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Ur
A new general-purpose
language

Web

Tools for implementing
modern three-tier web
applications

Motto: “the compiler understands the structure of your web app.”

Focuses on:

 Programmer productivity

e Security

« Performance (especially server-side, for scaling)
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This is reasonably real.

You can download it and build some nifty Web apps.

Open source at:
http://www.1lmpredicative.com/ur/

Bonus talk content:
1) Background: a general model for programming distributed applications
2) Background: the mess that is today's mainstream Web development techniques
3) Ur/Web's simpler model for programming Web apps, with 2 big ideas:
a) Encapsulation that crosses nodes of a distributed system
b) A simple concurrency model for distributed systems

4) Code demo




Distributed Systems (Hard)
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Why Distributed Systems?

» Physics forces distribution in space to scale performance.
« Mutually distrusting users controlling distinct resources

Challenges:

« Mutable state
« Concurrency
« Security



topology: only edges are
between server and clients

\

The Restricted Model of Many Web Apps

Simple communication

N

Most optimization work focused

Server — Y% on server, especially for
\ “scaling”

“Thin client”: most client
state is ephemeral.
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flashy UI
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Centralized security: server
under tight control; clients can
do whatever they want. We
don't care if troublemakers
corrupt their own state, and

server state is behind an API.
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What Web programmers expect today

[ Web Server SQL Database ]
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(a big old mutable global variable,
odified by looking up nodes by string ID)
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The Ur/Web model

An application is written entirely in Ur/Web source code, exposing this view:
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Big Language Design Idea #1: Encapsulation

What should we encapsulate?

Server [On server:]
f E T Database tables
RPC endpoints
Message-passing channels

[On client:]

Module Subtrees of a client-side page

encapsulating bits of state Cookies (persistent store)
across the system
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Big Language Design Idea #2: Concurrency

Server may also send
messages to other clients, )

and all deliveries re: the C ¢ ]

same RPC appear to

| happen atomically. o
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Big Idea:
Semantics presents the illusion that
Jjust one thread is running at a time,
across the whole system!
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Demo time!



Open source at:
http://www.1mpredicative.com/ur/
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