
Strict Bidirectional Type Checking ∗

Adam Chlipala
†

Computer Science Division
University of California, Berkeley

adamc@cs.berkeley.edu

Leaf Petersen
‡

Programming Systems Laboratory
Intel Corporation

Leaf.Petersen@intel.com

Robert Harper
Computer Science Department

Carnegie Mellon University

rwh@cs.cmu.edu

Abstract

Completely annotated lambda terms (such as are arrived at via the
straightforward encodings of various types from System F) contain
much redundant type information. Consequently, the completely
annotated forms are almost never used in practice, since partially
annotated forms can be defined which still allow syntax directed
type checking. An additional optimization that is used in some
proof and type systems is to take advantage of the context of occur-
rence of terms to further elide type information using bidirectional
type checking rules. While this technique is generally effective, we
show that there exist bidirectional terms which exhibit asymptotic
increases in the size of their type decorations whensequentialized
into anamed-formcalculus (a common first step in compilation). In
this paper, we introduce a refinement of the bidirectional type sys-
tem based onstrict logic which allows additional type decorations
to be eliminated, and show that it is well-behaved under sequential-
ization.

Categories and Subject Descriptors

D.3.1 [Programming Languages]: Formal Definitions and The-
ory; D.3.3 [Programming Languages]: Language Constructs and
Features; D.3.4 [Programming Languages]: Processors—Com-
pilers

∗This research was supported in part by an NDSEG fellowship, and
in part by the National Science Foundation under grant ITR/SY+SI
0121633: “Language Technology for Trustless Software Dissemi-
nation”.
†This work was done while the author was at Carnegie Mellon Uni-
versity
‡This work was done while the author was at Carnegie Mellon Uni-
versity

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
TLDI’05, January 10, 2005, Long Beach, California, USA.
Copyright 2005 ACM 1-58113-999-3/05/0001 ...$5.00

General Terms

Languages, Theory

Keywords

Strict Logic, Type Theory, Type Inference

1 Introduction

Type systems for statically typed languages are generally defined
for programs which are annotated with a certain amount of type in-
formation so that type checking is asyntax directedprocess. Some
source languages (such as Standard ML, OCaml, and Haskell) per-
mit almost all type information to be elided on the external form,
freeing the programmer from the task of explicitly writing type in-
formation. An explicitly annotated form of a type-free program
is generally reconstructed by the compiler prior to type checking.
This ability to elide type information makes the source code more
concise and compact, at the expense of substantially complicating
the type checking process. For more powerful type systems, full
type reconstruction is not possible, and some work has been done
on finding more limited forms of type reconstruction that are com-
patible with more powerful type systems [5].

Compactness of syntactic representation is of interest in numerous
other contexts as well, such as proof systems and typed compil-
ers. Type preserving compilers such as the TILT and FLINT Stan-
dard ML compilers make use of multipletyped intermediate lan-
guagesin the process of compiling source files to machine code.
Type information in such compilers can used for validation, certifi-
cation, and optimization [4, 3, 8]. A key issue in typed compilation
is controlling the size of the type information on the intermediate
forms, and numerous techniques have been proposed for address-
ing this [6, 3, 7]. While some approaches rely on meta-level rep-
resentation techniques such as hash-consing, other approaches take
advantage of careful design of the object language to eliminate re-
dundant information and to express sharing internally to the calcu-
lus. Because of the complexity of full type reconstruction (and its
impossibility in more general type systems) full type reconstruction
is generally not used in these languages.

In this paper we examine a type system based on strict logic which
takes advantage of contextual type information while still permit-
ting syntax-directed type checking. The most basic notion of a
program considered is one in which terms are fully annotated with
types wherever necessary for simple syntax-directed type check-
ing. A well-known approach to making the syntax more compact
involves using abidirectional type system, in which terms are di-



vided intosynthesis terms, for which unique types may be deter-
mined “synthetically;” andanalysis terms, which may be verified
“analytically” to have particular types. Such type systems enjoy the
simplicity of syntax-directed type checking while still successfully
eliminating much unnecessary type information.

A first cut at a type system for a compiler intermediate language
based on this idea causes the type annotation size benefits of a bidi-
rectional type system to be lost. For the purposes of optimization
it is important that the intermediate language maintain programs in
a sequentialized form in which all intermediate computations are
bound to variables [1]. This structured form is important for opti-
mization and code generation. In the process, however, new type
annotations are generated when one complex expression is broken
into many simple expressions in the process of sequentialization.
These new expressions are assigned to temporary variables in linear
order, away from the context that allowed inference of their types
in the source code.

The local inference properties provided by bidirectional type check-
ing are lost when terms are broken apart by sequentialization. In the
remainder of this paper, we suggest a solution to this problem based
on strict logic. In order to explore these ideas with the minimum
of syntactic overhead, we phrase this exposition entirely in terms of
the simply typed lambda calculus. We do so with the full aware-
ness that there are simpler techniques for dealing with the type size
problem in this domain. As we discuss further in section 3.3, the
intention is to use this simple setting to develop a framework which
generalizes to deal with terms which do not admit simple ad-hoc
solutions, and which also generalizes to incorporate higher-order
types.

2 Base Language

We begin by defining the fully annotated simply typed lambda cal-
culus [2].

Types: τ,σ ::= b | τ→ σ
Variables: x,y,z

Terms: e ::= x | λτ1,τ2x.e | e1@τ1,τ2e2
Contexts: Γ ::= · | Γ,x : τ

In this simple language, we can define a derived let form aslet x :
τ2 = e1 in (e2 : τ1) with (λτ2,τ1x.e2)@τ2,τ1e1, where· ` e1:τ2 and
x : τ2 ` e2:τ1.

2.1 Typing Judgments

Γ(x) = τ
Γ ` x:τ Var

Γ,x : τ1 `M:τ2

Γ ` λτ1,τ2x.M:τ1→ τ2
Lambda

Γ `M1:τ1→ τ2 Γ `M2:τ1

Γ `M1@τ1,τ2M2:τ2
App

3 Bidirectional Language

It is well-known that with a slightly different formulation of lan-
guage and judgments, it is possible to elide most type annotations.

We extend the language to support two different modes of typing
judgment:Γ ` e⇑ τ means that the typeτ is synthesized as “output”
from the terme in contextΓ. Γ ` a ⇓ τ means that the terme may

be verified to have the typeτ (thought of as “input”) in contextΓ.
This motivates the addition of some new terms and the division of
terms into synthesis and analysis forms as follows:

Synthesis Terms: ms ::= x |ms(ma) | [ma:τ]
Analysis Terms: ma ::= ms | λx.ma

Expressions: e ::= ms |ma

3.1 Typing Judgments

Γ `ms ⇑ τ
Γ `ms ⇓ τ

Sy
Γ `ma ⇓ τ

Γ ` [ma:τ] ⇑ τ An
Γ(x) = τ
Γ ` x⇑ τ Var

Γ,x : τ `ma ⇓ σ
Γ ` λx.ma ⇓ τ→ σ Lambda

Γ `ms ⇑ τ→ σ Γ `ma ⇓ τ
Γ `ms(ma) ⇑ σ

App

The principal advantage of this type system over other systems can
be seen clearly in the case of nested functions. For example, con-
sider the standard termλτ,σ→τx.λσ,τy.x occurring in a context such
that its type is uniquely fixed by the surrounding terms. In this
case, the context of occurrence defines the type of the function
completely, and hence the type decorations on the functions are
completely redundant. In the bidirectional system, we can elide
all of this information entirely. This can be seen in the following
typing derivation which shows the analysis of the function at its
contextually-provided type:

Γ,x : τ,y : σ ` x⇑ τ Var

Γ,x : τ,y : σ ` x⇓ τ
Sy

Γ,x : τ ` λy.x⇓ σ→ τ Lambda

Γ ` λx.λy.x⇓ τ→ σ→ τ Lambda

While the bidirectional system presented here is quite simple, bidi-
rectional type checking extends easily to handle higher-order poly-
morphism and other advanced language features [5].

3.2 Type annotation size benefits

The bidirectional language allows us to express terms from the base
language with asymptotically less type annotation. To formalize
this, we define a family of functions that map terms, expressions,
and types to measures of the amounts of type information they con-
tain.

Sizet (b) := 1

Sizet (τ→ σ) := 1+Sizet (τ)+Sizet (σ)

Sizee (x) := 0

Sizee (λτ1,τ2x.e) := 1+Sizet (τ1)+Sizet (τ2)+Sizee (e)
Sizee (e1@τ1,τ2e2) := 1+Sizet (τ1)+Sizet (τ2)+Sizee (e1)

+Sizee (e2)

Sizes (x) := 0



Sizes ([ma:τ]) := Sizea (ma)+Sizet (τ)
Sizes (ms(ma)) := Sizes (ms)+Sizea (ma)

Sizea (ms) := Sizes (ms)
Sizea (λx.ma) := Sizea (ma)

The extra “1” terms in the cases for fully annotated function ab-
stractions and applications treat these terms as if they had implicit
arrows. This makes the definitions satisfy intuitive properties such
as thatλτ1,τ2x.e and [λx.e:τ1→ τ2] should have the same type an-
notation size.

In the last section, we showed a small example of a term that we can
type check more efficiently with the bidirectional system using con-
textual information. In fact, the bidirectional language permits rep-
resentations that contain asymptotically less type information than
the fully annotated term. To demonstrate this, we begin by defining
an indexed family of terms for which the size of the type annotation
grows quadratically in the index.

Let 1 be a base type and∗ a variable bound to a value of type 1, and
let τ be some unspecified type. Define:

τ0 := 1

τi+1 := τ→ τi

k0 := ∗
ki+1 := λτ,τi xi .k

i

k0
B := ∗

ki+1
B := λxi .k

i
B

τi is a function type withi levels of nesting.ki denotes a curried
function that returns∗ for any values of itsi parameters of typeτ.
ki

B is the bidirectional analysis term equivalent ofki . For example,
k2

B = λx1.λx2.∗ andτ2 = τ→ (τ→ 1).

If we always analyzeki
B at τi , we save significant type annotation

size overki , with Sizee
(
ki
)

= Θ(i2) and Sizes
(
[ki

B : τi ]
)

= Θ(i).
We can explain the reason for this succinctly: in the standard terms,
every function parameter’s type is replicated for every function ab-
straction up to the abstraction that binds it. It should be clear that
using the bidirectional system leads to similar savings with many
other terms, and that a bidirectional term need never havemoretype
annotation than its fully-annotated counterpart.

3.3 A half-annotated form

The fully annotated language we use as a baseline for comparison
is almost never used in practice. Thinking of the typing judgment
as producing the types as outputs and taking the rest of its places
as inputs, it is clear from the rules in section 2 that the only type
annotation that is necessary to allow syntax-directed checking with
those rules is the parameter type for a lambda abstraction. Terms of
the fully annotated language can be viewed as targets of a simple
type reconstruction algorithm operating on terms in other forms.

This relaxation of annotations admits a particularly obvious method
of regaining all of the needed types, and so it is usually taken as a
starting point. Formally, it modifies the set of terms to be:

Terms: e ::= x | λx:τ.e | e1 (e2)

This technique of annotating terms with only their incremental con-
tribution to the overall type of the term is also commonly used for
injections into sum types, which in their fully annotated form ex-
hibit the same bad behavior as the fully annotated lambda terms.
This is not possible for all terms, however. A simple example of
this can be seen with recursive functions. The half-annotation ap-
proach relies on the ability to synthesize a type from the body of the
lambda: in the case that the body may contain recursive references,
this synthesis is not possible without knowing the full type of the
function (or without doing more complicated unification based type
reconstruction). For this reason, recursive functions are generally
written using a fully annotated form.

A more subtle example of this arises in the case of operations on
recursive types. Consider as an example the following nested re-
cursive type.

µ(α).(α +µ(β).(β +µ(γ).(γ +1)))

Consider also a term of this type (ignoring for the time being the
type annotations on the sum injections):

fold[µ(α).(α +µ(β).(β +µ(γ).(γ +1)))]
inr fold [µ(β).(β +µ(γ).(γ +1))]

inr fold [µ(γ).(γ +1)]
inr ∗

This example clearly exhibits exactly the same quadratic behavior
seen in the previous section in the context of curried lambda terms.
Unlike lambda terms, however, there is no incremental approach to
marking the type annotations on fold operations that might alleviate
the problem. The problem only gets worse when we add in the
annotations on the sum injections.

fold[µ(α).(α +µ(β).(β +µ(γ).(γ +1)))]
inr [µ(α).(α +µ(β).(β +µ(γ).(γ +1)))]

fold[µ(β).(β +µ(γ).(γ +1))]
inr [µ(β).(β +µ(γ).(γ +1))]

fold[µ(γ).(γ +1)]
inr [µ(γ).(γ +1)] ∗

This is the case even when (as here) we use the half-annotated ver-
sion of sum injections, where theinr constructor is decorated only
with the left half of the sum type into which it injects, relying on
synthesis to produce the right half of the sum type from the sub-
term. Compare this term with the bidirectional version, in which
the entire type need be written only once.

[fold inr
fold inr

fold inr ∗ : µ(α).(α +µ(β).(β +µ(γ).(γ +1)))]

The advantage here is clearly substantial. While for expositional
purposes we continue to use lambda terms as a running example,
it should be clear that the ideas presented generalize easily to more
significant problem domains in which the incremental annotation
techniques used for simple lambda terms are not available.



Γ,x : 1` x⇑ 1
Γ,x : 1` x⇓ 1

Γ ` λx.x⇓ 1→ 1

Γ ` [λx.x:1→ 1] ⇑ 1→ 1

Γ,x : 1` x x

Γ,x : 1` x:1 x

Γ ` λx.x:1→ 1 f : 1→ 1 = λx.x; f

Γ ` [λx.x:1→ 1] f : 1→ 1 = λx.x; f
Γ ` ∗ ∗

Γ ` ∗:1 ∗
Γ ` [λx.x:1→ 1] (∗) f : 1→ 1 = λx.x; f (∗)

Figure 1. An example sequentialization

4 The Sequential Language

The sequential language is a subset of the bidirectional language,
with all the same types. Whereas the languages handled so far in-
volve no mutation or other sources of effects, they easily extend to
admit such possibilities. In any case, in practice a compiler gen-
erally must choose some explicit order in which to evaluate terms.
The sequential form of these languages given here can be thought
of as a compiler intermediate language that makes the order of term
evaluation completely explicit.

Synthesis term: Ms ::= x | x(y)
Analysis term: Ma ::= Ms | λx.E

Expression: E ::= x | x = Ms;E
| x : τ = Ma;E

The multiple bindings that are now required are identified with in-
termediate computations. Note that in order to type check such
a term, we must have a type available with which to analyze ev-
ery analysis term (since these terms rely on contextual information,
rather than decorations). This is achieved here by forcing the inclu-
sion of type annotations with bindings of terms whose types cannot
be synthesized.

For example, consider the bidirectional term[λx.x:1→ 1] (∗). An
equivalent sequential term isf : 1→ 1= λx.x; f (∗). We see that the
evaluation of the term has been decomposed into atomic operations.
In this case, we can think of the operations as the allocation of a
closure calledf and the application off to ∗.

4.1 Typing Judgments

Γ `Ms ⇑ τ
Γ `Ms ⇓ τ

Sy
Γ(x) = τ
Γ ` x⇑ τ Var

Γ,x : τ ` E ⇓ σ
Γ ` λx.E ⇓ τ→ σ Lambda

Γ(x) = τ→ σ Γ(y) = τ
Γ ` x(y) ⇑ σ

App

Γ `Ms ⇑ σ Γ,x : σ ` E ⇑ τ
Γ ` x = Ms;E ⇑ τ LetS

Γ `Ma ⇓ σ Γ,x : σ ` E ⇑ τ
Γ ` x : σ = Ma;E ⇑ τ LetA

The typing rules for this language are straightforward. As an ex-
ample, the well-typedness of the example from the previous section

can be derived as follows, assuming thatΓ assigns the type 1 to∗.

Γ,x : 1` x⇑ 1
Var

Γ,x : 1` x⇓ 1
Sy

Γ ` λx.x⇓ 1→ 1
Lam

(Γ, f : 1→ 1)( f ) = 1→ 1
(Γ, f : 1→ 1)(∗) = 1

Γ, f : 1→ 1` f (∗) ⇑ 1
App

Γ ` f : 1→ 1 = λx.x; f (∗) ⇑ 1
LetA

4.2 Sequentialization of the bidirectional lan-
guage

A source term is transformed into a sequential version during com-
pilation. Sequential representations more closely model the struc-
ture of the underlying computation and are important for optimiza-
tion passes and for code generation.

We now specify how the bidirectional language may be translated
to a sequential form. Translation is defined by two injections, one
for translating synthesis terms and one for analysis terms. Relation
Γ `ms E means that in contextΓ synthesis termms translates to
sequential expressionE. RelationΓ `ma:τ E has an analogous
meaning, with the typeτ at which to analyze the termma included.

Here and in other sections, we will overload the semicolon notation.
We useb to denote zero or more bindings of variables, including
both annotated and un-annotated bindings.b;E indicates zero or
more bindings followed by the expressionE. In particular, it may
denoteE alone.

Γ ` x x

Γ,x : σ `ma:τ E

Γ ` λx.ma:σ→ τ z : σ→ τ = λx.E;z

Γ `ms ⇑ σ→ τ Γ `ms b1;x Γ `ma:σ b2;y

Γ `ms(ma) b1;b2;z= x(y) ;z

Γ `ma:τ E

Γ ` [ma:τ] E
Γ `ms E

Γ `ms:τ E

Figure 1 shows a sequentialization derivation for our running ex-
ample.

4.3 Terms that translate poorly to sequential
form

There exist classes of bidirectional terms for which there is an
asymptotically significant increase in the size of required type anno-
tations after sequentialization. To demonstrate this, we first define
type annotation size functions for the analysis terms and expres-
sions of the sequential language. Synthesis terms contain no type
annotations, so there is no need to define a size function for them.



SizeMa
(Ms) := 0

SizeMa
(λx.E) := SizeE (E)

SizeE (x) := 0

SizeE (x = Ms;E) := SizeE (E)
SizeE (x : τ = Ma;E) := Sizet (τ)+SizeMa

(Ma)+SizeE (E)

For analyzing source level languages, cases like theki family dis-
cussed earlier make bidirectional type checking a clear win. How-
ever, when these techniques are applied to sequential forms, most of
the benefits disappear. Consider the sequentialization ofki

B. Defin-
ing y0 = ∗, we have:

· ` k0
B:τ0 ∗

· ` ki
B:τi  Ei

· ` ki+1
B :τi+1 yi+1 : τi+1 = λxi+1.Ei ;yi+1

Thus,k2
B sequentializes atτ2 to:

z1 : τ→ (τ→ 1) = λx1.(z2 : τ→ 1 = λx2.∗;z2);z1

The typing information for the inner function is replicated unnec-
essarily.This pattern adds even more excess annotation forki

B with
higher values ofi. Even though we may analyze the sequential-
ization of ki

B at τi , the type annotation size has returned toΘ(i2).
Inside of nested functions likeki

B, the bidirectional type system re-
lies on context to infer some information. In the sequential form,
this nesting structure has been replaced with a linear form that more
accurately reflects the structure of real computations, forfeiting the
advantages nesting gave us.

5 Strict typing

The problem in the previous section arises from the fact that sequen-
tialization separates terms from their context of use. Since the con-
text of use provides the type at which the term is analyzed, remov-
ing the term from its context of use forces it to be annotated with a
type. Note though that theuseof the term remains unchanged under
sequentialization. While the term is bound to a variable and moved
to a new location, the variable is used in the same context as the
original term. The bidirectional system cannot use this fact because
it takes advantage only of thelocal context of occurrence of a term.
The solution to the sequentialization problem lies in removing this
constraint: designing a type system to take advantage ofnon-local
contexts. So long as a term is bound to a variable which is used in
a context which uniquely defines its type, there is no need to give a
type explicitly for the term, since its type is uniquely defined by its
non-local use.

This idea can be made precise using a typing formulation based
on strict logic. In strict logic, as in linear logic, every hypothesis
must be used: that is, the store of strict hypotheses does not ad-
mit weakening. Unlike linear logic, strict logic permits hypotheses
to be used multiple times: that is, the division of the store of hy-
potheses among the premises of a derivation permits duplication of
hypotheses.

This notion of strict logic gives rise in the natural way to a lambda
calculus with the notion of a strict variable. Strict variables have
the property that they may be used one or more times, but must be
used at least once. Using this property, we can recover the benefits
of bidirectional type checking even when term locality is lost via
sequentialization.

At a high level, we do this by extending the sequential language
with au = Ma;E expression form corresponding to a strict variable
binding. This strict binding form omits the type annotation for the
term, even though the term is an analysis term from which we are
unable to synthesize a type. In this new system, the type at which
to analyze this term will be determined by examining the context
of occurrence of the strict variable. The strictness of the variable
guarantees that there is such an occurrence, and the syntax of the
language ensures that the occurrence will be in an analysis position,
corresponding intuitively to the “original” locality of the term to
which it is bound.

5.1 A strict lambda calculus

Standard variable: x,y,z
Strict variable: u,v,w

Variable: q, r,s ::= x,y,z,u,v,w
Strict synthesis term: Ts ::= x | x(y) | x(u)
Strict analysis term: Ta ::= Ts | u | λx.S

Strict expression: S ::= x | u | x = Ts;S
| x : τ = Ta;S
| u = Ta;S

We formalize this idea as follows. In addition to the usual typing
contextΓ, we include in typing judgments a strict context∆ which
is a finite mapping to types from a set of strict variables. Intuitively,
∆ contains variables which must be analyzed at least once in sub-
judgments in order to provide a type for the term to which they are
bound. In an algorithmic sense, the types in∆ are filled in using the
types at which the variables are analyzed in sub-judgments and are
propagated backwards to the variable binding sites.

We defineΓ;∆ ` Ts ⇑ τ to mean that in typing contextΓ and strict
context∆, the type ofTs may be synthesized asτ. Γ;∆ ` Ta ⇓ τ
means that in typing contextΓ and strict context∆, Ta may be ana-
lyzed to have typeτ. ∆1∪∆2 denotes the mapping from a variablex
to ∆1(x) if x is present in∆1 or to∆2(x) otherwise. The two contexts
joined may not map the same variable to different types.

Γ(x) = τ
Γ; /0 ` x⇑ τ SVar Γ;u : τ ` u⇓ τ SVarS

Γ;∆ ` Ts ⇑ τ
Γ;∆ ` Ts ⇓ τ

SSy

Γ,x : σ;∆ ` S⇓ τ
Γ;∆ ` λx.S⇓ σ→ τ SLambda

Γ(x) = σ→ τ Γ(y) = σ
Γ; /0 ` x(y) ⇑ τ

SApp

Γ(x) = σ→ τ
Γ;u : σ ` x(u) ⇑ τ

SAppS

Γ;∆1 ` Ts ⇑ σ Γ,x : σ;∆2 ` S⇓ τ
Γ;∆1∪∆2 ` x = Ts;S⇓ τ SLetS



Γ;∆1 ` Ta ⇓ σ Γ;∆2,u : σ ` S⇓ τ
Γ;∆1∪∆2 ` u = Ta;S⇓ τ SLetAS

Γ;∆1 ` Ta ⇓ σ Γ,x : σ;∆2 ` S⇓ τ
Γ;∆1∪∆2 ` x : σ = Ta;S⇓ τ SLetA

The key idea behind this system can be seen in the strict variable
typing rule (SVarS). Notice that this rule requires that the strict con-
text (∆) contain only the variable being checked, and nothing else.
Crucially, this implies that there is no implicit weakening for strict
variables in this system – that is, every strict variable must be used
by theSVarSor SAppSrule along at least one branch of the deriva-
tion. Since both of these rules place the strict variable in analy-
sis positions, this corresponds exactly to the requirement that every
strict variable must be used in an analysis position at least once.

The typing rules for the let constructs allow the strict context to be
divided up among sub-terms as necessary via the union operation
on strict contexts. The definition of strict context union (above)
permits variables to be used in multiple sub-terms, but enforces the
property that they must be used at the same type.

As an example, consider a typing derivation for a strict version of
the termk1

B described earlier. Notice how the use of a strict binding
saves us the use of a superfluous type annotation.

Γ,x : 1;· ` ∗ ⇑ 1
SVar

Γ,x : 1;· ` ∗ ⇓ 1
SSy

Γ; · ` λx.∗ ⇓ 1→ 1
SLam Γ; ·,u : 1→ 1` u⇓ 1→ 1

SVarS

Γ; · ` u = λx.∗;u⇓ 1→ 1
SLetAS

It may appear at first that this type system is not very practi-
cal. If we think of it in the same way as previous judgment sys-
tems, it seems as though an algorithm for type checking must non-
deterministically “guess” a type foru, even though the point of this
system is to avoid any need for non-syntax-directed inference. This
is in fact not the case: there is a straightforward algorithm that we
can use to type check strict terms, using only local and composi-
tional analysis. The reason for this lies precisely in the previously
discussed property of the type system: that it forces each strict vari-
able to occur at least once in an analysis context. Formally, this
enforces the property that there is a unique choice for the type at
which a strict variable appears in the strict context. Intuitively, we
may think of the strict context as an output of our algorithm. Type
checking of a strict let binding proceeds by first checking the body
of the let expression. The resulting strict context tells us the unique
type at which the strict variable occurs, which can then be used to
check the term to which the strict variable is bound.

5.2 An algorithm for type checking strict
terms

Theorem

1. For givenΓ andTs, there is at most one∆, τ pair such that
Γ;∆ ` Ts ⇑ τ.

2. For givenΓ, Ta, andτ, there is at most one∆ such thatΓ;∆ `
Ta ⇓ τ.

3. For givenΓ, S, andτ, there is at most one∆ such thatΓ;∆ `
S⇓ τ.

Proof: By simultaneous induction on termsTs andTa and expres-

sionsS:

CaseTa = Ts: The only way to deriveΓ;∆ ` Ts ⇓ τ is by SSy. By
the induction hypothesis, we have that there is at most one∆, τ pair
for which this is true, so∆ is uniquely determined.

CaseTs = x: The only way to deriveΓ;∆ ` x⇑ τ is bySVar, which
requiresτ = Γ(x) and∆ = /0, uniquely determining these values as
required.

CaseTa = u: Γ;∆ ` u ⇓ τ must be derived bySVarS, constraining
∆ to beu : τ.

CaseTa = λx.T ′a: If Γ;∆ ` Ta ⇓ τ, this must have been derived
by SLambda, so τ = τ1 → τ2 and Γ,x : τ1;∆ ` T ′a ⇓ τ2. By the
inductive hypothesis, such a judgment aboutT ′a is possible for
at most one∆. Since any analysis judgment ofTa requires such
a judgment as a premise to a single candidate rule, we have the
required result.

CaseTs = x(y): If Γ;∆ ` x(y) ⇑ τ, SAppmust have been used.
This means that∆ may only be/0, andτ is uniquely determined by
Γ(x).

CaseTs = x(u): If Γ;∆ ` x(u) ⇑ τ, SAppSmust have been used.
This means thatΓ(x) = σ→ τ, uniquely determiningτ, and∆ may
only beu : σ.

CaseS= x = Ts;S′: If Γ;∆ ` S⇓ τ, this must have been derived by
SLetS, soΓ;∆1 ` Ts⇑ σ andΓ,x : σ;∆2 ` S′ ⇓ τ for someσ, ∆1, and
∆2 with ∆ = ∆1∪∆2. By the inductive hypothesis forTs, ∆1 andσ
are uniquely determined, and thus∆2 is as well, by the hypothesis
for S′. This means that∆ is uniquely determined. Any judgment
that analyzesS to have typeτ must useSLetSwith premises of the
sorts described above, so we have the required result.

CaseS= x : σ = T ′a;S′: If Γ;∆ ` S⇓ τ, this must have been derived
by SLetA, so Γ;∆1 ` T ′a ⇓ σ andΓ,x : σ;∆2 ` S′ ⇓ τ for some∆1
and ∆2 with ∆ = ∆1 ∪ ∆2. By the inductive hypotheses forT ′a
andS′, ∆1 and∆2 are uniquely determined. This means that∆ is
uniquely determined. Any judgment that analyzesS to have typeτ
must useSLetAwith premises of the sorts described above, so we
have the required result.

CaseS= u = T ′a;S′: If Γ;∆ ` S⇓ τ, this must have been derived
by SLetAS, so Γ;∆1 ` T ′a ⇓ σ and Γ;∆2,u : σ ` S′ ⇓ τ for some
σ, ∆1, and∆2 with ∆ = ∆1∪∆2. By the inductive hypothesis for
S′, ∆2 andσ are uniquely determined, and thus∆1 is as well, by
the hypothesis forT ′a. This means that∆ is uniquely determined.
Any judgment that analyzesS to have typeτ must useSLetASwith
premises of the sorts described above, so we have the required
result.2

Thus, the strict typing rules describe a deterministic algorithm for
type checking strict terms. The elements of judgments shown to



be uniquely determined are outputs and the rest inputs. The order
in which inductive hypotheses are applied above suggests the order
for checking sub-terms with recursive applications of the algorithm.
As an optimization, the unions of strict contexts found above could
be replaced by incremental modification of a strict context, taking it
as an input to the algorithm and outputting a strengthened version.

5.3 Sequentialization

Now we may define a sequentialization process that produces strict
terms. Whereb is a prefix of a strict expression,x is a regular
variable,τ a type, andu a strict variable,b[x : τ/u] denotesb with
the binding ofu changed to bindx with annotationτ and with later
occurrences ofu changed to occurrences ofx.

The key insight is this: Since we restricted function abstractions to
be analysis terms in the original bidirectional language, we know
that context will always determine their types. Therefore, we can
bind each intermediate function value to a strict variable, eliminat-
ing the need for annotations.

Γ ` x 7→ x

Γ `ms ⇑ σ→ τ Γ `ms 7→ b1;y Γ `ma:σ 7→ b2; r

Γ `ms(ma) 7→ b1;b2;x = y(r);x

Γ `ms 7→ S
Γ `ms:τ 7→ S

Γ,x : σ `ma:τ 7→ S

Γ ` λx.ma:σ→ τ 7→ u = (λx.S);u

Γ `ma:τ 7→ b;x

Γ ` [ma:τ] 7→ b;x

Γ `ma:τ 7→ b;u

Γ ` [ma:τ] 7→ b[x : τ/u];x

It is worth mentioning why the application rule is complete. It re-
quires that a particular synthesis term linearizes to an expression
ending in a standard variable. Though we don’t prove it here, it’s
not hard to see that any synthesis term sequentializes in such a way.

5.4 Translation size benefits

We can now revisit the earlier example of a class of bidirectional
terms with an asymptotically bad type annotation size blowup in
sequentialization. We show how our running example is better han-
dled with this new sequentialization to give an intuitive idea of its
benefits, and we prove a general theorem in the next section.

First, we define a reasonable measure of the size of type annota-
tions on strict analysis terms and expressions. The strict language
is formulated so that these are the only sizes worth defining, since
synthesis terms contain no type annotations.

SizeTa
(λx.S) := SizeS (S)

SizeTa
(Ts) := 0

SizeS (x = Ts;S) := SizeS (S)
SizeS (u = Ta;S) := SizeTa

(Ta)+SizeS (S)
SizeS (x : τ = Ta;S) := SizeTa

(Ta)+Sizet (τ)
+SizeS (S)

With the strict translation, we have:

· ` k0
B:τ0 7→ ∗

· ` ki−1
B :τi−1 7→ Si−1

· ` ki
B:τi 7→ ui = (λxi .Si−1);ui

It is easily verified thatSizeTa

(
Si
)

= Sizea
(
ki

B

)
, with · ` ki

B:τi 7→Si

for every i, in contrast with the asymptotically significant annota-
tion increase with the earlier sequentialization.

5.5 A bound on type annotation size of a se-
quentialization

It is now possible to prove that the benefit observed in the above
case holds for all terms. In particular, sequentializing a base bidi-
rectional term into a strict term will never lead to an increase in type
annotation size.

Combination Lemma: For strict expression prefixes
b1 and b2, variables q and r, and strict expressionS,
SizeS

(
b1;b2;S

)
= SizeS

(
b1;q

)
+SizeS

(
b2; r

)
+SizeS (S).

Proof: By a straightforward induction over the lengths ofb1 and
b2. 2

Theorem:

1. For givenΓ andms, if Γ `ms 7→ S, then

SizeS (S)≤ Sizes (ms)

2. For givenΓ, ma, andτ, if Γ `ma:τ 7→ S, then

SizeS (S)≤ Sizea (ma)

Proof: By induction on the structure of termsms andma:

Casema = ms: For givenΓ, if Γ `ms:τ 7→ S, then it must be that
Γ `ms 7→ S. The induction hypothesis yields the desired result.

Case ms = x: For given Γ, we have Γ ` x 7→ x.
SizeS (x) = 0≤ 0 = Sizes (x).

Casema = ms(m′a): If Γ `ma 7→ S, it must be thatΓ `ms⇑ σ→ τ,
Γ `ms 7→ b1;q, andΓ `m′a:σ 7→ b2; r, with S= b1;b2;x = q(r);x.
By the Combination Lemma:

SizeS (S)
= SizeS

(
b1;q

)
+SizeS

(
b2; r

)
+SizeS (x = q(r);x)

= SizeS
(
b1;q

)
+SizeS

(
b2; r

)
By hypothesis,

SizeS
(
b1;q

)
≤ Sizes (ms)

and

SizeS
(
b2; r

)
≤ Sizea

(
m′a
)

By definition,

Sizes (ma) = Sizes (ms)+Sizea
(
m′a
)



Therefore,

SizeS (S)
= SizeS

(
b1;q

)
+SizeS

(
b2; r

)
≤ Sizes (ms)+Sizea (m′a) = Sizes (ma)

Which is the needed result.

Case ma = λx.m′a: If Γ ` ma:σ → τ 7→ S, it must be that
Γ,x : σ ` m′a:τ 7→ S′ and S = u = (λx.S′);u. By definition,
SizeS (S) = SizeS (S′) andSizea (ma) = Sizea (m′a). By hypothesis,
SizeS (S′)≤ Sizea (m′a). Thus,SizeS (S)≤ Sizea (ma).

Casema = [m′a:τ]: If Γ ` ma 7→ S, it must be thatΓ ` m′a:τ 7→ S′,
whereS′ = b;q.

If q is some normal variablex, thenS= b;x. This makesSizeS (S) =
SizeS (S′). By hypothesis,SizeS (S′)≤ Sizea (m′a). Therefore, since
Sizea (ma) = Sizea (m′a)+Sizet (τ), we have the neededSizeS (S)≤
Sizes (ma).

Otherwise,q is some strict variableu, andS= b[x : τ/u];x for a new
x. This meansSizeS (S) = SizeS (S′) + Sizet (τ). Using the hypoth-
esisSizeS (S′) ≤ Sizea (m′a) again withSizea (ma) = Sizea (m′a) +
Sizet (τ), we have the neededSizeS (S)≤ Sizes (ma). 2

6 Conclusion

We have shown that there exist transformations on programs under
which the folklore technique of bidirectional type checking behaves
poorly, and shown that with some additional mechanism it is possi-
ble to recover the original asymptotic behavior in a relatively sim-
ple type system requiring no unification. The strict type system and
language presented here provide a compact format for expressing
intermediate forms of source level programs. It is straightforward
to translate terms in a language with a standard bidirectional type
system into strict terms without inflating the amount of space used
to store type annotations.

In addition to the function types used as an expository example
here, the strict bidirectional system extends easily to handle poly-
morphism, dependent function types, recursive types, recursive
functions, and any other construct that can be handled with a normal
bidirectional type system [5]. The reason for this extensibility can
be understood by observing that bidirectional type checking sim-
ply provides a framework for eliminating redundant information in
terms, without regard to the particular nature of the terms or their
types. The strict variant of the bidirectional system then provides
a mechanism for using information from non-local contexts within
the bidirectional framework.

The original motivation for the study of this type system arose out
of the need for more compact representations in the TILT inter-
nal language, and we believe that the use of strict typing can be
useful in this and other similar contexts. We also believe that it
may be interesting to consider uses of strict typing in language de-
sign. Pierce and Turner [5] studied a number of such partial type
reconstruction techniques, including the bidirectional system that
provides our starting point. Strict bidirectional typing extends this
work naturally to allow bidirectional local type inference to take
advantage of non-local uses of term bindings.

7 References

[1] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias
Felleisen. The essence of compiling with continuations. In
Proceedings of the ACM SIGPLAN 1993 conference on Pro-
gramming language design and implementation, pages 237–
247. ACM Press, 1993.

[2] Jean-Yves Girard, Paul Taylor, and Yves Lafont.Proofs and
types. Cambridge University Press, 1989.

[3] Greg Morrisett, David Walker, Karl Crary, and Neal Glew.
From System F to typed assembly language. InTwenty-Fifth
ACM Symposium on Principles of Programming Languages,
pages 85–97, San Diego, January 1998. Extended version pub-
lished as Cornell University technical report TR97-1651.

[4] George C. Necula and Peter Lee. The design and implemen-
tation of a certifying compiler. In Keith D. Cooper, editor,
Proceedings of the Conference on Programming Language De-
sign and Implementation (PLDI’98), pages 333–344, Montreal,
Canada, June 1998. ACM Press.

[5] Benjamin C. Pierce and David N. Turner. Local type infer-
ence. InConference Record of POPL 98: The 25TH ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, San Diego, California, pages 252–265, New York,
NY, 1998.

[6] Zhong Shao. An overview of the FLINT/ML compiler. In1997
Workshop on Types in Compilation, Amsterdam, June 1997.
ACM SIGPLAN. Published as Boston College Computer Sci-
ence Department Technical Report BCCS-97-03.

[7] Christopher A. Stone and Robert Harper. Deciding Type Equiv-
alence in a Language with Singleton Kinds. Technical Report
CMU-CS-99-155, Department of Computer Science, Carnegie
Mellon University, 1999.

[8] David Tarditi, Greg Morrisett, Perry Cheng, Chris Stone,
Robert Harper, and Peter Lee. TIL: A type-directed optimizing
compiler for ML. InACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 181–192,
Philadelphia, PA, May 1996.


