
192

Flexible Instruction-Set Semantics via Abstract Monads
(Experience Report)

THOMAS BOURGEAT,MIT, USA

IAN CLESTER, Georgia Institute of Technology, USA
ANDRES ERBSEN,MIT, USA

SAMUEL GRUETTER,MIT, USA

PRATAP SINGH, CMU, USA

ANDY WRIGHT,MIT, USA

ADAM CHLIPALA,MIT, USA

Instruction sets, from families like x86 and ARM, are at the center of many ambitious formal-methods projects.

Many verification, synthesis, programming, and debugging tools rely on formal semantics of instruction sets,

but different tools can use semantics in rather different ways. The best-known work applying single semantics

across diverse tools relies on domain-specific languages like Sail, where the language and its translation tools

are specialized to the realm of instruction sets. In the context of the open RISC-V instruction-set family, we

decided to explore a different approach, with semantics written in a carefully chosen subset of Haskell. This

style does not depend on any new language translators, relying instead on parameterization of semantics over

type-class instances. We have used a single core semantics to support testing, interactive proof, and model

checking of both software and hardware, demonstrating that monads and the ability to abstract over them

using type classes can support pleasant prototyping of ISA semantics.

CCS Concepts: • Theory of computation → Program semantics; • Software and its engineering →

Semantics.

Additional Key Words and Phrases: instruction-set semantics, type classes, interactive proof assistants

ACM Reference Format:

Thomas Bourgeat, Ian Clester, Andres Erbsen, Samuel Gruetter, Pratap Singh, AndyWright, and AdamChlipala.

2023. Flexible Instruction-Set Semantics via Abstract Monads (Experience Report). Proc. ACM Program. Lang.

7, ICFP, Article 192 (August 2023), 17 pages. https://doi.org/10.1145/3607833

1 INTRODUCTION

Machine-language instruction sets are at the center of many aspects of systems implementation
and verification. Such an important interface deserves a formal semantics. One semantics should be
usable as a specification, for simulation, testing, model checking, and interactive theorem proving.
Furthermore, it should be usable for all the above applied to both software and hardware.
Many past projects demonstrated individual semantics usable for minorities of these cases.

Leading approaches like Sail [Armstrong et al. 2019] involve domain-specific languages (DSLs) and
ad-hoc translators from them into different languages appropriate to different use cases. Certainly, in
many ways, it is hard to compete with languages purpose-built for a given style of program. It is not
hard to stock a bestiary of potential domain-specific specification languages: high-level-language

Authors’ addresses: Thomas Bourgeat, MIT, USA; Ian Clester, Georgia Institute of Technology, USA; Andres Erbsen, MIT,

USA; Samuel Gruetter, MIT, USA; Pratap Singh, CMU, USA; Andy Wright, MIT, USA; Adam Chlipala, MIT, USA.

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/8-ART192

https://doi.org/10.1145/3607833

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 192. Publication date: August 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3607833
https://doi.org/10.1145/3607833

192:2 Thomas Bourgeat, Ian Clester, Andres Erbsen, Samuel Grue�er, Pratap Singh, Andy Wright, and Adam Chlipala

semantics, distributed-systems invariants, temporal logic for hardware, even pure mathematics. All
the above might be brought together in one end-to-end-verified system for e.g. a cryptographic
protocol implementation, with different layers verified using different tools and styles. However,
there is a lurking risk of a classic “=2” compilers problem: a translator must be built (and maintained)
between each relevant pair of specification language and input language of a formal-methods tool.
We might also worry about learnability, for when one engineer encounters a specification in a new
domain and must get to know a new language and not just a new library.
The two extremes of fully domain-specific and fully general-purpose specification languages

present a challenging space of trade-offs, and it will take much more work to approach anything like
a universal answer on which is “better.” However, in the study we report in this paper, our goal was
to demonstrate that an important specification category, namely instruction sets, can be handled
pragmatically within a general-purpose specification language. We will discuss applications in
simulation, model checking, and interactive proof of both software and hardware – without needing
to write a single new translator between spec languages.

Our semantics is implemented in a relatively small subset of Haskell. Expressing the specification
using a small set of core language features allows for straightforward translation to other languages.
As Haskell is relatively popular, it has existing translators to Coq and Verilog, which we were able
to rely on in our case studies. Achieving desirable code in three languages required some care but
was possible through restriction rather than extension of our language usage and tooling. The
specific language and set of translators are somewhat incidental to our larger message. The right
common specification language of the future might very well be quite different, but at least it would
still only need one translator per target language, avoiding the =2 problem we warned about above.
However, two Haskell features are central to how we make a single specification very flexible:
monads and the ability to abstract over them using type classes.
Wadler [1992] introduced monads in functional programming as a way to write code that is

abstracted over kinds of effects, and type classes [Wadler and Blott 1989] can be used to make that
abstraction explicit. Indeed, abstract monads whose available operations are declared by a type
class, and implemented differently by various instantiations of the type class, had already been used
in projects like the Lava hardware framework [Bjesse et al. 1998]. We will show that essentially the
same kind of abstraction is a good fit for the variation across uses of instruction-set specifications.
All the work of adapting our RISC-V semantics for a new use case is in defining an instance of our
type class that equips monads with a set of operations (henceforth called primitives) relevant to
specifying RISC-V.
RISC-V interested us as a family of ISAs with an open standard and a rich ecosystem of imple-

mentations on both the hardware and software sides. It even already has an institutionally blessed
semantics in the Sail DSL. While we would like to prove our semantics against that one eventually,
we are held back for the moment by precisely the =2 problem and specifically language-translation
tooling generating unusably verbose code for some input-language features. That behavior is not
surprising given that fast simulation via C code was more of a central design goal for Sail, and we
may very well see this weakness corrected soon, at which point we would be glad to undertake the
specification-reconciliation exercise (no longer needing to do significant Sail-specific tool hacking
ourselves).

The remaining sections review important elements of the RISC-V ISA, explain our specification
style, and discuss how to cover different use cases with different type-class instances. Our semantics
is available on GitHub1 under a permissive open-source license.

1The Haskell code is at https://github.com/mit-plv/riscv-semantics, and the Coq code is at https://github.com/mit-plv/riscv-

coq. The artifact virtual machine associated with this paper is at https://zenodo.org/record/7992509.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 192. Publication date: August 2023.

https://github.com/mit-plv/riscv-semantics
https://github.com/mit-plv/riscv-coq
https://github.com/mit-plv/riscv-coq
https://zenodo.org/record/7992509

Flexible Instruction-Set Semantics via Abstract Monads (Experience Report) 192:3

By reviewing this experience in implementation and application, we aim to make the case that a
formal semantics for an industrial-strength instruction-set family can be implemented

fruitfully in a general-purpose language and applied across a representative set of exam-

ples, in formal methods and elsewhere, without creating a domain-specific specification

language and translators for it. We make the case by showing how each example works merely
by choosing the right type-class instances and perhaps also by calling a from-Haskell translator
that already existed.

2 OVERVIEW

CoqRISC-V
Spec

RISC-V
Spec hs-to-coq

Minimal32/64 HMCClashMinimal

+Exceptions

+ MMIO

State with Failure
Weakest

Precondition

Processor
verification

Compiler
correctness

riscv-formal

riscv-tests

Alloy RVWMO

Linux

Haskell

Fig. 1. Projects using our RISC-V specification. The boxes with
rounded corners are type-class instantiations. Instances with
names that start with “+” are derived from other instances (adding
new features). The grey boxes show external projects that our spec-
ification interacts with.

Our goal is to translate the RISC-V
specification written in English [Wa-
terman and Asanovic 2019a,b] into
a broadly applicable, machine- and
human-readable formal specification.
We want to support the many dif-

ferent use cases shown in Figure 1:
For instance, some users want an
executable specification that returns
one single final machine state, while
others might want to leave some in-
puts, parameters, or nondeterminis-
tic choices abstract and obtain a logic
formula restricting the set of possible
final states, or obtain a list of final states, or obtain a checker that simply answers whether a given
execution trace is allowed by the specification.
These requirements lead us to the following dimensions of parameterization: Supported ex-

tensions (see Table 1), bitwidth (32-bit, 64-bit or left abstract)2, platform-specific details, and
use-case-specific details.

2.1 Choice of Language

Serious commitment to a multipurpose specification requires careful thought about the language it
should be written in. One goal was to write readable functional programs that could be understood
intuitively by hardware engineers or compiler hackers, even if they are not familiar with the
underlying features (such as monads, type classes, etc.) enabling readability and parameterizability
of the specification. Further goals were to create a specification that is practical to use in interactive
theorem provers and to connect to other specifications, especially from the hardware world.
We found that Haskell was able to cover most of the constraints, thanks to the following:

• do notation provides syntactic sugar for readable imperative-looking code, particularly useful
for this specification.

• The Clash compiler [QBayLogic 2020], compiling Haskell (with bounded recursion and finite
datatypes) to Verilog/VHDL, is a bridge to hardware-model-checking tools.

• hs-to-coq [Breitner et al. 2018], a compiler that uses the GHC frontend to generate Haskell-like
Coq code, is a good bridge to interactive theorem proving in Coq.

We restrict ourselves to concepts supported by these three Haskell compilers (hs-to-coq, Clash,
GHC). Via hs-to-coq, we produced a semantics that was chosen as the reference machine model
in several Coq projects [Erbsen 2022; Erbsen et al. 2021; Gruetter 2021; Gruetter et al. 2023]. Via

2The RISC-V specification also defines a 128-bit variant that we did not consider.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 192. Publication date: August 2023.

192:4 Thomas Bourgeat, Ian Clester, Andres Erbsen, Samuel Grue�er, Pratap Singh, Andy Wright, and Adam Chlipala

Table 1. Standard extensions of RISC-V 20191213 (excluded: E, D, Q, L, C, B, J, T, P V, N, Zifencei, Zam, Ztso).
A checkmark indicates compatibility of a feature with a backend, and parentheses around a checkmark
indicate that only a small fraction of that generated code has been exercised so far.

Description Name Haskell (GHC)? Coq (hs-to-coq)? Verilog (Clash)?

Integer I ✓ ✓ ✓

Integer Multiply/Divide M ✓ ✓ ✗

Atomics A ✓ ✗ ✗

Single Floating-Point F ✓ ✗ ✗

Control & Status Registers Zicsr ✓ (✓) ✗

Clash, we produced a minimal “single-cycle” Verilog execution model for which authors of other
specifications checked the agreement between our spec and theirs (see subsection 3.7). Finally,
via GHC, we demonstrated the possibility to explore the basics of the RISC-V memory model
(subsection 3.6) and to test our specification as a simulator (subsection 3.1 and subsection 3.3).

2.2 Structure of the Specification

Our RISC-V specification is composed of several extensions listed in Table 1, and an implementation
can choose which subset of them to support. Our formalization of the specification only covers the
most important of them.

The primitives. The key to supporting many different use cases is to specify the semantics of
each instruction in terms of a small number of primitives listed in Figure 2, while leaving the
implementations of these primitives to be filled in by the concrete use cases. The primitives include
state-like constructs (for the registers, the memory, . . .) plus control-flow-like constructs (endCycle)
to capture the control-flow change in case of an exception (see subsection 3.2) raised in the middle
of the semantics of a function (an early return).
The enumeration type SourceType helps distinguish three different modes in which a pro-

cessor might access memory: memory accesses to page tables and so forth triggered implicitly
(VirtualMemory), implicit reads to instruction memory via the program counter (Fetch), and reads
or writes that a machine-code program explicitly requests (Execute). As for why this distinction
is needed, one example is in our exploration of possible executions under weak memory (subsec-
tion 3.6), where explicit program memory accesses get sophisticated treatment, implicit accesses to
instruction memory get simplified treatment (they are resolved against fixed program code), and
implicit virtual-memory accesses are simply disallowed.

Missing axioms. One use of our semantics is verification of properties that hold for multiple
(even infinitely many) different possible instantiations of this type class. In that way, we are able to
establish metatheorems that hold across applications of the semantics, a goal hard to achieve when
new applications are supported with new code produced by ad-hoc translators. However, for now,
we do not support proving deep properties of our semantics for any possible instance of this type
class, rather imposing additional restrictions on instances where needed. The reason is that we
are not using axiomatic type classes [Wenzel 1997] that additionally assert logical axioms that any
instance must validate. For instance, one might hope that, for any valid instance, getting the value
of a register that we just wrote should return the value we have just written.
The trouble is that what counts as “reasonable” becomes much murkier very quickly, as we

consider other aspects of the semantics. Foundational research questions remain around e.g. memory
models in the presence of multisize accesses, virtual memory, self-modifying code, etc. These

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 192. Publication date: August 2023.

Flexible Instruction-Set Semantics via Abstract Monads (Experience Report) 192:5

-- Indicates which stage is the source of a memory access

data SourceType = VirtualMemory | Fetch | Execute

-- Type class providing the RISC-V primitives:

class (Monad p, MachineWidth t) => RiscvMachine p t | p -> t where

getRegister :: Register -> p t

setRegister :: Register -> t -> p ()

getFPRegister :: FPRegister -> p Int32

setFPRegister :: FPRegister -> Int32 -> p ()

loadByte :: SourceType -> t -> p Int8

loadHalf :: SourceType -> t -> p Int16

loadWord :: SourceType -> t -> p Int32

loadDouble :: SourceType -> t -> p Int64

storeByte :: SourceType -> t -> Int8 -> p ()

storeHalf :: SourceType -> t -> Int16 -> p ()

storeWord :: SourceType -> t -> Int32 -> p ()

storeDouble :: SourceType -> t -> Int64 -> p ()

makeReservation :: t -> p ()

checkReservation :: t -> p Bool

clearReservation :: t -> p ()

getCSRField :: CSRField -> p MachineInt

unsafeSetCSRField :: (Integral s) => CSRField -> s -> p ()

getPC :: p t

setPC :: t -> p ()

getPrivMode :: p PrivMode

setPrivMode :: PrivMode -> p ()

commit :: p ()

endCycle :: forall z. p z

flushTLB :: p ()

fence :: MachineInt -> MachineInt -> p ()

getPlatform :: p Platform

Fig. 2. The primitives of the abstract RISC-V monad

questions may come to be sufficiently settled to allow a complete-enough set of axioms to be
included in our type class.

Instantiation. The abstract monad p (of kind * -> *) can be instantiated differently by each
use case, which keeps our spec agnostic to the concrete state of the machine and to the kinds
of effects that instructions can have. For instance, depending on the platform and the use case,
an invocation of the storeWord primitive could update the memory of the machine state, or it
could fail if the address is outside of the physical address range, or it could record constraints in a
memory-model graph, or it could record an I/O event if the address is in a range that the platform
uses for memory-mapped I/O, etc., and our specification is completely agnostic to these options.

The abstract type t is the type of the values stored in the integer registers. It can be instantiated
with Int32, Int64, or left abstract for use cases where it makes sense to reason about all bitwidths
at once. Requiring a MachineWidth type-class instance for t guarantees that there are arithmetic
and logical operators for t. To distinguish t from helper integer values that do not live in registers,

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 192. Publication date: August 2023.

192:6 Thomas Bourgeat, Ian Clester, Andres Erbsen, Samuel Grue�er, Pratap Singh, Andy Wright, and Adam Chlipala

we introduce an additional integer type MachineInt, which is an alias for Int64, and whose more-
significant bits are sometimes ignored. In fact, whenever we need an =-bit integer (with = ≤ 64)
that does not live in a register, we use MachineInt, applying bitmasking where necessary. In this
way, we dodge use of dependent bitvector types indexed by width, as provided by DSLs like Sail.
The tradeoffs on this question may also be debated, but at least representation is eased in general-
purpose languages with rich but not dependent types, and our case studies will demonstrate that a
variety of tasks in programming and formal methods remain tractable with laxer help from typing.

Instructions. The above choice also shows up in our algebraic datatype of instructions:

data InstructionI =

Sw { rs1 :: Register, rs2 :: Register, simm12 :: MachineInt } |

Add { rd :: Register, rs1 :: Register, rs2 :: Register } |

Beq { rs1 :: Register, rs2 :: Register, sbimm12 :: MachineInt } | ...

For instance, even though the offset field of the store-word instruction is only a signed 12-bit
immediate, we represent it with a (64-bit) MachineInt for simplicity. Note that this simplification
does not compromise correctness, because the specification only creates instructions in the decoder,
which only ever writes 12-bit values into that field.

Decode. The decoder starts by defining symbolic names for notable bitfields of the instruction
inst being decoded, using the function bitSlice x i j to extract bits [i, j) of x:

opcode = bitSlice inst 0 7

rd = bitSlice inst 7 12

rs1 = bitSlice inst 15 20

rs2 = bitSlice inst 20 25

simm12 = signExtend 12 $ shift (bitSlice inst 25 32) 5 .|. bitSlice inst 7 12 ...

and then defines a decoder for each RISC-V extension:

decodeI

| opcode==opcode_STORE, funct3==funct3_SW = Sw rs1 rs2 simm12

| opcode==opcode_BRANCH, funct3==funct3_BEQ = Beq rs1 rs2 sbimm12 ...

and finally, checks if the decoded instruction is part of the supported extensions.

Execute. For each RISC-V extension supported, there is an execute function that expresses the
effects of each instruction of the extension in terms of the primitives listed in Figure 2. For instance,
here is the definition of the jump-and-link-register instruction, for which explanatory prose will be
provided shortly thereafter:

execute (Jalr rd rs1 oimm12) = do

x <- getRegister rs1

pc <- getPC

let newPC = (x + fromImm oimm12) .&. (complement 1)

if (remu newPC 4 /= 0)

then raiseExceptionWithInfo 0 0 (fromIntegral newPC)

else (do

setRegister rd (pc + 4)

setPC newPC)

Readers who are familiar with Haskell might find it useful to know that the signature of this
function is execute :: forall p t. (RiscvMachine p t) =>InstructionI -> p (), but our spec is

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 192. Publication date: August 2023.

Flexible Instruction-Set Semantics via Abstract Monads (Experience Report) 192:7

intended also to be understandable for casual readers who just treat it as a funny form of almost
natural language and run it on small litmus tests to resolve any doubts about corner cases.
The above definition was transcribed from the following English definition:

The indirect jump instruction JALR (jump and link register) uses the I-type encoding.
The target address is obtained by adding the sign-extended 12-bit I-immediate to the
register AB1, then setting the least-significant bit of the result to zero. The address of
the instruction following the jump (?2 + 4) is written to register A3 . Register x0 can be
used as the destination if the result is not required.
The JAL and JALR instructions will generate an instruction-address-misaligned excep-
tion if the target address is not aligned to a four-byte boundary.

The mechanized specification uses Haskell’s do notation to chain monadic operations, and it
can also use standard Haskell constructs such as let or if. The binary operators (such as +, /=
and .&. in this example) are provided through the MachineWidth type class, which takes a type
parameter t that can be instantiated with 32-bit or 64-bit integers depending on the desired bitwidth.
It inherits from Haskell’s standard type classes Integral and Bits, allowing us to use the standard
infix operators. MachineWidth also provides fromImm to convert immediates from instructions into
register values t.

Note that let and if are Haskell’s standard constructs rather than custom or abstract primitives,
enabling readers familiar with these common constructs to study the specification with confidence.
As a tradeoff, this use of standard Haskell syntax requires language translators to parse the Haskell
code – just instantiating our RiscvMachine type class with another instance would not suffice.

We also note that raiseExceptionWithInfo is defined on top of the primitives, setting appropriate
status registers and then initiating early exit.

Run. Finally, we define what it means to run one instruction. In Coq, we use a simplified3 version
that just fetches an instruction, decodes and executes it, and updates the program counter, whereas
the Haskell version also considers interrupts, exceptions, and virtual memory.

Use-case- and platform-specific code. The components described so far form the specification
and are grouped together in a directory called Spec. However, we have not yet defined how state
is represented and how the primitives of Figure 2 are to be implemented. These use-case- and
platform-specific definitions are in a separate directory called Platform and are the subject of the
next section. The Spec and Platform directories each are about three thousand lines of code.

3 DIFFERENT MONADS FOR DIFFERENT USE CASES

Our RISC-V specification benefits from using a monad (the p in Figure 2) in the very same way
as Wadler’s interpreter in his classic “The Essence of Functional Programming” paper [Wadler
1992]. In this section, we tour the wide variety of applications that can be connected to this single
semantics. The key claim we emphasize throughout is that each application is supported simply

by picking new type-class instance(s) and perhaps also by calling general-purpose translators
from Haskell – no new translators or even parsers specific to ISA descriptions were required.

We begin with a brief description of mundane use cases in interpretation (essentially the original
application of monads that concerned Wadler). Next, we spend the bulk of our discussion on
different flavors of interactive proofs with Coq, before wrapping up with case studies of automated
model-checking of both machine-code programs and RISC-V processors using domain-specific
tools.

3but still accurate with respect to real software and hardware, because both the processor and the compiler are proven to

respect this same simplified specification

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 192. Publication date: August 2023.

192:8 Thomas Bourgeat, Ian Clester, Andres Erbsen, Samuel Grue�er, Pratap Singh, Andy Wright, and Adam Chlipala

3.1 Simulation

Support fast interpretation of machine-code programs by choosing efficient but harder-to-
reason-about data structures.
The most common way of modeling processors in the formal-methods world is to consider

the machine to be deterministic, each cycle updating the state of the registers and the memory
depending on the instruction present in memory at the location pointed to by the program counter.
Concretely, we wrote two instances of the RiscvMachine type class, named Minimal32 and

Minimal64, to obtain a 32- and a 64-bit machine simulator. We instantiated the type class in the
I/O monad, using references and arrays to implement registers, program counter, and memory. In
subsection 3.3, we summarize our experiments running specific binaries, where we can run about
100k instructions per second.

3.2 Supporting RISC-V Exceptions

Support exceptions by using a variant of the classic monad transformer for failure.

Many formal-methods-oriented projects do not want to deal with exceptions or interrupts, while
others are interested in modeling and leveraging them. The formal-spec user should experience the
costs of those further features incrementally as they are brought into play.
Raising an exception involves two components: modifying a bunch of state (namely numerous

special state registers [CSRs]) and early exit from the main code path that computes a cycle’s effect.
In RISC-V, exceptions can be caused by virtual-memory translation failures, failed system privilege
checks, and alignment problems, among other causes.
To be able to write monadic values carrying this early-exit information, we encode the early

return in a layer of a MaybeT monad transformer. The crucial primitive already appeared in our
definition of the RiscvMachine monad.

endCycle :: forall z. p z

Conspicuously, an implementation of endCycle is missing (meaning use triggers a Haskell-level
“unimplemented” exception) from the base machine previously described as Minimal64/32, but
there is one given in source file Machine.hs:

instance (RiscvMachine p t) => RiscvMachine (MaybeT p) t where

getRegister r = lift (getRegister r)

setRegister r v = lift (setRegister r v)

...

endCycle = MaybeT (return Nothing) ...

This instance demonstrates something powerful about our spec: composability. It takes some
existing instance of the same type class and builds on it, adding in the functionality of the Maybe
monad. In that monad, a computation halts as soon as a step returns Nothing, precisely capturing
the “early-return” behavior we want upon encountering an exception.
With this two-layer specification, we ran in simulation the riscv-tests test suite (rv64mi,

rv64si, rv64ui, rv64ua), which is the standard community-maintained test suite.

3.3 Platform Modeling, MMIO, and Devices

Support I/O features by providing additional monad transformers.

We actually use this kind of instance augmentation repeatedly in our code, first to encode the
semantics of core features (like RISC-V exceptions, as we have just seen) but also to add features
like memory-mapped I/O devices to existing RiscvMachine instances.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 192. Publication date: August 2023.

Flexible Instruction-Set Semantics via Abstract Monads (Experience Report) 192:9

For example, we enrich the platform with a concurrently running memory-mapped device: a
UART connected to a terminal, generating interrupts received by the main loop of the simulator.

With this implementation, composed of three layers of specifications, we were able to run Linux
in January 2019 at about 100k instructions per second. (We have not tracked newer Linux versions.)
While this strategy allows us to experiment, test, and vouch for our good coverage of the spec,

this artifact is not especially competitive for running significant RISC-V programs. For instance, the
popular QEMU runs at several hundred million instructions per second, but this performance gap
is not surprising, because QEMU uses dynamic binary translation to map the RISC-V instructions
to those of the host machine, whereas we run an unoptimized interpreter implemented in Haskell.

3.4 Interactive Theorem Proving

3.4.1 Translation from Haskell. Using hs-to-coq [Breitner et al. 2018], we can translate the Haskell
specification to Coq, replacing designated Haskell library functions with corresponding Coq library
functions. Since hs-to-coq was designed to model Haskell semantics in Coq as faithfully as possible,
it ships with handwritten and auto-generated translations of Haskell’s standard-library files, and
by default they are referenced by the Coq files produced by hs-to-coq. However, for this project,
we were not seeking a faithful reproduction of Haskell semantics in Coq but rather an idiomatic
RISC-V specification in Coq. Therefore, we used hs-to-coq’s edit files feature, which allows one
to provide renaming and rewriting patterns to be applied during the translation, so that we could
map all Haskell standard-library references to reasonably close Coq equivalents and obtain an
idiomatic, Haskell-independent Coq specification. We used hs-to-coq to translate the files specifying
instruction execution, the instruction decoder, as well as the CSR-file specification, while we
manually wrote remaining files like utility definitions, the definition of the RiscvMachine type
class, and proof-specific files.

3.4.2 Use as the Interface Between So�ware and Hardware. Our RISC-V Coq specification was
used in a project [Erbsen et al. 2021] that combines a compiler-correctness proof with a processor-
correctness proof. The combined theorem states that the I/O trace produced by the processor
matches the one produced by the source program fed to the compiler, without referencing the RISC-V
specification any more. Thus, auditors of the system can know the behavior of the system without
having to audit whether both the compiler and the processor interpret the RISC-V specification in
the same way, which greatly reduces the auditing burden.

3.4.3 Opting Out of Features and Opting Back In.

Support starting formal-verification projects with non-RISC-V-compliant simplifications

and gradually becoming more realistic and compliant.

Our first version of the translation to Coq was driven by the requirements of the compiler-
correctness project mentioned above, which required a very simple and manageable spec to get
started, so it was decided that initially, CSRs should not be modeled. However, this also meant that
we could not use the real raiseException function, nor the translate function (translating virtual
to physical addresses), which starts by reading a CSR that indicates whether virtual memory is
enabled. The solution was surprisingly simple: Since we had already chosen manual translation
of the file containing the declaration of the RiscvMachine type class, we were free to abstract over
raiseException and translate by adding them to the primitives of RiscvMachine (Figure 2). That
is, we made our specification more configurable than RISC-V allows, and for the compiler, we
instantiated translate to the identity function and raiseException to hard failure, because no
instructions emitted by the compiler rely on exceptions, while at the same time, we kept open the
possibility to instantiate these two functions with (more) real definitions.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 192. Publication date: August 2023.

192:10 Thomas Bourgeat, Ian Clester, Andres Erbsen, Samuel Grue�er, Pratap Singh, Andy Wright, and Adam Chlipala

Later, when we added CSRs to the Coq specification, we wrote a simplified raiseException

function. Since the compiler does not use it, it was trivial to integrate this update with the proof.

3.4.4 Simulator in Coq.

Support interpretation within a proof assistant by developing similar instantiations to
the earlier simulator case, using more naive purely functional data structures. A failure monad
provides convenient opportunities to indicate unsupported language features, such that individual
programs must then be proved not to exercise those features.

Statemonad. In Coq, the simplest-possible instantiation of themonad is p := State MachineState,
where State is the state monad defined as State(S A: Type) := S → (A * S), and MachineState

is a record containing the values of the processor’s registers, the program counter, the memory, the
CSR file, and the current privilege level. This instantiation can be used to obtain a deterministic
RISC-V simulator.

State monad with failure. An arguably simplermonad instantiation is p := OState MachineState,
where OState(S A: Type) := S → (option A) * S uses a None answer to indicate that a failure
occurred. For compiler-correctness proofs, the always-failing function fail-hard can be used to
indicate that a situation occurred that the compiler is supposed to avoid, e.g. memory access at an
invalid address, and a compiler-correctness proof then states that all valid source programs are
translated to RISC-V programs that never fail.

Moreover, if the compiler has been designed to emit code that does not use certain features, the
RISC-V specification can be simplified by implementing the primitives of Figure 2 used by these
features as just fail-hard.

3.4.5 Nondeterminism.
Support nondeterministic execution by choosing a monad that associates executions with
mathematical sets of results (a possibility not available directly in Haskell).

One way to add nondeterminism is to use the nondeterministic option state monad,
OStateND S A := S → option (A * S) → Prop, where the option’s None constructor is used to
indicate failure, and option (A * S) → Prop can be thought of as the set of all possible outcomes.
Its Bind and Return operations are implemented as

Bind A B (m: OStateND S A)(f : A→ OStateND S B) := fun (s : S) (obs: option (B * S))⇒

(m s None ∧ obs = None) ∨ (∃ a s', m s (Some (a, s')) ∧ f a s' obs);

Return A (a : A) := fun (s : S) (oas: option (A * S))⇒ oas = Some (a, s)

Why not monad transformers? We use monad transformers [Liang et al. 1995] to add logging
or early returns in Haskell, but they do not work to add nondeterminism as an additional feature
on top of an existing instance, because in order to obtain the right type for OStateND, one has to
start the composition with the nondeterminism monad, rather than adding nondeterminism at the

end of the monad-transformer composition chain, as would be required to reuse code written for
OState in code for OStateND. Moreover, since this code serves as a specification, it should be easy to
audit and understand, and we found that the definitions of Bind and Return above are much easier
to digest than the composition of several monad transformers, where certain composition orders
can result in unintended semantics.

3.4.6 Runtime Input.

Support input and output by combining nondeterminism with extra state that records traces of
interactions.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 192. Publication date: August 2023.

Flexible Instruction-Set Semantics via Abstract Monads (Experience Report) 192:11

Once we have nondeterminism, we can use it to model memory-mapped I/O (MMIO). For instance,
in the implementation of the loadWord primitive, if the address is not a physical memory address,
we delegate to the following helper function:

mmio_load32 addr: OStateND S int32 := fun s oas⇒

(isMMIOAddr addr ∧ ∃ v: int32, oas = Some (v, (appendLog (mmioLoadEvent addr v) s))) ∨

(∼isMMIOAddr addr ∧ oas = None)

It can be read as a function that for each current state s returns a proposition that indicates
whether an outcome oas (of type option (int32 * MachineState)) is in the set of possible outcomes,
distinguishing two cases based on whether the address lies in the address range reserved for MMIO.
We also augment MachineState with a log to which we append an MMIO event on each load and
store that falls into the MMIO address range.
Proofs of a compiler targeting this specification have to show that all states in the outcome set

given by mmio_load32 satisfy the compiler’s correctness guarantees (such as being related to a state
of the source-language execution), so the body of mmio_load32 will appear on the left-hand side of
an implication, so the existentially quantified v becomes universally quantified, and as expected,
the compiler proof must establish a guarantee for all possible read values v.

3.4.7 Nondeterminism by Means of Weakest Preconditions.

Support smooth integration with Hoare-logic-style program verification by first assigning
programs meanings in the style of interaction trees and then applying recursive functions (like
weakest-precondition computation) to those trees.

The Bedrock2 compiler [Erbsen et al. 2021] using our RISC-V specification requires RISC-V
semantics that given an initial state s, a monadic computation m corresponding to the execution of a
sequence of primitives from Figure 2, and a desired postcondition, returns the weakest precondition
that must hold in order for the postcondition to hold. Therefore, it seems that we need the following
bridge definition that tells when a monadic OStateND computation satisfies a postcondition:

mcomp_sat S A (m: OStateND S A) s post := ∀o, m s o→ ∃a s', o = Some (a,s') ∧ post a s'

For an example relating this definition to the previous subsection, m could be instantiated with
mmio_load32 addr, and post could be instantiated with the claim that the final state is related to a
state of the source-language execution.
When instantiating m with a monadic computation involving many Binds, unfolding mcomp_sat

and all Binds quickly leads to huge formulas with one existential for each intermediate state and
answer. We found these formulas to be larger than what human brains can deal with productively.
To fix the problem, it seems desirable to define mcomp_sat directly for each primitive. We can
do so using a different instantiation of our RiscvMachine type class that materializes monadic
computations into an Inductive with a constructor for each primitive from Figure 2, with an
alternative definition of mcomp_sat that gives the weakest-precondition interpretation of this syntax.
This monad is similar to freer monads [Kiselyov and Ishii 2015] and interaction trees [Xia et al.
2020].
The crucial difference between OStateND and the freer-monad interpreter is that the former

creates an existential for the intermediate state and answer of each Bind, whereas the latter works
similarly to a continuation-passing-style interpreter and just passes updated states to the right-hand
sides of the Binds, leading to considerably simpler formulas. For comparison, the mmio_load32 helper
function now looks as follows:

mmio_load32 addr := fun s post⇒

isMMIOAddr addr ∧ ∀ v: int32, post v (appendLog (mmioLoadEvent addr v) s)

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 192. Publication date: August 2023.

192:12 Thomas Bourgeat, Ian Clester, Andres Erbsen, Samuel Grue�er, Pratap Singh, Andy Wright, and Adam Chlipala

Note how, contrary to OStateND, no case for failure is needed, and the value v being read is already
universally quantified, rather than existentially quantified on the left-hand side of the implication
of mcomp_sat, and if more code follows after this snippet, it will be put into post and thus be invoked
with the updated state (appendLog (mmioLoadEvent addr v) s), with no intermediate existential.

3.5 Multiplication in So�ware: Reasoning About Multiple Instantiations of our Spec

Support proving connections between semantics variants (e.g. standing for capabilities

of different conformant processors) by simply instantiating the semantics with different
type-class instances and mentioning the different instantiations in single theorem statements
and proofs.

Gruetter et al. [2023] use two instantiations of our RISC-V spec in the same proof, showing
that a processor without support for the multiplication instruction, but with a trap handler that
catches invalid-instruction exceptions and implements multiplication in software, behaves as if
multiplication were implemented in hardware.

3.6 Model Checking with Weak Memory Models

Support model-checking of all possible program executions under weak memory by
choosing a type-class instance to record information on alternative paths to try later.

In this section we sketch our approach to instantiate the type class to generate all outcomes of
small multicore litmus tests with respect to the memory model. As far as we know, the state-of-
the-art algorithm to compute all outcomes specified by the RISC-V weak memory model is the
algorithm proposed by Kokologiannakis and Vafeiadis [2020]. It is a fairly sophisticated algorithm
interleaving constraint-solving phases and phases that add and remove nodes in an execution
graph. Its details are not relevant for the point we are trying to make in our paper, which is that
our type-class structure is flexible enough to cover such a drastically different use case.
The algorithm revolves around 4 data structures:

• a control/data/addr dependency-bookkeeping data structure, to maintain a list of all the
memory events that imply dependencies on the currently interpreted instruction

• a current partial execution graph, which is the graph of the memory events and their memory-
model relations

• two bookkeeping data structures necessary for backtracking during search: a list of alternative
partial execution graphs to explore later and a maintained set of all the read events that
would be subject to revisiting, if a store to the same address would occur

Intuitively, our implementation goes as follow: we write an interpreter in charge of exploring an
execution path depth-first. That interpreter also records all the alternative decisions that it could
have taken on its way. The interpreter can either return successfully with a valid execution, or it
can return that the execution that it explored ended up violating the memory model. In both cases,
the interpreter updates the global bookkeeping of alternative executions.

We implement this model-checking interpreter by instantiating the RiscvMachine type class in
the I/O monad. We use references to track state associated with the model-checking algorithm. We
modify the Minimal64machine described in subsection 3.1 and add the partial-execution graph and
bookkeeping data structures described above. The RiscvMachine instance implements dependency
tracking in the loadWord, storeWord, and fence primitives; other primitives are implemented
similarly to the Minimal64 simulator. The complete implementation is 800 lines of Haskell.

Each generated graph is checked against the upstream official Alloy specification [Lustig 2018]
for RISC-V’s RVWMO memory model. We only support word load and store instructions plus a
TSO fence, omitting the original work’s features for atomics and release/acquire fences.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 192. Publication date: August 2023.

Flexible Instruction-Set Semantics via Abstract Monads (Experience Report) 192:13

As is standard in memory-model work, we assume the instruction memory is separate from the
data memory and not under the memory-model exploration. We also do not support mixed-size or
misaligned accesses, virtual memory is deactivated, and there are no exceptions/interrupts.

We ran our model checker on the litmus tests provided by Flur et al. [2019], which were also used
by the RISC-V Memory Model Task Group during development of the ISA specification. We are
able to run all of the basic 2-thread litmus tests, where wall-clock times range from approximately
20 seconds for the smallest test cases to 3 minutes for the largest; we are able to run all 36 test cases
in 50 minutes. Tests were run on a lightly loaded machine with a Haswell i7-5930K CPU and 64GB
of DDR4 RAM running Arch Linux. The performance bottleneck here is calling Alloy by spawning
a new Java Virtual Machine per query and probably also suboptimal Alloy parameters.

3.7 Model-Checking the Decode and Execute Functions

Support compilation to hardware circuits by carefully tweaking interpreter-style instances to
avoid unbounded types.

The riscv-formal project [Wolf 2018] proposes a Verilog description of the state-update function
for one cycle of RISC-V execution. They also have infrastructure to model-check their Verilog de-
scription against other descriptions. As our final case study, we decided to connect our specification
to that ecosystem, validating it against the existing riscv-formal specification. Their tooling works
directly on Verilog code, so it was convenient to translate our specification into that language. We
used the Haskell-to-hardware converter Clash [QBayLogic 2020] to transform our specification,
using a minimal state-monad instance, into a Verilog function, and the authors of riscv-formal
model-checked that output against their reference riscv-formal to find discrepancies (as revealed
by executing any single instruction from matching initial states).
Interestingly enough, the Clash instance of the specification is quite similar to the Minimal

instances. However, the Minimal instances are not directly usable in Clash because they use a Map
for the register file, and these potentially arbitrary-sized maps do not normalize well in Clash.
Instead, we use the Vector datatypes in Clash. We also fought with instabilities of Clash’s partial
evaluation of programs, where sometimes it would fail to notice dead code or otherwise take
advantage of predictability of some code spans. As a result, we did make a few lines of changes to
our spec just to avoid some trouble with Clash.
However, there is one snippet consisting of 7 lines of code involving conditionals over the

instruction set iset, which is statically known to be RV32I, and lists, statically known to be
singletons, on which Clash runs into a normalization black hole before propagating these statically
known constants enough to avoid it. It is probably possible to improve Clash’s normalization so
that this case is handled properly, but we currently shamelessly use a sed script to comment the
offending lines.

This snippet highlights a classical example of a tradeoff: if one considers extensions and bitwidths
to be statically fixed in one machine, using macros instead of if expressions would have side-
stepped this problem altogether. On the other hand, having one spec able to handle bitwidths 32
and 64 simultaneously was a requirement for our users writing a generic RISC-V compiler and
proving it generically. We decided having to replay all the proofs twice would have been worse.

4 RELATED WORK

Most recent work on multipurpose ISA specs has employed domain-specific languages toward ends
similar to ours. The Sail [Armstrong et al. 2019; Mundkur et al. 2020] language is the highest-profile
today for defining ISA semantics. Sail has a few features that make defining extensible ISAs more
pleasant:

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 192. Publication date: August 2023.

192:14 Thomas Bourgeat, Ian Clester, Andres Erbsen, Samuel Grue�er, Pratap Singh, Andy Wright, and Adam Chlipala

• Dependently typed bitvectors can help catch specification bugs.
• Open variant types allow to spread the cases of an algebraic data type (tagged union) over
several files, and functions that consume them can also be spread over several files. This
feature is very useful for the data type representing instructions: There is no need to say
upfront what all the possible instructions are, and extensions can freely extend the data type.
In Haskell, on the other hand, we need a two-layer algebraic data type: The first layer says to
which extension an instruction belongs, and the second layer says which instruction it is.
And in Haskell, the decode function needs to be a big monolithic function, whereas in Sail,
each extension can define its own encode/decode mappings.

• mapping clauses can be used to specify bijections between the instruction AST and its encoding
as 32-bit integers as well as its encoding as an assembly string, and from these declarative
mappings, Sail automatically derives encoding and decoding functions.

• Specifying which extensions and/or custom instructions are used is done in the Makefile,
by passing or not passing the files in question to the Sail translator. This approach leads to
greater flexibility in composing a custom, non-RISC-V-compliant, simplified specification
that only supports certain instructions. In contrast, our approach defines these choices within
Haskell (or in Coq, respectively), leading to a little less flexibility.

A DSL in this category requires new tools to translate into specification languages required
across use cases, and languages in this tradition had not previously allowed application-agnostic
semantics to be first-class objects in logics.

Another DSL specific to the ARM ISA family, ASL [Reid 2016], received a lot of attention recently,
thanks to systematic adoption for several of ARM’s most important ISA variations. It can be
translated automatically to Sail, and Sail can be translated to HOL4. However, the resulting HOL4
spec is too cumbersome to deal with directly in a compiler-correctness proof, so the CakeML
compiler writers prefer proving their compiler against a simpler specification written in L3 [Fox
2012], Sail’s predecessor. Kanabar et al. [2022] proved that the L3-based specification simulates the
official Arm specification in ASL and combined this proof with the CakeML compiler’s correctness
proof, resulting in a compiler-correctness proof against an official formal specification of an
industrial ISA.

These DSLs have been used for encoding several significant mainstream ISAs beyond RISC-V, and
indeed it is possible that our approach would be less appropriate for legacy ISAs with complications
and baggage beyond what we had to deal with in RISC-V.

Fox and Myreen [2010] defined and validated an ARM semantics in HOL4, using a fixed monad
for state-threading. They also performed extensive validation across a few use cases, most notably
in automated testing against processors.
Goel and Hunt [2013] developed a detailed model of x86 in ACL2. It supports two different use

cases [Goel 2016, Section 5.2]: Efficient execution and formal reasoning in ACL2. To support both
of them with the same model, they rely on an ACL2 feature called Single-Threaded Objects, or stobj
for short [Boyer and Moore 2002]. The formal semantics of a stobj update are copy-on-write, but
ACL2 syntactically enforces that a stobj is always used linearly, i.e. there is at most one reference
to it, which allows the simulator to perform destructive updates without changing the semantics.
Several past projects have applied single ISA semantics to verify both hardware and software:

the CLI stack [Bevier et al. 1989], VeriSoft [Alkassar et al. 2008], and CakeML [Lööw et al. 2019]. All
three dealt only with bespoke, verification-motivated ISAs and only performed verification within
the proof assistants their specifications were written in. In addition to its hardware-verification-
motivated ISA called Silver, the CakeML compiler also supports compilation to ARMv6, ARMv8,
MIPS-64, RISC-V, and x86-64, but no end-to-end proofs combining software and hardware were

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 192. Publication date: August 2023.

Flexible Instruction-Set Semantics via Abstract Monads (Experience Report) 192:15

made using these industrial ISAs. They have been specified using the L3 language [Fox 2012],
Sail’s predecessor. For each of these target ISAs, the L3 model defines (among other things) a state

datatype, an instruction type, and a function next from state to state [Fox et al. 2017, Section 5].
Sail ISA semantics have also recently been connected to program proof with Islaris [Sammler

et al. 2022], a framework that uses SMT-based symbolic execution of the semantics to produce
more manageable verification conditions, to be discharged in Coq. Compared to our approach, at
least one new trusted language translator is involved. The SMT solver is also trusted, rather than
using it to generate proofs checkable by Coq. Islaris has been applied successfully to both RISC-V
and more complex ARM ISAs.

5 CONCLUSION

We have presented a new approach to formal specification of hardware instruction sets, relying
on type classes for easy instantiation to different use cases, thus avoiding any requirement for
domain-specific language features. As a result, such a semantics can be written directly in popular
general-purpose languages and translated to other forms using tools that are not domain-specific.
Our example is for the up-and-coming RISC-V ISA family and has been applied across hardware
and software and across different styles of formal methods, without requiring that a single new
parser/translator be written to integrate with tools backed by interactive proof (Coq), relational
model finding (Alloy), and SMT-based model checking (Yosys).
Some rough edges certainly remain, which should be considered in comparing our approach

to that of domain-specific languages, motivating the search for new coding patterns to achieve
better modularity in general-purpose languages. We would rather not have our RiscvMachine type
class always contain the getFPRegister and setFPRegister primitives. It would be better if they
were only present if the floating-point extension is supported, and similarly for makeReservation,
checkReservation, and clearReservation required by the atomics extension. Suchmore fine-grained
control over which primitives are needed could probably be obtained using a hierarchy of type
classes, but we preferred to avoid this additional complexity.
The instruction-decode function is quite large, and every property about it that we proved (or

tried to prove) in Coq leads to performance issues that require very careful, performance-aware
proof engineering.

We did a few experiments trying to translate the specification to other languages, but it turned
out to require more engineering effort than originally expected. Parsing Haskell is only the first
step, and after that, unless the target language supports type classes the same way as Haskell does,
the translator would have to perform semantic analysis to resolve the meanings of overloaded
operators like + or fromIntegral: They sometimes refer to operations on the integer type t (that can
be 32-bit or 64-bit), while in other locations, they refer to machine-width-independent operations.

Nonetheless, this approach allowed for a small arsenal of nontrivial tools to be constructed fairly
quickly, and related mechanizations may have a place in future formal-methods ecosystems.

ACKNOWLEDGMENTS

We would like to thank Rishiyur Nikhil for feedback on this paper as well as on the development of
our semantics over the years, alongside the other members of the ISA-semantics working group of
the RISC-V Foundation. This research was supported by the National Science Foundation Expedition
on the Science of Deep Specification (award CCF-1521584) and the Defense Advanced Research
Projects Agency (award HR001118C0018). Part of this work was carried out while the non-MIT
authors had appointments at MIT.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 192. Publication date: August 2023.

192:16 Thomas Bourgeat, Ian Clester, Andres Erbsen, Samuel Grue�er, Pratap Singh, Andy Wright, and Adam Chlipala

A DATA-AVAILABILITY STATEMENT

An artifact [Bourgeat et al. 2023] associated with this paper was evaluated and is freely available.

REFERENCES

Eyad Alkassar, Mark A. Hillebrand, Dirk Leinenbach, Norbert W. Schirmer, and Artem Starostin. 2008. The Verisoft Approach

to Systems Verification. In 2nd IFIP Working Conference on Verified Software: Theories, Tools, and Experiments (VSTTE’08)

(LNCS, Vol. 5295), Natarajan Shankar and Jim Woodcock (Eds.). Springer, 209–224.

Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid, Kathryn E. Gray, Robert M. Norton, Prashanth

Mundkur, Mark Wassell, Jon French, Christopher Pulte, Shaked Flur, Ian Stark, Neel Krishnaswami, and Peter Sewell.

2019. ISA Semantics for ARMv8-A, RISC-V, and CHERI-MIPS. Proceedings of the ACM on Programming Languages 3,

POPL (Jan. 2019), 1–31. https://doi.org/10.1145/3290384

William R. Bevier, Warren A. Hunt, Jr., J Strother Moore, and William D. Young. 1989. An Approach to Systems Verification.

Journal of Automated Reasoning (1989), 411–428. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.68.6467&

rep=rep1&type=pdf

Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. 1998. Lava: Hardware Design in Haskell. In Proceedings of

the Third ACM SIGPLAN International Conference on Functional Programming (ICFP ’98). Association for Computing

Machinery, New York, NY, USA, 174–184. https://doi.org/10.1145/289423.289440

Thomas Bourgeat, Ian Clester, Andres Erbsen, Samuel Gruetter, Pratap Singh, Andy Wright, and Adam Chlipala. 2023. A

RISC-V Formal Semantics in Haskell. https://doi.org/10.5281/zenodo.7992509

Robert S. Boyer and J Strother Moore. 2002. Single-Threaded Objects in ACL2. In Practical Aspects of Declarative Languages,

Gerhard Goos, Juris Hartmanis, Jan Van Leeuwen, Shriram Krishnamurthi, and C. R. Ramakrishnan (Eds.). Vol. 2257.

Springer Berlin Heidelberg, Berlin, Heidelberg, 9–27. http://link.springer.com/10.1007/3-540-45587-6_3

Joachim Breitner, Antal Spector-Zabusky, Yao Li, Christine Rizkallah, John Wiegley, and Stephanie Weirich. 2018. Ready, Set,

Verify! Applying Hs-to-Coq to Real-World Haskell Code (Experience Report). Proceedings of the ACM on Programming

Languages 2, ICFP (July 2018), 89:1–89:16. https://doi.org/10.1145/3236784

Andres Erbsen. 2022. An End-to-End Verified Garage-Door Opener. https://github.com/mit-plv/fiat-crypto/blob/master/

src/Bedrock/End2End/X25519/GarageDoor.v

Andres Erbsen, Samuel Gruetter, Joonwon Choi, Clark Wood, and Adam Chlipala. 2021. Integration Verification Across

Software and Hardware for a Simple Embedded System. PLDI’21 (2021). https://doi.org/10.1145/3453483.3454065

Shaked Flur, Luc Maranget, and Peter Sewell. 2019. Litmus Test for the RISC-V Memory Model. https://github.com/litmus-

tests/litmus-tests-riscv

Anthony Fox. 2012. Directions in ISA Specification. In Interactive Theorem Proving (Lecture Notes in Computer Science), Lennart

Beringer and Amy Felty (Eds.). Springer, Berlin, Heidelberg, 338–344. https://doi.org/10.1007/978-3-642-32347-8_23

Anthony Fox, Magnus O. Myreen, Yong Kiam Tan, and Ramana Kumar. 2017. Verified Compilation of CakeML to Multiple

Machine-Code Targets. In Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs (CPP 2017).

Association for Computing Machinery, New York, NY, USA, 125–137. https://doi.org/10.1145/3018610.3018621

Anthony C. J. Fox and Magnus O. Myreen. 2010. A Trustworthy Monadic Formalization of the ARMv7 Instruction Set

Architecture. In Interactive Theorem Proving (ITP), Matt Kaufmann and Lawrence C. Paulson (Eds.). Springer, 243–258.

Shilpi Goel. 2016. Formal Verification of Application and System Programs Based on a Validated X86 ISA Model. Thesis.

University of Texas at Austin. https://repositories.lib.utexas.edu/handle/2152/46437

Shilpi Goel and Warren A. Hunt. 2013. Automated Code Proofs on a Formal Model of the X86. In Verified Software: Theories,

Tools, Experiments (Lecture Notes in Computer Science), Ernie Cohen and Andrey Rybalchenko (Eds.). Springer, Berlin,

Heidelberg, 222–241. https://doi.org/10.1007/978-3-642-54108-7_12

Samuel Gruetter. 2021. AModel of anOpenTitan Root-of-Trust SystemRunningHardwareAccelerators and Their C/Bedrock2

Device Drivers. https://github.com/project-oak/silveroak/blob/main/firmware/RiscvMachineWithCavaDevice/

Bedrock2ToCava.v

Samuel Gruetter, Thomas Bourgeat, and Adam Chlipala. 2023. Proving That a System with Software Trap Handlers for

Unimplemented Instructions Behaves as If They Were Implemented in Hardware. Technical Report. https://samuelgruetter.

net/assets/softmul.pdf

Hrutvik Kanabar, Anthony C. J. Fox, and Magnus O. Myreen. 2022. Taming an Authoritative Armv8 ISA Specification: L3

Validation and CakeML Compiler Verification. In 13th International Conference on Interactive Theorem Proving (ITP 2022)

(Leibniz International Proceedings in Informatics (LIPIcs), Vol. 237), June Andronick and Leonardo de Moura (Eds.). Schloss

Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 20:1–20:22. https://doi.org/10.4230/LIPIcs.ITP.2022.20

Oleg Kiselyov and Hiromi Ishii. 2015. Freer Monads, More Extensible Effects. In Proceedings of the 2015 ACM SIGPLAN

Symposium on Haskell. ACM, Vancouver BC Canada, 94–105. https://doi.org/10.1145/2804302.2804319

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 192. Publication date: August 2023.

https://doi.org/10.1145/3290384
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.68.6467&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.68.6467&rep=rep1&type=pdf
https://doi.org/10.1145/289423.289440
https://doi.org/10.5281/zenodo.7992509
http://link.springer.com/10.1007/3-540-45587-6_3
https://doi.org/10.1145/3236784
https://github.com/mit-plv/fiat-crypto/blob/master/src/Bedrock/End2End/X25519/GarageDoor.v
https://github.com/mit-plv/fiat-crypto/blob/master/src/Bedrock/End2End/X25519/GarageDoor.v
https://doi.org/10.1145/3453483.3454065
https://github.com/litmus-tests/litmus-tests-riscv
https://github.com/litmus-tests/litmus-tests-riscv
https://doi.org/10.1007/978-3-642-32347-8_23
https://doi.org/10.1145/3018610.3018621
https://repositories.lib.utexas.edu/handle/2152/46437
https://doi.org/10.1007/978-3-642-54108-7_12
https://github.com/project-oak/silveroak/blob/main/firmware/RiscvMachineWithCavaDevice/Bedrock2ToCava.v
https://github.com/project-oak/silveroak/blob/main/firmware/RiscvMachineWithCavaDevice/Bedrock2ToCava.v
https://samuelgruetter.net/assets/softmul.pdf
https://samuelgruetter.net/assets/softmul.pdf
https://doi.org/10.4230/LIPIcs.ITP.2022.20
https://doi.org/10.1145/2804302.2804319

Flexible Instruction-Set Semantics via Abstract Monads (Experience Report) 192:17

Michalis Kokologiannakis and Viktor Vafeiadis. 2020. HMC: Model Checking for Hardware Memory Models. In Proceedings

of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems.

ACM, Lausanne Switzerland, 1157–1171. https://doi.org/10.1145/3373376.3378480

Sheng Liang, Paul Hudak, and Mark Jones. 1995. Monad Transformers and Modular Interpreters. In In Proceedings of the

22nd ACM Symposium on Principles of Programming Languages.

Andreas Lööw, Ramana Kumar, Yong Kiam Tan, Magnus O Myreen, Michael Norrish, Oskar Abrahamsson, and Anthony

Fox. 2019. Verified Compilation on a Verified Processor. PLDI’19 (2019), 13.

Daniel Lustig. 2018. A Formalization of the RVWMO (RISC-V) Memory Model. https://github.com/daniellustig/riscv-

memory-model

Prashanth Mundkur, Rishiyur Nikhil, Jon French, Brian Campbell, Robert Norton, Alasdair Armstrong, Thomas Bauereiss,

Shaked Flur, Christopher Pulte, and Peter Sewell. 2020. Sail RISC-V Model. (2020). https://github.com/rems-project/sail-

riscv

QBayLogic. 2020. Clash. https://clash-lang.org/

Alastair Reid. 2016. Trustworthy Specifications of ARM® V8-A and v8-M System Level Architecture. In 2016 Formal Methods

in Computer-Aided Design (FMCAD). 161–168. https://doi.org/10.1109/FMCAD.2016.7886675

Michael Sammler, Angus Hammond, Rodolphe Lepigre, Brian Campbell, Jean Pichon-Pharabod, Derek Dreyer, Deepak

Garg, and Peter Sewell. 2022. Islaris: Verification of Machine Code against Authoritative ISA Semantics. In Proceedings

of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation (PLDI 2022).

Association for Computing Machinery, New York, NY, USA, 825–840. https://doi.org/10.1145/3519939.3523434

Philip Wadler. 1992. The Essence of Functional Programming. In Proceedings of the 19th ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages (POPL ’92). Association for Computing Machinery, New York, NY, USA, 1–14.

https://doi.org/10.1145/143165.143169

P. Wadler and S. Blott. 1989. How to Make Ad-Hoc Polymorphism Less Ad Hoc. In Proceedings of the 16th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL ’89). Association for Computing Machinery, New

York, NY, USA, 60–76. https://doi.org/10.1145/75277.75283

Andrew Waterman and Krste Asanovic (Eds.). 2019a. The RISC-V Instruction Set Manual, Volume I: User-Level ISA,

Document Version 20191213. RISC-V Foundation (Dec. 2019). https://riscv.org/technical/specifications/

AndrewWaterman and Krste Asanovic (Eds.). 2019b. The RISC-V Instruction Set Manual, Volume II: Privileged Architecture,

Document Version 20190608-Priv-MSU-Ratified. RISC-V Foundation (June 2019). https://riscv.org/technical/specifications/

Markus Wenzel. 1997. Type Classes and Overloading in Higher-Order Logic. In Proceedings of the 10th International

Conference on Theorem Proving in Higher Order Logics (TPHOLs ’97). Springer-Verlag, Berlin, Heidelberg, 307–322.

Claire Wolf. 2018. RISC-V Formal Verification Framework. Symbiotic EDA. https://github.com/SymbioticEDA/riscv-formal

Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce, and Steve Zdancewic. 2020.

Interaction Trees: Representing Recursive and Impure Programs in Coq. Proc. ACM Program. Lang. 4, POPL (2020),

51:1–51:32. https://doi.org/10.1145/3371119

Received 2023-03-01; accepted 2023-06-27

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 192. Publication date: August 2023.

https://doi.org/10.1145/3373376.3378480
https://github.com/daniellustig/riscv-memory-model
https://github.com/daniellustig/riscv-memory-model
https://github.com/rems-project/sail-riscv
https://github.com/rems-project/sail-riscv
https://clash-lang.org/
https://doi.org/10.1109/FMCAD.2016.7886675
https://doi.org/10.1145/3519939.3523434
https://doi.org/10.1145/143165.143169
https://doi.org/10.1145/75277.75283
https://riscv.org/technical/specifications/
https://riscv.org/technical/specifications/
https://github.com/SymbioticEDA/riscv-formal
https://doi.org/10.1145/3371119

	Abstract
	1 Introduction
	2 Overview
	2.1 Choice of Language
	2.2 Structure of the Specification

	3 Different monads for different use cases
	3.1 Simulation
	3.2 Supporting RISC-V Exceptions
	3.3 Platform Modeling, MMIO, and Devices
	3.4 Interactive Theorem Proving
	3.5 Multiplication in Software: Reasoning About Multiple Instantiations of our Spec
	3.6 Model Checking with Weak Memory Models
	3.7 Model-Checking the Decode and Execute Functions

	4 Related work
	5 Conclusion
	Acknowledgments
	A Data-Availability Statement
	References

