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Choosing a PL for a Web App

Performance Productivity

the eternal question

Exemplars:
C, C++
(e.g., the “are you serious?” bloc)

Exemplars:
JavaScript, Ruby, Python
(e.g., the “better buy a few more servers” bloc)
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Benchmarking Web Apps
<http://www.techempower.com/benchmarks/>

Simulated Clients

Application Server

Database Server

Each machine has the same hardware:
32 GB of RAM plus 40 hyperthreads
(so implementations with weak concurrency stories will fall behind)

10-gigabit Ethernet

10-gigabit Ethernet
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Which framework should we choose?

“all JavaScript, all the time”

Hype Meter
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Pervasive use of higher-order, polymorphic functionsHTML parsed, type-checked, and returned functionallySQL parsed and type-checked at compile time

Ur/Web: A Functional DSL for the Web
(** A new table, specific to this test *)
table fortune : {Id : int, Message : string} PRIMARY KEY Id

(** Here's the additional fortune mandated by the spec. *)
val new_fortune =
    {Id = 0, Message = "Additional fortune added at request time."}

(** Actual page handler *)
fun fortunes () =
  fs <- queryL1 (SELECT fortune.Id, fortune.Message FROM fortune);
  fs' <- return (List.sort (fn x y => x.Message > y.Message) (new_fortune :: fs));
  return <xml>
    <head><title>Fortunes</title></head>
    <body><table>
      <tr><th>id</th><th>message</th></tr>
      {List.mapX (fn f => <xml><tr>
        <td>{[f.Id]}</td><td>{[f.Message]}</td>
      </tr></xml>) fs'}
    </table></body>
  </xml>

● Purely functional
● Rich (almost dependent) type system
● Monads
● Type classes
● ML-style modules
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Peeking at the Node.js Manual
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Peeking at the Ur/Web Manual
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Let's Do Some Science
Throughput

Number of Greek letters in manual
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The Envelope, Please?
<http://www.techempower.com/benchmarks/>*

…

*Data from Round 11 Preview 2 – official release should be out soon!

…
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Message for the Rest of the Talk:

“You can do this at home.”
The Ur/Web compiler follows a conceptually straightforward optimization 
strategy that you, too, can apply, with relatively little effort, to compile your 
functional program so that it routinely trounces C++ code in performance.

*Caveat: it's essential to use a domain-specific language where the 
compiler can be informed about the deep semantics of the operations 
that programs perform!
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The Most Important Decision

Use a whole-program compiler.
(inspired by the MLton Standard ML compiler)

After type checking,
flatten all module structure,
eliminate all abstraction barriers,
and inline all uses of functors (module functions).
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Example Program Again
(** A new table, specific to this test *)
table fortune : {Id : int, Message : string} PRIMARY KEY Id

(** Here's the additional fortune mandated by the spec. *)
val new_fortune =
    {Id = 0, Message = "Additional fortune added at request time."}

(** Actual page handler *)
fun fortunes () =
  fs <- queryL1 (SELECT fortune.Id, fortune.Message FROM fortune);
  fs' <- return (List.sort (fn x y => x.Message > y.Message) (new_fortune :: fs));
  return <xml>
    <head><title>Fortunes</title></head>
    <body><table>
      <tr><th>id</th><th>message</th></tr>
      {List.mapX (fn f => <xml><tr>
        <td>{[f.Id]}</td><td>{[f.Message]}</td>
      </tr></xml>) fs'}
    </table></body>
  </xml>
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Specializing Definitions, in several flavors

datatype list a =
    Nil
  | Cons of a * list a

fun sort [a] (f : a -> a -> bool) (ls : list a)
: list a = …

sort (fn x y => x.Message > y.Message) ls

Step 1. Unpoly
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Specializing Definitions, in several flavors

datatype list a =
    Nil
  | Cons of a * list a

fun sort' (f : T -> T -> bool) (ls : list T)
: list string = …

sort' (fn x y => x.Message > y.Message) ls

Step 2. Specialize
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Specializing Definitions, in several flavors

datatype list' =
    Nil'
  | Cons' of T * list'

fun sort' (f : T -> T -> bool) (ls : list')
: list' = …

sort' (fn x y => x.Message > y.Message) ls

Step 3. Especialize
(call-pattern specialization)
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Specializing Definitions, in several flavors

datatype list' =
    Nil'
  | Cons' of T * list'

fun sort'' (ls : list')
: list' = …

sort'' ls
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Unveiling Abstractions & Going Impure
<tr><th>id</th><th>message</th></tr>
{List.mapX (fn f => <xml><tr>
  <td>{[f.Id]}</td><td>{[f.Message]}</td>) ls}

really means (in simplified/stylized form):

concat (tr (concat (th (cdata “id”),
                    th (cdata “message”)),
        List.mapX (fn f => tr (concat (td (cdata (show f.Id)),
                                     td (cdata f.Message)))) ls)

Embedded-language syntax desugars into combinator calls.

Step 4. Monoize
(translate to monomorphic, impure language & expose definitions of combinators)

th = fn x => “<th>” ^ x ^ “</th>”
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Unveiling Abstractions & Going Impure
“<tr>” ^ “<th>” ^ escape “id” ^ “</th>”
       ^ “<th>” ^ escape “message” ^ “</th>” ^ “</tr>”
^ List.mapX (fn f => “<tr>” ^ “<td>” ^ escape (show f.Id)
                     ^ “</td>” ^ “<td>” ^ escape f.Message
                     ^ “</td>” ^ “</tr>”) ls

Step 5. Reduce
(algebraic simplification)
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Unveiling Abstractions & Going Impure
“<tr><th>id</th><th>message</th></tr>”
^ List.mapX (fn f => “<tr><td>” ^ escape_int f.Id
                     ^ “</td><td>” ^ escape f.Message
                     ^ “</td></tr>”) ls
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Taking Advantage of Side Effects
write(“<tr><th>id</th><th>message</th></tr>”
  ^ List.mapX (fn f => “<tr><td>” ^ escape_int f.Id
                       ^ “</td><td>” ^ escape f.Message
                       ^ “</td></tr>”) ls);

Actually, Monoize compiles code to insert explicit write() 
operations, sending strings to the browser imperatively.

Step 5. Reduce (again)
(algebraic simplification)



21

Taking Advantage of Side Effects
write(“<tr><th>id</th><th>message</th></tr>”);
write(List.mapX (fn f => “<tr><td>” ^ escape_int f.Id
                       ^ “</td><td>” ^ escape f.Message
                       ^ “</td></tr>”) ls));

fun mapX f ls =
case ls of

      Nil => “”
    | Cons (x, ls') => f x ^ mapX f ls'
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Taking Advantage of Side Effects
write(“<tr><th>id</th><th>message</th></tr>”);
write(mapX' ls);

fun mapX' ls =
case ls of

      Nil => “”
    | Cons (x, ls') => “<tr><td>” ^ escape_int x.Id
                       ^ “</td><td>” ^ escape x.Message
                       ^ “</td></tr>” ^ mapX' ls'

Step 6. Fuse
(push write() inside recursive function definitions)
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Taking Advantage of Side Effects
write(“<tr><th>id</th><th>message</th></tr>”);
mapX'' ls;

fun mapX'' ls =
case ls of

      Nil => write(“”)
    | Cons (x, ls') => write(“<tr><td>” ^ escape_int x.Id
                           ^ “</td><td>” ^ escape x.Message
                           ^ “</td></tr>” ^ mapX' ls')

Step 6.5. Reduce (again)
(algebraic simplification)
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Taking Advantage of Side Effects
write(“<tr><th>id</th><th>message</th></tr>”);
mapX'' ls;

fun mapX'' ls =
case ls of

      Nil => ()
    | Cons (x, ls') => write(“<tr><td>”); escape_int_w x.Id;
                       write(“</td><td>”); escape_w x.Message;
                       write(“</td></tr>”); mapX'' ls'

Mission Accomplished!
Zero allocation: we write directly into an imperative page buffer.
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Memory Management

Thread #1
page
buf.

heap

Thread #2
page
buf.

heap

shared C malloc() heap

Thread #3
page
buf.

heap …............

When some thread needs more 
page-buffer or heap space, it just 

reallocates a larger buffer of twice 
the size.

heap

Most page requests involve zero 
shared memory within the C code 

that the Ur/Web compiler generates!
Highly compatible with good 

multicore cache performance.

Database
(only shared state!)
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That Looks Too Easy....

How do you do garbage collection?
● Transactions are integrated into Ur/Web at a deep level, so, 

whenever we run out of space, we can always abort  the 
execution, allocate a larger heap, and restart.

● As a further optimization, we use region-based memory 
management, inferring a stack structure to allow freeing 
whole sets of objects at key points during execution.
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In Summary

A simple compilation strategy makes it possible to compile programs from
a purely functional language based on dependent type theory

to
some of the fastest web-application servers on the planet
(e.g., 300k requests/sec. in benchmark, beating ~100 popular frameworks)

No dataflow analysis
No control-flow analysis
No garbage collector
(though we compile via GCC, which provides some of the above later in the pipeline)

Use this strategy for your next functional DSL!
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Open source at:
http://www.impredicative.com/ur/



29

One Last Domain-Specification Optimization

x = runQuery(“SELECT foo.Title FROM foo WHERE foo.Id = ” ^ id);

Step 7. Prepare
(find opportunities to infer SQL prepared statements, allowing advance query compilation)
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One Last Domain-Specification Optimization

x = runPrepared(q1, [id]);

q1 = prepare(“SELECT foo.Title FROM foo WHERE foo.Id = ?”);


