
80

C4: Verified Transactional Objects

MOHSEN LESANI, University of California, Riverside, USA

LI-YAO XIA, University of Pennsylvania, USA

ANDERS KASEORG,Massachusetts Institute of Technology, USA

CHRISTIAN J. BELL,Massachusetts Institute of Technology, USA

ADAM CHLIPALA,Massachusetts Institute of Technology, USA

BENJAMIN C. PIERCE, University of Pennsylvania, USA

STEVE ZDANCEWIC, University of Pennsylvania, USA

Transactional objects combine the performance of classical concurrent objects with the high-level programma-

bility of transactional memory. However, verifying the correctness of transactional objects is tricky, requiring

reasoning simultaneously about classical concurrent objects, which guarantee the atomicity of individual

methodsÐthe property known as linearizabilityÐand about software-transactional-memory libraries, which

guarantee the atomicity of user-defined sequences of method callsÐor serializability.

We present a formal-verification framework called C4, built up from the familiar notion of linearizability

and its compositional properties, that allows proof of both kinds of libraries, along with composition of

theorems from both styles to prove correctness of applications or further libraries. We apply the framework

in a significant case study, verifying a transactional set object built out of both classical and transactional

components following the technique of transactional predication; the proof is modular, reasoning separately

about the transactional and nontransactional parts of the implementation. Central to our approach is the use

of syntactic transformers on interaction treesÐi.e., transactional libraries that transform client code to enforce

particular synchronization disciplines. Our framework and case studies are mechanized in Coq.

CCS Concepts: • Software and its engineering→ Software libraries and repositories; • Theory of

computation→ Program verification.

Additional Key Words and Phrases: concurrency, objects, linearizability, serializability, verification

ACM Reference Format:

Mohsen Lesani, Li-yao Xia, Anders Kaseorg, Christian J. Bell, Adam Chlipala, Benjamin C. Pierce, and Steve

Zdancewic. 2022. C4: Verified Transactional Objects. Proc. ACM Program. Lang. 6, OOPSLA1, Article 80

(April 2022), 31 pages. https://doi.org/10.1145/3527324

1 INTRODUCTION

Two styles of concurrency have been studied intensively from a formal-methods perspective. On the
one hand, we have classic data structures (e.g., stacks, queues, dictionaries) that rely on primitives
like locks and compare-and-set instructions to guarantee atomicity of their methods; we might
call these single-method-atomic data structures. On the other hand, there is a separate tradition of

Authors’ addresses: Mohsen Lesani, University of California, Riverside, USA; Li-yao Xia, University of Pennsylvania, USA;

Anders Kaseorg, Massachusetts Institute of Technology, USA; Christian J. Bell, Massachusetts Institute of Technology, USA;

Adam Chlipala, Massachusetts Institute of Technology, USA; Benjamin C. Pierce, University of Pennsylvania, USA; Steve

Zdancewic, University of Pennsylvania, USA.

© 2022 Copyright held by the owner/author(s).

2475-1421/2022/4-ART80

https://doi.org/10.1145/3527324

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 80. Publication date: April 2022.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3527324
https://doi.org/10.1145/3527324

80:2 M. Lesani, L. Xia, A. Kaseorg, C. Bell., A. Chlipala, B. Pierce, and S. Zdancewic

transaction-based APIs, which guarantee atomicity of chains of method calls; let us call them multi-

method-atomic. In broad strokes, single-method atomicity is appealing for its superior performance,
while multi-method atomicity is appealing for its simpler programming model.

Sometimes it is useful to break a complex concurrent application into pieces written in both of
these styles [Assa et al. 2020; Elizarov et al. 2019; Spiegelman et al. 2016], but no one had previously
shown how to prove functional correctness of such applications. We remedy this gap with a new
framework for modular proofs of programs that mix the two styles. Proofs in this domain are
intricate enough that machine checking is invaluable, so we present our framework as a Coq library.
As a motivating case study, we focus on transactional predication [Bronson et al. 2010]. The

idea behind data structures implemented in this styleÐtypically finite sets or mapsÐis to combine
software transactional memory (STM) [Harris et al. 2005; Shavit and Touitou 1995], which provides
good compositionality and reasoning properties but is relatively inefficient, with a concurrent data
structure that exhibits good performance but provides a noncomposable interface. Instead of storing
the entire data structure in transactional memory, we store predicates about the data structureÐ
Boolean-valued mutable references indicating the membership of particular elements in the set.
Updates to the predicates reflect actual changes to the data structure, while a nontransactional
concurrent object manages the mapping between keys and predicates; this split reduces conflict
detection to the STM’s detection of write-write and read-write collisions. The challenge is finding
a framework that supports ergonomic proofs involving both kinds of mechanisms.

A growing community of łprogrammer-provers” have learned to be effective at proving properties
of code written in the native programming languages of various proof assistants. These native
languages tend to be purely functional, but frameworks like interaction trees [Xia et al. 2020] have
demonstrated how to extend the lightweight combination of programming and proof that arises
naturally for pure functional programs to situations involving a range of computational effects.
Unfortunately, when we include concurrency the complexity of reasoning increases dramatically.

To add concurrency on top of a proof assistant’s native functional language and proof tools, we
organize code into layered collections of concurrent objects whose specifications force all methods
to behave atomically; in this setting we support a variety of concurrency styles, principally those
associated with traditional linearizable concurrent data structures and serializable transactional
memory. To support transactions, we introduce a novel technique of passing code reified as interaction
trees and applying instrumentation functions to transform those trees.
For example, consider a concurrent stack object with methods push and pop. If such an object

has been proven linearizable against a natural specification, clients can treat calls to push and pop

as atomic, ignoring their actual implementations, which might use tricky fine-grained primitives
like compare-and-swap. However, one level up, clients do still need to reason about the ways that
sequences of calls to push and pop can nondeterministically interleave. Consider the following
function, which transfers the elements of one concurrent stack to another:

moveStack(from, to) ≔ vo← from.pop();

match 𝑣𝑜 with None⇒ return ()

| Some(𝑣) ⇒ moveStack(from, to); to.push(𝑣)

Multiple calls to moveStack from different client threads may interleave their invocations of push
and pop.
The complexity of reasoning about concurrent objects is one reason why transactions [Harris

et al. 2005; Herlihy and Moss 1993; Papadimitriou 1979; Shavit and Touitou 1995] have become a
popular concurrency abstraction. Transactions allow the programmer to declare that a particular
block of code must be run atomically, leaving it to the compiler and/or runtime protocol to figure
out how to provide this atomicity both soundly and efficiently.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 80. Publication date: April 2022.

C4: Verified Transactional Objects 80:3

Software transactional memory is probably the best-known realization of this idea in the
functional-programming world. It allows programmers to write code like

moveStackAtomically(from, to) ≔ asTransaction(𝜆_. moveStack(from, to))

where the call to moveStack is wrapped in a thunk and passed to a library procedure that promises
to run such thunks atomically.

Our goal is to blend transactions and classical concurrent objects into a unified concurrent-object
framework. In particular, we want to capture transaction protocols as objects that accept user
transactionsÐthunks that chain calls togetherÐand execute them atomically. Further, we want
to express the correctness of such objects in terms of linearizability, so that we can compose our
verified transactional objects with other verified linearizable objects.

Our key technical advance is making the structure of concurrent programs more syntactic by
using a free monad to represent syntax trees and executing them later with an explicit interpreter.
We begin with interaction trees [Xia et al. 2020], which have demonstrated this style for sequential
programs, and show how to adapt them for linearizability proofs of concurrent objects. Interestingly,
in this setting, serializability (the classical transaction correctness condition [Papadimitriou 1979])
turns out to be literally a special case of linearizability for objects whose higher-order methods take
code (represented as interaction trees) as arguments. Note the contrast with familiar correctness
criteria for transactions, which are typically stated as ad-hoc conditions [Doherty et al. 2013;
Guerraoui and Kapalka 2008; Jagannathan et al. 2005; Papadimitriou 1979; Scott 2006].
To make this framework more efficient, our library methods perform syntactic transformations

on their interaction-tree arguments. For example, consider how asTransaction might transform the
tree of method calls moveStack wishes to perform. After inlining a bit of library code, we first see
insertion of code for initialization (beginTransaction) and finalization (commitTransaction, etc.).

moveStackAtomically(from, to) ≔ _← beginTransaction;

r ← moveStack′(from, to);

match 𝑟 with None⇒ abortTransaction

| Some(𝑟) ⇒ _← commitTransaction; return(𝑟)

The library builds an instrumented routine moveStack′, which looks just like moveStack but with
calls to instrumented methods like from.pop′() instead of from.pop(), where from.pop′() is a modi-
fied version of from.pop() like the following,

pop() ≔ ...; (* Original code: *)

v ← read (𝑖); 𝑘 (𝑣)

pop′() ≔ ...; (* Instrumented code: *)

vo← trans_read (i);

match vo with None⇒ return(None)

| Some(𝑣) ⇒ k′(v)

and where the remaining method body k has been transformed similarly to yield 𝑘 ′. Crucially, the
free monad represents programs explicitly as trees of method calls and responses to their return
values, allowing us to traverse these trees syntactically and add uniform instrumentation.

Recapping, we adopt linearizable objects as the foundation of our framework. An object packages
concurrent code with private state to implement public methods, and it is verified with respect to a
sequential specification. The framework supports modular implementation and verification of con-
current libraries that include both classic linearizable data structures and serializable transactional
objects. It formulates serializability in terms of linearizability and offers a unified proof technique
where all library modules are proved linearizable against straightforward sequential specifications.

The modular nature of the framework fits our goal of verifying transactional predication. The
basic idea, presented in more detail in the next section, is to combine a concurrent map with a
transactional-memory library, yielding a higher-level transactional concurrent map abstraction.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 80. Publication date: April 2022.

80:4 M. Lesani, L. Xia, A. Kaseorg, C. Bell., A. Chlipala, B. Pierce, and S. Zdancewic

While the map we build on provides atomicity only at the level of single-key reads and writes,
the higher-level map allows grouping of several dependent reads and writes in transactions. The
underlying concurrent map is used to associate keys with references to mutable memory cells
managed by the transactional-memory system. As a result, key lookups have the performance of
the concurrent map, while the values associated with several keys can be read or written within a
single atomic transaction. Each of these main ingredients is itself constructed atop more primitive
library modules with their own sequential specifications and is separately verified.
In summary, our key contributions are:

• We present a core formal framework for verified linearizable objects whose methods are
expressed as interaction trees [Koh et al. 2019; Xia et al. 2020; Zakowski et al. 2020]. The
framework includes powerful composition combinators to define implementations and specifi-
cations and verify implementations (ğ2 to ğ4), modularly. A key component of the framework
is a unified proof principle for linearizability (ğ5), which we demonstrate by verifying a
concurrent hash-map object (ğ6) and a concurrent histogram (ğ7).
• Within this framework, we introduce verified transactional objects. The key idea is to view
transactions as first-class entities, represented as interaction trees, and use interaction-tree
rewriting to instrument transactions with the bookkeeping calls required to ensure atomic
execution.We use the composition operations defined earlier to state transaction serializability
as an instance of linearizability. We then apply the proof principle for linearizability to prove
the serializability of a transactional-memory object based on transactional mutex locks (TML)
[Dalessandro et al. 2010] (ğ8).
• We use this framework to carry out a significant case study, leveraging its support for
compositional reasoning to verify a concurrent-set object implemented using transactional
predication (ğ9). To our knowledge, this correctness proof is the first rigorous oneÐmechanized
or otherwiseÐfor a concurrent object that encapsulates both a conventional concurrent data
structure and a transactional-memory implementation.
• We package our verification framework as a reusable Coq library called C4 (for Certified
Composable Concurrency in Coq) [Lesani et al. 2022], proved correct from first principles.
C4 mechanizes everything presented in the paper, including the main case study and all its
dependencies. The library is submitted as a code supplement.

We survey related work in ğ11 and conclude with future directions in ğ12.

2 OVERVIEW

We begin by fixing terminology and notation for some standard concepts, using the example of a
simple concurrent counter; then we review the core idea of transactional predication.
Objects. We speak of objects encapsulating some state which is accessed through methods

grouped into interfaces. An object implements a high-level interface by issuing a sequence of calls to
a low-level interface. A core assumption, which significantly simplifies our composition laws, is that
object methods may not spawn new threadsÐi.e., concurrency arises at the level of applications,
not internally in libraries.

inc ≔ 𝑖 ← 𝑟 .read ();

ok ← 𝑟 .cas(𝑖, 𝑖 + 1);

if ok then 𝑖 + 1 else 𝑖𝑛𝑐

Fig. 2. inc method

Consider an object with just one method, inc, which increments
an abstract counter and returns its new value. We can implement
this object in terms of a compare-and-swap (CAS) register interface,
with methods read, write, and cas (Figure 2). Multiple application
threads may call inc simultaneously. For example, Figure 1(a) shows a possible execution history
starting with two calls to inc in two concurrent threads, displaying interactions through the
counter’s high- and low-level interfaces. Time flows vertically. Horizontal arrows are eventsÐeither

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 80. Publication date: April 2022.

C4: Verified Transactional Objects 80:5

Counter

CAS

Register

inc

inc

read

read

1

1

cas 1 2

cas 1 2

true

false

read

2

cas 2 3

true

2

3

Abstract Counter

inc

inc

2

3

Sequential
Spec

Time

State = 1

(a) (b) (c)

Counter Impl Abstract CAS Register

inc

inc

read

read

1

1

cas 1 2

cas 1 2

true

false

read

2

cas 2 3

true

2

3

Sequential
Spec

State = 2

State = 3

inc

inc

State = 1

State = 2

State = 3

cas 1 2

read

read

read

cas 1 2

cas 2 3

Fig. 1. (a) A possible execution history of a counter object implemented using a CAS register object. (b) A

linearization of the high-level history. (c) A linearization of the low-level history.

method calls (rightward arrows) or returns (leftward arrows). Calls from the external environment
to the counter object are on the left; calls from the counter to the underlying CAS register object are
in the middle of the diagram. Events in thread 1 are shown in red (and normal font); events of thread
2 are blue (and italic). In this execution, both threads first execute read and get the same value back.
Both then try to compare-and-swap, but only one of them (thread 2) succeeds, incrementing the
counter once. Thread 2 returns the value of the counter, now at 2. Thread 1 tries again and finally
succeeds, incrementing the counter to 3. The counter object translates single calls from its own
clients (on the left) into multiple calls to its low-level interface (on the right).
Objects and linearizability. A sequential specification describes the high-level behavior of an

object when its methods are executed sequentially, waiting for each to return before calling the next
one. Formally, a sequential specification for a given interface is defined as a labeled state-transition
system, where the labels are pairs of method calls and return values. Alternatively, a sequential
specification can itself be viewed as an idealized łatomic object,” whose methods execute fully and
return their results as soon as they are called. We say that an object is linearizable [Herlihy and
Wing 1990] with respect to a sequential specification when every method invoked on the object
appears to execute atomically at some point between its call and its return, matching the behavior
of the method call from the sequential specification. (We will formally define linearizability and its
properties in ğ4.) For example, Figure 1(b) shows how the high-level history of the counter object
in Figure 1(a) can also be produced by a sequence of atomic interactions with an idealized counter
shown in lighter gray: the idealized counter responds first to thread 2 and then to thread 1.

So far, we have focused on one side of interfaces, where an object acts as the callee of its high-level
interface (here, inc); the object must satisfy the high-level sequential specification that is associated
with the interface. The object also acts as the caller of its low-level interface (here, read and cas),
which is itself associated with a low-level sequential specification that the object can rely on in
order to satisfy its high-level specification. In the example, our counter object interacts, through its
low-level interface, with a CAS-register object that it assumes is linearizable with respect to its own
sequential specification. Figure 1(c) shows a linearization of the low-level history from Figure 1(a).

Transactions and serializability. An appealing feature of linearizable objects is that, in every
layer of a hierarchical system and its proofs, every object is proved against a straightforward

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 80. Publication date: April 2022.

80:6 M. Lesani, L. Xia, A. Kaseorg, C. Bell., A. Chlipala, B. Pierce, and S. Zdancewic

sequential specification of the objects it depends on. In the example, when proving the linearizability
of the counter object, we can restrict attention to histories where low-level method calls return
immediately, allowing us to reason about many fewer interleavings than if we had to consider the
actual implementations of read and cas. However, while the methods of a linearizable object are
logically atomic, clients must still reason about possible interleavings of sequences of calls.
A more user-friendly model of concurrency is offered by transactional memory, which allows

client programmers to choose the granularity of atomic actions, delimiting blocks of client codeÐ
possibly containing multiple callsÐthat must execute atomically as wholes, a requirement called
serializability. We will model transactional memory’s correctness as a special case of linearizability:
atomic transactions can be viewed as calls to the methods of a linearizable object, where the
arguments to those methods consist of programs to be interpreted (atomically). A program is an
interaction tree that may include method calls on an interface. One familiar way to implement
such an object is to interpret transactions in an environment where conflicts can be detected and
transactions can be rolled back. We will formalize this approach (in ğ8) as a form of łtransaction
instrumentation,” inserting łtransaction life-cycle” method calls.

Transactional objects. The fine-grained conflict detection of transactional-memory protocols
can hinder performance. Implementations of high-performance transactional objects [Assa et al.
2020; Bronson et al. 2010; Elizarov et al. 2019; Spiegelman et al. 2016] use TM (transactional memory)
only sparingly, to reduce the frequency of łfalse conflicts,” instead delegating most memory accesses
to more efficient concurrent data structures. They achieve the best of both worlds: composability
from TM and performance from concurrent data structures.

Concurrent map

Array of
locks

Array of hash
buckets

CAS register
(timestamp)

Mutable
references

(predicates)

Fine-grained

transactional

interface
Multi-method

atomic interface

Single-method

atomic interfaces

Transactional set

Locator
(mapping keys to TM

locations)

Transactional memory
(transactional mutex lock object)

Fig. 3. The architecture of transactional predication.

An elegant realization of this idea is the
technique called transactional predication

[Bronson et al. 2010]. Figure 3 shows the
internal structure of a transactional-set ob-
ject built in this style. The transactional set
is vertically composed on top of the hori-
zontal composition of two lower-level ob-
jects: a locator (which wraps a concurrent
map) and a TM. The locator maps each ele-
ment that has ever been in the set (whether
or not it is still in the set at the moment) to
a location (a mutable cell) managed by the
TM. A location stores a mutable Boolean
(called a predicate, hence the technique’s
name) that represents whether the element is currently in the set. The locations themselves are
managed by the TM. A locator is a simple concurrent object that is built on top of a concurrent-map
object. (We will later implement a concurrent-map object on top of arrays of locks and buckets
and implement the TM object on top of a register and a map object.) Given an element, the locator
checks whether the element is already in the map. If the element is present, the locator returns the
location that the element is mapped to. If it is not, the locator puts the element and a fresh TM
location in the map.
The interface of a transactional set accepts user programs on the set interface and executes

them atomically. Given a user program, it inserts TM life-cycle calls such as TM initialization and
commitment calls into the program. For each set method call on an element in the user program, the
locator is called to find the location corresponding to that element. A TM read or write method on the
Boolean value stored in that location is performed depending on the set method call (membership,
insert, or delete). A single transaction may access several elements of the set, leading to accesses to

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 80. Publication date: April 2022.

C4: Verified Transactional Objects 80:7

several locations in the TM. Since the TM enforces atomicity of all such accesses to the locations,
the transactional-set object inherits the same atomicity. Accesses to these locations track conflicts
only at the semantic level for the set interface. Contending accesses inside the locator do not lead
to conflicts. By contrast, a set implemented purely based on TM tracks conflicts on the low-level
reads and writes and aborts more transactions.

Verified transactional objects. The use of a concurrent object (the locator) together with a TM
raises significant challenges for verification. The TM guarantees the atomicity of transactions that
use just its own interface, but the methods of the transactional set call methods on both the locator
and the TM. How can the atomicity guarantees of the TM be used to prove the atomicity guarantees
of the transactional set? An important observation is that the locator object behaves like a pure
function, as far as its callers can tell: although the mapping from the keys to the locations is actually
decided dynamically, once a mapping is made, it stays unchanged. We prove simulation relations
that let us substitute method calls on the locator with ordinary function calls in the metalanguage.
This substitution reduces method calls on the transactional set to transactions on the TM interface,
allowing us to apply the atomicity guarantees of the TM directly. (See ğ9 for more detail.)
This proof style assigns each component a natural specification, without anticipating how

other parts of the hierarchy will work. For instance, the specifications of classical concurrent
data structures need say nothing about transactions. Also, the approach is modular: each library
component can be proved separately against its natural specification.

This transactional set can be composed on top of any concurrent map and transactional memory
implementing the given specifications. As concrete examples, this paper also presents concrete
implementations of those specifications to illustrate the core concepts of our framework. We show
a concurrent map using lock striping, which uses an array of locks to protect an array of buckets;
and a transactional mutex lock (TML) object, which uses a compare-and-swap register to increment
timestamps that control concurrent accesses to mutable references.
Structure. Now we are ready to dive into the details. The next section formalizes the ideas of

objects, interfaces, and sequential specifications. ğ4 and ğ5 formalize linearizability, together with
the related concepts of simulation and composition, and ğ6 and ğ7 apply them to verify concurrent
data structures. ğ8 and ğ9 formalize transactions and transactional predication.

3 CONCURRENT OBJECTS

Interfaces. An interface M is a collection of method calls. A method call, for example lookup(𝑘),
intuitively consists of a method name (lookup) paired with its arguments (𝑘)Ðe.g., lookup(1) and
lookup(2) are different method calls. The arguments to methods typically consist of first-order
values (integers, strings), but they may also be programs (described below); indeed, this possibility
will be key to our treatment of transactions in ğ8. Formally, we define an interface as a type𝑀 𝑅

indexed by the return type 𝑅. For instance, the map interface map associating keys of type K with
values of type V can be defined as follows: The type constructor map has two data constructors
get and put. For any key k, there is a method call get(k) : map (optionV), where the result type is
optionV . Similarly, for any key k and value v, there is a method call put(k, v) : map unit.

Programs. Programs are data structures that describe chains, or more generally trees, of method
calls. They play two roles in our framework: as the bodies of methods associated with objects and
as the bodies of transactions. We represent them as interaction trees [Koh et al. 2019; Xia et al. 2020;
Zakowski et al. 2020]Ðintuitively, trees whose internal nodes are method calls, with one branch for
each possible result.

Formally, interaction trees are defined by a datatype with three constructors. The first constructor
represents a method call (uninterpreted, for the momentÐit is just a syntactic node in a data
structure). For example, the tree 𝑥 ← m; 𝑝 (𝑥) is a program that describes making a method call

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 80. Publication date: April 2022.

80:8 M. Lesani, L. Xia, A. Kaseorg, C. Bell., A. Chlipala, B. Pierce, and S. Zdancewic

m, binding the result to the variable 𝑥 and continuing as the program 𝑝 (𝑥), where 𝑝 is a function
from values to interaction trees. The second type of node, written 𝜏 , represents a silent step of
computation. For instance, 𝜏 ;𝑝 is a program that steps silently to the program 𝑝 . Finally, a program
may be just a return leaf, written 𝑣 , where 𝑣 is the program’s result value.

This encoding of programs is important for the flexibility of the Coq framework. First, program
trees are coinductive and hence potentially infinite, as required, for example, to implement an
algorithm that retries some action until it succeeds, like the counter in ğ2. Silent steps are introduced
by looping constructs to satisfy Coq’s productivity checker. Second, programs are first-class, syntactic
objects that can be manipulated by other programs, which allows encoding a variety of useful code
transformations, including what we need to implement transactional memory cleanly (ğ8).

Implementations. An implementation, impl, of a high-level interfaceM in terms of a low-level
interface N , written impl : ImplM N , is a mapping impl = (m ↦→ 𝑝) from method calls m of M to
programs 𝑝 over the interface N . Formally, it is a polymorphic function ensuring that a method
m is mapped to a program impl(m) with the same result type 𝑅. The identity implementation,
id : ImplMM , maps any method m to the program (𝑥 ← m;𝑥), which calls the same method and
returns its result. It will serve as the identity of vertical composition (in ğ4).

Sequential specifications. To define the semantics of an implementation, we must first define
the semantics of its low-level interface by specifying the values its methods may return when called
sequentially. Formally, a sequential specification spec of an interface M , written spec : SpecM ,
is a labeled state-transition system: it is a tuple (𝑆, 𝑠0,Δ), comprising a type 𝑆 of abstract states,
an initial state 𝑠0 of type 𝑆 , and a relation Δ : ∀𝑅,P(M 𝑅 × 𝑆 × 𝑅 × 𝑆) between a method call, a
current state, a result, and a next state, where P(𝑈) denotes the powerset of 𝑈 . (The result type 𝑅
is another parameter of that relation, which we leave implicit.)

As an example, let us consider a sequential specification of locksÐcall it lock-spec. Its transition
system has a state of type bool that represents whether the lock is acquired, with initial state false.
The two methods of the interface are lock and unlock (with result type unit): the semantics of
the former is to toggle the state to true, and the latter to set it to false. As another example, the
sequential specification of a register, reg-spec, is a tuple of the type N (numbers), the initial value 0,
and the obvious transition system for the methods read, write, and cas. The method cas takes two
arguments, changes the value of the register to the second argument if its current value is equal to
the first argument, and returns a Boolean indicating whether it succeeded. Finally, a sequential
specification for maps, map-spec, can be defined as follows. The state is a mapping from keys 𝐾
to values option𝑉 , with an initial state that maps any keys to the łnone” value ⊥. The interface
is given by two methods (with the expected transitions): get(𝑘) with the return type option𝑉 for
lookup and put(𝑘, 𝑣) with the return type unit for insertion.

CallStep

(m, 𝑠, 𝑟 , 𝑠 ′) ∈ Δ

(𝑠 | 𝑥 ← m;𝑝 (𝑥)) →spec (𝑠
′ | 𝑝 (𝑟))

TauStep

(𝑠 | 𝜏 ;𝑝) →spec (𝑠 | 𝑝)

Fig. 4. Program transition

As Figure 4 shows, a sequential specification naturally pro-
vides a stateful interpretation of programs, represented as a
transition relation→spec between pairs (𝑠 | 𝑝) of abstract states
and programs, where finished programs do not step.
Objects. An object obj with interface M , written obj :

ObjectM , is a triple (N , impl, spec) of low-level interface N , im-
plementation impl : ImplM N , and sequential spec : SpecN .
Multiple threads may make method calls on the high-level

interface of an object; the corresponding programs will run con-
currently, interleaving calls to the object’s low-level interface. The semantics of the low-level
interface is given by a sequential specification, and every low-level method call operates atomically
on the shared low-level state according to that specification.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 80. Publication date: April 2022.

C4: Verified Transactional Objects 80:9

Spawn

𝜃 ∉ Θ

(𝑠 | Θ)
𝜃,m
−−−→obj (𝑠 | Θ;𝜃 ↦→ impl(m))

Step

(𝑠 | 𝑝) →spec (𝑠
′ | 𝑝 ′)

(𝑠 | Θ;𝜃 ↦→ 𝑝) →obj (𝑠
′ | Θ;𝜃 ↦→ 𝑝 ′)

Return

(𝑠 | Θ;𝜃 ↦→ 𝑣)
𝜃,𝑣
−−→obj (𝑠 | Θ)

Fig. 5. Operational semantics

The observable behavior of an object is characterized by
the methods that the clients may call concurrently and the
responses that they receive. Formally, behavior is modeled by
the trace semantics of the following state-transition system.
Let obj = (N , impl, spec) be an object with high-level interface
M and low-level interface N . In a concurrent execution, the
state of the object consists of a pair of (1) a shared low-level state
𝑠 of the sequential specification spec and (2) the states of all the
threads, represented as a finite map Θ from thread identifiers 𝜃

(drawn from some infinite supply of names) to programs 𝑝 over
the low-level interface N , each representing the remainder of
a method that a thread has yet to finish executing. (We write
Θ;𝜃 ↦→ 𝑝 to denote a map Θ extended with the mapping from
𝜃 to 𝑝 .) The initial state of the object is the pair (𝑠0 | ∅), containing the initial state 𝑠0 of spec and
the empty thread state ∅.

The operational semantics of the object obj, shown in Figure 5, has three kinds of transitions, all
written→obj , with different labels above the arrow.

(1) A new thread can be spawned to execute a high-level method callm. Such a step is represented
by a transition labeled with a fresh thread identifier 𝜃 (not already in Θ) as well as the method (and
arguments) m. The thread state Θ is extended with a mapping from the new identifier 𝜃 to the
program that the implementation impl associates to the method m.
(2) A thread can step internally, based on the program transition relation defined above, and

mutate the internal state. The environment cannot observe this transition, so it is unlabeled.
(3) A thread can return once it is done, i.e., when the remaining program is a leaf 𝑣 . This transition

is labeled with the thread identifier (to identify the transition that initially spawned this thread)
and its result 𝑣 . The transition takes the thread out of the state. (We note that in order to issue a
sequence of calls by the same thread, calls can be spawned with the same thread identifier.)

A history (or trace) is a sequence of events 𝑒Ðeither call events (𝜃,m) or return events (𝜃, 𝑣). The
observable behavior beh(obj) of an object is the set of histories produced by the above transition

system (
𝑒
−→obj) starting from the initial state, i.e., beh(obj) = {(𝑒0 . . . 𝑒𝑛) | ∃ 𝑠 Θ, (𝑠0 | ∅) →

★

obj

𝑒0
−→obj

· · · →★

obj

𝑒𝑛
−−→obj (𝑠 | Θ)}. Note that multiple low-level internal steps (→★

obj
, the transitive closure of

→obj) may happen between two labeled steps, but they are not recorded in the history (𝑒0 . . . 𝑒𝑛).

4 LINEARIZABILITY AND COMPOSITION

Having defined the semantics of individual objects, we now formalize the familiar notions of
simulation, linearizability, and composition, their properties, and their relation with each other
in a novel unified framework. We first define a notion of refinement between objects based on
trace inclusion. This notion, in turn, will allow us formally to capture linearizability between an
object and a specification. Then, we state properties of linearizability that support its hierarchical
verification by successive refinements. Finally, we state properties of compositions that support
modular verification of linearizability for composed objects.
Simulation. We define simulation relations for specifications and objects in three steps. We

first define simulation between two specifications. Then, on top of that notion, we define simulation
between an object and a specification when the object is executed sequentially. Finally, we define
simulation between two objects when they execute concurrently.
Specification simulation. Intuitively, a specification simulates another specification with the

same interface iff (1) every value that can be returned by a method call on the former can also

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 80. Publication date: April 2022.

80:10 M. Lesani, L. Xia, A. Kaseorg, C. Bell., A. Chlipala, B. Pierce, and S. Zdancewic

be returned by the same method call on the latter, and (2) this property continues to hold for
the resulting post-states. More precisely, we say that a specification spec1 = (𝑆1, 𝑠1,Δ1) simulates
another specification spec2 = (𝑆2, 𝑠2,Δ2) on the same interface𝑀 , written spec1 ≲SP spec2, iff, for
all m, 𝑟 , and 𝑠 ′

1
, if (m, 𝑠1, 𝑟 , 𝑠

′
1
) ∈ Δ1, then there exists 𝑠 ′

2
such that (m, 𝑠2, 𝑟 , 𝑠

′
2
) ∈ Δ2 and (𝑆1, 𝑠

′
1
,Δ1)

simulates (𝑆2, 𝑠
′
2
,Δ2). This definition is coinductiveÐthat is, it is defined as a greatest fixed point,

allowing easy characterization of infinite executions.
Interpreted sequential specification. Any object obj can be interpreted in a sequential manner:

the bodies of the methods are interpreted atomically as state transitions over the states of the low-
level specification, by iterating the program transition relation→spec until we reach a value. This
convention associates obj to a sequential specification whose interface is the high-level interface
of obj. More precisely, the interpreted sequential specification for the object obj = (N , impl, spec)

with respect to the low-level specification spec = (𝑆, 𝑠0,Δ) is the specification interp-as-spec(obj) =
(𝑆, 𝑠0,Δ

′) where, for all m, we have Δ′ ∋ (m, 𝑠, 𝑣, 𝑠 ′) iff (𝑠 | impl(m)) →∗spec (𝑠
′ | 𝑣).

Sequential object simulation. An object obj sequentially simulates a sequential specification
spec, written obj ≲S spec, iff the interpreted sequential specification of obj simulates specÐi.e.,
interp-as-spec(𝑜𝑏 𝑗) ≲SP spec. Intuitively, if an object sequentially simulates a specification, it
behaves according to the specification when its methods are executed sequentially.
Concurrent object refinement. An object obj1 (concurrently) refines another object obj2 written

obj1 ≲C obj2, if the observable behavior of obj1 is included in that of obj2, i.e., obj1 ≲C obj2 iff
beh(obj1) ⊆ beh(obj2). The objects obj1 and obj2 are called concrete and abstract objects, respectively.
Note that concurrent refinement relates objects with a common high-level interface, while their
low-level interfaces may differ: these are viewed as internal to each object.

Concurrent refinement is both reflexive and transitive, allowing verification of objects to proceed
in steps. Transitivity allows us to decompose refinement proofs of an object into steps. Reflexivity
allows us to refine only parts of a composite object.
Linearizability. We define linearizability of an object with respect to a specification as a

concurrent refinement between the object and an łatomic object” associated with the specification.

≲C : ObjectM → ObjectM → Prop

≲L : ObjectM → SpecM → Prop

+ : ObjectM → ObjectN → Object (M + N)

⊲𝑂 : ImplM N → ObjectN → ObjectM

Fig. 6. Signatures of main definitions in Section 4

Atomic object. Any sequential specification
spec of an interface 𝑀 can be associated with
an atomic object atomic(spec) = (M, id, spec)

(recall the definition of the identity implemen-
tation: id = (m ↦→ (𝑥 ← m;𝑥))). The atomic
object trivially łwraps” the sequential specifica-
tion as its low-level interface, delegating every
method call to the corresponding method of the
sequential specification. The intuition is that this object behaves atomically because every method
call executes in just a single low-level step, modifying the low-level state according to the sequen-
tial specification and immediately returning a value. (Clients of such an object can still see some
nondeterminism because it takes separate steps to call the method [spawn a thread], execute it,
and return a value, and these steps may be interleaved with the steps of other method calls.)
This definition allows us to connect specification simulation and concurrent refinement. If one

specification simulates another, then the former’s atomic object refines the latter’s atomic object.

Lemma 4.1. spec ≲SP spec
′ ⇒ atomic(spec) ≲C atomic(spec′).

Linearizability. An object obj is linearizable with respect to a sequential specification spec iff obj

concurrently simulates the atomic object associated with spec, i.e., obj ≲C atomic(spec). We then
write obj ≲L spec.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 80. Publication date: April 2022.

C4: Verified Transactional Objects 80:11

The proof of linearizability of an object obj with respect to a specification spec can be carried
out in two steps using an intermediate specification spec′: first prove that obj is linearizable with
respect to spec′, then prove that spec′ simulates spec.

Lemma 4.2. obj ≲L spec
′ ∧ spec′ ≲SP spec ⇒ obj ≲L spec.

Alternatively, linearizability of an object obj with respect to a specification spec can be proved
hierarchically using an intermediate object obj′: first prove linearizability of obj with respect to the
interpreted specification of obj′, then prove sequential simulation from obj′ to spec. We will use
this decomposition later to verify a concurrent hash-map data structure.

Lemma 4.3. obj ≲L interp-as-spec(obj
′) ∧ obj′ ≲S spec ⇒ obj ≲L spec.

Composition. Objects support two fundamental composition patterns: horizontal composition

corresponds to the union of interfaces, while vertical composition interprets the low-level calls of
one implementation in terms of another implementation.

Horizontal composition. Given two interfacesM1 andM2, we write their disjoint union asM1+M2.
We can then define the horizontal composition of implementations and sequential specifications as
follows. Given two implementations impl1 : ImplM1 N1 and impl2 : ImplM2 N2, their horizontal
composition impl1 + impl2 : Impl (M1 +M2) (N1 + N2) simply implements high-level methods from
M1 using impl1 and methods from M2 using impl2. We can similarly define horizontal composition
for sequential specifications spec1 + spec2 and objects obj1 + obj2. Horizontal composition satisfies
the following property with respect to concurrent refinement, allowing us to refine each summand
independently. Herlihy and Wing [1990] call this property the compositionality of linearizability:

Lemma 4.4. obj1 ≲C obj′1 ∧ obj2 ≲C obj′2 ⇒ (obj1 + obj2) ≲C (obj
′
1 + obj

′
2).

Reflexivity of ≲C allows keeping parts of a composite object the same while others are rewritten.
Vertical composition. The vertical composition ⊲ of an implementation impl1 : ImplM1M2 on

top of another impl2 : ImplM2M3, written impl1 ⊲ impl2 : ImplM1M3, is defined by interpreting
the low-level calls in the body of impl1 using the methods of impl2. We can then define the vertical
composition ⊲𝑂 of an implementation impl1 : ImplM1 M2 on top of an object obj2 with interfaceM2,
which is an object impl1 ⊲𝑂 obj2 with interface M1, by composing impl1 with the implementation
contained in obj2.
Vertical composition satisfies the following property with respect to concurrent refinement,

allowing us to refine the internal object obj′ to obj:

Lemma 4.5. obj ≲C obj′ ⇒ (impl ⊲𝑂 obj) ≲C (impl ⊲𝑂 obj′).

It will be convenient to write the construction of an object (𝑁, impl, spec) as impl ⊲𝑆 spec, leaving
implicit the low-level interface𝑁 . Then ⊲𝑂 is defined by impl⊲𝑂 (impl′⊲𝑆 spec) = (impl⊲impl′)⊲𝑆 spec.
Furthermore, because ⊲, ⊲𝑂 , and ⊲𝑆 expect different types of right operand, we can unambiguously
omit parentheses in expressions involving only these three operators, and thanks to the associativity
of ⊲, we can even freely reassociate parentheses, modulo changing the operators so that the resulting
expression is still well-typed, e.g., (𝑓 ⊲ 𝑔) ⊲𝑂 obj = 𝑓 ⊲𝑂 (𝑔 ⊲𝑂 obj).
Two implementations impl1 and impl2 are considered equal when they map methods to the

same programs, up to ignoring finite runs of silent steps 𝜏 . This notion of equality is a congruence
with respect to + and ⊲. Lemma 4.6 summarizes equations relating + and ⊲ that will be needed in
the proof in ğ9. Those equations involve the following identity elements for + and ⊲. As we saw
before, for any interface M , there is a trivial implementation id : ImplMM which maps a method
to a program that simply calls the same method. Such a trivial implementation is an identity for
vertical composition ⊲. The empty interface Empty, containing no methods, is the identity for

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 80. Publication date: April 2022.

80:12 M. Lesani, L. Xia, A. Kaseorg, C. Bell., A. Chlipala, B. Pierce, and S. Zdancewic

horizontal composition +, in the sense of monoidal categories: there is a left unitor, that is to say, an
implementation emptyL : Impl (Empty +M)M for every interface M , satisfying various equations;
there are also a right unitor and an associator, omitted for brevity.

Lemma 4.6. Vertical and horizontal composition define a monoidal category whose objects and mor-

phisms are respectively interfaces and implementations. In other words, they satisfy certain equations,

including (among others),

(1) (𝑓 ⊲ 𝑔) ⊲ ℎ = 𝑓 ⊲ (𝑔 ⊲ ℎ) (3) (𝑓 + 𝑔) ⊲ (ℎ + 𝑘) = (𝑓 ⊲ ℎ) + (𝑔 ⊲ 𝑘)

(2) id ⊲ 𝑓 = 𝑓 ⊲ id = 𝑓 (4) (𝑖𝑑 + 𝑔) ⊲ emptyL = emptyL ⊲ 𝑔

for any implementations 𝑓 , 𝑔, ℎ and 𝑘 with interfaces that make the equations well-typed.

5 VERIFICATION OF LINEARIZABILITY

We now present a novel proof principle for concurrent refinement. It allows reasoning about
the method bodies as programs (interaction trees) and does not require them to be translated to
low-level labeled transition systems. Further, instead of stating and proving a simulation relation
on the global states of a pool of concurrent programs, it factors and decomposes the simulation
relation into separate and simpler invariants on the object state and programs, and it factors the
simulation proof into separate and simpler proof obligations. The proof technique is a general
method that supports verification of both lock-based and lock-free algorithms. In ğ6, we apply this
principle and the hierarchical proof techniques that we saw in ğ4 to verify the linearizability of
a concurrent hash-map object. We use the same principle in ğ7, to prove the linearizability of a
concurrent histogram, and in ğ8, to prove the correctness of Transactional Mutex Locks (TML)
[Dalessandro et al. 2010], an implementation of transactional memory.
In a concurrent execution (ğ3), the state of an object is a pair (𝑠 | Θ) of a data state 𝑠 and a

thread pool Θ. Stating invariants about these pairs is complicated and distracts from interesting
similarities between the concrete and abstract objects themselves. Further, reasoning about the
pool of threads involves boilerplate steps such as reasoning about spawning and returning threads
and stating and proving conditions for every thread or pair of threads in the pool.

inc′ ≔ 𝑖 ← 𝑟 .read ();

𝑟 .write(𝑖 + 1);

𝑖 + 1

Fig. 7. inc′ method

Invariant relations. To prove that a concrete object refines an ab-
stract object, we need to define three relations and prove five obligations.
Start with a concrete object (N , impl, spec) on the low-level specification
spec = (𝑆, 𝑠0,Δ) and an abstract object (N ′, impl′, spec′) on the low-level
specification spec′ = (𝑆 ′, 𝑠 ′

0
,Δ′). The data relation RD captures the relation

between the concrete and abstract data. The program relation RP captures
the relation between the corresponding concrete and abstract programs. Finally, the interprogram
relation RI captures the mutual relation between pairs of concrete and abstract programs.
For example, consider the inc method that we saw in Figure 2 of a counter object 𝑐 , compared

with the inc′ method of a counter object 𝑐 ′ in Figure 7. The concrete counter 𝑐 is linearizable with
respect to the interpreted specification of the abstract counter 𝑐 ′. Informally, the proof principle
captures the following invariants. (1) The data relation RD says that the states of the two base
objects 𝑟 are equal. (2) The program relation RP captures a correspondence between the intermediate
concrete and abstract programs. It is defined based on the linearization point, a low-level method
call in the concrete program where the abstract program should be executed instantaneously. When
the intermediate concrete program has not yet reached the linearization point, the corresponding
intermediate abstract program is not executed yet. After the linearization point, the corresponding
abstract program is already evaluated to a value. In this example, the linearization point is reached
when the cas call succeeds. The entire abstract method inc′ is executed then. (3) In this example, the
interprogram relation RI is trivially true. Our framework provides simple instantiations of the proof

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 80. Publication date: April 2022.

C4: Verified Transactional Objects 80:13

InitObl : RD (𝑠0, 𝑠
′
0
)

PPSymObl : RI (𝑝1, 𝑝2, 𝑠, 𝑝
′
1
, 𝑝 ′

2
, 𝑠 ′) ⇒

RI (𝑝2, 𝑝1, 𝑠, 𝑝
′
2
, 𝑝 ′

1
, 𝑠 ′)

CallObl : RD (𝑠, 𝑠
′) ⇒

RP (impl(m), 𝑠, impl′(m), 𝑠 ′)

∧ (RP (𝑝, 𝑠, 𝑝
′, 𝑠 ′) ⇒

RI (impl(m), 𝑝, 𝑠, impl′(m), 𝑝 ′, 𝑠 ′))

RetObl : RD (𝑠, 𝑠
′) ∧ RP (𝑣, 𝑠, 𝑝

′, 𝑠 ′) ⇒ 𝑝 ′ = 𝑣

StepObl :

RD (𝑠1, 𝑠
′
1
) ∧

RP ((𝑥 ← n; 𝑓 (𝑥)), 𝑠1, 𝑝
′
1
, 𝑠 ′

1
) ∧

(n, 𝑠1, 𝑣, 𝑠2) ∈ Δ⇒

∃ 𝑝 ′
2
𝑠 ′
2
,

(𝑠 ′
1
, 𝑝 ′

1
) →∗

Δ′
(𝑠 ′
2
, 𝑝 ′

2
)

∧ RD (𝑠2, 𝑠
′
2
) (1)

∧ RP (𝑓 (𝑣), 𝑠2, 𝑝
′
2
, 𝑠 ′

2
)

∧ (∀ 𝑝 𝑝 ′, (2)

RP (𝑝, 𝑠1, 𝑝
′, 𝑠 ′

1
) ∧

RI ((𝑥 ← n; 𝑓 (𝑥)), 𝑝, 𝑠1, 𝑝
′
1
, 𝑝 ′, 𝑠 ′

1
) ⇒

RP (𝑝, 𝑠2, 𝑝
′, 𝑠 ′

2
)

∧ RI (𝑓 (𝑣), 𝑝, 𝑠2, 𝑝
′
2
, 𝑝 ′, 𝑠 ′

2
))

∧ (∀ 𝑝1 𝑝
′
1
𝑝2 𝑝

′
2
, (3)

RP (𝑝1, 𝑠1, 𝑝
′
1
, 𝑠 ′

1
) ∧

RP (𝑝2, 𝑠1, 𝑝
′
2
, 𝑠 ′

1
) ∧

RI (𝑝1, 𝑝2, 𝑠1, 𝑝
′
1
, 𝑝 ′

2
, 𝑠 ′

1
) ⇒

RI (𝑝1, 𝑝2, 𝑠2, 𝑝
′
1
, 𝑝 ′

2
, 𝑠 ′

2
))

Fig. 8. Proof principle for concurrent refinement. The concrete object is (N , impl, spec) on the low-level

specification spec = (𝑆, 𝑠0,Δ), and the abstract object is (N ′, impl′, spec′) on the low-level specification

spec′ = (𝑆 ′, 𝑠 ′
0
,Δ′). Unprimed and primed variables are used for the concrete and abstract objects respec-

tively. The data relation is RD (𝑠, 𝑠
′), the program relation is RP (𝑝, 𝑠, 𝑝

′, 𝑠 ′) and the interprogram relation is

RI (𝑝1, 𝑝2, 𝑠, 𝑝
′
1
, 𝑝 ′

2
, 𝑠 ′). The free variables are universally quantified.

technique as well. For example, an instance does not require the specification of the interprogram
relation (i.e., it is simply instantiated as true).

𝑝 ≔

1 𝑙 .lock ();

2 𝑏.m1 ();

3 𝑥 ← 𝑏.m2 ();

4 𝑙 .unlock ();

𝑥

𝑝 ′ ≔

𝑏.m1 ();

𝑥 ← 𝑏.m2 ();

𝑥

Fig. 9. Proof principle example

As another example, consider the programs in Figure 9.
(To simplify the example, we show only the bodies of the
methods.) On the right, we have the implementation 𝑝 ′

of a sequential object 𝑜 ′ with two method calls on a base
object 𝑏. On the left, we have the implementation 𝑝 of a
concurrent object 𝑜 that protects the same calls with a
lock 𝑙 . The concrete object 𝑜 is linearizable with respect
to the interpreted specification of the abstract object 𝑜 ′.
Informally, the proof principle captures the following in-
variants. (1) The data relation RD says that, when the lock 𝑙 is in the released mode, the states of
the two base objects 𝑏 are equal. (2) The program relation RP: In this example, the linearization
point is reached when the lock is released. When the intermediate concrete program has not yet
reached the linearization point, the corresponding intermediate abstract program is not executed
yet. However, it holds that if part of the abstract program that corresponds to the executed part of
the concrete program is executed, then the state of the abstract base object will be the same as the
concrete base object. When the concrete program 𝑝 reaches line 4, the entire abstract program 𝑝 ′

is executed and results in the same state for the base objects. (3) Interprogram relation RI: No two
concrete programs can be in the critical section (at lines 2 and 3).
More precisely, the data relation RD (𝑠, 𝑠

′) defines an invariant between the low-level concrete
state 𝑠 and the abstract state 𝑠 ′. The program relation RP (𝑝, 𝑠, 𝑝

′, 𝑠 ′) defines an invariant between the
concrete program 𝑝 paired with data state 𝑠 and the corresponding abstract program 𝑝 ′ paired with
data state 𝑠 ′. The interprogram relation RI (𝑝1, 𝑝2, 𝑠, 𝑝

′
1
, 𝑝 ′

2
, 𝑠 ′) defines a mutual relation among two

running concrete programs 𝑝1 and 𝑝2 (with data state 𝑠) and two corresponding abstract programs
𝑝 ′
1
and 𝑝 ′

2
(with data state 𝑠 ′).

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 80. Publication date: April 2022.

80:14 M. Lesani, L. Xia, A. Kaseorg, C. Bell., A. Chlipala, B. Pierce, and S. Zdancewic

The overall simulation relation is simply defined as the conjunction of the data relation RD

between the concrete and abstract data states, the program relation RP for each program in the
thread pool (and its corresponding abstract program), and the interprogram relation RI for each
pair of programs in the thread pool (and their corresponding abstract programs).

m(𝑘, 𝑥) ≔

𝐿1 𝑠 ← size();

let 𝑖 := (ℎ𝑎𝑠ℎ 𝑘) modulo 𝑠 in

𝐿2 𝑦 ← arrayCall(𝑖, m(𝑘, 𝑥));

𝑦

(a) hash-map

Lock array

Hash table

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

8

9

10

11

12

13

4
 m

o
d
 8

 =
 4

1
2
 m

o
d
 8

 =
 4

(b) Concurrent hash-map

m(𝑘, 𝑥) ≔

𝐿1 𝑙𝑠 ← locks.size();

let 𝑙𝑖 := (ℎ𝑎𝑠ℎ 𝑘) modulo 𝑙𝑠 in

𝐿2 _← locks.arrayCall (𝑙𝑖, lock);

𝐿3 𝑏𝑠 ← buckets.size();

let 𝑏𝑖 := (ℎ𝑎𝑠ℎ 𝑘) modulo 𝑏𝑠 in

𝐿4 𝑦 ← buckets.arrayCall (𝑏𝑖, m(𝑘, 𝑥));

𝐿5 _← locks.arrayCall (𝑙𝑖, unlock);

𝐿6 𝑦

(c) conc-hash-map

Fig. 10. The implementations of sequen-

tial and concurrent hash-map objects. In

(a), the metavariable m stands for either

the get or put method on the map inter-

face. The variable 𝑥 is the second argu-

ment, either nothing (for get) or the value

to write (for put). In (c), locks.m′() and

buckets.m′() refer to methods m′ of the

lock and bucket arrays respectively.

Proof obligations. Figure 8 summarizes the proof obli-
gations. These proof obligations imply that the overall sim-
ulation relation is preserved. The obligation InitObl states
that the data relation RD holds between the initial concrete
state 𝑠0 and abstract state 𝑠 ′

0
. PPSymObl states that the in-

terprogram relation RI is symmetric over programs.
The obligation CallObl states that when a method

is called, the invariants are preserved. Let us consider a
method m implemented by the program impl(m) in the
concrete object and by impl′(m) in the abstract object. The
new pair of concrete impl(m) and abstract impl′(m) pro-
grams should be in the program relation RP with every
concrete state 𝑠 and abstract state 𝑠 ′ that are in the data
relation RD. In addition, the two programs impl(m) and
impl′(m) should be in the interprogram relation RI with
any pair of concrete 𝑝 and abstract 𝑝 ′ programs that are in
the program relation RP. When the concrete object returns
a value, the obligation RetObl requires the abstract object
to return the same value. If a concrete leaf value 𝑣 is in pro-
gram relation RP with an abstract program 𝑝 ′ and states 𝑠
and 𝑠 ′ that are also in the data relation RD, then the abstract
program 𝑝 ′ should be the same leaf value 𝑣 .
The obligation StepObl states that the invariants are

preserved by program steps: when the program relation RP

holds for the pair of a concrete program 𝑥 ← n; 𝑓 (𝑥) and
an abstract program 𝑝 ′

1
and a pair of concrete and abstract

data states 𝑠 and 𝑠 ′ that are in the data relation RD, if the
concrete program steps, then the abstract program 𝑝 ′

1
can

take steps such that (1) both the data and program relations
are preserved after the step for the resulting states and
programs. In addition, it states that (2) if before the step,
a pair of concrete and abstract programs 𝑝 and 𝑝 ′ were
in the program relation RP and also in the interprogram
relation RI with the concrete call program 𝑥 ← n; 𝑓 (𝑥)

and its corresponding abstract program 𝑝 ′
1
, then after the

step, the program and interprogram relations are preserved.
Further, it states that (3) if before the step, two pairs of
concrete and abstract programs 𝑝1, 𝑝

′
1
and 𝑝2, 𝑝

′
2
were each

in the program relation RP and also in the interprogram
relation RI with each other, then after the step, their interprogram relation is preserved with the
new data states. This proof principle is for forward simulation, and the StepObl condition states
proof obligations for a method call as a forward step.
For our first example above, the three predicates of StepObl hold as follows: (1) After the step,

𝑅𝐷 holds, because the value of the register is incremented by either both or neither of the concrete

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 80. Publication date: April 2022.

C4: Verified Transactional Objects 80:15

and abstract programs. Further, 𝑅𝑃 is trivially preserved as the abstract steps are taken according to
the 𝑅𝑃 relation. (2) The 𝑅𝑃 relation for another pair of concrete and abstract programs is preserved
since 𝑅𝑃 is independent of the data state. (3) 𝑅𝐼 trivially holds.
In our second example: (1) After the step, 𝑅𝐷 holds because if the lock is released, the abstract

program takes a step as well, and the concrete and abstract post-states become the same. Further,
𝑅𝑃 is trivially preserved as the abstract steps are taken according to the 𝑅𝑃 relation. (2) When a
program steps, the 𝑅𝑃 relation for any other program is preserved as follows. The definition of 𝑅𝑃
allows the concrete program to be in an intermediate step of the critical section only when the
lock is in the acquired state. By the mutual-exclusion property of 𝑅𝐼 , at most one of the stepping
program or the other program is in the critical section. If the other program is in the critical section,
the stepping program is not in the critical section and cannot release the lock to break the 𝑅𝑃
relation for the other program. If the other program is not in the critical section, any change that
the stepping program makes to the state of the lock does not affect the 𝑅𝑃 relation for the other
program. Further, the mutual-exclusion relation 𝑅𝐼 between the two is preserved. If the other
program is already in the critical section, the state of the lock is acquired, and the stepping program
cannot acquire the lock and step into the critical section. (3) The relation 𝑅𝐼 for two other programs
is preserved trivially because a stepping program cannot affect the mutual-exclusion property
between them.

6 HIERARCHICAL VERIFICATION OF LINEARIZABILITY

We saw the sequential specification of maps, map-spec, in ğ3. We next implement both sequential
and concurrent hash-map objects, hash-map and conc-hash-map. The former uses just an array
of buckets; the latter, in addition, uses an array of locks. We show that the concurrent hash-map
object conc-hash-map is linearizable with respect to the sequential specification of mapsmap-spec.
The proof is divided into two steps, by Lemma 4.3, with the sequential object hash-map as an
intermediate specification: we first show that hash-map sequentially simulatesmap-spec, and then
we show that conc-hash-map is linearizable with respect to the interpreted sequential specification
of hash-map.
Sequential hash-map. The sequential hash-map object hash-map is implemented as a vertical

composition on top of an array object, which represents an indexed sequence of other objects.
(Formally, the array object type is parametricÐat the metalevelÐin the cell object type: for each
type of cells, there is a separate type of arrays of those cells.) The array interface provides two
methods: a method arrayCall that, given an index and a method call, calls the method on the object
stored at that index; and a method size that returns the size of the array. Each cell of the array
refines the object that the array is instantiated with.

We use a closed-address hash-map, where each bucket refers to a set of items. In the hash-map
object, the array elements are map objects that represent buckets with colliding keys. The bucket
map bmap can be any simple map object (thus, the map interface plays both high- and low-level
roles in the implementation of the hash-map). Figure 10a presents the implementation of methods
of the hash-map. Map methods are parametrized by the key 𝑘 being accessed, which we hash to
obtain the index 𝑖 of the corresponding bucket. We then call the input method on the map object
contained in that bucket and return its result.

If the given bucket-map object sequentially simulates the map specification, the hash-map object
sequentially simulates the map specification as well:

Lemma 6.1. bmap ≲S map-spec ⇒ hash-map ≲S map-spec.

Concurrent hash-map. We implement a striped concurrent hash-map as an object conc-hash-map.
The structure of the buckets is similar to the sequential hash-map that we saw above. The bucket

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 80. Publication date: April 2022.

80:16 M. Lesani, L. Xia, A. Kaseorg, C. Bell., A. Chlipala, B. Pierce, and S. Zdancewic

map bmap is not linearizable (not thread-safe). As Figure 10b shows, the implementation uses lock
striping to protect access to buckets. An array of locks is used, and the lock at index 𝑖 protects all
the buckets at indices 𝑗 such that 𝑗 is 𝑖 modulo the size of the lock array. Thus, the concurrent
hash-map object is a vertical composition on the horizontal composition of two objects: an array of
bucket maps (bmap) and an array of locks (lock). Figure 10c presents the implementation of the
methods of the concurrent hash-map. It gets the size of the lock array, gets the input key of the
call, computes the lock index as the hash value of the input key modulo that size, acquires the lock
at the lock index, then gets the size of the bucket array, computes the bucket index as the hash
value of the input key modulo that size, performs the input method on the bucket index, releases
the lock at the lock index, and returns the resulting value.
To prove the correctness of the concurrent hash-map, we use the sequential hash-map as an

intermediate specification. The following lemma states that the concurrent hash-map object is
linearizable with respect to the interpreted specification of the sequential hash-map.

Lemma 6.2. lock ≲L lock-spec ⇒ conc-hash-map ≲L interp-as-spec(hash-map)

Finally, we apply the hierarchical technique of Lemma 4.3 to Lemmas 6.2 and 6.1. We conclude
that the concurrent hash-map object is linearizable with respect to the map specification.

Corollary 6.3. bmap ≲S map-spec ∧ lock ≲L lock-spec ⇒ conc-hash-map ≲L map-spec

7 LINEARIZABILITY OF VERTICAL COMPOSITIONS
hist-imp ≔

get (𝑘) ≔

𝐺1 𝑟 ← map.get (𝑘);

𝐺2 𝑟

inc (𝑘) ≔

𝐼1 𝑟 ← map.get (𝑘);

𝐼2 match 𝑟 with

𝐼3 | ⌈𝑣⌉ ⇒

𝐼4 𝑠 ← map.replace (𝑘, 𝑣, 𝑣 + 1);

𝐼5 if (𝑠)

𝐼6 𝑣 + 1

𝐼7 else

𝐼8 inc (𝑘)

𝐼9 | ⊥ ⇒

𝐼10 𝑟 ← map.putIfAbsent(𝑘, 1);

𝐼11 match 𝑟 with

𝐼12 | ⌈_⌉ ⇒ inc (𝑘)

𝐼13 | ⊥ ⇒ 1

Fig. 11. The implementation of the

Histogram object on a Map object

Linearizability ensures that concurrent method calls on the
object appear to execute atomically and behave according to
the sequential specification of the object. This guarantee is
only provided for individual method calls on the object. How-
ever, methods of a vertical composition on top of the object
may make multiple calls to the object; therefore, they are not
necessarily atomic. Studies of production code [Shacham et al.
2011] shows that atomicity bugs are prevalent in vertical com-
positions. In this section, we see how a concurrent histogram
can be implemented as a vertical composition on top of a con-
current hash-map and how its linearizability can be verified
using the same proof technique that we saw in ğ5.
A histogram is a data structure that represents values for

a set of bars. We first consider the sequential specification of
histograms hist-spec. The interface of a histogram is paramet-
ric in terms of the key type 𝐾 for the bars, and it provides two
methods: get(𝑘) and inc(𝑘). The state is a mapping 𝑚 from
keys 𝐾 to optional natural values optionN. The transition sys-
tem of hist-spec makes a transition on get(𝑘) that keeps the
state the same and returns the value of 𝑘 in the current state
𝑚. It makes two different transitions on inc(𝑘) depending on
whether 𝑘 is in the domain of the current state map𝑚. If 𝑘 already exists, it increments its value in
𝑚; otherwise, it adds to the map𝑚 a mapping from 𝑘 to the łsome” value of 1. In both transitions,
it returns the value of 𝑘 in the post-state.
We will see a histogram object that is implemented by a vertical composition on top of a map

object. This map object provides an extended interface: in addition to the methods get(𝑘) and
put(𝑘, 𝑣), it provides putIfAbsent(𝑘, 𝑣) and replace(𝑘, 𝑣, 𝑣 ′). Similar to the basic map, the sequential

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 80. Publication date: April 2022.

C4: Verified Transactional Objects 80:17

specification of the extended map emap-spec stores a mapping𝑚 from keys to optional values. Its
transition system makes two different transitions on putIfAbsent(𝑘, 𝑣): if 𝑘 is not in the domain of
the state map𝑚, it extends𝑚 with a mapping from 𝑘 to 𝑣 ; otherwise, it leaves𝑚 the same. In both
cases, it returns the optional value of 𝑘 in the prestate. Similarly, there are two possible transitions
on replace(𝑘, 𝑣, 𝑣 ′): if the value of𝑚 for 𝑘 is 𝑣 , it replaces 𝑣 with 𝑣 ′ and returns true; otherwise, it
leaves the state unchanged and returns false.

The implementation hist-imp of the histogram object is presented in Figure 11. The get method
is simply delegated to the underlying map object (at𝐺1). On the other hand, a naive implementation
of the inc method, which would simply get the current value and put back an incremented value,
is not atomic, and concurrent calls on it can easily violate the sequential specification. In the
implementation of inc, the current value of the key 𝑘 is first obtained from the underlying map
object (at 𝐼1). A łsome” value containing an actual value 𝑣 is represented as ⌈𝑣⌉, and the łnone”
value is represented as ⊥. If the key 𝑘 is already mapped to some value 𝑣 (at 𝐼3), it should be updated
to 𝑣 + 1. In order to avoid racing updates to the underlying map, the inc method attempts to replace
𝑣 atomically with 𝑣 + 1 (at 𝐼4). If the value of 𝑘 is not changed between 𝐼1 and 𝐼4 by a concurrent
update, the replace call succeeds and returns true. In this case, the increment is performed and the
new value 𝑣 + 1 is returned (at 𝐼6). Otherwise, the inc method is repeated by a recursive call (at 𝐼8).
(We note that the inc method has a coinductive definition.) If the key 𝑘 is not in the underlying
map (at 𝐼9), a new mapping from 𝑘 to 1 needs to be added. Similarly to the previous case, in order
to avoid racing updates to the underlying map, the inc method attempts to put the value 1 for
𝑘 atomically via a putIfAbsent call (at 𝐼10). The putIfAbsent method always returns the previous
value of 𝑘 . Therefore, if it fails, it returns some value (at 𝐼12), and the inc method is called again. If
it succeeds, it returns none ⊥ (at 𝐼13), and the new value 1 is returned.
The vertical composition of the histogram implementation on top of the extended map is lin-

earizable with respect to the sequential specification of the histogram.

Lemma 7.1. hist-imp ⊲𝑂 emap-spec ≲L hist-spec.

The proof of this lemma uses the proof technique that we saw in ğ5 and used in ğ6. The invariants
for this proof are the following: (1) The data relation RD says that the states of the underlying
concrete map and the abstract map of the histogram are equal. (2) The program relation RP captures
a correspondence between the intermediate concrete and abstract programs according to the
linearization points. Similar to the previous use cases, when the intermediate concrete program
has not yet reached the linearization point, the corresponding intermediate abstract program is not
executed yet. After the linearization point, the corresponding abstract program is already evaluated
to a value. The linearization point of the get method is the get call on the underlying map (at 𝐺1).
The linearization point of the inc method is its last replace (at 𝐼4) or putIfAbsent (at 𝐼10) method
call before its returns. (3) The interprogram relation RI is trivially true.

8 TRANSACTIONS

Linearizability offers simple guarantees at the level of individual method calls, but it is still up to the
caller to compose these guarantees to reason about complex programs that successively call multiple
methods. A more convenient model for concurrent programming is offered by transactions: arbitrary
programs, combining multiple calls to some interface, which are expected to run atomically as
a whole. In this section, we first characterize the specification of transactions and then present
objects that implement the specification.
Strict serializability. Given an interface, a transaction is a program 𝑝 on this interface. A

transaction is expected to execute atomically: either execute completely or abort without any effect.
To embody this idea, we introduce a special interface whose one method ?exec takes a whole

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 80. Publication date: April 2022.

80:18 M. Lesani, L. Xia, A. Kaseorg, C. Bell., A. Chlipala, B. Pierce, and S. Zdancewic

program as an argument, represented as an interaction tree. This method is expected to run the
transaction atomically. We equip ?exec with a sequential specification by lifting the sequential
specification of the underlying interface used by the transaction, as we describe next.

Program specification. The program specification corresponding to a given specification spec =

(𝑆, 𝑠0,Δ) for the interface𝑀 , written prog-spec(spec), is the specification (𝑆, 𝑠0,Δ
′), which describes

an interface ProgM with just one method, exec(𝑝), where 𝑝 is itself a program on𝑀 . The relation
Δ
′ is defined as (exec(𝑝), 𝑠, 𝑣, 𝑠 ′) ∈ Δ

′ if and only if (𝑠, 𝑝) →∗spec (𝑠
′, 𝑣), which says that when

exec(𝑝) runs starting from the initial state 𝑠 , it ends in a state 𝑠 ′ obtained by interpreting the
sequence of method calls in 𝑝 based on spec.

(m, 𝑠, 𝑟 , 𝑠 ′) ∈ Δ

(?m, 𝑠, ⌈𝑟⌉, 𝑠 ′) ∈ Δ′

(?m, 𝑠,⊥, 𝑠) ∈ Δ′

Fig. 12. Abortable

transition relation

Abortable specifications. Transactions execute concurrently and may con-
flict on their accesses to the shared state. Therefore, atomic execution of
one transaction may prevent atomic execution of another. Thus, transactions
may be aborted, and the client can either retry immediately or back off to
reduce contention and retry. To capture this behavior, we define abortable
specifications.

First, an interfaceM can be translated into an abortable interface ?M . For any
methodm : M 𝑅, there is a corresponding abortable method ?m : ?M ({⊥}+𝑅),
where the result of the method is made optional: it is either łsome” value ⌈𝑟⌉ containing an actual
result 𝑟 , or it is the łnone” value ⊥.
The abortable version of a given specification (𝑆, 𝑠0,Δ) over the interface M = m, written

ab-spec(spec), is then a specification (𝑆, 𝑠0,Δ
′) over the abortable interface ?M = ?m. The transition

relation Δ
′, shown in Figure 12, can nondeterministically either execute the method call and return

its result ⌈𝑟⌉ or else abort without changing the state and return the łnone” value ⊥.
Transactional specification. Based on the above definitions of program and abortable specifica-

tions, we can now define a transactional specification, which characterizes the atomic execution of
full programs, where aborting is always a possibility. The transactional specification of a given
specification spec, written trans-spec(spec), is simply: ab-spec(prog-spec(spec)).

prog-spec : SpecM → Spec (ProgM)

ab-spec : SpecM → Spec (?M)

trans-spec : SpecM → Spec (?ProgM)

Fig. 13. Program, abortable, and trans-

actional specification transformers

Strict serializability. An object obj that implements inter-
face M is strictly serializable with respect to a specification
spec of M , written obj ≲SS spec, if and only if obj is lineariz-
able with respect to the transactional specification of spec, i.e.,
obj ≲L trans-spec(spec).
There is a close relation between linearizability and strict

serializability. Herlihy and Wing [1990] mention that łlin-
earizability can be viewed a special case of strict serializability
where transactions are restricted to consist of a single operation.” Our modular framework captures
strict serializability as an instance of linearizability with łoperations” (i.e., methods) as programs.

Transactional objects. Having defined strict serializability, we now turn our attention to con-
structing verified transactional objectsÐobjects that provablymeet the specification trans-spec(spec)
and therefore provide ?exec methods, which take as input transactions (programs) and run them
atomically. We define a two-piece template for doing so. First, we instrument the input program,
inserting łlife-cycle” methods to initiate, commit, and abort transactions. Second, we implement the
methods of those instrumented transactions in an object, called a transaction protocol object. Below,
we first consider the interface of a transaction protocol and the corresponding instrumentation.
Then we construct the transactional object as a vertical composition of the instrumented program
on top of a transaction protocol object.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 80. Publication date: April 2022.

C4: Verified Transactional Objects 80:19

Note that this construction is a reusable instance of the compositional definition and verification
methodology that we saw in ğ4. The instrumentation function is independent of the transaction-
protocol object. Therefore, the user programs can be instrumented independently and can be
composed with different underlying protocols that have different performance characteristics.
In addition, decoupling the protocols allows them to be used as the underlying objects of other
transformations, as we will see for predicated objects in ğ9.

instrument(?exec(𝑝)) ≔

𝑡 ← init ();

instrument′(𝑡, 𝑝)

instrument′(𝑡, 𝑝) ≔

match 𝑝 with

| 𝑦 ← m(𝑥); 𝑓 (𝑦) ⇒

𝑟 ← lift(𝑡, m(𝑥));

instRet(𝑓 , 𝑟)

| 𝑟 ⇒

𝑜 ← commit(𝑡);

instEnd(𝑟, 𝑜)

| 𝜏 ;𝑝 ⇒

𝜏 ; instrument′(𝑡, 𝑝)

instRet(𝑓 , 𝑟) :=

let ⟨𝑡, 𝑜⟩ := 𝑟 in

match 𝑜 with

| ⌈𝑟⌉ ⇒

𝜏 ; instrument′(𝑡, 𝑓 (𝑟))

| ⊥ ⇒

abort 𝑡 ;

⊥

instEnd(𝑟, 𝑜) :=

match 𝑜 with

| ⌈𝑡⌉ ⇒

abort 𝑡 ;

⊥

| ⊥ ⇒ ⌈𝑟⌉

Fig. 14. Transaction instru-

mentation

Transaction protocol interface. A transaction protocol interface
trans(M) wraps another interface M , making it so that the interface
M can be used inside of a transaction. For instance, we can obtain the
interface for transactional memory by wrapping the map interface
into a transactional protocol interface. A transaction protocol inter-
face trans(M) provides the following four methods: init, lift, abort,
and commit, which define the life-cycle methods of a transaction.
The method init : TLocal initializes the transaction and returns

the transaction-local state (for example, an initial timestamp for the
transaction). This state is passed between and updated by the other
three methods during execution. The method lift : TLocal ×𝑀 𝑅 →

(TLocal × Option𝑅) takes the current transaction-local state and a
method call m and tries to execute m. It returns a pair including the
updated transaction-local state. The execution of m may not be suc-
cessful, due to a conflict, so lift also returns an optional value, where
⊥ indicates failure, and ⌈𝑟⌉ indicates that m successfully returned
𝑟 . If a call is not successful, then the method abort : TLocal → unit

is subsequently called to clean up before the transaction is aborted.
Finally, the method commit : TLocal→ Option TLocal commits the
transaction. Committing may itself fail due to a conflict, so it returns
an option value. If it is not successful, commit returns the transaction-
local state to be passed to the subsequent abort call; otherwise, when
successful, it returns ⊥.
Transaction instrumentation. Given a transaction protocol inter-

face trans(M) and a program 𝑝 that uses M , the function instrument

presented in Figure 14 transforms 𝑝 into a program over trans(M).
(1) The method init is inserted at the beginning of the transaction.
(2) Each method m in the program is executed by the lift method.
The execution may succeed, in which case the continuation is in-
strumented, or it may fail, in which case abort is called. This logic
is handled by instRet. (3) Finally, if the program returns 𝑟 , commit is
called. Since that might fail, instEnd checks the outcome and triggers an abort, returning ⊥, upon
failure; otherwise the value resulting from the execution of the program is returned.
Transactional objects. Instrumented transactions need to run on top of some other object

that provides life-cycle methods. Given an implementation pro of the transaction protocol in-
terface trans(M), we obtain a transactional object by instrumentation and vertical composition:
trans-obj(pro) = instrument ⊲𝑂 pro. The protocol object pro is correct if the transactional object it
produces is strictly serializable for any set of programs. That is, with respect to the specification
spec, we have trans-obj(pro) ≲SS spec. The following lemma formalizes a way of decomposing that
obligation, for an arbitrary candidate object.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 80. Publication date: April 2022.

80:20 M. Lesani, L. Xia, A. Kaseorg, C. Bell., A. Chlipala, B. Pierce, and S. Zdancewic

Lemma 8.1. A candidate protocol object tm = (M0, tm-imp, spec0) is strictly serializable with respect

to map-spec iff (instrument ⊲ tm-imp) ⊲𝑆 spec0 ≲L trans-spec(map-spec).

init () ≔

𝐼1 𝑡 ← reg.read ();

if (𝑡 mod 2 = 1) init ()

else 𝑡

lift (𝑡, 𝑚′) ≔

match𝑚′with

| get (𝑘) ⇒

𝐺1 𝑣 ← map.get (𝑘);

𝐺2 𝑔𝑡 ← reg.read ();

if (𝑔𝑡 = 𝑡)

⟨𝑡, ⌈𝑣⌉⟩

else ⟨𝑡,⊥⟩

| put (𝑘, 𝑣) ⇒

if (𝑡 mod 2 = 0)

𝑃1 𝑏 ← reg.cas (𝑡, 𝑡 + 1);

if (𝑏)

𝑃2 _← map.put (𝑘, 𝑣);

⟨𝑡 + 1, ⌈unit⌉⟩

else ⟨𝑡 + 1,⊥⟩

else

𝑃3 _← map.put(𝑘, 𝑣);

⟨𝑡, ⌈unit⌉⟩

abort (𝑡) ≔ unit

commit (𝑡) ≔

if (𝑡 mod 2 = 1)

𝐶1 _← reg.write(𝑡 + 1);

⊥

else ⊥

Fig. 15. The implementation

of the TML protocol tml-imp.

reg.m() is a method call to the

register interface, and map.m()

is a call to the map interface

Transactional Mutex Locking. It remains to see how to im-
plement a transaction protocol object correctly. For the case of the
map interface (which yields an implementation of transactional
memory), we proved two implementations are strictly serializable:
the single global lock [Menon et al. 2008] protocol and the Trans-
actional Mutex Locking (TML) protocol [Dalessandro et al. 2010].
We illustrate the technique with TML.

The TML protocol object tml is a transaction protocol object for
the map interface. It provides get and putmethods on a map of keys
to values. The protocol object uses a pair of a register and a map
as its low-level interface. The register represents the global clock
for the protocol, and the map stores values for the keys. We say
that a transaction is a writer if it executes at least one put method
and is a reader if it executes no put methods. Writer transactions
acquire exclusive access to the map by compare-and-swapping the
parity of the global clock from even to odd, and they later release
it by changing the parity of the global clock back to even. Reader
transactions execute optimistically: they do not acquire any locks
and do not block writer transactions.
Figure 15 represents the implementation of the TML protocol

object. In the recursive initmethod, the transaction reads the global
clock (𝐼1) in a loop until it is even (i.e., there is no concurrent writer
transaction). The transaction keeps the final time that it reads in
init as its transaction-local time 𝑡 .
To lift the get method, first the value of the input key is read

from the map (𝐺1), and then the global clock is read (𝐺2). If the
global time is still equal to the transaction-local time, no writer
transaction has been active in the meantime, and the values that the
current transaction has read are still valid. Hence, the transaction
returns the read value. Otherwise, the values that the transaction
has speculatively read may have changed, and it returns failure.
For the put method, it is first checked if the current transaction

has already acquired exclusive access to themap, i.e., the transaction-
local time is odd. If that is the case, the transaction can access
the map directly (𝑃3). Otherwise, the transaction tries to acquire
exclusive access by incrementing the global time using a compare-and-swap (𝑃1). If the compare-
and-swap is not successful, the global clock has changed since it has been read in the init method.
Another writer transaction has acquired exclusive access to the map and may have changed it.
Therefore, the values that the current transaction may have read may not be not valid anymore;
thus, the method returns failure. If the compare-and-swap is successful, then the map is updated
with the input key and value (𝑃2). The transaction keeps the fact that it has acquired exclusive
access by incrementing its transaction-local time to the next odd value.
TML performs updates only if the transaction already has exclusive access and it is safe to

perform the updates. Therefore, the abort method simply returns. The commit method checks the
parity of the transaction-local time. If the transaction-local time is odd, the current transaction is a

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 80. Publication date: April 2022.

C4: Verified Transactional Objects 80:21

writer and has acquired exclusive access. It releases the exclusive-access right by incrementing the
global time to the next even value (𝐶1). Finally, the commit method returns successfully.

Lemma 8.2. The TML protocol object tml is strictly serializable with respect to the map interface.

By Theorem 8.1 and the definition of transactional specification, we should prove the following
concurrent refinement,

(instrument ⊲ tml-imp) ⊲𝑆 (reg-spec +map-spec) ≲C atomic(ab-spec(prog-spec(map-spec)))

Intuitively, any step of a user program that is instrumented and vertically composed on tml should
be refined by the whole execution of the user program or by not running it at all. To prove this
refinement, we use the same proof principle that we saw in Figure 8. The unfixed linearization
point of a reader transaction is the method call 𝐺2 of its last successful get method call. Otherwise,
it is 𝐶1 (for a writer transaction). An intuitive explanation of the linearization points and the three
invariant relations is available in the submitted supplementary material.

9 TRANSACTIONAL PREDICATION

We show an example of composing a linearizable object and a serializable object: transactional
predication. Whereas, in ğ6, we implemented a linearizable map object, which guarantees the
atomicity of individual map methods, here we want to implement a serializable map object, which
guarantees the atomicity of arbitrary map transactions, i.e., programs that may involve many map
method calls. Transactional predication is a technique to implement a serializable map object given
a linearizable map (ğ6) and a TM, i.e., a serializable object of mutable references (ğ8). The general
idea is that the linearizable map quickly maps keys to references, so that high-level calls can be
transformed into calls on references managed by the TM. The TM is used only for the final critical
calls, which avoids expensive repeated TM calls but gains TM’s composability properties.
Transactional predication may be a simple idea, but formalizing it is challenging because it

implements a serializable object using linearizable and serializable objects. A naive and tedious
verification approach would be to reason about how arbitrary high-level transactions are reduced
to low-level transactions. Instead, we define transactional predication as a composition of imple-
mentations, and we reason about it compositionally and algebraically, by equational reasoning
about vertical and horizontal object compositions (⊲, +).
Transactional map. We saw the structure of the predicated set in Figure 3. The predicated

map is similar except that instead of a Boolean, a location stores the value of the key or ⊥ if the key
is removed. The predicated map implements the high-level map interface (from ğ3) from keys Key
to values Val using the sum RefMap + TM of the two low-level interfaces RefMap and TM. The
interface TM is the map interface (that we saw in ğ3) instantiated with Ref as the keys and Val as
values. The references are abstract locations (users may not inspect them, and they are typically
meant to be references to mutable memory cells). This interface is implemented by a serializable
object such as TML (ğ8), i.e., programs consisting of get and put calls can be executed atomically.

Locator. The interface RefMap is a map of keys Key to references Ref, with only one method
lookup : Key → Ref. It is implemented by the locator shown in Figure 16, atop a low-level map
which provides methods get(𝑘) and putIfAbsent(𝑘, 𝑣). The locator object is a łlazy” map from keys
to mutable references (locations) managed by the underlying transactional memory. When a key is
looked up for the first time, a new reference will be allocated and returned; when the same key is
looked up again, the same reference will be returned.
The locator object should appear to behave as a pure function 𝜙 : Key→ Ref assocating map

keys to references. A subtlety is that references will be allocated dynamically, so the function 𝜙
is only determined at runtime. In order to formally relate 𝜙 to the locator object, we convert 𝜙

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 80. Publication date: April 2022.

80:22 M. Lesani, L. Xia, A. Kaseorg, C. Bell., A. Chlipala, B. Pierce, and S. Zdancewic

into a sequential specification ref-map-spec𝜙 parametrized by the pure function 𝜙 : Key→ Ref,

whose transitions associate lookup(𝑘) calls to return values 𝜙 (𝑘). Since the return value is entirely
determined by the method call, the state type is trivially a singleton. The correctness theorem for a
locator does not exactly match the general definition of linearizability, because the abstract object
ref-map-spec𝜙 now depends on the trace of the concrete object locator. For any history ℎ of the

object locator (ℎ ∈ beh(locator)), there exists a function 𝜙 : Key→ Ref such that ℎ is a history of
the specification ref-map-spec𝜙 , i.e., beh(locator) ⊆ ∪𝜙 beh(ref-map-spec𝜙).

locator (lookup(𝑘)) ≔

𝑜 ← get (𝑘);

match 𝑜 with

| ⌈𝑝⌉ ⇒ 𝑝

| ⊥ ⇒

𝑝 ← newRef;

𝑝 ← putIfAbsent (𝑘, 𝑝);

𝑝

Fig. 16. Locator implementation

In interest of space, we elide the details of the application of that
theorem. The rest of the refinement proof in the remainder of this
section is after refining the locator to its specification. Thus, that
proof will be applied to the history ℎ from which we obtained the
function 𝜙 .
Given a function 𝜙 , we can also define another implementa-

tion pure-map𝜙 = (lookup(𝑘) ↦→ 𝜙 (𝑘)) of the specification

ref-map-spec𝜙 , by directly using 𝜙 to answer lookup calls. This

alternative representation of ref-map-spec𝜙 is useful in equational

proofs since it abstracts away the łlazy” implementation. The low-
level interface of pure-map𝜙 is Empty as the object simply returns

the value of 𝜙 for 𝑘 without making any low-level calls. The specification ref-map-spec𝜙 and the

implementation pure-map𝜙 are related by the following equality (which we will use in later proofs).

Lemma 9.1. For all 𝜙 and 𝑠 , id ⊲𝑆 (ref-map-spec𝜙 + 𝑠) =C (pure-map𝜙 + id) ⊲ emptyL ⊲𝑆 𝑠

where obj1 =C obj2 means obj1 ≲C obj2 ∧ obj2 ≲C obj1.

pred-map (𝑚) ≔

match𝑚 with

| get (𝑘) ⇒

𝑟 ← RefMap.lookup (𝑘);

𝑣 ← TM.get (𝑟);

𝑣

| put (𝑘, 𝑣) ⇒

𝑟 ← RefMap.lookup (𝑘);

TM.put (𝑟, 𝑣);

⊥

Fig. 17. Transactional predica-

tion. RefMap.m() is a method

call to the RefMap interface, and

TM.m() is a method call to TM.

The key idea is that a program that makes calls to the interface
RefMap + M intuitively has the same behavior as the program
with interface M obtained by interpreting away the RefMap calls
using 𝜙 . The pure-map𝜙 object does not use a low-level interface,

so pure-map𝜙 + id can be composed on top of emptyL to filter calls

on its left low-level interface. The resulting programs call methods
only on the interface M (of 𝑠).

Predication. The implementation of predicated map pred-map

is shown in Fig. 17. The function pred-map interprets a map method
𝑚 that is parametrized by the key 𝑘 . It first looks up the reference
𝑟 associated with the key 𝑘 by a lookup in the RefMap interface.
Then, it accesses the value stored in the reference via get or put
in the TM interface. The implementation pred-map is used later to
instrument transactions over the exposed map interface.
The predicated map reduces calls on its map interface to calls on another map. Thus, it is

straightforward that the object with the implementation pred-map on the low-level specification
ref-map-spec𝜙 +map-spec sequentially simulates the high-level specification map-spec.

Lemma 9.2. interp-as-spec (pred-map ⊲𝑆 (ref-map-spec𝜙 +map-spec)) ≲SP map-spec .

Instrumentation. To instrument a transaction 𝑝 , we first compose it on top of the pred-map

implementation to obtain a program over the sum interface RefMap + TM. Then, we instrument
the program with the function instrumentR, a variant of instrument, defined in Figure 14, where
the main change is that instrumentR only lifts method calls𝑚 that belong to the TM interface,
while forwarding RefMap calls without modification. We then compose it on top of id + tm-imp to

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 80. Publication date: April 2022.

C4: Verified Transactional Objects 80:23

interpret the TM calls with the TM implementation tm-imp.

p-map-imp = transF(pred-map) ⊲ instrumentR ⊲ (id + tm-imp)

The operator transF, defined below, transforms an implementation 𝑓 of an interface M into an
implementation transF(𝑓) of the interface ?Prog(M). Given a transaction 𝑝 , transF(𝑓) interprets 𝑝
using 𝑓 and makes a single call using the resulting transaction 𝑝 ⊲ 𝑓 .

transF : ImplM N → Impl (?Prog(M)) (?Prog(N))

transF(𝑓) = (?exec(𝑝) ↦→ (𝑣 ← ?exec(𝑝 ⊲ 𝑓); 𝑣))

The following lemma states the relation between instrument and instrumentR.

Lemma 9.3. For all 𝑝 , 𝑓 and 𝑔,

transF(𝑓) ⊲ instrumentR ⊲ (𝑔 + id) ⊲ emptyL = transF(𝑓 ⊲ (𝑔 + id) ⊲ emptyL) ⊲ instrument.

The function instrumentR is applied to programs on a sum interface M + TM, and it wraps calls
on the right but does not alter calls on the left. Therefore, the methods on the left can be interpreted
using an implementation 𝑔 before the instrumentation. Further, since the composition on emptyL
removes the calls on the left, the function instrument can be applied instead of instrumentR.

Strict serializability. The final transactional object is

p-map = p-map-imp ⊲𝑆 (ref-map-spec𝜙 + spec0)

where spec0 is the specification of the low-level interface of the TM protocol. The goal is to prove
the serializability of this object with respect to the map specification map-spec.

Before the proof, we give a helper lemma. It states that interpreting a program 𝑝 by an implemen-
tation 𝑓 and then interpreting it under the transactional specification of 𝑠 is the same as interpreting
it directly as a transaction under the interpreted sequential specification of 𝑓 .

Lemma 9.4. For all 𝑓 and 𝑠 , transF(𝑓) ⊲𝑆 trans-spec(𝑠) ≲SS interp-as-spec(𝑓 ⊲𝑆 𝑠).

The proof of serializability is equational, i.e., by successive refinements. This proof style allows
us to package the correctness conditions of individual components as (in)equations that are then
chained together in the final proof in well-delimited rewriting steps interleaved with some admin-
istrative simplifications or factorizations provided by the equational theory of interaction trees
(Lemma 4.6). The high-level idea is that the pure calls to ref-map-spec𝜙 on the left can be filtered

(step 2), and programs that are instrumented on the right by instrumentR can be transformed to
flat programs that are instrumented by instrument (step 5). Having isolated the TM implementa-
tion tm-imp, its serializability guarantees can be applied (step 7). Finally, the correctness theorem
of the core implementation exposes the map sequential specification (step 11). Those key steps
rely respectively on properties of the low-level specification ref-map-spec, the instrumentation
functions instrument and instrumentR, the serializable object tm, and the core implementation
pred-map laid out above.

(1) p-map = p-map-imp ⊲𝑆 (ref-map-spec𝜙 + spec0)

(2) By Lemma 9.1 (after expanding with p-map-imp = p-map-imp ⊲ id):
≲C p-map-imp ⊲ (pure-map𝜙 + id) ⊲ emptyL ⊲𝑆 spec0

(3) Unfold p-map-imp:
transF(pred-map) ⊲ instrumentR ⊲ (id + tm-imp) ⊲ (pure-map𝜙 + id) ⊲ emptyL ⊲𝑆 spec0

(4) Commute vertical compositions based on properties of ⊲ and + (Lemma 4.6):
= transF(pred-map) ⊲ instrumentR ⊲ (pure-map𝜙 + id) ⊲ (id + tm-imp) ⊲ emptyL ⊲𝑆 spec0
= transF(pred-map) ⊲ instrumentR ⊲ (pure-map𝜙 + id) ⊲ emptyL ⊲ tm-imp ⊲𝑆 spec0

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 80. Publication date: April 2022.

80:24 M. Lesani, L. Xia, A. Kaseorg, C. Bell., A. Chlipala, B. Pierce, and S. Zdancewic

(5) By Lemma 9.3:
= transF(pred-map ⊲ (pure-map𝜙 + id) ⊲ emptyL) ⊲ instrument ⊲ tm-imp ⊲𝑆 spec0

(6) Abbreviate𝑚 = pred-map ⊲ (pure-map𝜙 + id) ⊲ emptyL:

= transF(𝑚) ⊲ instrument ⊲ tm-imp ⊲𝑆 spec0
(7) By serializability of tm (Lemma 8.1):
≲C transF(𝑚) ⊲𝑂 atomic(trans-spec(map-spec))

(8) By definition of atomic and simplification:
= transF(𝑚) ⊲𝑂 (id ⊲𝑆 trans-spec(map-spec))
= transF(𝑚) ⊲𝑆 trans-spec(map-spec)

(9) By Lemma 9.4 and the definitions of linearizability and strict serializability:
≲C atomic(trans-spec(interp-as-spec(𝑚 ⊲𝑆 map-spec)))

(10) By Lemma 9.1:
≲C atomic(trans-spec(interp-as-spec(pred-map ⊲𝑆 (ref-map-spec𝜙 +map-spec))))

(11) By Lemma 9.2 and Lemma 4.1:
≲C atomic(trans-spec(map-spec))

(12) By the definitions of linearizability and strict serializability:
≲SS map-spec □

10 COQ FRAMEWORK

CoInductive Prog M R :=

| Ret (_ : R)

| Tau (_ : Prog M R)

| Bind A (_ : M A) (_ : A → Prog M R).

Fig. 18. The type of interaction trees

We implemented the presented framework as a library
in Coq called C4 (for Certified Composable Concurrency
in Coq) [Lesani et al. 2022], that is made publicly available.
As mentioned in Section 3, we represent programs as
interaction trees [Xia et al. 2020], which are modeled in
a coinductive type shown in Figure 18. Interaction trees
are a mixed embedding [Chlipala 2021] that exposes exactly the behavior of objects that we care
about, namely, the sequences of methods they call, while hiding irrelevant syntactic details: binders,
conditionals, pattern-matching, and loops are handled by the metalanguage. Vertical composition
and instrumentation are now functions on potentially infinite trees, which requires some care,
but the upside is that they are agnostic to the constructs used to form loops. The interaction-tree
library provides an equational theory (Lemma 4.6) that we leveraged in our verified transactional-
predication application (Section 9).

Definition Impl M N :=

(∀ R, M R → Prog N R).

Record Spec M :=

{ State : Type

; Init : State

; Transitions : State → ∀R, M R →

State → R → Prop }.

Record Object M :=

{ LowM : Type → Type

; ObjImpl : Impl M LowM

; ObjLowSpec : Spec LowM }.

Fig. 19. Implementations, sequential speci-

fications, and objects in Coq

Implementations ImplM N are formalized as functions
of type ∀ R, M R→ itree N R, mapping method calls
in the high-level interface M to programs that perform
method calls in the low-level interface N. A method call
also determines a result type R that must be the result
type of the program. (Implementations are called handlers
in Xia et al. [2020].) Sequential specifications and objects
are dependently typed records, respectively packaging a
type of states with a transition relation and a low-level
interface with a sequential specification and an implemen-
tation using it, as shown in Figure 19.

Linearizability, serializability, and associated construc-
tions are defined as regular relations and functions in Coq, with signatures shown in Figures 6
and 13. The equations for composition operators (Section 4) and the proof principle for linearizabil-
ity (Section 5) are the main tools that can be reused to reason about concurrent objects. To prove
concurrent refinement (and linearizability), the user defines the invariants, instantiates the proof

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 80. Publication date: April 2022.

C4: Verified Transactional Objects 80:25

principle, and proves the proof obligations. Simplified instances of the proof principle without
certain invariants that factor out boilerplate cases are also available.

Thanks to the executability of interaction trees, we can use Coq’s extraction mechanism to trans-
late implementationsÐthe executable parts of objectsÐto Haskell and use them in multithreaded
programs. We can interpret an interaction tree by a fold [Meijer et al. 1991] with an implementation
of its method calls, using Haskell’s concurrency primitives. However, explicitly manipulating tree
structures adds significant run-time overhead. As future work, we would like to explore partial eval-
uation of extracted implementations to improve performance to a level competitive with concurrent
data structures written directly in Haskell.

11 RELATED WORK

Composing concurrent operations. Several previous works present techniques to compose
multiple calls on concurrent data structures into atomic operations. Transactional boosting [Herlihy
and Koskinen 2008] benefits from commutativity specifications to allow concurrent execution of
commutative calls and prevent concurrent execution of noncommuting calls by acquiring the same
lock. Later works presented optimistic variants [Dickerson et al. 2019; Hassan et al. 2014].
Guerraoui [1995] introduced o-atomicity, a property of specifications of atomicity that allows

multiple objects with different serialization orders to be composed in the same transaction, present-
ing sketches of both pessimistic and optimistic implementations that satisfy o-atomicity. Similarly,
Reversible Atomic Objects (RAO) [Antonopoulos et al. 2016] propose an implementation tech-
nique for such compositions. In contrast to the two works above, this paper presents general
and composable definitions to capture different specifications and implementation techniques
modularly, plus proof principles to verify correctness. ROA can be captured in our framework as
a composition instance, and the RAO refinement proof can be captured as linearizability of the
resulting object with respect to the specification of the high-level interface. Finally, in contrast to
RAO, our framework supports recursive method calls.

We saw transactional predication [Bronson et al. 2010] in this paper. Similarly, transactional data
structures [Assa et al. 2020; Spiegelman et al. 2016] and transactional software objects [Herman
et al. 2016] use TM judiciously and further benefit from specific data-structure semantics and
organization to improve efficiency. Follow-up work presents lock-free variants [Elizarov et al.
2019]. In Foresight [Golan-Gueta et al. 2013], the client declares an overapproximation of the set of
methods that they foresee to be called. To maintains a partial order for the composed operations,
the library may temporarily block a method call that does not commute with the possible future
calls by the environment. A few other works [LaBorde et al. 2019; Lamar et al. 2020; Zhang et al.
2018] present custom synchronization mechanisms to provide transactional implementations of
specific data structures such as linked lists and vectors. However, the above do not provide proof
techniques and formal atomicity guarantees.

Testing and verification of composed operations. Colt [Shacham et al. 2011] and ICFinder
[Liu et al. 2013] test atomicity of, and Snowflake [Lesani et al. 2014] automatically verifies, com-
posed methods that extend the interface of an already linearizable data structure [Lea 2000]. Our
framework includes tactics that can automatically verify a strict superset of the above use cases.
Further, it supports the definition of a more diverse set of objects including composition of multiple
objects and transaction protocols, and it provides general proof techniques to verify them. Flint
[Liu et al. 2014] fixes nonatomic composed methods. It infers a specification from the method itself
and applies heuristics to synthesize a concurrent implementation. In contrast to Flint’s repair of
composed methods, our framework supports their formal definition and mechanized verification.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 80. Publication date: April 2022.

80:26 M. Lesani, L. Xia, A. Kaseorg, C. Bell., A. Chlipala, B. Pierce, and S. Zdancewic

TxC-ADT [Peterson and Dechev 2017] generates happens-before graphs and applies model
checking to check the consistency of transactional data structures. By contrast, our framework
presents proof techniques to verify these data structures mechanically in a proof assistant.

Specification and verification of atomicity. Filipović et al. [2010] characterized linearizability
as observational refinement. Attiya et al. [2017] characterized the TM correctness conditions TMS
[Doherty et al. 2013] and opacity [Guerraoui and Kapalka 2008] as observational refinement. Thus,
the notions of simulation and refinement [Abadi and Lamport 1991; Lynch and Vaandrager 1995]
have been applied to verify atomicity [Bouajjani et al. 2017; Emmi and Enea 2019; Hawblitzel et al.
2015; Jagannathan et al. 2014; Kragl et al. 2020; Lesani et al. 2012a; Schellhorn et al. 2012; Turon
et al. 2013]. However, they do not consider verification of composed operations. A related project
[Armstrong et al. 2017] first proves the atomicity of individual operations (read, write, commit)
of the transaction protocol and then applies simulation to prove serializability on top of that. In
contrast to our formalism, it does not modularly state serializability in terms of linearizability and
uses a standalone definition of opacity.

A related project [Cerone et al. 2014; Murawski and Tzevelekos 2019] presents multiple dedicated
definitions of linearizability for objects (or libraries) that are implemented in terms of other objects.
Our framework shows that a unique definition of linearizability, composition combinators, and
proof technique can be the foundation of different instantiations including serializability. A few
projects [Batty et al. 2013; Raad et al. 2019] consider modular verification of data structures on
weak memory [Adve and Gharachorloo 1996; Sewell et al. 2010]. However, they do not consider
transactions or the relation of linearizability and serializability. Further, the above projects did not
consider the composition of transactional memory and concurrent data structures.
Modular systems. Objects and sequential specifications are similar to the modules and

interfaces of certified abstraction layers [Gu et al. 2015], which were introduced in a sequential and
deterministic context. Determinism enables proofs by downward simulation, and the sequential
nature of modules allows them to support a flexible form of horizontal composition. In contrast,
we leverage linearizable objects [Filipović et al. 2010; Gotsman and Yang 2012; Herlihy and Wing
1990] to build hierarchies of concurrent objects, our simulation proofs are upwards, and horizontal
composition of concurrent objects requires their interfaces to be fully disjoint. In subsequent work
on certified concurrent abstraction layers [Gu et al. 2018], interfaces specify behavior at the level
of individual threads, whereas we focus on specifications using simple state machines that are
agnostic to the number of threads interacting with objects.

Program logics. To our knowledge, while Hoare logics have long been applied in concurrent
program verification, they have not been used for modular proof of examples combining classic
concurrent data structures with transactional memory. However, many different extensions have
been influential, including to our work. Rely-guarantee reasoning [Jones 1983] supports temporal

decomposition of a workload across concurrent threads. The pioneering work on concurrent
separation logic [Hobor et al. 2008; O’Hearn 2007] and its descendants [Windsor et al. 2017] tackled
spatial decomposition of memory across separately verified data structures. Fruitful combination
of these two techniques was demonstrated in the logics RGSep [Vafeiadis and Parkinson 2007],
LRG [Feng 2009; Liang and Feng 2013] and TaDA [da Rocha Pinto et al. 2014]. This line of work
relies on ghost state to formulate functional-correctness properties. A number of program logics
rise to this challenge, by defining flexible higher-order ghost state connected to notions of state-
transition systems. For instance, the logics FCSL [Nanevski et al. 2014] and Iris [Jung et al. 2016,
2015] build in different notions of monoids for expressing protocols [Liang and Feng 2013], and the
GPS logic [Turon et al. 2014] applied similar ideas in the context of weak memory.
These logics support much more flexible state-sharing than in our framework. However, in

return, we keep our framework much simpler and modularly build it from basic definitions, fixing

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 80. Publication date: April 2022.

C4: Verified Transactional Objects 80:27

little more than the classic notion of simulation and linearizability. Yet, we show that elaborate
concurrent objects such as transaction protocols and predicated data structures can be implemented
modularly. Further, in contrast to correctness conditions for transactions that were often written as
standalone definitions [Doherty et al. 2013; Guerraoui and Kapalka 2008; Jagannathan et al. 2005;
Papadimitriou 1979; Scott 2006], we show that serializability can be defined modularly based on
linearizability and composition operations.

12 CONCLUSION

We have presented the first case study in formal verification that shows how to compose verified
transactional objects whose implementations blend classic concurrent data structures with transac-
tions. Moreover, while one might expect new complications in the reasoning framework to support
this marriage, we demonstrated how it can be accomplished in a simple modular framework. Our
notion of concurrent-object correctness is the classic one of linearizability with respect to sequential
specifications, but applied in a higher-order logic with functional programs that manipulate higher-
order structures. Our encoding of transactions relies on methods that take complete transactions
as inputs and rewrite them syntactically to add synchronization, permitting us to state and prove
strict serializability in terms of linearizability.

13 LIMITATIONS AND FUTURE WORK

The framework is first-order for objects and higher-order for programs. Programs (represented as
interaction trees), but not objects, can be passed as arguments and returned. As a consequence, the
interface of methods that an object may call is statically fixed.
Adding weak-memory primitives to the framework is future work. Although the focus of this

paper was not on weak memory, the composition operators, their properties, and the statements of
linearizability and of serializability in terms of linearizability are all general and independent of the
implementation of the low-level objects at the bottom of the hierarchy. Many data structures that
are implemented on weak memory provide linearizability at their interfaces and can be used and
composed within this general framework.
Our framework models strict serializability in terms of linearizability. Opacity [Guerraoui and

Kapalka 2008], another correctness condition for transactional memories, requires active in addition
to completed transactions to observe consistent state. Previous work [Lesani et al. 2012b] defined a
transition system (or specification) for opacity that constrains the return values of all calls from
active transactions. Opacity can be modeled in our framework in terms of linearizability as well. A
protocol object is opaque iff it is linearizable with respect to the opacity specification. A sketch of
this idea is available in the appendix of the author’s version.

Other transactional objects such as the TDSL transactional set [Spiegelman et al. 2016] similarly
use an index map to accelerate traversals to locations that need to be updated. The index map
provides the method getPrev that returns a node that can reach the predecessor of the node that
needs to be updated. Although this method cannot be abstracted as a function, it can be abstracted
as a simple relation between the key argument, the returned node, and the state of the list. We
hope that similarly to our functional abstraction of the locator, this relational abstraction can help
decompose verification of the index and the transactional list.

ACKNOWLEDGEMENTS

This work was funded by National Science Foundation grant 1942711 and grant CCF-1521584, for
the Expedition on the Science of Deep Specification.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 80. Publication date: April 2022.

80:28 M. Lesani, L. Xia, A. Kaseorg, C. Bell., A. Chlipala, B. Pierce, and S. Zdancewic

REFERENCES

Martín Abadi and Leslie Lamport. 1991. The existence of refinement mappings. Theoretical Computer Science 82, 2 (1991),

253ś284.

Sarita V Adve and Kourosh Gharachorloo. 1996. Shared memory consistency models: A tutorial. computer 29, 12 (1996),

66ś76.

Timos Antonopoulos, Paul Gazzillo, Eric Koskinen, and Zhong Shao. 2016. Vertical Composition of Reversible Atomic

Objects. (2016).

Alasdair Armstrong, Brijesh Dongol, and Simon Doherty. 2017. Proving opacity via linearizability: a sound and complete

method. In International Conference on Formal Techniques for Distributed Objects, Components, and Systems. Springer,

50ś66.

Gal Assa, Hagar Meir, Guy Golan-Gueta, Idit Keidar, and Alexander Spiegelman. 2020. Nesting and composition in

transactional data structure libraries. In Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming. 405ś406.

Hagit Attiya, Alexey Gotsman, Sandeep Hans, and Noam Rinetzky. 2017. Characterizing transactional memory consistency

conditions using observational refinement. Journal of the ACM (JACM) 65, 1 (2017), 1ś44.

Mark Batty, Mike Dodds, and Alexey Gotsman. 2013. Library abstraction for C/C++ concurrency. ACM SIGPLAN Notices 48,

1 (2013), 235ś248.

Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Suha Orhun Mutluergil. 2017. Proving linearizability using forward

simulations. In International Conference on Computer Aided Verification. Springer, 542ś563.

Nathan G. Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun. 2010. Transactional predication: high-performance

concurrent sets and maps for STM. In Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed

computing (Zurich, Switzerland) (PODC ’10). ACM, New York, NY, USA, 6ś15. https://doi.org/10.1145/1835698.1835703

Andrea Cerone, Alexey Gotsman, and Hongseok Yang. 2014. Parameterised linearisability. In International Colloquium on

Automata, Languages, and Programming. Springer, 98ś109.

Adam Chlipala. 2021. Skipping the Binder Bureaucracy with Mixed Embeddings in a Semantics Course (Functional Pearl).

Proc. ACM Program. Lang. 5, ICFP, Article 94 (aug 2021), 28 pages. https://doi.org/10.1145/3473599

Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. 2014. TaDA: A logic for time and data abstraction. In

European Conference on Object-Oriented Programming. Springer, 207ś231.

Luke Dalessandro, Dave Dice, Michael Scott, Nir Shavit, and Michael Spear. 2010. Transactional mutex locks. In European

Conference on Parallel Processing. Springer, 2ś13.

Thomas Dickerson, Eric Koskinen, Paul Gazzillo, and Maurice Herlihy. 2019. Conflict Abstractions and Shadow Speculation

for Optimistic Transactional Objects. In Asian Symposium on Programming Languages and Systems. Springer, 313ś331.

Simon Doherty, Lindsay Groves, Victor Luchangco, and Mark Moir. 2013. Towards formally specifying and verifying

transactional memory. Formal Aspects of Computing 25, 5 (2013), 769ś799.

Avner Elizarov, Guy Golan-Gueta, and Erez Petrank. 2019. LOFT: lock-free transactional data structures. In Proceedings of

the 24th Symposium on Principles and Practice of Parallel Programming. 425ś426.

Michael Emmi and Constantin Enea. 2019. Violat: generating tests of observational refinement for concurrent objects. In

International Conference on Computer Aided Verification. Springer, 534ś546.

Xinyu Feng. 2009. Local rely-guarantee reasoning. In POPL ’09.

Ivana Filipović, Peter O’Hearn, Noam Rinetzky, and Hongseok Yang. 2010. Abstraction for concurrent objects. Theoretical

Computer Science 411, 51-52 (2010), 4379ś4398.

Guy Golan-Gueta, G. Ramalingam, Mooly Sagiv, and Eran Yahav. 2013. Concurrent Libraries with Foresight. In Proceedings

of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation (Seattle, Washington, USA)

(PLDI ’13). ACM, New York, NY, USA, 263ś274. https://doi.org/10.1145/2491956.2462172

Alexey Gotsman and Hongseok Yang. 2012. Linearizability with ownership transfer. In International Conference on Concur-

rency Theory. Springer, 256ś271.

Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan (Newman) Wu, Shu-Chun Weng, Haozhong

Zhang, and Yu Guo. 2015. Deep Specifications and Certified Abstraction Layers. In Proceedings of the 42nd Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Mumbai, India) (POPL ’15). Association for

Computing Machinery, New York, NY, USA, 595ś608. https://doi.org/10.1145/2676726.2676975

Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan (Newman)Wu, Jérémie Koenig, Vilhelm Sjöberg, Hao Chen, David Costanzo,

and Tahina Ramananandro. 2018. Certified Concurrent Abstraction Layers. In Proceedings of the 39th ACM SIGPLAN

Conference on Programming Language Design and Implementation (Philadelphia, PA, USA) (PLDI 2018). Association for

Computing Machinery, New York, NY, USA, 646ś661. https://doi.org/10.1145/3192366.3192381

Rachid Guerraoui. 1995. Modular atomic objects. Theory and Practice of Object Systems 1, 2 (1995), 89ś99.

Rachid Guerraoui and Michal Kapalka. 2008. On the correctness of transactional memory. In Proceedings of the 13th ACM

SIGPLAN Symposium on Principles and practice of parallel programming. 175ś184.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 80. Publication date: April 2022.

https://doi.org/10.1145/1835698.1835703
https://doi.org/10.1145/3473599
https://doi.org/10.1145/2491956.2462172
https://doi.org/10.1145/2676726.2676975
https://doi.org/10.1145/3192366.3192381

C4: Verified Transactional Objects 80:29

Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. 2005. Composable Memory Transactions. In

Proceedings of the Tenth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (Chicago, IL, USA)

(PPoPP ’05). Association for Computing Machinery, New York, NY, USA, 48ś60. https://doi.org/10.1145/1065944.1065952

Ahmed Hassan, Roberto Palmieri, and Binoy Ravindran. 2014. Optimistic transactional boosting. In Proceedings of the 19th

ACM SIGPLAN symposium on Principles and practice of parallel programming. 387ś388.

Chris Hawblitzel, Erez Petrank, Shaz Qadeer, and Serdar Tasiran. 2015. Automated and modular refinement reasoning for

concurrent programs. In International Conference on Computer Aided Verification. Springer, 449ś465.

Maurice Herlihy and Eric Koskinen. 2008. Transactional boosting: a methodology for highly-concurrent transactional

objects. In Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice of parallel programming (Salt Lake

City, UT, USA) (PPoPP ’08). ACM, New York, NY, USA, 207ś216. https://doi.org/10.1145/1345206.1345237

Maurice Herlihy and J. Eliot B. Moss. 1993. Transactional Memory: Architectural Support for Lock-Free Data Structures. In

Proceedings of the 20th Annual International Symposium on Computer Architecture (San Diego, California, USA) (ISCA ’93).

Association for Computing Machinery, New York, NY, USA, 289ś300. https://doi.org/10.1145/165123.165164

Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: a correctness condition for concurrent objects. ACM Trans.

Program. Lang. Syst. 12, 3 (July 1990), 463ś492. https://doi.org/10.1145/78969.78972

Nathaniel Herman, Jeevana Priya Inala, Yihe Huang, Lillian Tsai, Eddie Kohler, Barbara Liskov, and Liuba Shrira. 2016.

Type-aware transactions for faster concurrent code. In Proceedings of the Eleventh European Conference on Computer

Systems. 1ś16.

Aquinas Hobor, Andrew W. Appel, and Francesco Zappa Nardelli. 2008. Oracle semantics for concurrent separation logic.

In ESOP.

Suresh Jagannathan, Vincent Laporte, Gustavo Petri, David Pichardie, and Jan Vitek. 2014. Atomicity refinement for verified

compilation. ACM Transactions on Programming Languages and Systems (TOPLAS) 36, 2 (2014), 1ś30.

Suresh Jagannathan, Jan Vitek, Adam Welc, and Antony Hosking. 2005. A transactional object calculus. Science of Computer

Programming 57, 2 (2005), 164ś186.

Cliff B. Jones. 1983. Specification and Design of (Parallel) Programs. In Information Processing 83, Vol. 9. 321ś332.

Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2016. Higher-order Ghost State. In Proceedings of the 21st

ACM SIGPLAN International Conference on Functional Programming (Nara, Japan) (ICFP 2016). ACM, New York, NY, USA,

256ś269. https://doi.org/10.1145/2951913.2951943

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:

Monoids and Invariants As an Orthogonal Basis for Concurrent Reasoning. In POPL ’15 (Mumbai, India). 637ś650.

Nicolas Koh, Yao Li, Yishuai Li, Li yao Xia, Lennart Beringer, Wolf Honore, William Mansky, Benjamin C. Pierce, and Steve

Zdancewic. 2019. From C to Interaction Trees: Specifying, Verifying, and Testing a Networked Server. In 8th ACM

SIGPLAN International Conference on Certified Programs and Proofs.

Bernhard Kragl, Shaz Qadeer, and Thomas A Henzinger. 2020. Refinement for structured concurrent programs. In Interna-

tional Conference on Computer Aided Verification. Springer, 275ś298.

Pierre LaBorde, Lance Lebanoff, Christina Peterson, Deli Zhang, and Damian Dechev. 2019. Wait-Free Dynamic Transactions

for Linked Data Structures. In Proceedings of the 10th International Workshop on Programming Models and Applications for

Multicores and Manycores (Washington, DC, USA) (PMAM’19). Association for Computing Machinery, New York, NY,

USA, 41ś50. https://doi.org/10.1145/3303084.3309491

Kenneth Lamar, Christina Peterson, and Damian Dechev. 2020. Lock-free transactional vector. In Proceedings of the Eleventh

International Workshop on Programming Models and Applications for Multicores and Manycores. 1ś10.

Douglas Lea. 2000. Concurrent programming in Java: design principles and patterns. Addison-Wesley Professional.

Mohsen Lesani, Victor Luchangco, and Mark Moir. 2012a. A framework for formally verifying software transactional

memory algorithms. In International Conference on Concurrency Theory. Springer, 516ś530.

Mohsen Lesani, Victor Luchangco, and Mark Moir. 2012b. Putting opacity in its place. In Workshop on the theory of

transactional memory. 137ś151.

Mohsen Lesani, Todd Millstein, and Jens Palsberg. 2014. Automatic Atomicity Verification for Clients of Concurrent Data

Structures. In Proceedings of the 16th International Conference on Computer Aided Verification - Volume 8559. Springer-Verlag

New York, Inc., New York, NY, USA, 550ś567. https://doi.org/10.1007/978-3-319-08867-9_37

Mohsen Lesani, Li yao Xia, Anders Kaseorg, Christian J. Bell, Adam Chlipala, Benjamin C. Pierce, and Steve Zdancewic.

2022. C4: Verified Transactional Objects. https://doi.org/10.5281/zenodo.6342476

Hongjin Liang and Xinyu Feng. 2013. Modular Verification of Linearizability with Non-fixed Linearization Points. In Proceed-

ings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation (Seattle, Washington,

USA) (PLDI ’13). ACM, New York, NY, USA, 459ś470. https://doi.org/10.1145/2491956.2462189

Peng Liu, Julian Dolby, and Charles Zhang. 2013. Finding Incorrect Compositions of Atomicity. In Proceedings of the 2013

9th Joint Meeting on Foundations of Software Engineering (Saint Petersburg, Russia) (ESEC/FSE 2013). ACM, New York, NY,

USA, 158ś168. https://doi.org/10.1145/2491411.2491435

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 80. Publication date: April 2022.

https://doi.org/10.1145/1065944.1065952
https://doi.org/10.1145/1345206.1345237
https://doi.org/10.1145/165123.165164
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1145/3303084.3309491
https://doi.org/10.1007/978-3-319-08867-9_37
https://doi.org/10.5281/zenodo.6342476
https://doi.org/10.1145/2491956.2462189
https://doi.org/10.1145/2491411.2491435

80:30 M. Lesani, L. Xia, A. Kaseorg, C. Bell., A. Chlipala, B. Pierce, and S. Zdancewic

Peng Liu, Omer Tripp, and Xiangyu Zhang. 2014. Flint: Fixing Linearizability Violations. In Proceedings of the 2014 ACM

International Conference on Object Oriented Programming Systems Languages & Applications (Portland, Oregon, USA)

(OOPSLA ’14). ACM, New York, NY, USA, 543ś560. https://doi.org/10.1145/2660193.2660217

N. Lynch and F. Vaandrager. 1995. Forward and Backward Simulations. Information and Computation 121, 2 (1995), 214 ś

233. https://doi.org/10.1006/inco.1995.1134

Erik Meijer, Maarten Fokkinga, and Ross Paterson. 1991. Functional programming with bananas, lenses, envelopes and

barbed wire. In Conference on functional programming languages and computer architecture. Springer, 124ś144.

Vijay Menon, Steven Balensiefer, Tatiana Shpeisman, Ali-Reza Adl-Tabatabai, Richard L Hudson, Bratin Saha, and Adam

Welc. 2008. Single global lock semantics in a weakly atomic STM. ACM Sigplan Notices 43, 5 (2008), 15ś26.

Andrzej S. Murawski and Nikos Tzevelekos. 2019. Higher-order linearisability. Journal of Logical and Algebraic Methods in

Programming 104 (2019), 86ś116. https://doi.org/10.1016/j.jlamp.2019.01.002

Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and Germán Andrés Delbianco. 2014. Communicating State Transition

Systems for Fine-Grained Concurrent Resources. In Proceedings of the 23rd European Symposium on Programming

Languages and Systems - Volume 8410. Springer-Verlag New York, Inc., New York, NY, USA, 290ś310. https://doi.org/10.

1007/978-3-642-54833-8_16

Peter W. O’Hearn. 2007. Resources, concurrency, and local reasoning. Theor. Comput. Sci. 375, 1-3 (2007), 271ś307.

Christos H Papadimitriou. 1979. The serializability of concurrent database updates. Journal of the ACM (JACM) 26, 4 (1979),

631ś653.

Christina Peterson and Damian Dechev. 2017. A Transactional Correctness Tool for Abstract Data Types. ACM Trans.

Archit. Code Optim. 14, 4, Article 37 (Nov. 2017), 24 pages. https://doi.org/10.1145/3148964

Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis. 2019. On library correctness under weak memory

consistency: Specifying and verifying concurrent libraries under declarative consistency models. Proceedings of the ACM

on Programming Languages 3, POPL (2019), 1ś31.

Gerhard Schellhorn, Heike Wehrheim, and John Derrick. 2012. How to Prove Algorithms Linearisable. In Proceedings of the

24th International Conference on Computer Aided Verification (Berkeley, CA) (CAV’12). Springer-Verlag, Berlin, Heidelberg,

243ś259. https://doi.org/10.1007/978-3-642-31424-7_21

Michael Scott. 2006. Sequential specification of transactional memory semantics. (2006).

Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O Myreen. 2010. x86-TSO: a rigorous and

usable programmer’s model for x86 multiprocessors. Commun. ACM 53, 7 (2010), 89ś97.

Ohad Shacham, Nathan Bronson, Alex Aiken, Mooly Sagiv, Martin Vechev, and Eran Yahav. 2011. Testing atomicity of

composed concurrent operations. In Proceedings of the 2011 ACM international conference on Object oriented programming

systems languages and applications (Portland, Oregon, USA) (OOPSLA ’11). ACM, New York, NY, USA, 51ś64. https:

//doi.org/10.1145/2048066.2048073

Nir Shavit and Dan Touitou. 1995. Software Transactional Memory. In Proceedings of the Fourteenth Annual ACM Symposium

on Principles of Distributed Computing (Ottowa, Ontario, Canada) (PODC ’95). Association for Computing Machinery,

New York, NY, USA, 204ś213. https://doi.org/10.1145/224964.224987

Alexander Spiegelman, Guy Golan-Gueta, and Idit Keidar. 2016. Transactional Data Structure Libraries. In Proceedings of the

37th ACM SIGPLAN Conference on Programming Language Design and Implementation (Santa Barbara, CA, USA) (PLDI

’16). ACM, New York, NY, USA, 682ś696. https://doi.org/10.1145/2908080.2908112

Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. 2014. GPS: Navigating Weak Memory with Ghosts, Protocols, and

Separation. In Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages

& Applications (Portland, Oregon, USA) (OOPSLA ’14). ACM, New York, NY, USA, 691ś707. https://doi.org/10.1145/

2660193.2660243

Aaron J Turon, Jacob Thamsborg, Amal Ahmed, Lars Birkedal, and Derek Dreyer. 2013. Logical relations for fine-grained

concurrency. In Proceedings of the 40th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages.

343ś356.

Viktor Vafeiadis and Matthew Parkinson. 2007. A Marriage of Rely/Guarantee and Separation Logic. In CONCUR.

Matt Windsor, Mike Dodds, Ben Simner, and Matthew J. Parkinson. 2017. Starling: Lightweight Concurrency Verification

with Views. In Computer Aided Verification, Rupak Majumdar and Viktor Kunčak (Eds.). Springer International Publishing,

Cham, 544ś569.

Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce, and Steve Zdancewic.

2020. Interaction trees: representing recursive and impure programs in Coq. Proc. ACM Program. Lang. 4, POPL (2020),

51:1ś51:32. https://doi.org/10.1145/3371119 Distinguished paper award.

Yannick Zakowski, Paul He, Chung-Kil Hur, and Steve Zdancewic. 2020. An Equational Theory for Weak Bisimulation via

Generalized Parameterized Coinduction. In Proceedings of the 9th ACM SIGPLAN International Conference on Certified

Programs and Proofs (CPP).

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 80. Publication date: April 2022.

https://doi.org/10.1145/2660193.2660217
https://doi.org/10.1006/inco.1995.1134
https://doi.org/10.1016/j.jlamp.2019.01.002
https://doi.org/10.1007/978-3-642-54833-8_16
https://doi.org/10.1007/978-3-642-54833-8_16
https://doi.org/10.1145/3148964
https://doi.org/10.1007/978-3-642-31424-7_21
https://doi.org/10.1145/2048066.2048073
https://doi.org/10.1145/2048066.2048073
https://doi.org/10.1145/224964.224987
https://doi.org/10.1145/2908080.2908112
https://doi.org/10.1145/2660193.2660243
https://doi.org/10.1145/2660193.2660243
https://doi.org/10.1145/3371119

C4: Verified Transactional Objects 80:31

Deli Zhang, Pierre Laborde, Lance Lebanoff, and Damian Dechev. 2018. Lock-free transactional transformation for linked

data structures. ACM Transactions on Parallel Computing (TOPC) 5, 1 (2018), 1ś37.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 80. Publication date: April 2022.

	Abstract
	1 Introduction
	2 Overview
	3 Concurrent Objects
	4 Linearizability and Composition
	5 Verification of Linearizability
	6 Hierarchical Verification of Linearizability
	7 Linearizability of Vertical Compositions
	8 Transactions
	9 Transactional predication
	10 Coq Framework
	11 Related Work
	12 Conclusion
	13 Limitations and Future Work
	References

