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Abstract

Authors of cryptographic software are well aware that their code

should not leak secrets through its timing behavior, and, until 2018,

they believed that following industry-standard constant-time coding

guidelines was sufficient. However, the revelation of the Spectre

family of speculative execution attacks injected new complexities.

To block speculative attacks, prior work has proposed annotating

the program’s source code to mark secret data, with hardware

using this information to decide when to speculate (i.e., when only

public values are involved) or not (when secrets are in play). While

these solutions are able to track secret information stored on the

heap, they suffer from limitations that prevent them from correctly

tracking secrets on the stack, at a cost in performance.

This paper introduces SecSep, a transformation framework that

rewrites assembly programs so that they partition secret and pub-

lic data on the stack. By moving from the source-code level to

assembly rewriting, SecSep is able to address limitations of prior

work. The key challenge in performing this assembly rewriting

stems from the loss of semantic information through the lengthy

compilation process. The key innovation of our methodology is a

new variant of typed assembly language (TAL), Octal, which al-

lows us to address this challenge. Assembly rewriting is driven by

compile-time inference within Octal. We apply our technique to

cryptographic programs and demonstrate that it enables secure

speculation efficiently, incurring a low average overhead of 1.2%.

CCS Concepts

• Security and privacy → Side-channel analysis and counter-

measures; • Theory of computation → Type structures.
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1 Introduction

Cryptographic software has strong security requirements and is

often strengthened to prevent information leakage through timing

side channels by adhering to constant-time coding, which forbids

secret-dependent values as branch conditions or memory addresses.

However, recent speculative-execution attacks, notably various

Spectre attacks [34–36, 39, 51], have invalidated the security guar-

antees offered by constant-time programming. Modern processors

employ aggressive speculative-execution mechanisms that predict

upcoming instructions to be executed and roll back architectural

state if the prediction is later found to be incorrect. While offer-

ing significant performance benefits, such speculative-execution

mechanisms introduce a large attack surface, enabling attackers to

trigger a program to execute unintended instructions speculatively

to access secrets and transmit them via timing side channels.

Recent work [9, 13] has uncoveredmultiple vulnerabilities in real-

world cryptographic libraries even under constrained speculative-

execution models, such as only mispredicting limited types of

branches. As modern processors evolve with ever-more-complex

speculation mechanisms, we need mitigation solutions that pro-

tect broader speculative behaviors. Practical mitigation needs to

navigate the complex trade-offs between security guarantees, per-

formance overhead, and hardware complexity.

Many mitigation solutions [17, 19, 50, 58, 60, 65] share a common

philosophy: identify secret data and then delay speculative execu-

tion for operations that may transmit such data. The key research

challenge in these approaches lies in how to identify the secret

data precisely without incurring high overhead. One promising
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design [19] is to augment the hardware with fine-grained taint

tracking at the register level and coarse-grained taint tracking at

the memory level (e.g., at page or section granularity). This archi-

tecture avoids the prohibitive costs of byte- or word-level tracking

while retaining sufficient granularity to enforce secure speculation.

However, this hardware design requires the software to parti-

tion secret and public data into distinct memory regions explicitly,

so that the hardware can interpret the secrecy status of the data

accurately using its coarse-grained taint-tracking capability. Per-

formance and security of the hardware design are contingent on

precise annotation of secret data. Prior projects, ProSpeCT [19]

and ConTExT [50], set out to add this partitioning capability to

software through requiring fine-grained source-code annotations.

Specifically, these methods require programmers to mark variables

in the source code (e.g., C) as either secret or public. This informa-

tion is then used as follows: For heap data, a customized memory

allocator allocates secret and public objects in different memory

pools. Stack data is protected by annotating secret and public stack

variables manually to relocate them to different regions.

These source-level approaches work well for heap data but less

so for the stack. Critically, they are unable to partition the stack ac-

curately, requiring conservative partitioning and thereby suffering

from performance loss. These limitations are inherent to source-

level annotation methodologies. First, operating at the source level

gives no visibility or control over register spills. Consequently, if

a secret register is spilled to the stack, the programmer is forced

to mark the whole stack as secret conservatively, leading to over-

tainting and unnecessary performance overhead. Second, some

approaches relocate stack variables into global memory regions,

which may compromise functional correctness under concurrency.

Most importantly, source-level transformations heavily rely on

strong assumptions about compiler internals. However, given the

complexity and opaqueness ofmodern compilers, source-level trans-

formation suffers from a significantly enlarged trusted computing

base (TCB) and fragile compilation process that is difficult to verify.

1.1 This Paper

In this paper, we introduce SecSep, an assembly-transformation

framework that partitions stack data securely.

We allow key information (usually lost during compilation) to be

reintroduced in code through a new variant of typed assembly lan-

guage (TAL),Octal, which facilitates sound program transformation.

Octal is designed to enable static fine-grained taint tracking.

We design the type system by assigning dependent types and

taint types to all registers and data objects in memory. The key

idea is to leverage the dependent types to track the value ranges

of registers and memory objects, so that we can construct the full

picture of their points-to relationships throughout the program.

While precise points-to analysis is infeasible for arbitrary programs,

we take advantage of a domain-specific property, that is, crypto-

graphic software is typically written following the constant-time

programming discipline, making it amenable to our analysis. Octal

also ensures well-typed programs are memory-safe.

Building upon Octal, we design a program-transformation frame-

work SecSep consisting of two important components. The frontend

is a heuristic type-inference algorithm that operates on off-the-shelf

x86-64 assembly programs (plus debug tables already produced by

Clang, plus type annotations for function interfaces). The analysis

involves a set of heuristic rules to reason about pointer arithmetic

and loop counters. The outcome of the inference tool is an Oc-

tal program where the taint status of every memory operation is

identified explicitly.

The backend of our framework is the code-transformation tool

that rewrites assembly programs based on their taint types. It sup-

ports real-world cryptographic programs, which involve complex

interleaving of secret and public reads/writes and shared pointer-

based structures. After locatingmemory operations with taint types,

they are rewritten depending on their secrecy statuses.

We formally prove the type safety of Octal. We also prove that

SecSep’s transformation separates secret and public data while guar-

anteeing functional correctness. We implement a hardware ex-

tension that achieves secure speculation with register-level and

memory-segment-level taint tracking on the gem5 simulator [10,

38]. We evaluate SecSep’s transformation with the hardware ex-

tension using six cryptographic benchmarks [25] and show that it

enables secure speculation with a negligible overhead of 1.2% on

average.

In summary, we make the following contributions:

• We propose Octal, a variant of typed assembly language (TAL)

with static fine-grained taint tracking for assembly programs.

• We design a program-transformation framework SecSep that (1)

heuristically infers types for off-the-shelf cryptographic assembly

programs and (2) rewrites them to split their secret and public

data across coarse-grained memory regions.

• We prove soundness of the technique [55], provide a prototype

implementation, and carry out an empirical evaluation.

Availability. Our prototype for SecSep is open-sourced at https:

//github.com/MATCHA-MIT/secsep.

2 Background

2.1 Microarchitectural Side-Channel Attacks

Microarchitectural side-channel attacks exploit transmitter instruc-

tions that leave visible side effects on microarchitectural state like

caches [46, 61–63], TLBs [26], branch predictors [1, 22], and oth-

ers [2, 5, 18, 21, 28, 29, 40, 48, 52, 57, 59]. Cryptographic programs

prevent these attacks by following the constant-time coding disci-

pline, which avoids executing such transmitter instructions with

secret-dependent operands.

However, speculative-execution attacks [34–36, 39, 51] exploit

the side effects of speculatively executed transmitters to leak the

secrets, which are not blocked by the constant-time discipline.

2.2 Typed Assembly Language

Conventional assembly language omits most high-level semantic

information, making static analysis challenging. Typed assembly

language (TAL) [24, 27, 41–43] was introduced to regain some of

that information. We extend past results around memory safety to

information-flow tracking to guide program transformation.
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3 Threat Model & Security Properties

We aim to protect cryptographic applications against transient-

execution attacks. Specifically, we assume the software is written

following the constant-time coding discipline, in which the program

avoids using secret-dependent values as branch conditions and

memory addresses. However, the underlying hardware employs

aggressive speculative-execution mechanisms, including prediction

on both direct and indirect branches, which can result in transient

instruction sequences that violate the constant-time requirements.

Our proposed assembly-rewriting technique is a key component

in a software-hardware codesign mitigation. On the software side,

our rewriting tool transforms the constant-time cryptographic pro-

grams to separate secret and public data into distinct regions. On

the hardware side, we use an existing Spectre mitigation [19] with

a fine-grained taint-tracking mechanism at the register level and

coarse-grained taint tracking at the memory level, for a good trade-

off between performance, cost, and security. The hardware uses the

taint-tracking information to delay the execution of any potential

transmitter instructions, which may leak information via timing

side channels, when their operands are tainted.

We use two observation models ⟦·⟧
ct
and ⟦·⟧

pub
, following nota-

tions from prior work [31], to constrain our software requirements:

constant-time and separating secret/public data. Specifically, ⟦·⟧
represents the observation trace of executing a program at the ar-

chitectural level. Supposing the architectural trace of executing

program 𝑃 is 𝑆0
𝑜1−→ 𝑆1

𝑜2−→ . . . , the observation trace is then defined

as ⟦𝑃⟧(𝑆0) = 𝑜1𝑜2 . . . .

Here, ⟦·⟧
ct
records the trace of load/store addresses and branch

targets, and ⟦·⟧
pub

records a trace of data values stored in the

public memory region. We then define public noninterference, the

software property guaranteed by SecSep, where 𝑆 ≃pub 𝑆
′
constrains

that two architectural states 𝑆 and 𝑆 ′ have equal values in the public
memory region [55].

Definition 1 (Software Public Noninterference). A program 𝑃 sat-

isfies software public noninterference for a specific public region if

for all initial configurations 𝑆 and 𝑆 ′, if 𝑆 ≃pub 𝑆
′
, then ⟦𝑃⟧

ct
(𝑆) =

⟦𝑃⟧
ct
(𝑆 ′) and ⟦𝑃⟧

pub
(𝑆) = ⟦𝑃⟧

pub
(𝑆 ′).

We use ⦃𝑃 ⦄ (𝑆) to denote the microarchitectural observation

trace of running program 𝑃 on our out-of-order processor with

initial state 𝑆 [31]. The hardware must obey the following condition.

Definition 2 (Hardware Public Noninterference). A processor sat-

isfies hardware public noninterference if for all programs 𝑃 and

all initial states 𝑆 , 𝑆 ′, if ⟦𝑃⟧
pub

(𝑆) = ⟦𝑃⟧
pub

(𝑆 ′) and ⟦𝑃⟧
ct
(𝑆) =

⟦𝑃⟧
ct
(𝑆 ′), then ⦃𝑃 ⦄ (𝑆) = ⦃𝑃 ⦄ (𝑆 ′).

In summary, SecSep achieves secure speculation by ensuring

that the software component satisfies the public noninterference

contract. For the hardware component, we refer readers to the

ProSpeCT paper [19], which provides formal proof that the taint-

tracking hardware mechanism described above satisfies hardware

public noninterference. Together, the software-hardware contract

ensures end-to-end security of the overall system, where secret

data do not influence microarchitectural side channels, even in the

presence of speculative execution.

4 Motivation and Overview

4.1 Limitations of Source-Level Annotation

A fundamental limitation of source-level code transformation used

by prior works [19, 50] lies in its heavy reliance on assumptions

about compiler internals. For example, to relocate secret stack vari-

ables, programmers must manually annotate their declarations with

the section label secret, and the compiler is expected to allocate

the variables in that section instead of the original stack. How-

ever, this strategy fails to guarantee public noninterference, due

to lack of control over register allocation, spilling, and compiler

optimizations.

To illustrate how such a strategy can go wrong in practice, we

present a case study from a cryptographic function salsa20_words.
Figure 1 shows both the annotated C code (Figure 1a) and the

corresponding assembly code generated by clang-16 (Figure 1b). In

the C code, the function takes a pointer d and a secret array s[16]
as input. It then declares a local array x[4][4], which is used to

hold secret data from array s (lines 7-8) and is further used for

computation in lines 11-12.

Given that array x holds secret data, a programmer can annotate

it with the section label secret, expecting the compiler to allocate

it in the secret-marked global region. However, the generated as-

sembly code shown in Figure 1b deviates significantly from this

expectation.

First, the compiler notices the array size is small enough to be

stored in registers and decides to skip memory allocation for x
completely. Specifically, in lines 6-9 of the assembly code, multiple

elements inside the secret input array (base pointer rsi) are loaded
into distinct registers, with no redirection to a secret region.

Second, we observe that in line 11, a secret register is spilled

onto the stack, mixing secret data with many other public stack val-

ues. Since the source-level annotation has no control over register

spilling, the programmer is forced to mark the whole stack as secret,

resulting in overtainting and serious performance degradation. For

example, according to our experiment on the salsa20 application,

this conservative approach results in 70% performance degradation.

4.2 Overview of SecSep
We propose SecSep, a framework to perform the secret-public mem-

ory separation at the assembly level. By operating after compilation,

we have full control over the memory layout. Our approach ad-

dresses the following two challenges.

First, we lack high-level semantic and pointer information. As

high-level semantic information is lost during compilation, we need

to recover it to identify which instructions operate on secret data

and need to be transformed. A further complication is the use

of weakly typed pointers and potential pointer aliasing, which is

particularly difficult to resolve without explicit type information.

To deal with this challenge, we design a variant of typed assembly

language called Octal and an inference algorithm to deduce type

information for off-the-shelf x86-64 programs.

Second, we face the challenge of performing assembly transfor-

mation under architectural constraints. Specifically, we may not use

extra registers, which would require complex register management

and register spilling. To deal with the challenge, we arrange our

memory layout to have the secret region (i.e., secret stack) and the
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1 void salsa20_words
2 (uint32_t *d, uint32_t s[16]) {
3 __attribute__
4 ((section("secret"))) static
5 uint32_t x[4][4];
6 int i;
7 for (i=0; i<16; ++i)
8 x[i/4][i%4] = s[i];
9 // Omit calculation on x
10 ...
11 for (i=0; i<16; ++i)
12 d[i] = x[i/4][i%4] + s[i];
13 }

(a) Annotated source code

1 salsa20_words:
2

3 # Public spill
4 movq %rdi, -64(%rsp)
5 # Source: line 7-8
6 movl (%rsi), %r12d
7 movl 4(%rsi), %r11d
8 movl 8(%rsi), %r9d
9 movl 12(%rsi), %eax
10 # Secret spill
11 movq %rax, -88(%rsp)
12 ...

(b) Original assembly code

1 salsa20_words:
2 # rdi: 𝑑, rsi: 𝑠, rsp: 𝑝
3 # Public spill
4 movq %rdi, -64(%rsp)[p−64,p−56),0

5 # Source: line 7-8
6 movl (%rsi)[s,s+64),1, %r12d
7 movl 4(%rsi)[s,s+64),1, %r11d
8 movl 8(%rsi)[s,s+64),1, %r9d
9 movl 12(%rsi)[s,s+64),1, %eax
10 # Secret spill
11 movq %rax, 𝛿-88(%rsp)[p−88,p−80),1

12 ...

(c) Transformed assembly code

Figure 1: Program transformation: source-code annotation v.s. assembly rewriting

original stack (i.e., public stack) maintain a constant distance (𝛿)

from each other. As a result, redirecting memory accesses between

the stacks only requires pointer offsetting by 𝛿 .

To illustrate the effectiveness of our mechanism, we revisit the

example in Figure 1. In Figure 1c, we show the type annotations de-

rived by our inference tool. For brevity, we only show the memory-

related annotations. Each memory operand is annotated with a

dependent type that constrains its memory-access range and a taint

type indicating secrecy. For example, in line 6, the array base pointer

rsi, which references the secret input, is inferred to access the range
of [𝑠, 𝑠 + 64) with taint type 1, indicating secrecy. In line 11, another

stack access is annotated with the access range as [𝑝 − 88, 𝑝 − 80)
and is similarly marked as secret.

Transformation should relocate any memory operand with taint

type 1. For example, in line 11, the offset is incremented by 𝛿 to

move the write to the secret stack. Additionally, the parent function

(not shown) adds 𝛿 to the base pointer rsi before passing it as an
argument to the callee, ensuring all the accesses within the callee

are redirected to the secret stack.

The following sections go into detail on the main components

of our approach: type system (Section 5), type inference (Section 6),

and transformation (Section 7).

5 Octal
We propose Octal, a variant of typed assembly language [43] that

helps reason about information flow statically. The abstract ISA

machine for Octal applies taint tracking on registers and memory

at the byte level. This machine tracks the secret flow and does not

allow executing instructions that transmit tainted values through

side channels. For example, it gets stuck when executing load/store

with tainted addresses or branches with tainted conditions.

The goal of Octal’s type system is to ensure that a well-typed

program and the program generated from it by our transformation

are constant-time, thereby never getting stuck on this abstract

machine. It is challenging to reason statically about the program’s

taint flow, since high-level abstractions such as pointers and array

indices are missing in original x86-64 assembly programs. Octal

enriches programs with types that not only constrain the taint

status but also bound the values of registers and memory slots.

Furthermore, Octal splits memory into nonoverlapping slots

according to the memory layout of the source program, associating

a type to each memory slot. In this work, we only consider assembly

op F 𝑟 | 𝑖 | ℓ | 𝑖𝑑 (𝑟𝑏 , 𝑟𝑖 , 𝑖𝑠 )𝑠,𝜏 Operand

inst F movq op
1
, op

0
| leaq op

1
, op

0
Instruction

| addq op
1
, op

0
| cmpq op

1
, op

0

| jne ℓ𝜎 | jmp ℓ𝜎 | callq ℓ𝜎call,𝜎ret
| retq | halt

𝐼 F jmp ℓ𝜎 | retq | halt Instruction

| inst; 𝐼 sequence

𝐹 F {ℓ1 : 𝐼1, . . . , ℓ𝑛 : 𝐼𝑛, 𝑓ret : retq } Function

𝑃 F {𝑓1 : 𝐹1, . . . , 𝑓𝑛 : 𝐹𝑛} Program

𝑅 F {𝑟1 : (𝑣1, 𝑡1), . . . } Register file

𝑀 F {addr1 : (𝑣1, 𝑡1) . . . } Memory

𝑆 F (𝑅,𝑀, pc) State

𝑒 F 𝑥 | 𝑣 | ⊤ | 𝑒1 ⊕ 𝑒2 | ⊖𝑒 Dependent type

𝜏 F 𝑥 | 0 | 1 | 𝜏1 ∨ 𝜏2 Taint type

𝛽 F (𝑒, 𝜏) Basic type

R F {𝑟1 : 𝛽1, . . . } Register type

M F
{
𝑠1 : (𝑠valid

1
, 𝛽1), . . .

}
Memory type

S F (Δ,R,M) State type

Γ F {ℓ1 : (Δ1,R1,M1), . . . } Function type

P F {𝑓1 : Γ1, . . . } Program type

Figure 2: Octal syntax

programs compiled from constant-time C/C++ programs, so each

memory slot contains either a scalar, pointer, or array, the last of

which can have lengths not known at compile time, thanks to the

use of symbolic descriptions of address ranges.

This design choice offers an additional benefit for information-

flow tracking. Specifically, in cryptographic programs, although

each static instruction may access different memory bytes during

dynamic execution, it idiomatically only accesses data within the

address range corresponding to a specific data object in the source

program. Therefore, each static instruction in Octal programs has

fixed registers/memory slots acting as its taint source and destina-

tions, allowing easy regulation of taint flow statically with types.

5.1 Octal Syntax
Program Syntax. Octal (selected syntax in Figure 2) is built based

on x86-64. We require that each basic block end with halt, retq,
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or an unconditional branch. Octal also requires that each function

𝑓 (except for the top-level one) has a basic block 𝑓ret that only

contains one return instruction to serve as the unique exit point

for the function, which simplifies the typing rules.

Octal also introduces type annotations on load/store operands,

branch instructions, and function calls (highlighted in blue in Fig-

ure 2). These annotations help to constrain well-typed programs,

which will be detailed in Section 5.2.

Type Syntax. As mentioned before, an Octal abstract machine,

with its machine state denoted as 𝑆 = (𝑅,𝑀, pc), applies byte-level
taint tracking on the registers 𝑅 and memory𝑀 and gets stuck on

insecure operations (e.g., load/store with tainted addresses).

Octal’s program typeP is a map from function names to function

types, and a function type Γ is a map from the function’s basic-block

labels to state types S, which serve as block preconditions.

A type S contains three parts: the type context Δ, register-file
type R, and memory type M. Specifically, Δ is a set of constraints

that must be satisfied by type variables in R and M. Partial map

R assigns register names to their dependent and taint types. A

well-formed program can only read from registers that appear in R.

Partial mapM assigns disjoint memory slots (𝑠) each to a region of

addresses whose contents are initialized (𝑠valid) and a type of data

found therein. Each slot corresponds to a data object in the source

program or a register spill. Octal tracks pointers in registers and

memory using dependent types, and both memory slots 𝑠 and valid

regions 𝑠valid are sets of addresses represented by dependent types.

Hence, with the dependent types of load/store addresses, Octal can

easily track which memory slot is accessed by each instruction.

5.2 Typing Rules

In Octal, program type-correctness is determined by the type-

correctness of each function in the program, in turn determined

by the type-correctness of each block in the function. Intuitively,

the state type of a basic block (or more generally, an instruction

sequence) ensures that the abstract machine whose state satisfies

the type constraints can execute the block (instruction sequence)

without getting stuck. When the machine is about to jump to an-

other block at a branch instruction, its state should also satisfy the

target’s state type. Figures 3-5 elaborate with typing rules.

In general, each of the instruction-sequence typing rules is struc-

tured as follows. First, the instruction sequence’s state type should

provide enough constraints so that the abstract machine can ex-

ecute the first instruction in the sequence safely without getting

stuck. Second, the rule derives new type constraints for the machine

state after executing the first instruction. It requires that the next

instruction sequence to be executed is well-typed with respect to

the derived state type. Some examples illustrate the pattern.

Typing-Movq-m-r constrains a load instruction to be memory-

safe and constant-time, via a type annotation tracking taint status

of the load data. It invokes Typing-Load in Figure 4, which requires

that the load range fall in the initialized region in 𝑠 (𝑠addr ⊆ 𝑠valid)

for memory safety, and the taint type of data in the slot must satisfy

𝜏 . Octal also requires the load address to be untainted.

Typing-Movq-r-m also constrains store instructions to be

memory-safe and constant-time. It invokes Typing-StoreOp-Spill

or Typing-StoreOp-Non-Spill depending on whether the store

Typing-Movq-m-r

Δ,R,M ⊢ load(𝑖𝑑 (𝑟𝑏 , 𝑟𝑖 , 𝑖𝑠 )𝑠,𝜏 , 8) : 𝛽
R′ = R[𝑟0 ↦→ 𝛽] P, Γ ⊢ 𝐼 : (Δ,R′,M)
P, Γ ⊢ movq 𝑖𝑑 (𝑟𝑏 , 𝑟𝑖 , 𝑖𝑠 )𝑠,𝜏 , 𝑟0; 𝐼 : (Δ,R,M)

Typing-Movq-r-m

Δ,R,M ⊢ store(𝑖𝑑 (𝑟𝑏 , 𝑟𝑖 , 𝑖𝑠 )𝑠,𝜏 , 8,R[𝑟1]) : (𝑠valid, 𝛽)
M′ =M[𝑠 ↦→ (𝑠valid, 𝛽)] P, Γ ⊢ 𝐼 : (Δ,R,M′)

P, Γ ⊢ movq 𝑟1, 𝑖𝑑 (𝑟𝑏 , 𝑟𝑖 , 𝑖𝑠 )𝑠,𝜏 ; 𝐼 : (Δ,R,M)

Typing-Cmpq-r-r

R[𝑟1] = (𝑒1, 𝜏1) R[𝑟0] = (𝑒0, 𝜏0)
P, Γ ⊢ 𝐼 : (Δ, setFlag(R, (𝑒0 − 𝑒1, 𝜏0 ∨ 𝜏1), cmpq ),M)

P, Γ ⊢ cmpq 𝑟1, 𝑟0; 𝐼 : (Δ,R,M)

Typing-Jne

R[ZF] = (𝑒 = 0, 0)
Δ ⊢ isNonChangeExp(𝑒 = 0) getInputVar(dom(𝜎)) = ∅
getTaintVar(dom(𝜎)) = ∅ ∀𝑥 ∈ dom(𝜎) . 𝜎 (𝑥) ≠ ⊤
P, Γ ⊢ 𝐼 : (Δ ∪ {𝑒 = 0},R,M) Γ(ℓ) = (Δ′,R′,M′)

dom(M′) = dom(M) (Δ ∪ {𝑒 ≠ 0},R,M) ⊑ 𝜎 (Δ′,R′,M′)
P, Γ ⊢ jne ℓ𝜎 ; 𝐼 : (Δ,R,M)

Typing-Callq

𝑒 = sp + 𝑐 R[𝑟rsp] = (𝑒, 0) M[𝑒 − 8, 𝑒] = (∅, _)
∀𝑥, 𝜎call (𝑥) = 𝑒, isPtr(𝑥) . Δ ⊢ isNonChangeExp(𝑒 − getPtr(𝑒))

∀𝑥 ∈ dom(𝜎call) . 𝜎call (𝑥) ≠ ⊤ 𝜎ret =
−→𝑥1 → −→𝑥2

R𝑝0 = R[𝑟rsp ↦→ (𝑒 − 8, 0)] (Δ,R𝑝0 ,M) ⊑ 𝜎call (P(𝑓 ) (𝑓 ))
−→𝑥2 ∉ (Δ,R,M) (Δ𝑝1 ,R𝑝1 ,M𝑝1 ) = (𝜎call ∪ 𝜎ret) (P(𝑓 ) (𝑓ret))
P, Γ ⊢ 𝐼 : (Δ ∪ Δ𝑝1 ,R𝑝1 [𝑟rsp ↦→ (𝑒, 0)], updateMem(M,M𝑝1 ))

P, Γ ⊢ callq 𝑓 𝜎call,𝜎ret ; 𝐼 : (Δ,R,M)

Figure 3: Instruction-sequence typing

slot holds a spill or a data object in the source code. The difference

arises from the different lifetimes of the two types of slots.

When storing to a spill slot, as shown in Typing-StoreOp-Spill,

Octal always derives the type for the next state by overwriting the

slot’s valid region and type with the store range and store data type.

Even for a partial store, the type system “forgets” the type for the

data in the part of the slot that is not overwritten by the operand.

When storing to a nonspill slot, as shown in Typing-StoreOp-

Non-Spill, Octal requires the store data’s taint status to satisfy

the original taint type of the target memory slot. It also updates

the valid region and dependent type by combining the store data

and the existing data in the slot. For a partial store, Octal may only

consider the updated dependent type as ⊤ for simplicity. Since each

nonspill slot corresponds to a data object in the source file, we

impose uniformity on the slot’s taint type during its lifetime, i.e.,

the whole function. Then, we can use its taint type as a hint for its

target placement during transformation, to change all load/store

operands accessing it accordingly. We do not require the unified

taint for register spills since we consider the register spill lifetime

ends after the next register spill (or store) to the same slot.
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Typing-Addr

R[𝑟𝑏 ] = (𝑒𝑏 , 𝜏𝑏 ) R[𝑟𝑖 ] = (𝑒𝑖 , 𝜏𝑖 )
R ⊢ 𝑖𝑑 (𝑟𝑏 , 𝑟𝑖 , 𝑖𝑠 ) : (𝑒𝑏 + 𝑒𝑖 × 𝑖𝑠 + 𝑖𝑑 , 𝜏𝑏 ∨ 𝜏𝑖 )

Typing-Load

R ⊢ 𝑖𝑑 (𝑟𝑏 , 𝑟𝑖 , 𝑖𝑠 ) : (𝑒addr, 0)
Δ ⊢ isNonChangeExp(𝑒addr − getPtr(𝑠))

𝑠addr = [𝑒addr, 𝑒addr + 𝑐) M[𝑠] = (𝑠valid, (𝑒, 𝜏))
Δ ⊢ 𝑠addr ⊆ 𝑠valid 𝑒′ = (Δ ⊢ 𝑠addr = 𝑠valid) ? 𝑒 : ⊤

𝑒′ = ⊤ ⇒ (Δ ⊢ isNonChangeExp(𝑒))
Δ,R,M ⊢ load(𝑖𝑑 (𝑟𝑏 , 𝑟𝑖 , 𝑖𝑠 )𝑠,𝜏 , 𝑐) : (𝑒′, 𝜏)

Typing-StoreOp-Spill

R ⊢ 𝑖𝑑 (𝑟𝑏 , 𝑟𝑖 , 𝑖𝑠 ) : (𝑒addr, 0)
Δ ⊢ isNonChangeExp(𝑒addr − getPtr(𝑠))
𝑠addr = [𝑒addr, 𝑒addr + 𝑐) 𝑠 ∈ dom(M)
isSpill(𝑠) Δ ⊢ 𝑠addr ⊆ 𝑠 Δ ⊢ 𝜏1 ⇒ 𝜏

Δ,R,M ⊢ store(𝑖𝑑 (𝑟𝑏 , 𝑟𝑖 , 𝑖𝑠 )𝑠,𝜏 , 𝑐, (𝑒, 𝜏1)) : (𝑠addr, (𝑒, 𝜏))

Typing-StoreOp-Non-Spill

R ⊢ 𝑖𝑑 (𝑟𝑏 , 𝑟𝑖 , 𝑖𝑠 ) : (𝑒𝑎𝑑𝑑𝑟 , 0) 𝑠addr = [𝑒addr, 𝑒addr + 𝑐)
Δ ⊢ isNonChangeExp(𝑒addr − getPtr(𝑠))
M[𝑠] = (𝑠valid, (𝑒0, 𝜏)) ¬isSpill(𝑠)

Δ ⊢ 𝑠addr ⊆ 𝑠 Δ ⊢ 𝜏1 ⇒ 𝜏 𝑒′ = (Δ ⊢ 𝑠valid ⊆ 𝑠addr) ? 𝑒1 : ⊤
𝑒′ = ⊤ ⇒ (Δ ⊢ isNonChangeExp(𝑒0) ∧ isNonChangeExp(𝑒1))
Δ,R,M ⊢ store(𝑖𝑑 (𝑟𝑏 , 𝑟𝑖 , 𝑖𝑠 )𝑠,𝜏 , 𝑐, (𝑒1, 𝜏1)) : (𝑠addr ∪ 𝑠valid, (𝑒′, 𝜏))

Figure 4: Memory-operation typing (note that, predicate

isSpill relies on debug tables generated by Clang)

Typing-Jne specifies the rule for a conditional-branch instruc-

tion. Octal requires the flag holding the branch condition to be

untainted so that the program is constant-time. Furthermore, Octal

also tracks whether each dependent type refers to pointer values

that might be changed by our transformation. To guarantee func-

tional correctness of the transformation, Octal requires that the

branch condition is independent from these pointer values, denoted

as isNonChangeExp(𝑒). Then, Octal derives the next state types
after executing the branch, including both cases where the branch

is taken and not taken.

For the not-taken side, similar to previous cases for non-branch

instructions, Octal derives the next state type by adding the nega-

tion of the branch condition (i.e., 𝑒 = 0) to the type constraints.

For the taken side, Octal derives the next state type by asserting

the branch condition (i.e., 𝑒 ≠ 0). The primary goal is to ensure

that the machine state at the branch instruction is well-formed

to jump to the target block. We define the subtype judgment for

state types as shown in Figure 5. Intuitively, this judgment ensures

that for any machine state 𝑆 that satisfies a state type S1, if S1 is

a subtype of S2, then 𝑆 must also satisfy S2. Typing-Jne requires

that the state type for the branch’s taken side is a subtype of the

target block’s type Γ(ℓ). Note that in this rule, we are checking

the subtype relation against 𝜎 (Γ(ℓ)), where the branch annotation

𝜎 is a substitution that instantiates type variables in Γ(ℓ) using
expressions over variables in the current block’s type context. We

Reg-Subtype

Δ ⊢ 𝑒1 = 𝑒2 ∨ (isNonChangeExp(𝑒1) ∧ 𝑒2 = ⊤)
Δ ⊢ 𝜏1 ⇒ 𝜏2

Δ ⊢ (𝑒1, 𝜏1) ⊑ (𝑒2, 𝜏2)

Mem-Slot-Subtype

Δ ⊢ 𝑠2 ⊆ 𝑠1 Δ ⊢ isSpill(𝑠2) ⇒ isSpill(𝑠1)
Δ ⊢ 𝑒1 = 𝑒2 ∨ (isNonChangeExp(𝑒1) ∧ 𝑒2 = ⊤) ∨ 𝑠2 = ∅

Δ ⊢ 𝜏1 = 𝜏2 ∨ (isSpill(𝑠1) ∧ 𝑠2 = ∅) getPtr(𝑠1) = getPtr(𝑠2)
Δ ⊢ (𝑠1, (𝑒1, 𝜏1)) ⊑ (𝑠2, (𝑒2, 𝜏2))

State-Subtype

Δ1 ⊢ Δ2 ∀𝑟 ∈ dom(R2). Δ1 ⊢ R1 [𝑟 ] ⊑ R2 [𝑟 ]
∀𝑠2 ∈ dom(M2). ∃𝑠1 . Δ1 ⊢ (𝑠2 ⊆ 𝑠1 ∧M1 [𝑠1] ⊑ M2 [𝑠2])

⊢ (Δ1,R1,M1) ⊑ (Δ2,R2,M2)

Figure 5: State subtyping

use 𝜎 (·) as syntax sugar for applying the substitution 𝜎 to a variety

of syntactic objects. Our type checker implements every entail-

ment check Δ ⊢ . . . as a call to an SMT solver. In this rule, Octal

also has some extra constraints on 𝜎 to guarantee type safety and

transformation correctness, detailed in [55].

Typing-Callq specifies type constraints and changes of each

step of calling a function. It first derives the state type (Δ,R𝑝0 ,M)
after pushing the return address, checking that the state type is

a subtype of the callee function’s first block type P(𝑓 ) (𝑓 ) with
respect to the function call’s annotation 𝜎call. Here, 𝜎call represents

the type-variable substitution between the callee and the caller.

Next, Octal derives the state type after returning from the callee,

using the type of the callee’s exit block. There are several details

to note. First, we need to convert the return-state type represented

under the callee’s type context to the caller’s context. Compared to

the callee’s first block typeP(𝑓 ) (𝑓 ), its return-state typeP(𝑓 ) (𝑓ret)
may introduce new type variables. The type annotation 𝜎ret maps

these new variables to the caller’s context. Hence, we perform

type-variable substitution using both substitutions to represent

the return-state type for the caller, i.e., (Δ𝑝1 ,R𝑝1 ,M𝑝1 ) = (𝜎call ∪
𝜎ret) (P(𝑓 ) (𝑓ret)). We then add the return state’s type constraints

Δ𝑝1 to the next state type’s context. Second, the callee’s return-state

type only specifies how it updates the memory region covered by

its memory type, which is a subset of the memory region covered

by the caller’s memory type. On the other hand, according to our

typing rules for load and store operations, the memory regions

that do not belong to the callee’s memory type remain unchanged

across the function call. Following this philosophy, we apply the

callee’s changes to memory slots to the parent’s memory type to

get the final memory type after return (updateMem(M,M𝑝1 )). We

also pop the return address to get the final return-state type.

5.3 Type Soundness

In this section, we formalize the type safety of Octal programs, that

is, Octal guarantees well-typed programs to be executed on an Octal

abstract machine without getting stuck. We define well-formedness

of Octal abstract machine states as follows. A state 𝑆 is well-formed,
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i.e. 𝑃,P ⊢tal 𝑆 , if all its registers and memory values satisfy con-

straints specified by the state type of the instruction sequence to be

executed next. Then, the type safety is formalized using the follow-

ing theorem. We provide details of the well-formedness definition

and the proof of the type safety theorem in [55].

Theorem 3 (Type Safety). If 𝑃,P ⊢tal 𝑆 , then for some 𝑆 ′, 𝑆 →
𝑆 ′ and 𝑃,P ⊢tal 𝑆 ′; or 𝑆 is a termination state.

6 Type Inference

In this section, we introduce our type-inference algorithm that

generates types for assembly programs. Note that the inference

algorithm is heuristic and does not guarantee type correctness.

Instead, the correctness is checked separately by applying typing

rules introduced in Section 5.

According to our type definitions, we need to generate state

types of basic blocks and type annotations on instructions. Our

type-inference algorithm consists of three parts. First, we introduce

unification type variables to represent state types and type anno-

tations. Second, we plug the type expressions into Octal’s typing

rules to collect type constraints. Then, the third step is to solve for

arithmetic predicates on type variables, which will be used to enrich

the Δ of each block’s state type so that it satisfies the typing con-

straints. We iterate a process of learning new typing information

and exploring its implications.

6.1 Type initialization

We begin type inference by using type-unification variables to

represent state types (i.e., (Δ,R,M)) and type annotations (i.e.,

load/store’s destination-slot taint annotations; type-variable sub-

stitutions for branches and calls). Our goal is to add appropriate

constraints on these type variables to the type context Δ so that the

state types and annotations satisfy the typing rules in Section 5.2.

For register types, we simply assign a unification variable to each

register; and for type annotations, we follow a similar strategy. To

initialize memory typingM, we first need to figure out dom(M)
for each function.

DetermineMemory Layout. Core cryptographic routines usually

do not allocate memory on the heap dynamically for reasons of

performance, so we consider the following three kinds of memory

slots to determine each function’s memory layout: (1) data objects

referenced by pointers in the function arguments; (2) local stack

referenced by the stack pointer; (3) global variables referenced by

global pointers.

We require simple type annotations in C source code, imple-

mented through our custom annotation system, to explain the rela-

tionships among function arguments. Figure 6 provides an example

using our annotation to describe a function argument (mlen) that
gives the size of an array that another argument (message) points
to. These annotations are compiled down to assembly and serve

as specifications for functions. We also obtain the following infor-

mation with simple compiler support: address ranges of function

stack frames using a Clang pass, and locations of global variables

indicated directly in assembly code. With the above support, our

inference tool focuses on inferring type information for basic blocks

within each function.

1 /**
2 * @secsep message : @size(mlen), @valid(0, mlen);
3 * @secsep mlen : @taint[0];
4 */
5 void foo(uint8_t *message, uint64_t mlen) { ... }

Figure 6: Example type annotations for function arguments

in C source code, which means that (1) the pointer message
points to an array with size mlen, and the whole array is

initialized; (2) mlen is a public variable whose taint type is 0.

Constraint-Movq-m-r-Unknown

R ⊢ 𝑖𝑑 (𝑟𝑏 , 𝑟𝑖 , 𝑖𝑠 ) : (𝑒𝑎, 𝜏𝑎)
R′ = R[𝑟0 ↦→ (⊤, 𝜏)] P, Γ ⊢ 𝐼 : (Δ,R′,M) ⇛ 𝐶

P, Γ ⊢ movq 𝑖𝑑 (𝑟𝑏 , 𝑟𝑖 , 𝑖𝑠 )𝑠,𝜏 , 𝑟0; 𝐼 : (Δ,R,M)
⇛ [𝑒𝑎, 𝑒𝑎 + 8) ⊆ 𝑠; 𝑠 ∈ dom(M);𝜏𝑎 = 0;𝐶

Constraint-Movq-r-m-Unknown

R ⊢ 𝑖𝑑 (𝑟𝑏 , 𝑟𝑖 , 𝑖𝑠 ) : (𝑒𝑎, 𝜏𝑎) P, Γ ⊢ 𝐼 : (Δ,R,M) ⇛ 𝐶

P, Γ ⊢ movq 𝑟1, 𝑖𝑑 (𝑟𝑏 , 𝑟𝑖 , 𝑖𝑠 )𝑠,𝜏 ; 𝐼 : (Δ,R,M)
⇛ [𝑒𝑎, 𝑒𝑎 + 8) ⊆ 𝑠; 𝑠 ∈ dom(M);𝜏𝑎 = 0;𝐶

Constraint-Jne

R[ZF] = (𝑒 = 0, 𝜏) P, Γ ⊢ 𝐼 : (Δ ∪ {𝑒 = 0},R,M) ⇛ 𝐶

P, Γ ⊢ jne ℓ𝜎 ; 𝐼 : (Δ,R,M)
⇛ 𝜏 = 0; (Δ ∪ {𝑒 ≠ 0},R,M) ⊑ 𝜎 (Γ(𝑙));𝐶

Figure 7: Typing-constraints generation

6.2 Type-Constraint Generation

In this section, we describe rules to generate constraints on the

initialized block-state types. We provide several example rules

in Figure 7, where the generated constraints are highlighted .

Given a state type and the corresponding instruction sequence,

the constraint-generation rule consists of two parts, following a

similar structure to Octal typing rules.

First, a rule generates constraints on the state type so that the

current instruction executes safely. For example, the first two rules

in Figure 7 constrain that a load/store operation must access a mem-

ory slot from the memory type, and the address must be untainted.

The third rule requires that the branch condition is untainted.

Second, a rule derives the next state type after executing the

first instruction in the sequence and generates constraints for the

next type. Note that the state types are initialized using unification

variables not constrained by predicates, so we may not be able to

derive the next state type deterministically. For example, as shown

in Constraint-Movq-r-m-Unknown, we cannot determine the

target slot of the store operand and thereby are not able to update

the memory type correspondingly. In this case, we use the unmodi-

fied memory type to generate constraints for the next instruction

sequence. Note that these heuristic rules cannot generate all proper

type constraints. We rely on these partially correct constraints to

derive predicates and use the newly solved predicates to improve

constraint generation in the next round.
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6.3 Dependent-Type Inference

In this section, we show how we derive arithmetic predicates of

dependent type variables from type constraints. As shown in Fig-

ure 7, we generate two kinds of constraints for dependent types:

(1) state-subtype and (2) load/store-address constraints.

6.3.1 Solving Subtype Constraints. Octal requires that the state

type at each branch should be a subtype of the target block’s state

type (e.g., (Δ ∪ {𝑒 ≠ 0},R,M) ⊑ 𝜎 (Γ(ℓ)) in Constraint-Jne).

Intuitively, the subtype relation requires that the range of each

register/memory slot’s value at the target block, represented by

dependent type variables, should be a superset of the range of its

value at the branch that jumps to the target block. By unfolding all

subtype constraints, we can get concrete constraints on the range

of each dependent type variable. We propose a set of inference

rules that syntactically apply to the range constraints with certain

patterns and solve the predicates of each variable heuristically.

We primarily focus on inferring type variables used for pointer

arithmetic, which is useful for reasoning about dependent types

for load/store operations. Luckily, we target type inference for

cryptographic programs, whose dependent-type range constraints

share simple and intuitive patterns. Our empirical analysis found

they follow the two basic code patterns in Figure 8. In both examples,

we demonstrate applying our rules to figure out the range for type

variable 𝑎 that represents rax’s dependent type at block .L0. We

denote the range of𝑎 as 𝑆𝑎 and derive constraints on 𝑆𝑎 by unfolding

all state subtype constraints.

Infer set of values. The first example (Figure 8a) shows the case

where rax contains different values when entering basic block .L0
from different branches. Specifically, the range of rax is {𝑒1} when
jumping from .L1 and is {𝑒2} when jumping from .L2. The subset
constraint and the derived solution can be formulated as follows:

𝑆𝑎 ⊇ {𝑒1}
𝑆𝑎 ⊇ {𝑒2}

}
⇒ 𝑆𝑎 = {𝑒1, 𝑒2}.

Infer range of loop counter. The second example (Figure 8b)

shows the case where rax acts as a loop counter. rax is initialized

to 𝑒0 when entering the loop body from block .L1 and increased by
a constant step 𝑐0 in each iteration. The loop ends when rax is equal
to the boundary value 𝑒𝑛 . Without loss of generality, we discuss the

case where 𝑐0 > 0. According to our constraint-generation rules,

when jumping back to the loop head .L0, the state type satisfies
Δ = {𝑎 ∈ 𝑆𝑎, 𝑎 + 𝑐0 − 𝑒𝑛 ≠ 0} andR = {rax : 𝑎 + 𝑐0}. So we can use
the set {𝑎 + 𝑐0 : 𝑎 ∈ 𝑆𝑎 ∧ 𝑎 + 𝑐0 − 𝑒𝑛 ≠ 0} to represent the range of

rax before jumping back. Thus, the subtype constraint and the

corresponding heuristic rule can be formulated as follows:

𝑆𝑎 ⊇ {𝑒0} 𝑐0 > 0

𝑆𝑎 ⊇ {𝑎 + 𝑐0 : 𝑎 ∈ 𝑆𝑎 ∧ 𝑎 + 𝑐0 ≠ 𝑒𝑛}

}
⇒ 𝑆𝑎 = [𝑒0, 𝑒𝑛 − 𝑐0]𝑐0 .

This rule extracts three key features from the constraints:

• 𝑒0: the loop counter’s base value at the loop’s entrance;

• 𝑐0: the per-iteration step value for the counter;

• 𝑒𝑛 : the loop boundary in the branch condition.

Then, the rule heuristically determines that the range of 𝑎 is 𝑆𝑎 =

[𝑒0, 𝑒𝑛 − 𝑐0]𝑐0 . Here, we use [𝑎, 𝑏]𝑐 to represent a set of values in

range [𝑎, 𝑏] with stride 𝑐 . In our implementation, we apply the

above strategy to infer the range of loop counters.

.L1:
movq $𝑒1, %rax
jmp .L0

.L2:
movq $𝑒2, %rax
jmp .L0

.L0:
# Δ = {𝑎 ∈ 𝑆𝑎 }
# R = {rax : 𝑎}

(a) Infer set of values

.L1:
movq $𝑒0, %rax
movq $𝑒1, %rbx
jmp .L0

.L0:
# Δ = {𝑎 ∈ 𝑆𝑎, 𝑏 ∈ 𝑆𝑏 }
# R = {rax : 𝑎, rbx : 𝑏}
addq $𝑐0, %rax
addq $𝑐1, %rbx
cmpq $𝑒𝑛, %rax
jne .L0

(b) Infer loop counter

Figure 8: Examples for dependent-type inference

Infer implicit relation between variables. Another challenge is

that assembly programs do not explicitly keep semantic relations

between type variables. However, these relations are crucial to

deriving accurate range constraints for variables. For example, in

Figure 8b, rax and rbx are increased consistently during each loop

iteration, but the loop condition only constrains the boundary of

rax when jumping back to the loop header. By unfolding the sub-

type constraints, we can only get the following constraints related

to 𝑏: 𝑆𝑏 ⊇ {𝑒1} and 𝑆𝑏 ⊇ {𝑏 + 𝑐1 : 𝑏 ∈ 𝑆𝑏 }, which implies that 𝑆𝑏 is

infinite, thereby not accurately constraining the range of 𝑏.

As a solution, we introduce another rule that infers the linear

relation between type variables that share similar constraint pat-

terns. In our example, rax and rbx are increased synchronously

following the same loop structure, so we can use the range of rax
to constrain the range of rbx, as shown in the following formula.

𝑆𝑏 ⊇ {𝑒1}
𝑆𝑏 ⊇ {𝑏 + 𝑐1 : 𝑏 ∈ 𝑆𝑏 }
𝑆𝑎 ⊇ {𝑒0}
𝑆𝑎 ⊇ {𝑎 + 𝑐0 : 𝑎 ∈ 𝑆𝑎 ∧ 𝑎 + 𝑐0 ≠ 𝑒𝑛}

 ⇒
𝑆𝑏 ={
(𝑎−𝑒0 )𝑐1

𝑐0
+ 𝑒1 : 𝑎 ∈ 𝑆𝑎

}
.

6.3.2 Solving load/store constraints. Octal also requires that the

dependent type of each load/store address belong to a specific mem-

ory slot. These constraints can be satisfied automatically with the

predicates derived from the subtype relation when the load/store

address and the memory slot have simple formulas, e.g., shifted

from the base pointer by a constant offset. However, when access-

ing an array with a variable length or a variable index, we need

extra predicates for bounds checks regarding the length/index type

variables, inferred by the following two methods.

Propagate branch conditions. First, the function may already

include proper bounds checks to guarantee memory safety. For

example, as shown in Figure 9a, line 10 loads from [𝑝, 𝑝 + 8], and
we lack the predicate 𝑛 ≥ 8 to validate it. On the other hand, the

program checks the branch condition 𝑛 ≥ 8 before jumping to .L0,
which implies this missing predicate. Motivated by this common

pattern, we propose the following rule to deduce predicates by

propagating branch conditions across basic blocks.

𝜎1 (Δ,R,M) ⊒ ({𝜎1 (𝑒)} ∪ Δ1,R1,M1)
𝜎2 (Δ,R,M) ⊒ ({𝜎2 (𝑒)} ∪ Δ2,R2,M2)
. . .

 ⇒ 𝑒 ∈ Δ
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1 foo:
2 # R = {rdi : 𝑝, rsi : 𝑛}
3 # M = { [𝑝, 𝑝 + 𝑛) : _}
4 cmpq $8, %rsi
5 jae .L0
6 retq
7 .L0:
8 # Missing predicate:
9 # Δ = {𝑛 ≥ 8}
10 movq (%rdi), %rax

(a) Boundary check

foo:
# foo (uint64_t p[8],
# uint64_t k);
# R = {rdi : 𝑝, rsi : 𝑘 }
# M = { [𝑝, 𝑝 + 64) : _}
# Missing predicate:
# Δ = {𝑘 ∈ [0, 7] }

movq (%rdi, %rsi, 8), %rax

(b) Implicit assumption

Figure 9: Missing predicates to validate memory accesses

Each subtype constraint listed here corresponds to one branch that

jumps to the specific block with state type (Δ,R,M). This rule
states that for all branches that jump to this block, if a predicate

is always satisfied before branching, then it can be added to the

block’s type context.

Reverse-engineer load/store operations. However, not all miss-

ing predicates can be deduced from branch conditions in the func-

tion. For example, as shown in Figure 9b, the function takes two

inputs: pointer 𝑝 to an array with 8 entries and index 𝑘 . The pro-

grammer implicitly assumes that the function is only called with

𝑘 ∈ [0, 7] and loads from the 𝑘th entry of 𝑝 without performing any

boundary checks. We propose a two-step method to infer these im-

plicit assumptions by reverse-engineering the necessary conditions

to validate the memory safety of load/store operations.

First, for each load/store address without any known target mem-

ory slot, we heuristically guess which slot it belongs to based on its

address pattern. For example, it is expected to belong to a memory

slot that shares the same base pointer.

Second, we constrain the load/store operation to fall in the slot

by adding the corresponding predicates to the current block’s state

type. As required by subtype constraints, this newly generated

predicate must also be satisfied by every previous basic block that

jumps to the current one. Hence, we apply the following rule to

propagate each newly generated predicate to the previous blocks.

𝜎1 ({𝑒} ∪ Δ,R,M) ⊒ (Δ1,R1,M1)
𝜎2 ({𝑒} ∪ Δ,R,M) ⊒ (Δ2,R2,M2)
. . .

 ⇒

𝜎1 (𝑒) ∈ Δ1

𝜎2 (𝑒) ∈ Δ2

. . .

Note that both inference strategies require us to substitute lo-

cal type variables properly for each basic block, i.e., to know the

branch annotation 𝜎 . This type-variable substitution can be built

by unifying each register and memory slot’s type from the target

block’s state type and the state type before branching.

6.4 Valid-Region Inference

In this section, we explain how to infer valid regions of each basic

block’s state type, which is constrained by two aspects: (1) each

load instruction can only read from valid regions (Typing-Load);

(2) each memory slot’s valid region at a branch instruction must

be a superset of its valid region at the destination block (Mem-

Slot-Subtype). Our overall inference strategy is to constrain the

valid region of each memory slot using constraint (2) and find

the most accurate solution that covers the largest valid region to

satisfy constraint (1). Specifically, the second constraint can be

derived from subtype constraints. For example, for 𝜎1 (Δ,R,M) ⊒

1 .L1: # R = {rdi : 𝑝 }, M = { [𝑝, 𝑝 + 64) : (∅, _) }
2 movq $0, %rax
3 jmp .L0
4 .L0: # R = {rdi : 𝑝, rax : 𝑎}, M =

{
[𝑝, 𝑝 + 64) : (𝑠valid, _)

}
5 # Δ = {𝑎 ∈ [0, 63] }
6 movb %rsi, (%rdi, %rax)
7 addq $1, %rax
8 cmpq $64, %rax
9 jne .L0𝜎 # 𝜎 (𝑎) = 𝑎 + 1

Figure 10: Infer the valid region of an array

(Δ1,R1,M1) and memory slot 𝑠 whereM[𝑠] = (𝑠valid, _),M1 [𝑠] =
(𝑠valid
1

, _), the constraint on 𝑠valid is 𝜎1 (𝑠valid) ⊆ 𝑠valid
1

.

For a memory slot that is fully initialized at the beginning of

the function, its valid region is always equal to its address range. It

is also straightforward to infer the valid region for a memory slot

that holds a primitive type of data (e.g., int) or a register spill since
the program usually writes to the full slot or leaves the full slot

uninitialized. Hence, its valid region is usually the slot address range

or the empty set. The major challenge is to infer the valid region for

an array, where the program writes to part of it at a time, steadily

increasing its valid region. We provide heuristic rules to represent

the valid region accurately using dependent type variables.

For example, as shown in Figure 10, the program fills an array by

looping over all its entries. We can derive the following constraints

on the array’s valid region at .L0.

[0/𝑎] (𝑠valid) ⊆ ∅ 𝑎 ∈ [0, 63]
[𝑎 + 1/𝑎] (𝑠valid) ⊆ 𝑠valid ∪ [𝑝 + 𝑎, 𝑝 + 𝑎 + 1)

}
⇒ 𝑠valid = [𝑝, 𝑝 +𝑎)

Our inference algorithm extracts the valid region’s boundary from

the pattern 𝑠valid ∪ [𝑝 +𝑎, 𝑝 +𝑎+ 1). The key insight is that the next
array write is always to the next uninitialized slot.

6.5 Taint-Type Inference

In this section, we demonstrate how to unify local taint variables at

each block with each function’s input taint variables and generate

necessary predicates to satisfy all constraints.

According to Section 5.2 and Section 6.2, Octal constrains taint

types via the following three aspects:

(1) Load/store addresses and branch conditions are untainted. De-

note each of their taint types as 𝜏 = 𝑥1 ∨ 𝑥2 ∨ . . . 𝑥𝑛 . We can

rewrite the constraint as 𝑥1 ⇒ 0 ∧ 𝑥2 ⇒ 0 ∧ . . . 𝑥𝑛 ⇒ 0.

(2) The taint type of the accessed memory slot is equal to the

taint annotation of a load/store operand (under some scenar-

ios). According to type-constraint generation, both the mem-

ory slot’s taint type and the load/store operand’s taint anno-

tation, denoted as 𝑥slot and 𝑥op, are only represented by taint

variables or constant taint values (instead of complex taint ex-

pressions). Therefore, the taint constraint can be written as

𝑥slot ⇒ 𝑥op ∧ 𝑥op ⇒ 𝑥slot,

(3) If store data is tainted, then the store operand’s taint annotation

is also tainted. Denote the store data’s taint type as 𝑥1 ∨ 𝑥2 ∨
· · · ∨ 𝑥𝑛 and the store operand’s taint type as 𝑥op. We can write

the constraint as 𝑥1 ⇒ 𝑥op ∧ 𝑥2 ⇒ 𝑥op ∧ · · · ∧ 𝑥𝑛 ⇒ 𝑥op.

In short, the taint constraints can be summarized in the form 𝐸1 ∧
𝐸2 ∧ · · · ∧ 𝐸𝑛 . Here, each 𝐸𝑘 has the form 𝑥1 ⇒ 𝑥2 where 𝑥1 and
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𝑥2 are either taint variables or constant taint values. This formula

clearly constrains the taint flow among all taint variables.

Here is how we derive taint predicates. For each local taint vari-

able, we can identify its taint source represented by input taint

variables. If there is no taint source, we set it to 0. Otherwise, we

set it to the logical OR of all its taint sources. We can also collect

predicates for input taint variables in a similar form 𝑥1 ⇒ 𝑥2 and

add them to the state type of the function’s input block.

7 Transformation

We define a transformation that takes a well-typed Octal program

as input and generates another program that satisfies our software

contract, public noninterference (defined in Section 3). As discussed

in Section 4.2, the overall strategy of our transformation is to main-

tain a secret stack that is shifted from the original stack by 𝛿 bytes.

If a stack slot contains secrets, we shift its location by 𝛿 to move it

onto the secret stack. If a stack slot contains public data, we do not

change its location. Note that our transformation does not affect

heap/global variables, while we do useOctal’s type system to ensure

that they are used properly from an information-flow perspective.

We first present two basic transformation strategies and illustrate

how we apply these two strategies to transform programs. We

then formally prove that the transformation maintains the original

program’s functionality while guaranteeing public noninterference.

7.1 Two Memory-Relocation Strategies

Load/store instructions in x86-64 (and other ISAs) support the fol-

lowing addressing mode: taking a precalculated base pointer and

adding an offset to the pointer to derive the target address. There are

thus two basic applicable strategies to transform memory accesses

in assembly programs:

TransPtr We can modify the base pointer before it is used in the

memory operand so that the memory operand automatically

switches to accessing the relocated object.

TransOp When we want to shift the target address by a constant

offset, we can directly modify the memory operand to add

this offset.

However, each strategy has limited applicability. First, TransOp
is a context-insensitive change, which uniformly shifts the memory-

access address. As a result, TransOp is only suitable for the case

where we statically know how the data object accessed by the

instruction should be relocated (e.g., whether to move it to the

secret stack). However, the programmay reuse the same instruction

to operate on public and secret data in different situations. For

example, the memset function might be called to set either public or

secret data objects, where we want to relocate them with different

offsets. Note that on the caller side, we may know more context

information such as whether the data object is secret or not. Hence,

we choose TransPtr rather than TransOp to transform those store

instructions in memset bymodifying the pointer argument passed to

memset, so that all the store instructions inside the memset function
can automatically access the designated region.

On the other hand, when applying TransPtr to shift a base

pointer, all load/store operands using the same base pointer will

shift their target addresses. In other words, all memory slots ref-

erenced by the same base pointer will be relocated together by

TransPtr, so it is only suitable for the case where those referenced

slots share the same taint type. For example, a function may access

a struct that contains both secret and public fields (slots) through

the same base pointer of the struct. In this case, we use TransOp to

avoid relocating the public slots.

One important case worth discussing is about translating mem-

ory accesses to slots referenced by the stack pointer. On the one

hand, the stack pointer, stored in rsp, is used to reference different

memory slots on the function’s local stack, including both tainted

and untainted ones. So, we should not apply TransPtr to transform
the stack pointer. On the other hand, the program may pass base

pointers of stack objects as arguments to functions such as memset.
These pointers are stored in registers such as rdi according to

x86-64’s calling convention, and they are only used to access the

corresponding data objects instead of arbitrary slots on the stack.

Hence, although the pointer points to the stack, we can still apply

TransPtr as long as all slots within the corresponding object share

the same taint.

7.2 Transformation Details

Determine transformation strategy. The first step of our trans-

formation is to decide which transformation strategy to use for

each memory access. We first determine the strategy for each mem-

ory slot and transform all memory accesses to that slot with the

slot’s strategy. Given a function with input memory type M, we

generate a map 𝜔 : dom(M) → {TransOp, TransPtr} that maps

each memory slot to its transformation strategy.

Following the discussion of the pros and cons of TransPtr and

TransOp in Section 7.1, we propose the the following approach to

decide which strategy to use: 𝜔 (𝑠) = TransPtr if and only if (1) 𝑠

is referenced by a pointer passed through a function argument, and

(2) all slots in M referenced by this pointer have the same taint

type.
1

Transform load/store operands. Next, our transformation uses

a pass Cop to transform all load/store operands that access mem-

ory slots with transformation strategy TransOp. For each memory

operand, denoted as 𝑖𝑑 (𝑟𝑏 , 𝑟𝑖 , 𝑖𝑠 )𝑠,𝜏 , 𝑠 is the memory slot accessed

by the operand, and 𝜏 is the slot taint type. If 𝜔 (𝑠) = TransOp and

𝜏 ≠ 0 (i.e., the slot might be tainted), Cop will rewrite the operand to
𝛿+𝑖𝑑 (𝑟𝑏 , 𝑟𝑖 , 𝑖𝑠 ) so that its target address is shifted by 𝛿 and relocated
to the secret region.

For instructions that perform load/storewithout explicit load/store

operands in their ISA representations (e.g., pushq, popq), Cop also
synthesizes the transformed behavior accordingly. Specifically, for

simplicity, wewill use pushsecq and popsecq to represent push/pop
on the secret stack, which will be synthesized to valid x86-64 in-

structions in the final transformed program.

Transform pointer arguments.We define another pass Cptr to
perform TransPtr, which transforms pointer arguments passed to

each callee function accordingly so that they use the transformed

pointer to access designated regions. Specifically, from the callee

function’s perspective, if a pointer argument references tainted

slots with transformation strategy TransPtr, it should be shifted

by 𝛿 by the caller at the call site, and no transformation is needed

1
We also require that for slot 𝑠 where its base pointer is a function argument and

𝜔 (𝑠 ) = TransOp, its taint type is constant (0 or 1).
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1 fchild:
2 pushsecq %r12
3 ...
4 popsecq %r12
5 # r12 is
6 # from tainted
7 # stack
8

(a) r12 → tainted

fparent_sec:
pushsecq %r12𝑠+𝛿,𝜏

movq $sec, %r12

callq child

popsecq %r12𝑠+𝛿,𝜏

(b) Secret r12

fparent_pub:
pushsecq %r12𝑠+𝛿,𝜏

movq $ptr, %r12
movq %r12, (%rsp)𝑠,0

callq child
movq (%rsp)𝑠,0, %r12
movq %rax, (%r12)
popsecq %r12𝑠+𝛿,𝜏

(c) Public r12

Figure 11: Restore callee-saved registers’ taint

on the callee side. On the caller side, if the transformation strategy

of the slots referenced by the same pointer is also TransPtr, we
further propagate the transformation responsibility to the caller’s

call site. On the other hand, if the transformation strategy of those

slots is TransOp, then the pointer is not transformed yet, so we

need to add 𝛿 to the pointer argument when passing it to the callee.

Restore callee-saved registers’ taint. With Cop and Cptr, our
transformation can ensure that all memory operands accessing

secret data on the stack are redirected to accessing the secret stack.

However, recall that TransOp shifts a memory operand’s target

address to the secret stack as long as the corresponding memory

slot has taint type 𝜏 ≠ 0 (i.e., it might be tainted). In other words,

our transformation may conservatively redirect memory accesses

to the secret stack even though they may operate on the public data

under some circumstances, causing performance loss.

Specifically, each function usually saves callee-saved registers

to its stack if needed, restoring them before returning to the call

site. Since the callee-saved registers can be tainted or untainted de-

pending on the call site, we transform the function to always push

them to the secret stack to avoid potential leakage. For example, in

Figure 11, fparent_sec calls fchildwith one callee-saved register

r12 containing secret data, while fparent_pub calls fchild with
r12 containing a public pointer. We then transform fchild to save

r12 to the secret stack. As a result, when returning to fparent_pub
after calling fchild, r12 is marked as tainted by a processor with

coarse-grained memory taint tracking and secure speculation. Since

r12 is used as the store address on line 7, and the processor de-

lays speculative memory accesses with tainted addresses to avoid

leaking secrets, this store will be delayed until the commit stage,

hurting performance.

We introduce another pass Ccallee that saves public callee-saved
registers to the public stack before each call and retrieves them

afterward. Ccallee guarantees that when running the transformed

program on a machine that does coarse-grained taint tracking, the

callee-saved registers are never overtainted after function calls.

Extra stack space need not be allocated. As shown in Figure 11c,

fparent_pub pushes r12 to the secret stack slot 𝑠+𝛿 before using it,
while the corresponding slot 𝑠 on the public stack is unused. Thus,

we can use 𝑠 to save and restore the public value in r12 before and

after calling fchild (highlighted in Figure 11c).

Note that although Ccallee helps avoid unnecessary delays on

speculation, it inserts extra instructions into the program and may

cause performance overhead. We will evaluate this tradeoff by

measuring the performance with and without Ccallee in Section 8.2.

7.3 Transformation Soundness

Functional Correctness. First, we define a simulation relation

𝑃,P ⊢ 𝑆 ′ ≺ 𝑆 , which correlates abstract machine states running

the transformed program and the original program 𝑃 . Intuitively,

the simulation relation maps the relocated memory data objects in

the transformed program’s state to those in the original program’s.

It also requires that paired objects and registers in the two states

have matching values as long as they are not pointers that might

be changed by TransPtr.
Denoting our overall transformation as C, we can formalize the

functional correctness of our transformation using the following

theorem.

Theorem 4 (Functional Correctness). If 𝑃,P ⊢tal 𝑆 and

𝑃,P ⊢ 𝑆 ′ ≺ 𝑆 , then there exists 𝑆1 and 𝑆 ′
1
such that 𝑆

inst−−→ 𝑆1,

𝑆 ′
C (inst )
−−−−−→

∗
𝑆 ′
1
, and 𝑃,P ⊢ 𝑆 ′

1
≺ 𝑆1; or 𝑆 and 𝑆 ′ are termination states.

Public Noninterference. Next, we briefly justify that the trans-

formed program satisfies software public noninterference. In our

transformation, we pick the address shift 𝛿 so that |𝛿 | is larger than
the input program’s maximum stack size. Then, we can denote the

original stack region as 𝑠pub = [sp
init

+ 𝛿, sp
init

) and the new secret

stack region as 𝑠sec = [sp
init

+ 2𝛿, sp
init

+𝛿), where sp
init

is the stack

base. Intuitively, C will apply either TransOp or TransPtr to en-

sure that every instruction that accesses the original stack 𝑠pub and

operates on tainted data will have its target address shifted by 𝛿 and

access the secret stack 𝑠sec instead. Hence, C successfully ensures

that the transformed program never stores secrets to the public

stack region, thereby satisfying software public noninterference.

Detailed formalization of the transformation and proof for the

two properties can be found in [55], where we focus on the proof

for major passes Cop and Cptr and omit details for the optional pass

Ccallee that is relatively more straightforward.

8 Evaluation

8.1 Implementation and Experiment Setup

SecSep Toolchain.We implement a prototype toolchain in OCaml,

using Z3 [20] as the SMT solver. It includes (1) a parser for SecSep’s

C source code annotations, (2) a parser for compiled x86-64 assem-

bly programs, (3) type-inference rules and algorithms (Section 6),

(4) a checker that validates inferred types against typing rules (Sec-

tion 5.2), and (5) transformation based on inferred types (Section 7).

This prototype is designed to cover the instructions in the bench-

marks used for evaluation, and can be extended to support more

instructions if needed. The toolchain incorporates LLVM/Clang to

compile both the original and the transformed benchmark.

Hardware Defense. We implement our hardware-defense part

in gem5 simulator v22.1 [10, 38] replicating the defense idea from

ProSpeCT [19]. Specifically, modules including ROB, register file,

scheduler (InstructionQueue), load/store queue, and branch squash
logic (Commit, IEW) are modified to support taint tracking and to

delay transmitter instructions that leak secrets. We apply a microar-

chitecture configuration similar to that used in prior work on secure

speculation [17]. We model an 8-issue out-of-order superscalar pro-

cessor with 32 load-queue entries, 32 store-queue entries, and 192

ROB entries. We use a tournament branch-prediction policy with
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(b) Comprehensive overhead with hardware defense enabled
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Figure 12: Execution-time overhead of transformed programs relative to original programs. * means the scheme is not secure.

4096 BTB entries and 16 RAS entries. The memory system models

a 32 KB 4-way L1 I-cache, a 64 KB 8-way L1 D-cache, and a 2MB

16-way L2 cache, with 64 B cache lines.

Experiment Setup.Weevaluate SecSep on six cryptographic bench-

marks: our own implementation of salsa20 and five other bench-

marks from BoringSSL [25] (sha512, chacha20, poly1305, x25519
and ed25519_sign). ed25519_verify is excluded due to the cur-

rent lack of declassification support, which can be implemented

with minor extensions (see Section 9). To minimize the instability

due to cold caches, each benchmark is modified to repeat its main

routine 100 times. In addition, we apply slight changes to some of

the benchmarks, the details of which can be found in [55].

We conduct our experiments on a test platform equipped with an

Intel® Core™ i9-14900K CPU. Benchmarks are transformed using

𝛿 = −8MB and simulated in gem5 under syscall-emulation mode.

8.2 Performance of Transformed Programs

We evaluate and compare the performance overhead of the follow-

ing four transformation schemes:

(1) ProSpeCT (public stack): Manually annotate and relocate secret

stack variables, while treating the original stack as public. Note

that it cannot relocate secret stack spills and thus is insecure.

(2) ProSpeCT (secret stack): Manually relocate public stack vari-

ables while treating the original stack as secret. This approach

conservatively protects any register spills and thus is secure.

(3) SecSep (no Ccallee): Perform transformation passes Cop and Cptr.
(4) SecSep: Perform all transformation passes, Cop, Cptr, and Ccallee.
Software Overhead. We compare the execution time of trans-

formed programs running on unmodified hardware, scaled to the

execution time of the original program, shown in Figure 12a. This is

to understand the software overhead introduced by the additional

or transformed instructions and their microarchitectural impacts.

On average, all the schemes have relatively low overhead below

4.2%, with ProSpeCT (public stack) having the highest overhead and

SecSep (no Ccallee) having a close-to-zero overhead. The performance

difference mainly comes from the number of extra instructions

introduced during transformation and whether the transformed

program accesses regions far from the stack, which can result in

worse cache performance.

Comprehensive Overhead. We now examine the execution time

of the transformed programs on hardware equipped with the de-

fense, shown in Figure 12b. This is to understand how precisely

each transformation separates secret/public data and the combined

overhead introduced by software and hardware.

Benchmark ProSpeCT (pub stack) SecSep
Name LOC #F #F’ #Var #Anno #Arg #Anno

salsa20 72 5 3 9 (5) 4 (2) 6 5

sha512 290 16 3 24 (2) 14 (1) 6 5

chacha20 100 7 3 8 (7) 4 (3) 8 7

x25519 1034 41 5 361 (11) 335 (4) 10 7

poly1305 314 11 7 33 (32) 26 (25) 11 74

ed25519_sign 2314 72 11 512 (77) 476 (69) 25 24

Table 1: Comparison of annotation efforts between ProSpeCT

and SecSep. #F denotes the number of functions present in the

benchmark, while #F’ denotes the number of functions called

during the execution of the benchmark. #Var denotes the

number of stack variables that need to be examined for cor-

rect annotation in ProSpeCT, and #Arg denotes the number

of function arguments examined by SecSep. #Anno reports

the number of lines of annotation.

On average, SecSep achieves the lowest overhead of 1.2% among

all schemes, while ProSpeCT (secret stack) can incur as high as

151.1% overhead. Compared to other secure schemes, SecSep ben-

efits from a more precise secret/public data separation, thereby

minimizing overtainting and enabling efficient execution when

the defense is enabled. ProSpeCT (public stack) also achieves low

overhead. However, its performance gains stem from undertainting,

which compromises security. Nevertheless, it remains slower than

SecSep, likely due to the notable software overhead shown in 12(a).

Effect of C
callee

. To assess the role of Ccallee, we compare SecSep (no

Ccallee) with SecSep. When Ccallee is absent, the software overhead
is lowered by 0.9%. However, a significant overhead increase of

25% occurs when the hardware defense is enabled, highlighting

the severity of overtainting caused by called routines. Therefore,

despite adding extra instructions, Ccallee is essential for efficient

secure speculation. Hence, we include it as a key component in

SecSep’s standard transformation scheme.

8.3 Manual Effort

Wealso compare themanual effort required by ProSpeCT and SecSep

to annotate the source code for transformation as shown in Table 1.

We focus on ProSpeCT’s public-stack scheme, as it exhibits efficient

execution and can be secure for certain benchmarks [19]. ProSpeCT

requires examining stack variables in all functions (denoted as F),

while SecSep only requires examining arguments of functions in

the binary’s call graph (denoted as F’). For fair comparison, we
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also count the stack variables and ProSpeCT annotations when

examining only F’, with these numbers enclosed in parentheses.

Note the number of SecSep annotations grows linearly with the

number of function arguments, because SecSep only requires identi-

fying the memory layout and taint types of all function arguments

for functions called during the execution of an application (F’).

The annotation burst in poly1305 is due to the frequent use of a

17-field structure as function arguments, while 14 of them share

identical attributes and thus identical annotations. Writing SecSep

annotations takes low effort since cryptographic functions usually

have clear interfaces and seldom use complex data structures with

unpredictable sizes (e.g., linked lists).

We also observe that the number of variables to examine using

ProSpeCT (#Var) is generally higher than the number of function

arguments to examine using SecSep (#Arg), even when the scope

is restricted to F’ when counting #Var. This pattern indicates that

SecSep places less burden on the user by requesting only function-

interface-level annotations to harden cryptographic programs.

9 Limitations and Future Work

While SecSep offers appealing features to rewrite assembly pro-

grams and separate secret/public data automatically, we acknowl-

edge that it has several limitations worth discussing. First, we use

heuristic-based type inference to transform assembly programs

compiled by the off-the-shelf compiler LLVM, where the heuris-

tics are developed through an empirical review of these assembly

programs. The limitation is that it is not guaranteed to handle all

possible assembly code patterns, and we need new heuristics for

new compiler optimizations. This limitation can be alleviated by

more engineering effort to derive better heuristics.

Second, our inference algorithm relies on extra information (e.g.,

memory layout, valid regions, and taint) provided by source-code

annotations to generate types. On the one hand, it is relatively

straightforward for the programmer to provide these annotations

since they only need to emphasize the high-level meanings of func-

tion arguments. On the other hand, we acknowledge that extra

manual effort is required to go through each function argument,

thereby increasing the barrier to using our tools (evaluated in Sec-

tion 8.3). Future work might be conducted to improve the inference

algorithm to lift the need for these manual annotations.

Third, we provided a prototype to demonstrate the overall idea,

while more features could be supported to improve the usabil-

ity of our tool. For example, declassification is an essential no-

tion in cryptographic programs supported by prior works such as

ProSpeCT [19] but not included in our type system. To extend our

prototype to support declassification, one can define a special func-

tion that takes a secret input and writes it to a given address in the

public region (passed as an argument of the function). The function

is excluded from type inference and checking, so the program can

call this function to write secrets to public regions for declassifi-

cation. SecSep can also be improved to be compatible with more

programs by supporting dynamically linked libraries and handling

analysis with dynamically allocated heap data and pointer type

casting.

10 Related Work

We first discuss prior works on typed assembly language to justify

the novelty and contribution of Octal. Next, we discuss prior mit-

igations, including software and hardware approaches, that aim

to protect cryptographic programs against speculative-execution

attacks. We also discuss prior work that transforms programs to

separate secret and public data via a compiler approach.

Typed assembly language. Prior works [24, 27, 41–43] propose

typed assembly language (TAL) and type-preserving compilation

from high-level programs to TAL, where the types help guarantee

the security of assembly programs. Instead of compiling high-level

programs to generate assembly programs, SecSep rewrites assembly

programs generated by an off-the-shelf compiler (LLVM) while us-

ing inferred types to guarantee security and functional correctness.

Hence, the transformed programs still benefit from the optimiza-

tions of realistic compilers.

Jiang et al. [33] also propose a type system and corresponding

type-inference algorithm for assembly programs. Their type system

introduces more accurate information-flow tracking at bit granular-

ity and helps detect side-channel vulnerabilities in cryptographic

libraries. Note that the soundness of their type system relies on an

assumption of memory safety, while our type system accurately

tracks possible address ranges of each memory access and guaran-

tees memory safety.

Other prior works [6, 8, 54] design information-flow type sys-

tems to guarantee that well-typed programs satisfy speculative

constant time and implement their approaches in the Jasmin frame-

work [3]. In this framework, the developers directly program in

Jasmin, an assembly-like programming language, which requires

more manual effort compared with programming in higher-level

languages such as C and is not compatible with some off-the-shelf

cryptographic libraries such as BoringSSL [25].

Software mitigations against Spectre. Several prior works [6, 8,

16, 44, 45, 47, 53, 54, 56, 66] harden cryptographic programs against

Spectre attacks by analyzing the programs’ speculative control flow

and blocking insecure speculation at the software level, e.g., by

memory-fence insertion or speculative load hardening (SLH) [12].

Many of these approaches [16, 44, 45, 47, 56, 66] introduce large

performance overhead since they unavoidably block safe specu-

lation conservatively when blocking insecure speculation. Other

works [6, 8, 53, 54] managed to achieve speculative noninterfer-

ence with marginal overhead by applying SLH intelligently, but

they are built upon research-prototype source languages such as

FaCT [15] or Jasmin [3, 4], thereby not compatible with off-the-

shelf cryptographic libraries such as BoringSSL [25]. Furthermore,

many of them [8, 16, 47, 53, 54, 56, 66] only consider speculation

at conditional branches in their speculative control-flow analysis,

so they cannot prevent leakage introduced by other speculation

primitives [14, 30, 32, 35, 36, 49].

Hardwaremitigations against Spectre. Prior works [7, 17, 37, 58,

64, 65] adopt hardware taint tracking and delay speculative opera-

tions that transmit secrets. These pure hardware solutions require

no software changes but face challenges in identifying secret data in

memory. STT [65] and others [7, 58, 64] only consider speculatively

loaded data as secrets, while leaving nonspeculatively loaded data

unprotected, thereby not guaranteeing constant time [31]. SPT [17]
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solves this problem by considering all data loaded from memory

as tainted and only marking data as public if it is transmitted by

the program nonspeculatively, but it introduces complex hardware

changes to achieve good performance.

The authors of ProSpeCT [19] and others [23, 50] propose to

make the software separate secret and public data into coarse-

grained regions so that the hardware can easily identify secrets.

Our paper provides an assembly-rewriting approach to generating

programs satisfying this requirement, which offers more accurate

separation and requires less manual effort.

Compiler approach to separate secret and public data. Conf-

LLVM [11] also uses a transformation technique that separates

secret/public stack data into different regions. However, its static

analysis cannot guarantee a program never writes secret data to the

public region, so it relies on inserted run-time checks to ensure the

correctness of the separation, which introduces extra overhead.

11 Conclusion

This paper proposed Octal, a new variant typed assembly language

that helps rewrite cryptographic programs so that they split their

secret and public data across coarse-grained memory regions. We

provide a heuristic inference algorithm to infer the types of off-

the-shelf cryptographic programs and automate the transformation

process. The transformed programs enable hardware with fine-

grained taint tracking at the register level and coarse-grained taint

tracking at the memory level to achieve secure speculation with

low performance overhead.
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