
Ur: Statically-Typed Metaprogramming
with Type-Level Record Computation

Adam Chlipala
Impredicative LLC, Cambridge, MA, USA

adamc@impredicative.com

Abstract
Dependent types provide a strong foundation for specifying and
verifying rich properties of programs through type-checking. The
earliest implementations combined dependency, which allows
types to mention program variables; with type-level computation,
which facilitates expressive specifications that compute with re-
cursive functions over types. While many recent applications of
dependent types omit the latter facility, we argue in this paper that
it deserves more attention, even when implemented without depen-
dency.

In particular, the ability to use functional programs as specifi-
cations enables statically-typed metaprogramming: programs write
programs, and static type-checking guarantees that the generating
process never produces invalid code. Since our focus is on generic
validity properties rather than full correctness verification, it is pos-
sible to engineer type inference systems that are very effective in
narrow domains. As a demonstration, we present Ur, a program-
ming language designed to facilitate metaprogramming with first-
class records and names. On top of Ur, we implement Ur/Web, a
special standard library that enables the development of modern
Web applications. Ad-hoc code generation is already in wide use
in the popular Web application frameworks, and we show how that
generation may be tamed using types, without forcing metaprogram
authors to write proofs or forcing metaprogram users to write any
fancy types.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Applicative (Functional) Programming; F.3.3 [Logics
and Meanings of Programs]: Type Structure

General Terms Languages, Reliability, Security

Keywords dependent types, metaprogramming

1. Introduction
Dependent types are a technique that is picking up momentum in
practical language design. A dependent type system allows types
to refer to program variables whose values are not determined un-
til runtime. The classical approach, exemplified by Coq [3] and
Agda [17], is based on dependent type theory. These languages
combine dependent typing with rich facilities for type-level com-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’10, June 5–10, 2010, Toronto, Ontario, Canada.
Copyright c© 2010 ACM 978-1-4503-0019/10/06. . . $10.00

putation. Types may be computed via calls to recursive functions.
This paper is about a very practical application of type-level com-
putation, without dependency, in a system that is still very much
inspired by Coq and Agda.

Until recently, languages with dependent type systems were in-
variably designed to be usable for full correctness verification. A
type system must be quite complex to support that goal. It will
almost certainly have undecidable type inference, as well as in-
tractable type inference in practice. Thus, to use such a system to
verify serious applications, a programmer must inevitably spend
significant effort writing annotations and proofs that exist only to
appease the type checker. At the same time, the same language fea-
tures can be very useful in checking general program validity prop-
erties, in a sense more in line with mainstream usage of type sys-
tems. By identifying a narrow domain of properties, we can hope to
build an effective type inference procedure, without compromising
the programmer’s ability to employ clever abstractions.

We suggest metaprogramming in Web applications as one such
“killer application.” The term “metaprogramming” is used to de-
scribe programs that perform code generation, code introspection,
or both. In this paper, we restrict our attention to code generation.
This will include both heterogeneous metaprogramming, where
programs in our Turing-complete language build SQL queries and
HTML pages; and homogeneous metaprogramming, where pro-
grams in our Turing-complete language generate other such pro-
grams. In the latter category, we follow standard ideas from the
world of dependent typing, using type-level computation to avoid
explicit syntax manipulation. Nonetheless, we achieve the same
functionality that is traditionally implemented with code genera-
tion.

The most popular approach to Web application programming
today involves usage of frameworks implemented in dynamic lan-
guages, including Ruby on Rails1 and Django2. These systems in-
clude metaprogramming components to help coders get new Web
applications up and running quickly. In some cases, this is ad-hoc
generation of source code as strings; in other cases, it is reflection-
based runtime code generation. No matter the details, there is no
static checking of code generators. It is easy to have bugs that go
uncaught even by systematic testing.

Lurking bugs in Web code generators are a serious business.
One study [7] found that over 30% of Web applications are sus-
ceptible to some kind of code injection attack, where code from an
untrusted source is relayed to browsers or database servers through
a Web application that does insufficient input sanitization. It is hard
enough to treat input securely in a standalone application; it is even
harder to write a code generator that never outputs a vulnerable pro-

1 http://www.rubyonrails.org/
2 http://www.djangoproject.com/

gram. A rich enough static type system can guarantee that metapro-
grams are valid in this sense.

For instance, we can model HTML pages and SQL queries with
rich abstract syntax tree types. When treating these types as simple
strings, it is easy to splice in unsanitized user input in a way that has
surprising parsing consequences. By working instead with syntax
trees, we avoid such complexities. We can go even further and
use advanced type system features to guarantee that, for instance,
every constructible SQL query makes correct assumptions about a
database schema. Finally, with further type system sophistication,
we can assign static types to programs that generate code; for
instance, we can assign a static type to a function that is generic in a
database schema, producing different queries for different schemas.
Any type-correct metaprogram of this kind is guaranteed to output
query code that is immune to code injection attacks.

Statically-typed code generation is attractive for reasons beside
security. A serious barrier in the way of wider use of metaprogram-
ming is the difficulty in building abstractions that programmers can
figure out how to use. A good static type system can provide a
structuring principle and a source of machine-checked documenta-
tion about the interfaces of generic components.

How can we arrive at a language environment that can support
our vision? One strategy is to start with a less esoteric program-
ming language and gradually add expressivity. In particular, fea-
tures once associated only with dependently-typed languages have
recently been added to Haskell, in the form of extensions like multi-
parameter type classes with functional dependencies [12], general-
ized algebraic datatypes [27], and open type functions [26].

An alternative strategy is to design a new programming lan-
guage, picking and choosing features inspired by traditional dependently-
typed languages. Languages like Cayenne [2] and Sage [14] sacri-
fice decidable type-checking but keep all three of dependent types,
type-level computation, and broad applicability. Another popu-
lar approach is to introduce some form of dependent types with-
out type-level computation, as in ATS [5], Deputy [6], and liquid
types [25]. Finally, a language can support rich type-level compu-
tation without dependent typing, as in Ωmega [29].

Considering classical tools like Coq and Agda, Haskell exten-
sions, and the previous paragraph’s new languages, there is a seri-
ous common weakness. They do not provide very good support for
the construction of new abstractions that manipulate richly-typed
values. In each case, either the type system is too weak to sup-
port interesting metaprogramming applications, or the annotation
and/or proof burden needed to support metaprogramming is very
high. In the latter category, type checkers are usually very good at
checking normal programs, where all relevant pieces of type-level
data are fully determined. However, when some of these pieces of
data are unknown, the undecidability of type inference becomes a
serious problem. Serious metaprograms generally need to include
some kind of explicit proof terms to convince the type-checker.

We illustrate the problem with some example code in Coq, a
system that can be considered as maximally expressive within this
design space. Consider code that manipulates heterogeneous lists,
where the type of a list conveys exactly how many elements it has,
as well as what type each element should have. These types may be
different for different list positions. It is natural to define a concate-
nation operator +++ for heterogeneous lists, whose type is defined
in terms of normal list concatenation ++. Richer versions of all of
these constructions are very useful in our metaprogramming do-
main, for such tasks as modeling database schemas. This particular
contrived example is chosen for its simplicity, but the problem of
“satisfying the type-checker” is a pervasive one that underlies the
practical differences between Ur and related languages.

Definition l1 := [int, string].

Definition l2 := [bool].
Definition l3 := [int].

Definition h1 : hlist l1 = [< 1, "ABC" >].
Definition h2 : hlist l2 = [< true >].
Definition h3 : hlist l3 = [< 4 >].
Definition h123 : hlist (l1 ++ (l2 ++ l3)) =
(h1 +++ h2) +++ h3.

The li variables are lists of types, written in usual ML-like
notation. In the definitions of the hi variables, each type list is used
to describe the shape of a heterogeneous list. The final definition
of h123 concatenates our three lists into a single list. Notice that,
in the type of h123, we apply normal list concatenation as if it
were right-associative, while, in the body of the definition, we
apply heterogeneous list concatenation left-associatively. In Coq
(and in the other languages we surveyed above with type-level
computation), it is easy to see that this implicit use of associativity
is legal. The lists li are constants, so we simply evaluate the two
type lists l1 ++ (l2 ++ l3) and (l1 ++ l2) ++ l3, verifying
that the resulting constant lists are equal.

Things get more complicated if we want to write a generic
associative-concatenation function.

Definition acat l1 l2 l3
(h1 : hlist l1) (h2 : hlist l2) (h3 : hlist l3)
: hlist (l1 ++ (l2 ++ l3)) =
cast (assoc l1 l2 l3) ((h1 +++ h2) +++ h3).

Here, the variables li are type parameters, as in paramet-
ric polymorphism. Since we do not know their values, we can-
not check type equivalences via the simple evaluate-and-compare
method. Instead, to get our function to type-check, we had to in-
clude an explicit cast expression. The sub-expression assoc l1
l2 l3 is a proof term, establishing the fact (l1 ++ l2) ++ l3 =
l1 ++ (l2 ++ l3). The theorem assoc was proved separately in
a library, using techniques more mathematical than programming-
oriented.

In all of the systems we mentioned earlier, this kind of explicit
casting is the best that can be done to support the combination of
rich typing and genericity. The burden may not seem too great from
the classical perspective of dependent-types-for-full-verification.
However, when writing a code generator for a Web application,
such typing details are far from the main point of the code. Facts
like concatenation associativity should be applied automatically.
Today’s type system state of the art fails to provide this facility.

In this paper, we argue for use of a language with type-level
computation but no dependency. Moreover, we are not interested
in supporting full correctness verification. We only care to handle
the sorts of typing issues that come up in metaprogramming. This
is an opportunity to avoid any need for explicit proof terms by
building a customized type inference engine. Our approach is by
no means a deep theoretical advancement. The key structuring
ideas are already there in Coq and Agda, and our system could be
implemented as a library in one of those languages. However, using
such a library would require heroic efforts in type annotation and
theorem-proving. Dependent types are popularly viewed as more
theory than practice; in this work, we show that, with just a small
injection of domain-specific smarts, this old piece of theory leads
to a practical tool that is highly competitive in a popular real-world
application domain.

We present the Ur programming language, whose novel fea-
tures center on first-class, type-level names and records. Ur in-
cludes specialized heuristic type inference that makes it possible
to write record-manipulating metaprograms that are free of explicit
proof terms. On top of Ur, we have built Ur/Web, a domain-specific

language for constructing modern Web applications. Ur/Web adds
a special standard library, some parsing extensions, and a special-
ized compiler, but it relies only on the generic Ur type inference
engine. The signature of the Ur/Web library describes the syntax
and typing constraints of HTML documents and SQL queries, and
the inference engine is sufficient to type-check metaprograms that
build programs that build documents and queries.

Type inference for Ur is undecidable, and we have no theorems
that support our choice of inference procedure. Instead, we point
to empirical evidence of Ur/Web’s effectiveness. We have built the
tool set to be a real, practical Web application framework that is
highly competitive with mainstream frameworks. We claim that, in
the hands of an experienced functional programmer, Ur/Web is far
ahead of the competition in each of the critical areas of programmer
productivity, security, and performance. In this paper, we focus on
productivity, measured in terms of case studies in using Ur/Web to
build practically-useful metaprograms.

In particular, we have based our design on two firm principles.

1. The author of a metaprogram should never need to write a
proof term. He may write more involved types than usual, and
he may need to add new type parameters to some functions, but
he should never need to do any work to show that his program
really has the type he wrote.

2. The users of a metaprogram should need to write neither
proofs nor types more complex than those found in main-
stream programming languages.

In the next section, we introduce the key features of Ur by
example. In Section 3, we formalize a core calculus based on these
features. The following section discusses effective type inference
for the full language. After that, we describe our implementation
and provide evidence for its practicality, in the form of case studies
building statically-typed versions of common metaprogramming
functionality. We conclude by discussing related and future work.

The open source distribution of the Ur/Web compiler, along
with the source code for our case studies, is available at

http://www.impredicative.com/ur/

2. Ur By Example
Ur is an extension of System Fω [22], the higher-order polymorphic
lambda calculus, presented with ML-style syntax. The foundation
of the key extensions to Fω is support for type-level names and
records. As a simple introduction to these features and their use-
fulness, we will write a generic record field projection function.
For example, the function call proj [#A] {A = 1, B = 2.3}
will evaluate to 1, while the call proj [#D] {C = True, D =
"xyz", E = 8} will evaluate to "xyz". This proj function will
be usable on any record, with arbitrary fields of arbitrary types.
Further, proj will have a static type that expresses its requirements
exactly, and the Ur type-checker will verify that proj will work
correctly on any input compatible with its type.

The definition of proj is not very long, but it depends on a few
unusual constructs, which we will introduce below.

fun proj [nm :: Name] [t :: Type] [r :: {Type}]
[[nm] ~ r] (x : $([nm = t] ++ r)) = x.nm

Type-level formal arguments to functions are declared inside
square brackets. Our proj function binds three type-level variables
nm, t, and r. Unlike in usual ML code, the type variables appear
explicitly in the function definition. Each type variable is assigned
a kind. Kinds are to types as types are to values; kinds classify
different varieties of types. The kind annotations above indicate

that nm is a field name, t is a normal type, and r is a record of
types, otherwise known in the literature as a row type.

The next piece of the function definition is [[nm] ~ r], which
declares a disjointness constraint. This particular constraint asserts
that the name nm is not used by the type-level record r.

The final formal argument is x, which is a normal, value-level
argument. We write x’s type using the $ operator, which converts
a type-level record r (of kind {Type}) to a record type (of kind
Type) with field names and types as indicated by r. The code
[nm = t] is an example of a type-level record literal, denoting the
singleton record associating the name nm with the type t. We use
record concatenation ++ to add this singleton to the other fields
r. This concatenation would be invalid if we had not included the
disjointness constraint; Ur enforces lack of field name duplication
in any concatenation.

The function body just uses the primitive record field projection
operator. By encapsulating that operator in this way, we arrive at a
function with the following Ur type.

nm :: Name -> t :: Type -> r :: {Type}
-> [[nm] ~ r] => $([nm = t] ++ r) -> t

Here code like x :: K -> T indicates a polymorphic function,
whose argument is of kind K. The function’s argument is given
name x, which may appear free in the function result type T. For
instance, the normal polymorphic identity function has type a ::
Type -> a -> a. The parsing precedence of the :: operator is
such that it binds more tightly than any other, in any situation where
ambiguity would arise otherwise.

Our proj function is straightforward to apply. For instance,
proj [#A] [int] [[B = float]] ! {A = 1, B = 2.3} has
type int and reduces to 1. We write type-level arguments to value-
level functions inside square brackets, and a first-class name literal
is written by prefixing the name with a # character. The ! stands for
a disjointness proof to be inferred. The Ur type inference engine
contains a special prover for this purpose. There is no syntax for
writing manual proofs; disjointness proofs are always inferred.

The Ur implementation contains a facility for marking some
type-level function arguments as implicit. We will not go into detail
here on that facility, but we can use it so that our function can
be called as simply as proj [#A] {A = 1, B = 2.3}. If the
remaining arguments are marked as implicit at proj’s definition
site, the Ur compiler knows to expand this call to proj [#A]
[] [] ! {A = 1, B = 2.3}. Each underscore is treated as a
distinct unification variable. A specialized unification procedure for
type-level records infers values for these variables.

2.1 A Generic Table Formatter
One very common source of repetitive coding in Web applica-
tions is formatting application-specific records for display as ta-
bles. In this subsection, we show how a particular “copy-and-paste
recipe” can be reified as a well-typed Ur function. The example
will demonstrate how code generators may work by iteration over
all fields of records of metadata.

Our end product is a function mkTable that we will be able to
call like this, assuming that we have available functions showInt
: int -> string and showFloat : float -> string.

val f = mkTable
{A = {Label = "A", Show = showInt},
B = {Label = "B", Show = showFloat}}

This defines a function f of type {A : int, B : float} ->
string. When called with a record of the right type, f will format
it as an HTML table, using the labels "A" and "B" as headings, and
using the functions showInt and showFloat to render columns

of the table. For example, the call f {A = 2, B = 3.4} would
evaluate to the HTML

<tr> <th>A</th> <td>2</td> </tr>
<tr> <th>B</th> <td>3.4</td> </tr>

To write mkTable in a completely generic way, such that it
works with arbitrary sets of fields of arbitrary types, we must
develop some type system machinery. This machinery is involved,
but the final product is a function that may be called as simply as
above.

The first ingredient is a way of folding over the fields of a type-
level record. We define a type family folder, such that folder r
is the type of permutations of the fields of record r. To avoid in-
troducing too much detail at once, we will give some definitions
specialized to records of normal types, though our implementation
uses kind polymorphism to generalize the definitions to other vari-
eties of type-level data.

This is the definition of folder in terms of simpler constructs.
We present it in full first and then consider it a piece at a time,
introducing syntactic and semantic elements as they appear.

type folder (r :: {Type}) = tf :: ({Type} -> Type)
-> (nm :: Name -> t :: Type -> r :: {Type}

-> [[nm] ~ r] => tf r -> tf ([nm = t] ++ r))
-> tf [] -> tf r

This is a type-level function definition. In general, code like
type f (x :: K) = T introduces a function f of kind K -> K’,
when T has kind K’ in an environment where variable x has kind K.

The body of folder’s definition has the form tf :: ({Type}
-> Type) -> STEP -> INIT -> RESULT. A folder is simply
a first-class polymorphic function that may be called to iterate over
the fields of r. The type-level argument tf is the counterpart of the
accumulator type, in analogy to the standard list fold functions of
functional programming. The component STEP gives the type of a
suitable function for computing one iteration of the fold, INIT the
type of the initial value for the fold, and RESULT the final result
type of the fold.

Following this analogy with traditional list fold functions, one
notable difference is that INIT and RESULT are not the same type.
This is because we want to allow the accumulator type to depend
on which prefix of the record’s fields we have already stepped
through. That is, when folding over record r, the initial accumulator
should have type tf [] (where [] is the empty record), and the
final accumulator should have type tf r. We see this progression
reflected in the last line of folder’s definition, in the concrete
choices of INIT and RESULT.

The most interesting part of the definition comes in the second
and third lines, where we have the type STEP of the function to fold
over r:

nm :: Name -> t :: Type -> r :: {Type}
-> [[nm] ~ r] => tf r -> tf ([nm = t] ++ r)

This function takes three type-level arguments: nm, the name of the
field we are processing; t, the type associated with nm; and r, a
record of all of the fields that we already processed. A disjointness
constraint asserts that r does not use the name nm. Finally, we have
a normal function type, with different versions of the accumulator
type tf as the domain and range. In the domain, we have an
accumulator type appropriate for the point just after processing
every field in r. In the range, we extend r to indicate that we have
now also processed nm.

Building on the generic concept of a folder, we can implement
our table generator. We define a type-level function that expresses
which metadata we will need for each record field. In particular,

for each field of type t, we need a display label and a function for
rendering t values as strings.

type meta (t :: Type) = {Label : string,
Show : t -> string}

We use meta to express the type of our table generator, which
we call mkTable. To render a record with fields r, we require
a folder r. We also need a metadata record, whose type is
$(map meta r). When r is [f1 = t1, ..., fn = tn], the
type of this metadata record is {f1 : meta t1, ..., fn :
meta tn}, which is syntactic sugar for $[f1 = meta t1, ...,
fn = meta tn]. Here is the definition of mkTable.

fun mkTable [r :: {Type}] (fl : folder r)
(mr : $(map meta r)) (x : $r) =

fl [fn r => $(map meta r) -> $r -> string]
(fn [nm] [t] [r] [[nm] ~ r] acc mr x =>

"<tr> <th>" ^ mr.nm.Label ^ "</th> <td>"
^ mr.nm.Show x.nm ^ "</td> </tr>"
^ acc (mr -- nm) (x -- nm))

(fn _ _ => "") mr x

The function body is a call to the input folder fl. In passing the
first argument of fl, we choose our accumulator type so that each
accumulated value is a function to a string from a metadata record
and a record of field values. These record types have an explicit
dependency on the set of record fields considered so far.

In the step function, the value-level variables are acc, the
string rendering of the fields already processed; mr, a version
of the input metadata record where already-processed fields have
been removed; and x, a similarly abbreviated version of the origi-
nal argument x. We build a string with the concatenation operator
^. We use the name variable nm to project individual entries out
of the local versions of the records mr and x. Additionally, we use
the operator x -- nm, which removes the field nm from value-level
record x. This field removal is necessary to produce arguments of
the proper types to pass to the accumulator acc.

The type of mkTable is easily read off from the function defini-
tion:

val mkTable : r :: {Type} -> folder r
-> $(map meta r) -> $r -> string

Ur’s implicit argument facility does more than just infer types;
it can also generate folders automatically, using the order of field
names in code as a hint to the permutation the programmer wants.
Taking advantage of this possibility, it is easy to bind a version of
mkTable specialized to a particular record type, with the code we
used to introduce this example.

val f = mkTable
{A = {Label = "A", Show = showInt},
B = {Label = "B", Show = showFloat}}

The type of f is inferred to be {A : int, B : float} ->
string. Notice that we did not need to write the type-level record
[A = int, B = float] explicitly. Rather, the compiler infers
that type from the type of the record we pass to mkTable. The
inference engine is able to solve unification problems like this one
to find the value of r:

$(map meta r)
= {A : {Label : string, Show : int -> string},

B : {Label : string, Show : float -> string}}

We call this kind of inference reverse-engineering unification,
because a record is inferred by looking at the output of some opera-
tion performed on it. This is the key feature behind making Ur/Web

metaprograms no harder to use than the ad-hoc code generators that
are popular today.

While mkTable is easy to use, its definition is somewhat in-
volved. Our vision for the real-world use of these techniques
follows the trajectory of today’s mainstream metaprogramming.
We find relatively expert developers building metaprogramming
tools and dealing with the difficulty of debugging them. Many
novice programmers rely on the libraries that the experts build. The
novices need simple interfaces. Our experience with Ur leads us to
believe that a similar decomposition is plausible with statically-
typed metaprogramming. The novice’s experience is almost un-
changed, and the expert trades off between dynamic debugging
and static checking with extra typing-induced overhead. The expert
must learn type system idioms that are outside even today’s func-
tional programming mainstream, but we hope our examples here
provide evidence that this extra training can pay off.

When high security is critical, as is the case with many Web
applications, we believe that the static typing approach reduces
the overall cost of development. We simplified our definition
of mkTable by outputting HTML in the string type. The real
Ur/Web implementation uses a special XML tree type whose type
indices track which tags are allowed. Thus, a real Ur/Web definition
of mkTable would look more like this:

fun mkTable [r :: {Type}] (fl : folder r)
(mr : $(map meta r)) (x : $r) =

fl [fn r => $(map meta r) -> $r -> xml table]
(fn [nm] [t] [r] [[nm] ~ r] acc mr x =>

concat (tr (th (cdata mr.nm.Label)
:: td (cdata (mr.nm.Show x.nm))
:: nil))

(acc (mr -- nm) (x -- nm)))
(fn _ _ => empty) mr x

Compared to the string-based version, we get a stronger guar-
antee: no matter which record we pass to mkTable, the result-
ing program is free of code injection vulnerabilities. Strings can
only be included in XML trees via the explicit cdata constructor,
which forces appropriate quoting. In general, Ur/Web uses similar
strongly-typed syntax trees for any kind of code that Web browsers
or database servers might run, providing a global guarantee of free-
dom from code injection attacks, even in the presence of an expres-
sive metaprogramming facility, and without the need to evaluate
specific metaprogram applications to determine if they are safe.

2.2 Generic Database Modification
It is common for Web applications to work with “native” represen-
tations of data when possible but then convert such representations
into alternate formats for database access. In this section, we de-
velop a toy example inspired by that kind of usage. In particular,
we want to write a function that adds a row to a database table,
where doing so requires first applying a conversion operation to
each element of a record.

The larger lesson from this example has to do with how we
may write generic functions that output SQL-like queries. We want
these queries to be expressed using rich types that guarantee va-
lidity, including type compatibility with a fixed database schema.
Therefore, few type systems outside of the dependent types world
are equipped to capture the essential well-formedness invariants.
Ur supports this kind of programming using the same relatively
lightweight features that we have been introducing, with effective
inference to minimize the cost of applying generic functions.

Assume we have two abstract type families, corresponding to
database tables and to expressions that the database engine under-
stands.

type table :: {Type} -> Type
type exp :: {Type} -> Type -> Type

A table type is parameterized by a record assigning types to
the table’s columns. An expression type is parameterized first, by a
record expressing which free variables may be mentioned and what
their types are; and second, by the type of the expression, according
to the database’s expression typing rules.

These type families are abstract in the sense that the program-
mer may not rely on any details of their implementation. In our con-
crete implementation, both table and exp are aliases for string,
but programmers should think of them as abstract syntax tree types.
While there are varieties of metaprogramming that deal with both
code generation and code introspection, we only deal with the for-
mer in Ur/Web and in this paper. No method is provided to, for
example, pattern-match on the syntax of an exp, as that turns out
not to be needed in our domain.

In this example, we do not need to work with expressions
that mention table columns. We only need to rely on a single
function for constructing expressions: const, which converts a
constant value into an expression. This function’s polymorphic
type expresses the fact that the output expression mentions no free
variables; since we abstract over an arbitrary environment r and
assert that the output expression is valid in r, it must be the case
that there is no particular variable that const depends on being
able to mention.

val const : r :: {Type} -> t :: Type -> t -> exp r t

Assume that there is a primitive function for adding a row to a
table. The column values for a new row are expressed as a record
of expressions with no free column variables.

val insert : r :: {Type} -> table r
-> $(map (exp []) r) -> unit

Our final function toDb will be expressed in terms of a type
parameter of kind {Type * Type}, the kind of records of pairs of
types. The convention is that each pair (native, db) describes a
column represented natively in type native but converted to type
db for database insertion. Each column must have an associated
function for translating from native to db, and we use a type
function arrow to express that. The type-level functions fst and
snd from the standard library project the first and second elements
of type-level pairs, respectively.

type arrow (dom :: Type, ran :: Type) = dom -> ran
val toDb : r :: {Type * Type} -> folder r
-> $(map arrow r) -> table (map snd r)
-> $(map fst r) -> unit

We can implement toDb using mostly the same techniques as
from our last example. We fold over the record of type pairs, build-
ing a value-level record that is a suitable parameter to insert. We
use the value-level operator ++, which implements record concate-
nation.

fun toDb [r :: {Type * Type}] (fl : folder r)
(mr : $(map arrow r)) (tab : table (map snd r))
(x : $(map fst r)) =
insert tab

(fl [fn r => $(map arrow r) -> $(map fst r)
-> $(map (fn p => exp [] (snd p)) r)]

(fn [nm] [p] [r] [[nm] ~ r] acc mr x =>
{nm = const (mr.nm x.nm)}
++ acc (mr -- nm) (x -- nm))

(fn _ _ => {}) mr x)

There is a subtlety in type-checking the definition of toDb. The
result type of the fold over r is not in the right form to be a valid
argument to insert. The Ur type inference engine applies this type
equality implicitly:

$(map (fn p => exp [] (snd p)) r)
= $(map (exp []) (map snd r))

This is a corollary of a more general fusion law:

map f (map g r) = map (fn x => f (g x)) r

In all related systems that we are aware of, the programmer
would need to apply an explicit coercion to make use of this law.
The coercion would most likely appeal to an explicit inductive
proof of the fusion law. For a general-purpose language intended
to be used in correctness verification, it is not clear how to do
any better. However, since Ur is only intended to handle reasoning
about records and names, we can streamline the programming
process.

The fusion law and a handful of other algebraic identities are
built into our inference engine, and they are applied automatically
during unification whenever possible. The formal presentation of
Ur in Section 3 gives the complete list of laws that we have added.
Our present implementation only includes five laws that would
be proved by induction in traditional dependently-typed program-
ming. These laws have been sufficient to avoid any proofs about
type equality in all of the Ur/Web case studies we have undertaken.

Our toDb function has a type even more involved than that
of last subsection’s mkTable function. It is unlikely that many
non-expert programmers are prepared to deal with types of this
complexity. Luckily, implicit arguments and reverse-engineering
unification do not fail us. The following example code is sufficient
to instantiate toDb at a specific record type.

fun addInts (n : int, m : int) = n + m
val inserter =

toDb {A = addInts, B = fn x : float => x}

Ur infers that the type of inserter is

table [A = int, B = float]
-> {A : int * int, B : float} -> unit

Reverse-engineering unification found that the proper value for
r is [A = (int * int, int), B = (float, float)].

2.3 Building Typed Expressions
Many database operations accept predicates over the columns of a
table. For instance, the SQL delete command removes all rows of a
table that satisfy a particular user-specified predicate. To interface
with a database, it can be useful to convert a record of values into
a database expression that characterizes those table rows whose
columns match the record. A function to do this generically will be
our final worked example, and the implementation will demonstrate
how more complicated richly-typed abstract syntax trees may be
built generically.

We will need a few more of the constructors for the exp type.
The following functions reference a database column, compare two
expressions for equality, and form the conjunction of two boolean
expressions, respectively.

val column : nm :: Name -> t :: Type -> r :: {Type}
-> [[nm] ~ r] => exp ([nm = t] ++ r) t

val eq : r :: {Type} -> t :: Type
-> exp r t -> exp r t -> exp r bool

val and : r :: {Type}
-> exp r bool -> exp r bool -> exp r bool

We are able to give our generic function, selector, a type that
is simple in comparison to those from the earlier examples. The
implementation of the function is interesting because it performs
a fold with an accumulator type that involves an explicit record
disjointness assertion.

fun selector [r :: {Type}] (fl : folder r) (x : $r)
: exp r bool =

fl [fn r => $r -> rest :: {Type} -> [rest ~ r] =>
exp (r ++ rest) bool]

(fn [nm] [t] [r] [[nm] ~ r]
acc x [rest] [rest ~ r] =>
and (eq (column [nm]) (const x.nm))

(acc (x -- nm) [[nm = t] ++ rest] !))
(fn _ [rest] [rest ~ []] => const True)
x [[]] !

At each stage of folding through the record r, our accumulator
is a function. Its first argument is a record containing one field
for every field of r that we have already folded over. The next
argument, rest, is a type-level argument, which is meant to be
instantiated to those fields that we have not yet folded over. In the
course of the fold, we gradually shift fields “from rest to r,” until
at the end rest may be the empty record. After binding rest,
the accumulator type includes an explicit assertion that rest and
r share no field names, which is a prerequisite of being able to
concatenate these records. We include just such a concatenation
in the result type of accumulator functions, which is the type of
boolean expressions that may mention columns included in either
of r or rest.

The step function used in the fold takes many arguments, but it
mostly uses features that we have already seen. The interesting part
is in the application of the accumulator acc. We need to choose the
right rest record to pass to it. This turns out to be the current rest
value, extended with the current field mapping from nm to t. We
write ! to denote a “proof” of the disjointness assertion in acc’s
type. As always in Ur, there are no proof terms; rather, the ! is just
a signal that the inference engine should prove the assertion auto-
matically. This proof is assembled from the disjointness assertions
[nm] ~ r and rest ~ r that are available in the typing context.

Last subsection’s example demonstrated the Ur inference en-
gine’s smarts in reasoning about equality of records, through the
automatic application of algebraic equivalences. Our new exam-
ple showcases the other kind of domain-specific reasoning in in-
ference, which is automatic proof of record disjointness facts. The
disjointness prover is able to prove a wide range of implications in-
volving record concatenation and mapping, without burdening the
programmer with any of the details.

3. Syntax and Semantics of Featherweight Ur
We hope that the previous section’s examples have motivated why
Ur has the features that it does. In this section, we refine that design
down to its core elements, presenting a formal definition of the
idealized language Featherweight Ur.

3.1 Syntax
Figure 1 presents the syntax of Featherweight Ur, which is influ-
enced heavily by System Fω [22], the higher-order polymorphic
lambda calculus. This syntax closely follows what we have seen in
ASCII format in the examples; we hope that the correspondence is
plain. One change that we make is referring to the general class
of compile-time values as constructors rather than types. Types
are the subset of constructors that have kind Type. We try to use
metavariables τ for types and c for constructors that may not be
types. Guarded types, which we have also referred to as disjoint-

Kinds k ::= Type | Name | k → k | {k}

Constructors c, τ ::= τ1 → τ2 | α | ∀α :: k. τ | c c
| λα :: k. c | #n | $c | []k | [c = c]
| c++ c | mapk,k | [c ∼ c]⇒ τ

Expressions e ::= x | e e | λx : τ. e | e [c] | Λα :: k. e
| {} | {c = e} | e.c | e− c | e++ e
| [c ∼ c]⇒ e | e !

Figure 1. Syntax of Featherweight Ur

ness assertions, are written [c1 ∼ c2]⇒ τ , with analogous notation
for guarded expression abstraction.

In a general-purpose dependently-typed language like Agda, we
would build a type of records and its associated operations from
first principles. In contrast, Ur omits the traditional facilities for
inductive and recursive definitions, instead building the key kinds
and type-level operators into the language. Type-level concatena-
tion and mapping are the sole type-level computation facilities that
would be implemented as recursive definitions in Agda. This ap-
proach is entirely compatible with viewing Ur as a convenient sur-
face language for Coq or Agda, such that it is possible to fall back
on the more expressive language when Ur’s feature set is insuffi-
cient. However, it seems desirable to stick to this restricted frag-
ment because we have been able to implement an effective type
inference procedure for it, as described in the next section.

Our experience writing programs in Ur/Web suggests that the
feature set we have chosen is more than sufficient for our appli-
cation domain. It is also true that a few apparent omissions have
solid theoretical justification. For instance, it may seem more natu-
ral to choose “fold” over “map” as a primitive traversal. However,
in combination with considering records as unordered sets of keys
and values, this would lead to an unsound semantics, unless we
increased the language complexity to the point where it could be
proved that any function used with “fold” is insensitive to the or-
der in which record fields are visited. The choice of record field
disjointness as the sole variety of constraint may also seem arbi-
trary. However, from this base, it is easy to define other constraints,
including record equality and inclusion. In fact, the Ur/Web stan-
dard library relies critically on such constraints to encode the typing
rules of SQL.

3.2 Static Semantics
Figure 2 gives selected rules of the kinding judgment, which assigns
kinds to constructors. We omit those rules already used by Fω . To
simplify the presentation, we assume side conditions for each rule
asserting the well-typedness of all expressions and well-kindedness
of all constructors that appear. We define all of our judgments in
terms of a single variety of context Γ. Entries in such contexts
are kinding assertions α :: k, typing assertions x : τ , or row
disjointness assertions c1 ∼ c2. The kinding judgment only uses
the first and last of these assertion sorts. We hope that the rules are
intuitive, following our examples.

The two interesting cases are for row concatenation and guarded
constructors. To concatenate rows c1 and c2, it must be proved that
c1 and c2 share no field names. This is captured by the judgment
Γ ` c1 ∼ c2. In the rule for guarded types [c1 ∼ c2] ⇒ τ , within
the body τ , the context is extended with the fact that c1 is disjoint
from c2. We omit here the details of the disjointness judgment; it
simply captures decomposition of each side of the constraint into
irreducible pieces and checking of disjointness between all pairs of
pieces.

This decomposition is phrased via a definitional equality judg-
ment c ≡ c′, which encodes the computational semantics of con-
structors. In checking disjointness, we may replace any constructor
with another that is computationally equivalent. Figure 3 presents
the definitional equality. On the first line of the figure, we include
the standard rules from Fω .

The next set of rules defines the semantics of the basic row op-
erations. We have that the empty record is an identity element for
concatenation, and that concatenation is commutative and associa-
tive. After this, we have the semantics of map. The rules for map
mostly mirror a list map definition in Haskell.

Perhaps the most surprising set of rules comes in the last two
lines of the figure. Within the definitional equality, we have row
equivalents of standard theorems about higher-order list functions.
In order, the last three rules of Figure 3 express the fact that map
applied to an identity function is itself an identity function, the
distributivity of map over concatenation, and a fusion law for one
map over another. One of our (perhaps surprising) empirical results
is that these are the only laws we have needed to implement a
variety of practical metaprograms.

Finally, we come to the typing rules, with selected rules shown
in Figure 4. Most of the novelties of Featherweight Ur have already
come up in relation to the previous judgments. One rule makes the
typing judgment a congruence over the definitional equality; when
e has type τ , it also automatically has type τ ′, for any τ ′ ≡ τ . The
typing rule for guarded expressions [c1 ∼ c2]⇒ e shows that they
have types like [c1 ∼ c2]⇒ τ ; we apply the rule for the ! operator
to reduce this type to simply τ , when the constraint is provable.

Like other languages with symmetric concatenation of records,
Ur lacks subtyping, since this could lead to ambiguous situations
where it is not clear which of two records being concatenated
to drop a field from. However, many of subtyping’s common us-
age patterns can be encoded with polymorphism over type-level
records.

3.3 Dynamic Semantics
Rather than defining an operational semantics for Featherweight
Ur, we give an elaborative semantics, translating Featherweight Ur
programs into terms of the Calculus of Inductive Constructions, the
logic behind the Coq proof assistant [3]. We do not have space to
go into the details here. The exact translation is available in the
src/coq directory of the Ur/Web distribution, as part of a Coq
formalization of Featherweight Ur syntax and semantics.

The basic idea is that we translate kinds to CIC types, construc-
tors to terms of those types, and typing derivations to terms of those
further types. A derivation c ≡ c′ is compiled to a proof that c
and c′ have equal denotations. Our implementation of records is a
standard exercise in programming with heterogeneous list types, a
common tool in dependently-typed languages.

It is worth stating explicitly that, since we give our semantics
elaboratively, there is no need to prove a separate type soundness
theorem. The translation is implemented in Coq and outputs native
Coq terms directly, so we get type preservation by construction.
Since CIC has been proved type-sound, Featherweight Ur is type-
sound, too, almost by definition. This formalization also inherits
other properties of CIC, like strong normalization [20], that do not
hold of the full Ur language.

This elaboration is meant only to specify the semantics of Ur,
rather than an implementation technique. The actual Ur/Web com-
piler works more traditionally, as sketched in Section 5.

4. Effective Type Inference
Ur, or even plain Fω , includes type system features that are rarely
found outside of programming languages based on dependent type
theory. Type inference for CIC and other such systems is unde-

Γ ` #n :: Name

Γ ` c :: {Type}
Γ ` $c :: Type Γ ` []k :: {k}

Γ ` c1 :: Name Γ ` c2 :: k

Γ ` [c1 = c2] :: {k}
Γ ` c1 :: {k} Γ ` c2 :: {k} Γ ` c1 ∼ c2

Γ ` c1 ++ c2 :: {k}

Γ ` mapk1,k2
:: (k1 → k2)→ {k1} → {k2}

Γ ` c1 :: {k1} Γ ` c2 :: {k2} Γ, c1 ∼ c2 ` τ :: Type

Γ ` [c1 ∼ c2]⇒ τ :: Type

Figure 2. Selected kinding rules of Featherweight Ur

(λα :: k. c1) c2 ≡ c1[α 7→ c2] c ≡ c
c2 ≡ c1
c1 ≡ c2

c1 ≡ c2 c2 ≡ c3
c1 ≡ c3

c ≡ c′

C[c] ≡ C[c′] []k ++ c ≡ c c1 ++ c2 ≡ c2 ++ c1

c1 ++ (c2 ++ c3) ≡ (c1 ++ c2) ++ c3 mapk1,k2
f []k1 ≡ []k2 mapk1,k2

f ([c1 = c2] ++ c3) ≡ [c1 = f c2] ++ mapk1,k2
f c3

mapk,k (λα : k. α) c ≡ c mapk1,k2
f (c1 ++ c2) ≡ mapk1,k2

f c1 ++ mapk1,k2
f c2

mapk2,k3
f (mapk1,k2

f ′ c) ≡ mapk1,k3
(λα :: k1. f (f ′ α)) c

Figure 3. Definitional equality rules of Featherweight Ur

τ ≡ τ ′ Γ ` e : τ ′

Γ ` e : τ Γ ` {} : $[]Type

Γ ` c :: Name Γ ` e : τ
Γ ` {c = e} : $[c = τ]

Γ ` e : $([c = τ] ++ c′)

Γ ` e.c : τ

Γ ` e : $([c = τ] ++ c′)

Γ ` e− c : $c′

Γ ` e1 : $c1 Γ ` e2 : $c2 Γ ` c1 ∼ c2
Γ ` e1 ++ e2 : $(c1 ++ c2)

Γ ` c1 :: {k1} Γ ` c2 :: {k2} Γ, c1 ∼ c2 ` e : τ

Γ ` [c1 ∼ c2]⇒ e : [c1 ∼ c2]⇒ τ

Γ ` e : [c1 ∼ c2]⇒ τ Γ ` c1 ∼ c2
Γ ` e ! : τ

Figure 4. Selected typing rules of Featherweight Ur

cidable, seen via fairly straightforward arguments: general mathe-
matical proof search can be reduced to type inference in such rich
type systems, with unification variables standing for mathemati-
cal proofs encoded syntactically. Even type inference for System
F has been proved undecidable [32], and impredicative (or “first-
class”) polymorphism is crucial to Ur’s usefulness, as the exam-
ple of folder functions demonstrates. To this already undecidable
base, Ur adds the type-level computation features of Fω and type-
level map. There may very well be worthwhile theoretical com-
pleteness results for Ur that fall short of providing full inference,
but we leave such results for future work. In this section, we present
the type inference heuristics that we have had success with.

Like in some proposed solutions to the type inference problem
for System F, we require that all polymorphism be annotated ex-
plicitly at the definitions of functions. In practice, most type argu-
ments may be inferred, making uses of polymorphic functions look
similar to uses in ML, while definitions may be considerably more
verbose.

We follow the usual approach of type-checking expressions by
introducing unification variables, whose values are determined later
during unification of constructors. Since our type system is more
complex than those handled by classic Hindley-Milner inference,
we must do more than just solve type equality constraints as they
appear. We follow more recent formulations based on systems of
constraints. Type-checking generates a set of constructor equal-
ity and record disjointness constraints. As an optimization, we try
to solve constraints when they are first generated, but the general
case involves building a global set of constraints and then iterating

through finding an immediately-solvable constraint, until no con-
straints remain.

Most of Ur constructor unification could be implemented by
normalizing constructors and then comparing normal forms for
simple syntactic equality. We can refactor the definitional equal-
ity rules of Figure 3 so that, when applied only left-to-right, they
form a rewrite system that we conjecture is terminating and con-
fluent. This requires removing at least the concatenation commuta-
tivity rule, so we handle row unification in a special way that we
will describe shortly. For the other constructor language elements,
rather than following the naive normalize-and-compare unification
strategy, we apply a standard optimization. We use a loop of re-
ducing constructors to head normal form, where we reduce only as
much as is needed to expose top-level structure. Head normal forms
are compared syntactically, where unification of subterms appeals
to the original algorithm, which will head-normalize and compare
those subterms, and so on. There is no doubt further opportunity
for optimizing type inference performance by applying techniques
from the type-preserving compilation literature [28].

Higher-order unification is a well-studied subject with some
standard heuristic approaches [21]. There, the key problem is in-
ferring type-level functions. In contrast, the Ur/Web implementa-
tion has more in common with the GHC Haskell compiler, in that
only first-order unification techniques are used to make a best ef-
fort at guessing functions. This is because we have not found the
classical higher-order unification techniques to be critical in our
setting of metaprogramming. Instead, our inference engine focuses
on understanding type-level records and computations over them.
Since Ur does support general type-level λ, the result is easy-to-

observe inference incompleteness that still tends not to cause trou-
ble in practice. For instance, our inference engine is unable to type
the following code.

fun id [f :: Type -> Type] [t] (x : f t) : f t = x
val x = id 0

4.1 Proving Disjointness
All proofs of row disjointness happen automatically. Whenever a
new known constraint is introduced via an expression like fn [r1
~ r2] => e, our type-checker calculates all atomic disjointness
facts implied by r1 ~ r2. Each of r1 and r2 is decomposed using
a function D defined as follows, where hnf is the constructor head
normalization function.

D(c) = D′(hnf(c))

D′([c1 = c2]) = {[c1]}
D′(c1 ++ c2) = D(c1) ∪D(c2)

D′(x) = {x}
D′(map f c) = D(c)

D′() = ∅

The calls to D yield two finite sets, and we calculate the sym-
metric closure of their Cartesian product to add to the typing con-
text. When we encounter a disjointness goal r1 ~ r2, we decom-
pose these rows with the same function and again take the Cartesian
product of the results. This time, we check that every resulting pair
is either in our database of facts or consists of two singleton rows
with constant, distinct field names. In checking constraints, the last,
“wildcard” case of the definition of D′ must be changed to instead
signal that the constraint is not provable yet. In such cases, we hope
that when we revisit this constraint after solving other constraints
first, some unification variables will have been determined, so that
the proof can finish successfully.

4.2 Reverse-Engineering Rows
Another key element of our type inference process is the reverse-
engineering unification that we have mentioned several times.
Sometimes we want to infer implicit arguments to polymorphic
functions whose types contain maps. This often leads to inference
queries of the form mapk1,k2

f α ≡ c, for some unification vari-
able α and (usually ground) constructor c. If c is empty, then we
can set α to be empty, too. When c = [c1 = c2] ++ c3, to choose a
value for α, we can generate fresh unification variable α′ and then
unify f α′ with c2. Afterward, we can replace α by [c1 = α′]++ α′′

for some new α′′. We can repeat this process to reverse-engineer
the value of α in a wide variety of cases.

4.3 Unifying Rows
During unification, when the standard algorithm finds a row oper-
ator like concatenation at the top level of one of the constructors
that it is comparing, it switches to using a special row unification
algorithm. First, each constructor is summarized using a summary
function S from constructors to triples of sets. S works like the D
function in decomposing a record, and the triples it outputs break
a record’s components into singleton field mappings, unification
variables, and other miscellaneous components.

To unify two records, we first consider each component of their
summarizing triples separately, looking for unifiable pieces be-
tween the ith component of the first summary and the ith compo-
nent of the second summary. Any such unifications trigger “cross-
ing off” of components on both sides. If both sides are now empty,
we are done. If either side is reduced to a single unification variable,

then we finish by replacing it everywhere with the other side’s con-
tents. If each side is reduced to a single unification variable plus
zero or more singleton fields, and if the singleton fields on one side
do not overlap with those on the other, then each of the two unifi-
cation variables may be rewritten in terms of a single new variable.
When none of these rules apply, we make a last attempt to apply
reverse-engineering unification. If iterating these rules leaves any
contents on either side of the equation, we remember the new uni-
fication variable values that we learned, but we leave this equality
in the set of unsolved constraints.

4.4 Generating Folders
Instances of the folder type family from Section 2 may be omit-
ted, in which case the compiler waits to generate concrete instances
until after type inference is complete and the type of every subterm
of the program is known. Since the type inference process never
commutes the order of fields in a record type unnecessarily, the or-
der of record fields in the elaborated program is easy to predict,
based on the order in which fields were written in the source code.
Because of this, it works well for the compiler to generate any un-
known folder using the permutation implied by the order in which
fields appear in the folder’s inferred type.

5. The Ur/Web Compiler
We have used the generic Ur type inference engine to implement
Ur/Web, a domain-specific language for Web application develop-
ment. To the programmer, Ur/Web appears as a special standard
library for Ur, plus helpful parsing extensions supporting features
like inline XML and SQL code. Under the hood, the Ur/Web com-
piler is specialized to deal with this library and with the require-
ments of real Web browsers and database servers.

Even setting metaprogramming aside, we found many uses for
Ur’s facility for building type-level records with mapping. To sup-
port richly-typed versions of the standard structures that Web ap-
plications manipulate, we did not need to write any custom type
inference code. Instead, we encoded those structures in the signa-
ture of the main module of the standard library. In particular, Ur
records show up throughout the encodings of the syntax and typing
rules of SQL queries and commands and HTML documents.

Our experience applying Ur/Web suggests that any application
using these features, written without polymorphism, can be type-
checked with no more type annotation than is needed when repre-
senting these structures as strings. Moreover, the inference engine
is quite effective at dealing with polymorphic and metaprogram-
ming uses of these library types.

As we use rich tree types to classify any structure that browsers
will interpret, Ur/Web applications are automatically immune to
cross-site scripting, code injection, and several other of the most
common security vulnerabilities. One might worry that we need
to trade performance for this benefit, due to the use of an advanced
type system. However, we compile Ur/Web programs with a whole-
program optimizing compiler. In the tradition of MLton3, we elim-
inate all polymorphism at compile time, which, given the complex-
ity of our type system, requires simple partial evaluation by reduc-
tion. This produces an intermediate form that is much like ML.

6. Case Studies
In this section, we discuss some case studies centered on Ur/Web
versions of common metaprogramming components from the
world of Web application frameworks. We highlight interesting
uses of type-level map, the most distinguishing feature of Ur com-
pared to other systems that require little annotation. The message

3 http://mlton.org/

of this section is that, despite the relatively minimalistic set of type-
level features we chose for Ur, each of these case studies meets our
two main design criteria of “no proofs for library writers” and “no
fancy types for rank-and-file programmers.”

Object-Relational Mapping Many applications maintain a dual
view of SQL database tables. There is a view where table rows are
represented with the programming language’s native records or ob-
jects; and there is the database view, which can only be manipulated
via queries and commands sent to the database server. The popular
Web frameworks provide their own, untyped implementations of
such object-relational mapping, or ORM. We implemented ORM
as a richly-typed generic component in Ur/Web. Here are two ex-
ample invocations of our component. These examples use the Ur
module system, which is inspired by the ML module systems [16],
with few surprises encountered in adapting that idea to Ur’s base
language.

structure T
= Table(struct

val cols = {A = local [int],
B = local [string]}

end)

structure S
= Table(struct

val cols = {C = T.id,
D = local [float]}

end)

We build ORM modules customized to two specific tables. The
identifier Table names a functor, i.e., a function from modules to
modules. The Table functor is a function from a module describing
a table to a module implementing the classic ORM operations:
listing all rows and adding, deleting, modifying, or looking up
a row. All operations work directly on native Ur records. The
argument used to build module T says that we want a table with
a column A of type int and a column B of type string. The
argument used for S dictates that there be a column D of type float
and a column C that is a foreign key reference to rows of T. Module
S thus contains a function for retrieving the T record associated with
an S record.

Input modules to Table must contain more type-level informa-
tion than is included explicitly here. Ur includes an extension to
the ML module system paradigm, where type-level module com-
ponents may be omitted to ask that they be inferred. In this way, the
client of a metaprogram can be shielded from the complexity of its
type. To support foreign keys, we require that a table be described
in a terms of a record of kind {Type * Type}, where each field
is associated both with its own type and with the type of the table
it references, if it is a foreign key. The foreign key link-following
function is typed in terms of a map over this record. We also use
map to support an abstract type of columns specific to a table. These
columns may be combined to form predicates in a table-specific ab-
stract type of filters, and filters may be passed to lookup and search
functions.

Versioned Database Access In some applications, it is important
not only to be able to query the current state of a database, but also
to “roll back” to a past view of the database at a particular time. We
implemented a versioned database access component that provides
this functionality generically, for any set of table columns. Normal
database access is just as easy as with the ORM component, but a
table-specific abstract type of versions may be used to look up old
values. Output modules of our versioning functor provide functions
for listing all versions that exist and for looking up an old row by
version and key.

The versioning functor takes two type-level records as input.
The first describes which rows should collectively be considered
the primary key of the table, such that they are enforced to be unique
across rows. The second type-level record describes the remaining
columns. Our concrete SQL implementation of the versioning ab-
straction involves a table whose columns consist of a version ID,
the key columns, and a nullable version of each non-key column.
The idea is that each update to a virtual row adds a new concrete
row where every non-key column that has not changed is repre-
sented as NULL, while those columns that have changed have their
new values recorded. We represent the type of the concrete database
table with a type-level map over the non-key record, replacing each
type t with option t. This example also tests the versatility of
our domain-specific proving by including types based on the con-
catenation of the key and non-key records, which are asserted to be
disjoint in an explicit constraint.

Database Admin Interface The most popular Ruby on Rails
metaprogram builds a standard interface for administering an arbi-
trary database table, including viewing and modifying its contents
in a Web browser via HTML tables and forms. We implemented
comparable functionality as an Ur/Web functor. The functor may
be used by providing just an SQL table reference, a string to display
as the page title, and a record of metadata for each table column.
Metadata values for common types can be built with expressions
like int "A" and float "B" (passing a display name for the col-
umn), and support is provided for building custom metadata for
domain-specific column handling.

Each column is associated with a pair of types, giving its SQL
and client-side representations. Maps over this record of pairs are
used to calculate types for the database table and for the widget
environments that occur in HTML forms.

Web 2.0 Admin Interface We also implemented a batched coun-
terpart to the last component. This modernized version takes ad-
vantage of the possibility to run some code in Web browsers as
JavaScript. In particular, when the user submits a form asking to
add a new row, the remote Web server is not contacted. Instead,
local code adds the new row data to an HTML table. The user can
click a button to submit his batched changes en masse. This func-
tor may be used in the same way as its Web 1.0 ancestor, despite
the fact that we are checking a more complicated piece of code.
Every implementation that our functor outputs includes new URL-
addressed remote procedure calls (RPCs) for client-server commu-
nication, and types guarantee that any functor output uses RPCs
correctly.

This functor is similar to the previous example in involving a
record assigning each table column an SQL version and a client-
side version. To come up with the proper type for the RPC that
adds a list of rows, we need to map over this record, forming a
table-specific type of records that must be passed to the RPC in
serialized form.

In-Browser Spreadsheet Another Ur/Web component imple-
ments common spreadsheet functionality, such that most code
is run in browsers, but the remote Web server is contacted to
query and modify a database table storing the persistent version
of a spreadsheet. The functor supports foreign keys represented as
automatically-populated dropdown listboxes, and each spreadsheet
application provides input validation, summary rows displaying
aggregate information, paging, sorting, per-column filtering, and
an access point that other program modules can use to check which
rows of the spreadsheet the user has selected. Here is a simple
example of constructing a spreadsheet implementation.

table t : {Id : int, A : int, B : bool}
sequence s

Component Int. Imp. Disj. Id. Dist. Fuse
ORM 40 77 580 - 13 5

Versioned 20 122 616 6 4 2
Table Admin 22 158 1412 - 1 2

Web 2.0 Admin 21 134 1105 - 1 1
Spreadsh. (base) 46 291 1667 6 - 1
Spreadsh. (SQL) 110 391 1257 3 11 -

Figure 5. Code sizes (in lines of code) of case study components’
interfaces and implementations, along with invocation counts for
critical pieces of type inference

open Make(struct
val tab = t
con key = [Id = _]

val raw = {Id = init (nextval s),
A = init (return 0),
B = init (return False)}

val cols = {Id = readOnly [#Id] "Id" int,
A = editable [#A] "A" int,
B = editable [#B] "B" bool,
DA = computed "2A" (fn r => 2 * r.A)}

val aggregates = {Sum = fold (fn r n => r.A + n) 0,
AllTrue =
fold (fn r b => r.B && b) True}

end)

The key component identifies which table columns make up the
table key. The raw record explains how to generate the initial value
of each column of a fresh row. The cols record contains metadata
values for the four columns to be displayed in our spreadsheet: a
read-only rendering of the key Id, widgets for editing the values of
the A and B columns, and a computed column that always shows
twice the current value of A. The final record, aggregates, re-
quests to include a summary row at the bottom of the spreadsheet,
where we are told the sum of all A values and the iterated boolean
“and” of all B values.

The main type-level record behind this component has kind
{Type * Type * Type}. Each displayed column is associated
with a type of global state, a type returned by its main input wid-
get, and a type returned by its filtering widget. Many applications
of map are used throughout the functor to express the typing rela-
tionship among these different elements. We reduce the complexity
of our code by first building a functor for constructing spreadsheets
backed by arbitrary data sources, and we then derive a functor for
spreadsheets backed by SQL databases.

6.1 Evaluation
As far as we know, ours is the first investigation into statically-
typed instances of this variety of practical metaprogramming. It
was not obvious at first that it would be possible to write such
programs without violating one or both of our two central design
principles:

1. Metaprograms should contain no proofs or other type-cast ex-
pressions with no computational effects.

2. Client code should contain no proofs or types more complicated
than types found in mainstream programming languages.

Nonetheless, all of our case studies fit this description, as do all
of the other Ur/Web metaprograms we have written.

Figure 5 summarizes the amount of code needed to implement
our components, measured in lines with content besides whitespace
and comments. We also gathered some statistics that give a sense
of how much annotation effort Ur/Web saves the programmer over
similar coding in related statically-typed systems, which all require
proof terms to apply algebraic identities that Ur inference applies
automatically. For each component in the Figure 5, we note how
many times the main type inference procedure invoked the disjoint-
ness prover, along with how many times inference applied the map-
over-identity-function, map distributivity, and map fusion laws, re-
spectively. These numbers consider only the generic components;
client code usually triggers additional uses of the laws.

7. Related Work
The design of Ur was influenced heavily by our experience with
programming in Coq [3]. The possibilities for generic program-
ming in dependently-typed languages have been recognized and
implemented for several years now, at least [1]. This body of work
has tended to focus on more involved examples like generation
of parsers and pretty-printers for arbitrary algebraic datatypes. We
mean to argue that Ur, by focusing on a specific domain, provides a
much more user-friendly experience to programmers, both attract-
ing a broader range of developers and enhancing productivity of
those who are attracted. Dependent ML [33] follows a similar path,
with convenient automated reasoning that is mostly restricted to
formulas of linear arithmetic.

There have been many investigations into the inclusion of ex-
tensible records in statically-typed languages. Wand’s initial work
on row types [31] has inspired many follow-ups. The work of
Rémy [24] is also well-known, as it has directly influenced the ob-
ject system and polymorphic variant facilities of Objective Caml.
Ohori [18] developed a compiler for a language with extensible
records, demonstrating an index-passing encoding that facilitates
separate compilation. Harper and Pierce [10] defined a calculus
supporting general record concatenation, via row-quantified types
that include general disjointness constraints like those in Ur, but
without discussion of type inference. Gaster and Jones [9] define
a system for extensible records and variants, achieving a complete
type inference algorithm by restricting constraints to the form “la-
bel l is not present in row r.” Pottier [23] demonstrated a gen-
eral type inference system equipped to deal with general record
concatenation and first-class names. Blume et al. implemented the
MLPolyR language [4], which, using type-level records, exploits
the duality of records and variants to support an extensible case
construct. The idea of extensible records is a natural one, and it has
appeared in many other cases that we do not have space to cite.
As far as we are aware, every construction with records that can be
coded in these past languages can also be coded in Ur, with no ad-
ditional type annotation needed at uses of polymorphic functions,
though polymorphism must be annotated explicitly in function def-
initions. The crucial facility distinguishing Ur from this past work
is type-level computation, in the form of Fω features and type-level
map.

Embedding SQL syntax in general-purpose languages has been
studied before, with various levels of static assurance. Ohori and
Buneman [19] added explicit support for typing associated with
database operations to an ML-like language while maintaining
principal typing. Leijen and Meijer [15] embedded a subset of SQL
in an extension of Haskell, with static validation of a subset of the
properties enforced by Ur/Web. Silva and Visser [30] later com-
pleted a similar project with broader static validation, using more
of the harnessing of type classes with functional dependencies that
has become very popular in the Haskell community. The HList li-
brary [13] for GHC Haskell is a prominent example of this trend;
it provides extensible records, using a notion of type-level compu-

tation driven by Haskell’s type class resolution mechanisms. We
(somewhat subjectively) feel that this style leads to code that is
needlessly more complicated and verbose than what is possible in
Ur. It is also unclear how to handle in Haskell applications of the
kinds of algebraic laws that are at the heart of Ur’s type inference;
at best, it seems that explicit proof terms must be written.

There is a long history of code generation in the worlds of
object-oriented and procedural programming, and the standard
techniques in this area suffer from lack of static validation of
metaprograms. Recent language extensions like Compile-Time
Reflection (CTR) [8] for C# and MorphJ [11] for Java address
this shortcoming for programs that inspect and generate classes in
stylized ways. Similar issues of name disjointness checking arise
in these tools. One significant advantage of Ur’s approach is that
metaprograms are not only checked statically, but they are also as-
signed self-contained types, which makes it possible for functions
to abstract over metaprograms in a statically-safe way. Another
difference is that Ur is built from simple, orthogonal constructs of
type theory, which can make it easier to see the essence of metapro-
gramming with names.

8. Conclusion
While novice programmers can use Ur metaprograms without writ-
ing fancy types, erroneous metaprogram applications can trigger
hard-to-understand error messages that do use advanced concepts
explicitly. Improved heuristics for phrasing these messages would
be a useful subject for future work. We are also still investigat-
ing the limitations that arise from use of a compiler that must re-
solve all polymorphism statically. This policy limits opportunities
for constructing syntax of dynamically-varying type; for instance,
to access different database tables based on values read from a con-
figuration file. Perhaps genuine dependent types will even prove
crucial in supporting such use cases.

Ur/Web is already a practical system for implementing mod-
ern Web applications with metaprogramming. Programs that write
programs are notoriously hard to debug, and Ur helps reduce devel-
opment cost by using static types to guarantee validity of metapro-
grams. We built on the rich body of work on dependent type theory
and added just a few domain-specific conveniences, in the form of
a specialized type inference engine. This “last mile” effort makes
a crucial difference in building a tool to be competitive with the
tools used in the Web application domain today, where few pro-
grammers are willing to write formal proofs just to get programs to
type-check.

Acknowledgments
We thank Manu Sridharan, Ryan Wisnesky, and the anonymous
referees for helpful feedback on drafts of this paper.

References
[1] Thorsten Altenkirch and Conor McBride. Generic programming

within dependently typed programming. In Proc. IFIP TC2/WG2.1
Working Conference on Generic Programming, 2003.

[2] Lennart Augustsson. Cayenne - a language with dependent types. In
Proc. ICFP, 1998.

[3] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and
Program Development. Coq’Art: The Calculus of Inductive Construc-
tions. Texts in Theoretical Computer Science. Springer Verlag, 2004.

[4] Matthias Blume, Umut A. Acar, and Wonseok Chae. Extensible
programming with first-class cases. In Proc. ICFP, 2006.

[5] Chiyan Chen and Hongwei Xi. Combining programming with theo-
rem proving. In Proc. ICFP, 2005.

[6] Jeremy Condit, Matthew Harren, Zachary Anderson, David Gay, and
George Necula. Dependent types for low-level programming. In Proc.
ESOP, 2007.

[7] Web Application Security Consortium. 2007 Web applica-
tion security statistics. http://projects.webappsec.org/
Web-Application-Security-Statistics.

[8] Manuel Fähndrich, Michael Carbin, and James R. Larus. Reflective
program generation with patterns. In Proc. GPCE, 2006.

[9] Benedict R. Gaster and Mark P. Jones. A polymorphic type system for
extensible records and variants. Technical Report NOTTCS-TR-96-3,
University of Nottingham, 1996.

[10] Robert Harper and Benjamin Pierce. A record calculus based on
symmetric concatenation. In Proc. POPL, 1991.

[11] Shan Shan Huang and Yannis Smaragdakis. Expressive and safe static
reflection with MorphJ. In Proc. PLDI, 2008.

[12] Mark P. Jones. Type classes with functional dependencies. In Proc.
ESOP, 2000.

[13] Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. Strongly typed
heterogeneous collections. In Proc. Haskell Workshop, 2004.

[14] Kenneth Knowles, Aaron Tomb, Jessica Gronski, Stephen N. Freund,
and Cormac Flanagan. Sage: Unified hybrid checking for first-class
types, general refinement types, and Dynamic. In Proc. Scheme
Workshop, 2006.

[15] Daan Leijen and Erik Meijer. Domain specific embedded compilers.
In Proc. DSL, 1999.

[16] David MacQueen. Modules for Standard ML. In Proc. LFP, 1984.
[17] Ulf Norell. Towards a practical programming language based on de-

pendent type theory. PhD thesis, Chalmers University of Technology,
2007.

[18] Atsushi Ohori. A polymorphic record calculus and its compilation.
TOPLAS, 17(6), 1995.

[19] Atsushi Ohori and Peter Buneman. Type inference in a database
programming language. In Proc. LFP, 1988.

[20] Christine Paulin-Mohring. Inductive definitions in the system Coq -
rules and properties. In Proc. TLCA, 1993.

[21] Frank Pfenning. Partial polymorphic type inference and higher-order
unification. In Proc. LFP, 1988.

[22] Benjamin C. Pierce. Higher-order polymorphism. In Types and
Programming Languages, chapter 30. MIT Press, 2002.

[23] François Pottier. A 3-part type inference engine. In Proc. ESOP, 2000.
[24] Didier Rémy. Type inference for records in a natural extension of ML.

Theoretical Aspects of Object-Oriented Programming, 1994.
[25] Patrick Rondon, Ming Kawaguchi, and Ranjit Jhala. Liquid types. In

Proc. PLDI, 2008.
[26] Tom Schrijvers, Simon Peyton Jones, Manuel Chakravarty, and Martin

Sulzmann. Type checking with open type functions. In Proc. ICFP,
2008.

[27] Tom Schrijvers, Simon Peyton Jones, Martin Sulzmann, and Dimitrios
Vytiniotis. Complete and decidable type inference for GADTs. In
Proc. ICFP, 2009.

[28] Zhong Shao, Christopher League, and Stefan Monnier. Implementing
typed intermediate languages. In Proc. ICFP, 1998.

[29] Tim Sheard. Languages of the future. In Proc. OOPSLA, 2004.
[30] Alexandra Silva and Joost Visser. Strong types for relational

databases. In Proc. Haskell Workshop, 2006.
[31] Mitchell Wand. Type inference for record concatenation and multiple

inheritance. Information and Computation, 93(1), 1991.
[32] J. B. Wells. Typability and type checking in System F are equivalent

and undecidable. Annals of Pure and Applied Logic, 98:111–156,
1999.

[33] Hongwei Xi. Dependent ML: an approach to practical programming
with dependent types. J. Functional Programming, 17(2):215–286,
2007.

