′1

�� (∅ � t ′1 : T1)
}
.

In the first subcase, t1 is a value; let us call it v1. We exploit omni-small-let and are left to
justify ([v1/x] t2) ∈

{
t ′

�� (∅ � t ′ : T )
}
, that is, ∅ � ([v1/x] t2) : T . This result follows from the

standard substitution lemma applied to x : T1 � t2 : T and to ∅ � v1 : T1.
In the second subcase, we have t1 −→

{
t ′1

�� (∅ � t ′1 : T1)
}
. To prove (letx = t1 in t2) −→{

t ′
�� (∅ � t ′ : T )

}
, we exploit omni-small-let-ctx with P1 =

{
t ′1

�� (∅ � t ′1 : T1)
}
. We need

to justify the second premise of that rule: ∀t ′1 ∈ P1. (letx = t ′1 in t2) ∈
{
t ′

�� (∅ � t ′ : T )
}
.

Consider a particular t ′1. The assumption t ′1 ∈ P1 is equivalent to ∅ � t ′1 : T1. The proof obligation
(letx = t ′1 in t2) ∈

{
t ′

�� (∅ � t ′ : T )
}

is equivalent to ∅ � (letx = t ′1 in t2) : T . This result follows
from the rule typ-let applied to the facts ∅ � t ′1 : T1 and x : T1 � t2 : T . �

The statement induction-for-type-safety above entails the preservation property (for empty
environments) and the progress property. We prove once and for all that the statement of
induction-for-type-safety entails the type-safety property.6

4.2 Omni-Small-Step Type-Safety Proof for an Imperative Language

Let us now generalize the results from the previous section to account for memory operations.
A store-typing environment, written S , is a map from locations to types. The typing judgment

for values is extended with a store-typing environment, taking the form S � v : T . Likewise, the

6The generic entailment from induction-for-type-safety to type-safety holds for any typing judgment of the form
∅ � t : T and for any judgment t −→ P related to the small-step judgment t −→ t ′ in the expected way, that is,
satisfying the property omni-small-step-iff-progress-and-correct from Section 3.2.
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typing judgment for terms is extended to the form S ;E � t : T . The store-typing entity S only
plays a role in the typing rule for memory locations. The rules for typing memory locations and
memory operations are standard; they appear in Appendix F.

The type-safety property asserts that the execution of any well-typed term, starting from the
empty state, does not get stuck. In the statement below, � denotes an empty state or an empty
store typing, whereas ∅ denotes, as before, the empty typing context.

type-safety:
(�; ∅ � t : T ) ∧ (t/� −→∗ t ′/s ′) ⇒ (isvalue t ′) ∨ (∃t ′′s ′′. t ′/s ′ −→ t ′′/s ′′)

To establish a type-safety result by induction on a reduction sequence, one needs to introduce
a typing judgment for stores. A store s admits type S , written � s : S , if and only if s and S have
the same domain and, for any location p in the domain, s[p] admits the type S[p]. Formally:

� s : S ≡
(
dom s = dom S

)
∧

(∀p ∈ dom s . S ; ∅ � s[p] : S[p]
)

The preservation and progress lemmas associated with the traditional approach to proving type
safety are updated as shown below. In particular, the preservation lemma requires the output state
to admit a type that extends the store typing associated with the input state (S ′ ⊇ S).

preservation: t/s −→ t ′/s ′ ∧ � s : S ∧ S ; ∅ � t : T

⇒ ∃S ′ ⊇ S . � s ′ : S ′ ∧ S ′; ∅ � t ′ : T

progress: S ; ∅ � t : T ∧ � s : S ⇒ (isvalue t) ∨ (∃t ′s ′. t/s −→ t ′/s ′)

In contrast, using the omni-small-step judgment, we can establish type safety through a single
induction on the typing judgment. To that end, we formulate a lemma in terms of the predicate
t/s −→ P , instantiating the set P as the set of configurations t ′/s ′ such that t ′ admits the same
type as t and such that s ′ admits a type that extends the type of s .

induction-for-type-safety (omni-small-step, with state)(
S ; ∅ � t : T ) ∧

(
� s : S

)
⇒

(
isvalue t

)
∨

(
t/s −→

{
(t ′, s ′)

�� ∃S ′ ⊇ S . ( � s ′ : S ′) ∧ (S ′; ∅ � t ′ : T )
})

4.3 Omni-Big-Step Type-Safety Proof for an Imperative Language

Traditionally, a big-step safety proof can only be carried out if the semantics is completed using
error-propagation rules. Here, we demonstrate how to establish type safety with respect to an
omni-big-step judgment, without any need for error-propagation rules. First, we introduce the
construct �T /S� to denote the set of possible outputs produced by a term of type T , well-typed in
a store of type S . Second, we describe the statement and proof for type safety.

Consider a typeT and a store typing S . We define �T /S� as the set of final configurations of the
formv/s such that the state s admits a type S ′ that extends S , and the valuev admits typeT , under
the store typing S ′. The extension S ′ involved here accounts for the fact that the evaluation of a
term t of type T may perform allocation operations that extend the store in which t is well-typed.

�T /S� ≡
{
(v, s) | ∃S ′ ⊇ S . ( � s : S ′) ∧ (S ′ � v : T )

}

A key lemma involved in the type soundness proof asserts that, if S ′ is a store typing that enforces
more constraints than another store typing S , then �T /S ′� is a smaller set than �T /S�.

Lemma 4.2 (Configuration-typing-subset).

S ′ ⊇ S ⇒ �T /S ′� ⊆ �T /S�
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Proof. Assume S ′ ⊇ S . Consider a pair (v, s) ∈ �T /S ′�. By definition, there exists S ′′ such that
S ′′ ⊇ S ′ and � s : S ′′ and S ′′ � v : T . By transitivity, S ′′ ⊇ S . We conclude that (v, s) ∈ �T /S�
holds, by taking S ′′ as witness for the existential quantifier in the definition of �T /S�. �

We are now ready to state type safety. The coinductive omni-big-step judgment t/s ⇓co �T /S�
asserts that any evaluation of t/s executes safely, without ever getting stuck, and that if an evalu-
ation reaches a final configuration v/s ′, then this configuration satisfies the postcondition �T /S�.
Given our definition of �T /S�, the judgment t/� ⇓co �T /�� thus captures exactly the type-safety
property associated with the typing judgment �; ∅ � t : T . Type safety may be established by
proving the following statement by coinduction.

Lemma 4.3 (Coinduction-for-type-safety, Omni-big-step, Nondeterministic).

S ; ∅ � t : T ∧ � s : S ⇒ t/s ⇓co �T /S�

Proof. For technical reasons, the Coq coinduction tactic needs to be applied to the following
statement, which introduces an intermediate set Q :

S ; ∅ � t : T ∧ � s : S ∧ �T /S� ⊆ Q ⇒ t/s ⇓co Q

Observe that this alternative statement is logically equivalent to the previous one: on the one hand,
we can instantiate Q as �T /S�; on the other hand, we can exploit omni-big-conseqence to prove
t/s ⇓co Q from t/s ⇓co �T /S� and �T /S� ⊆ Q .

We carry out a proof by coinduction on that alternative statement. The coinduction hypothesis
asserts that we can assume the alternative statement to hold, provided that we have already applied
at least one evaluation rule (i.e., a coinductive constructor) to the conclusion at hand (t/s ⇓co Q).

The first step of the proof is to perform a case analysis on the typing hypothesis S ; ∅ � t : T . We
then consider each of the possible typing rules one by one. Let us consider two representative proof
cases: the case of rand and the case of a let-binding. In each case, the assumptions are S ; ∅ � t : T
and � s : S and �T /S� ⊆ Q ; the goal is to prove t/s ⇓co Q .

Case 1: The term t has been typed using rule typ-rand. In this case, the term t has the form
“rand t1”, and T is int. The rule concludes S ; ∅ � (rand t1) : int, from the premise S ; ∅ � t1 : int
and the premise t1 ∈ V. Because t1 typechecks in the empty environment, it must be a value.
Because this value has type int, it must be an integer value; let us call it n. We need to establish
(randn)/s ⇓co Q . We apply the rule co-omni-big-rand-complete, which is like omni-big-rand-
complete but part of the coinductive interpretation of the set of evaluation rules. We need to prove
its premise: ∀m. 0 ≤ m < max(n, 1) ⇒ (m, s) ∈ Q . Consider a particularm in that range. We have
�int/S� ⊆ Q . Thus, to show (m, s) ∈ Q, it suffices to show (m, s) ∈ �int/S�. By definition of the
operator �T /S�, this amounts to proving ∃S ′ ⊇ S . ( � s : S ′) ∧ (S ′ � m : int). We conclude by
taking S ′ = S and checking that � s : S and S ′ � m : int indeed hold.

Case 2: The term t has been typed using rule typ-let. In this case, the term t has the form
“letx = t1 in t2”. The rule concludes S ; ∅ � (letx = t1 in t2) : T , from the two premises S ; ∅ �

t1 : T1 and S ; (x : T1) � t2 : T . We need to establish (letx = t1 in t2)/s ⇓co Q . We apply the
rule co-omni-big-let (which is like omni-big-let but part of the coinductive interpretation of
the set of evaluation rules) with Q1 instantiated as �T1/S�. We have to establish the two premises:
t1/s ⇓ �T1/S� and ∀(v ′, s ′) ∈ �T1/S�. ([v

′/x] t2)/s
′ ⇓ Q . The first premise follows directly from

the coinduction hypothesis applied to S ; ∅ � t1 : T1 and to �T1/S� ⊆ �T1/S�. For the second
premise, consider a pair (v ′, s ′) ∈ �T1/S�. This amounts to assuming the existence of some S ′ such
that S ′ ⊇ S and � s ′ : S ′ and S ′ � v : T1. There remains to show ([v ′/x] t2)/s

′ ⇓ Q . A standard
“type preservation upon store typing extension” lemma shows that, because S ′ ⊇ S , we can refine
S ; (x : T1) � t2 : T into S ′ ; (x : T1) � t2 : T . Then, by the standard substitution lemma applied
to S ′ ; (x : T1) � t2 : T and to S ′ � v : T1, we derive S ′; ∅ � ([v ′/x] t2) : T . Besides, the lemma
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configuration-typing-subset applied to S ′ ⊇ S gives �T /S ′� ⊆ �T /S�. Composing this subset
relation by transitivity with �T /S� ⊆ Q yields �T /S ′� ⊆ Q . The conclusion ([v ′/x] t2)/s

′ ⇓ Q
then follows from the coinduction hypothesis applied to S ′; ∅ � ([v ′/x] t2) : T and � s ′ : S ′ and
�T /S ′� ⊆ Q .

Note that most of these arguments are easily handled by automated proof search in Coq. �

Like for the small-step settings, we proved once and for all that the statement coinduction-
for-type-safety entails type-safety.

Our coinductive omni-big-step approach offers, to those who have good reasons to work with
a big-step-style semantics, a means to establish type safety without introducing error rules.

Regarding the comparison with the standard preservation-and-progress approach, at this stage
we cannot draw general conclusions on whether omni-big-step and omni-small-step type-safety
proofs are more effective, because we considered a relatively simple language. Nevertheless, it
appears that each of the two approaches that we propose results in proof scripts that (1) require
only one induction or one coinduction instead of two separate inductions, (2) are no longer than
with preservation and progress separated, and (3) avoid the issue of nested inversions requiring a
number of cases quadratic in the size of the language.

5 DEFINITION OF PROGRAM PROOF RULES

This section discusses the construction of a foundational program logic, that is, a program logic
whose reasoning rules are derived through mechanized proofs from the formal semantics of the
targeted programming language. We specifically focus on Separation Logic [O’Hearn et al. 2001;
Reynolds 2002], which has proved in the past two decades to be an invaluable tool for carrying
out practical, modular program verification, both for low-level and high-level languages—see the
broad survey by O’Hearn [2019] and the survey by Charguéraud [2020] that focuses on sequential
programs.

We first review the properties that a program logic might capture, and we describe the key
challenges in deriving a foundational Separation Logic that captures total correctness with respect
to a standard big-step semantics (Section 5.1). We then explain how omnisemantics overcome these
challenges, allowing one to derive a foundational, total-correctness Separation Logic judgment in
a straightforward, direct manner (Section 5.2). Moreover, by referring to the coinductive omni-
big-step judgment instead of the inductive one, one can similarly define partial-correctness triples.
We explain how to derive the reasoning rules (Section 5.3) and in particular the frame rule of
Separation Logic (Section 5.4). Finally, we present reasoning rules in weakest-precondition style
(Section 5.5), which have proved very useful to set up practical tools, and which turn out to be
even easier to derive.

5.1 Challenges in Defining Foundational Separation Logic Triples

A triple, written {H } t {Q}, describes the behavior of the evaluation of the configurations t/s for
any s satisfying the precondition H , in terms of the postcondition Q . The exact interpretation of
a triple depends on whether it accounts for total correctness or partial correctness, which differ on
how they account for termination. For nondeterministic languages, the key notions of interest for
definining a triple {H } t {Q} are as follows:

• Safety: For any s satisfying H , none of the possible evaluations of t/s can get stuck.
• Correctness: For any s satisfying H , if t/s can evaluate to v/s ′, then Qv s ′ holds.
• Termination: For any s satisfying H , all possible evaluations of t/s are finite.
• Partial correctness: Safety and correctness hold.
• Total correctness: Safety, correctness, and termination hold.
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When targeting total correctness, one key challenge in defining triples with respect to a standard
big-step semantics is that the direct definition of Hoare triples yields a judgment that does not
satisfy the frame rule of Separation Logic. The frame rule asserts that if a triple {H } t {Q} holds,
then the pre- and the postcondition may be extended with an arbitrary predicate H ′, yielding the
valid triple {H �H ′} t {Q .�H ′}. Here, Q .�H denotes the postcondition λv . (Qv �H ).

Concretely, consider the following definition of a Hoare triple with respect to a standard big-
step, deterministic semantics. It asserts that, for any input state s satisfying the precondition H ,
there exists a result value v and a final state s ′ such that the configuration t/s evaluates to a final
configuration v/s ′ that satisfies the postcondition Q .

Hoare {H } t {Q} ≡ ∀s . H s ⇒ ∃v . ∃s ′. (t/s ⇓ v/s ′) ∧ (Qv s ′).

For such a judgment, one can prove that, starting from an empty heap, the allocation of a ref-
erence returns a specific memory location, say 0. For example, if the reference contains 3 and the
location l denotes its address, one can prove Hoare {[ ]} (ref 3) {λl . [l = 0]� (0 ↪→ 3)}. To see why
the judgment does not satisfy the frame rule, let us attempt to extend the pre- and the postcondi-
tion of this triple with the heap predicate (0 ↪→ 1), which denotes a reference at location 0 storing
the value 1. We obtain Hoare {0 ↪→ 1} (ref 3) {λl . [l = 0] � (0 ↪→ 3) � (0 ↪→ 1)}. This triple does
not hold, because the separating conjunction (0 ↪→ 3)� (0 ↪→ 1) is equivalent to False.

To derive a Separation Logic judgment that does satisfy the frame rule, one can exploit the classic
technique of the baked-in frame rule [Birkedal et al. 2005]—for technical and historical details, we
refer to Charguéraud [2020, Sections 5.1 and 10.2]. Separation Logic triples are defined as follows:

Sep. Logic via baked-in frame rule {H } t {Q} ≡ ∀H ′. Hoare {H �H ′} t {Q .�H ′}

This definition quantifies over a heap predicate H ′ that describes the “rest of the world.” The re-
sulting triples inherently satisfy the frame rule, as a direct consequence of the associativity of the
separating-conjunction operator. Indirectly, the introduction of H ′ rules out the judgments whose
postconditions refer to specific locations, such as in the aforementioned counterexample.

The two-stage construction presented above, for building Separation Logic triples on top of the
standard big-step judgment via the baked-in frame rule technique, can be applied to deterministic
languages or to languages that are deterministic up to the choice of memory addresses. In what
follows, we show that, by grounding Separation Triples not on top of standard big-step semantics
but instead on top of omnisemantics, we can avoid the need to go through the two-stage construc-
tion associated with the baked-in frame rule technique. Moreover, the omnisemantics construction
applies to the general case of nondeterministic semantics, and it unfolds similarly for both total-
and partial-correctness triples.

5.2 Definition of Hoare Triples w.r.t. Omni-Big-Step Semantics

Consider a possibly nondeterministic semantics. A total-correctness Hoare triple {H } t {Q} asserts
that, for any input state s satisfying the preconditionH , every possible execution of t/s terminates
and satisfies the postconditionQ . This property can be captured using the inductive omni-big-step
judgment as follows:

Hoare {H } t {Q} ≡ ∀s . H s ⇒ (t/s ⇓ Q)

Note that an omni-big-step judgment may be interpreted as a particular Hoare triple, featuring a
singleton precondition to constrain the input state:(

t/s ⇓ Q
)

⇐⇒ Hoare {(λs ′. s ′ = s)} t {Q}

A partial-correctness Hoare triple asserts that, for any input state s satisfying the preconditionH ,
every possible execution of t/s either diverges or terminates and satisfies the postcondition. This
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property can be captured using the coinductive omni-big-step judgment as follows:

Hoare, partial correctness {H } t {Q} ≡ ∀s . H s ⇒ (t/s ⇓co Q)

Note that instantiating Q with the always-false predicate in the partial-correctness triple yields a
characterization of programs whose execution always diverges—and never gets stuck.

Throughout the rest of this section, we present results for total correctness. We write {H } t {Q}

for the definition of Hoare {H } t {Q} given above. As we show, these triples inherently satisfy the
frame rule and hence yield a Separation Logic. All the corresponding results for partial correctness
hold and may be found in our Coq formalization.

5.3 Deriving Reasoning Rules for Hoare Triples

In a foundational program logic, reasoning rules take the form of lemmas proved correct with
respect to the definition of triples and with respect to the semantics of the language. Consider,
for example, the case of a let-binding. Let us compare the semantics rule omni-big-let with the
Hoare-logic rule hoare-let, which are shown below. Throughout this section, we formulate rules
by viewing postconditions as predicates of type val → state → Prop, as this presentation style
is more idiomatic in program logics. We also present reasoning rules using the horizontal bar, but
keep in mind that the statements are not inductive definitions but lemmas.

omni-big-let
t1/s ⇓ Q1(∀v ′s ′. Q1v

′ s ′ ⇒ ([v ′/x] t2)/s
′ ⇓ Q

)

(letx = t1 in t2)/s ⇓ Q

hoare-let
{H } t1 {Q1}(∀v ′. {Q1v

′} ([v ′/x] t2) {Q}
)

{H } (letx = t1 in t2) {Q}

The only difference between omni-big-let and hoare-let is that the first rule considers one spe-
cific state s , whereas the second rule considers a set of possible states satisfying the preconditionH .
By exploiting the fact that {H } t {Q} is defined as ∀s . H s ⇒ (t/s ⇓ Q), it is straightforward to
establish that hoare-let is a consequence of omni-big-let. The corresponding Coq proof script
witnesses the simplicity of the proof: “intros. eapply mbig_let; eauto.”

Likewise, we derive a version of the bind rule, which generalizes the let-binding rule (recall
Section 2.5). For the reasoning rule, shown below, we purposely do not include the premise
¬ value t .
omni-big-bind

¬ value t
t/s ⇓ Q1

(∀vs ′. Q1v s
′ ⇒ E[v] / s ′ ⇓ Q

)

E[t] / s ⇓ Q

hoare-bind
{H } t {Q1}

(∀v . {Q1v} E[v] {Q}
)

{H } E[t] {Q}

As another example, consider the consequence rule. The Hoare-logic rule is, again, an immediate
consequence of the omni-big-step rule.

omni-big-conseqence
t/s ⇓ Q Q ⊆ Q ′

t/s ⇓ Q ′

hoare-conseqence
H ′ ⊆ H {H } t {Q} Q ⊆ Q ′

{H ′} t {Q ′}

5.4 Deriving the Frame Rule of Separation Logic

We next explain how to derive the frame rule for total-correctness triples. To that end, we first
need to state and prove a key lemma capturing the preservation of the omni-big-step judgment
t/s1 ⇓ Q when the input state s1 is augmented with a disjoint piece of state s2. We write s1 ⊥ s2
to assert that s1 and s2 have disjoint domains.
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Lemma 5.1 (Frame Property for Big-step Omnisemantics).

t/s1 ⇓ Q s1 ⊥ s2

t/(s1 � s2) ⇓ (Q .� (λs ′. s ′ = s2))
omni-big-frame

Proof. The proof is carried out by induction on the omnisemantics judgment. There are two
interesting cases in the proof: the treatment of an allocation (four lines of Coq script) and that of
a let-binding (three lines of Coq script). In each case, we assume s1 ⊥ s2.

Case 1: t is refv . The assumption is (refv)/s1 ⇓ Q . It is derived by the rule omni-big-ref, whose
premise is ∀p � dom s1. Q p (s1[p := v]). We need to prove (refv)/(s1 � s2) ⇓ (Q .� (λs ′. s ′ = s2)).
By omni-big-ref, we need to justify ∀p � dom (s1 � s2). (Q .� (λs ′. s ′ = s2))p ((s1 � s2)[p := v]).
Consider a location p not in dom s1 nor in dom s2. The predicate (Q .� (λs ′. s ′ = s2))p is equivalent
to (Q p) � (λs ′. s ′ = s2). The state update (s1 � s2)[p := v] is equivalent to (s1[p := v]) � s2. Thus,
there remains to prove ((Q p) � (λs ′. s ′ = s2)) ((s1[p := v]) � s2). By definition of separating
conjunction and exploiting (s1[p := v]) ⊥ s2, it suffices to show Q p (s1[p := v]). This fact follows
from ∀p � dom s1. Q p (s1[p := v]).

Case 2: t is “letx = t1 in t2”. The assumption is t/s1 ⇓ Q . It is derived by the rule omni-
big-let, whose premises are t1/s1 ⇓ Q1 and ∀v ′s ′. Q1v

′ s ′ ⇒ ([v ′/x] t2)/s
′ ⇓ Q . We need to

prove (letx = t1 in t2)/(s1 � s2) ⇓ (Q .� (λs ′. s ′ = s2)). To that end, we invoke omni-big-let. For
its first premise, we prove t1/(s1 � s2) ⇓ (Q1 .� (λs ′. s ′ = s2)) by exploiting the induction hypoth-
esis applied to t1/s1 ⇓ Q1. For the second premise, we have to prove ∀v ′s ′′. (Q1 .� (λs ′. s ′ =
s2))v

′ s ′′ ⇒ ([v ′/x] t2)/s
′′ ⇓ (Q .� (λs ′. s ′ = s2)). Consider a particular v ′ and s ′′. The assump-

tion (Q1 .� (λs ′. s ′ = s2))v
′ s ′′ is equivalent to ((Q1v

′) � (λs ′. s ′ = s2)) s
′′. By definition of

separating conjunction, we deduce that s ′′ decomposes as s ′1 � s2, with s ′1 ⊥ s2 and Q1v
′ s ′1,

for some s ′1. There remains to prove ([v ′/x] t2)/(s
′
1 � s2) ⇓ (Q .� (λs ′. s ′ = s2)). We first exploit

∀v ′s ′. Q1v
′ s ′ ⇒ ([v ′/x] t2)/s

′ ⇓ Q , on Q1v
′ s ′1 to obtain ([v ′/x] t2)/s

′
1 ⇓ Q . We then conclude

by applying the induction hypothesis to the latter judgment. �

Lemma 5.2 (Frame Rule).

{H } t {Q}

{H �H ′} t {Q .�H ′}
frame

where Q .�H ≡ λv . (Qv �H )

Proof. Assume {H } t {Q}. Recall from Section 5.2 that this judgment is defined as ∀s . H s ⇒
(t/s ⇓ Q). We have to prove {H �H ′} t {Q .�H ′}, that is, ∀s . (H �H ′) s ⇒ (t/s ⇓ (Q .�H ′)).
Consider a particular s such that (H�H ′) s . By definition of separating conjunction, we can deduce
that the input state s decomposes as s1 � s2, with s1 ⊥ s2 and H s1 and H ′ s2. The goal is to prove
t/(s1 � s2) ⇓ (Q .�H ′). By exploiting ∀s . H s ⇒ (t/s ⇓ Q) on H s1, we derive t/s1 ⇓ Q . By
invoking the lemma omni-big-frame on this judgment and on s1 ⊥ s2, we derive t/(s1 � s2) ⇓

(Q .� (λs ′. s ′ = s2)). From there, to obtain the conclusion t/(s1 � s2) ⇓ (Q .�H ′), it suffices to exploit
the consequence rule omni-big-conseqence and justify that (λs ′. s ′ = s2) entails H ′. In other
words, we need to show that for any state s ′ being equal to s2, this state s ′ does satisfy H ′. Indeed,
H ′ s2 holds. (The Coq proof script for this lemma is four lines long.) �

In summary, the above proofs establish the frame property for the omni-big-step semantics and
for the triples that we build on top of that semantics. Those results hold for the imperative λ-
calculus that we have considered in this article. We believe that these results could be similarly
established for other programming languages for which a Separation Logic can be set up. For
example, we proved that the frame property holds for the omni-big-step semantics involved in the
case study presented in Section 6.3.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 5. Publication date: March 2023.



Omnisemantics: Smooth Handling of Nondeterminism 5:23

5.5 Deriving Weakest-Precondition-Style Reasoning Rules

The weakest-precondition operator, written wp t Q , computes the weakest predicate H for which
the triple {H } t {Q} holds. Here, “weakest” is interpreted w.r.t. the entailment relation, written
H � H ′ and defined as pointwise predicate implication (∀s .H s ⇒ H s ′). Weakest reasoning rules
are expressed as entailments. See, e.g., the rule for let-bindings and the bind rule shown below.

wp-let

wp t1
(
λv ′.wp ([v ′/x] t2)Q

)
� wp (letx = t1 in t2)Q

wp-bind

wp t
(
λv .wp (E[v])Q

)
� wp (E[t])Q

Many proof tools simply axiomatize the weakest-precondition rules. In a foundational approach,
however, one needs to prove the reasoning rules correct with respect to the formal semantics of
the source language.

What is very appealing about describing the semantics of the language using an omni-big-step
semantics is that it delivers the weakest-precondition-style reasoning rules almost for free. Indeed,
the interpretation of the inductive judgment t/s ⇓ Q matches, up to the order of arguments, the
standard interpretation of the weakest-precondition operator.

wp t Q s ⇐⇒ t/s ⇓ Q

Thus, in a foundational approach, we can formally define wp as λtQs . (t/s ⇓ Q).
There remains to describe how the weakest-precondition-style reasoning rules can be derived

from the omni-big-step evaluation rules. Doing so is even easier than for deriving triples. Consider,
for example, the semantics rule and the wp-reasoning rule associated with a let-binding.

t1/s ⇓ Q1
(∀v ′s ′. Q1v

′ s ′ ⇒ ([v ′/x] t2)/s
′ ⇓ Q

)

(letx = t1 in t2)/s ⇓ Q
omni-big-let

To derive the rule wp-let from omni-big-let, it suffices to instantiate Q1 as λv1.wp ([v1/x] t2)Q .
The frame rule in weakest-precondition style follows directly from the omni-big-frame lemma

established in the previous section. The rule appears below, together with a very handy corollary
named the ramified frame rule [Hobor and Villard 2013; Krishnaswami et al. 2010]. In that
corollary, the magic wand between postconditions, writtenQ1 .–� Q2, is defined as ∀∀v .Q1v −�Q2v ,
where ∀∀ and −� are the standard Separation Logic operators (see, e.g., [Charguéraud 2020,
Sections 3.2 and 7]).

wp-frame

(wp t Q)�H � wp t (Q .�H )

wp-ramified-frame

(wp t Q) � (Q .–� Q ′) � (wp t Q ′)

For most other term constructs, the wp rule is nothing but a copy of the omni-big-step rule
with arguments reordered. One interesting exception is that of loops. “While” loops have not been
discussed so far, but they appear in the language used for the case studies in Section 6. Typically,
standard weakest-precondition rules for while loops are stated using loop invariants. In contrast,
an omni-big-step rule essentially unfolds the first iteration of the loop, just like in a standard big-
step semantics. From that unfolding rule, one can derive the loop-invariant-based rule by induction,
in just a few lines of proof.

In summary, by considering a semantics expressed in omni-big-step style, one can derive practi-
cal reasoning rules, both in Hoare-triple style and in weakest-precondition style, in most cases via
one-line proofs. The construction of a program logic on top of an omni-big-step semantics is thus
a significant improvement, both over the use of a standard big-step semantics, which falls short
in the presence of nondeterminism, and over the use of a small-step semantics, which requires
much more work for deriving the reasoning rules, especially if one aims for total correctness.
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Besides, a major benefit of considering an omni-big-step semantics is that, unlike a set of weakest-
precondition reasoning rules, it delivers an induction principle for reasoning about program exe-
cutions. Such induction principles are exploited in the case studies (Section 6).

6 COMPILER-CORRECTNESS PROOFS FOR TERMINATING PROGRAMS

Omnisemantics also simplify some of the characteristic complexities of behavior-preservation
proofs for compilers.

6.1 Motivation: Avoiding Both Backward Simulations and Artificial Determinism

Following CompCert’s terminology [Leroy 2009], one particular evaluation of a program can admit
one out of four possible behaviors: terminate (with a value, an exception, a fatal error, etc.), trigger
undefined behavior, diverge silently after performing a finite number of I/O operations, or be reactive

by performing an infinite sequence of I/O operations. Whether an error such as a division by zero
is considered as a terminating behavior or as an undefined behavior is a design decision associated
with each programming language. A general-purpose compiler ought to preserve behaviors, except
that undefined behaviors can be replaced with anything.

In this article, we focus on proofs of compiler correctness for programs that always terminate
safely. Such a result is sufficient for many practical applications in software verification where
source programs are proven to be safe, and often, the only use case for nontermination is a top-
level infinite event-handling loop, which can be implemented in assembly language [Erbsen et al.
2021]. We leave to future work the application of omnisemantics to the correct compilation of
programs that diverge, react, or trigger undefined behavior on some inputs but not others.

In the particular case of a deterministic programming language, compiler correctness for ter-
minating programs can be established via a forward-simulation proof.7 Such a proof consists of
showing that each step from the source program corresponds to a number of steps in the compiled
program. The correspondence involved is captured by a relation between source states and target
states. Such forward-simulation proofs work well in practice. The main problem is that they do
not generalize to nondeterministic languages.

Indeed, in the presence of nondeterminism, a source program may have several possible execu-
tions. As we restrict ourselves to the case of terminating programs, let us assume that all executions
of the source program terminate, only possibly with different results. In that setting, a compiler
is correct if (1) the compiled program always terminates and (2) for any result that the compiled
program may produce, the source program could have produced that result. It may not be intuitive
at first, but the inclusion is indeed backwards: the set of behaviors of the target program must be
included in the set of behaviors of the source program.

To establish the backward behavior inclusion, one may set up a backward-simulation proof. Such
a proof consists of showing that each step from the target program corresponds to one or more
steps in the source program.8 Yet, backward simulations are much more unwieldy to set up than
forward simulations. Indeed, in most cases one source-program step is implemented by multiple
steps in the compiled program, and thus a backward-simulation relation typically needs to relate
many more pairs than a forward-simulation relation.

7We follow CompCert’s terminology, using “forward” and “backward” to refer to the direction of compilation, “forward”
meaning from source language to target language. We note the conflict with other literature [Lynch and Vaandrager 1995]
that uses “forward” and “backward” to refer to the direction of the state transitions.
8The number of corresponding steps in the source program should not be zero; otherwise the target program could diverge,
whereas the source program terminates. In practice, however, it is not always easy to find one source-program step that
corresponds to a target-program step. In such situations, one may consider a generalized version of backward simulations
that allow for zero source-program steps, provided that some well-founded measure decreases [Leroy 2009].
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This observation motivated the CompCert project [Leroy 2009] to exploit forward simulations
as much as possible, at the cost of modeling features of the intermediate language as deterministic
even when it is not natural to do so, and even when doing so requires introducing artificial func-
tions for, e.g., computing fresh memory locations in a deterministic manner. Even so, runtime input
does not fit the fully deterministic model, leading to the technical definitions of receptiveness and
determinacy (roughly, capturing the idea of determinism modulo input) so that lemmas for flip-
ping forward simulations into backwards simulations can be stated and proven. Omnisemantics
remove the need for this machinery.

In this section:

• We explain how omnisemantics sidestep the need for backward simulations, by carrying out
forward-simulation proofs of compiler correctness, for nondeterministic terminating pro-
grams.

• We show how the idea generalizes to languages including I/O operations and to the case
where the source language and target language are different.

• We present two case studies: one transformation that increases the amount of nondetermin-
ism and one that decreases the amount of nondeterminism.

• We comment on the fact that our second case study features an omni-big-step semantics
for the source language, whereas it features an omni-small-step semantics for the target
language.

6.2 Establishing Correctness via Forward Simulations using Omnisemantics

Consider a compilation function written C(t). For simplicity, we assume that the source and target
language are identical, we assume that compilation does not alter the result values, and we assume
the language to be state-free—we will generalize the results in the next subsection. In this subsec-
tion, t ⇓ v denotes the standard big-step judgment, t ⇓ Q denotes the omni-big-step judgment,
and terminates(t) asserts that all executions of t terminate safely, without undefined behavior.
The compiler-correctness result for terminating programs captures preservation of termination
and backward inclusion for results—points (1) and (2) stated earlier.

correctness-for-terminating-programs:
terminates(t) ⇒ terminates(C(t)) ∧

(∀v . C(t) ⇓ v ⇒ t ⇓ v
)

We claim that this correctness result can be derived from the following statement, which de-
scribes forward preservation of specifications:

omni-forward-preservation: ∀Q . t ⇓ Q ⇒ C(t) ⇓ Q

Let us demonstrate the claim. Let us assume that terminates(t) hold. First of all, recall from
Section 2.2 the equivalence named omni-big-step-iff-terminates-and-correct that relates the
omni-big-step judgment and the termination judgment.

t ⇓ Q ⇐⇒ terminates(t) ∧
(∀v . (t ⇓ v) ⇒ v ∈ Q

)

Exploiting this equivalence, the omni-forward-preservation assumption reformulates as fol-
lows:

∀Q . (
terminates(t) ∧

(∀v . (t ⇓ v) ⇒ v ∈ Q
) )

⇒
(
terminates(C(t)) ∧

(∀v . (C(t) ⇓ v) ⇒ v ∈ Q
) )

The hypothesis terminates(t) holds by assumption. Let us instantiate Q as the strongest post-
condition for t , that is, as the set {v | (t ⇓ v)}. We obtain(∀v . (t ⇓ v) ⇒ (t ⇓ v)

)
⇒ terminates(C(t)) ∧

(∀v . (C(t) ⇓ v) ⇒ (t ⇓ v)
)

The premise is a tautology, and the conclusion proves correctness-for-terminating-programs.
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Fig. 5. Omni-big-step semantics with traces, selected rules.

6.3 Omnisemantics Simulations for I/O and Cross-Language Compilation

More generally, the behavior of a terminating program consists of the final result and its interac-
tions with the outside world (input and output). These interactions include, e.g., interaction with
the standard input and output streams, system calls, and so forth. Each interaction is called an
event, and the semantics judgment is extended to collect such events into a trace τ . Figure 5 shows
three illustrative cases of how the rules from Figure 2 are augmented with traces, making the
choice to treat rand calls as observable events while reference-allocation nondeterminism remains
internal.

Requiring a compiler to preserve only the nondeterministic choices recorded in the trace en-
ables us to pick and choose which (external) interactions must be preserved by compilations and
which (internal) nondeterministic choices the compiler may resolve as it sees fit. As a particu-
larly fine-grained example, the trace might record that malloc was called and succeeded but omit
the pointer it returned, to allow for optimizations that reduce the amount of allocation. To our
knowledge, this level of flexibility is unique to omnisemantics. For a forward-simulation-based
compiler-correctness proof, constructing a deterministic model of all internal nondeterminism can
be arbitrarily complicated (the CompCert memory model is an example).

We restrict our attention to semantics that only accept terminating commands c that do not go
wrong and do not return values, for the rest of this section. For languages of terms (that return
values) rather than commands (that do not return values), we would need a representation relation
between source-level and target-level values—we omit one here for brevity, but Section 6.4 tackles
a similar challenge. In the current setting, behavior inclusion holds between a source-language pro-
gram and a target-language program if all traces that the target-language program can produce
(according to traditional small-step or big-step semantics) can also be produced by the source-
language program. More formally, we define the traces that can be produced from a starting con-
figuration c/s/τ as

traces(c, s,τ ) := {τ ′ | ∃s ′. c/s/τ ⇓ s ′/τ ′}

and say that a compiler C satisfies behavior inclusion for a command starting from the initial
source-level state ssrc related to the initial target-level state stgt and initial trace τ if TraceInclu-
sion as defined below holds.

TraceInclusion(c, ssrc, stgt,τ ) := traces(C(c), stgt,τ ) ⊆ traces(c, ssrc,τ )

Assuming omni-big-step semantics ⇓src and ⇓tgt for the source and target languages, plus a rela-
tionR between source- and target-language states, we define omnisemantics simulation, a compiler-
correctness criterion designed to be provable by induction on the ⇓src judgment, as follows:

OmnisemanticsSimulation(c) := ∀ssrc stgt τ Q . R(ssrc, stgt) ∧ c/ssrc/τ ⇓src Q
=⇒ C(c)/stgt/τ ⇓tgt QR

where QR (s
′
tgt, τ

′) := ∃s ′src . R(s ′src, s ′tgt) ∧Q(s ′src,τ
′)
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Our goal in this section is to prove that an omnisemantics simulation implies trace inclusion if
the source program terminates, i.e., to show

∀c . OmnisemanticsSimulation(c) =⇒
∀ ssrc stgt τ . terminates(c, ssrc,τ ) ∧ R(ssrc, stgt) =⇒ TraceInclusion(c, ssrc, stgt,τ )

We rely on two properties: First, soundness of omni-big-step semantics with respect to traditional
big-step semantics:

∀c s s ′ τ τ ′ Q . c/s/τ ⇓ s ′/τ ′ ∧ c/s ⇓ Q =⇒ Q(s ′,τ ′) (1)

And conversely, that a program that terminates safely and whose traditional big-step executions
all satisfy a postcondition also has an omnisemantics derivation:

∀c s τ Q . terminates(c, s,τ ) ∧ (∀s ′ τ ′. c/s/τ ⇓ s ′/τ ′ =⇒ Q(s ′,τ ′)) =⇒ c/s/τ ⇓ Q (2)

To show trace inclusion, i.e., traces(C(c), stgt,τ ) ⊆ traces(c, ssrc,τ ), we can assume a target-
language execution C(c)/stgt/τ ⇓ s ′tgt/τ

′ producing trace τ ′, and we need to show τ ′ ∈

traces(c, ssrc,τ ). By applying Equation (2) to the source program (whose termination we assume)
and setting Q(s ′src,τ

′) := c/ssrc/τ ⇓ s ′src/τ
′ so that the second premise becomes a tautology, we ob-

tain the source-level omnisemantics derivation c/ssrc/τ ⇓ (λs ′src τ
′. c/ssrc/τ ⇓ s ′src/τ

′). Passing this
fact into the omnisemantics simulation yields C(c)/stgt/τ ⇓ (λs ′tgt τ

′.∃s ′src.R(s ′src, s ′tgt) ∧ c/ssrc/τ ⇓

s ′src/τ
′). Now we can apply Equation (1) to this fact and the originally assumed target-level exe-

cution and obtain an s ′src such that R(s ′src, s
′
tgt) and c/ssrc/τ ⇓ s ′src/τ

′, which by definition is exactly
what needs to hold to have τ ′ ∈ traces(c, ssrc,τ ).

6.4 Case Study: Compiling Immutable Pairs to Heap-Allocated Records

This section describes a simple compiler pass that increases the amount of nondeterminism. The
source language assumes a primitive notion of tuples, whereas the target language encodes such
tuples by means of heap allocation. This case study is formalized with respect to a language based
on commands whose arguments all must be variables. Such a language could be an intermediate
language in a compiler pipeline, reached after an expression-flattening phase.

Language syntax. We let c denote a command; x , y, and z denote identifiers; and n denote un-
bounded natural-number constants. The grammar of the language is as follows:

c := x = unop(y) | x = binop(y, z) | x = input() | output(x) | x = y[n] | x[n] = y |

x = alloc(n) | x = n | x = y | c1; c2 | if x then c1 else c2 | while x do c | skip

We actually consider two variants of this language, differing only in the types of values and in
the available unary operators unop and binary operators binop. The source language features an
inductively defined type of values that can be natural numbers n or immutable pairs of values (i.e.,
the grammar of values is v := n | (v,v)). It includes as unary operators the projection functions
fst and snd (defined only on pairs) and the Boolean negation not (defined only on {0, 1}). Its bi-
nary operators are addition (+) and pair creation mkpair. The target language admits only natural
numbers as values. It includes only the negation and addition operators.

Omni-big-step semantics. For both languages, the omni-big-step evaluation judgment takes the
form c/m/�/τ ⇓ Q , where c is a command,m is a memory state (a partial map from natural numbers
to natural numbers), � is an environment of local variables (a partial map from identifiers to values,
whose type differs between the source and target languages as described above), τ denotes the
I/O trace made of the events already performed before executing c , and the postcondition Q is
a predicate over triples of the form (m′, �′,τ ′). A trace consists of a list of I/O events e whose
grammar is e := IN n | OUT n.
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Fig. 6. Nondeterministic omni-big-step semantics for an imperative language (selected rules).

The rules defining the judgment appear in Figure 6. They are common to both languages—only
the set of supported unary and binary operators differs. The semantics of operators are defined
by two straightforward auxiliary relations (spelled out in Appendix H), evalunop(unop,v1,v2) as-
serting that applying unop to value v1 results in v2, and evalbinop(binop,v1,v2,v3) asserting that
applying binop to v1 and v2 results in v3. The load command x = y[n] requires that the local vari-
abley contains a natural number a and stores the value of the memory at address a+n into variable
x (and is undefined if a +n is not mapped by the memory). The store command x[n] = y stores the
natural number contained in the local variable y at memory location a + n, where a is the address
contained in local variable x , but only if memory at address a + n has already been allocated.

The command x = input() reads a natural number n, stores it into local variable x , and adds
the event (IN n) to the event trace. The number n is chosen nondeterministically but recorded in
the trace, resulting in external nondeterminism. The language has a built-in memory allocator, but
for simplicity, we do not deal with deallocation. The command x = alloc(n) nondeterministically
picks an address (natural number) a such that a, as well as the n − 1 addresses following a, are
not yet part of the memory; initializes these addresses with nondeterministically chosen values;
and returns a. This rule encodes internal nondeterminism, because this action is not recorded in
the event trace. Semantics of while loops are given by sequencing the first iteration with the loop
itself as long as the loop test succeeds.

In practice, we found it convenient also to derive a chained version eval-seq-chained of the
omni-big-step rule eval-seq, just like we did for omni-small-step rules in Section 3.2.

eval-seq-chained : c1/m/�/τ ⇓
(
λm′�′τ ′. (c2/m

′/�′/τ ′ ⇓ Q)
)

⇒ (c1; c2)/m/�/τ ⇓ Q

Note that the chained variant cannot be used to define the judgment inductively in Coq due to
the strict positivity requirement; more details on encoding choices can be found in Appendix A.

Compilation function. The compilation function C lays out the pairs of the source language
on the heap memory of the target language. This function is defined recursively on the source
program. It maps the source-language operators that are not supported by the target language as
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follows:

C(x = fst(y)) := x = y[0]
C(x = snd(y)) := x = y[1]
C(x = mkpair(y, z)) := tmp = alloc(2); tmp[0] = y; tmp[1] = z; x = tmp

Note that to compile mkpair, we cannot simply store the address returned by alloc directly into x ,
because if x is the same variable name as y or z, then we would be overwriting the argument. For
this reason, we use a temporary variable tmp that we declare to be reserved for compiler usage.

Simulation relation. To carry out the proof of correctness of the function C(c), we introduce
a simulation relation R for relating a source-language state (m1, �1) with a target-language state
(m2, �2). To that end, we first define the relation valuerepr(v,w,m), to relate a source-language
value v with the corresponding target-language value w , in a target-language memory m. This
relation is implemented as the recursive function shown below—it could equally well consist of
an inductive definition. A pair (v1,v2) is represented by address w if recursively v1 is represented
by the value at address w , and v2 is represented by the value at address w + 1. A natural number
n has the same representation on the target-language level; i.e., we just assert w = n.

valuerepr((v1,v2),w,m) := (∃w1. (w,w1) ∈m ∧ valuerepr(v1,w1,m)) ∧

(∃w2. (w + 1,w2) ∈m ∧ valuerepr(v2,w2,m))

valuerepr(n,w,m) := w = n

The relationship R between source and target states can then be defined using valuerepr. In the
definition shown below, we write m2 ⊇ m1 to mean that memory m2 extends m1, and we write
m2 \m1 to denote the map-subtraction operator that restricts m2 to contain only addresses not
bound in m1. The locations bound by m2 but not by m1 correspond to the memory addresses of
the pairs allocated on the heap in the target language.

R((m1, �1), (m2, �2)) := tmp � dom �1 ∧m2 ⊇ m1∧

∀(x ,v) ∈ �1. ∃w . (x ,w) ∈ �2 ∧ valuerepr(v,w,m2 \m1)

Correctness proof. We are now ready to tackle the omni-forward-simulation proof.

Theorem 6.1 (Omnisemantics Simulation for the Pair-heapification Compiler).

∀c msrc �src mtgt �tgt τ Q . tmp � vars(c) ∧ R((msrc, �src), (mtgt, �tgt)) ∧

c/msrc/�src/τ ⇓src Q =⇒
C(c)/mtgt/�tgt/τ ⇓tgt QR

where QR (m
′
tgt, �

′
tgt, τ

′) := ∃m′
src �

′
src . R((m

′
src, �

′
src), (m

′
tgt, �

′
tgt)) ∧Q(m′

src, �
′
src, τ

′)

Proof. By induction on the derivation of c/msrc/�src/τ ⇓ Q . In each case, the goal to prove is ini-
tially of the form C(c)/mtgt/�tgt/τ ⇓ QR , where c has some structure that allows us to simplify C(c)
into a more concrete program snippet. We consider the resulting simplified goal as an invocation
of a weakest-precondition generator on that program snippet, and we view the rules of Figure 6 as
weakest-precondition rules that we can apply in order to step through the program snippet, using
the hypotheses obtained from inverting the source-level derivation c/msrc/�tgt/τ ⇓ Q to discharge
the side conditions that arise. Whenever we encounter a sequence of commands, we use eval-seq-
chained instead of eval-seq, so that we do not have to provide an intermediate postcondition.
In the cases where commands have subcommands, we use the inductive hypotheses about their
execution as if they were previously proven lemmas about these “functions.”

We only present the case where c = (x = mkpair(y, z)) in more detail: we have to prove a goal
of the form C(x = mkpair(y, z))/mtgt/�tgt/τ ⇓ QR , which simplifies to

(tmp = alloc(2); tmp[0] = y; tmp[1] = z;x = tmp)/mtgt/�tgt/τ ⇓ QR
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Applying eval-seq-chained turns it into

(tmp = alloc(2))/mtgt/�tgt/τ ⇓
(
λm′

tgt �
′
tgt τ

′. (tmp[0] = y; tmp[1] = z;x = tmp)/m′
tgt/�

′
tgt/τ

′ ⇓ QR

)

Applying eval-alloc turns it into

∀ a v . len(v) = 2 =⇒ a,a + 1 � dommtgt =⇒

(tmp[0] = y; tmp[1] = z;x = tmp)/mtgt[a..(a + 1) := v]/�tgt[tmp := a]/τ ⇓ QR

Note how the fact that the address a and the list of initial values v are chosen nondeterministi-
cally naturally shows up as a universal quantification, and note how the memory and locals appear-
ing in the state to the left of the ⇓ have been updated by the alloc function. After introducing these
universally quantified variables and the hypotheses, we again have a goal of the form “. . . ⇓ . . . ”
and continue by applying eval-seq-chained, eval-store, eval-seq-chained, eval-store, eval-
set. Finally, we prove QR for the locals and memory updated according to the various eval-. . .
rules that we applied by using map laws and the initial hypothesis R((msrc, �src), (mtgt, �tgt)). �

6.5 Case Study: Introduction of Stack Allocation

This second case study illustrates the case of a transformation that reduces the amount of nonde-
terminism. The transformation consists of adding a stack-allocation feature to the compiler devel-
oped by Erbsen et al. [2021]. Proving this transformation correct using an omni-big-step forward
simulation was straightforward and took us only a few days of work—most of the work was not

concerned with dealing with nondeterminism. This smooth outcome is in stark contrast to the
outlook of using traditional evaluation judgments: verifying the same transformation would have
required either more complex invariants, to set up a backward simulation, or completely rewriting
the memory model so that pointers are represented by deterministically generated unobservable
identifiers, to allow for a compiler-correctness proof by forward simulation. In fact, addressable
stack allocation was initially omitted from the language exactly to avoid these intricacies (based
on the experience from CompCert), but switching to omnisemantics made its addition local and
uncomplicated.

The input language is an imperative command language similar to the one described in
Section 6.4. The memory is modeled as a partial map from machine words (32-bit or 64-bit in-
tegers) to bytes. The stack-allocation feature here consists of a command let x = stackalloc(n) in c
made available in the source language. This command assigns an address to variable x at which
n bytes of memory will be available during the execution of command c . Our compiler extension
implements this command by allocating the requested n bytes on the stack, computing the address
at runtime based on the stack pointer.

The key challenge is that the source-language semantics does not feature a stack. The stack gets
introduced further down the compilation chain. Thus, the simplest way to assign semantics to the
stackalloc function in the source language is to pretend that it allocates memory at a nondeter-

ministically chosen memory location. This nondeterministic choice is described using a universal
quantification in the omni-big-step rule shown below, like in rule omni-big-ref from Section 2.

∀mnew a. (dommnew ∩ domm) = � ∧ dommnew = [a,a + n) =⇒

c/(m ∪mnew)/�[x := a]/τ ⇓ λm′ �′ τ ′. P(m′ \mnew, �
′, τ ′)

(let x = stackalloc(n) in c)/m/�/τ ⇓ P
omni-big-stackalloc

In the source language, the address returned by stackalloc is picked nondeterministically,
whereas in the target language the address used for the allocation is deterministically computed,
as the current stack pointer augmented with some offset. Thus, the compiler phase that compiles
away the stackalloc command reduces the amount of nondeterminism.
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Compiler-correctness proof. The compiler-correctness proof proceeds by induction on the om-
nisemantics derivation for the source language, producing a target-language execution with a re-
lated postcondition. The simulation relation R describes the target-language memory as a disjoint
union of unallocated stack memory and the source-language memory state. Critically, the case
for stackalloc has access to a universally quantified induction hypothesis (derived from the rule
shown above) about target-level executions of C(c) for any address a.

As the address of the stack-allocated memory is not recorded in the trace, we are free to in-
stantiate it with the specific stack-space address, expressed in terms of compile-time stack-layout
parameters and the runtime stack pointer. Re-establishing the simulation relation to satisfy the
precondition of that induction hypothesis then involves carving out the freshly allocated memory
from unused stack space and considering it a part of the source-level memory instead, matching
the compiler-chosen memory layout and the preconditions of the stackalloc omnisemantics rule. It
is this last part that made up the vast majority of the verification work in this case study; handling
the nondeterminism itself is as straightforward as it gets.

Note that it would not be possible to complete the proof by instantiating a with a compiler-
chosen offset from the stack pointer if the semantics recorded the value of a in the trace. The
(unremarkable) proof for the input command in the previous section also has access to a universally
quantified execution hypothesis, but it must directly instantiate its universally quantified induction
hypothesis with the variable introduced when applying the target-level omnisemantics input rule
to the goal, to match the target-language trace to the source-language trace. Either way, reasoning
about the reduction of nondeterministim in an omni-forward-preservation proof boils down to
instantiating a universal quantifier.

Design decisions around proving absence of out-of-memory. In the verified software-hardware
stack described in Erbsen et al. [2021], the main bottleneck in terms of complexity that prevents
us from developing bigger applications is the level of proof automation available for verification of
mundane aspects of source programs such as address arithmetic. Therefore, we made an effort to
avoid adding more proof obligations in the program logic whenever possible. At the same time, for
the targeted application it was fine to limit the expressivity of the source language. In particular,
we decided that disallowing recursive calls is acceptable. Given that setting, we want to avoid
reasoning about out-of-memory conditions in the source language, while still proving that the
compiled program will not run out of memory, which we can achieve as follows.

In the omni-big-stackalloc rule of our source language, we deliberately use a vacuous uni-
versal quantification if we run out of memory, because we prefer to handle out-of-memory con-
ditions outside of the omnisemantics judgment, in an additional external judgment. In particular,
this means that if omni-big-stackalloc is applied with a memorym whose domain already con-
tains all (or almost all) addresses (which are 32-bit or 64-bit words), there might be no mnew and
a such that the left-hand side of the implication above the line in omni-big-stackalloc holds, so
we can derive any postcondition P , something that we cautioned against in Section 2.2.

Effectively, this means that our source-language evaluation rules do not guarantee that the pro-
gram never runs out of memory. This choice simplifies the program-logic proofs for concrete input
programs but requires additional work in the compiler: the compiler performs a simple static-
analysis pass over the call graph of the program to determine the maximum amount of stack space
that the program needs. Since this analysis rejects recursive calls, the space upper bound is not
hard to compute. The compiler-correctness proof contains an additional hypothesis requiring that
at least that computed amount of memory is available in the state on which the target-language
program begins its execution.

An alternative approach would be to introduce a notion of “amount of used stack space” in the
source-language semantics and include an additional precondition in the omni-big-stackalloc
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rule that requires this amount to be bounded. This approach would put more complexity into the
verification of source programs, while simplifying the compiler-correctness proof. In order to allow
recursive calls and dynamically chosen stack-allocation sizes, reasoning about the amount of stack
space in the program logic seems to become unavoidable, in which case this alternative approach
would be preferable.

6.6 Compilation from a Language in Omni-Big-Step to One in Omni-Small-Step

If the semantics of the source language of a compiler phase are most naturally expressed in omni-
big-step but the target language’s semantics are best expressed in omni-small-step semantics, it
is convenient to prove an omni-forward simulation directly from a big-step source execution to a
small-step target execution. For instance, the compiler in the project by Erbsen et al. [2021] includes
such a translation, relating a big-step intermediate language to a small-step assembly language. In
fact, this translation happens in the same case study described in the previous subsection. In what
follows, we attempt to give a flavor of the proof obligations that arise from switching from omni-
big-step to omni-small-step during the correctness proof.

Consider one sample omni-small-step rule, for the load-word instruction lw that loads the value
at the address stored in register r2 and assigns it to register r1:

asm-lw
(pc, lw r1 r2) ∈m (r2,a) ∈ rf (a,v) ∈m P(m, rf[r1 := v],pc + 1,τ )

m/rf/pc/τ −→ P

Here, we model a machine state stgt as a quadruple of a memorym (that contains both instructions
and data), a register file rf mapping register names to machine words, a program counter pc , and
a trace τ . One can prove an omni-forward simulation from big-step source semantics directly to
small-step target semantics:

∀ssrc stgt P . R(ssrc, stgt) ∧ ssrc ⇓ P =⇒ stgt −→
♦ (λs ′tgt.∃s ′src. R(s ′src, s ′tgt) ∧ P(s ′src))

where R asserts, among other conditions, that the memory of the target state stgt contains the
compiled program.

Like the proof described in Section 6.4, this proof also works by stepping through the target-
language program by applying target-language rules and discharging their side conditions using
the hypotheses obtained by inverting the source-language execution, with the only difference that
instead of using the derived big-step rule eval-seq-chained for chaining, one now uses the fol-
lowing two rules: eventually-step-chained and eventually-cut.

Applying eventually-step-chained turns the goal into an omni-single-small-step goal with
a given postcondition, which is suitable to discharge using rules with universally quantified post-
conditions like asm-lw. Applying eventually-cut, on the other hand, creates two subgoals con-
taining an uninstantiated unification variable for the intermediate postcondition. The unification
variable appears as the postcondition in the first subgoal, so an induction hypothesis with the
concrete postcondition from the theorem statement can be applied. In the second subgoal, this
postcondition becomes the precondition for the remainder of the execution.

7 RELATED WORK

This works builds on that of Schäfer et al. [2016], Charguéraud [2020], and Erbsen et al. [2021],
all of which are discussed in the introduction (Section 1). We now will review some additional
connections.

Relationship to coinductive big-step semantics. Leroy and Grall [2009] argue that fairly complex,
optimizing compilation passes can be proved correct more easily using big-step semantics than
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using small-step semantics. These authors propose to reason about diverging executions using
coinductive big-step semantics, following up on an earlier idea by Cousot and Cousot [1992]. Leroy
and Grall’s judgment, written t/s ⇑co, asserts that there exists a diverging execution of t/s . This
judgment is defined coinductively, and a number of its rules refer to the standard big-step judgment.
For example, consider the two rules associated with divergence of a let-binding. An expression
letx = t1 in t2 diverges either because t1 diverges (rule div-let-1) or because t1 terminates on a
value v1 and the term [v1/x] t2 diverges (rule div-let-2).

t1/s ⇑
co

(letx = t1 in t2)/s ⇑
co div-let-1

t1/s ⇓ v1/s
′ ([v1/x] t2)/s

′ ⇑co

(letx = t1 in t2)/s ⇑
co div-let-2

In contrast, the coinductive omni-big-step judgment involves a single rule, namely co-omni-big-
let, defined as part of the coinductive interpretation of the rules from Figure 2.

t1/s ⇓co Q1
(∀(v1, s

′) ∈ Q1. ([v1/x] t2)/s
′ ⇓co Q

)

(letx = t1 in t2)/s ⇓co Q
co-omni-big-let

In that rule, if Q1 is instantiated as the empty set, the second premise becomes vacuous, and we
recover the rule div-let-1. Otherwise, ifQ1 is nonempty, then it describes the valuesv1 that t1 may
evaluate to. For each possible value v1, the second premise of the rule requires the term [v1/x] t2
to diverge, just like in the rule div-let-2. In summary, co-omni-big-let captures at once the logic
of both div-let-1 and div-let-2.

The article by Leroy and Grall [2009], which focuses on a deterministic semantics, points out
that the principle of excluded middle (classical logic) is required for establishing the equivalence
between a coinductive big-step semantics for divergence and the standard small-step semantics for
divergence. Interestingly, classical logic is not required for establishing the equivalence between a
coinductive omni-big-step semantics of divergence and the standard small-step semantics for diver-
gence. In the explanations that follow, we omit the state for simplicity, and we write t −→∞

co for
the standard small-step divergence judgment, defined as ∀t ′. (t −→∗ t ′) ⇒ ∃t ′′. (t ′ −→ t ′′).

The implication that requires classical logic to be established is (t −→∞
co) ⇒ (t ⇑co). To see

why, consider a term t of the form letx = t1 in t2, where t1 corresponds to a program whose
termination is an open mathematical problem, and where t2 is an infinite loop. Thus, no matter
whether t1 diverges or not, the program letx = t1 in t2 diverges. Yet, to establish the judgment
(letx = t1 in t2) ⇑co, one needs to know whether t1 diverges, in which case the rule div-let-1
applies, or whether t1 terminates, in which case the rule div-let-2 applies. In the general case, one
has to invoke the excluded middle to decide on the termination of an abstract term t1.

In contrast, the implication (t −→∞
co) ⇒ (t ⇓co ∅), which targets a coinductive omni-big-step

semantics, can be proved without classical logic, as pointed out earlier in Section 3.4. Intuitively,
to prove that the same example program letx = t1 in t2 diverges, one can apply the rule co-omni-
big-let, regardless of whether t1 diverges or not. It suffices to instantiateQ1, which denotes the set
of possible results of t1, as the strongest postcondition of t1. The strongest postcondition may be
expressed in terms of the omni-big-step judgment (recall Section 2.2) or equivalently in terms of
the small-step judgment by instantiatingQ1 as {v1 | t1 −→

∗ v1}. In particular, if t1 diverges, then
the set Q1 is empty and the second premise of co-omni-big-let becomes vacuous. What matters
for the proof of equivalence between the small-step semantics and the coinductive omni-big-step
semantics is that we do not need to decide whether Q1 is empty, i.e., whether t1 diverges or not.
We thereby avoid the need for the excluded middle.

Coinductive characterization of safety. Wang et al. [2014] define a safety judgment, written
safe(t , s), to assert that all possible executions of the configuration t/s execute safely, i.e., do not get
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stuck. To reason in big-step style, and to avoid the cumbersome introduction of error-propagation
rules, they consider a coinductive definition. We reproduce below the rule for let-bindings, which
reads as follows: to establish that letx = t1 in t2 executes safely, prove that t1 executes safely and
that, for any possible result v1 produced by t1, the result of the substitution [v1/x] t2 executes
safely.

safe(t1, s)
(∀v1s

′. (t1/s ⇓ v1/s
′) ⇒ safe(([v1/x] t2), s

′)
)

safe((letx = t1 in t2), s)
safe-let (coinductive)

Our judgment t/s ⇓co Q generalizes the notion of safety, by baking the postcondition directly into
the judgment (Section 2.4). It asserts not only that t/s cannot get stuck but also that any potential
final configuration belongs to Q . We formalized in Coq the following equivalence.

omni-co-big-step-iff-safe-and-correct :
t/s ⇓co Q ⇐⇒ safe(t , s) ∧

(∀vs ′. (t/s ⇓ v/s ′) ⇒ (v, s ′) ∈ Q
)

Our rule omni-big-let extends safe-let not just by adding the postcondition Q to the judg-
ment but also by changing the quantification over v1/s

′. In the rule safe-let, the quantification
is constrained by t1/s ⇓ v1/s

′, whereas in the rule omni-big-let, it is constrained by (v1, s
′) ∈ Q1,

whereQ1 denotes the postcondition of t1/s . The key innovation here is that, thanks to the introduc-
tion of postconditions, we no longer need to refer to the standard big-step judgment—the judgment
t/s ⇓ Q gives a stand-alone definition of the semantics of the language.

Semantics of nondeterministic programs. An important aspect of the present article is the setup of
semantics for nondeterministic language constructs. Let us review the key historical papers that
have focused on that task. Nondeterminism appears in the early work on semantics, including
the language of guarded commands of Dijkstra [1976] that admits nondeterministic choice where
guards overlap, and the par construct of Milner [1975]. Plotkin [1976] develops a powerdomain

construction to give a fully abstract model in which equivalences such as (p parq) = (q parp) hold.
Francez et al. [1979] also present semantics that map each program to a representation of the set
of its possible results. In all these presentations, nondeterminism is bounded: only a finite number
of choices are allowed.

Subsequent work generalizes the powerdomain interpretation to unbounded nondeterminism.
For example, Back [1983] considers a language construct x := ϵP that assigns x to an arbitrary
value satisfying the predicate P—the program has undefined behavior if no such value exists. Apt
and Plotkin [1986] address the lack of continuity in the models presented in earlier work, still
leveraging the notion of powerdomains. Their presentation includes a (countable) nondeterminis-
tic assignment operator, written x := ?, that sets x to an arbitrary integer in Z. More recent work
by Tassarotti et al. [2017] heavily relies on the bounded nondeterminism assumption in an exten-
sion of Iris [Jung et al. 2018] for developing a logic to justify program refinement. These authors
speculate that transfinite step-indexing [Schwinghammer et al. 2013; Svendsen et al. 2016] may
allow handling unbounded nondeterminism.

Semantics of reactive programs. One key question is how much of a program’s internal nonde-
terminism should be reflected in its execution trace. At one extreme, one could include a delay

event, a.k.a. a tick, to reflect in the trace each transition performed by the program, following the
approaches of Danielsson [2012]. More recent work on interaction trees [Koh et al. 2019; Xia et al.
2019] maps each program to a coinductive structure featuring ticks in addition to I/O steps. Yet,
these approaches come at the cost of reasoning “up to removal of a finite number of ticks.”

A promising route to avoiding ticks is the mixed inductive-coinductive approach of Nakata and
Uustalu [2010], for distinguishing between reactive programs that always eventually perform I/O
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operations and silently diverging programs that eventually continue executing forever without
performing any I/O. Despite apparent benefits, this approach seems not to have gained popularity
or evaluation in the form of sizable case studies.

Compiler correctness as trace property preservation. Abate et al. [2021] define the notion of source

trace property preservation (denoted TPτ̃ ) to mean that all properties that hold on traces produced
by the source program also hold on traces produced by the target program. They allow different
trace formats in the source and target language, relating the source trace s to a target trace t by
a relation s ∼ t and quantifying over them in the same way as we quantify over the source and
target states in the definition of omnisemantics simulation (Section 6.3). If we instantiate the defini-
tion of Abate et al. [2021] by traces whose single events stand for emitting final states, we obtain
our definition of omnisemantics simulation, and vice versa, if we generalize our definition to also
allow different trace formats but omit the state component, we obtain their definition. However, in-
cluding the state component in our definition makes it directly usable for a forward-style proof by
induction on the source-language derivation, even in the presence of target-language nondetermi-
nacy. We speculate that several proofs of example compilers in that article could be revisited using
omnisemantics. Doing so would not only simplify the proofs but also make the results stronger
by removing the target-language determinacy assumption, which they need to derive backward
simulations from forward simulations.

Semantics of concurrent programs. Concurrency increases the amount of nondeterminism, due
to interleavings, and generally increases the sources of undefined behaviors, due in particular to
data races. The work on CompCertTSO [Ševčík et al. 2013] shows how to deal with this additional
complexity in a compiler-correctness proof. A direction for future work is to investigate the extent
to which omni-small-step semantics would help simplify proofs from CompCertTSO.

The Iris framework [Jung et al. 2018, 2015] supports reasoning about concurrent programs in
Separation Logic. In Iris, the source language is specified by means of a traditional small-step se-
mantics. The weakest preconditions predicate is then defined using step-indexing: one first defines
the notion of “a program is well-behaved for n steps” by induction over n, then defines the no-
tion of “a program is well-behaved” as “it is well-behaved for any number of steps.” Proofs are
then typically carried out by induction over the indices. Yet, the indices involved get in the way of
compiler proofs where the number of computation steps may increase or decrease throughout a
transformation. This observation motivated the introduction of more advanced techniques to tame
the issue, such as transfinite step-indexing [Svendsen et al. 2016]. When reasoning about sequen-

tial programs, the use of step-indexing appears overkill for most applications: by leveraging an
inductive definition of the weakest precondition predicate, an omni-big-step semantics provides a
direct induction principle that avoids the technicalities and limitations of step-indexing altogether.

Reasoning about termination. Many foundational program logics provide reasoning rules for par-
tial correctness, e.g., [Cao et al. 2018; Chlipala 2013; Jung et al. 2018; Ni and Shao 2006]. More recent
frameworks have aimed to support reasoning about total correctness. For example, in the context of
the CakeML verified compiler [Kumar et al. 2014], the work by Guéneau et al. [2017], subsequently
simplified by Charguéraud [2022], provides a foundational approach to CFML’s characteristic for-
mulae [Charguéraud 2011]. In the context of the Iris framework [Jung et al. 2018], Mével et al.
[2019] encode in the notion of time credits [Charguéraud and Pottier 2019] for establishing upper
and lower bounds on the execution cost. The existence of an upper bound on the number of time
credits required by a program guarantees the termination of that program. Yet, that bound must be
provided upfront, and thus this approach is not complete. To see why, consider as counterexample
a program that picks an unbounded random number in Z, then executes a loop that number of
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times.9 This program is terminating according to the operational semantics, yet it does not admit
any bound on its execution time. To handle such programs, Spies et al. [2021] introduce transfi-

nite time credits, which allow for termination arguments based on dynamic information learned
during program execution. In comparison, omnisemantics can handle such programs without re-
quiring sophisticated models of Separation Logic. Indeed, an inductive omnisemantics derivation
inherently corresponds to a transfinite derivation tree.

Semantics of probabilistic programs. Probabilistic semantics aim not just to describe which ex-
ecutions are possible but also to describe with what probability each execution may happen. A
probabilistic small-step execution relation assigns a probability to every transition. One caveat
is that probabilities do not suffice to describe all nondeterminism: in particular, memory is allo-
cated at nondeterministically chosen addresses. We refer to Batz et al. [2019] for a solution to this
challenge. In the context of program logics, McIver and Morgan [2005] introduce a weakest pre-

expectation calculus. Batz et al. [2019] generalize this notion to set up a Quantitative Separation

Logic.
Additionally, there is a long line of work aiming at providing denotational models for probabilis-

tic programs—e.g., Staton et al. [2016]; Wang et al. [2019]. Denotational and operational semantics
serve different purposes; one important practical benefit of omnisemantics is that it is grounded in
inductive definitions, with respect to which proofs by induction can be carried out easily in a proof
assistant. An interesting question is whether omnisemantics could be adapted to provide an induc-
tively defined operational semantics that accounts for probabilities, by relating configurations not
to sets of outcomes but instead to probability distributions of outcomes.

The problem of termination of probabilistic programs is particularly subtle. On the one hand, one
may be interested in capturing that any execution terminates. For example, Staton et al. [2016] de-
fine termination as “there existsn, such that termination occurs inn steps.” However, this approach
does not apply to infinitely branching nondeterminism. On the other hand, one may design rules
to establish almost-sure termination or positive-almost-sure termination [Chakarov and Sankara-
narayanan 2013; Ferrer Fioriti and Hermanns 2015; Kaminski et al. 2016; McIver et al. 2017].

Dijkstra monads. Dijkstra monads [Ahman et al. 2017; Maillard et al. 2019] target code written in
monadic form and specified using dependent types. The type-checking process essentially applies
weakest-precondition rules and results in the production of proof obligations. In practice, specifi-
cations are expressed in first-order logic, so that proof obligations can be discharged using SMT
solvers. Dijkstra monads encourage metareasoning using object-language dependent types only;
they do not appear to have been designed for, or demonstrated capable of, carrying out inductions
over program executions. Dijkstra monads can be instantiated in particular with the nondeter-
minism monad (NDet). In the current presentation [Ahman et al. 2017], the monad models sets of
possible outcomes using finite sets, which rules out infinitely branching nondeterminism and does
not allow for abstraction in intermediate postconditions (e.g., asserting that a subterm t1 returns
an even integer).

8 CONCLUSION AND FUTURE WORK

This article provides an in-depth introduction to the definitions, properties, and applications of the
omni-big-step and omni-small-step semantics. These applications include mechanized proofs of
type soundness, foundational constructions of Separation Logic, and compiler correctness proofs.

It would be interesting future work to investigate whether a mixed inductive-coinductive ver-
sion of omni-big-step semantics could be defined and provide smooth reasoning for the combined

9Operational semantics need not provide an actual implementation for the operation of picking a random number in Z.
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challenge of potentially infinite executions, nondeterminism, and undefined behavior. The key
challenge is to find a way to carry out compiler-correctness proofs through a single pass that
handles reasoning about both terminating and nonterminating executions.

APPENDICES

A ON THE CHALLENGE OF DEFINING WP INDUCTIVELY

The weakest-precondition-style reasoning rule for let-bindings is traditionally stated as follows:

wp-let: wp t1 (λv
′.wp ([v ′/x] t2)Q) � wp (letx = t1 in t2)Q .

Translating it to a big-step omnisemantics rule results in the following rule:

t1/s ⇓ {(v ′, s ′) | ([v ′/x] t2)/s
′ ⇓ Q}

(letx = t1 in t2)/s ⇓ Q
omni-big-let-chained

The rule omni-big-let-chained can be useful for reasoning when one does not want to specify
an explicit postcondition that needs to hold between t1 and t2. This chained rule can be straightfor-
wardly derived from the omni-big-let rule part of the definition of the omni-big-step semantics, by
instantiating Q1 as {(v ′, s ′) | ([v ′/x] t2)/s

′ ⇓ Q} in the first premise, then checking the tautology
associated with the second premise.

t1/s ⇓ Q1
(∀(v ′, s ′) ∈ Q1. ([v

′/x] t2)/s
′ ⇓ Q

)

(letx = t1 in t2)/s ⇓ Q
omni-big-let

One might wonder why we do not use omni-big-let-chained directly in the inductively defined
rules. The reason is that Coq’s strict positivity requirement on the well-formedness of inductive
definitions does not allow it.

To elaborate on this point, consider the four candidate Coq rules stated below.

Notation "H1 �H2" := (∀ s, H1 s → H2 s). (* notation for entailment *)

Inductive wp : trm → (val→ state→ Prop) → (state→ Prop) :=
| wp_let_invalid : ∀x t1 t2 Q, (* non strictly positive occurrence of [wp]. *)

wp t1 (fun v1⇒ wp (subst x v1 t2) Q)
�wp (trm_let x t1 t2) Q

| wp_let_invalid' : ∀Q1 x t1 t2 Q s, (* non strictly positive occurrence of [wp]. *)

wp t1 Q1 s→

Q1 = (fun v1 s2 ⇒ wp (subst x v1 t2) Q s2) →
wp (trm_let x t1 t2) Q s

| wp_let_valid : ∀x t1 t2 Q, (* accepted, but with useless induction principle *)

(fun s⇒∃Q1, wp t1 Q1 s ∧ (∀ v1, Q1 v1 �wp (subst x v1 t2) Q))
�wp (trm_let x t1 t2) Q

| wp_let_valid' : ∀x t1 t2 Q1 Q, (* accepted, with useful induction principle *)

wp t1 Q1 s→

(∀ v1 s2, Q1 v1 s2 → wp (subst x v1 t2) Q s2)) →
wp (trm_let x t1 t2) Q s.

The first rule directly translates wp-let. It is rejected by Coq because it includes a non-strictly
positive occurrence of the predicate wp.

The second rule attempts a reformulation by expanding the definition of entailment and by intro-
ducing a variable name Q1 for the intermediate postcondition, together with an equality constraint
on Q1. Yet, Coq rejects this rule just like the previous.
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The third rule modifies the first rule by introducing an existentially quantified intermediate
postcondition Q1, quantifying over the items that belong to it. This rule is accepted by Coq. Yet,
in that form, Coq (v8.14) generates a useless induction principle, which provides no induction
hypothesis for the nested occurence of wp. (This weakness can be corrected by stating and proving
an induction principle manually, but we prefer to avoid the extra hassle.)

The fourth rule corresponds to omni-big-let. It adapts the previous rule by quantifying Q1 uni-
versally at the level of the constructor. This presentation is properly recognized by the induction-
principle generator of Coq.

B UNSPECIFIED EVALUATION ORDER

For a language that uses an unspecified but consistent order of evaluation for arguments of, e.g.,
pairs or applications, we can consider a generalized version of the rule omni-big-pair from the
previous section. Essentially, we duplicate the premises to account for the two possible evaluation
orders.

omni-big-pair-unspecified-order
t1/s ⇓ Q1

(∀(v1, s
′) ∈ Q1. t2/s

′ ⇓ {(v2, s
′′) | ((v1,v2), s

′′) ∈ Q}
)

t2/s ⇓ Q2
(∀(v2, s

′) ∈ Q2. t1/s
′ ⇓ {(v1, s

′′) | ((v1,v2), s
′′) ∈ Q}

)

(t1, t2)/s ⇓ Q

To avoid the duplication in the premises, one can follow the approach described in Section 5.5
of the paper on the pretty-big-step semantics [Charguéraud 2013], which presents a general rule
for evaluating a list of subterms in arbitrary order.

Note that we do not attempt to model languages that allow arbitrary interleavings in the evalu-
ation of arguments, as, e.g., arithmetic expressions in the C language [Krebbers 2015]. More gen-
erally, concurrent evaluation is out of the scope of the present article.

C OMNISEMANTICS RULES IN THE PRESENCE OF EXCEPTIONS

For a programming language that features exceptions, the reasoning rule for let-bindings needs
to be adapted in two ways. Indeed, if the body of the let-binding raises an exception, then the
continuation should not be evaluated. Moreover, the exception raised should be included in the
set of results that the let-binding can produce.

There are two ways to extend the grammar of results with exceptions. The first possibility is to
add a constructor to the grammar of values. In this case, the postcondition Q remains a predicate
over pairs of values and states. The second possibility is to introduce a type, to capture the sum
of the type of values and of the type of exceptions. In that case, the postcondition Q becomes a
predicate over pairs of results and states.

For simplicity, let us assume in what follows that the grammar of values includes a constant
exception construct, written exn. In that setting, the omni-big-step evaluation rule for a let-binding
of the form (letx = t1 in t2) can be stated as follows. The first premise describes the evaluation of t1.
The second premise handles the case where t1 produces a normal value. The third premise handles
the case where t1 produces an exception.

omni-big-let-with-exceptions
t1/s ⇓ Q1

(∀(v ′, s ′) ∈ Q1. v
′ � exn ⇒ ([v ′/x] t2)/s

′ ⇓ Q
) (∀s ′. Q1 exn s ′ ⇒ Q exn s ′

)

(letx = t1 in t2)/s ⇓ Q

We proved in Coq the equivalence of this treatment of exceptions with the formalization of
exceptions expressed both in standard small-step and in standard big-step semantics.
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D DEFINITION OF THE TERMINATION JUDGMENT

We introduced the termination judgment to formalize the interpretation of the omni-big-step judg-
ment (Section 2.2, omni-big-step-iff-terminates-and-correct). The predicate terminates(t , s)
asserts that all executions of configuration t/s terminate. In this section, we present two formal
definitions of this predicate, one in small-step style and one in big-step style.

The small-step version is inductively defined by the two rules shown below.

small-terminates-here

terminates(v, s)

small-terminates-step(∃t ′s ′. t/s −→ t ′/s ′
)

(∀t ′s ′. (t/s −→ t ′/s ′) ⇒ terminates(t ′, s ′)
)

terminates(t , s)

The big-step version is inductively defined using one rule per language construct. We show
below the rules for values and for let-bindings. This definition corresponds to an inductive version
of the coinductive judgment safe from Wang et al. [2014], described in Section 8.

big-terminates-val

terminates(v, s)

big-terminates-let
terminates(t1, s)(∀v1s

′. (t1/s ⇓ v1/s
′) ⇒ terminates(([v1/x] t2), s

′)
)

terminates((letx = t1 in t2), s)

E DEFINITION OF THE TYPING JUDGMENT

This section states the typing rules for the state-free language considered in Section 4.1. The typing
rules are given for terms in A-normal form. The judgment � v : T asserts that the closed value v
admits the typeT . The judgment E � t : T asserts that the term t admits typeT in the environment
E. Finally, V denotes the set of terms that are either values or variables.

vtyp-unit

� tt : unit

vtyp-bool

� b : bool

vtyp-int

� n : int

vtyp-fix
f : (T1 → T2), x : T1 � t : T2

� ((μ f .λx .t)) : (T1 → T2)

typ-val
� v : T

E � v : T

typ-var
x ∈ domE E[x] = T

E � x : T

typ-fix
E, f : (T1 → T2), x : T1 � t : T2

E � (μ f .λx .t) : (T1 → T2)

typ-app
E � t1 : (T1 → T2) E � t2 : T1 t1, t2 ∈ V

E � (t1 t2) : T2

typ-if
E � t0 : bool E � t1 : T E � t2 : T t0 ∈ V

E � (if t0 then t1 else t2) : T

typ-let
E � t1 : T1 E, x : T1 � t2 : T2

E � (letx = t1 in t2) : T2

typ-add
E � t1 : int E � t2 : int t1, t2 ∈ V

E � (add t1 t2) : int

typ-rand
E � t1 : int t1 ∈ V

E � (rand t1) : int

F EXTENSION OF THE TYPING JUDGMENT FOR STATE

This section states the typing rules for the imperative language considered in Section 4.2. There,
the typing judgment for terms takes the form S ;E � t : T , and the typing judgment for closed
values takes the form S � v : T , where the store typing S maps locations to types. The rules from

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 1, Article 5. Publication date: March 2023.



5:40 A. Charguéraud et al.

the previous appendix are extended simply to thread S throughout the judgment. The new rules
include the rule for typing locations and the rules for memory operations. They are shown next.

vtyp-loc
p ∈ dom S S[p] = T

S � p : (refT )

typ-ref
S ;E � t1 : T t1 ∈ V

S ;E � (ref t1) : (refT )

typ-get
S ;E � t1 : (refT ) t1 ∈ V

S ;E � (get t1) : T

typ-set
S ;E � t1 : (refT ) S ;E � t2 : T t1, t2 ∈ V

S ;E � (set t1 t2) : unit

G DEFINITION OF THE STANDARD SMALL-STEP JUDGMENT

In Section 2.4, we gave a characterization of coinductive omni-big-step semantics in terms of the
standard small-step semantics, written t/s −→ t ′/s ′. For reference, we give below the rules that
define the standard small-step judgment.

small-app
v1 = (μ f .λx .t)

(v1v2)/s −→ ([v2/x] [v1/f ] t)/s

small-if-true

(if true then t1 else t2)/s −→ t1/s

small-if-false

(if false then t1 else t2)/s −→ t2/s

small-let-ctx
t1/s −→ t ′1/s

′

(letx = t1 in t2)/s −→ (letx = t ′1 in t2)/s
′

small-let-val

(letx = v1 in t2)/s −→ ([v1/x] t2)/s

small-add

(addn1 n2)/s −→ (n1 + n2)/s

small-rand
0 ≤ m < n

(randn)/s −→m/s

small-ref
p � dom s

(refv)/s −→ (s[p := v])/s

small-free
p ∈ dom s

(freep)/s −→ tt/(s � p)

small-get
p ∈ dom s

(getp)/s −→ (s[p])/s

small-set
p ∈ dom s

(setpv)/s −→ tt/(s[p := v])

H EVALUATION OF UNARY AND BINARY OPERATORS

The following definitions complete the semantics described in the case study “compiling im-
mutable pairs to heap-allocated records” (Section 6.4).

evalunop(fst, (v1,v2),v1) evalunop(snd, (v1,v2),v2) evalunop(not, 1, 0)

evalunop(not, 0, 1) evalbinop(+,n1,n2,n1 + n2) evalbinop(mkpair,v1,v2, (v1,v2))
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