
A Framework for Certified Program Analysis
and Its Applications to Mobile-Code Safety?

Bor-Yuh Evan Chang, Adam Chlipala, and George C. Necula

University of California, Berkeley, California, USA
{bec,adamc,necula}@cs.berkeley.edu

Abstract. A certified program analysis is an analysis whose implemen-
tation is accompanied by a checkable proof of soundness. We present a
framework whose purpose is to simplify the development of certified pro-
gram analyses without compromising the run-time efficiency of the analy-
ses. At the core of the framework is a novel technique for automatically
extracting Coq proof-assistant specifications from ML implementations
of program analyses, while preserving to a large extent the structure of
the implementation. We show that this framework allows developers of
mobile code to provide to the code receivers untrusted code verifiers in
the form of certified program analyses. We demonstrate efficient imple-
mentations in this framework of bytecode verification, typed assembly
language, and proof-carrying code.

1 Introduction

When static analysis or verification tools are used for validating safety-critical
code [BCC+03], it becomes important to consider the question of whether the
results of the analyses are trustworthy [KN03,BCDdS02]. This question is be-
coming more and more difficult to answer as both the analysis algorithms and
their implementations are becoming increasingly complex in order to improve
precision, performance, and scalability. We describe a framework whose goal is
to assist the developers of program analyses in producing formal proofs that
the implementations and algorithms used are sound with respect to a concrete
semantics of the code. We call such analyses certified since they come with
machine-checkable proofs of their soundness. We also seek soundness assurances
that are foundational, that is, that avoid assumptions or trust relationships that
don’t seem fundamental to the objectives of users. Our contributions deal with
making the development of such analyses more practical, with particular em-
phasis on not sacrificing the efficiency of the analysis in the process.

The strong soundness guarantees given by certified program analyzers and
verifiers are important when the potential cost of wrong results is significant.

? This research was supported in part by NSF Grants CCR-0326577, CCF-0524784,
and CCR-00225610; an NSF Graduate Fellowship; and an NDSEG Fellowship. The
information presented here does not necessarily reflect the position or the policy of
the Government and no official endorsement should be inferred.

This technical report is an extended version of the manuscript appearing in VMCAI 2006, LNCS
3855.

2 Bor-Yuh Evan Chang, Adam Chlipala, and George C. Necula

Moreover, the ability to check independently that the implementation of the
analysis is sound allows us to construct a mobile-code receiver that allows un-
trusted parties to provide the code verifier. The code verifier is presented as a
certified program analysis whose proof of soundness entails soundness of code
verification.

The main contributions of the framework we propose are the following:

– We describe a methodology for translating automatically implementations
of analyses written in a general-purpose language (currently, ML) into mod-
els and specifications for a proof assistant (currently, Coq). Specifically, we
show how to handle those aspects of a general-purpose language that do not
translate directly to the well-founded logic used by the proof assistant, such
as side-effects and non-primitive recursive functions. We use the framework
of abstract interpretation [CC77] to derive the soundness theorems that must
be proved for each certified analysis.

– We show a design for a flexible and efficient mobile-code verification protocol,
in which the untrusted code producer has complete freedom in the safety
mechanisms and compilation strategies used for mobile code, as long as it
can provide a code verifier in the form of a certified analysis, whose proof
of soundness witnesses that the analysis enforces the desired code-receiver
safety policy.

In the next section, we describe our program analysis framework and introduce
an example analyzer. Then, in Sect. 3, we present our technique for specification
extraction from code written in a general-purpose language. We then discuss
the program analyzer certification process in Sect. 4. In Sect. 5, we present an
application of certified program analysis to mobile code safety and highlight its
advantages and then describe how to implement in this architecture (founda-
tional) typed assembly language, Java bytecode verification, and proof-carrying
code in Sect. 6. Finally, we survey related work (Sect. 7) and conclude (Sect. 8).

This technical report is an expanded version of a paper presented at VMCAI
2006 [CCN06]. The main additions in this paper are as follows:

– in Sect. 2.1, an expanded description of the Java bytecode verifier-like ex-
ample, including new or expanded figures 4, 5, and 6;

– in Sect. 3.2, a formalization of our specification extraction technique for a
mini-ML language, including a proof of the main soundness theorem;

– in Sect. 4, new subsections sketching a proof of soundness for our certified
program analysis framework and the local soundness proofs for the running
bytecode verifier-like example; and

– in Sect. 5, a new figure that highlights the differences between our certi-
fied verifier architecture and traditional proof-carrying code implementations
(Fig. 13).

2 The Certified Program Analysis Framework

In order to certify a program analysis, one might consider proving directly the
soundness of the implementation of the analysis. This is possible in our frame-

A Framework for Certified Program Analysis and Its Applications 3

Proof
Checker

Model

Proof of
soundness

Compiler

Certifier
source code

Installation time Verification time

Model/Specification
Extraction

Input program

Certifier

Analysis

Certifier

Fig. 1. Our certified verifier architecture with the trusted code base shaded

type absval

type abs = { pc : nat; a : absval }

val ainv : abs list

val astep : abs -> result

datatype result = Fail | Succ of abs list

Fig. 2. The core types of a certifier

work, but we expect that an alternative strategy is often simpler. For each analy-
sis to be certified, we write a certifier that runs after the analysis and checks its
results. Then, we prove the soundness of the certifier. This approach has several
important advantages. Often the certifier is simpler than the analysis itself. For
example, it does not need to iterate more than once over each instruction, and
it does not need all the complicated heuristics that the analysis itself might use
to speed up the convergence to a fixpoint. Thus, we expect the certifier is easier
to prove sound than the analysis itself. The biggest benefit, however, is that we
can use an existing implementation of a program analysis as a black box, even
if it is written in a language that we are not ready to analyze formally, and even
if the analysis algorithm does not fit perfectly with the formalism desired for
the certification and its soundness proofs. As an extreme example, the analysis
itself might contain a model checker, while we might want to do the soundness
proof using the formalism of abstract interpretation [NJM+02]. In Fig. 1, we
diagram this basic architecture for the purpose of mobile-code safety. We distin-
guish between “installation time” activity, which occurs once per analyzer, and
“verification time” activity, which occurs once per program to analyze.

We choose the theory of abstract interpretation [CC77] as the foundation
for the soundness proofs of certifiers because of its generality and because its
soundness conditions are simple and well understood. We present first the re-
quirements for the developers of certifiers, and then in Sect. 4, we describe the
soundness verification.

4 Bor-Yuh Evan Chang, Adam Chlipala, and George C. Necula

fun applyWithTimeout (f: ’a -> ’b, x: ’a) : ’b = ...

fun top (DonePC: nat list, ToDo: abs list) : bool =

case ToDo of

nil => true

| a :: rest =>

if List.member(a.pc, DonePC) then false else

(case applyWithTimeout(astep, a) of

Fail => false

| Succ as => top (a.pc :: DonePC, as @ ToDo))

in

top (nil, ainv)

Fig. 3. The trusted top-level analysis engine. The infix operators :: and @ are
list cons and append, respectively

The core of the certifier is an untrusted custom module containing an im-
plementation of the abstract transition relation (provided by the certifier devel-
oper). The custom module of a certifier must implement the signature given in
Fig. 2. The type abs encodes abstract states, which include a program counter
and an abstract value of a type that can be chosen by the certifier developer.
The value ainv consists of the abstract invariants. They must at a minimum
include invariants for the entry points to the code and for each destination of a
jump. The function astep implements the abstract transition relation: given an
abstract state at a particular instruction, compute the set of successor states,
minus the states already part of ainv . The transition relation may also fail,
for example when the abstract state does not ensure the safe execution of the
instruction. We will take advantage of this possibility to write safety checkers for
mobile-code using this framework. In our implementation and in the examples
in this paper, we use the ML language for implementing custom certifiers.

In order to execute such certifiers, the framework provides a trusted engine
shown in Fig. 3. The main entry point is the function top , invoked with a list of
program counters that have been processed and a list of abstract states still to
process. Termination is ensured using two mechanisms: each invocation of the
untrusted astep is guarded by a timeout, and each program counter is processed
at most once. We use a timeout as a simple alternative to proving termination of
astep . A successful run of the code shown in Fig. 3 is intended to certify that all
of the abstract states given by ainv (i.e., the properties that we are verifying for
a program) are invariant, and that the astep function succeeds on all reachable
instructions. We take advantage of this latter property to write untrusted code
verifiers in this framework (Sect. 5). We discuss these guarantees more precisely
in Sect. 4.

2.1 Example: Java Bytecode Verifier

Now we introduce an example program analyzer that requires the expressivity
of a general-purpose programming language and highlights the challenges in
specification extraction. In particular, we consider a certifier in the style of the

A Framework for Certified Program Analysis and Its Applications 5

type label

datatype instr =

RegReg of reg * reg

| RegLabel of reg * label

| Write of reg * int * reg

| Read of reg * int * reg

| Jump of reg

val instrAt : int -> instr

type class

val fieldOf : class * int -> class option

val super : class -> class option

Fig. 4. Details of the J machine.

Java bytecode verifier, but operating on a simple assembly language instead of
bytecodes.

Fig. 4 presents the ML definitions that describe this code target, which we’ll
call the J machine. Included are the instruction decoder instrAt , which maps
program counters to the instructions that they reference; the partial function
fieldOf, which returns the type of a field at a certain offset of a class; and the
partial function super, which returns the superclass of a class. For simplicity
of exposition, we assume that these functions and the object representation
convention that they deal with are fixed and part of the trusted code base.

Figs. 5 and 6 present a fragment of this custom verifier. The abstract value is
a partial map from registers to types, with a missing entry denoting an uninitial-
ized register. A type is either a class name or a continuation type. Each branch
of the case expression considers a different assembly instruction. For example,
the third branch deals with memory writes. It succeeds only if the destination
address is of the form rdest + n , with register rdest pointing to an object of
class cdest that has at offset n a field of type c′ , which must be a super class
of the type of register rsrc .

We omit the code for calculatePreconditions , a function that obtains
some preconditions from the meta-data packaged with the .class files and then
uses an iterative fixed-point algorithm to find a good typing precondition for
each program label. Each such precondition should be satisfied any time control
reaches its label. This kind of algorithm is standard and well studied, in the
context of the Java Bytecode Verifier and elsewhere, so we omit the details here.
Most importantly, we will not need to reason formally about the correctness of
this algorithm.

3 Specification Extraction

To obtain certified program analyses, we need a methodology for bridging the gap
between an implementation of the analysis and a specification that is suitable for
use in a proof assistant. An attractive technique is to start with the specification
and its proof, and then use program extraction supported by proof assistants

6 Bor-Yuh Evan Chang, Adam Chlipala, and George C. Necula

type (’a, ’b) partialmap

val sel : (’a, ’b) partialmap * ’a -> ’b option

val upd : (’a, ’b) partialmap * ’a * ’b option -> (’a, ’b) partialmap

datatype ty =

| Class of class

| Cont of abs

and absval = (reg, ty) partialmap

and abs = { pc : nat; a : absval }

fun subClass (c1 : class, c2 : class) =

c1 = c2 orelse

(case super c1 of

SOME(sup) => subClass(sup, c2)

| NONE => false)

fun subAbs (a : abs, a’ : abs) =

a.pc = a’.pc andalso

forall (fn (r, ty) =>

case sel(a.a, r) of

SOME ty’ => subType(ty, ty’)

| NONE => false) a’.a

and subType (ty : ty, ty’ : ty) =

case (ty, ty’) of

(Class c1, Class c2) => subClass(c1, c2)

| (Cont a1, Cont a2) => subAbs(a2, a1)

| _ => false

fun calculatePreconditions () : abs list = (* ... *)

val ainv: abs list = calculatePreconditions ()

fun precondition (l : label) : abs = ... (* lookup in ainv *)

Fig. 5. Support functions for a verifier in the style of the Java Bytecode Verifier

A Framework for Certified Program Analysis and Its Applications 7

fun astep (a : abs) : result =

case instrAt(a.pc) of

RegReg(r1, r2) =>

Succ [{ pc = a.pc + 1; a = upd(a.a, r1, sel(a.a,r2)) }]

| RegLabel(r, l) =>

Succ [{ pc = a.pc + 1; a = upd(a.a, r, SOME (Cont (precondition l))) }]

| Write(r1, n, r2) =>

(case (sel(a.a, r1), sel(a.a, r2)) of

(SOME(Class c), SOME(t)) =>

(case fieldOf(c, n) of

SOME(c’) =>

if subType(t, Class(c’)) then

Succ [{ pc = a.pc + 1; a = a.a }]

else

Fail

| _ => Fail)

| _ => Fail)

| Read(r1, r2, n) =>

(case sel(a.a, r2) of

Class c =>

(case fieldOf(c, n) of

SOME(c’) => Succ [{ pc = a.pc + 1; a = SOME (Class c’) }]

| _ => Fail)

| _ => Fail)

| Jump r =>

(case sel(a, r) of

SOME(Cont a’) =>

if subAbs(a, a’) then

Succ []

else

Fail

| _ => Fail)

Fig. 6. Step function of a verifier in the style of the Java bytecode verifier

8 Bor-Yuh Evan Chang, Adam Chlipala, and George C. Necula

fun subClass (depth : nat, c1 : class, c2 : class) : bool option =

c1 = c2 orelse

(case super c1 of NONE => SOME false

| SOME sup => if depth = O then NONE else subClass’(depth-1,sup,c2))

Fig. 7. Translation of the subClass function. The boxed elements are added
by our translation

such as Coq or Isabelle [Pau94] to obtain the implementation. This strategy is
very proof-centric and while it does yield a sound implementation, it makes it
hard to control non-soundness related aspects of the code, such as efficiency,
instrumentation for debugging, or interaction with external libraries.

Yet another alternative is based on verification conditions [Dij75,FM04],
where each function is first annotated with a pre- and postcondition, and the
entire program is compiled into a single formula whose validity implies that the
program satisfies its specification. Such formulas can make good inputs to auto-
mated deduction tools, but they are usually quite confusing to a human prover.
They lose much of the structure of the original program. Plus, in our experience,
most auxiliary functions in a program analyzer do good jobs of serving as their
own specifications (e.g., the subClass function).

Since it is inevitable that proving soundness will be sufficiently complicated
to require human guidance, we seek an approach that maintains as close of a
correspondence between the implementation and its model as possible. For non-
recursive purely functional programs, we can easily achieve the ideal, as the
implementation can reasonably function as its own model in a suitable logic,
such as that of the Coq proof assistant. This suggests that we need a way to
handle imperative features, and a method for dealing with non-primitive recur-
sive functions.

3.1 Overview of the Main Ideas

In this subsection, we give an informal overview of the main ideas behind our
approach. The following subsection formalizes what we present here and proves
a key soundness property.

Handling Recursion. We expect that all invocations of the recursive functions
used during certification terminate, although it may be inconvenient to write all
functions in primitive recursive form, as required by Coq. In our framework, we
force termination of all function invocations using timeouts. This means that for
each successful run (i.e., one that does not time out) there is a bound on the
call-stack depth. We use this observation to make all functions primitive recur-
sive on the call-stack depth. When we translate a function definition, we add an
explicit argument depth that is checked and decremented at each function call.
Fig. 7 shows the result of translating a typical implementation of the subClass
function for our running example. The boxed elements are added by the trans-
lation. Note that in order to be able to signal a timeout, the return type of the

A Framework for Certified Program Analysis and Its Applications 9

fun readu16 (s: callstate, buff: int array, idx: int) : int =

256 * (freshread1 s) + (freshread2 s)

fun readu32 (s: callstate, buff: int array, idx: int) : int =

65536 * readu16(freshstate3 s,buff,i) + readu16(freshstate4 s,buff,i+2)

Fig. 8. Translation of a function for reading a 16-bit and 32-bit big-endian
numbers from a class file. Original body of readu16 before translation is
256 ∗ buff[i] + buff[i + 1]

function is an option type. Coq will accept this function because it can check
syntactically that it is primitive recursive in the depth argument.

This translation preserves any partial correctness property of the code. For
example, if we can prove about the specification that any invocation of subClass
that yields SOME true implies that two classes are in a subclass relationship, then
the same property holds for the original code whenever it terminates with the
value true .

Handling Imperative Features. The function calculatePreconditions
from Fig. 5 uses I/O operations to read and decode the basic block invariants
from the .class file (as in the KVM [Ros03] version of Java), or must use an
intraprocedural fixed-point computation to deduce the basic block preconditions
from the method start precondition (as for standard .class files). In any case,
this function most likely uses a significant number of imperative constructs or
even external libraries. This example demonstrates a situation when the result
of complex computations is used only as a hint, whose exact value is not im-
portant for soundness but only for completeness. We believe that this is often
the case when writing certifiers, which suggests that a monadic [Wad95] style of
translation would unnecessarily complicate the resulting specification.

For such situations we propose a cheaper translation scheme that abstracts
soundly the result of side-effecting operations. We describe this scheme infor-
mally, by means of an example of functions that read from a Java .class file
16-bit and 32-bit numbers, respectively, written in big-endian notation, shown
in Fig. 8. Each update to mutable state is ignored. Each syntactic occurrence of a
mutable-state access is replaced with a fresh abstract function (e.g., freshread1)
whose argument is an abstraction of the call-stack state. The call-stack argument
is needed to ensure that no relationship can be deduced between recursive in-
vocations of the same syntactic state access. Each function whose body reads
mutable state, or calls functions that read mutable state, gets a new parameter
s that is the abstraction of the call-stack state. Whenever such a function calls
another function that needs a call-stack argument, it uses a fresh transformer
(e.g., freshstate3) to produce the new actual state argument.

This abstraction is sound in the sense that it ensures that nothing can be
proved about results of mutable state accesses, and thus any property that we
can prove about this abstraction also holds for the actual implementation. If we
did not have the call-stack argument, one could prove that each invocation of the

10 Bor-Yuh Evan Chang, Adam Chlipala, and George C. Necula

readu16 function produces the same result, and thus all results of the readu32
are multiple of 65,537. This latter example also shows why we cannot use the
depth argument as an abstraction of the call-stack state.

Note that our use of “state” differs from the well-known “explicit state-
passing style” in functional programming, where state is used literally to track
all mutable aspects of the execution environment. That translation style requires
that each function that updates the state not only take an input state but also
produce an output state that must be passed to the next statement. In our
translation scheme states are only passed down to callers, and the result type of
a function does not change.

The cost for the simplicity of this translation is a loss of completeness. We
are not interested in preserving all the semantics of input programs. Based on
our conjecture that we can refactor programs so that their soundness arguments
do not depend on imperative parts, we can get away with a looser translation.
In particular, we want to be able to prove properties of the input by proving
properties of the translation. We do not need the opposite inclusion to hold.

Soundness of the Specification Extraction. We argue here informally the
soundness of the specification extraction for mutable state. In our implemen-
tation, the soundness of the code that implements the extraction procedure is
assumed. We leave for future work the investigation of ways to relax this as-
sumption. First, we observe that each syntactic occurrence of a function call has
its own unique freshstate transformer. This means that, in an execution trace
of the specification, each function call has an actual state argument that is ob-
tained by a unique sequence of applications of freshstate transformers to the
initial state. Furthermore, in any such function invocation all the syntactic occur-
rences of a mutable state read use unique freshread access functions, applied to
unique values of the state parameter. This means that in any execution trace of
the specification, each state read value is abstracted as a unique combination of
freshread and freshstate functions. This, in turn, means that for any actual
execution trace of the original program, there is a definition of the freshread
and freshstate parameters that yields the same results as the actual reads.
Since all the freshread and freshstate transformers are left abstract in the
specification, any proof about the specification works with any model for the
transformers, and thus applies to any execution trace of the original program.

3.2 Formalization

In the rest of this subsection, we illustrate our approach by formalizing it for
the simple certifier programming language L defined in Fig. 9. L is a standard
kind of mini-ML including function, sum, recursive, and reference types. Its only
aspects that cannot be translated readily into logic are the imperative reference
operations and the potential non-termination of recursive functions. We define
a translation that removes these problems while preserving the general form of
mostly-functional programs.

A Framework for Certified Program Analysis and Its Applications 11

Base Types b
Type Variables α
Types τ ::= b | unit | τ → τ | τ + τ | µα. τ | τ ref
Variables x, f
Terms e ::= () | x | e e | (fix f(x : τ) : τ = e)

| inlτ (e) | inrτ (e)
| (case e of inl(x) ⇒ e | inr(y) ⇒ e)
| rollτ (e) | unroll(e)
| ref e | !e | e := e

Program p ::= · | p, x = e

Fig. 9. A simple certifier language L .

In the following, we will assume the standard definition of a typing judgment
Γ ` e : τ , meaning that in context Γ , a finite map from variable names to
types, term e has type τ . The typing rules are entirely standard, so we omit
them here. Our translation is defined by a judgment Γ ` e ↪→ e′;Σ , which says
in typing context Γ , translate term e into term e′ and yield new global bindings
Σ . The new global bindings Σ are a list of bindings of the form x : τ . Each
such binding corresponds to a new opaque function that abstracts the results of
accessing mutable state. The variables free in e′ may include those that occurred
free in e and those new variables introduced in Σ , as well as special variables s
and depth , which we describe below.

Handling Imperative Features. We would like to avoid writing programs in a
monadic style, or translating them into that form, when all of our uses of mutable
state are part of optimizations that do not affect soundness. To achieve this goal,
we use a special translation where we introduce a set of opaque functions that
abstract the results of accessing mutable state. Each syntactic occurrence of a
mutable-state access is replaced with a fresh opaque function whose argument is
an abstraction of the call-stack state. The call-stack is needed to ensure that no
relationship can be deduced between recursive invocations of the same syntactic
state access. This abstraction is sound because it ensures that nothing can be
proved about mutable state accesses, and thus any property that we can prove
about this abstraction also holds for the actual implementation.

To insure that different invocations of the opaque functions yield different
results, these functions take a special argument s of type callstate that we
ensure is distinct (or more accurately, not provably the same) on all executions
of the function. Intuitively, s can be thought of as the call-stack state.

Therefore, we designed our translation to enforce the following property:

No relationship can be deduced between the results of two different exe-
cutions of any imperative expression in the program.

In other words, we have compiled imperativeness into undefined but consistent
behavior.

12 Bor-Yuh Evan Chang, Adam Chlipala, and George C. Necula

Γ ` e : τ f fresh

Γ ` ref e ↪→ f(s); f : callstate → τ ref
alloc

Γ ` e : τ ref f fresh

Γ ` !e ↪→ f(s); f : callstate → τ
deref

Γ ` e1 := e2 ↪→ (); ·
assign

Fig. 10. Translation rules for references.

Γ ` e1 : τ ′ → τ
Γ ` e1 ↪→ e′

1; Σ1 Γ ` e2 ↪→ e′
2; Σ2 f, fail fresh

Γ ` e1 e2 ↪→
case unroll(depth) of inl(x) ⇒ fail(s)

| inr(y) ⇒ e′
1(y)(f(s))(e′

2);
Σ1, Σ2, f : callstate → callstate, fail : callstate → τ

app

Γ, f : τ ′ → τ, x : τ ′ ` e ↪→ e′; Σ

Γ ` (fix f(x : τ ′) : τ = e) ↪→
(fix f(depth : nat)(s : callstate)(x : τ ′) : τ = e′; Σ

fun

Fig. 11. Translation rules for recursion.

Fig. 10 presents the translation rules for references, which forget the details of
imperative execution. We abstract each reference cell allocation and dereference
with a fresh opaque function of the appropriate type applied to s (rules alloc and
deref). The fresh function variables ensure that distinct syntactic occurrences do
not yield provably the same result, and the application to s handles recursive
invocations of the same syntactic occurrence. We show in the next section how
s is updated at a call site. Since no useful information can be gained from state
change, reference cell assignments are erased altogether (rule assign).

Handling Recursion. Similar to the translation of imperative features, we
introduce another special variable depth of type nat that represents an upper
bound on the remaining function call depth (where nat def= µα. unit+ α). Since
the original definition of such a function may not make termination apparent, we
change the function to be recursive in depth instead of the original argument. We
are sure to decrement this argument for each recursive call, yielding a primitive
recursive result. To model any given terminating run of a program, we can use,
for example, the program’s running time as the initial depth argument.

Fig. 11 gives the rules for translating possibly non-primitive recursive func-
tions. For function application, we insert a check for sufficient remaining depth
(rule app). If the depth is insufficient, then we fail by introducing a fresh opaque
function fail of the appropriate type, analogous to translation of reference cell

A Framework for Certified Program Analysis and Its Applications 13

Γ ` () ↪→ (); ·
unit

Γ ` x ↪→ x; ·
var

Γ ` e ↪→ e′; Σ

Γ ` inlτ (e) ↪→ inlτ (e′); Σ
inl

Γ ` e ↪→ e′; Σ

Γ ` inrτ (e) ↪→ inrτ (e′); Σ
inr

Γ ` e : τ1 + τ2 Γ, x : τ1 ` e1 ↪→ e′
1; Σ1

Γ ` e ↪→ e′; Σ Γ, y : τ2 ` e2 ↪→ e′
2; Σ2

Γ ` case e of inl(x) ⇒ e1 | inr(y) ⇒ e2

↪→ case e′ of inl(x) ⇒ e′
1 | inr(y) ⇒ e′

2; Σ, Σ1, Σ2

case

Γ ` e ↪→ e′; Σ

Γ ` rollτ (e) ↪→ rollτ (e′); Σ
roll

Γ ` e ↪→ e′; Σ

Γ ` unroll(e) ↪→ unroll(e′); Σ
unroll

Fig. 12. Direct translation rules.

allocation and dereferencing. If the depth is sufficient, then we allow recursive
calls with one decrement of depth and a fresh state. For function definition, we
simply bind additional arguments for depth and s (rule fun). We use a stan-
dard abbreviation to denote multiple argument, curried fixes, and we assume
the usual conditions to avoid capture of free variables.

The rules for the remaining term constructors are given in Fig. 12. They
simply implement a walk over the structure of a term.

Soundness of the Specification Extraction. We can now give the relevant
soundness property of this translation. We call a property of terms of our logic
extensional if it can be defined, for some function term f and constant term c ,
as “the property that holds of all terms e such that f(e) reduces to c .” This
definition makes sense in the context of Coq and any other logic based on typed
lambda calculus, and it can be rephrased for other settings.

Theorem 1. If

1. · ` e : τ ;
2. Evaluation of e with a standard operational semantics terminates within N

steps;
3. · ` e ↪→ e′;Σ ; and
4. In context Σ, depth :nat, s : callstate , extensional property P of term e′ is

provable

then P is also provable of e .

Proof. Assume that, in Σ, depth :nat, s : callstate , we have a proof of P for e′ .
By a standard cut-elimination lemma that we omit here, for any x : τ ′ ∈ Σ , we

14 Bor-Yuh Evan Chang, Adam Chlipala, and George C. Necula

can derive a proof of e′[m/x] , where Γ ` m : τ ′ . We can iterate this to replace
every variable in Σ in this way. We would like to instantiate each variable in
a way that gives e and the modified e′ the same semantics. We will show that
our translation is designed so that this is always possible.

Consider each x : τ ′ ∈ Σ . We would like to come up with an instantiation of
x that has the right type and agrees with e ’s real execution. We note that the
translation inserts each new variable in exactly one position. Consider separately
each place where a variable is introduced.

Let F be the set of new variables introduced by the translation. We define
the type callstate to be the domain of “call stacks.” In particular, a callstate
is a list of elements of F . We make the initial state an empty stack.

If x was the f introduced by app , then τ ′ = callstate → callstate . Define
x to be the function that modifies its argument by adding itself to the top of
the call stack.

Suppose x was introduced by rule alloc , so τ ′ = callstate → τ ′′ ref for
some τ ′′ . Consider some point during the execution of e when the expression
translated to use x is reached. The call stack at this point is a unique identifier,
meaning that the expression will never again be executed with that call stack.

It is straightforward to see why this is true. First, consider the entire execu-
tion of e as a tree of function calls, following a standard eager semantics. We
can define a partial order < on states such that s1 < s2 if s1 ’s call-stack is a
prefix of s2 ’s (i.e., s2 may be the same as s1 or contain additional nested calls).
We observe two properties of the call tree:

For every node, all its children have greater states.
By our choice above for the variables introduced at calls, every call pushes
a new value onto the stack.

For every node, all of its children have incomparable states.
Since each state-modifying variable appears only for one syntactic call, a
single stack frame will never be active for multiple executions of such a call.
It is necessary to go through some recursion for that to occur.

Since < is a partial order, these facts imply that every stack frame has
a unique identifier. Since our particular syntactic occurrence of ref e′ cannot
be executed multiple times for a single stack frame, we have that call stacks
provide unique identifiers for its execution instances. Therefore, for each call
stack active when this expression is reached, we can define x to map that call
stack to the actual reference cell returned at that point in e ’s execution. For
all stack values not covered, we can have x map them to some arbitrary value
fixed ahead of time, such as one “dummy reference cell” per type. Our above
argument establishes that this uniquely defines x ’s denotation.

An analogous argument establishes the same result for the variable intro-
duced by deref and the fail variable introduced by app .

We have constructed a model for each binding in Σ such that, with these
instantiations substituted, e′ exhibits the same semantics as e . Since we can
prove property P for this substituted version of e′ , P must also hold for e . ut

A Framework for Certified Program Analysis and Its Applications 15

While this is a somewhat involved proof, it is important to remember that
the details of the proof are irrelevant to the practical use of our approach. The
“black box” variables introduced can be treated as just that. We only provide a
model for them to show soundness. Similarly, the only important thing about the
code used at recursive calls is that it clearly decrements the recursive argument.
The exact value of that argument need not be used in proofs, and indeed it
cannot be used, because we do not provide any axioms about depth .

We can apply a further simplification by using a more literal translation on
parts of the input program that are already “simple” enough. More specifically,
where a program is a set of mutually recursive definitions, we can use a simpler
translation for every definition with no transitive path of references to a variable
defined with some imperative or non-primitive-recursive code. In fact, our expe-
rience suggests that almost all parts of a well-factored analysis will fall into this
category, leaving just a few of the (generally most interesting) parts to translate
with full generality.

4 Soundness Certification

We use the techniques described in the previous section to convert the ML data
type abs to a description of the abstract domain A in the logic of the proof-
assistant. Similarly, we convert the ainv value into a set AI ⊆ A . Finally, we
model the transition function astep as an abstract transition relation ⊆
A× 2A such that a A whenever astep(a) = Succ A . We will abuse notation
slightly and identify sets and lists where convenient.

We prove soundness of the abstract transition relation with respect to a con-
crete transition relation. Let (C,C0, 7→) be a transition system for the concrete
machine. In particular, C is a domain of states; C0 is the set of allowable initial
states; and 7→ is a one-step transition relation. These elements are provided in
the proof-assistant logic and are trusted. We build whatever safety policy inter-
ests us into 7→ in the usual way; we disallow transitions that would violate the
policy, so that errors are modeled as “being stuck.” This is the precise way in
which one can specify the trusted safety policy for the certified program verifiers
(Sect. 5).

To certify the soundness of the program analyzer, the certifier developer needs
to provide additionally (in the form of a Coq definition) a soundness relation
' ⊆ C×A (written as σ in [CC92]), such that c ' a holds if the abstract state
a is a sound abstraction of the concrete state c . To demonstrate ' is indeed
sound, the author also provides proofs (in Coq) for the following standard, local
soundness properties of abstract interpretations and bi-simulations.

Property 1 (Initialization). For every c ∈ C0 , there exists a ∈ AI such that
c ' a .

The initialization property assures us that the abstract interpretation includes
an appropriate invariant for every possible concrete initial state.

16 Bor-Yuh Evan Chang, Adam Chlipala, and George C. Necula

Property 2 (Progress). For every c ∈ C and a ∈ A such that c ' a , if there
exists A′ ⊆ A such that a A′ , then there exists c′ ∈ C such that c 7→ c′ .

Progress guarantees that, whenever an abstract state is not stuck, any corre-
sponding concrete states are also not stuck.

Property 3 (Preservation). For every c ∈ C and a ∈ A such that c ' a , if there
exists A′ ⊆ A such that a A′ , then for every c′ ∈ C such that c 7→ c′ there
exists a′ ∈ (A′ ∪AI) such that c′ ' a′ .

Preservation guarantees that, for every step made by the concrete machine,
the resulting concrete state matches one of the successor states of the abstract
machine. Preservation is only required when the abstract machine does not reject
the program. This allows the abstract machine to reject some safe programs, if
it so desires. It is important to notice that, in order to ensure termination, the
astep function (and thus the relation) only returns those successor abstract
states that are not already part of the initial abstract states ainv . To account
for this aspect, we use AI in the preservation theorem.

Together, these properties imply the global soundness of the certifier that
implements this abstract interpretation [CC77], stated as following:

Theorem 2 (Certification soundness). For any concrete state c ∈ C reach-
able from an initial state in C0 , the concrete machine can make further progress.
Also, if c has the same program counter as a state a ∈ AI , then c ' a .

4.1 Proof of Certification Soundness

In this subsection, we re-state the standard soundness theorem of abstract in-
terpretation more thoroughly and sketch the proof that our conditions imply
it.

Theorem 3 (Fixpoint). If the top function shown in Fig. 3 completes suc-
cessfully, then the set AF ∈ A of abstract states that were processed has the
following properties: AF contains at most one element for each value of the pro-
gram counter, AI ⊆ AF , and for each a ∈ AF there exists A′ ⊆ AF such that
a A′ (i.e., astep succeeds on a).

This theorem be be proved easily by induction on the number of iterations of
the top function. Now we can state the soundness theorem for certification.

Theorem 4 (Soundness). If the Initialization, Progress, and Preservation prop-
erties hold, then any execution of the concrete machine starting in an initial
state C0 will not get stuck, and at any point c′ in such an execution there exists
a′ ∈ AF such that c′ ' a′ .

The proof of this theorem is by induction on the number of execution steps
of the concrete machine. The Initialization property along with the fact that
AI ⊆ AF (from the Fixpoint theorem) takes care of the base case. The induction

A Framework for Certified Program Analysis and Its Applications 17

case follows from the Progress and Preservation lemmas and from the Fixpoint
theorem. The fact that AI are indeed invariants of the program (Theorem 2)
follows now using the fact that AF contains at most one invariant for each
program counter.

4.2 Certifying the Example Java Bytecode Verifier

To give a better idea about what these obligations mean in practice, we sketch
how the proof goes for our running example. Before doing so, we fill in some
details about our concrete semantics, which the author of a verifier is not allowed
to modify.

Concrete Semantics. Let’s assume that the set of initial concrete states C0 is
the set of all valid entry states to a special static main() method. The concrete
transition relation 7→ is a standard one. Our safety policy will be memory safety,
with some predetermined set of memory addresses the program is allowed to
read or write. The only “stuck states” of 7→ will be those that try to jump to
addresses that do not point to instructions of the program or try to read or write
field addresses outside the set of valid addresses.

Proof Sketch. We now consider the proof that our example verifier is sound.
First, we need to define ' . We assume a fixed object layout convention that
includes a dynamic type tag for each object, all of which are allocated in the
heap. We define a ' c to hold if and only if:

1. the program counters of the two states agree;
2. the concrete state’s register values and heap obey the object layout conven-

tion, as given by the fieldOf function;
3. every register of type Class(cls) in a contains in c a valid heap pointer to

an object whose dynamic type tag denotes a subclass of cls ; and
4. every register of type Cont(a′) in a contains in c a pointer to one of the

fixed set of labels among those in ainv whose preconditions are compatible
with abstract state a′ .

Now we can prove the Initialization property for ainv . A reasonable defin-
ition of ainv in Fig. 5 would always generate an invariant for the entry point
to the main method. From this, we see that the axiom about main ’s presence
allows us to conclude that AI contains some a that starts at main and has
an expected, fixed precondition. Assuming that we defined ' correctly, we can
prove that this precondition includes every valid concrete entry state for main .

Regarding the proof of Progress and Preservation for astep , it’s easiest to
prove this by cases, mirroring the main case expression of astep . We sketch
the approach by considering three representative cases.

First, consider the register-to-register move. We always accept such an in-
struction, and we model its effect by incrementing the program counter and
copying type information for the source register to the slot for the destination

18 Bor-Yuh Evan Chang, Adam Chlipala, and George C. Necula

register. Let’s call the abstract state on entry a and the result state a′ . Simi-
larly, let c be such that a ' c and c′ such that c 7→ c′ , following the concrete
semantics of this instruction. The Progress property comes for free here since
this kind of instruction can’t violate the safety policy. As for Preservation, it’s
easy to see that almost all of a proof of a′ ' c′ follows from our assumption of
a ' c , as the heap layout is preserved by this operation. We are sure to update
the program counter correctly. The remaining parts of ' ’s definition, regarding
register values, are handled by copying of type information in the abstract world
to mirror copying of value information in the concrete world.

Now consider the field read instruction. We update one register’s type based
on the type of the field we read, after checking that the object we read from has
the expected type. We also increment the program counter, as in the last case.
Here, Progress follows from the part of ' ’s definition that tells us that a register
with a Class type must point to a valid object of that class, as well as the part
of that definition that assures us that the heap is well-laid-out. This also allows
us to conclude that the field value we read has the proper type, which lets us
prove Preservation similarly to how we did so in the last case.

Finally, let’s look at the most interesting case, the indirect jump. We get
Progress from our ' invariant that a register with type Cont(a′) gets its value
from a valid code label. Next, we must use the part of Preservation’s definition
that allows the case where c 7→ c′ and a′′ ' c′ for some a′′ ∈ AI . To prove
Progress, we make use of two facts:

– We know from our a ' c assumption that we are jumping to the address
of some label ` whose precondition a′′ is compatible with a′ , since we have
verified that the target register has type Cont(a′).

– We know that every label has a corresponding state in AI , so in particular,
` must correspond to some a′′ ∈ AI .

This assures us that there is a′′ ∈ AI such that a is compatible with a′ (thanks
to the explicit subAbs check) and a′ is compatible with a′′ . Transitively, we
have that the result abstract state is compatible with a′′ .

5 Applications to Mobile-Code Safety

Language-based security mechanisms have gained acceptance for enforcing basic
but essential safety properties, such as memory and type safety, for untrusted mo-
bile code. The most widely deployed solution for mobile code safety is bytecode
verification, as in the Java Virtual Machine (JVM) [LY97] or the Microsoft Com-
mon Intermediate Language (MS-CIL) [GS01]. A bytecode verifier uses a form
of abstract interpretation to track the types of machine registers, and to enforce
memory and type safety. The main limitation of this approach is that we must
trust the soundness of the bytecode verifier. In turn, this means that we cannot
easily change the verifier and its enforcement mechanism. This effectively forces
the clients of a code receiver to use a fixed type system and often even a fixed
source language for mobile code. Programs written in other source languages

A Framework for Certified Program Analysis and Its Applications 19

Mobile Code-Safety with Certified Program Analyses

Proof
Checker

Model

Proof of
soundness

Compiler

Certifier
source code

Installation time Verification time

Model/Specification
Extraction

Input program

Certifier

Analysis

Certifier

Mobile Code-Safety with Proof-Carrying Code

Installation time Verification time

Input program

Proof
Checker

Safety proof

VCGen

Proof obligation

Fig. 13. Comparing and contrasting our certified verifier architecture (Fig. 1)
and traditional proof-carrying code implementations. The trusted code base is
shown shaded

can be compiled into the trusted intermediate language but often in unnatural
ways with a loss of expressiveness and performance [BKR99,GC00,Bot98].

A good example is the MS-CIL language, which is expressive enough to be the
target of compilers for C#, C and C++. Compilers for C# produce intermediate
code that can be verified, while compilers for C and C++ use intermediate
language instructions that are always rejected by the built-in bytecode verifier.
In this latter case, the code may be accepted if the producer of the code can
provide an explicit proof that the code obeys the required safety policy and the
code receiver uses proof-carrying code [App01,HST+02,Nec97].

Existing work on proof-carrying code (PCC) attests to its versatility, but
often fails to address the essential issue of how the proof objects are obtained.
In the Touchstone system [CLN+00], proofs are generated by a special theo-
rem prover with detailed knowledge about Java object layout and compilation
strategies. The Foundational PCC work [App01,HST+02] eliminates the need
to hard-code and trust all such knowledge, but does so at the cost of increasing
many times the proof generation burden. Both these systems also incur the cost
of transmitting proofs. The Open Verifier project [CCNS05] proposes to send

20 Bor-Yuh Evan Chang, Adam Chlipala, and George C. Necula

with the code not per-program proofs but proof generators to be run at the code
receiver end for each incoming program. The generated proofs are then checked
by a trusted proof checker, as in a standard PCC setup.

Using certified program analyses we can further improve this process. The
producer of the mobile code writes a safety-policy verifier customized for the
exact compilation strategy and safety reasoning used in the generation of the
mobile code. This verifier can be written in the form of a certified program
analysis, whose abstract transition fails whenever it cannot verify the safety
of an instruction. For example, we discuss in Sect. 6 cases when the program
analysis is a typed assembly language checker, a bytecode verifier, or an actual
PCC verification engine relying on annotations accompanying the mobile code.

The key element is the soundness proof that accompanies an analysis, which
can be checked automatically. At verification time, the now-trusted program an-
alyzer is used to validate the code, with no need to manipulate explicit proof
objects. This simplifies the writing of the validator (as compared with the proof-
generating theorem prover of Touchstone, or the Open Verifier). Fig. 13 high-
lights the main differences between our certified verifier architecture and tra-
ditional PCC implementations. We also show in Sect. 6 that this reduces the
validation time by more than an order of magnitude.

We point out here that the soundness proof is with respect to the trusted
concrete semantics. By adding additional safety checks in the concrete semantics
(for instance, the logical equivalents of dynamic checks that would enforce a
desired safety policy), the code receiver can construct customized safety policies.

6 Case Studies

In this section, we present case studies of applying certified program analyzers
to mobile code security. We describe experience with verifiers for typed assembly
language, Java bytecode, and proof-carrying code.

We have developed a prototype implementation of the certified program
analysis infrastructure. The concrete language to be analyzed is the Intel x86
assembly language. The specification extractor is built on top of the front-end
of the OCaml compiler, and it supports a large fragment of the ML language.
The most notable features not supported are the object-oriented features. In ad-
dition to the 3000-line extractor, the trusted computing base includes the whole
OCaml compiler and the Coq proof checker, neither of which is designed to be
foundationally small. However, our focus here has been on exploring the ease of
use and run-time efficiency of our approach. We leave minimizing the trusted
base for future work.

Typed Assembly Language. Our first realistic use of this framework involved
Typed Assembly Language. In particular, we developed and proved correct a
verifier for TALx86, as provided in the first release of the TALC tools from
Cornell [MCG+03]. This TAL includes several interesting features, including
continuation, universal, existential, recursive, product, sum, stack, and array

A Framework for Certified Program Analysis and Its Applications 21

types. Our implementation handles all of the features used by the test cases
distributed with TALC, with the exception of the modularity features, which
we handle by “hand-linking” multiple-file tests into single files. TALC includes
compilers to an x86 TAL from Popcorn (a safe C dialect) and mini-Scheme. We
used these compilers unchanged in our case study.

We implemented a TALx86 verifier in 1500 lines of ML code. This compares
favorably with the code size of the TALC type checker, which is about 6000
lines of OCaml. One of us developed our verifier over the course of two months,
while simultaneously implementing the certification infrastructure. We expect
that it should be possible to construct new verifiers of comparable complexity
in a week’s time now that the infrastructure is stable.

We also proved the local soundness properties of this implementation in
15,000 lines of Coq definitions and proof scripts. This took about a month, again
interleaved with developing the trusted parts of the infrastructure. We re-used
some definitions from a previous TAL formalization [CCNS05], but we didn’t
re-use any proofs. It’s likely that we can significantly reduce the effort required
for such proofs by constructing some custom proof tactics based on our experi-
ences. We don’t believe our formalization to be novel in any fundamental way.
It uses ideas from previous work on foundational TAL [AF00,HST+02,Cra03].
The main difference is that we prove the same basic theorems about the behav-
ior of an implementation of the type checker, instead of about the properties of
inference rules. This makes the proofs slightly more cumbersome, but, as we will
see, it brings significant performance improvement. As might be expected, we
found and fixed many bugs in the verifier in the course of proving its soundness.
This suggests that our infrastructure might be useful even if the developer is
only interested in debugging his analysis.

Conv CPV PCC

Up to 200 (13) 0 0.01 0.07
201-999 (7) 0.01 0.02 0.24

1000 and up (6) 0.04 0.08 1.73

Table 1. Average verifier running times (in seconds)

Table 1 presents some verification-time performance results for our implemen-
tation, as average running times for inputs with particular counts of assembly
instructions. We ran a number of verifiers on the test cases provided with TALC,
which used up to about 9000 assembly instructions. First, the type checker in-
cluded with TALC finishes within the resolution of our timing technique for all
cases, so we don’t include results for it. While this type checker operates on a
special typed assembly language, the results we give are all for verifying native
assembly programs, with types and macro-instructions used as meta-data. As a
result, we can expect that there should be some inherent slow-down, since some

22 Bor-Yuh Evan Chang, Adam Chlipala, and George C. Necula

TAL instructions must be compiled to multiple real instructions. The experi-
ments were performed on an Athlon XP 3000+ with 1 GB of RAM, and times
are given in seconds. We give times for “Conventional (Conv),” a thin wrapper
around the TALC type checker to make it work on native assembly code; “CPV,”
our certified program verifier implementation; and “PCC,” our TALx86 verifier
implementation from previous work [CCNS05], in which explicit proof objects
are checked during verification.

The results show that our CPV verifier performs comparably with the con-
ventional verifier, for which no formal correctness proof exists. It appears our
CPV verifier is within a small constant factor of the conventional verifier. This
constant is likely because we use an inefficient, Lisp-like serialization format for
including meta-data in the current implementation. We expect this would be
replaced by a much faster binary-encoded system in a more elaborate version.

We can also see that the certified verifier performs much better than the PCC
version. The difference in performance is due to the cost required to manipulate
and check explicit proof objects during verification. To provide evidence that
we aren’t comparing against a poorly-constructed straw man, we can look to
other FPCC projects. Wu, Appel, and Stump [WAS03] give some performance
results for their Prolog-based implementation of trustworthy verifiers. They only
present results on input programs of up to 2000 instructions, with a running
time of .206 seconds on a 2.2 GHz Pentium IV. This seems on par with our own
PCC implementation. While their trusted code base is much smaller than ours,
since we require trust in our specification extractor, there is hope that we can
achieve a similarly small checking kernel by using techniques related to certifying
compilation.

Java Bytecode Verification. We have also used our framework to implement
a partial Java Bytecode Verifier (JBV) in about 600 lines of ML. It checks
most of the properties that full JBVs check, mainly excluding exceptions, object
initialization, and subroutines. Our implementation’s structure follows closely
that of our running example from Sect. 2. Its ainv begins by calling an OCaml
function that calculates a fixed point using standard techniques. Like in our
example, the precise code here doesn’t matter, as the purpose of the function
is to populate a hash table of function preconditions and control-flow join point
invariants. With this information, our astep function implements the standard
typing rules for JBVs.

While we have extracted complete proof obligations for the implementation,
we have only begun the process of proving them. However, to make sure we are
on track to an acceptable final product, we have performed some simple bench-
marks against the bytecode verifier included with Blackdown Java for Linux. We
downloaded a few Java-only projects from SourceForge and ran each verifier on
every class in each project.

On the largest that our prototype implementation could handle, MegaMek,
our verifier finishes in 5.5 seconds for checking 668,000 bytecode instructions,
compared to 1 second for the traditional verifier. First, we note that both times
are relatively small in an absolute sense. It probably takes a user considerably

A Framework for Certified Program Analysis and Its Applications 23

fun checkProof (prf: proof) (p: pred) : bool = ...

fun astep (a: abs) : result =

case instrAt a.pc of

RegReg(r1, r2) => Succ [{

pc = a.pc + 1;

a = And(Eq(r1,r2),Exists(x,[x/r1]a.a)) }]

| Jump l =>

let dest = getInvar l in

let prf = fetchProof l in

if checkProof (prf, Imply(a.a, dest)) then

Succ []

else Fail

Fig. 14. A fragment of a certifier for PCC

longer to download a software package than to verify it with either method.
We also see that our verifier is only a small factor away from matching the
traditional approach, whose performance we know empirically that users seem
willing to accept. No doubt further engineering effort could close this gap or
come close to doing so.

Proof-Carrying Code. We can even implement a version of Foundational PCC
in our framework: for each basic block the mobile code contains an invariant
for the start of the block, and a proof that the strongest postcondition of the
start invariant along the block implies the invariant for the successor block. The
abstract state abs of the certifier consists of a predicate written in a suitable
logic, intended to be the strongest postcondition at the given program point.
The ainv is obtained by reading invariants from a data segment accompanying
the mobile code.

Fig. 14 shows a fragment of the code for astep , which calculates the strongest
postcondition for every instruction. At a jump we fetch the invariant for the
destination, a proof, and then check the proof. To prove soundness, we only
need to ensure that getInvar returns one of the invariants that are part of
ainv , and that the checkProof function is sound. More precisely, whenever the
call to checkProof returns true, then any concrete state that satisfies a.a also
satisfies dest . In particular, we do not care at all how fetchProof works, where
it gets the proof from, whether it decrypts or decompresses it first, or whether
it actually produces the proof itself. This soundness proof for checkProof is
possible and even reasonably straightforward, since we are writing our meta-
proofs in Coq’s more expressive logic.

7 Related Work

Toward Certified Program Analyses. The Rhodium system developed by Lerner
et al. [LMRC05] is the most similar with respect to the overall goal of our
work—that of providing a realistic framework for certified program analyses.

24 Bor-Yuh Evan Chang, Adam Chlipala, and George C. Necula

However, they focus on simpler compiler analysis problems whose soundness
can be proved by today’s automated methods. We expect that our proofs can
similarly be automated when our framework is used for the kinds of analyses
expressible in Rhodium-style domain specific languages.

Several systems have been developed for specifying program analyses in
domain-specific languages and generating code from these specifications [Las03].
Again, the expressiveness of these systems is very limited compared to what is
needed for standard mobile code safety problems.

In the other direction, we have the well-established body of work dealing
with extracting formal verification conditions from programs annotated with
specifications. Especially relevant are the Why [Fil03] and Caduceus [FM04]
tools, which produce Coq proof obligations as output.

There has been a good amount of work on constructing trustworthy veri-
fiers by extracting their code from constructive proofs of soundness. Cachera
et al. [CJPR04] extracted a data-flow analysis from a proof based on a general
constraint framework. Klein and Nipkow [KN01] and Bertot [Ber01] have built
certified Java bytecode verifiers through program extraction/code generation
from programs and proofs in Isabelle and Coq, respectively. None of these publi-
cations present any performance figures to suggest that their extracted verifiers
scale to real input sizes

Enforcing Mobile-Code Safety. As alluded to earlier, most prior work in Foun-
dational Proof-Carrying Code has focused on the generality and expressivity
of various formalisms, including the original FPCC project [AF00], Syntactic
FPCC [HST+ 02], and Foundational TALT [Cra03]. These projects have given
convincing arguments for their expressiveness, but they have not yet demon-
strated a scalable implementation. Some recent research has looked into effi-
ciency considerations in FPCC implementations, including work by Wu, Appel,
and Stump [WAS03] and our own work on the Open Verifier [CCNS05].

The architecture proposed by Wu, Appel, and Stump is fairly similar to the
architecture we propose, with the restriction that verifiers must be implemented
in Prolog. In essence, while we build in an abstract interpretation engine, Wu et
al. build in a Prolog interpreter. We feel that it is important to support verifiers
developed in more traditional programming languages. Also, the performance
figures provided by Wu et al. have not yet demonstrated scalability.

Our past work on the Open Verifier has heavily influenced the design of the
certified program analysis architecture. Both approaches build an abstract in-
terpretation engine into the trusted base and allow the uploading of customized
verifiers. However, the Open Verifier essentially adheres to a standard PCC ar-
chitecture in that it still involves proof generation and checking for each mobile
program to be verified, and it pays the usual performance price for doing this.

8 Conclusion

We have presented a strategy for simplifying the task of proving soundness not
just of program analysis algorithms, but also of their implementations. We be-

A Framework for Certified Program Analysis and Its Applications 25

lieve that starting with the implementation and extracting natural proof obliga-
tions will allow developers to fine tune non-functional aspects of the code, such
as performance or debugging instrumentation.

Certified program analyses have immediate applications for developing certi-
fied program verifiers, such that even untrusted parties can customize the verifi-
cation process for untrusted code. We have created a prototype implementation
and used it to demonstrate that the same infrastructure can support in a very
natural way proof-carrying code, type checking, or data-flow based verification
in the style of bytecode verifiers. Among these, we have completed the soundness
proof of a verifier for x86 Typed Assembly Language. The performance of our
certified verifier is quite on par with that of a traditional, uncertified TALx86
type checker. We believe our results here provide the first published evidence
that a foundational code certification system can scale.

References

[AF00] Andrew W. Appel and Amy P. Felty. A semantic model of types and ma-
chine instructions for proof-carrying code. In Proc. of the 27th Symposium
on Principles of Programming Languages, pages 243–253, January 2000.

[App01] Andrew W. Appel. Foundational proof-carrying code. In Proc. of the 16th
Symposium on Logic in Computer Science, pages 247–258, June 2001.

[BCC+ 03] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. A static
analyzer for large safety-critical software. In Proc. of the Conference on
Programming Language Design and Implementation, pages 196–207, 2003.

[BCDdS02] G. Barthe, P. Courtieu, G. Dufay, and S. de Sousa. Tool-assisted spec-
ification and verification of the JavaCard platform. In Proc. of the 9th
International Conference on Algebraic Methodology and Software Technol-
ogy, September 2002.

[Ber01] Yves Bertot. Formalizing a JVML verifier for initialization in a theorem
prover. In Proc. of the 13th International Conference on Computer Aided
Verification, volume 2102 of LNCS, pages 14–24, July 2001.

[BKR99] Nick Benton, Andrew Kennedy, and George Russell. Compiling Standard
ML to Java bytecodes. In Proc. of the International Conference on Func-
tional Programming, pages 129–140, June 1999.

[Bot98] Per Bothner. Kawa — compiling dynamic languages to the Java VM. In
Proc. of the FreeNIX Track: USENIX 1998 annual technical conference,
1998.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lat-
tice model for static analysis of programs by construction or approximation
of fixpoints. In Proc. of the 4th Symposium on Principles of Programming
Languages, pages 234–252, January 1977.

[CC92] Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks.
J. Log. Comput., 2(4):511–547, 1992.

[CCN06] Bor-Yuh Evan Chang, Adam Chlipala, and George C. Necula. A framework
for certified program analysis and its applications to mobile-code safety. In
Proc. of the 7th International Conference on Verification, Model Checking
and Abstract Interpretation, January 2006.

26 Bor-Yuh Evan Chang, Adam Chlipala, and George C. Necula

[CCNS05] Bor-Yuh Evan Chang, Adam Chlipala, George C. Necula, and Robert R.
Schneck. The Open Verifier framework for foundational verifiers. In Proc.
of the 2nd Workshop on Types in Language Design and Implementation,
January 2005.

[CJPR04] David Cachera, Thomas P. Jensen, David Pichardie, and Vlad Rusu. Ex-
tracting a data flow analyser in constructive logic. In David A. Schmidt,
editor, Proc. of the 13th European Symposium on Programming, volume
2986 of LNCS, pages 385–400, March 2004.

[CLN+ 00] Christopher Colby, Peter Lee, George C. Necula, Fred Blau, Mark Plesko,
and Kenneth Cline. A certifying compiler for Java. In Proc. of the Confer-
ence on Programming Language Design and Implementation, pages 95–107,
May 2000.

[Cra03] Karl Crary. Toward a foundational typed assembly language. In Proc.
of the 30th Symposium on Principles of Programming Languages, pages
198–212, January 2003.

[Dij75] Edsger W. Dijkstra. Guarded commands, nondeterminancy and formal
derivation of programs. Communications of the ACM, 18:453–457, 1975.

[Fil03] J.-C. Filliâtre. Why: a multi-language multi-prover verification tool. Re-
search Report 1366, LRI, Université Paris Sud, March 2003.

[FM04] Jean-Christophe Filliâtre and Claude Marché. Multi-Prover Verification
of C Programs. In Proc. of the 6th International Conference on Formal
Engineering Methods, volume 3308 of LNCS, pages 15–29, November 2004.

[GC00] K. John Gough and Diane Corney. Evaluating the Java virtual machine
as a target for languages other than Java. In Joint Modula Languages
Conference, September 2000.

[GS01] Andrew D. Gordon and Don Syme. Typing a multi-language intermedi-
ate code. In Proc. of the 28th Symposium on Principles of Programming
Languages, pages 248–260, January 2001.

[HST+ 02] Nadeem A. Hamid, Zhong Shao, Valery Trifonov, Stefan Monnier, and
Zhaozhong Ni. A syntactic approach to foundational proof-carrying code.
In Proc. of the 17th Symposium on Logic in Computer Science, pages 89–
100, July 2002.

[KN01] Gerwin Klein and Tobias Nipkow. Verified lightweight bytecode verifica-
tion. Concurrency – practice and experience, 13(1), 2001.

[KN03] Gerwin Klein and Tobias Nipkow. Verified bytecode verifiers. Theor. Com-
put. Sci., 298(3):583–626, 2003.

[Las03] John H. E. F. Lasseter. Toolkits for the automatic construction of data flow
analyzers. Technical Report CIS-TR-04-03, University of Oregon, 2003.

[LMRC05] Sorin Lerner, Todd Millstein, Erika Rice, and Craig Chambers. Automated
soundness proofs for dataflow analyses and transformations via local rules.
In Proc. of the 32nd Symposium on Principles of Programming Languages,
pages 364–377, 2005.

[LY97] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.
The Java Series. Addison-Wesley, Reading, MA, USA, January 1997.

[MCG+ 03] Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Richard Samuels,
Frederick Smith, David Walker, Stephanie Weirich, and Steve Zdancewic.
Talc releases, 2003. URL: http://www.cs.cornell.edu/talc/releases.html.

[Nec97] George C. Necula. Proof-carrying code. In Proc. of the 24th Symposium
on Principles of Programming Languages, pages 106–119, January 1997.

A Framework for Certified Program Analysis and Its Applications 27

[NJM+ 02] George C. Necula, Ranjit Jhala, Rupak Majumdar, Thomas A. Henzinger,
and Westley Weimer. Temporal-safety proofs for systems code. In Proc. of
the Conference on Computer Aided Verification, November 2002.

[Pau94] L. C. Paulson. Isabelle: A generic theorem prover. Lecture Notes in Com-
puter Science, 828, 1994.

[Ros03] Eva Rose. Lightweight bytecode verification. J. Autom. Reason., 31(3-
4):303–334, 2003.

[Wad95] Philip Wadler. Monads for functional programming. In Advanced Func-
tional Programming, volume 925 of LNCS, pages 24–52. Springer, 1995.

[WAS03] Dinghao Wu, Andrew W. Appel, and Aaron Stump. Foundational proof
checkers with small witnesses. In Proc. of the 5th International Conference
on Principles and Practice of Declarative Programming, pages 264–274,
August 2003.

	Introduction
	The Certified Program Analysis Framework
	Example: Java Bytecode Verifier

	Specification Extraction
	Overview of the Main Ideas
	Formalization

	Soundness Certification
	Proof of Certification Soundness
	Certifying the Example Java Bytecode Verifier

	Applications to Mobile-Code Safety
	Case Studies
	Related Work
	Conclusion

