
Ur/Web:
A Simple Model for Programming the Web

Adam Chlipala – MIT CSAIL
POPL 2015
January 15, 2015

2

Web
Tools for implementing
modern three-tier web
applications

Ur / Web

Ur
A new general-purpose
typed functional
language

Motto: “the compiler understands the structure of your web app.”

Focuses on:
● Programmer productivity
● Security
● Performance (especially server-side, for scaling)

λ

3

There are at least several users whom I have never met!

The first commercial
Ur/Web application:
BazQux Reader, by
Vladimir Shabanov

Feed reader with comments

http://www.bazqux.com/

On the order of 1000 paying
users daily

http://www.bazqux.com/

4

TechEmpower Web Framework Benchmarks
<http://www.techempower.com/benchmarks/>

● 3rd-party benchmarking
initiative

● 93 frameworks in test to
the right

● Ur/Web's performance:
● 4th best throughput

(~100 krps)
● Best latency (2.1 ms)

● At the top of the chart in
the preview results for
the next round

5

This is reasonably real.
You can download it and build some nifty Web apps.

Open source at:
http://www.impredicative.com/ur/

Bonus talk content:
1) Background: a general model for programming distributed applications
2) Background: the mess that is today's mainstream Web development techniques
3) Ur/Web's simpler model for programming Web apps, with 2 big ideas:

a) Encapsulation that crosses nodes of a distributed system
b) A simple concurrency model for distributed systems

4) Code demo

6

Distributed Systems (Hard)

Node

Node

Node

Node

Node

State

State

State

State

State

Message

Message

Message

Message

Message

 Message

(look of
mistrust)

7

Why Distributed Systems?

● Physics forces distribution in space to scale performance.
● Mutually distrusting users controlling distinct resources

Challenges:
● Mutable state
● Concurrency
● Security

8

The Restricted Model of Many Web Apps

Server

Client

State

State Client State Client State…....................................

flashy UI flashy UI flashy UI

“Thin client”: most client
state is ephemeral.

Centralized security: server
under tight control; clients can

do whatever they want. We
don't care if troublemakers
corrupt their own state, and
server state is behind an API.

Most optimization work focused
on server, especially for

“scaling”

Simple communication
topology: only edges are

between server and clients

9

What Web programmers expect today

Web Server

Browser Browser Browser Browser…..

HTTP,
URLs

HTTP,
HTML,
URLs

DatabaseSQL

HTTP,
XML/
JSON

AJAX!

The DOM
(a big old mutable global variable,

modified by looking up nodes by string ID)

JavaScript

Comet (long polling)
or WebSockets

All represented as normal
strings in most
frameworks!

Hello, code injection
attacks!

HTTP,
XML/JSON

10

The Ur/Web model

Web Server

Browser

An application is written entirely in Ur/Web source code, exposing this view:

Browser Browser…...

First-class
function to
run on server

Strongly typed
document tree

contains

Database

Strongly typed SQL syntax tree

List of records of native Ur values
Key point: semantics says
requests are run one at a time
(the standard transaction
abstraction).

First-class
function to
run on server
(marked as AJAX-
style)

Native Ur value

Document
Mutable cells…...

(functional-reactive GUI style)
function for rendering based on contents

Thread Thread Thread…...........

Key point 2: client-side threading
is cooperative, with thread
switches only at well-defined
points (a natural choice in
JavaScript).

Key point 1: threads are spawned
in Ur/Web code and themselves
run Ur/Web code.

write

read

Typed message-passing channels stored in DB and passed to clients.

Native Ur value

11

Big Language Design Idea #1: Encapsulation

Server

Client

State

State Client State Client State…....................................

flashy UI flashy UI flashy UI

Module
encapsulating bits of state

across the system

What should we encapsulate?

[On server:]
Database tables
RPC endpoints

Message-passing channels

[On client:]
Subtrees of a client-side page

Cookies (persistent store)

12

Big Language Design Idea #2: Concurrency

Server

Client

State

State Client State Client State…....................................

flashy UI flashy UI flashy UI

Threads

User interactions may trigger
creation of new threads.

Semantics is that, at any time,
just one thread is running
across the whole system!

A thread ends its cooperative
slice with certain actions, like

an RPC to the server.
f(a)

f(a)

RPC goes into a queue
on the server.

Later, server runs it
atomically and places
result back on client.

b

Server may also send
messages to other clients,

and all deliveries re: the
same RPC appear to
happen atomically.

cc

Big Idea:
Semantics presents the illusion that
just one thread is running at a time,

across the whole system!

13

Demo time!

14

Open source at:
http://www.impredicative.com/ur/λ

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

