
An Optimizing Compiler for a Purely
Functional Web-Application Language

Adam Chlipala – MIT CSAIL
ICFP 2015
August 31, 2015

2

Choosing a PL for a Web App

Performance Productivity

the eternal question

Exemplars:
C, C++
(e.g., the “are you serious?” bloc)

Exemplars:
JavaScript, Ruby, Python
(e.g., the “better buy a few more servers” bloc)

3

Benchmarking Web Apps
<http://www.techempower.com/benchmarks/>

Simulated Clients

Application Server

Database Server

Each machine has the same hardware:
32 GB of RAM plus 40 hyperthreads
(so implementations with weak concurrency stories will fall behind)

10-gigabit Ethernet

10-gigabit Ethernet

4

Which framework should we choose?

“all JavaScript, all the time”

Hype Meter

5

Pervasive use of higher-order, polymorphic functionsHTML parsed, type-checked, and returned functionallySQL parsed and type-checked at compile time

Ur/Web: A Functional DSL for the Web
(** A new table, specific to this test *)
table fortune : {Id : int, Message : string} PRIMARY KEY Id

(** Here's the additional fortune mandated by the spec. *)
val new_fortune =
 {Id = 0, Message = "Additional fortune added at request time."}

(** Actual page handler *)
fun fortunes () =
 fs <- queryL1 (SELECT fortune.Id, fortune.Message FROM fortune);
 fs' <- return (List.sort (fn x y => x.Message > y.Message) (new_fortune :: fs));
 return <xml>
 <head><title>Fortunes</title></head>
 <body><table>
 <tr><th>id</th><th>message</th></tr>
 {List.mapX (fn f => <xml><tr>
 <td>{[f.Id]}</td><td>{[f.Message]}</td>
 </tr></xml>) fs'}
 </table></body>
 </xml>

● Purely functional
● Rich (almost dependent) type system
● Monads
● Type classes
● ML-style modules

6

Peeking at the Node.js Manual

7

Peeking at the Ur/Web Manual

8

Let's Do Some Science
Throughput

Number of Greek letters in manual

9

The Envelope, Please?
<http://www.techempower.com/benchmarks/>*

…

*Data from Round 11 Preview 2 – official release should be out soon!

…

10

Message for the Rest of the Talk:

“You can do this at home.”
The Ur/Web compiler follows a conceptually straightforward optimization
strategy that you, too, can apply, with relatively little effort, to compile your
functional program so that it routinely trounces C++ code in performance.

*Caveat: it's essential to use a domain-specific language where the
compiler can be informed about the deep semantics of the operations
that programs perform!

11

The Most Important Decision

Use a whole-program compiler.
(inspired by the MLton Standard ML compiler)

After type checking,
flatten all module structure,
eliminate all abstraction barriers,
and inline all uses of functors (module functions).

12

Example Program Again
(** A new table, specific to this test *)
table fortune : {Id : int, Message : string} PRIMARY KEY Id

(** Here's the additional fortune mandated by the spec. *)
val new_fortune =
 {Id = 0, Message = "Additional fortune added at request time."}

(** Actual page handler *)
fun fortunes () =
 fs <- queryL1 (SELECT fortune.Id, fortune.Message FROM fortune);
 fs' <- return (List.sort (fn x y => x.Message > y.Message) (new_fortune :: fs));
 return <xml>
 <head><title>Fortunes</title></head>
 <body><table>
 <tr><th>id</th><th>message</th></tr>
 {List.mapX (fn f => <xml><tr>
 <td>{[f.Id]}</td><td>{[f.Message]}</td>
 </tr></xml>) fs'}
 </table></body>
 </xml>

13

Specializing Definitions, in several flavors

datatype list a =
 Nil
 | Cons of a * list a

fun sort [a] (f : a -> a -> bool) (ls : list a)
: list a = …

sort (fn x y => x.Message > y.Message) ls

Step 1. Unpoly

14

Specializing Definitions, in several flavors

datatype list a =
 Nil
 | Cons of a * list a

fun sort' (f : T -> T -> bool) (ls : list T)
: list string = …

sort' (fn x y => x.Message > y.Message) ls

Step 2. Specialize

15

Specializing Definitions, in several flavors

datatype list' =
 Nil'
 | Cons' of T * list'

fun sort' (f : T -> T -> bool) (ls : list')
: list' = …

sort' (fn x y => x.Message > y.Message) ls

Step 3. Especialize
(call-pattern specialization)

16

Specializing Definitions, in several flavors

datatype list' =
 Nil'
 | Cons' of T * list'

fun sort'' (ls : list')
: list' = …

sort'' ls

17

Unveiling Abstractions & Going Impure
<tr><th>id</th><th>message</th></tr>
{List.mapX (fn f => <xml><tr>
 <td>{[f.Id]}</td><td>{[f.Message]}</td>) ls}

really means (in simplified/stylized form):

concat (tr (concat (th (cdata “id”),
 th (cdata “message”)),
 List.mapX (fn f => tr (concat (td (cdata (show f.Id)),
 td (cdata f.Message)))) ls)

Embedded-language syntax desugars into combinator calls.

Step 4. Monoize
(translate to monomorphic, impure language & expose definitions of combinators)

th = fn x => “<th>” ^ x ^ “</th>”

18

Unveiling Abstractions & Going Impure
“<tr>” ^ “<th>” ^ escape “id” ^ “</th>”
 ^ “<th>” ^ escape “message” ^ “</th>” ^ “</tr>”
^ List.mapX (fn f => “<tr>” ^ “<td>” ^ escape (show f.Id)
 ^ “</td>” ^ “<td>” ^ escape f.Message
 ^ “</td>” ^ “</tr>”) ls

Step 5. Reduce
(algebraic simplification)

19

Unveiling Abstractions & Going Impure
“<tr><th>id</th><th>message</th></tr>”
^ List.mapX (fn f => “<tr><td>” ^ escape_int f.Id
 ^ “</td><td>” ^ escape f.Message
 ^ “</td></tr>”) ls

20

Taking Advantage of Side Effects
write(“<tr><th>id</th><th>message</th></tr>”
 ^ List.mapX (fn f => “<tr><td>” ^ escape_int f.Id
 ^ “</td><td>” ^ escape f.Message
 ^ “</td></tr>”) ls);

Actually, Monoize compiles code to insert explicit write()
operations, sending strings to the browser imperatively.

Step 5. Reduce (again)
(algebraic simplification)

21

Taking Advantage of Side Effects
write(“<tr><th>id</th><th>message</th></tr>”);
write(List.mapX (fn f => “<tr><td>” ^ escape_int f.Id
 ^ “</td><td>” ^ escape f.Message
 ^ “</td></tr>”) ls));

fun mapX f ls =
case ls of

 Nil => “”
 | Cons (x, ls') => f x ^ mapX f ls'

22

Taking Advantage of Side Effects
write(“<tr><th>id</th><th>message</th></tr>”);
write(mapX' ls);

fun mapX' ls =
case ls of

 Nil => “”
 | Cons (x, ls') => “<tr><td>” ^ escape_int x.Id
 ^ “</td><td>” ^ escape x.Message
 ^ “</td></tr>” ^ mapX' ls'

Step 6. Fuse
(push write() inside recursive function definitions)

23

Taking Advantage of Side Effects
write(“<tr><th>id</th><th>message</th></tr>”);
mapX'' ls;

fun mapX'' ls =
case ls of

 Nil => write(“”)
 | Cons (x, ls') => write(“<tr><td>” ^ escape_int x.Id
 ^ “</td><td>” ^ escape x.Message
 ^ “</td></tr>” ^ mapX' ls')

Step 6.5. Reduce (again)
(algebraic simplification)

24

Taking Advantage of Side Effects
write(“<tr><th>id</th><th>message</th></tr>”);
mapX'' ls;

fun mapX'' ls =
case ls of

 Nil => ()
 | Cons (x, ls') => write(“<tr><td>”); escape_int_w x.Id;
 write(“</td><td>”); escape_w x.Message;
 write(“</td></tr>”); mapX'' ls'

Mission Accomplished!
Zero allocation: we write directly into an imperative page buffer.

25

Memory Management

Thread #1
page
buf.

heap

Thread #2
page
buf.

heap

shared C malloc() heap

Thread #3
page
buf.

heap …............

When some thread needs more
page-buffer or heap space, it just

reallocates a larger buffer of twice
the size.

heap

Most page requests involve zero
shared memory within the C code

that the Ur/Web compiler generates!
Highly compatible with good

multicore cache performance.

Database
(only shared state!)

26

That Looks Too Easy....

How do you do garbage collection?
● Transactions are integrated into Ur/Web at a deep level, so,

whenever we run out of space, we can always abort the
execution, allocate a larger heap, and restart.

● As a further optimization, we use region-based memory
management, inferring a stack structure to allow freeing
whole sets of objects at key points during execution.

27

In Summary

A simple compilation strategy makes it possible to compile programs from
a purely functional language based on dependent type theory

to
some of the fastest web-application servers on the planet
(e.g., 300k requests/sec. in benchmark, beating ~100 popular frameworks)

No dataflow analysis
No control-flow analysis
No garbage collector
(though we compile via GCC, which provides some of the above later in the pipeline)

Use this strategy for your next functional DSL!

28

Open source at:
http://www.impredicative.com/ur/

29

One Last Domain-Specification Optimization

x = runQuery(“SELECT foo.Title FROM foo WHERE foo.Id = ” ^ id);

Step 7. Prepare
(find opportunities to infer SQL prepared statements, allowing advance query compilation)

30

One Last Domain-Specification Optimization

x = runPrepared(q1, [id]);

q1 = prepare(“SELECT foo.Title FROM foo WHERE foo.Id = ?”);

