Ur/Web:
A Simple Model for Programming the Web

Adam Chlipala - MIT CSAIL
POPL 2015
January 15, 2015

Ur
A new general-purpose
language

Web

Tools for implementing
modern three-tier web
applications

Motto: “the compiler understands the structure of your web app.”

Focuses on:

 Programmer productivity

e Security

« Performance (especially server-side, for scaling)

There are at least several users whom | have never met!

a8 00

BEazQux Reader

The first commercial .

Ur/Web application:

b adl tems

BazQux Reader, by mblows. .
Vladimir Shabanov :

A koitke.org
rcromnming
Feed reader with comments 2 Tk Bicycle
= Googlet

| [Larry Page
http://www.bazgux.com/ Livejoumnal
s Program. ..

@ Coeding Horror
B LU - Progra...

On the order of 1000 paying
users daily -Tech

2 Engad... 1
A TechCrunch

A Mhedtbne § D o

@ Planet Has... 37

B SCOTT Sports <44

Later

4TS5 Menws =
m Limus Torvalds, 2 Oct 024

| wish there were mome people in the legal profession like Judgea
Posner. The man has his head screwed on right!

T Do patent and copyright law restrict competition and

creativity excessively? Posner - The Becker-Posner Blog =
| arm concemed thal bath patent and copyright proteciion, though
parficulary the former, may be excassive. To evalheate oplimal
patent protection for an imsention, one has o consider bolh the
cost of.

E- Michael Cohen, 2 Oct 02-43 (2 weeks ago

This article might viclate Betleridges Law of Headlines.. 'mi
sumeised,

" Jian Wildehonr, £ Chal DLEEE (2 vtk

RS .]
Also nole the Becker posi on fhe same topic

http://www.bazqux.com/

TechEmpower Web Framework Benchmarks

<http://www.techempower.com/benchmarks/>

Initiative
* 93 frameworks in test to o
the right S e

Results

1 . Framework Best performance (higher is better) Cls Lng Plt FE Aos DB Dos Orm IA Errors
[Ur/Web S performance. m cpoll_cppsp-raw 188,585 | 100.0% Pt G+ Cpl Non Lin My Lin Raw Rea
= gemini 166,103 | I £ 8. 1% Ful Jav St Res Lin My Lin Mc Rea
e 4th best throu gh put SR _ 159178 e —— | L e St e o My o e e
'.-un:etp{lStg-res- - . 1-12-.80-?’ l_szaf - OE O E = . -;%Lf_i_il_i_l;ii - oam
M undertow 110,277 FaSalelelelelielialiel™ " P v v Ron™ iR Mo~ Tn “raw Rea
(~1 OO krpS) B undertow 107,704 I ;7.1 % Pt Jav Utw Non Lin My Lin Raw Rea
Wundertow edge 107037 | 6.8 % B =) e R N R N
B undertow edge 106,306 [S 5 4% Pt Jav Und Non Lin My Lin Raw Rea
® BESt Iatency (2.1 mS) mplain 99,626 [5 2% Ful_ S Pla Non Lin My Lin Mo Rea
o B php-raw 97508 (NN S 1.7 % _Pit PHP FPM ngx Lin My Lin Raw Rea
e At the top of the chart in Munderiowedge 95500 I—0 9% P Ut e n o n e fer
m undertow 93,324 (I 4.5 % _Pit_ Jav Utw Non Lin Pg Lin Raw Rea
. ¥ hhvm 68,286 (N 36.]% Pt PHP hhv HPH Lin My Lin Raw Rea
the preview resu Its for mlapis. 62,527 I 13.2% T s o oo n Py Un fu es
IEE@H 58,015 (M 30.8% Ful PHP FPM ngx Lin My Lin Raw Rea

the next round = grizzy-jersey 44379 —23.5% I e [SR vy R
42,754 | 7 7.7 % Mcr PHP FPM ngx Lin My Lin Ful Rea

B AR

Wtreefrog 42,743 |)).7% BN Niey e M BN
33,283 | 17.6% Mcr Py Gun MNon Lin My Lin Raw Rea
31,839 [16.9% Ful Sca Pla Non Lin My Lin Ful Rea

31,529 | 16.7% Ful Ur Ur/ Non Lin My Lin Mcr Rea

This is reasonably real.

You can download it and build some nifty Web apps.

Open source at:
http://www.1lmpredicative.com/ur/

Bonus talk content:
1) Background: a general model for programming distributed applications
2) Background: the mess that is today's mainstream Web development techniques
3) Ur/Web's simpler model for programming Web apps, with 2 big ideas:
a) Encapsulation that crosses nodes of a distributed system
b) A simple concurrency model for distributed systems

4) Code demo

Distributed Systems (Hard)

Message

]
—

Message

=V

Message

(look of .
mistrust) R

Why Distributed Systems?

» Physics forces distribution in space to scale performance.
« Mutually distrusting users controlling distinct resources

Challenges:

« Mutable state
« Concurrency
« Security

topology: only edges are
between server and clients

\

The Restricted Model of Many Web Apps

Simple communication

N

Most optimization work focused

Server — Y% on server, especially for
\ “scaling”

“Thin client”: most client
state is ephemeral.

N

Client @}

flashy UI

/

Client Sftate

flashy UI

\ R

Centralized security: server
under tight control; clients can
do whatever they want. We
don't care if troublemakers
corrupt their own state, and

server state is behind an API.
....................................... ‘ =were | Qtgte

flashy UI 8

What Web programmers expect today

[Web Server SQL Database]

gLl HTTP,
R ML/JSON
URLs
B rowse r Browser BrOWSEr | sssssssassassasssansansnnsnnnsansnnsnnnsnnsnnsnnnns Browser
AJAX! Comet (long polling)

or WebSockets
JavaScript

(a big old mutable global variable,
odified by looking up nodes by string ID)

The DOM J

The Ur/Web model

An application is written entirely in Ur/Web source code, exposing this view:

. |

Web Server Database

—

a@rds of native
Native U

T

Browser || srrsns Browser E Browser Th read T-ead """"""" Thread
" L
4 Document
AN EE EEENE ~ Mut
E o function for rendering based o

Big Language Design Idea #1: Encapsulation

What should we encapsulate?

Server [On server:]
f E T Database tables
RPC endpoints
Message-passing channels

[On client:]

Module Subtrees of a client-side page

encapsulating bits of state Cookies (persistent store)
across the system

l \
Client ES ql Client E ; \ Client

flashy U! flashy UI flashy UI 1

Big Language Design Idea #2: Concurrency

Server may also send
messages to other clients,)

and all deliveries re: the C ¢]

same RPC appear to

| happen atomically. o
I__CI_I_I_C(IU_CI_TU—.)—I’D_WU'PCI_OTI
slice with certain actions, like

an RPC to the sz

Server

- fla)

Big Idea:
Semantics presents the illusion that
Jjust one thread is running at a time,
across the whole system!

ew threads.

|

ns may trigger

Threads

State

flashy UI flashy UI flashy UI 1

Demo time!

Open source at:
http://www.1mpredicative.com/ur/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

