
Mostly Automated Formal Verification of Loop
Dependencies with Applications to Distributed

Stencil Algorithms

Thomas Grégoire1 and Adam Chlipala2

1 ÉNS Lyon, France
thomas.gregoire@ens-lyon.fr

2 MIT CSAIL, Cambridge, MA, USA
adamc@csail.mit.edu

Abstract. The class of stencil programs involves repeatedly updating
elements of arrays according to fixed patterns, referred to as stencils.
Stencil problems are ubiquitous in scientific computing and are used as
an ingredient to solve more involved problems. Their high regularity al-
lows massive parallelization. Two important challenges in designing such
algorithms are cache efficiency and minimizing the number of communi-
cation steps between nodes. In this paper, we introduce a mathematical
framework for a crucial aspect of formal verification of both sequential
and distributed stencil algorithms, and we describe its Coq implemen-
tation. We present a domain-specific embedded programming language
with support for automating the most tedious steps of proofs that nested
loops respect dependencies, applicable to sequential and distributed ex-
amples. Finally, we evaluate the robustness of our library by proving the
dependency-correctness of some real-world stencil algorithms, including
a state-of-the-art cache-oblivious sequential algorithm, as well as two
optimized distributed kernels.

1 Introduction

Broadly speaking, in this paper we are interested in verifying, within a proof
assistant, the correctness of a class of algorithms in which some matrices are
computed, with some matrix cells depending on others. The aim is to check
that these quantities are computed in the right order. This archetypical style of
calculation arises in such situations as computing solutions of partial differential
equations using finite-difference methods. The algorithms used in this setting
are usually referred to as stencil codes, and they are the focus of the framework
that we present in this paper.

A stencil defines a value for each element of a d-dimensional spatial grid at
time t as a function of neighboring elements at times t−1, t−2, . . . , t−k, for some
fixed k, d ∈ N+. Figure 1 defines a stencil and gives its graphical representation.

Stencil problems naturally occur in scientific-computing and engineering ap-
plications. For example, consider the two-dimensional heat equation:

∂u

∂t
− α

(
∂2u

∂x2
+
∂2u

∂y2

)
= 0

Space = {0, 1, . . . , N}2,
u0[x, y] = αx,y,
ut+1[x, y] = F (ut[x, y],ut[x+ 1, y], ut[x− 1, y],

ut[x, y + 1], ut[x, y − 1]),
N ∈ N, αx,y ∈ R, F : R4 → R

Fig. 1. A two-dimensional Jacobi stencil

We might try to solve it by discretizing both space and time using a finite-
difference approximation scheme as follows:

∂u

∂t
≈ u(t+∆t, x, y)− u(t, x, y)

∆t

∂2u

∂x2
≈ u(t, x+∆x, y)− 2u(t, x, y) + u(t, x−∆x, y)

∆x2

Proceeding similarly for ∂2u
∂y2 , we obtain the two-dimensional stencil depicted

by Figure 1. More generally, stencil computations are used when solving partial
differential equations using finite-difference methods on regular grids [11,4], in
iterative methods solving linear systems [11], but also in simulations of cellular
automata, such as Conway’s game of life [8].

In this paper, we will focus on stencil codes where all the values of the grid
are required at the end of the computation–a common situation when partial
differential equations are used to simulate the behavior of a real-world system,
and the user is interested not only in the final result but also in the dynamics of
the underlying process.

Although writing stencil code might seem very simple at first glance–a pro-
gram with nested loops that respects the dependencies of the problem is enough–
there are in fact many different optimizations that have a huge impact on perfor-
mance, especially when the grid size grows. For stencil code running on a single
processor or core, changing the order in which computations are performed can
significantly increase cache efficiency, hence dramatically lowering computation
times. In the case of multicore implementations, reducing the number of syn-
chronizations between the cores is important since communication is usually the
main bottleneck. All these optimizations reorder computations. It is therefore
crucial to check that these reorderings do not break the dependencies implied by
the underlying stencil. This is the overall goal of this paper.

We describe a formal framework to define stencils, encode their sequential and
distributed implementations, and prove their correctness. We show how using a
domain-specific language adapted to stencil code allows a very effective form of
symbolic execution of programs, supporting verification without annotations like
loop invariants that are common in traditional approaches. As for distributed
algorithms, we show how the synchronousness of stencil kernels impacts verifi-
cation. In particular, we show how verification of distributed stencil code boils
down to verification of sequential algorithms. Finally, we showcase the robustness

of our theory by applying it to some real-world examples, including a state-of-
the-art sequential cache-oblivious algorithm, as well as a communication-efficient
distributed kernel.

We have implemented our framework and example verifications within the
Coq proof assistant3. Because everything is formalized in Coq, we will, in this
paper, tend toward relatively informal explanations, to help develop the reader’s
intuition.

So, to summarize, our contributions are the first mechanized proof of sound-
ness of a dependency-verification framework for loopy programs over multidi-
mensional arrays, in addition to a set of Coq tactics that support use of the
framework with reasonable effort plus a set of case-study verifications showing
the framework in action for both sequential and distributed programs.

1.1 Related Work

To the authors’ knowledge, this is the first attempt at designing a verification
framework for dependencies in stencil code.

Stencils have drawn some attention in the formal-proof community, since
finite-difference schemes are among the simplest (yet most powerful) methods
available to solve differential equations in low dimension. Therefore, recent work
has been more focused on proving stability and convergence of a given discretiza-
tion scheme [2,3,9], rather than investigating different ways to solve a given
stencil. In a different direction, we also mention Ypnos [16], a domain-specific
language that enforces indexing safety guarantees in stencil code through type
checking, therefore eliminating the need for run-time bounds checking.

As mentioned earlier in this introduction, stencil code can suffer from poor
cache performance. This has led to intensive research on cache-oblivious stencil
algorithms [6,7]. Writing such optimized stencil code can be very tedious and
error-prone, and code might have to be rewritten from scratch when switching
architecture. Recently, different techniques have been proposed to automate diffi-
cult parts of stencil implementation, including sketching [18], program synthesis
[21], or compiling a domain-specific stencil language [19]. In our new work, we
show how to verify a posteriori that such generated code respects dependencies,
for infinite input domains.

One of the most natural approaches to generate efficient parallel stencil code
is to use the polyhedral model (see [10,5]), to represent and manipulate loop
nests. The goal of our framework is different from that of a vectorizing compiler,
since we are not trying to generate code, but rather check that it does not violate
any dependencies. Nevertheless, our approach is reminiscent of the line of work
on the polyhedral model and parallelizing compilers (see, e.g., [17,15,14]), in the
sense that we produce an algebraic representation of the current state of the
program and use it to check that dependencies are satisfied. Notice that, since
we are working within a proof assistant, we can represent arbitrary mathematical

3 https://github.com/mit-plv/stencils

sets, which implies that we are not limited to linear integer programs; and indeed
our evaluation includes codes that employ nonlinear arithmetic.

Closely related to this paper, there has been recent work on the formal ver-
ification of GPU kernels. In this direction, we refer the reader to PUG [12],
GKLEE [13], and GPUverify [1]. Our approach is somewhat orthogonal to this
line of work: we study a smaller class of programs, which is also big enough to
have many applications, supporting first-principles proofs at low human cost.

2 Verifying Stencil Code

2.1 Stencils and Their Representation

A stencil is defined on a set G, which represents a spatial grid. Its elements are
called cells, and most stencils of interest are based on G = Zd for some small
integer d.

We assign a numerical value ut[c] to every cell c ∈ G at every time t ∈ N (or
any time 0 ≤ t ≤ tmax, for some tmax ∈ N). A stencil is then defined by some
initial conditions u0[c] = αc, with c ∈ G, αc ∈ R, and a pattern

ut[c] = F (ut−1[d1(c)], . . . , ut−1[dk(c)]),

for some function F . The cells d1(c), . . . , dk(c) are called c’s neighbors. See
Figure 1 for an example of such a formal stencil definition.

Let us turn to the representation of stencils within the proof assistant.

Definition 1. A stencil is defined by:

– A type cell representing grid elements;
– A term space : set cell, indicating which finite subset of the grid we will

be computing on;
– A term target : set cell, indicating which grid elements have to be com-

puted by the end of the execution of the algorithm;
– A term dep : cell→ list cell representing the dependencies of each cell,

that is, its neighbors.

Figure 2 shows how we formalize the Jacobi 2D stencil we introduced in
Figure 1. We will conclude this section with a few comments on this definition:

Remark 1. Here, set A denotes “mathematical” sets of elements of type A,
implemented in Coq as A→ Prop.

Remark 2. Notice that this is an abstract notion of stencil. In particular, we do
not specify the function applied at each step–it is seen as a black box–nor do we
give the initial conditions. Moreover, the formulation is much more general than
the schematic equation given above and encompasses e.g. Gauss-Seidel iterations
or box-blur filtering.

Parameters T I J : Z.

Module Jacobi2D <: (PROBLEM Z3).
Local Open Scope aexpr.

Definition space := J0, TK×J0, IK×J0, JK.
Definition target := J0, TK×J0, IK×J0, JK.
Definition dep c :=
match c with

| (t,i,j) ⇒ [(t−1,i,j); (t−1,i−1,j); (t−1,i+1,j); (t−1,i,j−1); (t−1,i,j+1)]
end.

End Jacobi2D.

Fig. 2. Coq representation of the two-dimensional Jacobi stencil

Remark 3. The space parameter is used to encode boundary conditions. For
example, in the case of the Jacobi 2D stencil, we might want to ensure that
ut[(i, j)] = 0 as soon as i < 0, i > I, j < 0, or j > J , for some parameters I and
J . In this case, we would pick4 space = [[0, I]]× [[0, J]].

2.2 Programs: Syntax, Semantics, and Correctness

Now that we have a way to describe stencils, we turn to the representation and
correctness of programs. Let us consider the following trivial program solving
the Jacobi 2D stencil:

for t=0 to T do
for i=0 to I do

for j=0 to J do
Compute ut[i, j]

Verifying the correctness of this program amounts to proving that

1. It does not violate any dependency. That is, ut[i, j] is never computed before
ut−1[i, j], ut−1[i+ 1, j], ut−1[i− 1, j], ut−1[i, j + 1], or ut−1[i, j − 1];

2. It is complete, in the sense that it computes all the values of cells in target.

Therefore, we see programs as agents, having some knowledge. The state of
a program is a set of cells, those with values known by the program.

For now, we will only discuss requirement 1, and we will see how to prove
requirement 2 in the next section. Our starting point is a basic imperative lan-
guage, which we extend with a flag c command, which adds cell c to the current
state, as well as assert c, which checks that c belongs to the current state. If
not, the program halts abnormally.

To verify requirement 1 for the trivial program above, we would therefore
have to prove the normal termination of the following program:

4 In this paper, for all a, b ∈ Z, we write [[a, b]] for {n ∈ Z : a ≤ n ≤ b}.

p ::= nop | p; p | flag c | assert c | if b then p else p | for v = e to e do p
e ::= k | v | e+ e | e− e | e× e | e/e | e mod e
b ::= ε | not b | b or b | b and b | e = e | e 6= e | e ≤ e | e ≥ e | e < e | e > e
k ∈ Z, ε ∈ {>,⊥}

Fig. 3. Syntax of arithmetic and Boolean expressions and programs

for t=0 to T do
for i=0 to I do

for j=0 to J do
assert (t− 1, i, j) ; assert (t− 1, i+ 1, j) ;
assert (t− 1, i− 1, j) ; assert (t− 1, i, j + 1) ;
assert (t− 1, i, j − 1) ; flag (t, i, j)

The precise syntax of expressions and programs is given in Figure 3. Notice
that there is no assignment command x := e, but that a statement like x := e; p
can be simulated by the program for x = e to e do p. Our programs are effect-
free, in the sense that variables are bound to values functionally within loops.
Moreover, our framework is parameterized by a type and evaluation function for
cell expressions.

The operational semantics of our programming language is given by a judg-
ment ρ ` (C1, p) ⇓ C2, where ρ assigns an integer value to every variable, C1 and
C2 are sets of cells, and p is a program. The intended meaning is that, in a state
where the program knows the values of the cells in C1 (and these values only),
and where variables are set according to ρ, the execution of p terminates (with-
out any assertion failing) and the final knowledge of the program is described
by C2.

The semantics is given in Figure 4. There, [[e]]ρ denotes the evaluation of ex-
pression e in environment ρ, when e is an arithmetic, Boolean, or cell expression.
ρ[x← i] denotes the environment obtained by setting x to i ∈ Z in ρ.

Nop:
ρ ` (C,nop) ⇓ C

Seq:
ρ ` (C1, p1) ⇓ C2 ρ ` (C2, p2) ⇓ C3

ρ ` (C1, p1; p2) ⇓ C3

If (1):
[[b]]ρ = > ρ ` (C1, p1) ⇓ C2

ρ ` (C1, if b then p1 else p2) ⇓ C2

If (2):
[[b]]ρ = ⊥ ρ ` (C1, p2) ⇓ C2

ρ ` (C1, if b then p1 else p2) ⇓ C2

Assert:
[[c]]ρ ∈ C ∨ [[c]]ρ /∈ space

ρ ` (C,assert c) ⇓ C
Flag:

ρ ` (C,flag c) ⇓ C ∪ {[[c]]ρ}

For:
∀(Sk).∀(Uk). A = [[a]]ρ B = [[b]]ρ ∀i. Ui = C ∪

⋃
k∈[[A,i]] Sk ∀A ≤ i ≤ B. ρ[x← i] ` (Ui−1, p) ⇓ Ui

ρ ` (C, for v = a to b do p) ⇓ UB

Fig. 4. Operational semantics of programs

Remark 4. As mentioned earlier, assertions check that a cell’s value is known
only if this cell belongs to space. Therefore, in the Jacobi 2D example above,
assert (−1, 0, 0) would not fail.

Remark 5. In the loop rule, Si represents the set of cells computed by the pro-
gram at iteration i, while Ui represents the knowledge of the program since its
execution started, until the beginning of iteration i.

2.3 Verification Conditions and Symbolic Execution

Proving the correctness of a program (at least for requirement 1) amounts to
proving a statement of the form ρ ` (C1, p) ⇓ C2. Can we automate this process?

The key insight here is that our domain-specific language is very simple. It is
not Turing-complete. We take advantage of this fact to simplify the verification
scheme.

We can in fact perform some symbolic execution of programs. For an environ-
ment ρ and a program p, we define a set Shapeρ(p) that intuitively corresponds
to the knowledge that the program will acquire after its execution if it does not
fail. The rules defining Shapeρ(p) are purely syntactic and given in Figure 5.

Shapeρ(nop) := ∅, Shapeρ(flag c) := {[[c]]ρ}

Shapeρ(if b then p1 else p2) :=

{
Shapeρ(p1) if [[b]]ρ = >
Shapeρ(p2) otherwise

Shapeρ(p1; p2) := Shapeρ(p1) ∪ Shapeρ(p2)

Shapeρ(assert c) := ∅
Shapeρ(for x = a to b do p) :=

⋃
k∈[[A,B]] Shapeρ[x←k](p), A = [[a]]ρ, B = [[b]]ρ

Fig. 5. Symbolic execution of programs

Note that Shapeρ(p) will also allow us to prove requirement 2 from the cor-
rectness statement: the latter can be reformulated as target ⊆ Shapeρ(p). To
be more precise, let us now formalize the notion of correctness for sequential
stencil algorithms.

Definition 2. Consider a stencil (space, target, dep). For every cell c, let fire c ≡
assert d1; . . . ; assert dn; flag c, where dep(c) = {d1, . . . , dn}. Here and after, it
is assumed that the user uses exclusively the fire c command, and not flag c.

Let ρ0 denote an empty environment. A program p is correct with respect to
the aforementioned stencil if ρ0 ` (∅, p) ⇓ Shapeρ0(p) and Shapeρ0(p) ⊆ target.

Now that we have a means to symbolically evaluate programs, we can write
our verification-condition generator. The symbolic-execution step is very impor-
tant, since it allows us to synthesize loop invariants, without the need for any
human intervention. The verification-condition generator is defined in Figure 6.

Theorem 1 proves the correctness of the verification-condition generator.

Theorem 1. Let p be a program, ρ an environment, and C a set of cells. If
VCρ,C(p) holds, then ρ ` (C, p) ⇓ (C ∪ Shapeρ(p)).

VCρ,C(nop) := >, VCρ,C(flag c) := >

VCρ,C(if b then p1 else p2) :=

{
VCρ,C(p1) if [[b]]ρ = >
VCρ,C(p2) otherwise

VCρ,C(p1; p2) := VCρ,C(p1) ∧VC
ρ,C∪Shapeρ(p1)

(p2)

VCρ,C(assert c) := [[c]]ρ ∈ C ∨ [[c]]ρ 6∈ space

VCρ,C(for x = a to b do p) := ∀A ≤ i ≤ B. VCρ[x←i],D(p)

A = [[a]]ρ, B = [[b]]ρ, D = C ∪ Shapeρ(for x = a to i− 1 do p)

Fig. 6. Verification-condition generator

3 Verifying Distributed Stencil Algorithms

We now turn to the problem of verifying distributed stencil algorithms. We will
start with an informal description of our programming model.

3.1 Reduction to the Sequential Case

Stencil problems are inherently regular. Therefore, they are susceptible to sub-
stantial parallelization. More importantly, distributed stencil code is in gen-
eral synchronous. The program alternates between computation steps, where
each thread computes some cell values, and communication steps, during which
threads send some of these values to other threads. Figure 7 gives a graphical
representation of such an algorithm’s execution, with three threads. Each of the
three threads is assigned a strip in the plane, depicted by the dark dashed line.
There is:

– A computation step, where each thread computes a “triangle”;
– A communication step, during which each thread sends the edges of its “tri-

angle” to its left and right neighbors;
– Another computation step, where each thread computes two “trapezoids.”

We will use the phrase time step to refer to the combination of one computation
step and one communication step. Our model, inspired by that of Xu et. al [21],
also shares similarities with the Bulk-Synchronous Parallel (BSP) model [20].

Let us write a pseudo-code implementation of this simple algorithm, to give
a flavor of what our formalization will eventually look like.

Computation step Communication step
i f T=0 then

for t=0 to 3 do
for i = t to 7− t do

fire (8× id + i, t)
else (∗ T=1 ∗)

for t=1 to 3 do
for i = −t to t− 1 do

fire (8× id + i, t)
for i = −t to t− 1 do

fire (8× id + 8 + i, t)

i f T=0 then
i f to = id− 1 then

for t=0 to 3 do
fire (8× id + t, t)

else i f to = id + 1 then
for t=0 to 3 do

fire (8× id + 4 + t, 3− t)

Fig. 7. Example of two computation steps (green) and one communication step (red)

On the left is the “computation kernel.” Notice that every thread can access
its unique identifier through the variable “id” and the current time step through
variable “T”. We also implicitly assume that “fire” commands involving a cell
that is out of the rectangle depicted in Figure 7 have no effect. This is why we
included space in our definition of stencils. The communication step is given
on the right. This time, besides the variables “id” and “T”, every thread has
access to the variable “to”, which contains the unique identifier of the thread
it is currently sending data to. Now “fire” corresponds to sending a cell’s local
value to a neighbor thread.

For the reader familiar with verification of more complicated distributed code,
we would like to emphasize that there is no data race here: threads have their
own separate memories, and communication between threads only happens via
message passing followed by barriers waiting for all threads to receive all mes-
sages sent to them. As a result, it does not make sense to talk about different
threads racing on reads or writes to grid cells.

3.2 Distributed Kernels: Syntax, Semantics, and Correctness

The syntax of distributed code is given in Figure 8. We use the same syntax
for both computation steps (in which case fire c means “compute the value
of cell c”) and for communication steps (in which case fire c means “send the
value of cell c to the thread we are currently communicating with”). More for-
mally, we give two different translations to the programs defined in Figure 8.
The first one, Comp.denote, compiles fire c into the “fire” command of Defini-
tion 2, which checks that all dependencies of c are satisfied. The second semantics,
Comm.denote, simply compiles it into a flag c command, without checking any

p ::= nop | p; p | fire c | if b then p else p | for v = e to e do p

Fig. 8. Syntax of distributed code

F ∈ {fire ,flag }
denoteF (nop) := nop, denoteF (fire c) := F (c)

denoteF (if b then p1 else p2) := if b then denoteF (p1) else denoteF (p2)

denoteF (p1; p2) := denoteF (p1); denoteF (p2)

denoteF (for x = a to b do p) := for x = a to b do denoteF (p)

Comp.denote(p) := denotefire (p), Comm.denote(p) := denoteflag (p)

Fig. 9. Translation of distributed code. The arguments are distributed programs, but
the values returned by denote are sequential programs.

dependencies. This trick allows us to factor computation and communication
steps into the same framework: a distributed kernel is a pair of sequential codes,
one for each step. The translation is formally given in Figure 9.

Now that we are equipped with a language describing distributed stencil
kernels and the associated semantics, we can formalize the correctness of such
algorithms. A few intuitive comments are given right below the definitions, and
the reader might find them useful in order to interpret our formalization.

Definition 3. Suppose we fix a number idmax, such that threads are indexed
over [[0, idmax]], and let us fix a maximum execution time Tmax.

A trace is a triple (beforeComp, afterComp, sends), where beforeComp and
afterComp have type time × thread → set cell and sends has type time ×
thread× thread→ set cell.

A distributed kernel is a pair (comp, comm) of distributed codes. It is correct
if there exists a trace satisfying the following properties:

– Initially, nothing is known:

∀0 ≤ i ≤ idmax. beforeComp(0, i) = ∅;

– We go from beforeComp(T, i) to afterComp(T, i) through a computation
step: ∀0 ≤ i ≤ idmax. ∀0 ≤ T ≤ Tmax.

ρ0[“id”← i, “T”← T] ` (beforeComp(T, i),Comp.denote(comp)) ⇓ afterComp(T, i);

– sends(T, i, j) represents what is sent by thread i to thread j at step T :
∀0 ≤ i, j ≤ idmax. ∀0 ≤ T ≤ Tmax.

ρ0[“id”← i, “to”← j, “T”← T] ` (∅,Comm.denote(comm)) ⇓ sends(T, i, j);
– A thread cannot send a value it does not know:

∀0 ≤ i, j ≤ idmax. ∀0 ≤ T ≤ Tmax. sends(T, i, j) ⊆ afterComp(T, i);

– “Conservation of knowledge”: what a thread knows at time T +1 comes from
what it knew at time T and what other threads sent to it:

∀0 ≤ i ≤ idmax. ∀0 ≤ T ≤ Tmax.

beforeComp(T + 1, i) ⊆ afterComp(T, i) ∪
⋃

j∈[[0,idmax]]

sends(T, j, i);

– Completeness: when we reach time step Tmax + 1, all the required values
have been computed:

target ⊆
⋃

i∈[[0,idmax]]

beforeComp(Tmax + 1, i).

Remark 6. beforeComp(T, i) represents the set of cells whose values are known

by thread i at the beginning of the T th time step. Similarly, afterComp(T, i)
represents the knowledge of thread i right after the computation step of time
step T . Finally, sends(T, i, j) represents the set of cells whose values are sent
from thread i to thread j at the end of time step T .

3.3 Trace Generation

The definition of correctness involves proving a lot of different properties. Nev-
ertheless, we will now show how the tools developed in the previous section, the
symbolic-execution engine and the verification-condition generator, can be used
to support mostly automated verification. In particular, we will synthesize the
trace that the program would follow if it does not fail. The trace generator is
given in Figure 10.

[sends](k, idmax, T, i, j) := Shapeρ0[“id”←i,“to”←j,“T”←T](Comm.denote(k))

[computes](k, idmax, T, i) := Shapeρ0[“id”←i,“T”←T](Comp.denote(k))

[beforeComp](k, idmax, T, i) :=
⋃

t∈[[0,T−1]]

[computes](k, idmax, t, i) ∪
⋃

t∈[[0,T−1]]

j∈[[0,idmax]]

[sends](k, idmax, t, j, i)

[afterComp](k, idmax, T, i) :=
⋃

t∈[[0,T]]

[computes](k, idmax, t, i) ∪
⋃

t∈[[0,T−1]]

j∈[[0,idmax]]

[sends](k, idmax, t, j, i)

Fig. 10. Trace generator

Of course, the trace generator would be useless without a proof of its correct-
ness. Theorem 2 is the key result of this paper: it shows that, thanks to the trace
generator, verification of distributed kernels boils down to verifying two sequen-
tial programs, proving a law of “conservation of knowledge” and a set inclusion
that encodes completeness.

Theorem 2. Let k = (comp, comm) be a kernel. If the following conditions hold:

– ∀0 ≤ i ≤ idmax. ∀0 ≤ T ≤ Tmax. VCρi,T ,D(Comp.denote(comp)), where
ρi,T = ρ0[“id”← i, “T”← T] and D = [beforeComp](k, idmax, T, i);

– ∀0 ≤ i, j ≤ idmax. ∀0 ≤ T ≤ Tmax. VCρi,j,T ,∅(Comm.denote(comm)), where
ρi,j,T = ρ0[“id”← i, “to”← j, “T”← T];

– ∀0 ≤ id, to ≤ idmax. ∀0 ≤ T ≤ Tmax. [sends](k, idmax, T, id, to) ⊆
[afterComp](k, idmax, T, id);

– target ⊆
⋃

i∈[[0,idmax]]

[beforeComp](k, idmax, Tmax + 1, i).

Then, k is correct, with trace

([beforeComp](k, idmax), [afterComp](k, idmax), [sends](k, idmax)) .

Notice that we get very close here to the way a human being would write the
proof of correctness: we have to prove that the dependencies are satisfied at any
point, and the current state of the program is synthesized for us. Then, we need
to prove that the final set of values contains all those that had to be computed.

4 Implementation and Experimental Results

The framework described in this paper has been implemented in Coq. In this
section, we show how our library can be used to prove a very simple stencil
algorithm for the two-dimensional Jacobi stencil introduced in Figure 1, and
whose Coq definition is given in Figure 2.

4.1 A Simple Example

Let us come back to our straightforward sequential program:

Definition naive_st :=
(For "t" From 0 To T Do

For "i" From 0 To I Do

For "j" From 0 To J Do

Fire ("t":aexpr, "i":aexpr, "j":aexpr))%prog.

Let us start by stating the correctness of this algorithm:

Fact naive_st_correct : correct naive_st.
Proof.
split.

We obtain two subgoals. The first corresponds to the verification conditions
and can be simplified by using the symbolic-execution engine. We then clean up
the goal.

∗ decide i=0; [bruteforce | bruteforce’ [i-1; i0; i1]].

The case i = 0 is special and deserves special treatment. Both cases are
handled by our automation. The bruteforce tactic discharges the first subgoal,
while its sister, bruteforce’, which takes as argument a list of candidates for
existential-variable instantiation, discharges the second one.

The four other subgoals are handled similarly.

∗ decide i=0; [bruteforce |].
decide i0=0; [bruteforce | bruteforce’ [i-1; i0-1; i1]].
∗ decide i=0; [bruteforce |].
decide i0=I; [bruteforce | bruteforce’ [i-1; i0+1; i1]].
∗ decide i=0; [bruteforce |].
decide i1=0; [bruteforce | bruteforce’ [i-1; i0; i1-1]].
∗ decide i=0; [bruteforce |].
decide i1=J; [bruteforce | bruteforce’ [i-1; i0; i1+1]].

Although syntactically different, the computer-checked proof is very similar
to the one a human being would write: case analysis to tackle boundaries, and
the remaining proofs are “easy.”

The second part of the proof of correctness is completeness:

Shapeρ0(naive_st) ⊆ target,

which is easily discharged by our automation, this time with the forward tactic.
Contrary to bruteforce, the latter tries to “make progress” on the goal, without
failing if it cannot discharge it completely.

- unfold target; simpl; simplify sets with ceval.
forward. subst; forward. simpl; forward.

Qed.

4.2 Automation: Sets and Nonlinear Arithmetic

In this section, we describe the different tactics that we designed to reduce the
cost of verifying stencil code.

Sets are represented as predicates: given a universe U , a set has type U −→
Prop. The empty set is ∅ : u 7→ ⊥, while for example the union of two sets A and
B is defined as A ∪ B : u 7→ A(u) ∨ B(u). These definitions are here to give an
experience to the user as close as possible to a handwritten proof, and they are
automatically unfolded and simplified though first-order reasoning when using
the tactic library. This process is implemented by two tactics, simplify_hyps
and simplify_goal, which respectively clean up the current context and goal.

Programs are Coq terms. Therefore, the symbolic execution and trace synthe-
sis are purely syntactic. We provide a tactic symbolic execution that unfolds
all the required definitions.

This choice brings one inconvenience: their output has to be cleaned up.
Some variables may be inferred automatically thanks to symbolic execution,
which leads to expressions of the form if 0 = 1 then A else B, where A and B
are sets. Or, some of the verification conditions may look like c ∈ ∅∪∅∪∅∪{c},
where c is a given cell. While the first one is pretty harmless, the second one
can reduce the efficiency of automation: to prove that an element belongs to the
union of two sets, we have to try and prove that it belongs to the first one, and
if that fails, that it belongs to the second one. Therefore, we have implemented
a rewriting system that tries to simplify the goal heuristically. For example, we
use the following simplification rules:

A ∪ ∅ = ∅ ∪A = A
⋃
c∈[[a,b]]A× {c} = A× [[a, b]]

Moreover, we proved that set-theoretic operations are “morphisms,” which in
Coq’s jargon means that we can apply the simplification rules to subterms. The
rewriting system is implemented as a tactic called simplify sets.

The goals we obtain are set-theoretic: we usually have to prove that an ele-
ment belongs to a set (e.g., to show that a cell’s value has already been computed)
or that a set is a subset of another one (e.g., what we need at this step was al-
ready known from the previous step). Most of this is first-order reasoning and
is dealt with by the forward tactic, which repeatedly applies simplify_goal,
simplify_hyps, and some first-order reasoning to the goal and context until no
progress is made.

The next obstacles are goals of the following forms: x ∈ A ∪ B and x ∈⋃
t∈[[a,b]]At. We have already mentioned how the first one could be handled, con-

tingent on the number of unions being “not too large.” The second one can be
tackled by taking as input a list of candidate variables, which we use to instan-
tiate unknown parameters like t in the above expression. This more aggressive
automation is implemented as the bruteforce’ tactic, which takes a list of
variables as input. bruteforce is a shortcut for bruteforce’ ∅.

The challenge for full automation in stencil-code verification is that set-
theoretic reasoning has to be followed up by a final arithmetic step. Indeed,
a goal like t ∈ [[a, b]] is equivalent to a ≤ t ≤ b. But most of the time, stencil
code acts on blocks, or subregions within grids, which are parameterized by some
integers. For example, a typical goal might be t ∈ [[N · a, (N + 1) · a − 1]]. This
leads to very nonlinear systems of inequalities. In our experience, most of these
goals can be discharged using Coq’s nia tactic, an (incomplete) proof procedure
for integer nonlinear arithmetic.

Unfortunately, in our experience, nia is somewhat slow to fail, when given
an unprovable goal. This is the main obstruction to a fully automated frame-
work. We built a tactic to accumulate a list of all variables available in the
current context and use it to enumerate expression trees that could be used as
instantiation candidates in goals involving parameterized unions. However, in
practice for interactive proving, we found it unusable with bruteforce due to
the combinatorial explosion, combined with nia’s slowness to fail. It may still
be cost-effective in overnight proof-search runs, for a program that is not likely
to need much further debugging. In that case, we achieve full automation for a
variety of stencil algorithms.

4.3 More Examples

We have implemented a few stencil algorithms and proved their correctness.
They come from different areas, including simulation of a differential equation,
computational finance, and computational biology. Table 1 shows the number of
lines of code needed to prove their correctness. The framework scales well and
allows to prove optimized and optimal algorithms of various kinds.

Examples come in four different groups.

– The two-dimensional Jacobi kernel was introduced at the beginning of this
paper (see Figure 1). We verified a naive sequential algorithm that is often

used as a textbook example for finite-difference methods, applied to the Heat
Equation.

– We verified a cache-oblivious sequential algorithm as well as a communication-
efficient distributed kernel for three-point stencils.

– We also verified a cache-oblivious sequential algorithm and a communication-
efficient distributed kernel for American put stock options pricing. This ex-
ample is interesting since dependencies go backward in time: the price of an
option depends on the price of the underlying asset in the future.

– The Pairwise Sequence Alignment problem is different from the other exam-
ples. It shows that our framework can be used to prove the correctness of
algorithms based on dynamic programming.

Type Lines of Proof

Heat Equation, 2D Naive 30

American Put Stock Options Naive 25

American Put Stock Options Optimized 25

Distributed American Put Stock Options Naive 65

Distributed American Put Stock Options Optimized 150

Pairwise Sequence Alignment
Dynamic

programming
20

Distributed Three-Point Stencil Naive 60

Distributed Three-Point Stencil Optimized 160

Universal Three-Point Stencil Algorithm Optimal 300
Table 1. Stencils implemented using our framework

5 Conclusions and Future Work

In this paper, we have shown how dependencies for both sequential and dis-
tributed stencil algorithms could be formally verified, and how to design automa-
tion to drastically reduce the cost of proving the correctness of such programs.

By focusing on a restricted class of problems and working with a domain-
specific language adapted to this class, we were able to symbolically execute
algorithms, which allowed us to synthesize program states, therefore avoiding
the need to manually write any kind of loop invariants. A natural and interest-
ing extension of this work could be to add symbolic tracking of cache-relevant
behavior.

We also showed how to verify distributed stencil algorithms. Here, the key
result is that verifying synchronous algorithms, when their program states can
be synthesized, actually boils down to the verification of several sequential pro-
grams. An interesting extension to this work would be to design an extraction
mechanism able to translate our DSL into MPI code or conversely, to get a
program in our DSL from MPI code.

Acknowledgments. This work was supported in part by the U.S. Department
of Energy, Office of Science, Advanced Scientific Computing Research Program,
under Award Number DE-SC0008923; and by National Science Foundation grant
CCF-1253229. We also thank Shoaib Kamil for feedback on this paper.

References

1. Betts, A., Chong, N., Donaldson, A., Qadeer, S., Thomson, P.: GPUVerify: a ver-
ifier for GPU kernels. In: Proc. OOPSLA. pp. 113–132. ACM (2012)

2. Boldo, S., Clément, F., Filliâtre, J.C., Mayero, M., Melquiond, G., Weis, P.: For-
mal proof of a wave equation resolution scheme: the method error. In: Interactive
Theorem Proving, pp. 147–162. Springer (2010)

3. Boldo, S., Clément, F., Filliâtre, J.C., Mayero, M., Melquiond, G., Weis, P.: Wave
equation numerical resolution: a comprehensive mechanized proof of a C program.
Journal of Automated Reasoning 50(4), 423–456 (2013)

4. Epperson, J.F.: An introduction to numerical methods and analysis. John Wiley
& Sons (2014)

5. Feautrier, P.: Automatic parallelization in the polytope model. In: The Data Par-
allel Programming Model, pp. 79–103. Springer (1996)

6. Frigo, M., Strumpen, V.: Cache oblivious stencil computations. In: Proc. Super-
computing. pp. 361–366. ACM (2005)

7. Frigo, M., Strumpen, V.: The cache complexity of multithreaded cache oblivious
algorithms. Theory of Computing Systems 45(2), 203–233 (2009)

8. Gardner, M.: Mathematical games – The fantastic combinations of John Conway’s
new solitaire game “Life”. Scientific American 223(4), 120–123 (1970)

9. Immler, F., Hölzl, J.: Numerical analysis of ordinary differential equations in Is-
abelle/HOL. In: Interactive Theorem Proving, pp. 377–392. Springer (2012)

10. Kelly, W., Pugh, W.: A unifying framework for iteration reordering transforma-
tions. In: Proc. ICAPP. vol. 1, pp. 153–162. IEEE (1995)

11. LeVeque, R.J.: Finite difference methods for ordinary and partial differential equa-
tions: steady-state and time-dependent problems, vol. 98. SIAM (2007)

12. Li, G., Gopalakrishnan, G.: Scalable SMT-based verification of GPU kernel func-
tions. In: Proc. FSE. pp. 187–196. ACM (2010)

13. Li, G., Li, P., Sawaya, G., Gopalakrishnan, G., Ghosh, I., Rajan, S.P.: GKLEE:
concolic verification and test generation for GPUs. In: PPOPP. pp. 215–224 (2012)

14. Loechner, V.: PolyLib: A library for manipulating parameterized polyhedra
(1999), http://camlunity.ru/swap/Library/Conflux/Techniques%20-%20Code%
20Analysis%20and%20Transformations%20(Polyhedral)/Free%20Libraries/

polylib.ps

15. Maydan, D.E., Hennessy, J.L., Lam, M.S.: Efficient and exact data dependence
analysis. In: Proc. PLDI. pp. 1–14. PLDI ’91, ACM (1991)

16. Orchard, D., Mycroft, A.: Efficient and correct stencil computation via pattern
matching and static typing. arXiv preprint arXiv:1109.0777 (2011)

17. Pugh, W.: The Omega test: a fast and practical integer programming algorithm
for dependence analysis. In: Proc. Supercomputing. pp. 4–13. ACM (1991)

18. Solar-Lezama, A., Arnold, G., Tancau, L., Bodik, R., Saraswat, V., Seshia, S.:
Sketching stencils. In: Proc. PLDI. pp. 167–178. ACM (2007)

19. Tang, Y., Chowdhury, R.A., Kuszmaul, B.C., Luk, C.K., Leiserson, C.E.: The
Pochoir stencil compiler. In: Proc. SPAA. pp. 117–128. ACM (2011)

20. Valiant, L.G.: A bridging model for parallel computation. Communications of the
ACM 33(8), 103–111 (1990)

21. Xu, Z., Kamil, S., Solar-Lezama, A.: MSL: a synthesis enabled language for dis-
tributed implementations. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. pp. 311–322. IEEE
Press (2014)

