
The Open Verifier Framework for Foundational Verifiers∗

Bor-Yuh Evan Chang1 Adam Chlipala1

bec@cs.berkeley.edu adamc@cs.berkeley.edu
George C. Necula1 Robert R. Schneck2

necula@cs.berkeley.edu schneck@math.berkeley.edu
1Department of Electrical Engineering and Computer Science

2Group in Logic and the Methodology of Science
University of California, Berkeley

ABSTRACT
We present the Open Verifier approach for verifying un-
trusted code using customized verifiers. This approach can
be viewed as an instance of foundational proof-carrying code
where an untrusted program can be checked using the veri-
fier most natural for it instead of using a single generic type
system. In this paper we focus on a specialized architecture
designed to reduce the burden of expressing both type-based
and Hoare-style verifiers.

A new verifier is created by providing an untrusted ex-
ecutable extension module, which can incorporate directly
pre-existing non-foundational verifiers based on dataflow anal-
ysis or type checking. The extensions control virtually all
aspects of the verification by carrying on a dialogue with the
Open Verifier using a language designed both to correspond
closely to common verification actions and to carry simple
adequacy proofs for those actions.

We describe the design of the trusted core of the Open
Verifier, along with our experience implementing proof-carrying
code, typed assembly language, and dataflow or abstract in-
terpretation based verifiers in this unified setting.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; F.3.1 [Logics and Meanings of Programs]: Spec-
ifying and Verifying and Reasoning about Programs

General Terms
Verification, Security

Keywords
Proof-Carrying Code, Typed Assembly Language, Language-
Based Security

∗
This research was supported in part by NSF Grants CCR-0326577,

CCR-0081588, CCR-0085949, CCR-00225610, and CCR-0234689;
NASA Grant NNA04CI57A; a Sloan Fellowship; an NSF Graduate
Fellowship; an NDSEG Fellowship; and California Microelectronics

Fellowships. The information presented here does not necessarily re-
flect the position or the policy of the Government and no official

endorsement should be inferred.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
TLDI’05, January 10, 2005, Long Beach, California, USA.
Copyright 2005 ACM 1-58113-999-3/05/0001 ...$5.00.

1. INTRODUCTION
Since its introduction [AF00], foundational proof-carrying

code (FPCC) has become a standard. In FPCC, a code
consumer need trust only a proof checker for some low-level
logic, as well as axioms in that logic defining the operational
semantics of a particular architecture and the desired no-
tion of safety. Untrusted code comes with a proof directly
expressing the desired result: that the code (expressed as
a sequence of machine words) satisfies the predicate defin-
ing safety. This proof is called foundational in that it must
prove safety directly in terms of the machine semantics; in
particular, such notions as type safety, rather than being
trusted, must be defined by the code producer and proven
to imply the low-level safety policy.

FPCC is remarkable in its simplicity and in its generality;
it is completely flexible with respect to what safety policy
is defined and how a given program is shown to meet that
safety policy. However, this observation comes with a big
“in principle”, for FPCC is only useful if the foundational
proofs can be feasibly constructed for a broad class of pro-
grams. The research in FPCC [AF00, HST+02, Cra03] has
naturally focused on this very question. Thus far there has
been relatively little advantage taken of the generality of
FPCC, with most papers discussing how to prove memory
safety using some foundationalization of typed assembly lan-
guage (TAL). Different groups have put forth different logi-
cal perspectives on how to do this. Nonetheless, it remains
the case that after a number of years of FPCC research, very
few systems have been constructed.

The following questions and observations motivate our re-
search.

• Can we construct a simple yet reasonably complete
framework that significantly eases the engineering ef-
fort required to create a new FPCC instantiation? In
particular, rather than producing a single FPCC back-
end to be used for as many source languages as pos-
sible, can we make it feasible to develop for each new
language a new FPCC instantiation that is more nat-
urally suited to it?

• Past efforts have considered development of new cer-
tifying compilers that produce foundational proofs for
their output. How would techniques differ if we set
the goal of writing verifiers for existing compilers over
which we have little control?

1. I0 =⇒
W

i=1,...,n
Ii, and

2. for each i = 1, . . . , n

(a) Ii =⇒ SafeState, and

(b) Post(Ii) =⇒
W

j=1,...,n
Ij

Figure 1: Generic code verification strategy

• The language of past FPCC work has been aimed at
programming language researchers. One can expect
that it is beyond the understanding of most engineers
who might be called upon to implement foundational
verifiers in an industrial setting. To what extent can
we make the ideas of FPCC more widely accessible? In
particular, how much can FPCC proofs remain natural
yet avoid the use of heavy-duty logical tools?

• The basic FPCC checking process runs in two stages:
a proof generator builds a single proof for a program’s
safety, and then a proof checker verifies that it proves
what it should. Can we design a feasible alternate
interaction that helps remove concerns about transfer-
ring large proofs over a network, and reduces other
overhead required to check monolithic proofs?

In this paper, we present the Open Verifier, a system that
we believe partially answers these questions. We have two
complementary perspectives on the Open Verifier. First,
it can be viewed as a new proof-construction strategy for
pure FPCC in the usual sense. Second, it can be viewed
as a novel architecture, in principle more restricted than
FPCC though practically sufficient, which exhibits specific
engineering benefits.

On the one hand, we consider the Open Verifier to be
a new logical perspective on how to construct foundational
proofs for safety properties such as memory safety. The su-
perstructure of the proofs is simple: starting with some state
predicate describing the initial states of a program, we sym-
bolically execute the program by iteratively producing the
strongest postcondition (relative to the safety policy). At
each stage, however, the particular enforcement mechanism
(designed by the code producer) determines some provably
weaker predicate to replace the strongest postcondition.

More formally, we must prove that the execution of the
machine proceeds safely forever when started in a state that
satisfies the initial predicate I0. The safety policy is de-
scribed by a predicate on states SafeState, and the semantics
of one execution step is modeled as a predicate transformer
function Post, such that Post(I) is the predicate describing
the state of the machine after making one step from a state
described by I. The actual verification relies on a finite set
of invariant predicates Ii (i = 1, . . . , n), typically one per un-
trusted instruction, along with the proofs of the facts shown
in Figure 1. Once we have these proofs, it is a relatively
easy task to prove, by induction on the number of execution
steps, that the execution proceeds safely forever to states
that satisfy both SafeState and the invariant

W

i=1,...,n
Ii.

This approach exhibits the common structure of a vari-
ety of code verification strategies, ranging from bytecode
verification, as in today’s JVML or CIL machines, to typed-
assembly language, or to proof-carrying code, including foun-
dational proof-carrying code. The Open Verifier architec-
ture can be customized to behave like any of these tech-
niques.

From the pure FPCC perspective, the next question is
how to organize the weakening of the strongest postcondi-
tion at each step. Here we emphasize customizability; the
approach may depend on anything from Hoare logic, to ab-
stract interpretation or dataflow analysis based on complex
type systems. When we do use type systems, we advocate a
syntactic and intensional approach roughly similar to that
of [HST+02], but rather than using a global well-typedness
notion over abstract states and a bisimulation argument to
connect to concrete states, we define each type directly as
a predicate over concrete values. Furthermore, rather than
massaging each source language into some single type system
using special certifying compilers, we intend that the verifier
for each language be written in the most natural way, each
with its own type system; in fact, we advocate the re-use of
existing compilers and verifiers as much as possible, having
found it often possible to modularly add a foundationaliz-
ing layer. All of these features, we believe, combine to make
the logical perspective of the Open Verifier project a very
accessible approach to proof construction for FPCC.

On the other hand, we also bring a particular engineering
perspective to this project. Below we mention three aspects
of this. These engineering considerations require certain re-
strictions on which safety policies can be considered and how
proofs can be constructed. It might be felt that these restric-
tions are a step back from the generality of FPCC. This is
true, in principle; and in principle our logical perspective
can be used independently of our engineering concerns. In
practice, however, we believe that all existing approaches
to constructing FPCC proofs already work within these re-
strictions.

First, we suggest a different mode of interaction where,
instead of shipping the complete foundational proof, a code
producer can send an untrusted, executable verifier exten-

sion, specific to a given source language and compilation
strategy, which works with trusted parts of the Open Verifier
architecture to produce necessary parts of the foundational
proof in an on-line manner. In essence, the extension incor-
porates the proof-generation schemas common to a source
language. This approach obviates typical FPCC concerns
about proof representation and proof size [NR01], while al-
lowing extensions to choose how much proof and in what
form is actually carried by the code. The work of [WAS03]
also suggests that the untrusted agent provide an executable
verifier, in the form of a logic program with an accompany-
ing soundness proof; we accept arbitrary executable veri-
fiers, which must be provably safe to execute. While our
approach requires separate soundness proofs for individual
runs, it also allows the practical use of a wider variety of
verification strategies relative to particular verification-time
resource constraints.

Second, we do not require that features common to virtu-
ally all verifications be completely foundational. In particu-
lar, we are willing to work with assembly code instead of ma-
chine code; we are also willing to work with a strongest post-
condition generator expressed as executable code instead
of logical axioms describing machine transitions. It should
be obvious that foundationalizing these aspects would be
straightforward using such work as [MA00], but these choices
have allowed us to focus on the non-boring parts of writing
a foundational verifier.

The third aspect of our engineering perspective is the most
important. The most common form of “proof-carrying code”

is actually bytecode verification as used in the Java Virtual
Machine Language (JVML) [LY97] or the Microsoft Com-
mon Intermediate Language (CIL) [GS01, Gou02]. Writing
a bytecode verifier is relatively simple in terms of number of
Ph.D.s required; even working at the assembly code level,
writing a verifier using type-based dataflow analysis is rela-
tively accessible. We wish to minimize the cost of adapting
even these most accessible verifiers to a foundational frame-
work. To this end we have created a scripting language that
can be used to simultaneously create each necessary new
weakened invariant, together with the foundational proof
that it is weaker than the strongest postcondition. The oper-
ations of the scripting language are inspired by the common
operations of a type-based dataflow verifier; in our experi-
ence we have found it to be a natural technique for building
foundational verifiers.1

We have had substantial success in producing founda-
tional verifiers in the Open Verifier framework. We have
a complete foundational verifier for TALx86 programs, as
produced by existing compilers for Popcorn (a safe C di-
alect) and mini-Scheme; it makes direct use of the existing
TALx86 verifier.2 We have another foundational verifier for
Cool, a mini-Java, relative to a trusted run-time system.

Because of space limitations, we cannot fully discuss ev-
ery feature of the Open Verifier approach or fully discuss
our experimental results here; an expanded version is under
preparation. Here we concentrate on the structure of the
Open Verifier architecture, described in Section 2. Then, in
Section 3, we describe our experience implementing proof-
carrying code, typed assembly language, and dataflow veri-
fiers in this unified setting. We conclude in Section 4 with
a discussion of implementation and results.

2. THE OPEN VERIFIER
The main design characteristics of the Open Verifier are

as follows:

• A new verifier can be created even by untrusted users
by installing into the Open Verifier an executable mod-
ule, called an extension. There is no restriction on the
algorithms or data structures that the extension can
use internally to perform the verification.

• The extension can control the verification to a very
large degree by answering queries from the Open Veri-
fier. In order to ensure soundness, the extension must
present a proof along with each answer. The query
and answer language is designed to simplify the devel-
opment of verifiers, to the point where many exten-
sions can be simple wrappers for existing dataflow or
type-based verifiers.

• In order to simplify the proof construction effort, the
Open Verifier manipulates formulas and proofs of Horn
logic for each verification step, using lemmas that are
proved once using a more powerful logic.

1By making the scripting language part of the trusted frame-
work, we also manage to reap engineering benefits in terms
of verification time; for example the scripts are organized so
that proving A ∧ B ∧ C from A ∧ B requires only a proof
of C, without incorporating the trivial re-proving of A and
B required in a straightforward logical formalism.
2We convert TALx86 to actual x86 assembly code using a
simple non-garbage-collected memory allocator; foundation-
alizing a more realistic run-time system is future work.

Figure 2: The Open Verifier architecture.

• Multiple extensions can coexist and can even cooper-
ate for the verification of a program.

As observed in the Introduction, this system could with
minor modification be viewed simply as a proof-construction
mechanism for a pure FPCC framework; here we discuss its
potential as an alternate framework to emphasize possible
engineering benefits.

Figure 2 shows the interaction between various compo-
nents of the Open Verifier. The modules above the dotted
line are part of the trusted infrastructure. The verification
process is concerned with the construction of a set of invari-
ants Ii, with the properties shown in Figure 1. The trusted
Fixpoint module collects these invariants, starting with the
built-in initial invariant I0. For each collected invariant I,
we compute a trusted strongest postcondition Post(I). For
most verification purposes, Post(I) contains too much infor-
mation. For example, it may say that the value of a register
is equal to the result of adding two other registers, while for
verification purposes all that is needed is that the result has
integer type. The purpose of the untrusted Extension mod-
ule is to provide one or more weaker invariants, along with
proofs that they are indeed weaker. One of the contributions
of this work is to identify a scripting language in which the
extension module can describe the incremental weakening
changes that must be made to the strongest postcondition
in order to produce the desired invariants. The basic script-
ing operations correspond closely with the actions of a type-
based verifier. A script could require abstracting the value
of a register, dropping a known fact, or even adding new
assumptions. In the last case, the script must also specify
a proof of the newly added assumptions. Thus, the invari-
ants generated are weaker than the strongest postcondition
by construction. The trusted Checker module interprets the
scripts and checks the accompanying proofs.

The extension incorporates the safety-mechanism-specific
reasoning that is necessary for verification, and may take
advantage of metadata that accompanies the code. This
metadata acts as a private channel between the producer
of the untrusted code and the extension. The metadata
can range from entire proofs demonstrating the safety of
particular instructions, to simply the types of the inputs
and outputs of all the functions in the program. The high-
level extensions we have implemented are all similar to this
second case, where the cost of producing and transmitting
the metadata is negligible.

2.1 Verification Example
Here we present a simple example to which we will refer

throughout. Suppose we are working with lists of integers,
represented as either 0 for an empty list, or the address of a

1 rc := 0
2 if rs = 0 jump 7
3 rh := load[rs]
4 rs := load[rs + 1]
5 rc := call cons rh rc
6 jump 2
7 return

Figure 3: A function taking a list rs and producing
the reverse list rc.

two-word cell in memory containing, respectively, an integer
head and a list tail. Call this type system L; we might use C
or a specialized source language to work with L. We assume
the existence of an allocation function cons taking an integer
and a list and producing the required two-word cell.

The assembly-language code shown in Figure 3 has the
effect of taking the list rs and producing the reversed list rc.
Although we are able to verify uses of stack frames, for this
presentation we assume that the function argument rs and
return value rc are implemented as registers that are pre-
served by cons. We similarly ignore for this presentation the
issue of manipulating the return address register and oth-
erwise setting up function calls. These issues are addressed
(by discussing their handling in a particular fully developed
extension) briefly in Section 3.2, and in substantial detail
in [Chl04].

In the following section, we will indicate how to produce
an extension for L.

2.2 The Invariants
As described in the Introduction, verification proceeds by

creating invariants—predicates on machine states—for var-
ious points during program execution. The invariants have
a special syntactic form shown in Figure 4.

The invariants are triples (Γ; R; Ψ), where R specifies sym-
bolic expressions for all machine registers, Ψ specifies a num-
ber of named formulas, and Γ binds the typed existential
variables that can be used in R and Ψ.

Formally, an invariant (Γ; R; Ψ) denotes the following pred-
icate on the machine registers:

∃
xi:τi∈Γ

xi : τi .

„

^

rj=ej∈R

rj = ej ∧
^

hk :φk∈Ψ

φk

«

The effect of this syntactic form is just that register names
cannot be involved directly in assumptions, but only indi-
rectly by means of existential variables in terms of which
they are defined.

We assume that the machine has a finite set of registers,
and a special “memory” register rm that describes the con-
tents of the memory. The expression (sel m a) denotes the
contents of memory denoted by m at address a.

The Open Verifier defines the type mem used for memory
expressions and the contents of memory pseudo-registers,
and val for the other expressions. We also assume that
there are a number of extension-defined base types b; in
our implementation, we allow the use of inductively defined
types. The expression constructors f and formula construc-
tors a may take only expressions as arguments. A number of
these constructors are provided by the Open Verifier (e.g.,
the sel : mem → val → val expression constructor, and the
= : val → val → Prop formula constructor). In our experi-
ments, the Open Verifier enforces memory safety by defining
a formula constructor Addr that holds on valid addresses.

invariants I ::= (Γ; R; Ψ)
contexts Γ ::= � | Γ, x : τ

register files R ::= � | R, r = e
assumptions Ψ ::= � | Ψ, h : φ

variables x
hypotheses h

registers r ::= r1 | r2 | . . . | rm

expressions e ::= x | n | f e1 . . . en | . . .

base types b
types τ ::= val | mem | b

formulas φ ::= > | ⊥ | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2

| a e1 . . . en | . . .

constructors n : val

f : τ1 → · · · → τ
a : τ1 → · · · → Prop

Figure 4: Syntactic entities used by the framework.

Any logic could be used for the formulas; in practice we
have found it sufficient and convenient to work with a re-
stricted set of propositional connectives, together with for-
mula constructors defined by the extension in a richer logic
(see Section 2.7 for further discussion).

Now we discuss invariants for L. The L extension defines
typing relative to an allocation state of type lalloc, whose
members are sets of addresses that have been allocated to
hold lists. The L extension will define the following formula
constructors:

LInv : lalloc → mem → Prop

List : lalloc → val → Prop

Nelist : lalloc → val → Prop

We write (LInv aL mL) to say that the contents of the
L-memory state mL are consistent with the allocation state
aL, and we write (List aL `) and (Nelist aL `) to say that `

is of type list, or non-empty list respectively, in allocation
state aL. The extension defines these predicates as follows:

LInv aL mL ⇐⇒
∀` ∈ aL. (Addr `) ∧ (Addr (` + 1)) ∧

`

List aL (sel mL (` + 1))
´

Nelist aL ` ⇐⇒ ` ∈ aL

List aL ` ⇐⇒ ` = 0 ∨ ` ∈ aL

We note that the typing predicate is defined intensionally by
means of a typing context (the allocation state), rather than
extensionally by direct reference to the memory; thus we are
closer to the “syntactic” approach of [HST+02], as opposed
to the “semantic” approach of [AF00]. We believe that this
approach makes the development of extensions more acces-
sible.

With these definitions the invariant for the instruction 1
in Figure 3 may be written as3

Γ = x1 : val, . . . , xm : mem, xa : lalloc;
R = rpc = 1, r1 = x1, . . . , rs = xs,

rm = xm;
Ψ = hL : LInv xa xm, hs : List xa xs

3This is not the initial invariant I0 from Figure 1, which
would be a primitive description of the initial machine state,
independent of any particular extension. In practice the
extension will have to prove that this invariant is weaker
than the actual I0.

When P (R(rpc)) is “r1 := n”:
{(Γ; R, rpc = R(rpc) + 1, r1 = n; Ψ)

When P (R(rpc)) is “r1 := r2”:
{(Γ; R, rpc = R(rpc) + 1, r1 = R(r2); Ψ)}

When P (R(rpc)) is “r1 := load[r2]”:
{(Γ; R, rpc = R(rpc) + 1, r1 = (sel R(rm) R(r2));

Ψ, hsafe : (Addr R(r2))),
(Γ; R, rpc = error; Ψ, hunsafe : ¬(Addr R(r2)))}

When P (R(rpc)) is “if r1 = 0 jump n”:
{(Γ; R, rpc = R(rpc) + 1; Ψ, hbranch : (R(r1) 6= 0)),
(Γ; R, rpc = n; Ψ, hbranch : (R(r1) = 0)}

Figure 5: Examples of Post(Γ; R; Ψ) for memory
safety.

In the remaining description of the example, we omit the
allocation state argument to the above constructors—it does
in fact change at the call to cons, but not at any of the
transitions we will work out in detail here. Also, whenever
an existential variable is the value of a register, we use that
register name instead of the variable in symbolic expressions
and formulas. Since the various components of an invariant
are syntactically distinct, we will freely mix in the examples
below elements of Γ, R, and Ψ. With these simplifications,
the above invariant can be written simply as

I1 = rpc = 1, hL : LInv rm, hs : List rs.

2.3 The Trusted Post Module
In order to be able to verify the claims of the untrusted ex-

tensions, the Open Verifier uses a trusted strongest-postcon-
dition generator, the Post module, to interpret instructions.
Understood at a high level, Post takes a state predicate and
produces the strongest postcondition, a new state predicate
that is guaranteed to hold of the successor state of any state
satisfying the input.

To model the safety policy, we introduce a special value
error for the program counter and assume every unsafe tran-
sition sets the program counter to error. A state is safe
(meeting the predicate SafeState of Figure 1) if its program
counter is not error; a program is safe if every state reachable
from an initial state of the program is safe.4 This formula-
tion makes it easy to enforce safety using Post. A potentially
unsafe transition is treated like a branch statement, with a
disjunctive postcondition; either the transition is safe and
execution continues as expected, or the transition is unsafe
and the execution proceeds to a special error state.

For Post to be usable in our framework, it needs to work
with the syntactic form of invariants. This is done by inter-
preting a disjunctive postcondition as two output invariants.
All the other standard strongest postconditions already pre-
serve the form of our invariants; this is part of the motivation
for using this form. Finally, we augment the safety policy to
require that the code of the program being verified may not
be overwritten. This simplification, which of course holds
for all realistic examples, allows us to have the trusted Post
module determine the instruction to be executed from the
program counter.

Fix a program P to be verified. Given an invariant I,
the Post module reads the value of the program counter
register from I, reads the corresponding instruction from

4This is clearly equivalent to an alternate formulation of
safety whereby unsafe transitions are made impossible, and
safety is defined as making progress forever.

P , and produces one or two successors invariants Ī. Most
instructions yield one successor invariant. The exceptions
are the branch instructions and those instructions whose
usage is restricted by the safety policy, as described above.
In our example, we assume that only memory operations
are restricted, requiring that the predicate Addr holds for
the address being accessed.

Figure 5 shows examples from the definition of the Post
function for memory safety. These are simply the standard
definitions for a strongest postcondition expressed as Open
Verifier invariants. We use the notation R(ri) to denote
the value associated with ri in R, and we write R, ri = e
to denote a modified register file that is like R except ri’s
value is e. Similarly, we write Ψ, h : φ to denote a set of
assumptions in which the assumption named h is replaced
with φ. The post-states of the branch instruction contain
assumptions about the outcome of the guard predicate.

The Post module may be invoked only on invariants that
assign to the program counter register a literal value n that
denotes an address in the instruction stream. In all other
cases, Post aborts the verification. This means that exten-
sions will have to show that the error successor invariants
are not reachable. For the load case (r1 := load[r2]), the
extension ought to produce a proof that (Addr R(r2)), which
along with the hunsafe assumption can be used to derive a
contradiction and hence prove that the post-state is not re-
ally reachable. Since indirect jumps result in postconditions
where the program counter is not a constant, the extension
must essentially weaken these to the disjunction of all pos-
sible literal program counters; this is discussed further in
Section 3.2.

2.4 The Untrusted Extensions
The Post module produces a set of invariants that together

cover all the possible successor states without losing any
information. In order for the verification to terminate, we
must occasionally abstract. Abstraction is also useful to
simplify or to speed up the verification process. In the Open
Verifier, abstraction is fully customizable and is performed
by the untrusted extensions.

For each invariant I ′ returned by the Post module, the
extension must do one of the following things: (a) prove
that I ′ is contradictory and thus it does not describe any
concrete state, (b) prove that a weaker invariant Ii is already
part of the collection of invariants computed by Fixpoint, (c)
tell the Fixpoint module to add a weakened version of I ′ to
the collection, or (d) perform a combination of these actions
using a case analysis on the invariant I ′.

The Fixpoint module starts with the initial invariant I0,
and grows a collection ∆ of named invariants,5 using the
following syntax:

names u
collections ∆ ::= ∅ | ∆, u : I

Intuitively, the extension must yield, for each I ′ ∈ Post(I),
a new collection ∆′, along with a proof that the disjunction
of the invariants in ∆′ (together with any previously col-
lected ∆) is weaker than I ′, and thus it is satisfied in the

5Invariants in the collection are always referred to by name.
When a new invariant is added, the Fixpoint module does
not check equivalence with old invariants. It is the exten-
sion’s job to ensure that the verification terminates by prov-
ing equivalence with an old invariant rather than adding a
new invariant.

successor state. We make two observations. First, we ought
to describe the invariants in ∆′ by incremental changes from
I ′. This simplifies our work; it also allows an extension to
carry along any components of I ′ that it does not under-
stand because they were introduced by other cooperating
extensions, which is a subject of ongoing research for us.
Second, the weakening proofs that are required are typi-
cally large structures whose leaves are interesting applica-
tions of extension-specific lemmas, while the rest is a tedious
construction whose sole purpose is to match the particular
structure of I ′ and ∆′.

Based on these observations, we have designed a language
of scripts that extensions can use to describe incremental
changes to the post-invariant. Each change corresponds
to a class of common verification actions, and some carry
proofs that justify these actions. The scripting language
is shown below. Though we present it here as a program-
ming language, in our implementation, extensions indicate
the “scripts” they want executed by calling one API function
per construct of the language below.

scripts s ::= abstract e as x in s
| set r = e by γ in s
| assert h : φ by γ in s

| forget h in s

| collect as u
| match u
| unreachable by γ
| cases γ of h1 ⇒ s1 | h2 ⇒ s2

proofs γ ::= h | g e1 . . . en γ1 . . . γm | . . .
rules g : Πx1:τ1. . . . Πxn:τn. φ1 → · · · → φm → φ

The first four script operations are atomic weakening ac-
tions: abstracting the value of an expression by introducing
a fresh existential variable, changing the value of a register
along with a proof that the new value is an abstraction of
the old one, adding a new assumption along with its proof,
and forgetting an assumption. Proofs are constructed from
names of assumptions using proof rules. The Open Verifier
provides a few trusted proof rules, while most of the proof
rules are introduced, and justified, by the extension. We
use the judgments-as-types principle [ML71, HHP93, CH85]
to describe proof rules using a dependent-type notation in
order to reduce proof checking to type checking.

The remaining four script operations correspond to the
main actions described above: collecting and naming an in-
variant, identifying the invariant with one already in the
collection, showing that the invariant is unreachable, or a
case analysis performing a combination of such actions. We
describe next the use of scripts for our running example, and
then we give the formal semantics of scripts as implemented
by the trusted Checker module.

2.4.1 Extension Script and Proof Examples
We will assume that we need only verify that the function

of Figure 3 is well-typed, rather than having to verify that it
correctly implements a list reversal. Consider the processing
of the instruction at line 1 in Figure 3. We show below the
invariant from the collection that points to the instruction
(I1, derived in Section 2.2), the invariant I ′ after Post, and
the script s′ returned by the extension for handling I ′:

I1 = rpc = 1, hL : LInv rm, hs : List rs

I ′ = I1, rpc = 2, rc = 0
s′ = abstract 0 as c in

set rc = c by (ID 0) in
assert hc : List c by LISTNIL in
collect as I2

We will use the notation Ii to refer to either an invariant
or a unique name for it, where context makes it clear which
meaning applies; we use the notation I, r = e (or I, h : φ) to
denote the result of replacing a register (or assumption) in
the invariant I. Note how the post-invariant carries precise
value information about rc. The L extension only needs to
know that the content of rc is a List; this process of “forget-
ting” is very typical for extensions and is essential in general
to terminating verifications. So, the first operation in the
script is to abstract the value of the register rc by intro-
ducing a new existential variable c into the context to stand
for 0 in the expressions and formulas that are added to the
invariant. Next the script sets the value of rc to be c. Each
set operation must be accompanied by a proof that the cur-
rent value of the register is equal to the new value, after
accounting for the instantiation of the newly created exis-
tential variables. In this case, we need a proof that 0 (the
value of rc in I ′) is equal to 0 (the value being set for rc,
after substituting c by the expression 0 that it abstracts).
To construct this proof, we use the identity proof rule that
is provided by the Open Verifier:

ID : Πx:val.(x = x)

The Checker module (described below) checks that the
proof (ID 0) is indeed a proof of (0 = 0). The next step in
the script is to add an assumption that the value of rc is a
list. For this purpose, the extension defined a proof rule:

LISTNIL : (List 0)

Whenever the extension wishes to use a new proof rule, it
must prove that it is derivable using the existing rules and
the definitions of the formula and expression constructors
that it uses. This is clearly the case for LISTNIL given the
definition of List.

Using the above script the Checker module will generate
the weakened version of I ′, say I2, as follows:

I2 = rpc = 2, hL : LInv rm, hs : List rs, hc : List rc

The final step in the script is to instruct the Fixpoint module
to collect the weakened invariant under the name I2.

Consider next the branch instruction at address 2 in Fig-
ure 3, where I2 is the invariant that points to the instruc-
tion, I ′ and I ′′ are the post-invariants for the taken and
fall-through branches, and s′ and s′′ are the corresponding
scripts returned by the extension.

I ′ = I2, rpc = 8, hbranch : (rs = 0)
s′ = forget hbranch in

collect as I8

I ′′ = I2, rpc = 3, hbranch : (rs 6= 0)
s′′ = assert hs : Nelist rs by (NELIST hs hbranch) in

forget hbranch in
collect as I3

In the taken branch, the extension chooses to do nothing,
except to forget the assumption added by Post. This is

because the extension knows that its typing rules do not
make use of the assumption that a list is empty. In the fall-
through branch, however, the extension knows that register
rs is a list and refines its type to a non-empty list, using the
following rule:

NELIST : Π`:val. (List `) → (` 6= 0) → (Nelist `)

It is easy to see how the extension will be able to prove
this lemma, using the definitions of List and Nelist from Sec-
tion 2.2. The Checker module will check that the proof
(NELIST hs hbranch) indeed has type (Nelist rs) with the as-
sumptions present in I ′′.6 Since the extension knows it will
not need the hbranch assumption anymore, it forgets it.

Consider now the handling of the memory operation from
line 4 in Figure 3. (The load from line 3 is similar but
simpler.) We show below the invariant I4 before this in-
struction, the post-invariants I ′ (for the case when the read
is disallowed) and I ′′ (for the normal execution case), along
with the corresponding scripts s′ and s′′.

I4 = rpc = 4, hL : LInv rm, hs : Nelist rs, hc : List rc

I ′ = I4, rpc = error, hunsafe : ¬(Addr (rs + 1))
s′ = unreachable by (FALSEI (ADDRTL hs hL)

hunsafe)
I ′′ = I4, rpc = 5, rs = (sel rm (rs + 1)),

hsafe : Addr (rs + 1)
s′′ = abstract (sel rm (rs + 1)) as t in

set rs = t by ID in
assert hs : List t by (RDTL hs hL) in
forget hsafe in
collect as I5

These scripts require the introduction of two new proof
rules, which can be justified using the definitions of Nelist

and LInv introduced in Section 2.2:

ADDRTL : Πm:mem. Π`:val.(Nelist `) → (LInv m) →
(Addr (` + 1))

RDTL : Πm:mem. Π`:val.(Nelist `) → (LInv m) →
(List (sel m (` + 1)))

The script s′ shows that the invariant I ′ is unreachable
by deriving falsehood using the built-in FALSEI proof rule,
which takes as arguments a proposition (here left implicit),
its proof, and a proof of its negation.

The script s′′ starts by abstracting the value of rs with a
new existential variable t. Then we replace the old assump-
tion about rs with an assumption about the new value of rs.
Finally, we forget the assumption that the address was safe
to read.

Consider now the processing of the jump instruction from
line 6 in Figure 3. The extension notices that this instruction
closes a loop, and it attempts to verify whether the invari-
ant already collected for the loop head (I2) is weaker than
the current invariant. This is the case, and the extension
produces the script shown below:

I7 = rpc = 7, hL : LInv rm, hs : List rs, hc : Nelist rc

I ′ = I7, rpc = 2
s′ = assert hc : List rc by NELISTLIST hc in

match I2

6We allow inferable arguments to be implicit, so that we
need not write (NELIST rs hs hbranch).

After the call to cons, we will know that rc is in fact of
type Nelist; however, the loop invariant is just that rc is a
List. We use the (obvious) lemma NELISTLIST to forget that
rc is non-empty:

NELISTLIST : Π`:val. (Nelist `) → (List `)

Note that the assert is not to be understood as recursive,
but as imperatively replacing the assumption named hc with
a new one. Afterward, we have something equivalent to the
already collected I2.

Some extensions are not able to provide the loop invari-
ant when the loop is first encountered (e.g., dataflow based
extensions) and need to process the loop body several times,
weakening the loop invariant. The most natural way to write
such an extension is to make it collect weaker and weaker in-
variants, with the Open Verifier processing the body several
times. Alternatively, the extension may want to compute
the fixed-point ahead of time and then have the Open Veri-
fier iterate only once.

2.5 The Trusted Checker Module
The Checker module is responsible for interpreting and

checking the scripts returned by the extensions. We model
the interpretation of scripts using the judgment:

∆ # I # Σ ` s → ∆′

which means that, given a set ∆ of named invariants already
collected, script s results in the collection ∆′, along with a
proof that invariant I is stronger than the disjunction of
invariants in ∆ ∪ ∆′. The substitution Σ is a finite map
from existential variables to expressions and keeps track, for
the duration of the script, of the concrete values of the newly
introduced existential variables. Initially, Σ is empty.

We use the notation IΓ and IΨ for the context and re-
spectively the assumptions component of invariant I; the
notation Σ(e), Σ(φ), and Σ(Ψ) to apply the substitution
on expressions, formulas, and lists of assumptions, respec-
tively; and the notation I ≡ I ′ to indicate that I and I ′ are
equivalent up to alpha-renaming of existential variables and
dropping of unused existential variables from the context.
Figure 6 shows the rules for the interpretation of scripts.
These rules make use of two additional judgments:

Γ ` e : τ
Γ, Ψ ` γ : φ

for type checking that e has type τ in context Γ, and for
checking that γ is a representation of a proof of φ, in con-
text Γ and assumptions Ψ. These judgments come from
an underlying logic, which we chose to be the Calculus of
Inductive Constructions [CH85] in our implementation.

We have proved precise soundness properties of these rules.
Intuitively, the rules correspond with standard natural de-
duction proof rules, as follows:

abstract existential introduction
set substitution of equivalent terms

assert conjunction introduction
forget conjunction elimination

unreachable false elimination
cases disjunction elimination

match hypothesis rule

IΓ ` e : τ ∆ # I, x : τ # Σ, x = Σ(e) ` s → ∆′ x 6∈ IΓ

∆ # I # Σ ` abstract e as x in s → ∆′
abstract

∆ # I # Σ ` s → ∆′

∆ # I, h : φ # Σ ` forget h in s → ∆′
forget

IΓ, Σ(IΨ) ` γ : Σ(φ) ∆ # I, h : φ # Σ ` s → ∆′

∆ # I # Σ ` assert h : φ by γ in s → ∆′
assert

IΓ, Σ(IΨ) ` γ : (Σ(e) = Σ(e′)) ∆ # I, r = e′ # Σ ` s → ∆′

∆ # I, r = e # Σ ` set r = e′ by γ in s → ∆′
set

IΓ, Σ(IΨ) ` γ : ⊥

∆ # I # Σ ` unreachable by γ → ∅
unreachable

IΓ, Σ(IΨ) ` γ : φ1 ∨ φ2
∆ # I, h1 : φ1 # Σ ` s1 → ∆1

∆ # I, h2 : φ2 # Σ ` s2 → ∆2

∆ # I # Σ ` cases γ of h1 ⇒ s1 | h2 ⇒ s2 → ∆1 ∪ ∆2

cases

∆ # I # Σ ` collect as u → {u : I}
collect

I ≡ I ′

∆, u : I ′
I # Σ ` match u → ∅

match

Figure 6: The operational semantics of scripts.

2.6 The Trusted Fixpoint Module
Let Extension(I ′) denote the script returned by the ex-

tension on the post-invariant I ′. Let Checker(s, ∆, I ′) be ∆′

where ∆ # I ′
� ` s → ∆′.

We define Fixpoint by means of the Step function as fol-
lows:

Step(∆, I) = ∆ ∪
[

I′∈Post(I)

Checker(Extension(I ′), ∆, I
′)

Our implementation uses a worklist algorithm to succes-
sively apply Step to members of a growing ∆ set until a fixed
point is reached. Here we will work with a simpler model
that nondeterministically chooses a member of the current
∆, applies Step to it, adds the output to ∆, and loops until
this operation does not grow ∆ for any choice of a member
to expand.

Formally, the Fixpoint module starts with a set of invari-
ants containing just the initial invariant I0, and expands it
using the Step function until it obtains a ∆ with the follow-
ing properties (corresponding directly with Figure 1):

• I0 ∈ ∆, and

• For each Ii ∈ ∆, Step(∆, Ii) ⊆ ∆

This is a standard fixed point condition for an abstract in-
terpretation. Note that all the interesting work of the ver-
ification, creating invariants and producing proofs, is up to
the extension. The Fixpoint module just collects the in-
variants and sends the proofs to be checked, and when the
extension only refers to old invariants by name rather than
creating new invariants, it determines that the verification
is complete.

It is not possible to prove in general that this process ter-
minates. It is the job of the extension to ensure this, by
abstracting information and weakening concrete states as
necessary. Thus, while a concrete exploration of the state
space may have no fixed point ∆, extensions provide abstrac-
tions that identify sufficiently similar states and permit the
algorithm to terminate. More coarse-grained abstractions
can lead to smaller final ∆ and correspondingly faster con-
vergence.

There are potential concerns arising from our decision to
query arbitrary, untrusted extension programs during ver-
ification. Our soundness theorem requires that extensions
act as “black boxes” that can’t interfere with the trusted in-
frastructure’s data structures or termination. However, an

arbitrary binary extension may itself violate the safety pol-
icy, in which case we can’t guarantee the needed properties.
Possible solutions include running the extension in a sand-
box or requiring that the extension first be certified safe by
another extension (where we bootstrap with one sandboxed
root extension for some very simple safety mechanism). An-
other potential concern is that extensions may launch “de-
nial of service attacks”, either by going into infinite loops
when queried, or by always collecting new invariants, pre-
venting a fixed point from being reached. However, this is-
sue is not really specific to our approach. All certified code
techniques allow code to be distributed with proofs, invari-
ants, or types that are large enough to prolong verification
far beyond acceptable thresholds. In the setting of the Open
Verifier, we can let the code consumer set, or negotiate with
extensions, policies on how long extensions are permitted to
take per step and in total, aborting any verifications that
exceed these parameters. A benevolent extension can al-
ways arrange with the code producer to attach additional
metadata to the code, to enable it to produce the scripts
quickly enough.

Though we omit it here due to lack of space, we have
proved the soundness of this formalism. The proof is essen-
tially an application of standard reasoning about abstract in-
terpretation. Together with straightforward proofs showing
that each operation of Post corresponds to an axiomatiza-
tion of machine semantics, a formalization of the soundness
proof could be used to compile an Open Verifier verification
into pure FPCC.

2.7 Proof Layering
A key part of the Open Verifier design for simplifying the

job of the extension writer is a particular layered approach
to proof construction. The invariants are existentially quan-
tified conjunctions of formulas, which, in almost all cases
in the extensions we have written, are atomic. Thus most
reasoning can be restricted to Horn logic, which is easily
automatizable. Our implementation includes an untrusted
proof-generating Prolog interpreter, which can be used as
a library by extensions. (In type-based extensions, Prolog
can be used as a foundational type checker, where the typing
rules are implemented as a Prolog program.) We have found
all program-specific reasoning can be handled this way.

The extension’s formula constructors, and the lemmas
relating them that are used as Prolog rules, must be im-
plemented in a richer logic. Our implementation uses the

Coq [Coq02] proof assistant for the Calculus of Inductive
Constructions [CH85], but in fact all of our experiments,
even those like TAL which manipulate function pointers di-
rectly, require only first-order reasoning together with induc-
tively defined types and predicates. This proof layer is for
extension-specific (which usually means compiler-specific)
reasoning.7

Finally there is the soundness of the trusted Open Verifier
framework itself, which incorporates elements common to all
verifiers and needs to be proven only once. This proof either
requires higher-order logic or needs to be interpreted as a
first-order proof schema over finite collections of invariants.

Besides producing the necessary weakening proofs, exten-
sions also must produce the invariants. Often, we have found
it fruitful to start with some notion of an abstract state at
each point, which is manipulated by a conventional non-
proof-producing verifier; the extension then translates the
abstract states into invariants for the Open Verifier and
produces the needed proofs. This is similar in spirit to
[SYY03], where Hoare logic proofs are automatically pro-
duced from the results of abstract interpretations; they au-
tomatize proof production in a very generic way (as opposed
to our extension-specific proof production strategies), but
they also work at the source-code level for a very restricted
source language.

3. CASE STUDIES
To explore the flexibility of the Open Verifier, we have

implemented extensions with a large variance in abstraction,
inference, and language features.

3.1 Proof-Carrying Code
In this section, we consider a verification-condition gen-

erator similar to the one used in Touchstone [CLN+00] as
an untrusted extension for the Open Verifier. This is per-
haps the simplest extension of all. The script for almost
any instruction is simply a collect, indicating the desire
to use strongest postconditions. For loop entry points, the
code metadata declares loop-modified registers and invariant
predicates. These are translated directly into abstractions
for the modified registers, along with assertions for the in-
variant predicates, followed by a collect the first time the
loop is encountered, or a match the subsequent times.

The proofs required for the assert scripts are extracted
from the metadata and re-packaged as needed by the Checker.
It was a liberating feeling when compared to previous im-
plementations of PCC that we do not need to trust the
verification-condition generator anymore8 and that we do
not have to standardize a proof-representation format. It is
all between the PCC producer and the writer of the exten-
sion.

7This proof layering is similar to that proposed by [WAS03],
which incorporates Prolog into the trusted proof checker in-
stead of using an untrusted proof-generating Prolog inter-
preter.
8Recall that our trusted postcondition generator is quite far
from the complexity of traditional VCGens. (Compare the
less than 3000 lines of trusted code in our implementation
with the over 6000 lines in Touchstone’s [CLN+00] VCGen
alone.) It does not deal with loop invariants or any compila-
tion strategy-specific mechanisms, but just directly reflects
the machine semantics.

Similar work on implementing a foundational Hoare-logic-
style verifier is described in [YHS03, HS04]. Like those au-
thors, we are interested in using low-level verifiers to verify
foundationally the run-time systems of high-level languages.
This would involve the joint operation of the low-level ver-
ifier with a high-level, probably type-based, verifier to pro-
duce a complete foundational verification of a given piece
of untrusted code. In [HS04], this requires a re-expression
of their high-level type-based FPCC system, originally con-
ceived using a global well-typedness invariant, in terms of
the local state predicates holding at interfaces with the low-
level system. We believe our system offers an advantage in
having all verifiers already expressed in terms of local in-
variants which are state predicates. Producing a complete
verification of a realistic run-time system is still a work in
progress.

3.2 Typed Assembly Language
In this section, we consider an Open Verifier extension

for verifying programs generated from x86 Typed Assem-
bly Language (TALx86) [MCG+99]. The extension is built
around existing compilers and checkers distributed in the 1.0
release of the TALC tools from Cornell University [MCG+03].
This TAL version includes stack, product, sum, recursive,
universal, existential, array, and continuation types. The
operations on values of all of these types, including dynamic
memory allocation, are handled soundly from first principles
by our TAL extension. We are able to verify the results of
compiling the test cases included in TALC for its compilers
for Popcorn (a safe C dialect) and mini-Scheme.

We were able to use the standard TALC distribution’s
type system, compilers, and type checker unchanged in the
extension, without requiring trust in any of these compo-
nents. The extension uses the distributed TALx86 type
checker to produce abstract TAL states at each program
point, which are then translated into state predicates for
the Open Verifier. A little extra work must be done to pro-
duce invariants for instructions in the middle of TALx86
macros like memory allocation; currently, we use a sim-
ple non-garbage-collected allocator for which this is rather
straightforward, although we are exploring more realistic
run-time functions. After the invariants are created, the
needed weakening proofs are produced automatically using
lemmas proven by hand in Coq.

The majority of our implementation effort involved identi-
fying and proving the lemmas that underlie informal proofs
of the type checker’s correctness. However, instead of do-
ing this by proving progress and preservation properties of
an abstract semantics, we assign direct meanings to typ-
ing predicates in terms of concrete machine states. The
extension uses typing information produced by the checker
to determine which lemmas are needed to produce individ-
ual proofs of any new assumptions that it asserts. We have
found that this decentralized proof strategy eases the exten-
sion writer’s burden to an extent by reducing the need for
“congruence rules,” but more experience is needed to say
anything concrete.

The reader may at this point find himself perplexed as to
how we handle verification based on a thoroughly “higher
order” mechanism like TAL using only a subset of first-order
logic. In fact, our previous work on the Open Verifier [NS03,
Sch04] relied on a more “higher order” notion of invariant

corresponding to natural-number-indexed state predicates,
in a way comparable with [AM01].

However, in the TAL extension, we use a formulation
where we define the “value e has code type τ” predicate to
mean “e is one of the fixed set of code block addresses whose
types are subtypes of τ”. Subtyping is handled through first-
order reasoning about syntactic substitution for universally
quantified type variables. Therefore, a jump can be proven
safe by a case analysis on all possible targets of compatible
type. By the construction of our invariants, it is easy to
convert the source invariant to match the target invariant
in each case. To avoid the overhead of a case analysis at
each jump, we use an invariant that is satisfied by any valid
jump target state and prove it safe with a single case anal-
ysis at the start of verification. Further details on the TAL
extension be found in [Chl04].

3.3 The Dataflow Based Extension for Cool
We have also built a verifier for a type-safe object-oriented

programming language called Cool (Classroom Object-Ori-
ented Language [Aik96])—more precisely, for the assembly
code produced by a broad class of Cool compilers. The
most notable features of Cool are a single-inheritance class
hierarchy, a strong type system with subtyping, dynamic
dispatch, a type-case construct, exceptions, and self-type
polymorphism. For our purposes, it can be viewed as a
realistic subset of Java or C#. We chose Cool for one of our
case studies because it tests the flexibility and usability of
the Open Verifier for making a JVML-like verifier untrusted,
and it tests the ability to retrofit FPCC to existing compilers
and languages.

Other efforts in FPCC systems for Java-like languages
have assumed a type-preserving compilation to a general (if
not universal) typed assembly language on which the code is
certified [LST02]. In this study, we consider the case when it
is infeasible or impractical to develop such a compiler. Fur-
thermore, we assert that such an encoding of object-oriented
languages in traditionally functional TALs can be unnatu-
ral, much like the compilation of functional languages to the
JVML or CIL; others seem to concur [CT05]. A design de-
cision in [LST02] to change the compilation scheme of the
type-case rather than introduce a new tag type (which they
found possible but difficult in their system) provides some
additional evidence for this.

To summarize our results, our Cool extension today in-
deed verifies the safety of programs generated by a compiler
that we have left unchanged throughout this process. In
fact, our success in achieving compiler re-use is underscored
by the fact that the Cool extension has been quite success-
ful in proving the safety of the output of dozens of Cool
compilers developed by students in the undergraduate com-
pilers class at UC Berkeley. Further detail about our veri-
fication strategy and experiments is available in a separate
paper [CCNS05].

4. IMPLEMENTATION
We have an implementation of the Open Verifier frame-

work in OCaml, along with a graphical interactive user in-
terface. Moreover, we have built several extensions that
demonstrate the Open Verifier’s ability to support a wide
range of verification strategies, including an extension for
traditional PCC called PCCExt (Section 3.1), one for TALx86
called TALExt (Section 3.2), an extension for compiled-Cool

PCCExt TALExt Coolaid

Layer lines lines lines

Untrusted Conventional – 6,000 3,600
Wrapper 2,400 3,300 3,300

Total 2,400 9,300 6,900

Prolog Rules 200 1,600 900
Coq Proofs 300 17,500 4,000

Table 1: Size of the extensions.

called Coolaid (Section 3.3), and one for the example lan-
guage L called LExt (Section 2.1). We have used the imple-
mentation to verify programs from source code written in
Cool; Popcorn and mini-Scheme (for TALExt); and C (com-
piled with gcc -fstack-check, for PCCExt and LExt). Our
examples are up to about 600 lines of source code, and we
are confident that there is no obstacle to verifying larger
programs.

In our implementation, Post operates on a generic un-
typed RISC-like assembly language called SAL; we have
parsers that translate both x86 and MIPS assembly lan-
guages into SAL. Representing SAL takes 300 lines of code,
while the MIPS and x86 parsers are 700 and 1,000 lines, re-
spectively. The implementation of the trusted modules Post
(100 lines), Checker (600 lines for script interpretation along
with 500 lines for proof checking), and Fixpoint (200 lines)
follow directly from their descriptions in Sections 2.3, 2.5,
and 2.6, respectively. Thus, the amount of trusted code
in these modules is either 2400 lines of OCaml if you use
MIPS, or 2700 for Intel x86. This number does not include
the size of the Coq kernel (8000 lines), which we use at the
moment to check the proofs of lemmas. However, since we
do not need the full capabilities even of the Coq kernel, we
might be able to use instead a slightly expanded version of
the Checker module. In a traditional FPCC trusted base,
we see analogues of Checker (a trusted proof checker) and
Post (a logical formalization of machine semantics), but no
analogue of Fixpoint. This highlights the main difference
in the trust relationships that our system requires.

The extensions are the most complex pieces to build. As
we have advocated, this is an important reason for making
this part untrusted. Though a fair amount of effort is re-
quired for a complete extension, development is typically not
from scratch and can be staged depending on how much one
wants to trust. We foresee most extensions being built upon
conventional non-proof-producing verifiers; the applicability
of this approach is confirmed especially by TALExt where
the conventional verifier, TALx86, was not built or modified
by us. The cost above constructing conventional verifiers
is made manageable using the extension scripts described in
Section 2.4.1. At this point, one may be satisfied with trust-
ing the lemmas about the enforcement mechanism (e.g., the
typing rules along with their soundness lemma), but we no
longer need to trust their implementation in the conven-
tional verifier. However, if this is unsatisfactory, proofs of
these lemmas can be formalized in a machine checkable form,
as we have done for Coolaid (in part) and for TALExt using
Coq [Coq02].

Furthermore, extensions can often share modules han-
dling common software abstractions. For example, both
Coolaid and LExt share modules for handling stacks, func-
tions, and memory regions. All extensions utilize to some

Extension Conv. Prolog Checking Other

TAL small 0.00 0.03 0.01 0.05
TAL medium 0.01 0.05 0.02 0.10
TAL large 0.21 2.91 0.74 2.94
Cool small 0.01 0.00 0.02 0.11
Cool medium 0.02 0.37 0.15 0.30
Cool large 0.22 3.98 1.61 4.59

Table 2: Running times (in seconds) for selected
verifications on a 1.7 GHz Pentium 4.

degree the Prolog interpreter for automating the proving of
per-program facts in terms of lemmas (i.e., for serving as
a customizable type-checker); however, proofs can be con-
structed directly without using Prolog, say for efficiency rea-
sons (as we do for the simpler LExt). The size of the imple-
mentations of the major extensions—PCCExt, TALExt, and
Coolaid—are given in Table 1. In all cases except for PCC,
there is more untrusted code than trusted. Also, we see that
the size of a wrapper is smaller than that of a conventional
verifier.

We have tested our implementations on suites of test pro-
grams. Here we present results for a representative range
of inputs. For both TAL and Cool, Table 2 and Figure 7
present a breakdown of running time on selected examples
ranging from small “hello world” programs, to medium-sized
cases with a few hundred assembly instructions, to large
cases with around 6000 instructions. Running time is broken
into 4 categories: the time taken by the conventional verifier,
the Prolog prover, the trusted proof checker, and any other
parts of the system. The last category includes overhead
from both the trusted parts of the Open Verifier and from
the extension’s own bookkeeping. We see that both naive
proof generation and checking take up significant portions of
time. We expect to be able to improve proof checking drasti-
cally by using engineering solutions such as those described
in [NL97]. Preliminary experiments lead us to believe that
overhead over the time of a conventional verifier can be enor-
mously reduced through careful hand optimization of proof
generation, but we have not yet constructed any complete
verifiers in this style.

5. CONCLUSION
We have described the Open Verifier framework, which

produces foundational verifiers using untrusted extensions
to customize the safety enforcement mechanism. We have
proved its soundness (i.e., that unsound extension actions
will be caught), and we have demonstrated its flexibility for
a broad set of verification systems ranging from Hoare-style
verifiers to traditional typed assembly languages to dataflow
or abstract interpretation based verifiers.

Our framework enables an approach for adding layers of
increasing trust in the construction of a verifier. We provide
support for starting with a conventional verifier, wrapping
it with an extension that applies trusted lemmas using a
specialized script language, and then proving those lemmas
to arrive at a completely foundational verifier. This layer-
ing is also a layering of logical complexity, and in particular
in the amount of specialized background in formal meth-
ods required to produce the various parts of a foundational
verifier.

The Open Verifier provides a standard framework for the

production of multiple FPCC instantiations, each using those
techniques most natural to a given source language and com-
pilation strategy. It allows the re-use of existing compil-
ers and non-foundational verifiers. Moreover, we have de-
signed the framework for accessibility. In all, we believe our
perspectives embodied in the Open Verifier provide a more
feasible approach to foundational proof-carrying code. We
conjecture that our system supports practical verifiers for
almost all safety policies of interest in practice, though it
remains for further research to test this hypothesis.

Acknowledgments. We would like to thank Kun Gao for
his hard work on the implementation of our Open Verifier
prototype and Andrew Appel, Jeremy Condit, Simon Gold-
smith, Matt Harren, Scott McPeak, Simon Ou, Valery Tri-
fonov, Wes Weimer, Dinghao Wu, and the anonymous refer-
ees for reviewing and providing helpful comments on drafts
of this paper.

6. REFERENCES
[AF00] Andrew W. Appel and Amy P. Felty. A semantic

model of types and machine instructions for
proof-carrying code. In Proceedings of the 27th
ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL-00), pages
243–253. ACM Press, January 2000.

[Aik96] Alexander Aiken. Cool: A portable project for
teaching compiler construction. ACM SIGPLAN
Notices, 31(7):19–24, July 1996.

[AM01] Andrew W. Appel and David McAllester. An
indexed model of recursive types for foundational
proof-carrying code. ACM Transactions on
Programming Languages and Systems,
23(5):657–683, September 2001.

[CCNS05] Bor-Yuh Evan Chang, Adam Chlipala, George C.
Necula, and Robert R. Schneck. Type-based
verification of assembly language for compiler
debugging. In Proceedings of the 2nd ACM
Workshop on Types in Language Design and
Implementation (TLDI’05), January 2005.

[CH85] Thiery Coquand and Gerard Huet. Constructions:
A higher order proof system for mechanizing
mathematics. In Proc. European Conf. on Computer
Algebra (EUROCAL’85), LNCS 203, pages
151–184. Springer-Verlag, 1985.

[Chl04] Adam Chlipala. An untrusted verifier for typed
assembly language. M.S. Report UCB/ERL
M04/41, EECS Department, University of
California, Berkeley, 2004.

[CLN+00] Christopher Colby, Peter Lee, George C. Necula,
Fred Blau, Mark Plesko, and Kenneth Cline. A
certifying compiler for Java. ACM SIGPLAN
Notices, 35(5):95–107, May 2000.

[Coq02] Coq Development Team. The Coq proof assistant
reference manual, version 7.3. May 2002.

[Cra03] Karl Crary. Toward a foundational typed assembly
language. In Proceedings of the 30th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL-03), volume 38(1)
of ACM SIGPLAN Notices, pages 198–212. ACM
Press, January 15–17 2003.

[CT05] Juan Chen and David Tarditi. A simple typed
intermediate language for object-oriented languages.
In Proceedings of the 32nd ACM Symposium on
Principles of Programming Languages (POPL-05),
January 2005.

[Gou02] John Gough. Compiling for the .NET Common
Language Runtime. .NET series. Prentice Hall,
Upper Saddle River, New Jersey, 2002.

Figure 7: Breakdown of extension execution time (graph of Table 2).

[GS01] Andrew D. Gordon and Don Syme. Typing a
multi-language intermediate code. In Proceedings of
the 28th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL-01),
pages 248–260, London, United Kingdom, January
2001.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin.
A framework for defining logics. Journal of the
Association for Computing Machinery,
40(1):143–184, January 1993.

[HS04] Nadeem A. Hamid and Zhong Shao. Interfacing
Hoare logic and type systems for Foundational
Proof-Carrying Code. In 17th International
Conference on Theorem Proving in Higher-Order
Logics (TPHOLs2004), September 2004.

[HST+02] Nadeem A. Hamid, Zhong Shao, Valery Trifonov,
Stefan Monnier, and Zhaozhong Ni. A syntactic
approach to foundational proof-carrying code. In
Proceedings of the Seventeenth Annual IEEE
Symposium on Logic in Computer Science, pages
89–100, Copenhagen, Denmark, July 2002.

[LST02] Christopher League, Zhong Shao, and Valery
Trifonov. Type-preserving compilation of
Featherweight Java. ACM Transactions on
Programming Languages and Systems,
24(2):112–152, 2002.

[LY97] Tim Lindholm and Frank Yellin. The Java Virtual
Machine Specification. The Java Series.
Addison-Wesley, Reading, MA, USA, January 1997.

[MA00] Neophytos G. Michael and Andrew W. Appel.
Machine instruction syntax and semantics in
higher-order logic. In Proceedings of the 17th
International Conference on Automated Deduction,
pages 7–24. Springer-Verlag, June 2000.

[MCG+99] Greg Morrisett, Karl Crary, Neal Glew, Dan
Grossman, Richard Samuels, Frederick Smith, David
Walker, Stephanie Weirich, and Steve Zdancewic.
TALx86: A realistic typed assembly language. In
Proceedings of the 1999 ACM SIGPLAN Workshop
on Compiler Support for System Software, pages
25–35, 1999.

[MCG+03] Greg Morrisett, Karl Crary, Neal Glew, Dan
Grossman, Richard Samuels, Frederick Smith, David
Walker, Stephanie Weirich, and Steve Zdancewic.
Talc releases, 2003. URL:
http://www.cs.cornell.edu/talc/releases.html.

[ML71] Per Martin-Löf. A theory of types. Technical Report
71–3, Department of Mathematics, University of
Stockholm, 1971.

[NL97] George C. Necula and Peter Lee. Efficient
representation and validation of logical proofs.

Technical Report CMU-CS-97-172, Computer
Science Department, Carnegie Mellon University,
October 1997.

[NR01] George C. Necula and Shree P. Rahul. Oracle-based
checking of untrusted programs. In Proceedings of
the 28th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming
Languages (POPL-01), pages 142–154. ACM Press,
January 2001.

[NS03] George C. Necula and Robert R. Schneck. A sound
framework for extensible untrusted
verification-condition generators. In Proceedings of
the Eighteenth Annual IEEE Symposium on Logic
in Computer Science, pages 248–260, Ottawa,
Canada, June 2003.

[Sch04] Robert R. Schneck. Extensible Untrusted Code
Verification. PhD thesis, University of California,
Berkeley, May 2004.

[SYY03] Sunae Seo, Hongseok Yang, and Kwangkeun Yi.
Automatic construction of Hoare proofs from
abstract interpretation results. In Proceedings of the
1st Asian Symposium on Programming Languages
and Systems (APLAS’03), volume 2895 of LNCS.
Springer-Verlag, 2003.

[WAS03] Dinghao Wu, Andrew W. Appel, and Aaron Stump.
Foundational proof checkers with small witnesses. In
5th ACM-SIGPLAN International Conference on
Principles and Practice of Declarative
Programming, pages 264–274, August 2003.

[YHS03] Dachuan Yu, Nadeem A. Hamid, and Zhong Shao.
Building certified libraries for PCC: Dynamic
storage allocation. In Proceedings of the 2003
European Symposium on Programming (ESOP’03),
April 2003.

