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Abstract
The engineering of computer systems is distinguished by a long-standing tradition of
building on quicksand. Even the most venerable and critical systems have a history
of serious bugs and security vulnerabilities. Human fallibility continues to prevail.

Computer-checked mathematical proofs of software correctness have emerged as a
promising method to rule out large classes of bugs. However, the appropriate notion
of correctness for a computer-systems component is exceedingly difficult to specify
correctly in isolation, and unrelated verification of adjacent components does not
rule out bugs due to their interactions. Therefore, I argue for (1) centering systems-
verification efforts around interface specifications within a proof assistant, (2) proving
both clients and implementations of an interface, and (3) using these results to prove
an integrated-correctness theorem stated without referencing the internal interfaces.

I present a serious (several-year, several-person) exploration of what formally proven
computer-systems development would look like if this practice were standard, culmi-
nating in precedent-setting case studies involving embedded implementations of net-
worked software and elliptic-curve cryptography. Whole-system correctness theorems
spanning from application behavior to hardware designs are proven by instantiating
correctness proofs of compilers, translation validators, processor implementations,
and mathematical theories. For example, RISC-V machine code for a public-key-
authenticated Ethernet server is proven to always eventually satisfy a trace predicate.

Specifications of imperative languages within the system are modeled using an under-
appreciated technique that we call omnisemantics. Choosing an inductively defined
weakest-precondition predicate transformer as the semantics of a language allows un-
specified behavior to be encoded using rules with universally quantified premises,
greatly simplifying compiler-correctness proofs and program-logic construction.

Thesis Supervisor: Adam Chlipala
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Building computer systems that function as specified across a broad range of usage
remains challenging despite substantial advances in programming tools. That this
difficulty persists in spite of extensive efforts sets programming apart from mature
engineering disciplines, which can achieve near-perfect reliability within design limits.
The inherent nebulosity of desirable behavior in response to a vast space of possible
inputs is only a part of the problem as evidenced by the obviousness of the failures
in production software: simple user-facing specifications such as “doesn’t freeze” are
not reliably upheld either. Worse, even violations of subtle specifications internal to
the system can drastically affect its overall behavior. Mundane confusion over which
parts of memory store which information, or whether that information is an input to
some code or itself a program to be executed, causes a strong majority of computer
security vulnerabilities [Sum+22; Keh19; Mil19; Pro]. Even projects that consistently
prioritize correctness and security are bound by human fallibility: for example, both
of OpenBSD’s “only two remote holes in the default install” were caused by failure
to follow an established and sound programming discipline. The costs of computer
unreliability are borne primarily by users, but development of computer systems
themselves can grind to a halt when the proliferation of bugs spoils design foresight
and necessitates trial-and-error programming (humorously, [Mic13]).

I started and led to completion a set of interconnected experiments in using computer-
checked mathematical proofs of comprehensive application-level specifications as the
primary means of quality assurance for computer systems. The approach was straight-
forward, almost naive: to understand the relevant design-review and code-auditing
tasks and to encode that understanding in lemmas and mechanized proof procedures.
I would pick a programming discipline I understand well and formalize a canonical
example of it in the Coq proof assistant, relying on my experience about what consid-
erations are important when reviewing this kind of code to choose what correctness
theorem to prove. Then I would pick another qualitatively different component that
interfaces with an existing example, repeat the exercise, and state and prove a com-
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bined correctness theorem. Step-by-step, my collaborators and I expanded the verified
stack inside-out while insisting on interface specifications that appropriately delineate
the responsibilities between components and keep verification effort manageable. The
resulting artifacts demonstrate integrated verification of realistic implementations of
small systems, without formality gaps, across a wide range of programming environ-
ments, languages, and tooling, each verified using context-appropriate methods.

I chose to center this effort around cryptographic implementations and networked
embedded systems. The primary reason for this choice is that reliability, correctness,
and security are already recognized as important in these domains, opening up the
opportunity for adoption of proven implementations. Another important feature of
these domains is that they place substantial constraints (performance, resource us-
age, reliability, absence of information leaks) on the implementations, and these con-
straints encourage careful consideration of project scope, deterring frivolous additions
of mechanisms and functionality. Following scoping decisions of leading cryptography
and embedded-networking projects allowed the clean-slate effort I led to get to prov-
ing important properties of useful components and complete systems without taking
a detour to reimplement (or axiomatically model) incidental developments just to
remain realistic. While the focus on constrained domains worked out great for exper-
imenting with integration verification and proof-based development in this setting, it
is also a limitation as far as interpretation of the outcomes of these experiments is
concerned: the trade-offs for specifying and verifying a tightly integrated part of an
elaborate unverified system are expected to differ.

I strove to seek out, specify, and integrate challenging components whose functional
correctness follows from delicate dedicated reasoning. In other words, adequacy and
interoperability of proof methods is in the front and center of this work. I am pointing
this goal out in contrast to trying to come up with one tool or methodology that
could tackle all verification challenges within the application domain or trying to
distill the essence that remains of a particular verification challenge once interface
constraints are removed. Excellent engineering stands out for attention to context,
fitting within the constraints of the environment and exploiting its flexibility, leaning
on abstractions whenever applicable and looking through them to achieve better-
than-generic results. I sought to demonstrate that building a computer system in a
proof assistant can support these ambitions with grace. There is no specification that
cannot be negotiated with, no red tape that says “abstraction barrier – do not cross!”,
but rather the engineering details of each interface are appropriately tackled by the
(different!) proof methods used on each side of that interface. The developments I
will review here are conclusive on this point: qualitatively, the Coq proof assistant is
a great environment for proof of tricky integration of computer systems.

A pattern that emerged as successful for modeling internal interfaces describing the
behavior of sequential imperative programs is the use of weakest-precondition pred-
icate transformers. This encoding choice appears important precisely because the
rules being described vary: underspecification (unspecified behavior) and absolute
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requirements (avoiding undefined behavior) can be straightforwardly specified on a
case-by-case basis within the same weakest-precondition definition. While predicate
transformers are established for reasoning about concrete programs, I pioneered their
application to state and prove correctness of practical compilers and instruction-set
implementations. The canonical semantics of the C-like language at the center of this
ecosystem are given by inductively defined weakest preconditions (omnisemantics);
this definition elegantly serves the needs of a total-correctness program logic and
certified and proof-generating compilers from and to this language. In particular,
omnisemantics enable compiler-correctness proofs to exploit underspecification (e.g.,
of addresses and contents of freshly allocated memory) without resorting to backward-
simulation arguments. For contrast, CompCert handles the same conceptual challenge
using a technical deterministic memory model where printing pointers and compar-
ing pointers to independently allocated memory locations are modeled as undefined
behavior to avoid reasoning about underspecification [LB08].

1.1 Structure of This Thesis
Section 1.2 gives an overview of the components and integrations that were imple-
mented and proven as a part of the collaborative effort covered in this thesis. The
remainder of this chapter provides an elaborate explanation for why I pursued inte-
grated, modular, and foundational verification. At first, the argument is driven by
a number of examples of how subtleties and disagreements about interfaces of veri-
fied and unverified components alike jeopardize the correct operation of systems built
from these components. Returning to desired outcomes from integration verification,
I review some verification strategies and past efforts to tackle similar challenges.

Chapter 2 presents a detailed but primarily informal overview of the Bedrock2 pro-
gramming language at the center of this effort. The focus is on the semantics of
memory, addresses, allocation, and (sequential) interaction with adjacent compo-
nents. I compare the design choices in Bedrock2 to different perspectives on the C
programming language and consider their impacts on programming and compiling,
program verification and compiler verification. Section 2.5 wraps this up with a gen-
eral translation from Bedrock2 to C, intended for use with mainstream C compilers.

Chapter 3 covers the programmer-facing formalization of the Bedrock2 language. It
starts out with some motivating program-proof examples. The presentation is struc-
tured around enabling desirable proof steps for each primitive command of Bedrock2,
fleshing out cases of the definition of verification conditions along the way. The same
chapter also includes discussion of proof procedures frequently used across Bedrock2
programs but does not aim for exhaustive coverage of this topic. I hope the tech-
niques for precondition-driven quantifier instantiation during symbolic execution and
for handing functions whose pointer arguments may alias are also applicable outside
Bedrock2.
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Chapter 4 explains how the Bedrock2 language and the RISC-V instruction set are
modeled in compiler proofs and processor proofs, culminating in the “Lightbulb”
case study [Erb+21]. A central innovation is the use of omnisemantics, which enable
smooth modeling of programming languages with undefined behavior and nondeter-
minism. Only semantics-formalization design and integration-verification aspects are
in-scope for this thesis: I am hoping Samuel Gruetter will write about his design and
proof of the Bedrock2 compiler, and (with Arthur Charguéraud) we put forward an
extensive, pedagogical presentation of omnisemantics using lambda calculi [Cha+23].

Chapter 5 first reviews Fiat Cryptography [Erb+19] and considers its verified integra-
tion with a combinatorial optimizer that targets x86 assembly and achieves compet-
itive performance [Kue+22]. To connect field-arithmetic implementations from Fiat
Cryptography to Bedrock2, a purpose-built certified compiler (by Jade Philipoom)
is used to translate the straight-line code. The associated elliptic-curve operations,
previously presented in my MEng thesis [Erb17], are translated to Bedrock2 by us-
ing proof-producing relational compilation (Rupicola [Pit+22]). The integration of
these projects culminates in a proof that describes the behavior of the public-key-
authenticated garage-door-opener demonstration in terms of RISC-V machine code,
network packets, and standard definitions of elliptic curves.

1.2 Ecosystem Overview
Figure 1-1 shows the major components of the verified-computer-systems ecosystem.
It contains formal specifications and compilers for five programming languages, with
some nontrivial programs written in each. Functional programs and templates in
Fiat Cryptography are proven against back-of-the-napkin specifications of elliptic-
curve cryptography, appropriately instantiated, and compiled to Bedrock2 through
dedicated pipelines for flat and structured code. They are then joined by similarly
generated implementations of functionality such as IP checksums and handwritten
drivers for GPIO, SPI, and Ethernet controllers. A certified compiler produces linked
binary code for the RISC-V instruction set, which in turn can be executed on a
verified processor proven against the same specification as the compiler. Numerous
connections to unverified implementations of appropriate interfaces are available at
all layers: for example, the same Fiat-Cryptography templates can be used to gener-
ate performance-competitive x86 assembly code through black-box optimization and
certified translation validation.

I will now give some summary statistics to give a sense of the scale of development.
My first commit in what became the main repository of this effort is from 7 years
ago (September 2015, using Coq 8.4), and a slightly evolved formalization of the
elliptic-curve-cryptography representation tricks from that time is a key part of a
recently finished case study I describe here. Since then, 75 people have contributed
code; 32 are attributed more than 100 lines and 16 more than 1000 lines currently
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Figure 1-1: Diagram of components by implementation strategy (bubbles) and in-
tegration proofs (vertical spans). Non-boldface items inside component bubbles are
examples of supported functionality. Arrows represent code transformations covered
by foundational proofs; diamond-tipped arrows represent proofs without code trans-
lation, and circles represent unverified translations.
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present in the codebase. The resulting ecosystem of proven and integrated systems
components is now split across 7 repositories holding a total of 300k lines of Coq code
from 18,848 commits (cloc). Each repository has some more-or-less independent
use case outside the integration-oriented work described in this thesis; most notably,
thousands of lines of Fiat-Cryptography-generated elliptic-curve implementations are
used in web browsers, Linux, OpenBSD, MirageOS, Google and Apple products,
and a dozen other contexts. A number of proof techniques mechanized as a part
of this work are pushing the performance limits of the Coq proof assistant despite
substantial optimization effort: Building a stripped-down version of our ecosystem
is the most time-consuming task in the Coq continuous-integration benchmarking
system, taking about a third (2̃h) of the total time and 5x longer than the four-color
theorem. Components within this ecosystem have been described in 6 peer-reviewed
publications, 2 𝑛th-resubmission manuscripts, 1 PhD thesis, and 5 MEng theses. I am
now writing about the common themes that make all this come together and tie each
representative case study to one Qed against a satisfyingly thorough specification.

There are three case studies that I return to throughout this thesis: “lightbulb”,
“garage-door opener”, and “CryptOpt”. Please keep in mind that these case studies
exist to show off the building blocks, not the other way around: while modeled after
caricatures of real-world use cases, they might as well be Rube Goldberg machines
demonstrating adequacy of and mastery over the pieces they are made of. With that
out of the way, they do pretty much what they say on the tin:

• “Lightbulb controller” is an Ethernet server that turns a general-purpose output
pin on and off in response to UDP packets. It is implemented in a Bedrock2,
compiled to RISC-V using a certified compiler, and run on a proven-correct
processor. Its theorem of (partial) correctness is stated in terms of the seman-
tics of the hardware-description language and hypothetical logging of traces of
memory-mapped I/O (MMIO) actions driving the network controller. Notably,
the theorem statement does not depend on (the correct formalization of) the
semantics of Bedrock2 or the RISC-V instruction set.

• “CryptOpt” is a search-based trial-and-error optimizer for straight-line x86 as-
sembly, and Fiat Cryptography uses it as a backend. Certified translation vali-
dation is used to provide gap-free correctness theorems for CryptOpt-generated
assembly code against specifications in terms of finite-field arithmetic, calling
conventions, and semantics for x86 assembly.

• “Garage-door opener” is another Ethernet server, but it uses a Curve25519
Diffie-Hellman handshake to ensure that only the authorized user (identified by
a public key) can control the actuator. Cryptography and networking routines
are implemented and verified as functional programs but compiled to Bedrock2
code with manual memory management and executed on a commercial RISC-V
microcontroller. Its correctness theorem is stated in terms of the semantics of
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the RISC-V instruction set and hypothetical MMIO traces in a sense of always-
eventually total correctness without internal carve-outs. This means that unlike
what one would expect from generic implementations of functional languages,
the compiler-produced binary is guaranteed not to run out of memory or stack
space and will not otherwise abort or infinite-loop.

1.3 The Case for Integration Proofs
This section reviews the importance and pitfalls of specifying and modularizing com-
puter systems in practice. In particular, the focus is on the possible consequences of
subtle specification errors or misunderstandings. Most of the discussion isn’t specific
to formal verification, but the purpose of this investigation is to motivate studying
and verifying integration of individually reasonable components. Similarly to how
unit testing can miss serious bugs, proving correctness of single components or chal-
lenges distilled from them is not a guarantee against serious issues with the verified
component. I chose the examples presented in this chapter to show the seriousness
and pervasiveness of this consideration; not all of them are attractive targets for
verification.

Integrated Correctness from the Perspective of Formal Methods Having a
computer-checked proof about a system enables the proven properties to be reviewed
based on the theorem statement alone, without auditing the implementation. The
natural goal and expectation is that a verified program would only behave in ways
described in its specification, implying that any observed misbehavior of the overall
system must be the fault of some other component. For this principle to be applicable
in practice, the specification of the verified component must cover all aspects of its
behavior that the rest of the system relies on. This is a much higher standard than
can be achieved by simply specifying desired behavior of the program in an idealized
setting, and pursuing it rigorously can multiply the work required to verify a modest
but highly interconnected component. Specifically, adhering to the requirements of
the interfaces that a component uses can be as challenging, if not more challenging,
than simply implementing the intended functionality, and proving a list of satisfied
constraints does nothing to show that all requirements were listed.

An integration proof for some components conclusively resolves the question of ade-
quacy of the specification of the interface between them: a theorem about the com-
bined system can be stated without referencing the internal interface and remains
valid even if the interface specification turns out to be inconsistent with some ex-
ternal standard. Verifying adjacent components in an integrated manner decreases
the specification surface-area that needs to be audited and increases confidence in
overall system correctness. Further, removing an interface from the trusted base un-
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locks system-specification-preserving iteration on that interface, perhaps to enable
optimized implementations of the components it delineates.

1.3.1 Systems Specification Challenges
While it is broadly useful to think of computer systems as collections of more-or-
less independent components, this modularity is a product of careful design and
engineering, not a given. Reliable operation of these components is interdependent,
often inherently so, and some of the relationships are far from obvious. In particular,
the correctness-dependency relationships of even the simplest systems are not stacks
or trees, but rather the expected operation of lower-level components depends on
higher-level components doing what is expected of them. For a concrete example,
jumping to recently written memory without proper software interlocks would cause
hard-to-predict behavior on any conventional multistage processor.

As a theme, internal interfaces of computer systems become vastly more complex
than the user-facing functionality they support because implementers knowingly de-
viate from what an idealized specification would look like in order to simplify the
implementation or to make it feasible at all. For each computer-systems interface
contract there are numerous tempting, idealized versions of it that are not actually
implemented. In tightly constrained contexts such as embedded, low-latency, high-
throughput, or low-power devices, this kind of complexity is pervasive to the point
that can be challenging to determine what a component interfaces with, let alone
what obligations are associated with these interfaces. Yet failing to adhere to the
actual requirements, even subtly, can result in arbitrary misbehavior, giving way to
exceptionally nasty bugs and security vulnerabilities.

Example: Memory Allocation An ubiquitous and representative example of an
idealized interface with context-dependent caveats is memory allocation. Program-
ming languages above the assembly level provide built-in, almost or literally implicit
mechanisms for finding an appropriate, unused memory location to store data. For
example, C provides three: stack variables are assigned offsets within the function’s
stack frame during compilation, static variables are assigned addresses during link-
ing, and malloc can be called to try to locate and set aside available memory during
program execution. Details vary, but all three share the same important catch: each
system only has a finite amount of memory. Yet nothing stops one from programming
as if memory allocation always succeeds or proving properties of programs under this
assumption. C with unlimited memory is convenient but unimplementable.

But what actually happens when available memory cannot be found? Without
much more detailed knowledge about the rest of the system, it is hard to be sure.
The specification allows malloc to return NULL, but some implementations termi-
nate the program or return “overcommitted” virtual memory whose use may ter-
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minate the program. Static allocation lacks the first option. Stack allocation is
further severely performance-constrained and commonly returns some memory with-
out checking whether it overlaps already allocated memory. The last scenario can
result in arbitrary code execution through stack-pointer hijacking, necessarily vio-
lating any properties worth proving about the program. Accepting the intermediate
options by reading “or it may crash” into every specification is deeply dissatisfying
and unacceptable in safety- and security-critical applications.

Takeaways The correctness of the program and the memory-management system
are interreliant: The program, verified or not, allocating more memory than the
underlying system can provide will cause the system to fail to execute the program in a
manner that could be specified in terms of the source language. The contract between
them is intricate: memory fragmentation means that allocating n contiguous bytes
may fail if more than n bytes are available, and all but the coarsest fragmentation
models are allocator-specific. Ignoring the problem entirely is tempting, but the
potential failure modes are not acceptable in general.

Designing an interface specification that appropriately delineates responsibilities be-
tween components is inherently challenging, and doing so without a reliable means to
check against actual implementations on both sides of that interface is bound to miss
details. For example, the Verified Software Toolchain (VST) [App+20] lets programs
that stack-allocate more memory than fits in the address-space to be proven correct,
and Bedrock malloc [Chl13] callers can satisfy any specification1 in this scenario be-
cause malloc enters an infinite loop and the proof framework only guarantees partial
correctness. On the other hand, the VST malloc implementation provides an inter-
face with fragmentation-aware tracking of available memory [AN20, §4], opening the
way to proofs of correctness under execution with bounded heap memory. The case
studies in this thesis handle bounded stack memory.

A Note on Mitigations If terminating the program is acceptable, it is often
possible to replace other failure modes with it, but doing so is not free. Common
mitigations for stack-heap collisions include marking a last region of dedicated stack
memory as inaccessible, explicitly checking for free memory before growing the stack,
or checking the integrity of important stack and heap data structures before using
them. Measures of this kind have been attributed considerable success in preventing
attacks in practice. From a formal-methods perspective, they are components like
any other and subject to the same challenges.

For example, SoftBound+CETS [Nag+10] is a particularly strong mitigation for

1Concretely, calling malloc to allocate 231 words gives a postcondition promising to fit all of them
in memory, but base =?> (2*N.to_nat (Npow2 30)) ===> [|False|]. To show this, rewrite 2*
to +, distribute =?> over +; the first cells of the two resulting arrays are at the same word address.
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memory-access errors in C: operating as a compiler pass, it translates every program
that potentially triggers undefined behavior only through out-of-bounds memory ac-
cess into an ABI-compatible program that potentially crashes instead, at a ~2x per-
formance overhead. A model of its implementation in LLVM 3.4 was proven correct
in the Coq proof assistant against a model of a core subset of C. This combination
of generality and confidence made a splash amongst computer-security enthusiasts
and inspired a celebratory third-party presentation of the work at CCC 2013 under
the title “bug class genocide” [Bog13]. After explaining the benefits of a computer-
checked proof, the speaker left a particular snippet of the verified code on the slide
for an awkwardly long pause and then commented “if you’re not laughing, I don’t
trust your C code”: the proof against an idealized model of C where addresses are
natural numbers had missed a classic integer-overflow vulnerability in the mitigation’s
array-bounds checks.

1.3.2 Interface-Straddling Bugs in Unverified Systems
Insisting that the components on opposite sides of an interface agree on and abide by
the rules for how to interact over that interface is not just about computer-checked
proofs. Confusion or disagreement over the details of some systems-programming
interface has been behind a number of serious bugs in real systems. This section will
sample a representative set of examples from different interfaces in popular systems.

Intel sysret Operating-systems code written for AMD’s 64-bit x86 processors by
straightforwardly following the specification allows for privilege-escalation attacks on
Intel’s later 64-bit processors due to a subtle difference in how the sysret instruction
behaves [Dun12]. It is believed that this difference is unintentional and that the
instruction with encoding and mnemonic matching AMD’s was also meant to match
the behavior. Intel engineers dutifully wrote their own specification and made explicit
the interaction with noncanonical addresses, a rather obscure feature. However, the
behavior that is spelled out (and implemented) does not match AMD’s.

As a tradeoff for page-table compactness, AMD defined virtual addresses on 64-bit
x86 to be 48-bit signed integers, sign-extended to 64 bits. To keep the options open
for later extension of these addresses, AMD specified that all instructions operating
on virtual addresses must fault (redirect control flow to an exception handler) if the
address does not satisfy this constraint. A typical kernel or hypervisor returning
from a system call first sets the stack pointer and then calls sysret, which sets the
instruction pointer. If the new instruction pointer is not canonical, sysret faults.
However, AMD’s version first drops from kernel mode to user mode and then faults,
whereas Intel’s version faults in kernel mode. The latter will result in a kernel-mode
fault with the stack pointer controlled by the supposedly unprivileged process. The
processor pushes data onto the stack when handling the fault, overwriting kernel
memory at a user-controlled address and allowing code execution to be hijacked.
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While Intel’s sysret behavior is clearly undesirable, whether or not working as spec-
ified, it is also workable: the software can check the new instruction pointer and
emulate AMD’s behavior if necessary while still enjoying the performance benefits of
a dedicated system-call return instruction in the common cases. The real tragedy is
that this problem remained unknown to most operation-system maintainers for al-
most a decade, leaving Windows, Xen, FreeBSD, and NetBSD vulnerable to straight-
forward privilege-escalation attacks. Specifying something, even with unambiguous
authority, is not enough to achieve reliable system integration, and having an appeal-
ing but subtly different specification already established unsurprisingly leads to the
caveats being missed.

Stack Allocation and Processor Interrupts Another consequence of x86 kernel-
mode interrupt handling is that data stored at stack addresses where the next few push
operations would place it can be overwritten at any time if the stack pointer is not
adjusted correspondingly. (Even if the interrupt handler returns to the interrupted
code right away, the processor pushing interrupt information to the stack has already
overwritten the data.) This is different from interrupt handling during user-mode
execution which instead pushes exception state to a separate stack whose address is
stored in task state segment, and the System V x86-64 ABI specification mandates
that operating systems shall not modify the next 128 bytes to which stack could grow
either.

A foreseeable consequence of this difference is that assembly code written for Linux
userspace may misbehave arbitrarily when executed in the kernel (perhaps in an effort
to benchmark it without context-switching noise). Less obviously, compiling source-
code programs for x86-64 with the Linux calling convention does not mean that the
compiled code is usable in the kernel. Compilers (e.g., GCC) can and do store leaf-
function temporaries in the “red zone” past the stack pointer unless -mno-red-zone
is specified, leading to hard-to-debug data corruption and crashes when the flag is
omitted [Dzy14].

This caveat is particularly easy to miss because it violates an appealing but incorrect
perspective that the application binary interface is a specification of how a compo-
nent can interface with other code and does not influence its implementation inter-
nals. This perspective is otherwise workable. For example, the potential considera-
tions listed on the Wikipedia page on ABIs2 can each be categorized as being about
instruction-set capabilities or data-layout conventions. While “stack organization”
does appear, nothing calls out that it can be a relevant inside module boundaries.

The case of memcpy(NULL, NULL, 0) Taking interface specifications seriously, us-
age that does not follow the requirements of the specification would be considered

2https://en.wikipedia.org/wiki/Application_binary_interface

19

https://en.wikipedia.org/wiki/Application_binary_interface


buggy regardless of whether the implementation of the component on the other side
of the specification actually relies on the specific rule. This seemingly conservative
stance can have drastic consequences when programming tools understand and rely
on it. Common implementations of memcpy have no trouble copying zero bytes from
any address to any address, but the C standard decrees that calling any function
defined in it with a NULL pointer triggers undefined behavior. Relying on this rule,
compilation with GCC removes branches checking for NULL value of pointers passed
to memcpy – if the pointer could be NULL, the program would be undefined anyway.

There are no known benefits to this optimization in particular, and it is not clear
whether memcpy specifically was considered when adding it. The risks are substantial:
removing NULL-pointer checks for much less contrived reasons has resulted in serious
security vulnerabilities [Cor09]. And even if the optimization had benefits, it is not
obvious that it is desirable overall as it “adds a very subtle, exceptional case to several
very common functions, burdening programmers” [Lan16]. Taking a step back, the
quandary here is not just about the specific precondition but also about whether the
call to memcpy has obligations to the compiler in addition to the callee. In principle,
either answer is workable (by creating a friendlier memcpy with a different name3),
but a broader conclusion appears more salient: Specification-aware tooling raises the
stakes for getting specifications right.

Conclusion The challenges discussed in this section persist in spite of earnest ef-
forts of engineers and designers. The complexity of computer-systems interfaces com-
bined with the possibility that a component may critically rely on a seemingly minute
specification detail can make implementation work tricky and unforgiving. Careful
documentation and review of the precise requirements can go a long way, but this
approach does not have an answer for how to get from from checking every known
concern to having confidence that no caveats have been missed. Proof or verification
of a component against a specification of that component’s interfaces is not enough to
catch these issues either, and dismissing this possibility as a specification bug misses
the point: For delicate internal interfaces, the only relevant notion of specification
correctness is that it should appropriately delineate the responsibilities of the relevant
components.

Setting out to prove integrated correctness turns this consideration around. Proofs of
tricky interactions are expected to be challenging, but once a theorem stated without
referencing an internal specification is proven, uncertainty about expectations relat-
ing to that interface no longer threatens the overall result. Cases where adjacent
components are relying on independently reasonable but subtly different assumptions
about the interface between them will show up during attempted proof, and any con-
sistent resolution should unblock the overall proof. Further, potential changes to an
interface can be validated by reestablishing the same system-level result.

3https://boringssl.googlesource.com/boringssl/+/17cf2cb1%5E!/
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1.4 Modularity and Proof Assistants
If interface specifications are so delicate and challenging, it makes sense to consider
whether treating them as a cornerstone of the system is worth the trouble. Creating an
implementation of common functionality (say, memcpy) that works for the cases where
it is actually used may be reasonably considered easier than precisely describing when
its use is valid. Further, not having a specification would avoid the temptation to
transform code under the assumption that it conforms to that specification, avoiding
the chance of introducing bugs due to differing expectations for that specification.
Thus, it makes sense to consider avenues for all components of a system together
could be verified against a top-level specification.

1.4.1 Automated Verification Using SMT Solvers?
In the last decade, there has been considerable progress in software verification
methodologies that do not rely (or barely rely) on interface specifications. A common-
ality between the methods suitable for integrated verification of nontrivial implemen-
tations is the use of carefully-tuned symbolic execution for a common-denominator
language (e.g., assembly) and SMT solvers. Possible control-flow paths from speci-
fied entry points are explored until program termination is reached, or until the SMT
solver detects a conflict between the branch conditions required for the path to be
taken. If all path are explored until the path condition is unsatisfiable, the overall
specification can be checked on each completed execution to conclude correct behavior
in all scenarios.

In addition to being able to think less about specifications, these approaches are
appealing due to the high level of automation offered. Code changes that stay within
the supported functionality of the symbolic execution engine can be tested out with
no additional proof effort, and simple mistakes can often be caught quickly as the
solver finds a case where the negation of the desired property is satisfiable. Efforts
in this style include the Hyperkernel project [Nel+17], the Nickel information-flow-
checking tool [Sig+18], Serval [Nel+19], and Vigor [Zao+19], which is specifically
aimed at network-facing functionality like the main case studies in this thesis. Tools
operating on assembly (or LLVIM IR or machine code) can potentially be used on
code compiled from different languages in one verification unit, verifying absence of
integration issues in the combined artifact.

Designing the tools around a specific automated verification procedure is also respon-
sible for a number of limitations of these methodologies. The most pressing is that
it can be challenging to tell why verification does not succeed in a reasonable time,
to the point that a trial-and-error approach of creatively interpolating between the
desired verification task and known feasible tasks is often recommended. This dif-
ficulty constrains the designs that can be verified automatically. For example, the
Hyperkernel [Nel+17] authors write:
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In particular, we make adjustments to keep the kernel interface finite,
by ensuring that the semantics of every trap handler is expressible as a set
of traces of bounded length. To make verification scalable, these bounds
should be small constants that are independent of system parameters
(e.g., the maximum number of file descriptors or pages).

Humans reviewing operating-systems code are not thwarted by the possible number
of file descriptors or pages because the reasoning about these resources is encapsu-
lated in a modularly specified interface: the same rules apply to every file descriptor,
regardless of its number, so their implementation can be checked only once. Being
oblivious to interfaces, the fully automated tools are unable to benefit from them to
keep verification effort (asymptotically) under control.

The only projects I know to have applied highly automated SMT-based verifica-
tion to the integration of hardware and software are Notary [Ath+19] and later
Knox [AKZ22]. In Notary, the verification goal was to show that the reset routine
for returning a multi-app secure transaction approval to a clean state properly scrubs
all information. The Knox framework was used to verify simple HSMs such as a PIN
checker and a TOTP token against deterministic specifications under arbitrary input
and the possibility of power interruption, showing functional correctness and absence
of information leaks. Both projects use an extremely minimal RISC-V processor, Pi-
coRV32 [Wol15], which frequently takes several cycles to execute an instruction. The
Knox paper describes several optimizations that were required to get verification of
the case studies to succeed, including deviating slightly from the fully automated ver-
ification paradigm by requiring proof hints to guide proof search. Lack of abstraction
is again pointed out as reason for duplication of verification effort: “The relatively
low performance of verifying PIN-protected backup is due to performing case analysis
on the slot number, which causes many paths to be explored independently”.

Verifying components whose implementations and specifications have high-level algo-
rithmic differences seems to be out of reach for a purely automatic approach. Even
projects that take pride in a high level of automation choose to rely on guided proofs
against handwritten specifications to verify algorithmically challenging components.
For example, Vigor [Zao+19] uses Hoare-logic-style proofs of important library rou-
tines to summarize them soundly in symbolic execution. However, using separate
tooling to verify different components raises the question of how to ensure that the
tools understand the interface between these components in a sound and consistent
manner. The challenges for accurate specification discussed in Section 1.3 in the
context of component implementation are equally applicable to verifications tools
designed specifically for these components. To reap the benefits of integration verifi-
cation, drawing an interface boundary through a system needs to be treated with the
same rigor as an intermediate assertion during program verification: as a part of the
proof, not the theorem.
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1.4.2 Specifications Enable Proof Reuse

Even if highly automated verification methods were able to check sizable systems
against fine-grained specifications that differ substantially from the implementation,
the need to check every combination of components as a whole can be considered a
significant limitation on its own.

Being able to develop and prove a module by itself is a significant flexibility benefit. A
large fraction of the development effort of a computer system can be clearly attributed
to a specific component and can be pursued effectively without revisiting other com-
ponents or before finishing them in the first place. Further, changing out components
at formalized boundaries is simplified: a comprehensively verified software package
can be ported (with proof!) to a new processor proven to implement the same instruc-
tion set, and a software library can be updated without concern for which processor it
was verified against. Troubleshooting is also simplified: a failed verification attempt
focused on a single component cannot be due to a bug (or verification-evading correct
code) in another component. The computational resources required for verification
can be tracked and budgeted by component, without a concern that independently
supportable changes in two components drastically increase the computation required
for overall verification when combined.

This workflow difference is especially drastic from the perspective of developers of
popular components with rich and flexible interfaces, for example programming lan-
guages, operating systems, and processors. Verifying each incremental modification
to the system against every program that uses it is clearly infeasible for the same
reasons current projects do not consider similarly wide testing a worthwhile goal.
A diverse test suite can go a long way towards catching serious issues, but even
thoroughly tested programming-language implementations such as SQLite are still
regularly found to have bugs through other means. Issues that do escape pre-release
testing but are caught independently by full-system verification by a downstream
user are likely to be very difficult to diagnose for the user who is not an expert
in programming-language implementation. Further, when a user of the compiler
inevitably returns to the compiler maintainers with a complaint, the (failing) whole-
system verification does nothing to confirm that the bug in fact lies in the compiler
as opposed to the use case. All in all, while fully automatic automatic verification
could give confidence in the correctness of a finished system, it does not help to build
components for use in correct systems.

From the perspective of looking at a finished artifact, a proof relating a human-
readable specification to each module can always be studied as the sum of its parts.
Knowing the expectations that the rest of the system has for a component can be
used to interpret its design choices: For example, a RISC-V processor that does not
implement an instruction-fence operation can either always provide a coherent view of
the memory between instruction and data accesses, not support self-modifying code,
or require a nonstandard synchronization mechanism. Looking at the memory-related
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precondition for fetching an instruction should make this difference clear, even if the
implementation details are scattered throughout the subcomponents.

Finally, using an earnest model of an established interface in a modular integration
proof can yield confidence in the formalization of that specification itself. Orthogo-
nally from whether the specification matches existing informal descriptions and cor-
rectly handles specific test scenarios, it is valuable to know that the specification as
written is sufficient to support satisfying proofs for both an implementation and a
user of it.

1.4.3 Integration Verification in a Proof Assistant
Somewhat counterintuitively, general-purpose proof-assistant software that interprets
definitions and theorem statements and checks proofs against them stands out as
uniquely appropriate for proving deep properties about algorithmically nontrivial
computer systems and components. The pattern behind this fit is that the same
facilities used to support intricate mathematical constructions internally to prov-
ing simple-to-state theorems lend decently well to specifying intricate interfaces in
a computer system. General lemmas about these interfaces can connect different
perspectives on the same functionality, and software-specific proof techniques can be
formalized similarly to mathematical-reasoning algorithms like polynomial manipu-
lation.

I would like to stress that the utility of a foundational proof assistant for integration
verification extends beyond defining a minimal interface for proofs against which
verification attempts by domain-specific solvers can be checked. It is the very ability
to model (and effectively reason about) programming languages and instruction sets
internally to the system that sets proof assistants apart from domain-specific tools and
allows them to be used to check that the modeled interfaces are well-defined and used
consistently. Further, the understanding of definitions and their relationships already
required for proof checking enables rigorous specification-auditing functionality such
as finding all definitions that the statement of a theorem depends on.

The separation between proof finding and proof checking is also important for the
way proof assistants are used in software verification: it enables creation and incre-
mental improvement of domain-specific proof procedures, more or less similar to those
available as standalone tools, without risking unsoundness. Extending functionality
of proof procedures is common and encouraged when working with a proof assistant,
while using nonfoundational tools it is a mark of merit to say that a program was ver-
ified using a standard tool that can also be audited by others. While proof assistants
themselves are not immune to bugs either, the core features that are used throughout
a wide variety of proving are substantially more stable than the domain-specific proof
tooling they support.
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A key benefit of having a common environment in which different proof procedures
can hand verification tasks over to each other is that adjacent steps in the same proof
can be dispatched using independently developed provers. The set of conventions
covering givens (variables and assumptions), goals, and existential variables to be
solved for during the proof is known as the interface of the proof engine, and (most)
proof procedures are implemented in terms of incrementally checkable steps such as
introducing a universal quantifier from the goal to the context or replacing a variable
with its definition. If a proof procedure fails during an automated proof, the same
goal can be retried using a different strategy or left over for manual inspection and
proving later. As each step of the same automated proof strategy can be performed
manually, it is straightforward (although sometimes tedious) to identify the step that
did not work as planned and to update the automated prover or to finish the proof
by hand.

This incremental interface responsible for the success of interactive theorem-proving
comes with substantial costs. First and foremost, proof assistants are built for inter-
esting proofs about elegant objects, be they about pure mathematics or programming-
language theory. This means that performance throughout numerous “easy” proof
steps on a large but monotonous program has not been a development priority, and it
is not uncommon to run into cases where a seemingly simple proof takes minutes or
even hours. Second, taking definitions, quantifiers, and scope seriously presents some
genuine algorithmic challenges, situations where naive approaches to incremental ver-
ification do not achieve asymptotically desirable performance. However, unlike SMT
solvers tackling undecidable or NP-complete problems, the performance challenges
are amenable to classical algorithmic approaches. Much more detail on performance
engineering in a proof assistant, including specifically for Fiat Cryptography, can be
found in the dissertation of Jason Gross [Gro21].

Why Coq? As of the start of my work on integration verification, Coq was the
only proof assistant with substantial precedent for verification of software written in
other languages using sophisticated proof automation. Further, Coq uniquely pro-
vides (trusted) high-performance evaluation mechanisms for executing compilers and
decision procedures inside the logic, which both Fiat Cryptography and Bedrock2 rely
on. The same basic criteria hold true today with some qualifications, and a much
larger ecosystem of engineering-oriented verification projects has taken off [App22],
bringing with them general proof-assistant improvements to meet their needs. I did
consider Lean2 and Lean3 and found a number of the design choices based on hind-
sight from Coq to be genuine improvements, but the focus on mathematics and lack
of a fast evaluation mechanism dissuaded me from pursuing a project with them. I
later heard that HOL Light is also a worthy candidate, but I never seriously evaluated
it.
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1.4.4 Possibilities for Mixing Tools
Dedicated stand-alone verification tools for specific domains such as C-like programs
are currently associated with better proof-performance scaling expectations than sim-
ilar foundational tools built on top of a general-purpose proof assistant. This perspec-
tive is consistent with the prevalence of surprising proof-performance challenges in
the Coq projects I have followed, including every major component discussed in this
thesis. For example, the verification-effort bottleneck that limited the scope of the
final integration-verification case study in this thesis is closely related to Bedrock2’s
arithmetic-proof-performance issues: a faster proof procedure for array bounds checks
seems necessary for guess-and-check automation of memory-hypothesis selection (see
Section 3.4 and Section 3.5) To contrast, the VCC memory-model paper [Coh+09] de-
scribes verification of a 10000-line test suite and a 500-line library about doubly linked
lists where no function took more than 20s to verify on a computer available in 2009.
This example does not seem out if line: I am not aware of any proof-assistant-based
verification tool that outperforms a similar stand-alone tool from a decade earlier. (I
am also not aware of any principled explanation for why there would necessarily be a
difference of performance between foundational and nonfoundational tools or of any
systematic evaluation of the magnitude of this difference, but the perception stands.)

Thus, realizing an integration-verification methodology using appropriate stand-alone
tools appears very attractive from the standpoint of proof-time performance using
current tools. Achieving this goal without compromising confidence in the soundness
of the approach seems challenging, but there are a number of possible tradeoffs that
may be suitable depending on nontechnical circumstances. The primary reason to use
a general-purpose proof assistant for integration verification is to ensure that specifi-
cations of interfaces are defined in a noncontradictory manner and used consistently
from both sides. For evaluating alternative strategies, it is important to consider
what they rely on to ensure the same guarantee.

Stand-Alone Verification-Condition Checking For example, one could con-
sider writing a programming-language specification and a certified compiler in a proof
assistant but implementing a dedicated verifier for programs written in this language.
In this general scenario, a relatively rigorous approach would be to structure the ver-
ifier as a verification-condition generator that returns assertions in a relatively simple
and established language such as SMT-LIB along with an assertion checker for this
language. This way, the verification-condition generator can be proven sound against
the semantics of the programming language and the assertion language. (However,
it is reasonable to be concerned that this proof itself may run into proof-assistant
performance challenges.) The Leapfrog project [Doe+22] is one example of a Coq
project relying on an SMT-LIB prover. Use of an unverified prover could be con-
sidered analogous to Coq projects’ ubiquitous use of the fast evaluation mechanisms
based on compilation to bytecode or native code: both rely on an unverified procedure
to ascertain a fact stated within the logic of the proof assistant.
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Although the low-level implementations may be prone to bugs that do not plague a
general-purpose proof-checker, one can argue that “reasonable” assertions generated
from programs whose verification is desired would be unlikely to generate inputs that
accidentally trigger these bugs. Note that even taking this distinction of “reasonable”
inputs for granted, either strategy that relies on a proof tool with a history of sound-
ness bugs crucially depends on a high level of trust towards the source of these inputs:
an input that triggers a very unlikely bug could be engineered maliciously. Given this
concern, a security-conscious project such as a popular cryptography library consid-
ering contributions from strangers would still benefit from increased confidence in the
proof-checking process. One way to achieve this would be to have the SMT-LIB prover
generate proof certificates that can be checked by the proof assistant, but current
work in that direction does not appear ready for program-verification use4 [Doe+22,
§6.3]. The desire for this kind of checking highlights the assurance advantage of Coq’s
virtual-machine evaluator even if its implementation is not considered rock-solid: the
fast evaluator is primarily used to run proof-certificate checkers that ship with Coq
itself, and the same proofs can be checked with a simpler evaluator.

Separate Verification Across a Rich Interface The performance of SMT-based
tools depends heavily on SMT-solver-friendly encoding of verification conditions, and
the backends of tools such as VCC rely on an assortment of optimizations to achieve
satisfying performance. Based on this, it is far from clear how easy it would be to port
an efficient verification-condition generator to a proof assistant and to prove it correct.
It seems reasonable to speculate that doing so would likely be easier than designing a
general-purpose proof engine that can allow for incremental processing of individual
proof steps inside a proof assistant, but I don’t know how this prediction could be
justified. Skipping the detour of proving the verification-condition-generator that just
hands these verification conditions over to an unverified prover would allow the effort
to be saved altogether. However, interfacing between the proof-assistant-checked
development and the program-verification tool at the semantics of the programming
language is more challenging to audit because this interface is much richer and more
delicate than a pure expression language such as SMT-LIB.

For example, the VCC memory model [Coh+09] is described as follows:

The main difference is the goal: we aim at a sound verifier for complex
functional properties with whatever annotations are necessary [...] allow
for arbitrary changes of type assignment at runtime, which is needed
to prove correctness of components like memory allocator but also for
something as simple as implementation of byte-copy of a struct.

This description seems to match Bedrock2’s perspective but differs from a number of
4https://github.com/smtcoq/smtcoq/issues/72
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formalizations and implementations of C discussed in Section 2.4. Compiling VCC-
verified code with a certified compiler proven against a semantics that considers types
of declared variables to be fixed and (as an “optimization”) deletes code that accesses
the same location using a different type would likely break the soundness guarantees
expected from VCC.

Avoiding this kind of interface-mismatch bugs is the central goal of integration veri-
fication, and leaving an interface as complicated as a stateful low-level programming
language at an unverified boundary between verification tools appears to substantially
increase the risk of missing an issue. From the perspective of trust required in the
development processes, the requirement in this case is much stronger than a lack of
malice. Program-verification tools and optimizing compilers have drastically different
engineering considerations and are evaluated against very different metrics: naively,
perhaps annotation overhead and verification-time performance for the former and
compile-time performance and run-time performance for the latter. Reaching, con-
firming, and maintaining precise agreement about the same interface throughout a
healthy level of developer and management turnover requires reliably rejecting tempt-
ing optimizations that would deviate from the agreement even if issues from these
deviations would not be immediately apparent. The very addition of type-based
memory-access restrictions to C itself (see Subsection 2.4.4) is a great example of
how challenging this technically trivial task can be in practice.

The work covered in this thesis establishes a new high-water mark for the complex-
ity and realism of interfaces and components whose integrated correctness is proven
within one proof assistant, without any formality gaps. Pushing this limit further
(for example, to cover concurrency, latency, or side channels) seems valuable re-
gardless of proof automation, but substantial improvements in the performance of
proof tools may be required even just to support the examples that exercise these
extensions, let alone industrial adoption. Simultaneously, a lot can be learned from
development, optimization, and application of stand-alone verificaton tools and their
use in soundness-conscious but potentially less technically integrated verification of
multicomponent systems. However, it would be shortsighted to disregard either the
integration of component-specific verification strategies or their performance as an
engineering detail or to leave these considerations as exercises to the reader. In as
much these two concerns correspond to what a verification tool guarantees and at
what cost, one must always be evaluated in the context of the other.

1.4.5 Past Integration-Verification Projects
Three prior projects demonstrate integration verification across the software-hardware
boundary. They all do so by connecting all components within one proof assistant,
thus reducing the trusted audit-worthy code base to just their top-most and bottom-
most specifications and the proof assistant.
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In the late 1980s, the CLI stack [Bev+89] connected a Pascal-like language to a 32-
bit microprocessor design described in minimalistic register-transfer language. The
purpose-built languages were modeled using interpreters and omitted input or output
facilities. The processor implementation is described as a loop that executes one
instruction per iteration and includes, for example, waiting for responses to memory
requests [Hun89]. The verified software for this stack included arithmetic on large
integers and a solver for the mathematical game Nim, and a successor of the processor
was fabricated using gate-array technology.

The Verisoft project [Alk+08], begun in the early 2000s, connects a correctness frame-
work for programs written in a language they call C0 to a compiler targeting their
purpose-built VAMP processor architecture. To our knowledge, no complete physical
demonstration system including input and output was ever built with this stack, and
we also are not aware of any full-system proof against a concise application specifica-
tion in terms of input and output. The closest we are aware of related a correctness
proof of a small automotive-control C0 application to the correctness proof of an oper-
ating system [DSS10], plugging into a proved stack including compiler and processor,
but there is no discussion of a short full-system theorem, even though each interface
individually seems to have been crossed for non-I/O code [Tve09].

In work begun roughly 15 years after the Verisoft project started, the CakeML op-
timizing compiler [Kum+14] was extended with a backend to a new, purpose-built
instruction set called Silver [Löö+19]. This time the software stack did support input
and output, but the complete stack still did not. Instead, external calls for file-system
access and standard input/output were compiled into reads and writes of a memory
buffer. The stack was run on an FPGA, with a commodity microprocessor connected
to the same memory to initialize input and collect output (in contrast to our ex-
periments using a freestanding system). With this setup, several nontrivial programs
were executed: word count, sorting, and even compiling a “hello word” program using
a cross-compiled copy of CakeML itself.

All three systems mark significant milestones in systems verification, but they rely on
simplifications that clearly distinguish them from any deployed system. In an effort to
bring gap-free correctness assurance to practice, I sought to build and verify plausibly
deployable and useful systems and followed an established architectural choices at a
high level. Additional functionality in my work includes interactive input and output,
driving an off-the-shelf network controller, and cryptographic authentication. Behind
the scenes, I am pleased to report that the components integrated are independently
valuable in their own right, making for a showcase of modularity in action.
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Chapter 2

The Bedrock2 Programming
Language

A central interface in the integrated-verification ecosystem and the demonstrations
is the Bedrock2 programming language. This chapter will give an informal overview
of the language and associated engineering considerations. Support for Coq proofs
about Bedrock2 programs is discussed in Chapter 3. The two are far from orthogonal:
The design choices deliberated in this chapter, in particular the focus on simplicity
and nonredundancy of the language’s demands from the programmer, will become
the foundation for a tolerable program-proof experience. Nevertheless, I will refrain
from referring to particular proof methods in this chapter and argue for minimizing
obligations placed on the programmer as an appealing goal in its own right.

Bedrock2 is modeled after C as understood by Linux and OpenBSD developers, and
it draws from the integration-verification experience with original Bedrock [Chl11;
Chl13; Chl15], Cito [WCC14], and Facade [Wan16; Pit+20]. Like Bedrock, Bedrock2
is intended to be used inside Coq, primarily for implementation of programs that will
be verified and with program-proof flexibility as a central design priority. Unlike its
in-Coq predecessors, Bedrock2 does not leave the world of unverified programming
behind altogether. I made an effort to have Bedrock2 provide acceptable usability
for unverified “portable-assembly-language” programming and, centrally, for creation
of verified programs that call and are called by unverified programs. Fine-grained
interoperability allows verified Bedrock2 programs to be included in existing C code
bases, and being able to reuse existing low-level-programming interfaces whenever
they make sense has allowed for componentwise prototyping of software eventually
implemented wholly in Bedrock2.

The drives of integrated verification and simplifying systems programming appear
more aligned than not in a number of concrete questions discussed in this chapter.
However, the design of a programming language has to balance the needs and prefer-
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ences for programming with the needs and preferences for compiler implementation.
In particular, writing programs that manipulate memory at computed addresses is
essential for efficient memory management, but a compiler cannot support arbitrary
memory modifications that would overwrite data structures such as the control stack
that are used to implement the language itself.

Precisely and satisfactorily specifying the conditions for accessing memory from a
source-language program is challenging: in spite of the popularity of C programs and
implementations of C, there is no consensus about the appropriate rules for memory
access in a C program. Existing formal and informal specifications of C are written
primarily based on the requirements of either the implementation or programming,
with varying degrees of acknowledgement of the specified rules’ impact on the other.
To support modular but soundly integratable proofs for source programs and the
compiler, Bedrock2 has to specify memory-access rules and other corner cases in
a manner compatible with all code on both sides of the language interface. Thus
this chapter will discuss fundamental design decisions such as what kind of state the
execution of a program depends on and against which both the programs and the
compiler are proven.

Consider the C function memmove(void *dest, const void *src, size_t n): it
copies n bytes from address src to dest and works even if the source range and
destination range overlap. This function is a part of the C standard library for hosted
implementations, and C compilers for freestanding implementations often require an
implementation to be provided by the user. The implementation, usage, proof, and
compilation of the corresponding Bedrock2 function rely on a number of aspects that
are not commonly granted by compiler-derived C specifications.

• First, memmove compares dest and src to determine whether the input range
potentially starts or ends within the output range. Evaluating this comparison
without requiring that dest and src point to memory returned by the same
allocation requires comparisons of all pointers to be allowed by the language.

• Then Bedrock2 memmove proceeds to copy the input to the output one byte at
a time in an order that ensures that each address is read before it is written.
This strategy relies on consistency between previous pointer comparison and
subsequent loads and stores.

• The proof of memmove has to relate each byte written to dest to the correspond-
ing byte read from src even if src points to a pointer. Any predicate that held
about the input should hold about the output, so the language cannot make
memory state depend on the type of the operation used to write that memory.

• Usage of memmove frequently features scenarios where the written memory is
later read in units larger than a byte, for example initializing a dynamically
allocated integer array from a network packet. For this to work, the language
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implementation must not restrict access to the written memory to bytewise
operations on the basis that its contents were copied from a byte array.

The description of Bedrock2 presented in this chapter represents one possible answer
to these considerations. In short, the design is based on concrete and minimal state
of the kind one might inspect using a debugger, but the evolution of this state during
basic operations such as memory allocation is substantially underspecified to retain
flexibility of compilation. The resulting model meets the needs of programs and
compiler optimizations implemented for the Bedrock2 case studies described in this
thesis but does not support all optimizations implemented by popular C compilers.
Thus, the desire for fine-grained interoperability between Bedrock2 and C code is
further in tension with the desire to use Bedrock2 for low-level programming including
the implementation of its own basic library functions. Treating Bedrock2 as a subset
of C would risk miscompilation of these functions, and restricting interoperable usage
based on a best-effort model of the requirements of other compilers does not appear
practical. Instead, I present a translation from Bedrock2 code to C that only relies
on relatively uncontroversial aspects of the C language.

2.1 Syntax
At a glance, most Bedrock2 programs are completely unremarkable and ascetic. For
example, a binary multiplication implementation appears below. (The return variable
is named next to the arguments and implicitly returned at the end of the function.)

Definition rpmul := func! (x, e) ~> ret {
ret = $0;
while e {
if (e & $1) { ret = ret + x };
e = e >> $1;
x = x + x

}
}.

The concrete syntax above is verbatim from a Coq file, where it is handled by the
relatively recent Coq feature for notations with independent grammars in custom en-
tries. As an early adopter of this mechanism, I worked with Hugo Herbelin to identify,
understand, and resolve limitations in its earlier versions. The corresponding abstract
syntax treats variable names as strings; identifiers inside Bedrock2 programs are con-
verted at elaboration time using Ltac2. Being able to define custom parsing and
elaboration rules directly inside Coq obviates the need for a dedicated preprocessor
or macro system and allows different Coq files to use different concrete notations for
writing down Bedrock2 abstract syntax trees. The notation shown here is commonly
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used, but the codebase includes some cases of nontrivial desugaring and expansive
macros – $ can be followed by an arbitrary Coq expression, not just a number.

In common usage, each Bedrock2 program is immediately accompanied by a human-
readable and machine-readable specification of supported usage. For example, rpmul
does not interact (t) with the external world, leaves memory (m) unchanged, and
returns the product of its arguments.

Instance spec_of_rpmul : spec_of "rpmul" :=
fnspec! "rpmul" x e ~> v,
{ requires t m :=

True;
ensures T M :=
T=t ∧ M=m ∧ unsigned v = unsigned x * unsigned e mod 2^32 }.

The formalization of the meaning of these specifications is presented in Section 3.2;
for now, it is just an example of expectations one might have of the executions of
a Bedrock2 program. (This particular program was used in an exception handler
to emulate the multiplication instruction on a plain RV32I processor, and the sys-
tem was proven to correctly implement the specification of the encriched instruction
set [Bou+21].)

Abstract Syntax The abstract syntax of Bedrock2 is minimal, stable, and strictly
structured to simplify proofs of high-assurance implementations and reduce the risk
of bugs when pretty-printing Bedrock2 as C. Most abstract-syntax constructs have
direct analogues in C, but there are a number of deviations that warrant commentary.

Inductive bopname := add | sub | mul | mulhuu | divu | remu
| and | or | xor | sru | slu | srs | lts | ltu | eq.

Variant access_size := one | two | four | word.

Inductive expr :=
| literal (v : Z)
| var (x : string)
| load (s : access_size) (addr : expr)
| op (op : bopname) (e1 e2 : expr)
| inlinetable (s : access_size) (table : list byte) (index : expr)
| ite (c e1 e2 : expr). (* if-then-else expression ("ternary if") *)

Inductive cmd :=
| skip
| set (lhs : string) (rhs : expr)
| store (sz : access_size) (address : expr) (value : expr)

34



| cond (condition : expr) (nonzero_branch zero_branch : cmd)
| seq (s1 s2 : cmd)
| while (test : expr) (body : cmd)
| stackalloc (lhs : string) (nbytes : Z) (body : cmd)
| call (binds : list string) (function : string) (args: list expr)
| interact (binds : list string) (action : string) (args: list expr)
| unset (lhs : string).

Definition func : Type := list string * list string * cmd.

Bedrock2 has expressions and commands. Expressions are not allowed to change
the state of the program, so assignments to variables (set), stores to memory, and
function calls are commands, not expressions. Read-only memory is accessed using
a special load command (inlinetable). There is no way to retrieve the address of
the table itself.

Allocating memory on the stack follows a lexical stack discipline: stackalloc 32 as
k in c makes 32 bytes available with k set to their address, but only for the duration
of execution of command c; we actually write ; instead of in.

Function calls can return zero or more machine words, for example q, r := f(a, b).
From the perspective of the callee, arguments and return values are handled symmet-
rically: a function declaration includes named lists of each. Primitive I/O is described
as syntactically distinguished function calls (interact); access to memory-mapped
I/O regions is one example of an interact action. There is currently no support for
recursion or function pointers, but the reasons for these omissions no longer appear
compelling to me.

For low-level convenience in proofs, lists of commands are represented using repeated
sequencing statements, skip does nothing, and unset makes a variable uninitialized.

2.2 Intended Semantics

2.2.1 Guiding Principles
The semantics presented in this section, and Bedrock2 design choices more generally,
are aimed to concretize and delineate existing practices in correctness-oriented low-
level programming. Simplicity of use, implementation, and proof is prioritized over
that of refactoring, optimization, or debugging.

Performance is a goal but perhaps not quite in the same sense as C, C++ and Rust
compiler maintainers see it. Current deprioritization of optimization implementation
notwithstanding, the intent is that it should be possible to produce acceptably fast
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code for almost all system-level requirements using readable Bedrock2 code and a
compiler that implements predictable and tasteful optimizations. Having a compiler
optimize naive or inefficient Bedrock2 code for maximum execution performance is
explicitly not a goal, and no semantics concessions are made to help with it. Con-
versely, it is the compiler’s job to perform optimizations not reasonably available at
the source level, such as register allocation and spill placement, and the semantics
must accommodate this.

Care is taken to ensure modularity beyond the integration case studies Bedrock2 was
built for and to support embedding Bedrock2 code in other contexts than a bare-
metal microcontroller environment. In particular, the I/O mechanism is specified in
a parametrized fashion to allow instantiation with not just MMIO, but also DMA,
dedicated I/O instructions, system calls, HTTP requests, or any first-order code
implemented in another programming language.

2.2.2 Flat Model of Simple Memory
Load expressions and store statements in Bedrock2 act on Bedrock2 memory, a map
from word addresses to bytes that is the main state variable in Bedrock2 semantics.
Importantly, parts of the address space that may not behave like memory from the
perspective of a Bedrock2 program are excluded from this map. While Bedrock2
programs can appropriately manipulate the control stack, locations for spilled local
variables, memory-mapped input-output registers, and concurrently accessed (DMA)
regions, doing so using normal loads and stores is prohibited. The importance of this
distinction to sound compilation is discussed in the next subsection. For now, observe
that it makes the semantics of memory access very simple: every load must return
the last byte stored to the same address.

More central to a programmer (and program prover) is what the semantics does not
distinguish: the memory does not contain objects, types, or compound values, just
bytes. Every address in the memory can be accessed in any manner provided in the
syntax, regardless of how it was last accessed or what other program state points to
the same address (no “strict aliasing” restriction) or the inputs from which the address
was computed (no “pointer provenance” tracking). Opting for simple memory-access
semantics gives up popular shortcuts in compiler optimizations but does not pose an
obstacle for simple implementations targeting any system with a single address space.
The payoff is keeping compiler details away from memory-layout specifications and
reasoning about programs that access memory: programs are specified in terms of
which bytes they put in Bedrock2 memory, and the compiler is simply required to
produce the same bytes at specified interfaces.

C’s volatile In C, some address-space locations that do not behave like memory
are allowed to be used with the usual memory-access operations provided that the type
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of the expression is marked volatile. The C compiler is then required to replicate the
same loads and stores verbatim in the compiled program without assuming anything
about their effects. Associating the I/O modality with types instead of individual
memory access operations works as expected for modeling a fixed listing of memory-
mapped registers (or shared variables) and can be extended to register banks with
computed addresses with careful use of casts. The adoption of direct-memory-access
I/O and multicore parallelism do not fit this paradigm from C as neatly: numerous
library functions are used to operate on memory that is currently private to the pro-
gram but may at other times be shared; marking all associated variables as volatile
would effectively disable optimization altogether1. Both considerations are handled
in Bedrock2 by (different instantiations of) the external-calls mechanism, where each
call is allowed to change the footprint of Bedrock2 memory.

Static Constants Read-only static data is not considered part of the Bedrock2
memory. Instead, load expressions accessing static tables are syntactically distin-
guished from normal memory access. The rationale for this is twofold. First, it seems
desirable to avoid the need to account for read-only or read-write permissions in pre-
conditions and postconditions about Bedrock2 state. Second, this distinction leaves
open future extension of Bedrock2 to minimal embedded targets where read-only
and read-write memory are in different address spaces. While most new embedded-
systems platforms provide a single address space (at least as an option), the separation
persists in tightly integrated systems as a reflection of completely different physical
implementations and performance characteristics of the two parts, at the same time as
other reasons for presenting multiple address spaces seem to be altogether deprecated.

Currently, the C backend of Bedrock2 emits C constants for Bedrock2 constants
(leaving the placement up to the C toolchain), while the RISC-V backend places
them next to machine code, accessed using normal load instructions. Note that
an integrated proof targeting a system with read-only memory needs to model the
distinction in the machine specification to be faithful regardless of whether read-only
memory is in a separate address space from normal memory or whether the source
language relies on a syntactic or semantic separation.

2.2.3 Undefined Behavior
Bedrock2 programs must adhere to strict requirements described in the Bedrock2
specification to be compiled correctly. Violations of these rules can result in the
compiled program having behaviors that cannot be defined in terms of Bedrock2
concepts, and thus no guarantees are stated about them. In particular, it is not even
guaranteed that a Bedrock2 program’s violation of the requirements would result in
the same sort of (mis)behavior as would be expected from the (machine) language to

1https://www.kernel.org/doc/html/latest/process/volatile-considered-harmful.html
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which Bedrock2 code is compiled or the environment in which it is executed.

From the perspective of a compiler engineer, the specification assigning undefined be-
havior to some programs allows these programs to be miscompiled without warning.
The burden of avoiding undefined behavior even in the most contrived edge cases lies
heavy on the programmer. This section explains why and how the Bedrock2 specifica-
tion nevertheless includes undefined behavior, covering some standard considerations
and integration-verification-specific trade-offs.

Undefined Memory Access Consider a Bedrock2 function that stores the byte 0
to the address 0xba17c0de and returns. Without knowing what is at that address,
could we consistently define the behavior of this program? The specification of the
Bedrock2 compiler includes the invariant that target-language memory separately
contains the Bedrock2 memory, the control stack, and compiled code. While the
former is used throughout Bedrock2 semantics for serving Bedrock2 stores and loads,
the latter are only specified to produce the correct behavior when executed. The
details of the stack-frame layout and code generation are omitted from the semantics
to allow for compiler changes relating to these parts to be proven against the same
specification and used with existing Bedrock2 programs with existing proofs without
revisiting them. It is thus not feasible to specify in Bedrock2 semantics the behavior
of a program after any given modification of the control stack or compiled code, or to
specify which addresses belong there. Indeed, overwriting machine code or the return
address can arbitrarily hijack the execution, completely departing from behaviors any
Bedrock2 program could have.

Obstacles to Compromise Declaring that any store to an address outside desig-
nated Bedrock2 memory makes the entire program invalid is unforgiving, but there
doesn’t seem to be a workable alternative. Some stores to some addresses outside
Bedrock2 memory result in arbitrary misbehavior, and precisely delineating which
ones would require fully specifying the code generated by the compiler with no room
for optimizations. A run-time check for whether a store to a particular address is al-
lowed could be used to turn undefined behavior into a well-defined failure mode, but
implementing it would require elaborate bookkeeping to track Bedrock2 memory and
come with memory-usage and performance costs. A more permissive specification
would be desirable for compiling unverified code, and ideally it would constrain the
compiler from turning a lucky memory-safety violation (perhaps a write to unused
memory) into an unlucky one where the wrong code gets executed.

However, even seemingly trivial expectations such as “loading the value from an
address and then storing that value to the same address right away should be a no-op”
can in principle be violated by reasonable compiler designs: one example is a pipeline-
aware register allocator placing a spilling store between the two operations that are
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right next to each other in the source code so that the latter potentially overwrites
the value just spilled. Note that while the issue can be attributed to the compiler’s
assumption that memory accessible to source programs is disjoint from the spill area,
it does not require the compiler to be granted any assumptions about disjointness of
memory accessed in different ways by source code discussed in Subsection 2.4.3. The
same example is also an obstacle to defining behavior after disallowed memory access
even if considering a definition in terms of target-language semantics: while the daring
store itself would have a clear specification, the compiler-defined internal invariants
required to resume predictably executing compiled code may not be satisfied after
the store is executed. Requiring the compiled code to have a well-defined entry point
at every location where undefined behavior is possible (for example, in the middle of
a function or a loop) appears unworkably restrictive. Thus, out-of-bounds memory
access remains truly undefined.

I would like to reiterate that the reason for leaving some behaviors undefined in
Bedrock2 is to allow for a self-contained specification to describe the behavior of pre-
dictable implementations. This tradeoff is acceptable here because of high assurance
that the Bedrock2 programs we compile and use do not have undefined behavior: we
prove them against the Bedrock2 semantics and functional-correctness specifications
anyway. Other arguments have also been presented in defense of undefined behavior,
including enforcing portability of code and simplifying compiler analyses for opti-
mizations; these were not explicitly evaluated in the context of Bedrock2. Similarly,
arguments against undefined-behavior-driven optimization on the basis that it ampli-
fies impact of programming errors have little bearing here as the Bedrock2 compiler
does not perform these optimizations, and we primarily use it to compile verified
code.

Other Undefined Behavior in Bedrock2 With some stores already assigned
undefined behavior, I decided that ergonomics of semantics and program-proof tools
around undefined behavior are a priority. These challenges were tackled with con-
siderable success (see Chapters 3 and 4). In that context, and again relying on the
fact that finished case studies only compile code that we prove to have well-defined
behavior, easy-to-rule-out undefined behavior was chosen to trigger “proof-time er-
rors” in cases where a default behavior, unspecified behavior, run-time errors, or even
compile-time errors may have sufficed: loads outside Bedrock2 memory, reading of
uninitialized local variables, calling a function with the wrong number of arguments,
etc.

Historical note: Some of these undefined behaviors were in fact present in Samuel
Gruetter’s very first prototypes of the Bedrock2 compiler, long before the investigation
into whether Bedrock2 should have undefined behavior was raised by discussions of
I/O semantics, but the reasoning stands as presented. It was convenient that e.g.
initialization of local variables didn’t need to be revisited because we found a satisfying
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way to model undefined behavior, but that shortcut did not drive the decision-making.

All these cases share the premise that actually proving something about the behavior
of the code requires ruling out the failure case regardless of its semantics. For the
ease of programming, proof, and integration, Bedrock2 does not ascribe undefined
behavior to cases where an obviously correct behavior does exist, such as loading 2
bytes from an address to which 4 bytes were previously stored (see Section 2.4) or
performing arithmetic that reveals the reality that machine integers have finite width
(see Subsection 2.5.2).

2.3 Interactive Sequential Programming
I/O actions in Bedrock2 behave like calls to functions whose behavior is specified
axiomatically in terms of the arguments (resp. return values), trace of function calls
so far, and Bedrock2 memory before and after the interaction. Informally, the se-
mantics we want is to require programs to be proven correct for all input values and
to constrain the compiler to produce the same output as the source program, given
the input so far. The technical challenges of formalizing this notion while allowing
unspecified addresses during stack allocation and ruling out undefined behavior and
infinite loops are discussed in Chapter 4. This section will focus on programmer obli-
gations associated with external calls and their importance for modular integration
verification.

2.3.1 Preconditions (Safely Compiling MMIO Writes)
Independently of what is specified about the behavior of the source program, for some
I/O operations, correct compilation requires preconditions on the arguments. The
simplest example is validity of addresses used for memory-mapped I/O. As an MMIO
write gets compiled to a normal store instruction, it is critical to ensure that Bedrock2
memory (or the stack, etc.) will not be overwritten when that store executes. Using
an address that actually points to an MMIO register is already a sensible verification
condition for the Bedrock2 program, and it is sufficient to guarantee disjointness from
Bedrock2 memory and compiler data structures. The question is about how to make
this guarantee available to the compiler correctness proof.

The example presented in the previous paragraph has an analogue that can be pre-
sented in the framework of external calls and compositional compilation, without
discussing input or output specifically. What should the proof obligation for linking
a program against a library look like, and when should it be proven? The standard
answer is that a theorem about the behavior of a linked software package can be de-
rived from a program-logic proof about the caller under some axiomatic specification
of the callee and the proof that the callee satisfies that specification. This seemingly
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simple requirement is further complicated by potential circular dependencies, but this
possibility is not relevant to Bedrock2 I/O.

In Bedrock2, the compiler is also the linker, and it is parametrized over the com-
piler for I/O operations. Parametrizing the semantics in the same manner leads to a
workable definition: invoking an I/O operation must satisfy an abstract precondition,
otherwise undefined behavior ensues. The main compiler can be proven correct gener-
ically, without relying on the specific source-level specification. The I/O operation
compiler (which in the running example just emits a single store) gets to assume the
compiler memory-layout invariant and the concrete precondition of a specific MMIO
operation. Its proof then proceeds by arguing that an address within the specified
MMIO range cannot overlap any of the memory regions described in the compiler
invariant, so the store preserves their contents and properties. The MMIO compiler
is constrained from omitting the store by the same source-level specification requiring
the I/O trace to be appropriately extended. Sound compilation of input and output
operations is discussed in more detail in Section 4.3.

2.3.2 Relationship to Concurrency
Bedrock2 does not embrace concurrency as a first-class feature. This is not intended
to exclude implementation or verification of programs intended for a concurrent en-
vironment but rather to leave the options open for how the concurrent composition
of a Bedrock2 program and another program would be proven. More importantly,
it is a goal to enable programs that interact with unproven external systems (e.g.,
peripheral devices) to be proven against putative specifications without cooperation
from the maintainers of these systems. (As undesirable as it sounds, this scenario is
very common in systems programming.)

This perspective is different from that of popular concurrency-centered verification
frameworks, and it would be interesting to see how (or whether) it can be reconciled.
For example, could we state and prove that a Bedrock2 program correctly imple-
ments the shared-memory client-server interface used by a program verified using
Iris [Jun+18], perhaps in Refined C [Chr+21]? One appealing avenue would be to
define the correctness conditions of Bedrock2 external interactions in terms of an Iris
resource algebra element, but even stating that this is sound seems challenging.

2.3.3 Alternative Instantiations
The Bedrock2 external-interaction interface has been instantiated to model calls to
functions implemented using different calling conventions in C and RISC-V assem-
bly [Str20]. This work was done in the context of prototyping a verified first-stage
bootloader and cryptographic attestation mechanism. The same project includes a
verified driver for a concurrent DMA controller modeled using a very similar external-
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interaction primitive but implemented in RISC-V assembly to allow access to the
entire memory of the machine. Under the assumption that the concurrent DMA op-
eration finishes in some unknown but bounded number of steps, total correctness is
proven.

2.4 Other Memory Models for Sequential Code
Bedrock2 semantics reveal pointers as machine words and memory contents as bytes;
this is sometimes called a concrete memory model. Addresses and contents of allo-
cations are left unspecified (nondeterministic). This is made workable for compiler
verification due to use of omnisemantics (Chapter 4). To my knowledge, this combi-
nation is novel in the context of integrated verification and represents a trade-off in
favor of semantic simplicity over optimization simplicity while upholding modularity.
This section will briefly review relevant history and alternative designs for seman-
tics of pointers and memory from the perspective of the following question: What
information can pointers and memory cells carry in a given state? For example, is a
dangling pointer still an address, and does an uninitialized memory cell just hold an
unknown byte, or can operations on the two behave in ways that no address or byte
would?

Concrete modeling of addresses and memory has long served as the foundation of
low-level software verification, for C and assembly. Famous tools like VCC [Coh+09]
and VeriFast2 and large-scale proof projects such as seL4 [TKN07; SMK13] rely on
the assumption that pointers behave like addresses and values can be treated as
bytes. For assembly-level languages such as the original Bedrock [Chl11], x86 with
macros [JBK13], or bare machine code [Myr08], there isn’t much of a choice: the
machine has words, and the use of them as addresses is in the eye of the programmer.
Informally, treating C programs with the same concrete semantics corresponds to
the perspective of C as a portable assembly language. Programs that make use of
address arithmetic and concrete in-memory representations can be tricky to verify,
but the mere presence of this flexibility is not a detriment to effective specification
and proving.

2.4.1 Abstraction for Determinism in Compiler-Correctness
Proofs

Compiler-correctness proofs have preferred to avoid specifying pointers as machine
words. Instead, the use of models that are just abstract enough to describe the seman-
tics as deterministic appears to be the sweet spot within this domain, with addresses
and contents of allocated memory being at the core of the main challenge. The Piton

2https://github.com/verifast/verifast/blob/57fa89b1/soundness.md#c-programs
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language from the CLI verified stack only allows pointers to statically allocated scalars
and arrays. Each pointer is represented in the semantics as a pair containing the name
of the global variable and an offset within it [Moo88]. CompCert semantics apply a
similar model to heap and stack allocations as well by generating sequential identifiers
for dynamically allocated blocks on the fly. To maintain determinism, the pointers
remain abstract throughout all supported usage, even when themselves stored into
memory or cast to integers. As a consequence, address arithmetic is limited to keep
offsets independent of addresses, and externalizing (e.g., through printf) any value
derived from a dynamically allocated address is treated as triggering undefined behav-
ior, to be compiled into anything whatsoever. A similar trick is used to operationalize
interaction with freshly allocated memory in a deterministic manner: in addition to
bytes, the type of values that can be stored in memory includes a special marker for
uninitialized contents, which is propagated by loads and arithmetic operators.

Here is an example of how CompCert treats nondeterminism as undefined behavior:

#include<stdio.h>
int main() {

int x = 0;
printf("value of x: %d\n", x);
printf("addr of x: %p\n", (void*)&x);

}

./ccomp -interp printptr.c
value of x: 0
...
Stuck subexpression: printf(<ptr __stringlit_2>, <ptr x>)
ERROR: Undefined behavior

Why Determinism? Deterministic modeling greatly simplifies proofs of compiler
correctness through execution-by-execution simulation arguments: if every program
has at most one possible execution outcome, showing that every compiler-generated
program has an execution that matches that of the corresponding source program
implies that all of its executions do [Ler09; Ler06; LB08]. However, the machinery
needed to maintain the technical determinism throughout the semantics can itself
become a complication for defining a simulation relation. For example, consider a
compiler pass that eliminates a redundant stack allocation. If allocated blocks are
numbered sequentially, the optimization causes all blocks allocated in the future to
be numbered one less than they would have been. As pointers to these blocks may
themselves be stored in memory, the seemingly small optimization drastically affects
that abstract representation of all future program states. Formal reasoning about this
relationship between input-language and output-language memories and values is a
key challenge for the compiler-correctness proof. CompCert proofs use purpose-built
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mathematical objects called memory embeddings and memory injections to track
the relationship between the precompilation and postcompilation memories, and an
elaborate library of lemmas is proven about these constructions. Nevertheless, seem-
ingly straightforward removing and coalescing of allocations remains the most difficult
memory transformation in CompCert [LB08, §5].

Numerous projects have experimented with extending CompCert with more concrete
memory models and nondeterministic allocation semantics, for example to handle con-
currency [Šev+13] or integer-pointer casts [Kan+15]. These approaches give up using
determinism to simplify simulation arguments of key compiler passes and instead di-
rectly prove that for every nondeterministic execution of the compiled program there
is a matching execution of the source program. CompcertTSO authors in particular
comment that the corresponding phases that change memory access “are the heart of
our proof and the most challenging part,” even though the same paper also presents
nontrivial concurrency-specific optimizations such as fence elision.

2.4.2 Abstract Memory Models From a Source-Language Per-
spective

Later extensions of CompCert have managed to accommodate a subset of the low-
level programming patterns validated by models with concrete pointers through more
sophisticated manipulation of abstract pointers. For example, accessing pointers as
bytes and reassembling them is supported through a dedicated form of intermedi-
ate semantic “values” that stand for “𝑖th byte of this abstract pointer” [KLW14]. A
proposed extension [BBW14; Wil16; BBW15; BBW17] allows more general pointer
arithmetic to be modelled by letting partially evaluated expressions persist through-
out the semantics and deterministically normalizing them to values whenever the
expression would yield the same value in every concrete state compatible with the
abstract pointers and memory. This proposal illustrates the key distinction between
abstract and concrete semantics when it comes to determinism: even though the def-
inition of the semantics includes a concrete model of pointers and memory, the state
tracked throughout execution is a deterministic abstraction: there is no notion of a
current concrete state. Even this mixed model is, however, insufficient to model code
whose control flow is not determined by the symbolic rules: the current command (an
abstraction of the process counter) cannot be a symbolic expression. One example
of where this shows up this is a common implementation of memmove that chooses
between left-to-right and right-to-left copying based on the ordering of the argument
pointers: when called on two freshly allocated arguments, there is no deterministic
answer to which is placed at a smaller address!

Software-verification projects based on CompCert semantics have handled the chal-
lenges raised by an abstract memory model in a number of ways. The Verified Soft-
ware Toolchain embraces the abstract model and builds a separation logic for mem-
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ories organized by identifier-offset pairs [App+20, §26]. After substantial efforts to
encapsulate and automate the memory-reasoning framework, the overall proof experi-
ence is quite close to working with a concrete model, but some verification conditions
such as pointer comparison requiring the pointers share the same allocation identifier
need additional user-specified preconditions and invariants to be discharged. Accord-
ing to [Lep+22], operating-systems-focused projects such as CertiKOS and SeKVM
work around this complexity by using a single up-front array “allocation” to have
all pointers share same the same allocation identifier. Application-facing allocation
is then implemented by carving out parts of that array. While not quite equivalent
to treating pointers as plain addresses, this technique also allows arithmetic on the
pointer offsets to satisfy many use cases usually handled through address arithmetic.

2.4.3 The Rumination of C Standards
There is also an entire body of research aimed at interpreting and clarifying the
semantics described in ISO-standardized natural-language specifications of C. For-
malization of semantics has played an important and influential role in this effort,
but the priorities are distinct from projects aiming to create verified software or com-
pilers. This work seeks to explain and resolve intricacies and ambiguities relating to
existing (overwhelmingly unverified) compiler transformations and precisely delineate
a set of rules that programs must follow to avoid miscompilation. Subtle edge cases
in the C standard are numerous [KW12], but even the basic structure of state that
expressions in a C program can access has been under constant revision essentially
since Defect Report 28 in December 1992 [92], and perhaps continuously since the
very start of standardization [Rit88].

It has been clear that the committee-approved standards do not specify a concrete
model for values in memory or pointers to memory [04], but after 30 years of cu-
mulative work, a faithful and formalizable description of the state of a C program
seems just tantalizingly close. The remainder of this subsection will give a taste
of state-of-the-art semantics based on the PhD thesis of Robbert Krebbers on the
formalization of C11 [Kre15] and the recent proposal PNVI-ae-udi from [Gus+20].
The key modeling trick is that the state of a program is defined to contain both po-
tentially nondeterministically generated concrete addresses and bytes and symbolic
abstractions thereof. It is left as the programmer’s responsibility, with very limited
exceptions, ensure that each operation is valid with respect to both notions of state
and that the two views remain consistent with each other.

Strict aliasing means that memory contains the C types and nested structure of
objects in addition to the bytes that represent them. While most (initialized, non-
padding) bytes have stable values which can be read, written, and copied using the
char type, other means of reading and modifying the objects may be subject to
restrictions based on effective types recorded in the abstract state. There is no way
to query the effective type of an address, but access incompatible with it will still
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trigger undefined behavior. For example, accessing an object declared as uintptr_t
by dereferencing a pointer of type void** is undefined behavior even though both
have the same size and alignment. Modifying or even just reading an object through
a union type can change which variant of the union is considered active, forbidding
accesses through pointers to alternative variants. This last rule was formalized from
GCC documentation rather than the C11 standard, as the latter is unclear about these
conditions [Kre13, p. 3]. Formalizing how modifications of dynamically allocated
memory change the effective type of this memory is left for future work. It appears
that doing so will require first reconciling the per-access effective-type checks and
updates described in the C17 standard with the stricter resolution of Defect Report
#236 which states that an example program would “invoke undefined behavior, by
calling function f with pointers qi and qd that have different types but designate the
same region of storage” [06]. I am not aware of any case studies verifying pointer-
manipulating code against a model faithful to (a subset of) the strict aliasing rules.

Similarly, pointers have both word addresses, which are affected by pointer arithmetic,
and abstract allocation-instance identifiers (“provenance”) which just propagate, and
it is the programmer’s responsibility to make sure that every access is performed using
an address that is within the bounds of the identified object. It is also forbidden for
the address to leave the boundaries of the object even without dereferencing, except to
point to the end of the object. Casting integers to pointers is allowed after arbitrary
address arithmetic: the resulting pointer will have the provenance of some object
which contains or ends at this address and whose address was previously converted
to an integer, to be disambiguated by the next access through the freshly converted
pointer. To show that it is possible to verify integer-pointer casts found in low-
level code against this model, RefinedC-VIP [Lep+22] defines an abstraction where
integer-to-pointer casts that are not trivial inverses of previous pointer-to-integer casts
need to be annotated with other pointers whose provenenance must match the casted
addresss.

2.4.4 C Standards and Systems Programming
Separately from the intellectual inquiry into how to disambiguate and formalize the
rules underlying undefined-behavior-driven optimizations, there is the engineering
question whether rules prescribing additional undefined behavior for the purpose of
specific optimizations are acceptable, desirable, and worthwhile for practical pro-
gramming. And as one should expect in any large human system, the interactions
between the systems programmers, compiler maintainers, and standards committees
about what the standard should specify are muddied with a question of power: who
gets to make the rules? The current C standards appear to be written by compiler
maintainers and semantics researchers, and even the effort to gather input from C
programmers about the meaning of the C standard asked “Will that work in normal
C compilers?” and “Do you know of real code that relies on it?”, but not “Is it a
burden that you cannot rely on it?” or “Is it important that compilers optimize other
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code in ways that break this code?” [Mem+16].

In my experience of following and occasionally contributing to systems-programming
projects, the abstract rules specified for post-K&R C are often considered a chore
and sometimes outright problematic; little if any benefit is ever attributed to them.
Several important and well-recognized projects (e.g, Linux3, Chromium4, Firefox5,
Clang6, OpenSSH7, reportedly8 also FreeBSD and OpenBSD) rely on compiler flags
such as -fno-strict-aliasing that restore more concrete behavior. Some explicitly
prioritize clarity and maintainability of the code over conformance with abstract-
state-based undefined-behavior rules. This preference is in stark contrast to the
description of the same flag in the GCC documentation, which describes it as a
“workaround” for “faulty legacy code”9. To be clear, my understanding of the situ-
ation is that systems programmers would absolutely prefer to have their code work
based on standardized guarantees, just not at the cost abiding to the current stan-
dard. In the characteristic directness of Linus Torvalds, -fno-strict-aliasing and
code simplifications that rely on it are here stay because he “tried to get a sane way
a few years ago, and the gcc developers really didn’t care about the real world in
this area. [...] I’m not going to bother to fight it.” This was in 2003, and not much
appears to have changed since.

More recently, a number of pieces dedicated to expressing concern over the abstract-
state-based undefined behavior in C and advocating for alternatives have been written
and circulated, but they seem not to have reached semantics researchers I have dis-
cussed this issue with. I will thus direct a reader interested in systems programming
in a C-like language to “The Strict Aliasing Situation is Pretty Bad” [Reg16], “What
every compiler writer should know about programmers” [Ert15], and “How ISO C
became unusable for operating systems development” [Yod21].

Verified systems programming is not exempt from these concerns either. The seL4
project chose to use translation validation of compiler-generated binaries against their
(concrete) model of C semantics instead of connecting to a verified compiler. The
rationale was based on concern over “cases where the standard is purposely violated
to implement machine-dependent, low-level operating system (OS) functionality”,
explicitly noting that the “proof for seL4 did not specifically address the strict-aliasing
condition. It is one of the standard violations that systems code must make at some
point” [SMK13]. For a smaller example, the implementations of malloc and free
proven using the Verified Software Toolchain [AN20] store a free-list pointer of type

3https://lkml.org/lkml/2003/2/26/158, https://lkml.org/lkml/2009/1/12/369
4https://groups.google.com/a/chromium.org/g/chromium-dev/c/dUebWSEpAR8/m/

xhsispuiNu4J
5https://bugzilla.mozilla.org/show_bug.cgi?id=413253
6https://github.com/llvm/llvm-project/blob/main/clang/CMakeLists.txt#L330
7https://github.com/openssh/openssh-portable/blob/614252b0/configure.ac#L192
8https://forum.nim-lang.org/t/3121#19651
9https://web.archive.org/web/20220412081358/https://gcc.gnu.org/bugs/
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void * to the address passed to free. It is, of course, the expected usage of these
functions that the caller would store objects of a potentially different type at the
same address. I believe this would not be allowed by Krebbers’ formalization of strict
aliasing rules, but it may be allowed by the standard’s effective-type rules for memory
with no declared type if not affected by the resolution of Defect Report #236. As
VST is proven sound against the C semantics used by CompCert, there is no need to
fear miscompilation when this program is compiled with CompCert. The paper does
reassure the reader that the “malloc/free system, like any VST-verified program, can
also be compiled with gcc or clang”, and using -fno-strict-aliasing seems prudent
in that case (it is the default but easily accidentally disabled by higher optimization
levels). Here is a program that returns 0 with -fno-strict-aliasing but often 1
without it; VST can be used to prove that it returns 0:

long foo(long *p, void **q) {
*p = 1;
*q = 0;
return *p;

}
long main() {

int x;
return foo(&x, &x);

}

The key to the VST proof is the following lemma:
∀ p, data_at (tptr Tvoid) (Vint zero) p = data_at tint (Vint zero) p
It allows the same memory location in a 32-bit C program to be interpreted as holding
either void* or int, which is in-line with systems-programming needs but in direct
contradiction to strict-aliasing rules.

2.5 Translating Bedrock2 To C
Regardless of how the pursuit of a clear and consistent C standard pans out, the pur-
pose of Bedrock2 is to be a cross-platform assembly language, so Bedrock2 pointers
are addresses, and memory maps addresses to bytes. As discussed, this view is far re-
moved from that of the C-compiler maintainers, standards committee, and semantics
researchers. At the same time, it would be be very appealing to use an off-the-shelf
C toolchain to run Bedrock2 code. This would unlock platforms, debugging mecha-
nisms, and optimizations not implemented in the Bedrock2 toolchain. Of course, the
very optimizations whose soundness the complex C memory models were created to
justify are not sound for C code that Bedrock2 was designed to support.

Somewhat surprisingly given the discussion in the previous section, it appears that
the abstract-state semantics prescribed for C programs do not rule out a translation
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that maps Bedrock2 programs that do not trigger undefined behavior to C programs
that do not trigger undefined behavior. I implemented a quick-and-dirty Bedrock2-
to-C translation very early on in the project to aid with prototyping of Bedrock2 code
and its compiler, not expecting it to produce standards-compliant C. The C backend
persisted with small fixes, and was incorporated into the testing infrastructure of Fiat
Cryptography’s Bedrock2 backend and used for performance evaluation of Rupicola.
In parallel, the research into semantics of integer-pointer casts in C seems to have
converged on PNVI-style models which are more permissive than purely abstract
models, removing the main barrier to standards-compliant translation. The strategy
is simple: the translated code will work with machine words and bytes to the extent
possible, avoid C constructs that trigger undefined behavior conditionally based on
the abstract state, and keep the concrete state of the C program in-sync with that of
the Bedrock2 program. More specifically, the key invariant is that every byte in the
Bedrock2 memory must have a corresponding concrete byte in the C memory at the
same address.

Realizing a translator that for arbitrary well-defined Bedrock2 programs actually
avoids all the ~200 ways undefined behavior can be triggered in C is still a delicate
task to say the least. Yet I did write a translator, and this section will review how it
dodges the kinds of undefined behavior I considered.

2.5.1 Memory Operations
Machine words (the only scalar type in Bedrock2) are translated to uintptr_t, and
the translation of a complete program includes an automatic assertion checking that
the C implementation uses a little-endian representation for this type. A Bedrock2
memory store takes a machine-word address and a machine-word value; there are four
variants for writing 1, 2, or 4 bytes, or an entire machine word (4 or 8 bytes). The
translation of a memory write to C uses a cast operation to convert the address to
void*, takes the address of a C variable containing the value to be stored, and calls
memcpy with the appropriate number of bytes.

static inline
void _br2_store(uintptr_t a, uintptr_t v, uintptr_t sz) {

memcpy((void*)a, &v, sz);
}

For the uintptr_t-to-void* cast to be justified with respect to PNVI, the C program
must have an object at the address so that provenance of the new pointer can be ex-
tracted from it. This condition is satisfied based on the assumption that the store
in the Bedrock2 program succeeds and the Bedrock2 and C memories match. Under
PNVI-ae and PNVI-ae-udi, there is an additional requirement that the concrete rep-
resentation of the address of the pointed-to object must have been accessed earlier in
the execution. The translation maintains the invariant that all objects the translated
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program allocates have their address taken and cast to uintptr_t immediately, ar-
guments are passed from C to Bedrock2 as uintptr_t, and translated Bedrock2 code
only reads the concrete representation of the C memory. Thus PNVI-ae is equivalent
to plain PNVI for programs translated from Bedrock2, and the translated code does
not need the extra flexibility of PNVI-ae-udi.

From the perspective of strict-aliasing rules, memcpy is allowed regardless of the ef-
fective type of the object because it is specified as copying the requested number of
characters, and accesses through the char type are allowed regardless of the object
type recorded in abstract state. If the destination address points to memory that was
dynamically allocated in C using the C standard malloc function (or if it otherwise
lacks a declared type), copying a uintptr_t to that memory will change the effective
type the C semantics consider to be stored at that address to uintptr_t. Translated
Bedrock2 code will not be sensitive to this, but C code calling translated Bedrock2
code will no longer be allowed to access that address using an unrelated type.

Memory loads are similarly translated to memcpy, but with an optimization (con-
tributed by Clément Pit-Claudel) to use a size-specific destination type to help com-
pilers infer the range of the resulting value:

static inline
uintptr_t _br2_load(uintptr_t a, uintptr_t sz) {

switch (sz) {
case 1: { uint8_t r = 0; memcpy(&r, (void*)a, 1); return r; }
case 2: { uint16_t r = 0; memcpy(&r, (void*)a, 2); return r; }
case 4: { uint32_t r = 0; memcpy(&r, (void*)a, 4); return r; }
case 8: { uint64_t r = 0; memcpy(&r, (void*)a, 8); return r; }
default: __builtin_unreachable();
}

}

The considerations for integer-to-pointer casts and strict aliasing for loads imple-
mented in this manner are a subset of those discussed in the context of stores.

Small dedicated experiments and the Rupicola evaluation benchmarks suggest that
GCC and Clang generate good code for these calls to memcpy, compiling them equiv-
alently to accesses through casted addresses (*(uint64_t*)(p)) when a sufficiently
high optimization level is enabled. It is still mildly unfortunate that debugging and
execution at lower optimization levels (or with simpler compilers) is cluttered with
memcpy, but that is the price of complying with the C standards.

Alignment Replacing the bytewise memcpy with a multibyte access would not be
possible in environments that do not implement unaligned memory access (either in
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hardware or in an exception handler). Environments without support for unaligned
access are not common and have been becoming less common, and semantics of
Bedrock2 allow memory access of all supported sizes at all accessible addresses. C
standards disallow creation of pointers with addresses that do not satisfy the align-
ment requirement of the target type of the pointer, but memcpy takes void*, which
does not have an alignment requirement. In summary, the use of memcpy in this man-
ner is portable but incurs a performance penalty on architectures where unaligned
access is emulated by the compiler or an exception handler.

No special case for memory access at an offset A tempting optimization was
proposed to use _br2_load((char*)A+i) instead of _br2_load(A+i), which helps
Clang 10 to find additional vectorization opportunities for simple loops mapping over
an array of characters. (A vectorized implementation would be valid either way, but
it is not discovered with the simpler translated version, likely because Clang relies on
types instead of the context for some analysis.) However, this vectorization-friendly
form is not valid in general. A first hint at the problem is that converting A instead
of i to char* is an arbitrary choice as far as the semantics are concerned. Bedrock2
addition expressions are commutative, so code with a different argument order would
satisfy the same Bedrock2 specification. PNVI rules for non-NULL integer-to-pointer
casts in C require that an object exist at the casted address at the time of the cast; it
is not acceptable to cast an out-of-bounds address to a pointer and then adjust it to
point to a C object. Thus attempting to aid vectorization in this manner would cause
the Bedrock2 program that stack-allocates 2 bytes at address A and then stores a zero
byte to 1+A to be translated to _br2_load((char*)1+A), which triggers undefined
behavior unless there is an object at address 1.

2.5.2 Arithmetic Operations
To recall, Bedrock2 arithmetic defines exception-free logical, bitwise, signed, and
unsigned operations on the type of machine words. While some of these map trivially
from Bedrock2 to C, there are several important considerations to keep in mind for a
sound translation. This is the only part of the translation in which bugs were found
by trying to use it, rather then during initial prototyping or code review.

Famously, arithmetic can trigger undefined behavior in C, and it cannot in Bedrock2,
so the translator must ensure that the undefined cases are not used. Division and
remainder operations are translated to function calls that check that the denominator
is nonzero and return a fallback value otherwise. As all current Bedrock2 develop-
ments assume the RISC-V fallback values even though the semantics are technically
parametrized over this choice, the C backend does the same. Bit shifts by more than
the width of the argument are undefined behavior in C, so the translator uses a bitwise
mask to keep the shift amount in the required range, again matching RISC-V.
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In an effort to keep the generated C code readable for use as a debugging mechanism,
Bedrock2 expressions are translated to C expressions in a manner that preserves
nested operations. (Side effects are not allowed inside Bedrock2 expressions, so there
is no concern about C sequence-point rules.) This means that inferred result types
of C subexpressions can affect the meaning of outer operations, potentially causing
incorrect outputs or triggering undefined behavior when they are not uintptr_t as
expected. In particular, comparisons return int regardless of the types of the inputs,
so (uintptr_t)0==(uintptr_t)0 is an int, and shifting it left by one less than the
width triggers undefined behavior due to signed overflow. To avoid this, the translator
inserts uintptr_t casts around all comparisons.

The C standard provides no mechanism for uintptr_t literals, so the translator uses
the ULL suffix for unsigned long long and casts the value to uintptr_t. Bedrock2
uses one type for both signed and unsigned arithmetic; signed comparison and right-
shift are implemented by casting the operands to intptr_t and the output back to
uintptr_t. There is no standard C construct to get the high half of a 64-bit-by-64-bit
multiplication, but the translator implements this using unsigned __int128 which
is provided by GCC and compilers that mimic it. All in all, only bitwise operations,
addition, subtraction, and multiplication enjoy trivial single-operator translations.

2.5.3 Functions, Allocations, and Variables
Bedrock2 assignment statements, conditionals, and while loops translate directly to
corresponding C constructs. Functions, stack-memory allocation, and internal and
external function calls require the introduction of new variables and are thus subject
to the usual considerations of avoiding variable capture.

Bedrock2 functions can take arbitrarily many parameters (as in C) and can return
arbitrarily many return values (unlike C, which can return structs instead). The
function definition in Bedrock2 requires output parameters to be named next to
the input parameters. To allow interoperability with idiomatic C code, the first
output parameter is mapped to the return value of the C function. Additional output
parameters are handled in destination-passing style: the translated C function takes
a freshly-named uintptr_t* for each output beyond the first, and the local variables
holding the output parameters are stored to corresponding pointers at the end of the
function.

C requires local variables to be declared before use, so a declaration of all Bedrock2
local variables and output parameters is generated at the beginning of the function.
Reading or returning an uninitialized local variable is undefined behavior in Bedrock2,
so the generated C variables are not initialized either.

Bedrock2 features for allocating memory on the stack and accessing a table of con-
stants are translated using uint8_t-array declarations. As the Bedrock2 program is
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free to perform arbitrary arithmetic on the address of the space allocated on the stack,
the address of the array is taken and cast to uintptr_t right away. It is tempting
to use alloca instead of an array declaration because memory returned by alloca
does not have a declared type, which may (unless DR #236 overrides C17, see Sub-
section 2.4.3) allow C code called from bedrock2 to access that memory with other
types. However, memory allocated using alloca is only freed at the end of the func-
tion, so using it to implement Bedrock2’s scoped stack-allocation primitive can lead
to unbounded increase in stack usage (e.g., if called inside a loop). Hoisting all stack
allocations to the beginning of the function would resolve both of these concerns at the
cost of significantly complicating the unverified translation and potentially causing
needless eager allocations, so I did not implement this transformation.

Critically, the stack-allocated C arrays are initialized even though Bedrock2 stack-
allocation semantics leave the contents unspecified: in C, different accesses to the same
uninitialized memory location can return different values10! Even though Bedrock2
semantics let the compiler nondeterministically choose the contents of the stack-
allocated memory, it is chosen once at allocation and must remain fixed thereafter.
The following Bedrock2 program is proven to return two equal machine words but
would trigger undefined behavior if translated to C using an uninitialized array for t:

Definition stacknondet := func! () ~> (a, b) {
stackalloc 4 as t;
a = (load4(t) >> $8); (* extract btyes 1..3 *)
store1(t, $42); (* replace byte 0 with 42 *)
b = (load4(t) >> $8) (* extract bytes 1..3 again *)

}.

2.5.4 Program Units, Sanity-Checks, and Files
The recommended usage of Bedrock2-to-C translation is to translate an entire li-
brary or program at once. The generated C file is ready to be compiled: it includes
#include directives for the required standard C headers and static inline func-
tions for Bedrock2 arithmetic and memory operations. The continuous-integration
tests of the Bedrock2 repository routinely extract, compile, and execute C versions
of Bedrock2 programs defined and proven in Coq. If the Bedrock2 program contains
calls to external functions (cmd.interact), the generated file is not usable alone; the
current recommendation is to #include it in another file that also includes declara-
tions or definitions of these functions.

The chosen implementations of essential features such as widening multiplication
already rely on extensions to standard C, so I chose to include in the generated
file an __attribute__((constructor)) function that checks at startup that some

10https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1747.htm
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implementation-defined choices in C match those specified in Bedrock2 semantics and
aborts otherwise. Concretely, uintptr_t must use a little-endian representation, and
bitwise and arithmetic operations on intptr_t must be related through the two’s-
complement convention. This is intended to flag accidental unsupported use, but
it is not an exhaustive list: for example, it is not clear how to check that the C
implementation uses a single address space for all pointers.

Deviating from the long-established kludge of using Coq-to-OCaml extraction to print
syntax trees generated inside Coq, Bedrock2 includes an Ltac2 implementation of
printing a Coq list of bytes and Python script that calls it to print a Coq definition
(in coqtop, with the artificial stack-usage limit lifted). This setup has three quality-
of-life benefits over the previous status quo. First, the same syntax-tree stringification
code can be used interactively in Coq to fill the proof feedback buffer with the exact
output that would be redirected to a file by the build system, allowing it to be saved
to an ad-hoc location or passed to another command from within the editor. Second,
the possibility of running into bugs where Coq-to-OCaml extraction generates invalid
OCaml code is avoided. Third, build rules are simplified by removing the step of
compiling OCaml code (Bedrock2 can be used without an OCaml installation).

2.5.5 Reflections
Supporting use of Bedrock2 code with off-the-shelf C toolchains has been a great
enabler for prototyping of Bedrock2 programs and the verified stack itself. If sufficient
confidence is gained in the correctness of this translation with respect to behavior of
mainstream C toolchains, it will provide a new pathway for contributing verified
code to C projects. However, the combined experience of established efforts at C
verification reviewed in the previous section and the amount of “small” ad-hoc fix-
ups already identified as necessary for the conceptually simple translation presented
here call for caution about correctness claims that can be made about this code. As
the proofs say nothing about compatibility with any common C toolchain or some
formalization of the C standard, code review will have to remain the primary means
by which compatibility is ensured.

In principle, one could seek to prove more about this translation or about another
translation to C. CompCert would be an appealing target for verified integration sup-
porting more hardware platforms, but the CompCert C semantics are substantially
incompatible with Bedrock2. It would not be enough to follow CertiKOS and re-
quire that all memory locations accessible to the same Bedrock2 program belong to
the same allocation block in the CompCert memory model for modeling purposes.
Addresses returned by Bedrock2 stack allocation would have to be instantiated with
integer indices into a distinguished memory block acting as both the data stack and
heap for Bedrock2 because CompCert does not allow arbitrary arithmetic on pointer
addresses. Calling a Bedrock2 function soundly from CompCert-verified code would
require copying input into that block and passing the index to the translated Bedrock2
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function. While not as burdensome to use as implementations of functional languages,
a translation compatible with CompCert proofs would be sufficiently dissatisfying
from an usability perspective to discourage me from putting in the effort.

A proof against a faithful formalization of the C standard could be attempted for the
current translation, but the current formalizations I am aware of are not complete
enough to support it satisfyingly. CH2O does not allow integer-pointer casts, so all
allocations, loads, and stores in the translated code would have undefined behavior.
A proof against a formalization of any PNVI variant, such as the one used to prove
soundness of VIP in [Lep+22] would be interesting, but it would not give confidence in
any mainstream C implementation in particular or the strict aliasing rules in general.
A partial translation based on an interprocedural type and alignment analysis could
generate C code for Bedrock2 programs that don’t “really need” integer-pointer casts
or bytewise memory access and could likely be proven against an existing formal
model of C with substantially more effort.
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Chapter 3

Proving Bedrock2 Programs

Having settled on the rules that Bedrock2 programs must follow, it is now time to
design how these rules will be encoded in the Coq proof assistant. Following what
will be a theme in this thesis, I will first consider this question from the perspective
of the user of the specification, in this case the programmer seeking to prove that
a Bedrock2 program does not trigger undefined behavior and fulfills a programmer-
chosen formal specification. Connection to a verified compiler for Bedrock2 will be
discussed in Chapter 4.

After substantial experimentation, I settled on a program-proof-experience design
centered around line-by-line symbolic execution of Bedrock2 code within the Coq
proof engine and keeping track of the symbolic state of the program using normal
Coq variables and hypotheses in the proof context. This approach has the key ben-
efit that proofs of Bedrock2 programs can be composed incrementally from calls to
existing Coq proof procedures, ad-hoc proof-automation scripts, and manual proof
steps as appropriate. In other words, the API conventions for proof procedures called
during the verification of a Bedrock2 program are the usual ones for Coq proof steps,
not custom. This means that proofs of Bedrock2 programs are compatible with es-
tablished workflows for prototyping and debugging proof scripts. In particular, steps
of unsuccessful proof attempts can be processed incrementally, allowing for inspecting
the symbolic state in proof context and fine-grained experimentation with alternative
proof strategies.

While neither the Bedrock2 language nor the verification system is designed for a
fixed set of proof procedures, support for proof automation is a priority. Proofs of
most existing Bedrock2 programs rely on the Coq solver for linear integer arithmetic
(lia) and the separation-logic-based proof procedure for memory access described
in Section 3.3. In some cases, complete automation is achieved. More importantly,
programs that are almost within the scope of automated proof still benefit from these
solvers for all proof steps to which these solvers are applicable, with minimal tooling-
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related overhead. The choice of proof method can be made at function, statement,
or even subexpression granularity, and there is no restriction on control flow of the
composition: solvers can be used to prove proof-script-generated assertions which in
turn are used to discharge preconditions of a manually instantiated lemma, and all
this can be preceded or followed by any proof style.

To keep the complexity of nontrivial combinations of proof methods manageable, the
verification conditions and widely used proof scripts in Bedrock2 trade away deduc-
tive power for predictability. The philosophy is simple: it is better to sometimes stop
and not verify the next command than to keep the programmer guessing whether the
execution of some command would be verified automatically. A similar consideration
applies to the symbolic state a proof step leaves behind, perhaps after processing an-
other command in a Bedrock2 program: general-purpose Bedrock2 proof procedures
only proceed in cases where they can leave behind a satisfying proof state, choosing
to fail instead of proceed with a context that may be too weak to prove the rest of the
program. An extreme form of this approach would be to only proceed with symbolic
execution as long as the strongest postcondition of the program can be established
and represented in the proof context. Proof automation for simpler commands also
adheres to this stricter discipline, but processing of higher-level constructs such as
loops and function calls allows for incompleteness due to user-specified abstraction.
For example, the symbolic state of a program calling a function is updated based on
its declared precondition and postcondition alone, without inspecting the implemen-
tation.

3.1 Program-Proof Examples
This section will describe the basic mechanics and user experience of specifying and
proving Bedrock2 programs in Coq. The presentation is intended to be pragmatic and
use-case-driven. General definitions that make the meaning of these proofs precise
are deferred to Section 3.2. A reader adamant to start with the foundations can skip
ahead first, but the approach to program proofs sketched in this section is central to
why the later definitions are designed the way they are.

3.1.1 Basics, Memory Acces: swap

We will implement a function that swaps the values of two addresses it takes as
arguments, specify its behavior using separation logic, and see how Bedrock2 proof
tooling handles associated verification tasks. The program at hand is intentionally
minimal, and Bedrock2 handles it in the same manner as existing separation-logic-
based verification systems. Readers familiar with this background should feel free to
glance at the code, pick up the notations of the day, and move on to a less trivial
example in Subsection 3.1.2.
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Implementation The following function takes two addresses as arguments, loads
a machine word from each of them, and stores each value to the other address.

Definition swap := func! (a, b) {
t = load(b);
store(b, load(a));
store(a, t)

}.

Note that execution of swap would trigger undefined behavior if a and b do not point
to Bedrock2 memory. Thus the specification of swap should include a precondition
that rules out this possibility. Further, we want the specification to summarize the
effects swap has on the memory: albeit already minimal, the implementation includes
a temporary variable t which is of no interest to the caller. The ability to elide imple-
mentation details from specifications will be important for more complex functions,
and we will see that even for swap there is some consequential flexibility in what to
specify about it.

Sepcification The usual specification of swap is expressed in Bedrock2 as follows:

Instance spec_of_swap : spec_of "swap" :=
fnspec! "swap" a_addr b_addr / a b R,
{ requires t m := m =* scalar a_addr a * scalar b_addr b * R;
ensures T M := M =* scalar a_addr b * scalar b_addr a * R ∧ T=t}.

Instance and the redundant type declaration on the first line make this specification
available for later automatic lookup by Bedrock2 proof automation processing callers
of swap. Arguments listed after the function name are implicitly universally quanti-
fied, and additional universally quantified specification variables can be listed after
/. While program variables are always machine words, the specification variables can
be of any types: here a and b are also machine words, but R describes the remaining
memory left untouched by this program1. The I/O trace t and memory m in the pre-
condition (requires clause) are universally quantified with fixed types, and T and M
after ensures bind the trace and memory at the end of the execution of the function.
Note that all variables universally quantified by the specification notation including
t and m are still in scope after ensures.

Here the precondition states that memory M separately contains a (little-endian rep-
resentation of) the machine word a starting at address a_addr, b at b_addr, and R.
The postcondition is similar, but with a and b swapped! Let’s prove that swap works:

1R, m, and M are explicitly included in specifications by choice; the formal semantics of Bedrock2
also satisfy a frame-rule theorem that allows proofs of equivalent execution with additional memory
to be derived in a black-box manner.
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Lemma swap_ok : fnspec_goal_for! swap.
Proof. repeat straightline; eauto. Qed.

Proof This was simple, but perhaps deceptively so: proofs of more interesting
programs are unlikely to be dispatched this easily, especially during development.
And as code that works as desired tends to get minimal attention, it is exactly the
feedback generated during unsuccessful proof attempts that really makes up the user
experience of a program-proof tool! One can try to prove a broken variant of swap
using the same script:

Definition bad_swap := func! (a, b) {
store(b, load(a));
store(a, load(b))

}.

The following goal is generated, and it makes the issue apparent. So far, so good.

H1 : (scalar a_addr a * (scalar b_addr a * R))%sep m1
Goal: (scalar a_addr b * (scalar b_addr a * R))%sep m1 ∧ t = t

For more bite-sized examples, consider the case of “swapping” the data at an address
with itself. spec_of_swap implicitly rules this out by joining the memory contents
at a_addr and b_addr with *, so current proof does not cover this case. The imple-
mentation and proof script also work with the following specification2:

{ requires t m := m =* scalar a_addr a * R ∧ b_addr = a_addr;
ensures T M := M =* scalar a_addr a * R ∧ T = t }.

However, the following alternative implementation only satisfies the first spec:

Definition swap := func! (a, b) {
store(a, load(a)+load(b));
store(b, load(a)-load(b));
store(a, load(a)-load(b))

}.

Attempting to prove it against the second leads to a proof context where the memory
assumption describes the value at a_addr using an unwieldy expression in terms
of word operations and intermediate values computed by previous lines. The failure
mode can be learned by manipulating the proof state as an experiment. The standard

2That the same implementation satisfies both specifications does not mean that the precondition
is redundant: swap(a,a+1) does not leave the word from address a at a+1 but instead overwrites
all but the last byte of it, violating the postcondition even if it is amended not to assert separation.
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Coq tactics subst and ring_simplify reveal the limitation:

H2 : (scalar a_addr (word.of_Z 0) * R)%sep m2
Goal: (scalar a_addr a * R)%sep m2 ∧ t = t

3.1.2 Automating Proof of Optimized Arithmetic
The principles underlying the design of Bedrock2 proof automation seen in the swap
example are chosen for the benefit of more challenging verification and custom proof
scripts, so they are needlessly conservative in the context of swap alone. For example,
having to manually subst before ring_simplify is superfluous for programs that can
be neatly represented without sharing of subexpressions, and a case can be made for
on-by-default simplification of expressions. But consider the following implementation
of 128-bit addition using RISC-V (RV32I) arithmetic operations. Each add-with-carry
step requires up to 5 instructions, carefully scheduled for less horrible performance.

Definition uint128_add := func! (s, a, b) ~> c { (* read columnwise *)
a0 = load4(a); a = a+$4;
b0 = load4(b); b = b+$4;
s0 = a0 + b0;

a1 = load4(a); a = a+$4;
b1 = load4(b); b = b+$4;
c1 = s0 < a0;
s1 = a1 + b1;

a2 = load4(a);
c2 = s1 < a1;

s1 = c1 + s1;
a = a+$4;

c2p = s1 < c1;
b2 = load4(b); b = b+$4;
c2 = c2 + c2p;
s2 = a2 + b2;

a3 = load4(a);
b3 = load4(b);
c3 = s2 < a2;

s2 = c2 + s2;
store4(s, s0); s = s+$4;

c3p = s2 < c2;
c3 = c3 + c3p;
s3 = a3 + b3;

store4(s, s1); s = s+$4;
c = s3 < a3;

s3 = c3 + s3;
store4(s, s2); s = s+$4;
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c4p = s3 < c3;
store4(s, s3);

c = c + c4p
}.

In this case, sharing of subexpressions is essential to effective reasoning. Inlining all
subexpressions after symbolic execution generates more than 200 lines of expression
tree, irrecoverably obscuring the purpose of the program from human inspection.
The same complications also affect proof scripts and decision procedures: applying
ring_simplify to the inlined subexpressions takes multiple seconds (and is useless
anyway). Complete transformation is not the only way to hamper human understand-
ing of the intermediate proof states arising from this program: just losing the corre-
spondence between program variables and proof-context variables would be enough,
and even dropping the original ordering of statements is an obstacle.

I will walk through how this program is proven against the following specification:

Definition eval : list word -> Z :=
List.fold_right (fun a s => word.unsigned a + 2^32*s) 0.

Instance spec_of_uint128_add : spec_of "uint128_add" :=
fnspec! "uint128_add" ps pa pb / a b s R ~> c,
{ requires t m :=

m =*> array32 pa a ∧ length a = 4 ∧
m =*> array32 pb b ∧ length b = 4 ∧
m =* array32 ps s * R ∧ length s = 4;

ensures T M := ∃ y,
M =* array32 ps y * R ∧ length y = 4 ∧
T = t ∧ 2^128*c + eval y = eval a + eval b }.

Here array32 pa a holds the 32-bit words from Coq list a at address pa. The memory
m may satisfy the three preconditions in arbitrarily overlapping ways. Only R from
the precondition associated with the output array appears in the postcondition. The
other inputs are just required to be contained (=*>) in the memory.

The proof starts by taking one straightline step to process the preconditions:

Lemma uint128_add_ok : fnspec_goal_for! uint128_add.
Proof.

straightline; repeat straightline_cleanup.

Then a custom proof script is used to break lists of a known length into individual
elements, naming them after the list itself but with subscripts for indices:

repeat match goal with
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| H : length ?l = _ |- _ =>
let x := fresh l "_0" in destruct l as [(*nil*)|x l]; invert H

end; unfold array in *.
repeat straightline.
exists [s0; s1; s2; s3]; ssplit; try ecancel_assumption; trivial.

The repeated calls to straightline complete the symbolic execution of the function,
leaving only the postcondition to be tackled. The next line specifies the value of y
required by the postcondition and dispatches all clauses except for eval. However,
unlike swap, the specification of big-integer addition is substantially different from the
implementation, so we are only halfway there still. But real progress has been made:
arithmetic expressions in the proof context contain a purely functional description of
the algorithm, compatible with normal Coq proof techniques. Variables like a_0 were
generated above and refer to members of input lists, variables like s1'0 refer to past
values of local variables of the Bedrock2 program, and the current values of program
variables are presented with their names preserved:

s0 := word.add a_0 b_0
c1 := if word.ltu s0 a_0 then word.of_Z 1 else word.of_Z 0
s1'0 := word.add a_1 b_1
c2'1 := if word.ltu s1'0 a_1 then word.of_Z 1 else word.of_Z 0
s1 := word.add c1 s1'0
c2p := if word.ltu s1 c1 then word.of_Z 1 else word.of_Z 0
c2 := word.add c2'1 c2p
s2'0 := word.add a_2 b_2
c3'1 := if word.ltu s2'0 a_2 then word.of_Z 1 else word.of_Z 0
s2 := word.add c2 s2'0
s'0 := word.add ps (word.of_Z 4)
c3p := if word.ltu s2 c2 then word.of_Z 1 else word.of_Z 0
c3 := word.add c3'1 c3p
s3'0 := word.add a_3 b_3
s'1 := word.add s'0 (word.of_Z 4)
c'0 := if word.ltu s3'0 a_3 then word.of_Z 1 else word.of_Z 0
s3 := word.add c3 s3'0
s := word.add s'1 (word.of_Z 4)
c4p := if word.ltu s3 c3 then word.of_Z 1 else word.of_Z 0
c := word.add c'0 c4p
Goal:
2^128*c+eval[s0;s1;s2;s3]=eval[a_0;a_1;a_2;a_3]+eval[b_0;b_1;b_2;b_3]

Individual manipulation of these equations still appears undesirable as a proof strat-
egy. It would be convenient to use an off-the-shelf solver, but the hypotheses do not
fall into any supported theory. In particular, addition is linear, but general compari-
son as an expression (thresholding) does not fall under linear arithmetic even though
inequalities do. Case analysis on a carry bit could be used to to turn the goal with
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a comparison into two goals with different inequalities as hypotheses. If each case
would be proven automatically, solving 27 cases could be manageable in a purpose-
built tool (it takes 48s in Coq). In case the verification does not succeed, debugging
a case-analysis-based proof is more challenging than debugging than a direct proof
because each case could succeed by either proving its goal or demonstrating a con-
tradiction among the hypotheses, and there is no general way to know ahead-of-time
which outcome the proof would reach if it worked.

Instead, we notice that each comparison is just used to compute the carry bit from
the previous addition: overflow occurred iff the output is smaller than the input.

Lemma ltu_as_carry (a b : word) (s : word := word.add a b)
(c : word := if word.ltu s a then word.of_Z 1 else word.of_Z 0)
: word.unsigned c = (a + b) / 2 ^ 32.

Proof. subst s c.
rewrite word.unsigned_ltu. destr (word.add a b <? a); ZnWords. Qed.

Instantiating this lemma for each hypothesis using another ad-hoc match allows the
goal to be proven using the general-purpose solver for linear integer arithmetic.

repeat match goal with c := if word.ltu _ _ then _ else _ |- _ =>
pose (ltu_as_carry _ _ : word.unsigned c = _); clearbody c end.

unfold eval, List.fold_right; ZnWords.
Qed.

Appropriate tooling makes codeveloping programs and correctness proofs a breeze.
The first prototype of this function was finished in less than two hours, including
the correctness proof and the time taken to look up and understand how to handle
carry chains of word-sized addition without hardware support. For this example, the
Bedrock2 proof experience was smooth enough to support the prototyping itself: the
easiest way to tell if an optimization was correct was to try to prove it. (The final
proof script presented here is based on hindsight from that process and omits needless
detours explored along the way, whether or not they resulted in successful proofs.)

I will return to considerations and remaining challenges in how to present verification
conditions to program-correctness proofs in Section 3.5. But first, a deep dive into
mechanics connecting the syntax trees of imperative Bedrock2 programs to proof
contexts in Coq’s purely functional language is in order.

3.2 Definition of Programmer-Facing Semantics
The examples so far enjoyed completely automatic symbolic execution, including
proofs that the Bedrock2 programs cannot trigger undefined behavior when called as
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specified. But what is the formal statement that is being proven when straightline
steps forward through the commands of a function, and what can be concluded on
the basis of it later? This section gives a thorough answer to this question, starting
from proof-context-management building blocks and culminating with definitions of
spec_of and (informally) the macros fnspec! and fnspec_goal_for!.

3.2.1 Variable Assignments

The simplest command we want to verify is a variable assignment, x = e. We want
the symbolic execution of this command to add x := e : word to the proof context,
and to have the context variable x be referenced in the symbolic execution of the
following commands. If we were verifying a functional Coq program instead of a
Bedrock2 program, the proof context would be updated in the described manner
when running intros x on a goal of the form let x : word := e in Goal'. As
Bedrock2 local variables refer to mutable locations, we cannot represent the as Coq
variables directly, but updating a local-variable map can be expressed with a similar
goal: let l := map.put l x v in Goal', where v is the result of evaluating e.

To evaluate the expression e, the current local-variable map l and memory m are
required. Evaluation of Bedrock2 expressions may also trigger undefined behavior
(when accessing an uninitialized local variable or loading an unavailable address), so
the appropriate model for it in Coq is a deterministic partial relation rather than a
function. Returning to the verification condition of the assignment statement, we now
have ∃ v, dexpr m l e v ∧ let l := map.put l x v in Goal'. To achieve the
desired proof context, straightline let-binds values whose existence it proves. In
this case it generates the name of the new Coq binder for v from the string x that
appears in the set command and, if necessary, renames the existing proof-context
variable with the same name (from a previous assignment) using '.

Having figured out one case of the programming-facing definition of Bedrock2 seman-
tics, it is high time to give it a type signature and a name. First attempt:

Definition cmd_ok (c : cmd) (m : mem) (l : locals) : Prop := (* bad *)
match c with
| cmd.set x e =>

∃ v, dexpr m l e v ∧
let l := map.put l x v in
Goal'

The command, memory, and local-variable map make sense as inputs to an execution,
but Goal' is unbound. We can work out another case to find a replacement.
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3.2.2 Sequencing and Conditionals

If this assignment is the last command of the function and assigns a value to the return
variable, it would make sense to assert that v satisfies the function postcondition, but
what if it is not? For the command x1 = e1; x2 = e2, we want a goal of the form

∃ v1, dexpr m l e1 v1 ∧ let l1 := map.put l x1 v1 in
∃ v2, dexpr m l e2 v2 ∧ let l2 := map.put l x2 v2 in Goal''

The second line in the goal above appears exactly in the place of Goal' in the at-
tempted definition. Indeed, the right thing to prove about an intermediate command
is that the remaining commands execute as desired! If we only wanted to handle lists
of commands and no other nesting like loops and conditionals, we could have cmd_ok
take this list as an argument and replace Goal' with a recursive call:

Fixpoint cmds_ok (cs : list cmd) (m : mem) (l : locals) : Prop :=
match cs with
| cons (cmd.set x e) cs' =>

∃ v, dexpr m l e v ∧
let l := map.put l x v in
cmds_ok cs' m l

The goal to be proven for a conditional expression cond e ct cf includes evaluation
of the test expression and then the execution of one of the two commands depending
on which branch is taken. One might want to write something like this:

| cons (cmd.cond e ct cf) cs' => (* bad *)
∃ v, dexpr m l e v ∧
cmds_ok ((if word.eqb v 0 then cf else ct) ++ cs') m l

The accumulation of later commands is increasingly inelegant, is not actually well-
typed with the current cmd type, and would require a termination proof for cmds_ok
in Coq. A key refactor is enabled by the observation that the commands cs' be-
ing appended to the branch case are a first-order representation of the continuation
that describes where symbolic execution should resume after the branch is evaluated.
Changing cmd_ok to a higher-order function that takes the continuation as an ar-
gument leads to the basic structure used in Bedrock2: a continuation-passing-style
interpreter returning a single verification condition and using binders to represent
variables that straightline should place in the proof context. With notations:

Definition cmd_ok (c : cmd) (m : mem) (l : locals)
(post : mem -> locals -> Prop) : Prop :=

match c with
| cmd.skip => post m l
| cmd.set x e =>
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bind_ex v <- dexpr m l e;
dlet! l := map.put l x v in
post m l

| cmd.seq c1 c2 =>
cmd_ok c1 m l (fun m l => cmd_ok c2 m l post)

| cmd.cond br ct cf =>
bind_ex v <- dexpr m l br;
(word.unsigned v <> 0 -> cmd_ok ct m l post) ∧
(word.unsigned v = 0 -> cmd_ok cf m l post)

...

3.2.3 Forward Reasoning Using Weakest Preconditions
From a logical perspective, the previous code snippet implements a predicate trans-
former that returns the weakest precondition that needs to hold before the execution
of the command for the postcondition specified as the argument to hold after it. For
example, the command that does nothing can only satisfy the postcondition if it is
already satisfied, and the postcondition of the first command in a sequence is that
the next command executes as desired.

During symbolic execution of a Bedrock2 program, the proof context contains the
givens (variables and hypotheses), which together represent a postcondition of the
commands processed so far. Amongst these variables are the local-variable map and
the memory of the Bedrock2 program. The values of these can be defined in terms
of variables universally quantified in the theorem statement, current and past values
of individual local variables introduced by straightline, and constants in the Coq
environment. Hypotheses include those generated from cmd_ok by straightline, for
example posited outcomes of branch tests, and user-specified preconditions applied
to the initial local variables and memory. Additionally, Section 3.3 describes how
straightline propagates memory-related hypotheses across memory modifications.

The postcondition in the proof context is not necessarily the strongest for a number
of reasons. Most plainly, the user-written proof script may have simply cleared some
hypotheses. More fundamentally, symbolic execution of function calls relies on user-
provided specifications, and leaving out details in specifications is useful to enable
specification-preserving refactoring and optimization of function implementations.

The goal contains the postcondition-specific weakest precondition, cmd_ok c m l P.
Each straightline step makes partial progress towards proving that the current
proof context implies this weakest precondition by evaluating cmd_ok one match-step
at a time and discharging the obligations it returns. In this sense, Bedrock2 uses a
weakest-precondition definition to facilitate forward reasoning.

This approach has multiple advantages that may make it appealing for other lan-
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guages as well. First, after the basic structure was established, extending cmd_ok for
additional constructs has been straightforward: the question this definition answers
is exactly “what should be proven about this construct?”. Second, the definition of
cmd_ok serves as a recipe for maintaining straightline: this tactic should specialize
cmd_ok to the program at hand, recognize the generated state updates and proof
obligations, and match them against the symbolic state in the proof context. Finally,
we will see that this style allows for direct proofs of total correctness in presence of
nondeterminism arising from abstraction and runtime input.

3.2.4 Function Calls and Functions
Recall that functions in Bedrock2 can take any number of machine words as arguments
and can return the values of any number of local variables. A common use case of
this facility is for functions to return a separate error code separately from the main
output, for example pktlen, err = recvEthernet(buf). The weakest-precondition
definition handles this like an interpreter would: the arguments are evaluated in the
caller’s context, and the return values are assigned to the appropriate local variables.
Note that only args and not all local variables l are passed into call, specifying
lexical scoping; rets are similarly assigned left-to-right:

| cmd.call binds fname arges =>
bind_ex args <- dexprs m l arges;
call fname m args (fun m rets =>
bind_ex_Some l <- map.putmany_of_list_zip binds rets l;
post m l)

As Bedrock2 does not allow for recursion to allow for simple, sound, and predictable
stack-usage analysis, we can define the verification conditions for a function call the
same way an interpreter would be written and still get a total structurally recursive
function that is easy to manipulate in proofs:

Fixpoint call (functions : list (string * func)) f m args post :=
match functions with
| nil => False
| cons (declname, (argnames, retnames, c)) functions' =>
if String.eqb declname f
then bind_ex_Some l <- map.of_list_zip argnames args;

cmd_ok (call functions') c m l (fun m l =>
list_map (get l) retnames (fun rets : list word =>
post m rets)).

else call functions' f m args post
end.

Unlike cmd_ok, call is not unfolded by straightline: doing so would lead to the
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body of the callee being processed again, but we want modular verification! Instead,
after the evaluation of argument expressions has been processed, straightline_call
looks for an assumption that proves call for the concrete function name in question
with any postcondition, likely under some universal quantifiers about arguments and
preconditions about these values. Then a weakening lemma is used to connect the
assumed call to the one required by the weakest-precondition goal: to prove call
with postcondition 𝑄 given call with postcondition 𝑃, it suffices to prove that 𝑃
implies 𝑄. The proof of that implication will later proceed by symbolic execution of
the remaining commands in the caller under the conditions that the callee’s postcon-
dition ensures. The appropriate assumption about the callee is exactly the function
specification the programmer wrote for it. Indeed, fnspec! is just a notation for
call! Notation by Clément Pit-Claudel, simplified here:

Notation "'fnspec!' f a0 .. an ,
{ 'requires' m := pre ; 'ensures' M := post }" :=

(fun functions => (forall a0 .. an, forall m, pre ->
call functions f m [a0 .. an] (fun M rets => rets = [] ∧ post))).

For example, an invocation of swap (Subsection 3.1.1) is proven automatically:

Definition swap_swap := func! (a, b) { swap(a, b); swap(a, b) }.

Instance spec_of_swap_swap : spec_of "swap_swap" :=
fnspec! "swap_swap" a_addr b_addr / a b R,
{ requires t m := m =* scalar a_addr a * scalar b_addr b * R;

ensures T M := M =* scalar a_addr a * scalar b_addr b * R ∧ T = t}.

Lemma swap_swap_ok : fnspec_goal_for! swap_swap.
Proof. repeat (straightline || straightline_call); eauto. Qed.

Removing straightline_call from the proof script has the symbolic execution stop
at the call site, with goal call functions "swap" t m [a_addr; b_addr] (...).
Manually invoking straightline_call at this point would generate two subgoals:
one for proving that the preconditions of swap are satisfied and one for symbolic
execution of the next call to swap. This allows for straightforward invocation of
custom proof automation or for interactive verification of preconditions for which an
automated proof procedure is not available.

3.2.5 Linking Correctness Proofs of Functions
The correctness proofs of swap and swap_swap are independent and can be processed
in any order or even in parallel. Further, the code and proof of swap_swap do not even
depend on the implementation of swap, and the latter just depends on spec_of_swap.
This is great for modularity, as changes in swap that can be proven against the same
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specification do not require the proof of swap_swap to be revisited. The flip side of
this indirection is that proving swap_swap_ok is not all that needs to be proven to
ensure safe execution of the function, and another “linking” proof is required to show
that all dependencies are present and appropriately verified:

Lemma link_swap_swap : spec_of_swap_swap [&,swap_swap; &,swap].
Proof. eauto using swap_swap_ok, swap_ok. Qed.

Instantiating spec_of_swap_swap with the explicit list of functions unfolds to the goal
call [&,swap_swap; &,swap] "swap_swap" t m [a_addr; b_addr] (...) with
the precondition and postcondition listed in spec_of_swap, and the proof confirms
that the two functions indeed work together as expected. (The macro &, makes the
Coq names of the definitions available to call). Individually, the statement proven
as spec_of_swap_swap instead assumes that calling swap in the environment that
swap_swap is in works as expected, and it concludes that swap_swap also works:

forall functions : list (string * func),
spec_of_swap functions -> spec_of_swap_swap (&,swap_swap::functions)

This premise was added by the convenience macro fnspec_goal_for! used in Lemma
declarations, which just looks up the specifications of the functions called by the cur-
rent function and adds premises about their correctness to the lemma. This gathering
of callees is not recursive: if a later change to swap added a dependency, its proof
(and the linking lemma) would need to be revisited, but swap_swap and its proof
would remain as-is.

An alternative to this design would be to fix the complete list of function specifica-
tions up-front and to prove both swap_ok and swap_swap_ok against that list. In VST
without Verified Software Units, this list is customarily called Gprog, and it is used to
support verification of mutually recursive functions in the sense of partial correctness
(an infinite loop satisfies every specification). Bedrock2 call peeling off the current
function from the list before descending into its body disallows recursion and thus
rules out the possibility of nonterminating chains of function calls. More importantly,
the same proof of a Bedrock2 function can be reused easily between usecases without
rechecking it as they depend on only the individual specifications of the callees of
the function, not the list of all functions that would be executed. (A final linking
lemma ensuring that all functions were verified against the required specifications is
needed either way.) It would be interesting to explore if Bedrock2’s fine-grained ap-
proach could be extended to blocks of mutually recursive functions while maintaining
the simple list-of-functions structure and the guarantee that the verified programs
terminate (for modeling recursion, see Subsection 4.1.1 and [Cha+23, §2.1]).
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3.2.6 Nondeterminism: Input and Stack Allocation
The appropriate verification conditions for run-time input and output are easily ex-
pressed in the language of weakest preconditions. This subsection will briefly review
the key construction for completeness. Consider the following snippet from the SPI
device driver of the Bedrock2-Kami “lightbulb” case study (Section 4.5):

io! busy = MMIOREAD($0x1002404c); (* poll receive FIFO *)
if !(busy >> $31) {
b = busy & $0xff;

The highest bit of the value read from this MMIO register indicates whether the
FIFO this register provides access to is empty, and if not, the lowest 8 bits contain an
element popped from that FIFO. The most important risk in a FIFO-based driver is
losing synchronization: accidentally reading one extra element too much or too little
would make the meaning of the future inputs ambiguous. Thus it is critical that the
specification of this program would cover both cases and constrain the behavior of the
program differently depending on the value returned by MMIOREAD. The same should
apply even if this value is not immediately branched on.

The solution is threefold. First, the weakest-precondition definition for MMIO will
need to ensure that the address being read is usable for that purpose. Second, the
continuation is invoked under a forall quantifying over the value returned by the
MMIO read, and the rest of the program needs to be proven correct in all cases.
Finally, both the address and the value are recorded in an event trace t that is
threaded through the semantics just for the modeling of external calls:

| cmd.interact [x] "MMIOREAD" [e] =>
bind_ex addr <- dexpr m l e;
isMMIO addr ∧
forall value : word,
let l' := map.put l x value in
let t' := cons ([addr], [value]) t in
post t' m l')

The actual specification of cmd.interact is parametrized over an ext_spec of the
same type signature as call, allowing for nondeterministc modeling of external calls
with arbitrarily many arguments, return values, preconditions, postconditions, and
even modifications to Bedrock2 memory.

Stack Allocation The contents of stack-allocated memory are unspecified. For-
mally, this is modeled as each stackalloc nondeterministically choosing the contents
and address of the freshly allocated memory. Supporting internal nondeterminism is
easier than supporting external nondeterminism: the choices are simply not included
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in the event trace.

However, there is more to stack allocation than nondeterminism: the semantics need
to specify that new memory is available after stack allocation, but only until the
nested command finishes execution. This is required to allow the compiler to reuse
the same memory for the control stack of a subsequent function call or to fulfill the
next allocation request. This is accomplished by expressing the memory available
to the nested command as the disjoint union of the stack-allocated region and the
ambient memory before and after its execution, removing whatever bytes reside in
the stack-allocated region in the latter case.

3.2.7 Loops, Termination, Invariants, and Specificatons
Writing the weakest-precondition definition as a function that recurses over the struc-
ture of the command is limiting for specifying loops, but the limitations are workable.
What we cannot do is to unroll the loop and give while e c the same semantics as
if (e) { c; while e c } – inlining the rules for conditionals and sequencing is
possible, but calling cmd_ok on while e c again in the case for while e c is not
allowed. Indeed, if the loop does not terminate, the very definition of cmd_ok for this
loop would be circular and thus not acceptable in Coq’s logic. Instead, the current
design of Bedrock2 is to enforce termination: cmd_ok should be false (and provably
so!) for a nonterminating program.

I will present a general solution for enforcing termination in a weakest-precondition-
style specification of a programming language in Chapter 4, but for verifying concrete
programs, it suffices to require a loop invariant and a boundedly decreasing measure.
To maximize flexibility for program proofs, the programmer gets to choose any well-
founded relation on any type and relate it to the state of the Bedrock2 program in a
context-appropriate manner. For this to be sound (e.g., to rule out the “relation” that
just allows any measure in any state), the proof obligation for continuing to another
iteration of the loop has to require that every measure v that can be related to the
starting state can decrease further:

forall v t m l, invariant v t m l ->
bind_ex b <- dexpr m l e;
(word.unsigned b <> 0 -> cmd_ok c t m l (fun t' m' l' =>

∃ v', invariant v' t' m' l' ∧ v' < v)

Advanced Loop Rules: Loops as Tail-Recursive Functions Following the
example of Bedrock [Chl13], Bedrock2 provides the option to verify loops using a pre-
condition and postcondition instead of an invariant. While an invariant answers the
question “what always holds at the beginning of each loop iteration,” the alternative
loop specification answers “if this loop was refactored into a dedicated tail-recursive
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function, what would its precondition and postcondition be?” As for normal func-
tions, universally quantified initial variables and specification variables can appear
in both the precondition and the postcondition, allowing the two to be related for a
generic state.

The alternative perspective is particularly useful for loops whose later iterations con-
sider a subset of the data needed by earlier iterations. For example, the following func-
tion checks whether two memory regions have equal contents with data-independent
memory access and control flow:

Definition memequal := func! (x,y,n) ~> r {
a = $0;
while n {
a = a | (load1(x) ^ load1(y));
x = x + $1; y = y + $1; n = n - $1

};
r = a == $0

}.

A tail-recursion-style loop specification is possible and convenient even though the ac-
cumulator a depends on the data considered in past loop iterations: the postcondition
can just relate the final accumulator (A) to the initial one (a).

fun (v : nat) xs ys => (* spec. variables; precondition: *)
fun t m (x y n a : word) => (m =*> bytes x xs ∧ m =*> bytes y ys ∧

v = n :> Z ∧ length xs = n :> Z ∧ length ys = n :> Z,
fun T M (X Y N A : word) => (* postcondition: *)
m = M ∧ t = T ∧ ∃ x, (x = 0 ↔ xs = ys) ∧ A = Z.lor a x :> Z)

The overall postcondition of memequal is then easily proven from the loop postcon-
dition: r = 1 ↔ xs = ys. (The Bedrock2 loop lemma used here actually differs
slightly from the one in Bedrock in that the Bedrock version has the verification of
the post-loop code proceed from the loop precondition and the fact that the loop
exited, whereas the Bedrock2 version uses the loop postcondition as the premise of
that goal).

3.3 Separation Logic in Bedrock2
Bedrock2 semantics for (single-byte) memory access are just map.get and map.get,
but verifying programs that access memory at non-constant addresses requires much
more care than threading the local-variable map through straightline. The chal-
lenge is that map.get and map.put do not commute in general, just only when they
are applied to different addresses, so correctness of even simple programs like the

73



second swap from Subsection 3.1.1 relies on administrative preconditions asserting
disjointness between relevant memory regions.

The strategy is simple and standard: instead of reasoning directly about map.put
and map.get, all places where the memory is mentioned will be reworded to treat it
as a disjoint union of parts. This includes the symbolic state in the proof context,
function preconditions and postconditions, and lemmas about memory access. For ex-
ample, swap requires m =* scalar a_addr a * scalar b_addr b * R. Here * can
be taken to mean the (partial) disjoint-union operation on maps, with =* asserting
that the operation was successful and resulted in m. It is conventional to generalize
the definition of * to predicates over memory fragments: the memory fragment t
satisfies (=*) scalar a_addr a iff it contains exactly one machine word with value a
starting at address a_addr. For the purposes of this section, either perspective works;
for a more elaborate introduction to separation-logic predicates see [Cha20a].

3.3.1 Cancellation
The fundamental operation on separation-logic expressions is a cancellation step, that
is identifiying and removing a given clause from a larger separation-logic formula.
For example, symbolically executing store(a_addr, t) against a memory satisfying
m =* scalar a_addr a * scalar b_addr b * R should result in a memory where
parts disjoint from scalar a a_addr a are preserved but the clause itself is first re-
moved (cancellation) and then replaced with scalar a_addr t. Generally, cancelling
X from A means to find Y such that X*Y is equivalent to A; I will write X*Y ⇔ A.

As cancellation will be performed for each memory access and for each * argument
in the precondition of a function call, it has been a performance bottleneck in past
verification efforts. This section will show how to implement the cancellation step on
arbitrary separation-logic formulas in a single proof-engine operation plus a controlled
partial evaluation. This implementation is used throughout Bedrock2 separation-logic
proofs and accounts for a miniscule fraction of the total proof time. The implementa-
tion technique resembles the last “denotation” step of reflection-based rewriting proce-
dures but does not require a deeply embedded language of all allowed separation-logic
formulas; I call it shallow reflection.

Separation-logic formulas where * appears in a canonical associativity will be repre-
sented as lists of disjoint parts using the following wrapper.

Fixpoint seps xs :=
match xs with
| cons x xs => x * seps xs
| cons x nil => x
| nil => empty
end%sep.
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It will be an invariant of the cancellation procedure that each separation-logic formula
inside the list argument to seps does not contain any * at the top level. Under this
assumption, canceling any clause can be expressed as an application of the following
lemma:

forall n xs, seps (remove_nth n xs) * nth n xs ⇔ seps xs

Three implementation tasks remain. For example, for xs=[A; X; B; C] and n=1:

1. Shallow reification: finding [A;X;B;C] s.t. seps [A;X;B;C] = A*X*B*C.

2. Matching: identifying n s.t. nth n xs = X.

3. Controlled denotation: turning seps (remove_nth 1 [A;X;B;C]) into A*B*C.

It is important to keep efficiency in mind for each step. However, there is no need to
shoot for optimality: the overall procedure will apply (refine with) the above lemma,
which creates a new goal in the proof engine, so the goal is for each operation to be
not much slower than that.

Shallow Reification A recursive proof script can walk the separation-logic for-
mula, translating * to cons. As a premature optimization, typechecking of the list
is deferred until the lemma application. Note again that the formulas themselves are
left unchanged.

Matching A recursive proof script will walk the list, returning 0 if the current
element matches and 1 + the recursive call if not. The key choice is how an element
A is matched against X: syntactic equality is fast to check but insufficient for calling
swap because while a_addr is a function argument, a is not, and its value needs to
be determined during cancellation of scalar a_addr ?a from the caller’s symbolic
state. Genaral unification modulo computation rules of Coq terms is undecidable,
and the built-in heuristic implementation can be arbitrarily slow in practical cases.
For Bedrock2, I implemented unification modulo unfolding of proof-context variables
but no computation; it has served the needs of the project.

Controlled Denotation The main challenge in this step is keeping A, B, and C
unchanged. This means that a generic evaluation strategy for Coq terms is unsuitable,
as it might peform computation inside these clauses. For example, if B is scalar
b_addr (length [1;2;3;4]), the definition of scalar should not be unfolded, and
the length should not be reduced to 4 as that might break a user-written proof script
that later searches the context for pointers to lengths. We can get a step closer by
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using the configurable reduction tactics with an explicit list of definitions to unfold
(here just seps and remove_nth). However, if remove_nth also appears inside A, B, or
C, these occurrences would still be extraneously unfolded. This problem is bypassed
by creating dedicated copies of the list operations (transitively) used by cancellation
and using controlled reduction tactics unfold these new definitions only; for example
Definition myapp T := Eval cbv delta in @List.app T and cbv [myapp].

3.3.2 Cancellation During Symbolic Execution
In practice, preconditions do not appear as neat flat lists like A*X*B*C, but appear
in arbitrary associativities such as A*(X*B)*C. As Bedrock2 provides a reliable im-
plementation of cancellation, there is no good reason why even an ad-hoc proof
should depend on the associativity of the separation-logic formulas. Thus, Bedrock2
separation-logic tactics eagerly flatten all separation-logic goals and hypotheses and
keep them in seps form during separation-logic tactic execution. The flattening is
implemented similarly to cancellation itself: shallow reification, a verified tree-to-list
function operating on seps, and controlled denotation.

As mentioned briefly in the discussion of matching above, separation-logic formulas
on which cancellation is performed can contain existential variables ?e whose values
can be determined during cancellation. This means that cancellation could succeed
on the same goal with multiple different results, and thus cancelling multiple clauses
from the same formula may depend on the order of these clauses. While scenarios
where this flexibility occurs are often unintentional, they should not cause cancellation
to fail when a solution is possible. For a degenerate example, cancelling ?X and A
from A*B should succeed (with ?X:=B), but if ?X were cancelled with A or A*B first,
cancellation would fail needlessly.

To properly tackle this problem, cancellation as used in symbolic execution works on
separation-logic equivalences with multiple clauses on each side, for example A*B ⇔
?X*A. At each step, the algorithm picks one clause from each side and cancels them
with each other. Three rules are used to ensure that a solution is found if one exists:

1. All cancellations of clauses without evars are performed before any cancellation
of clauses with evars. It is safe to perform these cancellations greedily – if the
goal is provable at all, it is provable after canceling two identical clauses from
both sides.

2. A clause that is an evar (like ?X) is only cancelled last, and it is then cancelled
with the entire other side of the equivalence.

3. Other evar-instantiating cancellation steps can be backtracked if cancellation
(or, optionally, a later proof step) fails after a tentative choice. This is imple-
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mented using Coq’s built-in support for multi-success tactics, so the scope of
backtracking can be controlled by writing once (ecancel; picker); next.

Troubleshooting Cancellation Failures Proofs of programs whose separation-
logic clauses include complex expressions can sometimes have a cancellation fail where
the programmer expects it to succeed. The reason is often a minute difference, which
may even be omitted from display by normal notations and might be resolvable
through computation alone (but cancellation uses syntactic matching, not unification
modulo computation rules). To assist with troubleshooting these situations, Bedrock2
provides the tactic cancel_seps_at_indices which takes two natural numbers as ar-
guments and generates a subgoal asserting that the separation-logic clauses at these
indices are equal. Interactive debugging can then proceed as for any equality proof,
perhaps by using the tactic f_equal to compare the function symbols at the heads
of both sides of the equality and generate subgoals for pairwise equalities of their
arguments. Use of this tactic with literals as arguments is not recommended in fin-
ished proof scripts as, changes in the order of separation-logic clauses could break
the proof, but as nothing in Bedrock2 actually shuffles the clauses around without a
good reason, some users report success with this approach as well.

3.3.3 Separation-Logic Rewriting
A common task during proofs of memory-manipulating programs is replacing some
subset of separation-logic clauses in the symbolic state with a logically equivalent
but syntactically different description of the same memory. For example, the same
memory region may be equivalently understood to contain a 4-byte array, two 2-
byte arrays, or a 32-bit machine word. The first published iteration of the Bedrock
system [Chl11] supported explicit annotations in program code to call out such equiv-
alence transformations on the symbolic state; later [Chl13] similar instructions could
be specified as hints for using particular preconditions and proving particular post-
conditions.

These equivalences can be stated using ⇔, proven as lemmas, and used to prove other
lemmas, but manually instantiating lemmas does not lead to a satisfactory proof ex-
perience. Even lemmas stated with superfluous universal quantifiers and equational
premises constraining their values cannot be always matched automatically. Consider
trying to merge the two consecutive byte arrays in the following separation-logic for-
mula: (A * bytes p [a;b] * B) * C * (D * bytes (p+2) [c;d]). No syntactic
subexpression here would match the left-hand side of an array-concatenation lemma
regardless of whether the arguments to the lemma are already known, so rewriting
tactics provided with Coq are not applicable.

Instead, Bedrock2 implements rewriting using cancellation. Concretely, rewriting
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the symbolic state S with a lemma establishing X ⇔ Y is performed by repeated
cancellation on the goal S ⇔ X*?R, after which Y*R is derived using the congruence
rule of * and ⇔.

To support lemmas with quantifiers, a recursive tactic script automatically instanti-
ates all quantifiers with existential variables ?E. Cancellation matching these variables
against the symbolic state automatically determines appropriate values. A variant
of the rewriting tactic is provided that attempts to solve the non-separation-logic
premises of the lemma using another tactic that is passed in as an argument, back-
tracking cancellation decisions if unsuccessful. Left-to-right rewriting is supported by
wrapping the lemma in the macro symmetry!.

Lifting Predicates and Logical Quantifiers If separation-logic formulas are al-
lowed to contain existential quantifiers and pure predicates, they can be lifted to the
top-level position by rewriting with an appropriate lemma. Further, Samuel Gruetter
contributed a dedicated set of lemmas in the same style as the key lemma for cancel-
lation among seps, which allow, for example, instantiating an existential variable in
the 𝑛th clause of the current goal without reordering the clauses.

3.3.4 Cancellation Performance
The separation-logic automation described in this section is fast enough that it is not a
bottleneck in any Bedrock2 proof despite ubiquitous use. To sanity-check that it also
achieves the expected performance on large inputs, I implemented the cancellation
microbenchmark from the paper on Bedrock with MirrorShard [Mal+13, Fig. 4] in
Bedrock2 and measured performance of both implementations (with Coq 8.4 and 8.15
respectively). As this microbenchmark works on concrete linked-list segments, it does
not evaluate performance of evar instantiation, side-condition solving, or backtracking
(which is not supported in MirrorShard).

Canceling 256 linked-list elements (the largest reported input) takes about 0.5s in
Bedrock2 (including reification and denotation) and about 0.5s in Bedrock with Mir-
rorShard (excluding reification and denotation). For comparison, the baseline Ltac
implementation in [Mal+13, Fig. 5] is asymptotically slower, reaching 1s on a slightly
different benchmark before input size 16. Further, it appears that the MirrorShard
implementation of the benchmark distinguishes individual linked-list elements using
unary natural numbers, and changing it to use binary integers instead makes it take
just 0.2s – more than twice as fast as Bedrock2. (Using opaque identifiers as in the
Bedrock2 version does not appear practical given the architecture of MirrorShard,
but I would not expect substantial additional speedup from it.)

Qed-time performance results are similar: the MirrorShard implementation which is
based on (deep) reflection takes only 0.7s, while Qed after the Bedrock2 cancellation
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microbenchmark takes 1.8s for the reification alone and an additional 1.7s for cancel-
lation. (Setting Strategy -100 for the identifiers unfolded during cancellation did
not improve these times.) Thus I conclude that Bedrock2 separation-logic automation
is a couple of times slower than MirrorShard while requiring two orders of magnitude
less infrastructure code. In absolute terms, both are fast enough on realistic inputs.

3.4 Reasoning With Word Arithmetic
This section will elaborate on a collection of arithmetic-related challenges that con-
tinue to affect the program-proof experience in Bedrock2 and developments that build
upon it. I report on substantial but not entirely satisfying progress in each case and
briefly discuss potential future directions.

Proof obligations about word arithmetic are ubiquitous during verification of Bedrock2
programs. Automation for discharging these goals has improved drastically during
(and to some degree because of) the development of the Bedrock2 ecosystem but does
not reach the level of effectiveness as attributed to comparable subsystems in SMT
solvers. This section will give an overview of the progress achieved so far and future
directions that may be worth pursuing. Just to illustrate how pressing this issue is,
below is the precondition and code for a simple example, the transmit path in the
Ethernet driver, with a numbered annotation (*1*) for each location corresponding
to a proof obligation requiring word-arithmetic reasoning:

fnspec! "lan9250_tx" p l / bs ~> err,
{ requires t m := m =*> bytes p bs ∧

unsigned l = length bs ∧ unsigned l mod 4 = 0; ... }.

Definition lan9250_tx := func! (p, l) ~> err {
err = lan9250_writeword((*1*)$TX_DATA_FIFO, $(2^13)|$(2^12)|l);
require !err;
err = lan9250_writeword((*2*)$TX_DATA_FIFO, l);
require !err;
while ($3 < l) {
err = lan9250_writeword((*4*)$TX_DATA_FIFO, load4((*3*)p));
if err { l = $0 (*5*) } else {
p = p + $4;
l = l - $4
(*6*) (*7*) (* 8 *) (*9,10,11,12*)

}
} (*13* | *14*)

}.

Each call to a function that takes an address requires a proof that the address is
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within the appropriate range (obligations 1-4). Proof obligation 5 requires that the
buffer whose length is 0 mod 4 and no larger than 3 has no bytes remaining. Word-
arithmetic proofs 6 and 7 establish the loop invariant for the address and length of the
remainder of the packet, and instance 8 shows that the remaining length decreases.
Obligations 9-14 are similar but arise from the postcondition about the MMIO trace
generated by this function. Some of these goals are quick to prove by hand (1, 2),
but others require the full conceptual strength of integer-linear arithmetic (5, 8). No
easy workaround appears to apply.

3.4.1 Reducing Modular Arithmetic to Integer Arithmetic
When I started prototyping the components of what became the ecosystem I am now
writing about, Coq had no support for automatically proving goals involving division
or modulo operations. This limitation quickly became a bottleneck in proofs about
arithmetic algorithms in Fiat Cryptography and inspired Jason Gross to implement a
Coq proof script for reducing arithmetic goals involving division and modulo to goals
involving multiplication and addition: For positive denominators, it is sound and
complete to replace the hypotheses n mod d = r and n/d = q with n = q*d + r and
0 <= r < d. The same technique generalizes to expressions, but care must be taken
to avoid duplication of the arguments to division or modulo. The implementation
of this transformation was later included in Coq3. However, automatic arithmetic-
goal solving does not use it by default because some proofs that previously passed
while treating division and modulo as uninterpreted functions appear computationally
infeasible with the additional equations included.

Abstract Interpretation When setting up the first program-proof automation
for Bedrock2, I considered but did not attempt a solver-based approach because the
experience just described and additional preliminary experiments suggested that the
linear-arithmetic solvers available in Coq would be too slow to be used automati-
cally. Instead, Clark Wood and I tackled the arithmetic goals in the first examples
using tedious ad-hoc rewriting-based proofs. To help with this effort, I built a data-
flow-directed abstract-interpretation pass to infer constant upper and lower bounds
on word expressions in the proof context. Even though the implementation is writ-
ten in Ltac, the analysis makes efficient use of the proof context, handles shared
subexpressions without inlining them (which would potentially increase in expression
size exponentially), and achieves overall-unproblematic performance. However, the
deductive power of this method is inherently limited. As is typical of Bedrock2 func-
tions, the memory accesses in lan9250_tx require comparing the accessed address to
the beginning of the packet, and the two are not separated by any constant.

3https://github.com/coq/coq/pull/8062
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Improvements to Coq’s Linear-Arithmetic Solver While not reliable enough
for automatic use, Coq’s linear-arithmetic tactic did still allow for quick discharging
of a number of Bedrock2 proof obligations. Samuel Gruetter and I used it sporadically
and reported a number of bugs and performance limitations to the Coq issue tracker.
The persistent interest from Fiat Crypto and Bedrock2 developers inspired Coq de-
velopers to improve the proof support for arithmetic goals. In particular, Frédéric
Besson who was working on a SMT solver for Coq [Bes21] stepped up to implement
a number of substantial optimizations to linear-arithmetic solving. To name a few:
the old implementation of Fourier elimination was replaced with Simplex and then
further augmented with Fourier-elimination-based heuristics to find simple cutting
planes early, case-splitting proofs were entirely replaced with cutting-plane proofs,
and the infrastructure for translating linear arithmetic goals was refactored and gen-
eralized.

One can hope that some of these optimizations would have been implemented regard-
less of our involvement, but having Bedrock2’s arithmetic-proof needs serve as a test
suite for work-in-progress improvements appears to have worked out particularly well.
The new linear-arithmetic solvers are still not fast enough to handle all instances of
division and modulo in the Coq standard library, but they run plausibly tolerably
fast on many examples in Bedrock2. A qualitative measure of the success of these
algorithmic improvements is that performance issues relating to their use are now
sometimes tracked down to other root causes. The on-by-default transformation of
the propositional connectives around linear-arithmetic facts into conjunctive normal
form is one example4.

The ZnWords tactic shown in earlier examples, implemented by Samuel Gruetter,
uses top-down rewriting to translate word-arithmetic goals into equivalent integer-
arithmetic goals. An advantage of this strategy is that it captures the full behavior
of word arithmetic, with or without overflow, in a single goal that can be handed off
to a solver for propositional formulas over linear arithmetic. However, the integer-
arithmetic goals generated in this manner are often more complicated than one might
intuitively expect because intermediate operations that “obviously” do not overflow
are given the full Euclidean-equation translation. This makes interpretation of ver-
ification failures or timeouts challenging, sometimes calling for a trial-and-error ap-
proach similar to how one might troubleshoot a failed SMT-solver query. The current
implementation is also slow, often spending even more time on searching for and
rewriting word expressions than on linear-arithmetic solving, and this makes itera-
tion more difficult.

4https://github.com/coq/coq/issues/12140
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3.4.2 Top-Down and Bottom-Up Translation Strategies
Naive manual rewriting-based proofs and integer-arithmetic goals generated by a
complete-translation tactic have a commonality that explains their power and te-
diousness. Consider the expression unsigned ((a ^+ b) ^+ c) where ^+ stands for
addition of 32-bit words. In the common case that this expression does not overflow,
the straightforward approach to transforming this word expression into an integer
expression would start by rewriting with a lemma of the following form:

unsigned_add_nowrap x y: 0 <= x + y < 232 -> unsigned (x ^+ y) = x + y

Actually applying this rewrite rule to the given expression results in a duplication of
work. Instantiating x:=a ^+ b gives the precondition 0 <= unsigned (a ^+ b) + c
and a new expression (a ^+ b) + c. These two expressions appear as separate Coq
goals, with no supported way for sharing work between them. After rewriting the
addition, its arguments must be translated to integer expressions twice: once to prove
the precondition of the rewrite rule and once in the goal where the original expression
appeared. Coq’s repeat rewrite happily generates an exponential number of goals.

A translation that instead generates x + y mod 232 does not exhibit the same issue
syntactically during translation, avoiding exponential blowup in many cases. How-
ever, the solver still has to reason about both cases of whether x + y overflows or
not. In the case of Coq’s linear-arithmetic-proving algorithm, cutting planes are used
to separate noninteger solutions from the feasible region or the rational relaxation
of the problem, and choosing a small number of effective cutting planes can take
exponential time (the problem is NP-complete, after all). Cases where the upper
bound on the sum is a constant are handled using fast preprocessing, but in these
cases the rewriting-based approach could have solved the side condition using abstract
interpretation, without calling the linear-arithmetic solver at all.

Bottom-Up Translation Whether a word-arithmetic expression overflows can be
determined based on its inputs alone, without considering the context in which the
expression appears. Further, explicit overflow checking is relatively rare in low-level
programming, so most expressions that do not overflow can be proven not to overflow
based on the inputs alone, without considering outcomes of conditional tests. This
observation suggests that most word expressions encountered during program veri-
fication can be translated to modular-arithmetic-free integer-arithmetic expressions
eagerly or not at all.

I implemented a data-flow-directed tactic that proves assertions of the form unsigned
(f a b) = f' (unsigned a) (unsigned b) based on similar assertions about a and
b. When invoked on an expression, the tactic first recursively translates the subex-
pressions a and b and only then considers the word-to-integer translation rules for f.
The proof obligation asserting that the result of f does not overflow a word is stated
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in terms of the translations of a and b and is proven by a call to Coq’s linear-integer-
arithmetic solver. As a bonus, the simple recursion structure makes it easy to handle
subexpressions shared using definitions like d := a ^+ b in the Coq context without
duplicating them.

Preliminary performance experiments suggest that this method is fast enough to
be used more widely than ZnWords. However, it is also intentionally less complete:
expressions that do overflow are not translated to integer arithmetic at all. Hypothet-
ically, a later execution of the bottom-up translation after additional hypotheses have
been added to the context has the opportunity to complete this translation. Alter-
natively, ZnWords can be called for a complete translation to a hard-to-read integer-
arithmetic goal to see whether it would be proven by the integer-arithmetic solver.
A nontrivial practical downside of the particular incompleteness of this approach is
that every change to the proof context could, in principle, make more information
available to the integer-arithmetic solver and thus allow for additional progress to be
made in the word-to-integer-arithmetic translation.

3.4.3 Bitwise Operations
The approaches based on translating word arithmetic to modular arithmetic and then
integer arithmetic only apply to arithmetic operations on words. Bitwise operations
such as logical and, or, and xor are satisfactorily handled by the perspective that
machine words are sequences of bits. Concretely, the Coq function Z.testbit : Z
-> Z -> bool and the lemma that two integers are equal if all of their bits are equal
allow a word-equality goal to be traded for a bit-equality goal for a bit at a universally
quantified index. Rewrite rules for individual operations are then used to translate
bitwise operations to operations on individual bits and their indices, expressing the 𝑖th
bit at the output in terms of bits of the input. For example, truncation is translated
to a Boolean conjunction with an index comparison.

Z.testbit_mod_pow2: ∀ a n i, 0 <= n ->
Z.testbit (a mod 2^n) i = ((i <? n) && Z.testbit a i)

A naive algorithm that exhaustively explores combinations of outcomes of integer
comparisons and checks their consistency using an integer-arithmetic solver has been
sufficient to prove the small bitwise-arithmetic goals that appear in Bedrock2 pro-
grams. However, note that the strategy presented here is distinct from bitblasting,
which involves creating a Boolean variable for every bit of the machine word. A
qualitative consequence of this difference is that the technique described here can be
applied to words with a universally quantified number of bits, whereas bitblasting
requires a concrete size.

The few goals that involve both bitwise and arithmetic operations (and where the bit-
wise operations do not fall into simple arithmetic patterns like implementing modulo
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using a mask) have been solved by asserting the desired arithmetic property about
the bitwise computations and proving each subgoal using a different method.

3.4.4 Evaluating Constant Expressions
Bedrock2 programs sometimes define values of compile-time constants using arbitrary
Coq expressions. A minimal example is the usage of $(2^13) on the first line of
lan9250_tx above: the $ escapes the grammar of Bedrock2 to insert a Coq expression
where the operator ^ stands for arbitrary-precision exponentiation. The desired proof
strategy for programs involving complicated constant expressions is to keep these
expressions in their original syntactic form for readability exactly as long as this does
not impede the completeness of automatic proof procedures. Constant expressions
can also appear in specifications of Bedrock2 programs and sometimes have non-
integer types: for example, constant headers of network packets can be specified as
lists of bytes. This seemingly trivial request is surprisingly challenging to satisfy
generically in Coq, making for a spectacular case study of how practical usability of
a proof assistant can get tangled up in its type-theoretic foundations.

First, there does not seem to be any reliable way to determine whether the evaluation
of an arbitrary expression in the proof context would yield a value or result in a
stuck term that contains a reference to some universally quantified variable or even
an opaque proof. This practical limitation is especially surprising in the context of
the metatheoretical strong-normalization guarantee of the Coq type system: every
expression that is well-typed in the global context can be evaluated to a value. It
is easy to check whether an expression is well-typed in the proof context, and it is
possible (but slow) to clear the proof context and check whether the expression is
well-typed in the section context, but there is no tactic-programming interface to
check an expression against the global context.

Indeed, the section mechanism of Coq works very similarly to temporarily extending
the global context with the section variables and assumptions as axioms. Interactive
use of Coq has access to the Print Assumptions command that can be used to deter-
mine whether an expression (usually a proof) depends on any axioms, but it works by
walking all references in its argument and takes several seconds on simple examples.
Further, as Print Assumptions is intended for checking proofs, it does not complain
about proofs appearing in its argument, and expressions that reference opaque proofs
can get stuck during evaluation using every built-in evaluation mechanism of Coq
even though they are considered computable from the perspective of the metatheory.
Evaluating by trial and error is not an option: inlining functions operating on a stuck
term can easily consume arbitrarily much memory.

Even if opaqueness was bypassed, trying to compute with proofs would be nonsensical
from the perspective of a practical user and arbitrarily slow in any case. However,
it is also not satisfactory to rule out all occurrences of proofs inside expressions.
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As Coq’s core logic must rule out nonterminating programs to remain consistent,
nonstructurally recursive definitions must be justified using proofs of termination,
and these proofs are considered a part of the definitions they justify. The machinery
for defining nonstructurally recursive functions relies on an inductive definition of
well-founded relations and defines well-founded recursion as recursion on the proof
of well-founded accessibility of the function argument. The type-theoretic construct
that allows for this is called subsingleton elimination.

Notably, the fast evaluation mechanisms (cbv, vm_compute and native_compute) in
Coq do not treat proofs specially: whether or not used to justify termination, if an
opaque proof appears in an expression, it remains as-is, potentially blocking full eval-
uation. This restriction is necessary exactly because these evaluation mechanisms
can be used in arbitrary contexts, potentially accepting and returning expressions
which contain universally quantified variables. However, the Extraction machinery
for executing Coq code outside Coq strips proofs from all expressions, allowing com-
putation to proceed even in the case of well-founded recursion justified by an opaque
proof. This is possible because Extraction only operates in a global context, failing
with “You can’t do that” within a section. Further, while Extraction can translate
almost all Coq constructs, the target languages do not support partial evaluation,
so Extraction can be used only to compute expressions of first-order types such as
integers and lists of integers but not functions and types. This restriction also ensures
that the resulting value to will not need to reference the proofs that are erased.

Thus, seeking to evaluate an expression that is well-typed in the global context during
a proof inside a section remains on our long wishlist of practical Coq improvements.
An Ltac function that recursively inspects the expression and only allows an explicit
list of integer-arithmetic operators and related functions before calling vm_compute
is used as a stand-in. Note that both a global-context well-typedness check and a
proof-erasing evaluator would be required to dispense with this ad-hoc hack within
the current design of Coq.

3.4.5 Symbolic Execution With Address Arithmetic
Calling functions with computed addresses means that the memory footprint these
functions operate on depends on arithmetic expressions, posing an obstacle to sym-
bolic execution based on cancellation alone. In fact, the same consideration applies
to stores and loads (including the one in lan9250_tx), but it is better to look at a
richer example to understand the pattern. Consider a program that has access to a
10-byte array at address b and calls memmove(b, b+1, 9) to remove the first byte.
The specification of memmove in Bedrock2 reads as follows:

fnspec! "memmove" (dst src n : word) / (d s : list byte) R,
{ requires t m := m =*> bytes src s * ∧ m =* bytes dst d * R ∧

length s = n :> Z ∧ length d = n :> Z ∧ n <= 2^(width-1);
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ensures t' m := m =* bytes dst s * R ∧ t=t' }.

Naive cancellation would fail to solve the first precondition because the caller’s sym-
bolic state has bytes b bs, but the callee’s precondition with src := b^+1 requires
bytes (b+1) ?s. Worse, the second precondition would be solved in a manner that
needlessly leads to an unprovable goal. With dst := b, bytes b bs would be can-
celled with bytes b ?d instantiating ?d := bs. The problem is that the fourth
precondition requires length d = 9, but bs has length 10. Indeed, only the first
9 elements of bs are to be overwritten by memmove, and the last byte would re-
main as-is, which can be proven by instantiating the specification with the frame
R := ptsto (b+9) (nth 9 bs).

The appropriate symbolic-execution rule in the presence of pointer arithmetic is to
inspect the length preconditions first. Then, instead of looking for a syntactic match
for bytes (b+1) ?s, the symbolic state is to be searched for a byte array spanning
b+1...b+1+9. Checking this requires word-arithmetic queries about two inequalities,
calculating an index and comparing it to the length: (b+1)-b < 10 and (b+1+9)-
b <= 10. Based on this, the symbolic state bytes b bs can be rewritten to bytes b
(firstn 1 bs) * bytes (b+1) (skipn 1 bs) and have bytes (b+1) ?s cancelled
from it, instantiating ?s := skipn 1 bs. The same process is then repeated to de-
termine d, starting from the symbolic state before the computation of s for simplicity.

3.5 Precondition-driven Quantifier Instantiation
Actually carrying out the above approach on top of the Coq proof engine is surpris-
ingly tricky, even just for reasons orthogonal to the word-arithmetic-proving chal-
lenges discussed in the previous subsection. Two major limitations are at play: First,
there is no intentional API for inspecting one of several goals to use in the proof
of another. Further, even if this limitation is bypassed using evars or some other
mutable-state gadget, the goals’ contexts are completely independent as far as Coq
is concerned, even if the goals correspond to the two sides of a ∧.

To understand how limiting this paradigm is, it is helpful to walk through the proof-
engine operations that correspond to a straightforward attempt at implementing the
symbolic-execution strategy. First, the specification of memmove is looked up and the
quantifiers for runtime arguments dst, src, and n are filled in. The quantifiers for
the specification arguments are instantiated with new existential variables ?d and ?s.
Splitting the requirements stated using ∧ results in five subgoals for the preconditions,
along with another goal for the execution of the code after the call to memmove. So
far, so good.

For a clear-cut example of how these goals being unrelated is restrictive, consider try-
ing to use a lemma ∀ bs, ∃ bs0 bs', bs = bs0 ++ bs' to justify the cancellation
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of a part of bs to cancel bytes (b+1) ?s. This lemma can be instantiated for bs,
and the existential quantifier can be eliminated to yield a variable bs' in the proof
context of the goal in which the lemma was instantiate, but cancellation will fail be-
cause ?s cannot be instantiated with bs'. The reason is that the existential variable
?s was created in a context that does not include bs', so it cannot be instantiated
with it.

A simple justification for this limitation is that ∃ n, ∀ m, n = m must not be prov-
able by creating an existential variable for n and instantiating it with m. As the
requirements of memmove are to be proven in the same context, soundness is not at
stake here. The same lemma can be used to instantiate ?s if the lemma is used before
instantiating the memmove specification’s quantifiers with new existential variables.
However, lifting the evar-context limitation would amount to treating the goals be-
tween which evar instantiations can be shared as appearing in the same context, not
independent contexts as assumed by the Coq proof engine. Specifically, instantiating
?s during the proof of the precondition would need to make the variable bs' appear
in the context for symbolic execution of the code after the call to memmove.

If bs' is not the witness of an existentially quantified statement but rather a lo-
cal definition bs' := skipn 1 bs, trying to unify ?s with bs' instantiates ?s with
skipn 1 bs instead. This behavior is workable in principle, but it results in an un-
necessarily verbose symbolic state for the verification of the code after the call to
memmove. As an additional complication, properties proven about bs' during the
proof of the precondition (for example, that it has length 9) cannot be carried over
to the proof of the postcondition, so they will need to be rediscovered and reproved.

3.5.1 Artificial Example: Loading an Existentially Quantified
Value

While calling memmove is a practically relevant and convenient example, the core
challenge discussed in this subsection is not unique to address arithmetic: In fact, a
less arbitrary-seeming form of the same problem would appear when passing a singly
linked list to a function that simply dereferences a pointer. Specifically, it is conven-
tional to specify a cell of nonempty singly linked list at address p and with value v in
separation logic using an existentially quantified pointer to the next cell: ∃ pnext,
scalar p pnext * scalar (p+4) v. Independently, the simplest specification of a
pointer-dereferencing function would be

fnspec! "deref" p / v ~> r,
{ requires t m := m =*> scalar p v;

ensures T M := T = t ∧ M = m ∧ r = v }.

Straightforward and modular symbolic execution of deref(p) is bound to get stuck.
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Instantiating the quantifier for v with a new existential variable to reveal the precon-
dition m =*> scalar p v fixes the context of that evar. After this, a simple proof
script can easily inspect the precondition and understand that the existential quan-
tifier inside the representation predicate for the singly linked list needs to be moved
to the proof context. Cancellation would be able to prove m =*> scalar p ?v if the
previous two steps were swapped, but it fails to instantiate ?v := pnext because
pnext was introduced after ?v.

Again, ?v appears in the postcondition of deref, so there is no hope of making
progress with a proof of scalar p pnext in the context of the precondition alone.
Further, consider what the specification of the function in which the call to deref
resides would be. Positing the predicate for the singly linked list as the precondition
and an implementation that simply returns the value received from deref, there does
not appear to be a way to state a nontrivial postcondition:

fnspec! "callderef" p ~> r,
{ requires m := m =*> sll p ∧ p <> 0;

ensures := r = (* ?? What goes here? *) }.

Revealing the definition of the fnspec! notation, the problem can be simplified to
forall p (H : sll p ∧ p <> 0), call "callderef" (fun t m r => (*??*)).
A reader familiar with the type theory of Coq can observe that using an existentially
quantified value from the definition of H to fill in ?? would constitute extracting
information from the proof of a Prop to compute a word to use in an argument to
call, a pattern that in general is inconsistent with classical logic. This connection
yields insight that can be used to state the general form and root cause of the overall
quantifier-instantiation challenge. The Bedrock2 program-proof design can be seen as
centering around translating operations in imperative code to functional expressions
in the proof context. For constructing a function-call node, its arguments must be
translated first, and specification arguments are required in all cases where they
influence the (specified) output of the resulting functional program.

3.5.2 Magic Wand as a Solution for Frame-Quantifier Instan-
tiation

For the special case of the specification argument R that describes the rest of the mem-
ory to be preserved throughout the function call, the context-management challenge
investigated in this subsection can be bypassed using an additional separation-logic
connective, the magic wand (-*). Informally, P -* Q represents the memory frag-
ment that would satisfy Q if only it were joined with a memory fragment that satisfies
P; in symbols m =* P -* Q iff ∀ dm M, P dm -> M = dm ⊍ m -> Q M. (Here and
onwards, equalities involving the disjoint-union operator ⊍ are implicitly conjuncted
with the fact that the parts are in fact disjoint). From the perspective of proof ma-
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chinery, P -* Q can be thought of as the predicate that asserts that P can be cancelled
from Q.

If P is the postcondition of the callee (instantiated with existential variables for
other specification arguments as required) and Q is the predicate that the code
after the function call executes as desired, it is sound and complete to instanti-
ate the frame quantifier in the callee’s specification with P -* Q. Doing so results
in P -* Q appearing as one of the disjoint conjuncts in the precondition of callee.
The other disjoint conjuncts are cancelled from the caller’s symbolic state as usual,
leaving behind only the ones not used by the function call, R'. At this point the
goal is R' ==> P -* Q, which unfolds to ∀ m, R' m -> (P -* Q) m, which unfolds
to ∀ m, R' m -> ∀ dm M, P dm -> M = dm ⊍ m -> Q M, which is equivalent to
∀ M, (R' * P) M -> Q M. Introducing M as the new memory and R' * P as the
new symbolic state allows symbolic execution to continue to the post-function-call
code described in Q.

This indirection means that the specification argument R does not have to be instan-
tiated with R', so R' can reference context variables introduced after the specification
arguments were instantiated with existential variables. Instantiating R with P -* Q
is unproblematic because Q is already present in the goal before symbolic execution of
the function call and P can be extracted right after all other specification arguments
are instantiated. Conveniently, the same instantiation is possible throughout cancel-
lation, and specifically at the very end of it, so that goals displayed to the user do
not need to include -* at all. However, using this trick for instantiating the frame R
does not solve the context-management problem for other arguments of the callee’s
specification.

Samuel Gruetter and I arrived at this fine-grained characterization of the benefit
provided by this use of the magic wand while investigating the issues discussed in
this section; my notes tell me to credit him with the experimentation and initial
insight. The trick for instantiating R with P -* Q is called the ramified frame rule,
and a more optimistic description of its usefulness as a solution to evar-instantiation
problems appears in [Cha20b]. The same concept is in turn credited to [KBA10],
where a (different) ramified frame rule was used to modify the frame predicate itself.

3.5.3 Emulating Multiple Goals in the Same Context
It is possible to implement some limited tactic-programming functionality on top
of the Coq proof engine without splitting the conjuncts of the callee’s precondition
into independent goals. For example, solving any one of the conjuncts using a tactic
can be supported generically using a wrapper solve_first tac. Rewriting in the
goal similarly works as expected because the other conjuncts are treated just like any
other context in which a term is replaced with an equal one. However, any tactic that
modifies the context needs to execute in the proof-engine goal for the entire conjunct.
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A particularly inconvenient aspect of this strategy is that all lemmas that are applied
to the goal need to be translated to a form where their hypotheses are joined using
∧ rather than ->. For example:

Lemma uncurried_load_four_bytes_of_sep_at bs a R (m : mem)
(H : m =*> bytes a bs ∧ length bs = 4) :
load access_size.four m a = Some (word.of_Z (le_combine bs)).

Further, definitions that are unfolded to generate goals must take care not to introduce
existential variables earlier than necessary. Calling the expression-evaluation predi-
cate dexpr m l e v introduced with a fresh existential quantifier for v in cmd_ok of
Section 3.2 is a great example of how violating this principle can lead to trouble. If
the expression e includes load operations, the proofs that these loads succeed (by
cancellation and arithmetic) must instantiate the existential variables for the result
with expressions that are well-typed in the context of v, which does not contain any
definitions or hypotheses introduced by the expression-evaluation proof. Specifying
expression evaluation using a continuation-passing-style definition expr_ok similar to
cmd_ok sidesteps this limitation:

Definition expr_ok (e : expr) (post : word -> Prop) : Prop :=
match e with
| expr.op op e1 e2 =>

expr_ok e1 (fun v1 =>
expr_ok e2 (fun v2 =>
post (interp_binop op v1 v2)))

| expr.load s e => expr_ok e (fun a =>
∃ v, load s m a = Some v ∧ post v)

...

Relying on the fact that Bedrock2 expression evaluation is deterministic, it is possi-
ble to prove that the weakest-precondition generator for expressions matches dexpr
exactly:

Lemma dexpr_expr_k e P :
expr_ok m l e P -> ∃ v, dexpr m l e v ∧ P v.
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Chapter 4

Omnisemantics

This chapter describes omnisemantics, specifically inductive omni-big-step and omni-
small-step judgments, and their use in the integration proof of Bedrock2, its compiler
to RISC-V, and a pipelined RISC-V processor. The presentation is intentionally
more general when applicable: I am optimistic that this technique will be directly
applicable and beneficial in other projects modeling nondeterminism and undefined
behavior, perhaps even outside integration proofs and verified systems programming.

An omnisemantics judgement gives an operational description of the relation between
starting states and sets of outcomes that may result from potentially nondeterministic
execution or overapproximations thereof. To contrast, traditional operational seman-
tics relate a starting state to every possible outcome using a separate derivation of
the semantics judgement. Encoding sets and relations as predicates in Coq, the type
signature of an omnisemantics definition becomes

state -> program -> (outcome -> Prop) -> Prop

whereas traditional big-step operational semantics have type

state -> program -> outcome -> Prop

In the context of axiomatic semantics, omnisemantics can be seen as predicate trans-
formers defined (inductively, coinductively, or otherwise) by operational rules. The
weakest-precondition definition presented in Section 3.2 also has the same type sig-
nature and interpretation but differs in using a nonoperational rule for loops (Sub-
section 3.2.7) as it is defined by structural recursion over program syntax.

Omnisemantics rules can directly assign each language construct undefined behavior
(no outcome set), unreachable behavior (empty outcome set), deterministic behavior
(one outcome), and unspecified behavior and nondeterminism (multiple outcomes),
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all potentially defined in terms of behaviors of other constructs. One derivation of
omnisemantics is enough to ascertain well-defined execution and to cover all possible
(nondeterministic) executions from the given starting state; the name omnisemantics
was chosen to highlight this feature. Achieving this directly using straightforward
operational rules in standard inductive or coinductive definitions allows for smooth
reasoning about nondeterministic programs: induction over an omnisemantics deriva-
tion follows the control flow and nondeterministic choices throughout the execution of
the program. With traditional small-step and big-step semantics where each deriva-
tion covers a single execution, just defining the notion that no execution goes wrong
and all executions reach a desired outcome requires both an additional layer of se-
mantics definitions and administrative changes to the core inductive judgement itself.

Omnisemantics and Compiler-Correctness Proofs The key motivation for de-
veloping omnisemantics for use in Bedrock2 was the need to support the extension
of the Bedrock2 compiler (and its correctness proof) to programs that accept input
during execution. As a component of an integrated system-correctness proof, the
central requirement for the compiler-correctness proof is that the I/O behavior of
the compiler-generated code must satisfy any specification proven against the source-
language semantics. Omnisemantics allows an appropriately strengthened variant of
this property (which accounts for memory and local variables) to be stated as an im-
plication between source- and target-language omnisemantics judgements and proven
directly by induction on the source-language omnisemantics judgement. Furthermore,
while the inductive statement of compiler correctness includes a representation rela-
tion between the source-language state and target-language state, this relation only
needs to be established when invoking the inductive hypothesis after each source-
language step. The proof of a compiler that implements a source-language command
using a sequence of several target-language commands can proceed by symbolic exe-
cution of the generated commands and allow the representation relation to be tem-
porarily violated between intermediate target-language steps.

All this is in-line with intuitive expectations about compiler correctness but famously
out-of-reach for compiler verification using traditional operational semantics for a
nondeterministic target language. Naively using a direct adaptation of the compiler-
correctness statement from the previous paragraph (forward simulation) is insuffi-
cient: the existence of a correct target-language execution does not rule out the pos-
sibility of other executions nondeterministically going wrong. Instead, the approach
taken by CompCert [Ler09] and related work has been to model the semantics as
deterministic so that a similar proof strategy can be applied soundly. However, not
all features of C can be modeled deterministically (see Subsection 2.4.1), and even
supporting the subset specified by CompCert requires an intricate abstract memory
model [LB08] where memory blocks are assigned sequential identifiers. This tech-
nical construction must then be handled in the proofs, and the complexity of the
required simulation relations (and of the proofs themselves) is a bottleneck for ex-
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tending CompCert. Use of omnisemantics in Bedrock2 and RISC-V specifications and
throughout the associated compiler-correctness proof allows for a simple (but nonde-
terministic) memory model, and the representation relation for Bedrock2 memory in
a RISC-V machine is just disjoint union!

Historical Note An inductive definition in the style that my collaborators and I
now call omnisemantics first appeared in [SSS16] where it was described as an ax-
iomatic semantics that maps programs to predicate transformers. The paper demon-
strates the power that big-step omnisemantics provide applied to the source language
of a compiler. A case study shows the verification of a compiler pass that translates
nondeterministic (underspecified) control flow expressed using guarded commands
(unordered switch statements) to a deterministic language with normal condition-
als and lexically scoped gotos, both formalized using omnisemantics. The authors
recognize that their proofs are “straightforward,” describe the theorem statement
as “elegant,” and note that proving the same using traditional semantics “seems
complex and tedious.” And then they move on to study the relationship between
omnisemantics and earlier models of nondeterminism – fixed-point combinators and
𝜔-iteration.

The big payoff of omnisemantics appears to have been missed: a nondeterminism-
compatible compiler-proof methodology opens the door for direct modeling of under-
specified intermediate target languages, removing the need for technical determinism!
Even so, one might expect that resolving the challenge of source-language underspec-
ification would be widely recognized, but no: As of this writing, the ACM Digital
Library counts 0 citations of [SSS16], and traditional operational semantics remain
the norm outside the Bedrock2 ecosystem. Despite substantial literature-searching
by myself and collaborators, I only found the discussed work accidentally, after the
integration-verification case study described in this chapter was completed.

I developed the definitions of big-step and small-step omnisemantics and the associ-
ated compiler-correctness definitions based on traditional operational semantics, the
weakest-precondition definition (Section 3.2), and the safe-execution judgements used
for Cito and Facade [WCC14] in the original Bedrock ecosystem. The definitions I for-
mulated (in October 20181) were then used to replace the deterministic stand-ins used
in initial prototyping of the Bedrock2 compiler. Samuel Gruetter handled the vast ma-
jority of compiler implementation and proofs associated with translation of individual
language constructs and optimizations before and after the switch to omnisemantics.
When connecting the RISC-V semantics to the traditional operational semantics the
Kami [Cho+17] processor was proven against, I designed an Omnisemantics-based
variant of the RISC-V specification and the key correctness statement for modular
integration verification. Then Joonwon Choi, Samuel Gruetter, and I worked to-
gether to reconcile the RISC-V environments assumed in the two projects and prove

1https://github.com/mit-plv/bedrock2/issues/27#issuecomment-433987172
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a bit-precise equivalence between the two models of each instruction.

Arthur Charguéraud independently developed big-step omnisemantics in the context
of functional languages, related them to traditional big-step and small-step seman-
tics, and used them to prove type-soundness results [Cha20b]. Arthur Charguéraud,
Samuel Gruetter, and I then joined our efforts and wrote a comprehensive descrip-
tion of omnisemantics and their uses [Cha+23], including some new results about
partial-correctness modeling and compiling deterministic languages to nondetermin-
istic languages.

4.1 Big-Step Omnisemantics for Bedrock2

The definition of weakest preconditions used for proving properties of Bedrock2 pro-
grams (Section 3.2) adequately specifies the validity and behavior of programs, but
its structure does not follow execution in some cases. Two structural differences stand
out in comparison to the interpreter used as the specification of the previous compiler
prototype that supported a deterministic subset of Bedrock2. First, the weakest pre-
condition for a loop asserts the existence of an invariant and a decreasing measure.
Second, the environment of the program is described as an ordered list of functions,
and calling a function further down the list removes that function and all preceding
functions from the environment for the duration of the execution of the callee. These
encoding choices are required to define weakest preconditions by recursion on the
program structure, but they do not match the execution strategy of any plausible
implementation of Bedrock2.

The encoding of weakest precondition also has a number of properties that an al-
ternative semantics should preserve. Most importantly, writing the definition in
continuation-passing style allows nondeterminism due to input and underspecified
stack allocation to be encoded using a universal quantifier. A desirable consequence
of this choice is that undefined behavior is properly accounted for: having to prove
that the rest of the program satisfies the specification for every possible nondetermin-
istic choice rules out undefined behavior across all possibilities. Ruling out recursive
function calls by construction and using loop measures also ensures termination. (Or
at least such is the intent – a similar definition but with the termination measure
omitted from the loop case would have worked just as well for everything discussed
so far.) It is also convenient that the weakest-precondition definition does not rely
on any custom auxiliary state for keeping track of the progress of execution: control
flow is encoded through choice of the continuation.
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4.1.1 Defining Omnisemantics Inductively

These additional properties can be enforced elegantly through the structure of the
inductive definition of omnisemantics. Some care is required to arrive at a well-formed
inductive definition that Coq can soundly accept.

First, it makes sense to confirm that the type signature is permissible: while recur-
sive definitions can return values of arbitrary types, the inductive closure of inference
rules forms a new type or predicate. The continuation-passing type signature of the
semantics (state -> program -> (outcome -> Prop) -> Prop) is acceptable as-is
because the return type (of the continuation and the definition itself) is hardcoded
to Prop. While a continuation-passing-style interpreter could be implemented in a
way that supports arbitrary continuation return types, the weakest-precondition def-
inition already relies on returning Prop as it models nondeterminism using universal
quantification.

To understand the considerations for encoding the rules for nondeterminism and
sequencing, it is useful to review how inductive definitions generalize tree types by
allowing universally quantified inductive premises. For example, Coq accepts the
following inductive definition with a base-case rule, a rule with a single inductive
subtree, and an infinitary rule with one subtree for each value of type A:

Inductive allEven : ∀ {T : Type}, T -> Prop :=
(* Variables: *) (* Premises: *) (* Conclusion: *)

| eZ (n : nat) (_ : n = 0) : allEven n
| e2 (n m : nat) (_ : allEven m) (_ : n = 2+m) : allEven n
| eF {A B} (f : A -> B) (_ : ∀ (a : A), allEven (f a)) : allEven f.

Occurrences of the predicate being defined are limited to the conclusions of premises.
Specifically, allEven (f a) is allowed even though it appears under a universal
quantifier, but ∀ (a : A), allEven a -> allEven (f a) is not allowed because
the first occurrence of allEven is not the conclusion of the premise. Arbitrary self-
referential usage of the inductive predicate cannot be allowed in the rules that define
it, lest we admit contradictory definitions such as “the proposition that is not true”:

#[bypass_check(positivity)]
Inductive P {T} :=
| C (_ : P -> T) : P.

To see that the definition P is problematic, consider the instantiation T := False.
The premise of rule C is then P -> False which is more commonly written not P. As
C is the only rule, we have P ↔ not P, which is a contradiction regardless of how P is
defined. Thus, some restrictions on the rules used in inductive definitions are required
for logical consistency. The requirement that the predicate being defined must only
appear in the conclusions of premises is conservative, but it is not redundant.
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Stack Allocation Omnisemantics use universally quantified inductive premises to
encode nondeterminism. The rule for the Bedrock2 command stackalloc n as x
in c quantifiers over the address and uninitialized contents of the memory that
will be made available to the command c.

Inductive exec : cmd -> trace -> mem -> locals ->
(trace -> mem -> locals -> Prop) -> Prop :=

| stackalloc (x : string) (n : nat) (c : cmd) t m l post
(_ : ∀ (addr : word) (uninit : list byte) M,
length uninit = n ∧ M = m ⊍ bytes addr uninit ->
exec c t M (map.put l x addr) (fun t' M' l' =>

∃ m' dealloc, length dealloc = n ∧
M' = m' ⊍ bytes addr dealloc ∧
post t' m' l'))

: exec (cmd.stackalloc x n c) t m l post
...

Appropriate hypotheses describing the new memory M are provided so that the induc-
tive application of exec to c can be proven even though the specific address and stack
memory contents are unknown. The postcondition against which the inductive exec
invocation needs to be proven is not just the postcondition of the scoped stack allo-
cation itself; rather, the outer postcondition needs to hold after the stack-allocated
memory has been successfully deallocated. And, once more, note that the rule for
stack allocation does not involve any accounting of allocation identifiers. The only
way the freshly allocated memory is distinguished in the state on which the inner
command is executed is that addr is assigned to the local variable x.

Sequencing Following the example of the weakest-precondition generator, we would
like to handle sequencing of commands by choosing the continuation of the first
command to be that the second command executes correctly and satisfies the desired
postcondition:

| disallowed_seq (c1 c2 : cmd) t m l post
(_ : exec c1 t m l (fun t' m' l' => exec c2 t' m' l' post))
: exec (cmd.seq c1 c2) t m l post

Trying to define the semantics inductively using this rule fails because the inner
occurrence of exec is not strictly positive: it is an argument to exec itself (and
further inside a lambda function), not the conclusion of a premise. This limitation
of Coq is not spurious, at least not entirely. Specifically, it is not clear what doing
induction over a derivation of exec defined using this rule would look like. Normally,
an induction hypothesis is available with each inductive premise, but in this attempted
definition the inner exec is applied to t', m', and l' which are bound by a lambda.

96



Intuitively, it seems desirable for the inductive hypothesis to be presented right next
to the inner exec using ∧, but this only makes sense because exec is intended to
allow for weakening of the postcondition. However, as it is also possible to define a
variant of exec that does not satisfy weakening [Cha+23, §2.3], a general mechanism
for inductive definitions should not allow for this kind of wishful induction.

Instead, the desired meaning and a logically sufficient induction principle can be
achieved by explicitly allowing for weakening of the postcondition of the outer induc-
tive occurrence of exec:

| seq (c1 c2 : cmd) t m l post mid
(_ : exec c1 t m l mid)
(_ : forall t' m' l', mid t' m' l' -> exec c2 t' m' l' post)
: exec (cmd.seq c1 c2) t m l post

The initial version of the sequencing rule is still valid and can be proven equivalent
to the inductive-definition-compatible version after-the-fact. As might be expected
based on the discussion of induction, the reverse direction of the equivalence relies on
the postcondition-weakening lemma for exec (see Subsection 4.1.2):

Lemma seq_chained c1 c2 t m l post :
exec c1 t m l (fun t' m' l' => exec c2 t' m' l' post)
↔ exec (cmd.seq c1 c2) t m l post.

Proof. split; try invert 1; eauto using seq, weaken. Qed.

Loops and Conditionals Having figured out how to express safe sequential execu-
tion of potentially nondeterministic commands using an inductive definition, applying
the same pattern to loops straightforwardly leads to a satisfying formalization. Un-
like a structurally recursive weakest-precondition definition, omnisemantics can spec-
ify the semantics of while e c by inlining the rules for if (e) { c; while e c },
including an inductive invocation of exec on the same loop in case the loop continues.

| while_false e c t m l post v
(_ : eval_expr m l e = Some v) (_ : v = 0)
(_ : post t m l)

: exec (cmd.while e c) t m l post
| while_true e c t m l post v

(_ : eval_expr m l e = Some v) (_ : v <> 0)
mid (_ : exec c t m l mid)
(_ : forall t' m' l', mid t' m' l' ->

exec (cmd.while e c) t' m' l' post)
: exec (cmd.while e c) t m l post
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Separating the two cases corresponding to conditional behavior of the loop test into
individual inductive rules is conventional in operational semantics, and it is also an
expedient choice in Coq for omnisemantics in particular. A premise of the form if
v then exec … else … would not be accepted as exec appears in it and is not di-
rectly the conclusion of the entire premise. While Coq does permit an extended form
of inductive definitions where inductive premises can appear as parameters to other
inductive definitions including logical connectives, its use is not well-supported by
surrounding infrastructure. An inductive definition with a premise of the form v <>
0 ∧ exec … ∨ … would be accepted, but induction over it using the automatically
generated induction principle is unnecessarily weak: the induction hypothesis for the
nested inductive occurrence of exec is missing. It is possible to define induction
principles manually to compensate for this issue, and a number of metaprogramming
frameworks for Coq include examples that can generate satisfactory induction prin-
ciples for a subset of the inductive definitions in Bedrock2, but staying within the
well-supported fragment of basic inductive definitions appears to be the pragmatic
choice still.

Function Calls The semantics of a complete Bedrock2 program are defined based
on the entry point and a fixed environment of functions, e. The exec case for calling
a function just looks up the definition of the callee by name and invokes exec on its
body:

| call binds fname arges
(_ : map.get e fname = Some (params, rets, fbody))
...
(_ : exec fbody t m lf mid)
(_ : forall t' m' l', mid t' m' l' -> ... )

: exec (cmd.call binds fname arges) t m l mc post
...

Omitted from this definition is context management: argument expressions are evalu-
ated in the caller’s context, parameters of the callee are initialized to the correspond-
ing values (lf), and return variables are transferred the other way around. Mutable
memory and the static function environment are shared.

4.1.2 Input and Output, Basic Properties
I/O operations have the same mechanical aspects as function calls, but instead of
exec on the callee’s body the behavior of I/O operations is described by a parameter
of the samentics named ext_spec. Additionally, the exec case for external calls
updates the trace t with the name of the external call, its arguments, and return
values (and memory modifications, but this aspect is not used in the case studies with
integrated proofs so I am eliding it here). As input and output in different use cases
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of Bedrock2 is modeled differently, the requirements and guarantees of an external
call are specified as a part of the parameter ext_spec as well. It is expected that the
definition of ext_spec may assert its postcondition under a universal quantifier. The
continuation-passing-style structure leaves considerable flexibility to implementations
of ext_spec. For example, the specification of an external call to check on the status
of an asynchronous operation may quantify over a domain-specific representation of
the observed status or simply assert a disjunction of two different applications of the
postcondition for the “done” and “not done” cases.

The encoding considerations for the semantics are simply a combination of those from
internal nondeterminism (discussed in the context of stack allocation) and state, but
treating ext_spec as a parameter requires some restrictions on its behavior. To make
this concept more concrete, here is a simplified ext_spec that allows interaction with
specific MMIO peripherals accessible through concrete ranges of the address space.
Here the MMIOREAD case just calls the postcondition under a universal quantifier but
without any assumptions, but the type signature of ext_spec does not prevent it
from calling post multiple times or even under a negation!

Definition isMMIO (addr : word) :=
addr mod 4 = 0 ∧ (
0x00020000 <= addr < 0x00022000 ∨
0x10008000 <= addr < 0x10010000 ∨
... ).

Definition ext_spec t action args post : Prop :=
if action =? "MMIOWRITE" then

∃ addr val, args = [addr; val] ∧ isMMIO addr ∧
post []

else if action =? "MMIOREAD" then
∃ addr, args = [addr] ∧ isMMIO addr ∧

∀ val, post [val]
else False.

One could seek to specify exhaustively the properties that an ext_spec must have to
make sense a as a specification of external calls. However, as ext_spec is itself a part
of the specification of the execution environment of the language and must be vetted
as a part of the statement of program-correctness proof, verifying it might be besides
the point. Further, all ext_spec instances in the current Bedrock2 ecosystem are
small, so a sophisticated property of them may be harder to audit than the concrete
specifications themselves.

Instead, the Bedrock2 semantics only require basic properties of ext_spec when the
corresponding property holds of the overall semantics and is used in the Bedrock2
ecosystem. The weakening property of omnisemantics is one example:

Lemma weaken : ∀ c t l m P Q, (∀ t m l, P t m l -> Q t m l) ->

99



exec c t m l P -> exec c t m l Q.
Proof. (* induction on exec *) Qed.

As the exec case for I/O just calls ext_spec, this weakening lemma can only be
proven under a corresponding assumption:

(∀ ret, P ret -> Q ret) -> ext_spec t a args P -> ext_spec t a args Q

The postcondition-weakening property satisfyingly rules out ext_spec instances that
assert the negation of the postcondition.

The correctness proof of the Bedrock2-to-RISC-V compiler additionally relies on a
postcondition-intersection property about exec. While the statement of compiler
correctness includes just one exec hypothesis, the compiler also uses static-analysis
passes to study the program. The static-analysis passes are in turn specified in terms
of the semantics of Bedrock2. For example, computing the list of variables used in a
well-defined bedrock2 command can be used to conclude that all other variables are
left unchanged when the analyzed command is executed. When reasoning about use
of static analysis, it is desirable to combine the derived postconditions:

Lemma intersect : ∀ c t l m P Q,
exec c t m l P -> exec c t m l Q ->
exec c t m l (fun c t m l => P c t m l ∧ Q c t m l).

Proof. (* induction on one exec, inversion on other *) Qed.

No Totality Whether or not to allow ext_spec instances that ignore the postcon-
dition entirely is not clear. On one hand, an external call exit() that immediately
terminates the program and thus does not execute the continuation seems sensi-
ble. However, a specification that allows terminating the program in this fashion
does not say anything useful about what the program does: calling exit() imme-
diately would satisfy any postcondition. A proper encoding of multiple termination
mechanisms using omnisemantics would involve keeping the postcondition and con-
veying to it the specific outcome: rets of type list word might be replaced with
an element of Inductive outcome := Ret (rets : list word) | Exit (code :
byte). The additional Exit outcome would then need to be threaded through exec.
For more information on encoding alternative execution outcomes such as exceptions,
see [Cha+23, Appendix C] and the associated code supplement.

The shortcut contemplated here could be ruled out using the following generic re-
quirement about the total-correctness semantics: totality := ∀ c t l m P, exec
c t m l P -> ∃ T M L, P T M L. It turns out that this property does not hold for
Bedrock2 exec as currently specified. Even though any I/O specification currently
used with Bedrock2 does not ignore its postcondition, the Bedrock2 semantics are not
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total because the definition of exec itself may call the postcondition under subtly con-
tradictory assumptions! The specifics of this are described along with the integration
proof of the Bedrock2-RISC-V-integration case study in Subsection 4.5.3, showing
that the design choice that inadvertently allows exec proofs for some programs to be
wrapped up early does not compromise system correctness.

4.1.3 Terminating and Reactive Programs
The definition of semantics of loops and function calls is pleasantly free of termination-
proof techniques. Choosing to define exec as the inductive closure of the omni-
semantics rules limits proofs of exec to well-founded repetitions of applications of
these rules, which is the appropriate generalization of finite proof trees to rules with
universally quantified premises. In terms of program semantics, this corresponds to
accepting programs that terminate in an input-dependent but a potentially arbitrar-
ily large (unbounded) number of steps. Bedrock2 does not have a fundamental need
for this flexibility: the programs have finite state and hence code receiving a fixed
sequence of inputs must either enter an infinite loop or terminate in a bounded num-
ber of steps. However, while the state of and each input to a Bedrock2 program are
finite, they are not small, and reasoning about their cardinality is not convenient.
Having to manipulate explicit bounds on how long the program is allowed to run as
required with the earlier interpreter-based specification of Bedrock2 and with popu-
lar step-indexed frameworks would be an unwelcome chore for all proofs affected by
it. Defining the desired notion of correctness inductively conclusively bypasses this
concern.

Using an inductive definition with omnisemantics rules specifies total correctness,
which affects the meaning compiler-correctness theorems. Programs that would run
forever under some input are ruled out and treated as undefined behavior just as
if they violated memory-access rules. Thus a compiler-correctness theorem stated in
terms of preservation of behavior of well-defined programs does not apply to compiling
an infinite loop or a perpetually reactive echo server! The concern for real-life mis-
compilation is indirect but plausible: translating while(1) ; f() to f(); while(1)
is a plausible emergent behavior for data-flow optimizations. A modular proof of in-
tegrated correctness needs to do better regardless: it can only assume the compiler
upholds its mechanized specification.

A coinductive definition can be used to specify partial correctness using omnisemantics
rules. Coauthors and I wrote about this option in [Cha+23, §2.4], showing basic
properties and a proof of type soundness for a functional language with mutable ref-
erences and nondeterminism. In the context of integration proofs, however, using a
partial-correctness judgement seems even less satisfying than enforcing termination
regardless of how the definition of partial correctness is encoded. For an extreme
example, an infinite no-op loop satisfies every partial-correctness postcondition. In-
stead, I sought alternative techniques for deriving useful theorems about systems con-
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taining Bedrock2 programs that can run arbitrarily long using only total-correctness
semantics.

Well-Founded Total Correctness I would like to impress on the reader how
general the notion total correctness is when application-specific assumptions about
nondeterministic input are allowed. Not only is there no need to specify a bound
on the number of execution steps before the program stops, but the execution may
proceed without bounding its future extent at any point. In particular, it is permis-
sible for the specification of the program to delegate the responsibility for deciding
when the program should terminate to the outside world that the program accepts
input from. To encode this, the ext_spec for an I/O operation would invoke its post-
condition under a hypothesis which promises that either a well-founded measure has
decreased or the input from the I/O operation is a request to shut down the program!
If the program terminates in response to this request, it can be proven to satisfy a
well-founded-total-correctness specification.

For a minimal example, consider analyzing a Bedrock2 program in the context of some
unknown deadline : nat. Define the I/O specification in terms of this number and
the length of the I/O trace t accumulated during the execution so far:

ext_spec t "keepGoing" [] post :=
if deadline <? length t
then post [0]
else forall v, post [v]

Then the code snippet go = 1; while go { doWork(); go = keepGoing() } can
be proven to terminate according to the weakest-precondition rules in Subsection 3.2.7
and in turn exec: The decreasing measure is deadline - length t, and the loop
only continues if the second case of ext_spec is taken. Note that the source code
of the program does not mention deadline, and the proof can be instantiated for
any specific value of this variable. This universally quantified result guarantees that
the program can be run for arbitrarily long at the choice of the environment but will
not diverge on its own. Further, the postcondition of the program must be satisfied
regardless of how soon it is terminated, enforcing that no amount of doWork() can
get into a state where the program would crash when asked to shut down. Intuitively,

toral correctness ↔ reactivity ∧ clean shutdown

This termination-proof strategy, Bedrock2 and the RISC-V omnisemantics discussed
in the next section were used for integrated verification of a memory-mapped crypto-
graphic accelerator and its driver. A register-transfer-language model of the MMIO
peripheral was related to a cycle-accurate model expressed in terms of abstract state,
and this model was used as the ext_spec during the instantiation of Bedrock2 seman-
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tics. The Bedrock2 driver was proven correct for any deadline, but the system-level
theorem references the RTL of the MMIO peripheral and its concrete execution time
in low double-digit cycles. It is my understanding that Jade Philipoom and Samuel
Gruetter worked on the Bedrock2 side of this effort as a part of project Silver Oak,
and that the MMIO interaction proof was completed successfully2.

Theoretical Significance of Divergence Taking a step back from the concrete
design considerations, there appears to be a deep relationship between whether in-
teractive input and output are allowed and whether terminating or not-necessarily-
terminating programs are of interest. A safely terminating program that is not allowed
to accept any input is simply a specific way of specifying its output – it may be of
great practical importance, but mathematically it is just a layer of indirection. Allow-
ing for the possibility of divergence suddenly means that we can learn something by
running the program. A program that searches for counterexamples to a conjecture
may never terminate, but if it does, we know the conjecture does not hold. This is
especially important if we wouldn’t have been able to otherwise prove that this pro-
gram would terminate. In this scenario, a semantics that identifies divergence with
undefined behavior is not adequate. If the compilation-correctness definition assumes
that the program terminates, a nonterminating input program may be compiled to a
terminating program or a program that triggers undefined behavior.

This situation changes if runtime input and input-dependent well-founded termination
are allowed. The program can have a vast range of behaviors under different inputs
and run for arbitrarily long, as long as it terminates cleanly when requested externally.
Only the pure form of the conjecture-checking example is ruled out; a variant that
regularly checks for a termination request is permitted and satisfies the same curiosity.

Open Problem: Mixed Inductive-Coinductive Omnisemantics With that
said, I would like to clarify that I do not see input-dependent termination arguments
as a particularly elegant solution. Even though clean termination is an independently
desirable property, and granting that proving it can highlight system-design oversights
that otherwise might have been missed, a direct definition of semantics of programs
that run arbitrarily long would likely be more satisfying.

A promising route around this bolted-on accounting mechanism is the mixed inductive-
coinductive specification style [NU10] that can distinguish between perpetually reac-
tive and silently diverging programs. However, the definitions are more involved than
the single-inductive omnisemantics presented here, and the approach has not become
popular or been tested in substantial experiments. I have confirmed that mixed

2Those interested in the development logs could start from https://github.com/mit-plv/
bedrock2/issues/186#issuecomment-839817142 or https://github.com/project-oak/
silveroak/blame/001e221a/firmware/IncrementWait/IncrementWaitToCava.v#L17
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inductive-coinductive definitions of big-step omnisemantics are possible and satisfy
basic litmus-test properties. Pursuing a nontrivial case study with the goal of es-
tablishing and testing reasoning principles would be a reasonable next step, but the
inelegance of externally guaranteed termination does not seem sufficient to motivate
the effort. Nevertheless, a setting where nonterminating behaviors must be preserved
by compilation might have a lot to gain from future work in this direction: factor-
ing the terminating and nonterminating cases into one mixed inductive-coinductive
omnisemantics definition appears promising as a means to deduplicate compiler proof
effort associated with these cases. Can the duplication be eliminated entirely from
proofs of compiler passes that are correct in either case?

4.2 Small-Step Omnisemantics for RISC-V
This section will cover the small-step analogue of the big-step omnisemantics discussed
so far, but first, some background on the RISC-V specification to which this technique
was applied is in order.

The formalization [Bou+21] of RISC-V used in the specification of the Bedrock-to-
RISC-V compiler is factored into two qualitatively different parts: the instruction set
and the execution environment. The goal of this factoring is to enable instruction-set
description to be reused in substantially different execution environments that do not
share the same notion of state, I/O, or execution outcomes.

To achieve this modularity, each instruction is specified in terms of primitive oper-
ations that have some resemblance to microoperations of reconfigurable processors
but exist for specification purposes only. Each execution-environment specification
then instantiates these primitives with models in terms of the concepts appropriate
for that domain. The primitive RISC-V-semantics operations relevant to integrated
verification with Bedrock2 fall into four categories:

1. Memory access: loads and stores of 1, 2, 4, and 8 bytes, for example LoadWord
context address. The context tag is used to disambiguate between instruc-
tion and data fetches, whose use of different data paths and cache hierarchies
in common implementations is observable through sequential-consistency vio-
lations even in single-core systems. Memory and MMIO addresses are treated
uniformly from the perspective of the instruction set.

2. Register access: SetRegister reg val is implemented uniformly across all cur-
rent environment specifications, but SetCSRField distinguishes between control
and status registers implemented and not implemented by the execution envi-
ronment.

3. Program-counter management: most instructions affect the process counter uni-
formly, with EndCycleNormal incrementing it by 4, but jumps and exceptions
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use SetPC.

The key definition of the instruction-set specification is that of the execution of one
instruction in terms of primitive operations:

Definition run1 : M unit :=
pc <- getPC;
inst <- loadWord Fetch pc;
execute (decode iset (combine 4 inst));;
endCycleNormal.

Instruction decoding is described using a boring functional program with many con-
ditionals, a small snippet of which is reproduced here:

let oimm12 := signExtend 12 (bitSlice inst 20 32) in
let rs1 := bitSlice inst 15 20 in
let opcode := bitSlice inst 0 7 in
if (opcode =? opcode_LOAD) && (funct3 =? funct3_LB) then
then Lb rd rs1 oimm12
else if (opcode =? opcode_LOAD) && (funct3 =? funct3_LH)
then Lh rd rs1 oimm12

Execution is more interesting, but still relatively uniform:

| And rd rs1 rs2 =>
x <- getRegister rs1; y <- getRegister rs2;
setRegister rd (x <&> y)

| Lui rd imm20 =>
setRegister rd (ZToReg imm20)

| Beq rs1 rs2 sbimm12 =>
x <- getRegister rs1; y <- getRegister rs2; pc <- getPC;
when (x == y)
(let newPC := pc + ZToReg sbimm12 in
if remu newPC 2 /= 0
then raiseExceptionWithInfo 0 0 newPC
else setPC newPC)

Standard tricks for encoding state-manipulating syntax in a functional program are
applicable to a basic deterministic instantiation of the primitive operations. The
parameter M unit in the type signature of run1 gets instantiated as state -> unit
* state, and primitive operations are defined as functions returning M R where R is
the type of the binder at the left of the <- above. This instantiation of the specification
is automatically validated against the riscv-tests test suite after every change.
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Compiler-Facing Challenges A deterministic instantiation of the primitives as
functions in the error and state monad was also sufficient for early prototyping of
the correctness proof of the Bedrock2-to-RISC-V compiler, omitting I/O support.
With run1 available as a function from state to state, the following definition and
instruction-specific lemmas about it became the workhorse of the compiler-correctness
proof. Here it is, slightly reformatted, but with a comment from the original:

(* alternative way of saying "∃ n, run1^n f m = m' ∧ P m'" *)
Inductive runsTo (m : @RiscvMachine w var) (P: _ -> Prop) : Prop :=
| runsToDone (_ : P m) : runsTo m P
| runsToStep (_ : runsTo (run1 m) P) : runsTo m P.

The similarity to omnisemantics is striking in retrospect, but small-step omnisemantics
were not known at the time. Instead, my enthusiasm for modeling input and output
in Bedrock2 programs using nondeterminism inspired extensive experimentation with
monad transformers and eventually stopped at an alternative direct definition of the
monad M: OStateND S A := S -> option (A * S) -> Prop. The None construc-
tor of option was used to indicate undefined behavior, and then option (A * S)
-> Prop is a predicate that specifies which outcome are possible. This encoding is
isomorphic the set of all possible outcomes, and Returning a set of a single outcome
can be encoded as follows:

Return A (a : A) : OStateND S A :=
fun (s : S) (oas: option (A * S)) => oas = Some (a, s)

The Bind (a <- m; f a) operator for OStateND was then implemented by carefully
defining the predicate that delineates the set of possible outcomes from running one
command after another:

Bind A B (m : OStateND S A) (f : A -> OStateND S B) : OStateND S B :=
fun (s : S) (obs: option (B * S)) =>
(m s None ∧ obs = None) ∨
(∃ a s', m s (Some (a, s')) ∧ f a s' obs);

A distinctive feature and limitation of OStateND is apparent from this definition: the
outcome final state obs is bound before the inputs by which it is determined. As
read directly in order, Bind for OStateND answers the question “what intermediate
outcomes could have lead to this final outcome?” Either the a <- m; f a failed
because m failed, or some intermediate result a and state s from the first primitive m
allowed the second primitive f to result in obs.

This definition is a mouthful, but it was workable in the sense that after some puzzling
over it we managed to wrap it in a more intuitive definition that generalizes the type
signature of runsTo from earlier:
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Definition mcomp_sat {S A} (m : OStateND S A) (s : S) P :=
∀ (o: option (A * S)), m s o -> ∃ a s', o = Some (a, s') ∧ P a s'.

The proofs of of mcomp_sat for m representing specific instructions still needed un-
folding of mcomp_sat, and further unfolding the OStateND models of the underlying
primitives frequently led to large formulas involving numerous existential quanti-
fiers for intermediate values, calling for the use of elaborate ad-hoc proof-automation
scripts. The RISC-V-specific lemmas required by the compiler proof were nonethe-
less recovered and extended to I/O, which I attribute to Samuel Gruetter’s consistent
efforts. This inglorious success signaled a green light to verification of drivers and
construction of a demonstration system.

Processor-Facing Challenges Having mcomp_sat as a definition about OStateND
and lemmas that establish it was only half of the story for integrated verification: it
remained to show that run1 instantiated with OStateND implies satisfactory instruc-
tion execution on the Kami [Cho+17] reference processor. As the specification and
Kami reference processor use different factorings of the decoding and execution logic,
the proof of the correspondence between them needs to consider an arbitrary instruc-
tion and match up outcomes of conditional tests and values of arithmetic expressions
between the two sides. Despite my best efforts at proof-automation engineering and
consultation with local experts, partial evaluation of the two specifications and equa-
tional reasoning between them remains a bottleneck: executing the proof script on
52 instruction-specific cases takes over 15 minutes.

The struggle to get the required time down to even this much motivated me to revisit
OStateND and its Bind definition in particular because the existentially quantified
intermediate variables would each need to be extracted from the mcomp_sat hypoth-
esis and then substituted right away. Actually proving the conjectured relationship
between RISC-V spec with I/O and Kami transition labels would have to wait until
the proof-generation performance improved.

4.2.1 Weakest-Precondition Interpretations of Free Monads
Glancing at the specification of RISC-V instruction execution again, it is clear that
the state of the processor is handled linearly, and thus creating new variables for
intermediate versions of it is completely unnecessary. Similarly, while using named
variables for intermediate variables can beneficially preserve some sharing when those
variables are used multiple times, this benefit is thrown away immediately in the proof
connecting this specification to Kami, to reconcile the fact that the two projects do
not reliably use intermediate variables at the same granularity.

| Add rd rs1 rs2 =>
x ← getRegister rs1; y ← getRegister rs2;
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setRegister rd (add x y)

The Bedrock2 weakest-precondition definition (see Section 3.2) intentionally preserves
sharing, but its state is updated incrementally line-by-line. The reason it is challeng-
ing to follow the same pattern here is that the environment can only specify the mean-
ings of x <- ma; f x and each operation such as getRegister and setRegister; it
does not have access to the syntax tree as a whole. However, there is a standard tech-
nique for bypassing this limitation: Q can be instantiated with a freer monad [KI15],
which defines each primitive operation as a constructor of an inductive datatype list-
ing possible actions, not a function. Bind (x <- ma; f x) still has to flatten the
associative structure of the binders to satisfy the monad laws, but no interpretation
of the primitive operations is required.

Inductive free {action : Type} {result : action -> Type} {T : Type} :=
| act (a : action) (continuation : result a -> free)
| ret (x : T).
Arguments free : clear implicits.
Fixpoint bind {A B} (mx : free A) (fy : A -> free B) : free B :=

match mx with
| act a k => act a (fun x => bind (k x) fy)
| ret x => fy x
end.

It is then possible to write a structurally recursive interpreter that consumes these
newly syntactic programs. The appropriate interpretation in the context of non-
deterministic input with the possibility for undefined behavior is again a weakest-
precondition transformer.

Fixpoint interp (a : free output) (s : state) post : Prop :=
match a with
| ret x => post x s
| act a k => interp_action a s (fun r => interp (k r))
end.

Following the pattern from the sequence case of the Bedrock2 weakest-precondition
generator, the rule for an action uses the weakest-precondition interpretation of the
rest of the program as the Prop-returning continuation of that action. This con-
struction allows mcomp_sat to be defined directly as interp, bypassing the need for
OStateND! At the same time, the specifications of individual actions are simplified,
returning almost to the form that they were presented in before support for nonde-
terminism was added:

Definition interpret_action (a : riscv_primitive) (m : RiscvMachine) :
(primitive_result a -> RiscvMachine -> Prop) -> Prop :=
match a with
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| GetRegister reg => fun (post: word -> RiscvMachine -> Prop) =>
let v := getReg m.(getRegs) reg in
post v m

| SetRegister reg v => fun post =>
let regs := setReg reg v m.(getRegs) in
post tt (withRegs regs m)

| GetPC => fun post => post m.(getPc) m
| SetPC newPC => fun post => post tt (withNextPc newPC m)
...
| StartCycle => fun post =>

post tt (withNextPc (word.add m.(getPc) (word.of_Z 4)) m)
| EndCycleNormal => fun post => post tt (updatePc m)
end.

Encoding the model of a nondeterministic primitive operation is as straightforward
as in Bedrock2, but some care is required to figure out what the appropriate model
for an MMIO action should be. In Bedrock2, we had the luxury of creating new
syntax to distinguish MMIO loads and stores from normal memory operations (and
I/O calls from internal function calls). In RISC-V, the instruction format is fixed,
and it seems plausible that the same instruction could be used with a computed
address to access both I/O addresses and normal memory. Further, an instantiation
of the RISC-V semantics for DMA-based I/O should allow the distinction between
I/O addresses and normal memory to change dynamically as ownership of memory
regions is transferred between the peripherals and the processor.

The model I proposed for the RISC-V specification is that the memory is represented
as a partial map from addresses to bytes, and access to any address not present in the
memory is handled like an I/O action. That does not mean that loads and stores to
arbitrary addresses are permitted: the first proof obligation for nonmemory address-
space access is the isMMIO that also appears in Bedrock2 ext_spec. Deviating from
Bedrock2 for historical reasons, the alternative to ext_spec for a RISC-V MMIO load
is encoded using the precondition canMMIORead and the postcondition MMIOReadOK:

Definition nonmem_load (n : nat) (ctxid : SourceType) a m post :=
isMMIO a ∧ canMMIORead n (getLog m) a ∧
∀ v, MMIOReadOK n (getLog m) a v -> post v (withLogItem (a,n,v) m).

Definition load (n : nat) (ctxid : SourceType) a m post :=
(ctxid = Fetch -> isXAddr4 a m.(getXAddrs)) ∧
match Memory.load_bytes n m.(getMem) a with
| Some v => post v m
| None => nonmem_load n ctxid a m post
end.

Unfolding interp_action or load in a hypothesis reveals no spurious existential
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quantifiers, and givens such as isMMIO in nonmem_load can be separated automati-
cally into further hypotheses at the speed that the Coq proof engine allows for this
operation. Further, unfolding nonmem_load reveals a universally quantified hypothe-
sis, assuring that no matter which input the machine code receives from the external
world, its execution will proceed soundly. The Kami-RISC-V connection proof im-
mediately specializes this hypothesis to the input variable revealed through inverting
the Kami step relation. But before looking into this proof in more detail, I would
like to discuss how the interp construction can be extended to the execution of more
than one instruction.

4.2.2 “Eventually” Combinator for Small-Step Omnisemantics
Machine code is executed one instruction at a time, with no designated end in sight;
the basic RISC-V standard does not even include a halt instruction. Instead, the
interesting property to ask of a piece of machine code is whether it will reach some
application-specific final condition, such as jumping to a specified address or triggering
a particular exception. Reaching a desirable state in n steps could be defined by n-
times sequential composition of step := interp run1, but fixing n ahead of time
would severely limit the flexibility provided to the machine-code implementation.
Further, it may be impossible to know reliably ahead-of-time how many instructions
a loop that performs I/O will execute, so the definition of runsTo for nondeterministic
RISC-V programs cannot require a specific deadline to be specified anyway.

The definition of nondeterministic runsTo follows the same structure as the deter-
ministic version, but allows for a set of possible states (Q) to be reached by the first
step. Every state in this set must reach the specified termination condition P, but a
separate runsTo derivation consisting of an arbitrary number of steps can be provided
for each one:

Inductive runsTo (s : state) (P : state -> Prop) : Prop :=
| runsToDone (_ : P s) : runsTo s P
| runsToStep Q (_ : step s Q) (∀ s', Q s' -> runsTo s' P): runsTo s P.

Outside machine-readable definitions, I have found it convenient to pronounce runsTo
“eventually” and write it as a superscript ♦ on the arrow that represents step:

𝑃(𝑠)
𝑠 →♦ 𝑃

𝑠 → 𝑄 ∀𝑠′. 𝑄(𝑠′) ⇒ 𝑠′ →♦ 𝑃(𝑠′)
𝑠 →♦ 𝑃

This presentation highlights three properties. First, transforming a step into a
runsTo does not change its type signature. Second, the concept of runsTo is closely
related to the eventually modality from temporal logic. Third, writing ♦ where * (for
zero or more steps) would be written suggests that it is reflexive and transitive. The
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complementary “always” combinator is defined in Subsection 4.4.3.

These properties hold, along with postcondition weakening and chained versions as
shown for big-step omnisemantics. Further, the deterministic runsTo that only allows
the first command to reach a single state is a subrelation of nondeterministic runsTo.

Lemma runsTo_weaken: forall (P Q : State -> Prop) s,
(forall s', P s' -> Q final) -> runsTo s P -> runsTo s Q.

Lemma runsToStep_chained s P :
step s (fun s' => runsTo s' P) -> runsTo s P.

Lemma runsTo_trans: forall P Q s,
runsTo s P -> (forall s', P s' -> runsTo s' Q) -> runsTo s Q.

Lemma runsTo_trans_chained: forall (Q : State -> Prop) (s : State),
runsTo s (fun s' => runsTo s' Q) -> runsTo s Q.

Lemma runsTo_det : forall s s1 P,
step s (fun s' => s' = s1) -> runsTo s1 P -> runsTo s P.

Unlike Bedrock2 omnisemantics, the RISC-V semantics are total in the sense that if
an action executes to a postcondition according to the semantics, then there actually
exists an outcome for which the postcondition holds:

Lemma interpret_action_total {memOk: map.ok Mem} a s post :
valid_machine_state s -> interpret_action a s post ->
exists v s', valid_machine_state s' ∧ post v s'

4.3 Verifying Compilers Using Omnisemantics
The ability of omnisemantics directly to encode nondeterminism and undefined be-
havior in a single judgement simplifies some of the characteristic complexities of
behavior-preservation proofs for compilers. This simplification does not come at the
cost of precision: compiler-correctness theorems stated in terms of traditional seman-
tics can be proven using omnisemantics. This section is based [Cha+23, §6].

4.3.1 Motivation: Avoiding Both Backward Simulations and
Artificial Determinism

Following CompCert’s terminology [Ler09], one particular evaluation of a program
can admit one out of four possible behaviors: terminate (with a value, an exception,
a fatal error, etc.), trigger undefined behavior, diverge silently after performing a
finite number of I/O operations, or be reactive by performing an infinite sequence
of I/O operations. Whether an error such as a division by zero is considered as a
terminating behavior or as an undefined behavior is a design decision associated with
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each programming language. Ideally, a general-purpose compiler should preserve
behaviors, except that undefined behaviors can be replaced with anything. This
section will focus on terminating behaviors; the reasoning behind this choice can be
found in Subsection 4.1.3. (Nevertheless, lifting this restriction would be interesting
future work.)

In the particular case of a deterministic programming language, compiler correctness
for terminating programs can be established via a forward-simulation proof 3. Such
a proof consists of showing that each step from the source program corresponds to
a number of steps in the compiled program. The correspondence involved is cap-
tured by a relation between source states and target states. Such forward-simulation
proofs work well in practice. The main problem is that they do not generalize to
nondeterministic languages.

Indeed, in the presence of nondeterminism, a source program may have several pos-
sible executions. The restriction to consider only terminating programs means that
all executions of the source program terminate but possibly with different results. In
this setting, a compiler is correct if (1) the compiled program always terminates, and
(2) for any result that the compiled program may produce, the source program could
have produced that result. This notion of correctness is called backward behavior
inclusion. It may not be intuitive at first, but the inclusion is indeed backwards: the
set of behaviors of the target program must be included in the set of behaviors of the
source program.

To establish backward behavior inclusion, one may set up a backward-simulation
proof. Such a proof consists of showing that each step from the target program
corresponds to one or more steps in the source program4. Yet, backward simulations
are much more unwieldy to set up than forward simulations. Indeed, in most cases
one source-program step is implemented by multiple steps in the compiled program,
thus a backward-simulation relation typically needs to relate many more pairs than
a forward-simulation relation.

This observation motivated the CompCert project [Ler09] to exploit forward simula-
tions as much as possible, at the cost of modeling features of the intermediate language
as deterministic even when it is not natural to do so and ruling out programs whose
behavior is not deterministic. For example, rather than revealing pointers as integers,

3The uses of “forward” and “backward” here to refer to the direction of compilation, “forward”
meaning from source language to target language. This matches CompCert’s usage and conflicts
with other work [LV95] that uses “forward” and “backward” to refer to the direction of the state
transitions.

4The number of corresponding steps in the source program should not be zero, otherwise the
target program could diverge whereas the source program terminates. In practice, however, it is
not always easy to find one source-program step that corresponds to a target-program step. In
such situations, one may consider a generalized version of backward simulations that allow for zero
source-program steps, provided that some well-founded measure decreases [Ler09].
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CompCert semantics allocate pointers deterministically, taking care to trigger unde-
fined behavior for any coding pattern that would be sensitive to the literal values
of pointers (see Subsection 2.4.1 for discussion). Even so, runtime input does not
fit the fully deterministic model, leading to the technical definitions of receptiveness
and determinacy (roughly, capturing the idea of determinism modulo input) so that
lemmas for flipping forward simulations into backwards simulations can be stated and
proven. Omnisemantics remove the need for this machinery and extend the compiler-
correctness proofs to cover programs whose behavior is not deterministically specified.
The solutions is presented in three steps:

• Explain how omnisemantics can sidestep the need for backward simulations and
artificially deterministic semantics, by carrying out forward-simulation proofs
of compiler correctness, for nondeterministic terminating programs.

• Generalize to languages including I/O operations and to the case where the
source language and target language are different.

• Analyze a case study, the compilation of Bedrock2 I/O and stack allocation to
RISC-V. The latter case compiles nondeterministic commands to deterministic
implementations, and both cases feature a big-step semantics for the source
language and a small-step semantics for the target language, for free.

4.3.2 Establishing Correctness via Forward Simulations us-
ing Omnisemantics

Consider a compilation function written 𝒞(𝑡). For simplicity, assume that the source
and target language are identical, that compilation does not alter the result values,
and that the language is state-free. These restrictions will be lifted in the next subsec-
tion. In this subsection, 𝑡 ⇓ 𝑣 denotes the standard big-step judgment that 𝑡 evaluates
to 𝑣, 𝑡 ⇓ 𝑄 denotes the omni-big-step judgment and that 𝑡 evaluates to a member
of 𝑄, and terminates(𝑡) asserts that all executions of 𝑡 terminate safely, without trig-
gering undefined behavior. The compiler-correctness result for terminating programs
captures preservation of termination and backward inclusion for results—points (1)
and (2) stated earlier using traditional semantics:

backward-inclusion-for-terminating-programs:
terminates(𝑡) ⇒ terminates(𝒞(𝑡)) ∧ (∀𝑣. 𝒞(𝑡) ⇓ 𝑣 ⇒ 𝑡 ⇓ 𝑣)

The claim is that this correctness result can be derived from the following statement,
which describes forward preservation of specifications.

omni-forward-preservation: ∀𝑄. 𝑡 ⇓ 𝑄 ⇒ 𝒞(𝑡) ⇓ 𝑄
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Assume that terminates(𝑡) holds. Recall that omnisemantics enforces termination and
constrains the outcome (this and other preliminaeies are proven in [Cha+23, §2.2]):

𝑡 ⇓ 𝑄 ⟺ terminates(𝑡) ∧ (∀𝑣. (𝑡 ⇓ 𝑣) ⇒ 𝑣 ∈ 𝑄)

Exploiting this equivalence, the omni-forward-preservation assumption refor-
mulates as follows.

∀𝑄. (terminates(𝑡) ∧ (∀𝑣. (𝑡 ⇓ 𝑣) ⇒ 𝑣 ∈ 𝑄))
⇒ (terminates(𝒞(𝑡)) ∧ (∀𝑣. (𝒞(𝑡) ⇓ 𝑣) ⇒ 𝑣 ∈ 𝑄))

The hypothesis terminates(𝑡) holds by assumption. Now instantiate 𝑄 as the strongest
postcondition for 𝑡, that is, as the set {𝑣 | (𝑡 ⇓ 𝑣)}. This yields:

(∀𝑣. (𝑡 ⇓ 𝑣) ⇒ (𝑡 ⇓ 𝑣)) ⇒ terminates(𝒞(𝑡)) ∧ (∀𝑣. (𝒞(𝑡) ⇓ 𝑣) ⇒ (𝑡 ⇓ 𝑣)).

The premise is a tautology, and the conclusion is exactly the result to be proven:
backward-inclusion-for-terminating-programs.

4.3.3 Omnisemantics Simulations, I/O, and Cross-Language
Compilation

More generally, the behavior of a terminating program consists of the final result and
its interactions with the outside world (input and output). These interactions include,
e.g., interaction with the standard input and output streams, system calls, etc. Each
interaction is called an event, and the semantics judgment is extended to collect such
events into a trace 𝜏. Figure 4-1 shows three illustrative cases of how the rules are
augmented with states and traces, making the choice to treat rand calls as observable
events while reference-allocation nondeterminism remains internal. Choosing which
nondeterministic choices are recorded in the trace determines which (external) in-
teractions must be preserved by compilations and which (internal) nondeterministic
choices the compiler may resolve as it sees fit. As a particularly fine-grained example,
the trace might record that malloc was called and succeeded but omit the pointer
it returned, to allow for optimizations that reduce the amount of allocation. This
level of flexibility appears to be unique to omnisemantics. For a forward-simulation-
based compiler-correctness proof, constructing a deterministic model of all internal
nondeterminism can be arbitrarily complicated (the CompCert memory model is an
example).

For languages of terms (that return values) rather than commands (that do not
return values), a representation relation between source-level and target-level values
would be needed, so this section will consider commands 𝑐 from now on. In the
current setting, behavior inclusion holds between a source-language program and a
target-language program if all traces that the target-language program can produce
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omni-big-let-trace
𝑡1/𝑠/𝜏 ⇓ 𝑄1 (∀(𝑣′, 𝑠′, 𝜏 ′) ∈ 𝑄1. ([𝑣′/𝑥] 𝑡2)/𝑠′/𝜏 ′ ⇓ 𝑄)

(let 𝑥 = 𝑡1 in 𝑡2)/𝑠/𝜏 ⇓ 𝑄
omni-big-rand-trace
(∀𝑚. 𝑚 ≤ 𝑛 ⇒ (𝑚, 𝑠, (𝑛, 𝑚) ∶∶ 𝜏) ∈ 𝑄)

(rand 𝑛)/𝑠/𝜏 ⇓ 𝑄

omni-big-ref
∀𝑝 ∉ dom 𝑠. (𝑝, 𝑠[𝑝 ∶= 𝑣], 𝜏) ∈ 𝑄

(ref 𝑣)/𝑠/𝜏 ⇓ 𝑄

Figure 4-1: Omni-big-step semantics with traces, selected rules

(according to traditional small-step or big-step semantics) can also be produced by
the source-language program. More formally, the traces that can be produced from
a starting configuration 𝑐/𝑠/𝜏 are defined as

traces(𝑐, 𝑠, 𝜏) ∶= {𝜏 ′ | ∃𝑠′. 𝑐/𝑠/𝜏 ⇓ 𝑠′/𝜏 ′}

and a compiler 𝒞 satisfies behavior inclusion for a command starting from the initial
source-level state 𝑠src related to the initial target-level state 𝑠tgt and initial trace 𝜏 if
TraceInclusion as defined below holds.

TraceInclusion(𝑐, 𝑠src, 𝑠tgt, 𝜏) ∶= traces(𝒞(𝑐), 𝑠tgt, 𝜏) ⊆ traces(𝑐, 𝑠src, 𝜏)

Assuming omni-big-step semantics ⇓src and ⇓tgt for the source and target languages,
plus a representation relation 𝑅 between source- and target-language states, let the
omnisemantics simulation, a compiler-correctness criterion designed to be provable
by induction on the ⇓src judgment, be defined as follows:

OmnisemanticsSimulation(𝑐) ∶= ∀𝑠src 𝑠tgt 𝜏 𝑄. 𝑅(𝑠src, 𝑠tgt) ∧ 𝑐/𝑠src/𝜏 ⇓src 𝑄
⟹ 𝒞(𝑐)/𝑠tgt/𝜏 ⇓tgt 𝑄𝑅

where 𝑄𝑅(𝑠′
tgt, 𝜏 ′) ∶= ∃𝑠′

src . 𝑅(𝑠′
src, 𝑠′

tgt) ∧ 𝑄(𝑠′
src, 𝜏 ′)

The goal for this section is to prove that an omnisemantics simulation implies trace
inclusion if the source program terminates, i.e. to show

∀𝑐. OmnisemanticsSimulation(𝑐) ⟹
∀ 𝑠src 𝑠tgt 𝜏. terminates(𝑐, 𝑠src, 𝜏) ∧ 𝑅(𝑠src, 𝑠tgt) ⟹

TraceInclusion(𝑐, 𝑠src, 𝑠tgt, 𝜏)

This proof relies on two properties: First, soundness of omni-big-step semantics with
respect to traditional big-step semantics:

∀𝑐 𝑠 𝑠′ 𝜏 𝜏 ′ 𝑄. 𝑐/𝑠/𝜏 ⇓ 𝑠′/𝜏 ′ ∧ 𝑐/𝑠 ⇓ 𝑄 ⟹ 𝑄(𝑠′, 𝜏 ′) (4.1)
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And conversely, that a program that terminates safely and whose traditional big-step
executions all satisfy a postcondition also has an omnisemantics derivation:

∀𝑐 𝑠 𝜏 𝑄. terminates(𝑐, 𝑠, 𝜏)∧(∀𝑠′ 𝜏 ′. 𝑐/𝑠/𝜏 ⇓ 𝑠′/𝜏 ′ ⟹ 𝑄(𝑠′, 𝜏 ′)) ⟹ 𝑐/𝑠/𝜏 ⇓ 𝑄
(4.2)

To show trace inclusion, i.e. traces(𝒞(𝑐), 𝑠tgt, 𝜏) ⊆ traces(𝑐, 𝑠src, 𝜏), it suffices to as-
sume a target-language execution 𝒞(𝑐)/𝑠tgt/𝜏 ⇓ 𝑠′

tgt/𝜏 ′ producing trace 𝜏 ′ and to
show 𝜏 ′ ∈ traces(𝑐, 𝑠src, 𝜏). By applying (4.2) to the source program (whose termi-
nation is assumed) and setting 𝑄(𝑠′

src, 𝜏 ′) ∶= 𝑐/𝑠src/𝜏 ⇓ 𝑠′
src/𝜏 ′ so that the second

premise becomes a tautology, we obtain the source-level omnisemantics derivation
𝑐/𝑠src/𝜏 ⇓ (𝜆𝑠′

src 𝜏 ′. 𝑐/𝑠src/𝜏 ⇓ 𝑠′
src/𝜏 ′). Passing this fact into the omnisemantics

simulation yields 𝒞(𝑐)/𝑠tgt/𝜏 ⇓ (𝜆𝑠′
tgt 𝜏 ′.∃𝑠′

src.𝑅(𝑠′
src, 𝑠′

tgt) ∧ 𝑐/𝑠src/𝜏 ⇓ 𝑠′
src/𝜏 ′). Now

we can apply (4.1) to this fact and the originally assumed target-level execution and
obtain an 𝑠′

src such that 𝑅(𝑠′
src, 𝑠′

tgt) and 𝑐/𝑠src/𝜏 ⇓ 𝑠′
src/𝜏 ′, which by definition is

exactly what needs to hold to have 𝜏 ′ ∈ traces(𝑐, 𝑠src, 𝜏).

4.3.4 Case Study: Compiling Stack Allocation
This case study illustrates the case of a transformation that implements a nondeter-
ministic source-language command using deterministic target-language commands.
The transformation consists of adding a stack-allocation feature to the Bedrock2
compiler. Proving this transformation correct in Coq after I had sketched it infor-
mally took Samuel Gruetter only a few days of work, and most of the work was not
concerned with dealing with nondeterminism.

This smooth outcome is in stark contrast to the outlook of using traditional evalua-
tion judgments: verifying the same transformation would have required either more
complex invariants, to set up a backward simulation; or completely rewriting the
memory model so that pointers are represented by deterministically generated unob-
servable identifiers, to allow for a compiler-correctness proof by forward simulation.
In fact, addressable stack allocation was initially omitted from Bedrock2 exactly to
avoid these intricacies (based on the experience from CompCert), but switching to
omnisemantics made its addition local and uncomplicated.

Recall that the stack-allocation feature consists of a command let 𝑥 = stackalloc 𝑛 in 𝑐
that assigns an address to variable 𝑥 at which 𝑛 bytes of memory will be available
during the execution of command 𝑐 (but not after 𝑐 finishes). The compiler imple-
ments this command by allocating the requested 𝑛 bytes on the stack, computing the
address at runtime based on the stack pointer.

The key challenge is that the source-language semantics does not feature a stack.
The stack gets introduced further down the compilation chain. Thus, the simplest
way to assign semantics to the stackalloc command in the source language is to say
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that it allocates memory at a nondeterministically chosen memory location. This
nondeterministic choice is described using a universal quantification in the omni-
big-step rule shown below, reproduced from Section 4.1.1 with some presentational
liberties:

∀𝑚new 𝑎. (dom 𝑚new ∩ dom 𝑚) = ∅ ∧ dom 𝑚new = [𝑎, 𝑎 + 𝑛) ⟹
𝑐/(𝑚 ∪ 𝑚new)/ℓ[𝑥 ∶= 𝑎]/𝜏 ⇓ 𝜆𝑚′ ℓ′ 𝜏 ′. 𝑃 (𝑚′ − 𝑚new, , ℓ′, 𝜏 ′)

(let 𝑥 = stackalloc 𝑛 in 𝑐)/𝑚/ℓ/𝜏 ⇓ 𝑃
stackalloc

In the source language, the address returned by stackalloc is picked nondeterministi-
cally, whereas in the target language the address used for the allocation is determin-
istically computed, as the current stack pointer augmented with some offset.

Compiler-Correctness proof The compiler-correctness proof proceeds by induc-
tion on the omnisemantics derivation for the source language, producing a target-
language execution with a related postcondition. The simulation relation 𝑅 describes
the target-language memory as a disjoint union of unallocated stack memory and
the source-language memory state. Critically, the case for stackalloc has access
to a universally quantified induction hypothesis (derived from the rule shown above)
about target-level executions of 𝒞(𝑐) for any address 𝑎.

As the address of the stack-allocated memory is not recorded in the trace, the
compiler-correctness proof is free to instantiate it with the specific stack-space ad-
dress, expressed in terms of compile-time stack-layout parameters and the runtime
stack pointer. Reestablishing the simulation relation to satisfy the precondition of
that induction hypothesis then involves carving out the freshly allocated memory
from unused stack space and considering it a part of the source-level memory instead,
matching the compiler-chosen memory layout and the preconditions of the stackalloc
omnisemantics rule. It is this last part that made up the vast majority of the verifica-
tion work in this case study; handling the nondeterminism itself is as straightforward
as it gets.

Note that it would not be possible to complete the proof by instantiating 𝑎 with
a compiler-chosen offset from the stack pointer if the semantics recorded the value
of 𝑎 in the trace. The (unremarkable) proof for the interact command of Bedrock2
also has access to a universally quantified execution hypothesis, but it must directly
instantiate its universally quantified induction hypothesis with the variable introduced
when applying the target-level omnisemantics input rule to the goal, to match the
target-language trace to the source-language trace. Either way, reasoning about the
reduction of nondeterministim in an omni-forward-preservation proof boils down to
instantiating a universal quantifier.
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Design Decisions Around Proving Stack-Space Usage The first version of
verified software-hardware based on Bedrock2 and the Kami RISC-V processor did
not support stack allocation, but its compiler did support (non-recursive) function
calls and computed the required amount of stack space. The exec.stackalloc rule
of Bedrock was deliberately left to use a vacuous universal quantification in case
the program runs out of memory, because the compiler-correctness theorem handles
stack-usage accounting outside of the omnisemantics judgment, in an additional ex-
ternal judgment. In particular, this means that if exec.stackalloc is applied with
a memory 𝑚 whose domain already contains all (or almost all) addresses (which are
32-bit or 64-bit words), there might be no 𝑚new and 𝑎 such that the left-hand side
of the implication above the line in exec.stackalloc holds, so any postcondition 𝑃
can be derived (but the respective stack-usage judgement will be unprovable).

Effectively, this means that the source-language evaluation rules do not guarantee
that the program never runs out of memory. This choice simplifies the program-logic
proofs for concrete input programs but requires additional work in the compiler: the
compiler performs a simple static-analysis pass over the call graph of the program
to determine the maximum amount of stack space that the program needs. Since
this analysis rejects recursive calls, the space upper bound is not hard to compute.
The compiler-correctness proof contains an additional hypothesis requiring that at
least that computed amount of memory is available in the state on which the target-
language program begins its execution.

An alternative approach would be to introduce a notion of “amount of used stack
space” in the source-language semantics and include an additional precondition in the
exec.stackalloc rule that requires this amount to be bounded. This approach would
put more complexity into the verification of source programs, while simplifying the
compiler-correctness proof. In order to allow recursive calls and dynamically chosen
stack-allocation sizes, reasoning about the amount of stack space in the program
logic seems to become unavoidable, in which case this alternative approach would be
preferrable.

4.3.5 Compilation from a Language in Omni-Big-Step to One
in Omni-Small-Step

If the semantics of the source language of a compiler phase are most naturally ex-
pressed in omni-big-step, but the target language’s semantics are best expressed in
omni-small-step semantics, it is convenient to prove an omni-forward simulation di-
rectly from a big-step source execution to a small-step target execution. What follows
is an attempt to give a flavor of the proof obligations that arise from switching from
omni-big-step to omni-small-step during the correctness proof.

The RISC-V machine state is modeled in 𝑠tgt as a quadruple of a memory 𝑚 (that
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contains both instructions and data), a register file rf mapping register names to
machine words, a program counter 𝑝𝑐, and a trace 𝜏. One can prove an omni-forward
simulation from big-step source semantics directly to small-step target semantics:

∀𝑠src 𝑠tgt 𝑃 . 𝑅(𝑠src, 𝑠tgt) ∧ 𝑠src ⇓ 𝑃 ⟹ 𝑠tgt ⟶♦ (𝜆𝑠′
tgt.∃𝑠′

src. 𝑅(𝑠′
src, 𝑠′

tgt)∧𝑃(𝑠′
src))

where 𝑅 asserts, among other conditions, that the memory of the target state 𝑠tgt
contains the compiled program.

The proof proceeds by symbolic execution of the target-language program by apply-
ing target-language rules and discharging their side conditions using the hypotheses
obtained by inverting the source-language execution, with the only difference that
instead of using the derived big-step rule runsToStep_chained for chaining, one now
uses the following two rules: runsToStep_chained and runsTo_trans.

Applying runsToStep_chained turns the goal into an omni-single-small-step goal
about RISC-V machine code with a given postcondition, which is suitable to dis-
charged directly by unfolding mcomp_sat and interp_action. On the other hand,
applying runsTo_trans creates two subgoals containing an uninstantiated unification
variable for the intermediate postcondition. The unification variable appears as the
postcondition in the first subgoal, so an induction hypothesis with the concrete post-
condition from the theorem statement can be applied. In the second subgoal, this
postcondition becomes the precondition for the remainder of the execution.

4.4 Omnisemantics and Kami
This section covers the proof connecting the RISC-V specification to the verified
pipelined processor from Kami [Cho+17]. Originally, the Kami four-stage processor
was proven against a single-cycle model described in the same hardware-description
language in the sense of backward behavior inclusion. Both artifacts model input
as nondeterministic, but Kami does not have a notion of undefined behavior and
is specified using traditional operational semantics. The connection proof relies on
undefined behavior in our RISC-V-specification instance to rule out cases where the
Kami processor would not behave in a manner worth specifying more generically.

The Kami artifact also stands out from the rest of the Bedrock2 ecosystem in that it
was designed, developed, and published independently prior to the overall integration-
verification effort. Thus I could not ensure that otherwise-underconstrained design
decisions would be resolved in ways maximally suitable for integration and combined
proof, bringing about qualitatively different challenges during the integration proof.
Rather than seeking a satisfying way to encode an interface specification which was
already understood informally, reconciling the Kami processor with the Bedrock2-
compiler’s RISC-V specification started with known differences between the imple-
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mented and specified behavior and progressed towards the least cumbersome com-
promise. Most significantly, the Kami processor started out without any support for
runtime input and assumed that the program code is fixed and separate from the
data memory. Joonwon Choi worked with us to implement relevant changes in Kami
and to adapt the proofs to match.

4.4.1 Kami Language and Processor
The Kami framework centers around a Bluespec-style hardware description language
with rules that can atomically Read and Write the Registers of multiple modules.
If all rules follow the discipline to Call at most one state-modifying method on each
module, the execution of each individual method is also atomic. The execution of
the entire rule is predicated on all guards in Assert statements reached during its
execution evaluating to nonzero values. Consider the following extended example, a
Kami specification (pdec, for “decoupled memory”) for issuing load instructions:

Let memReq := MethodSig ("rqFromProc" -- "enq")(RqFromProc) : Void.
Definition pdec := MODULE {

Register "pc" : Pc addrSize <- pcInit
with Register "rf" : Vector (Data dataBytes) rfIdx <- rfInit
with Register "pgm" : Vector (Data instBytes) iaddrSize <- Default
with Register "stall" : Bool <- false
...
with Rule "reqLd" :=
Read stall <- "stall";
Assert !#stall;
Read ppc : Pc addrSize <- "pc";
Read rf <- "rf";
Read pinit <- "pinit";
Read pgm : Vector (Data instBytes) iaddrSize <- "pgm";
Assert #pinit;
LET rawInst <- #pgm@[toIAddr _ ppc];
Assert (getOptype _ rawInst == $$opLd);
LET addr <- getLdAddr _ rawInst;
LET srcIdx <- getLdSrc _ rawInst;
LET srcVal <- #rf@[#srcIdx];
LET laddr <- calcLdAddr _ addr srcVal;
Call memReq(STRUCT{"addr" ::= #laddr; "op" ::= $$false;

"byteEn" ::= $$Default; "data" ::= $$Default});
Write "stall" <- $$true;
Retv

...

The declaration of the method memReq names the module where the implementation
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of this method would be found after linking. Until then, the external method is
assumed to have arbitrary (potentially nondeterministic) behavior but no undefined
behavior. The Call to memReq at the end of the function passes arguments, setting op
to false to indicate a read rather than a write. The one-bit Register called stall
is used to ensure that the reqLd rule does not execute again (and emit another mem-
ory request) while the processor waits for a response from the memory: specifically,
Assert !#stall on the second line of the rule prevents execution until the flag is
cleared. Similarly, the implementation of the enq method of the FIFO rqFromProc
(called as memReq) can cancel the execution of the entire rule if the FIFO is full.

Returning to the last Assert before the Call, we can see the instruction-decoding
logic described using the pure (combinational) functions getOptype, getldAddr, and
getLdSrc. The execution of the load instruction is described in terms of selecting
the correct entry from the register file rf and combining it with the immediate offset
operand addr using the pure function calcLdAddr. Setting the destination register
to the loaded value is handled in a different rule that executes when the response
from the memory is available; that rule also increments the process counter pc.

The specification and implementation of the Kami processor do not use memReq to
fetch instructions (rawInst). Instead, the program memory is separated from the
data memory and modeled using an (impractically large) Register file pgm in the
specification. This design choice allowed the pipelined processor to be proven to
match the memory operations of its single-cycle specification exactly, even though
the fetch stage speculatively loads instructions that are not known to be needed for
execution. In fact, the proof relies on the invariant that the program memory of the
implementation matches that of the specification model while simultaneously treating
requests to data memory as external calls with arbitrary behavior. The experiments
described in the original Kami paper [Cho+17] instantiated the processor cores with
concrete machine code for pgm in Coq before translation to Bluespec for simulation
or synthesis.

To support integration with the Bedrock2 ecosystem while avoiding significant reengi-
neering, the Kami processor (and its specification above) were augmented with ma-
chinery to load the program from external memory on reset. The register pinit is
asserted in the rules for normal instructions to prevent execution until the internal
program memory has been appropriately initialized. As writes to normal memory do
not propagate to pgm during execution, the modified Kami processor still cannot be
used for dynamic code loading. However, this modification as sufficient for a defen-
sible generalization of the RISC-V semantics assumed by compiler proof and can be
proven sound against the Kami processor’s implementation of RISC-V. The full rec-
onciliation of this limitation with the compiler proof is described in Subsection 4.4.4.
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4.4.2 Refinement-Based Specifications
This subsection and the next answer the following questions:

1. How are the specifications of and theorems about Kami processors stated?

2. What would a specification of a Kami processor running a specific program look
like?

3. Which generic statement relating a Kami processor to the Bedrock2 infras-
tructure could allow such specific specifications to be proven for new programs
without revisiting the processor?

Both implementations and specifications of Kami processors are written as modules
in the Kami language. The semantics of Kami modules are given by the relation
kstep m s1 s2 that models execution of one nondeterministically chosen rule from
module m transitioning from state s1 to s2. For synthesizable modules that contain
definitions of all methods they call, the choice of which rule to execute is the main
source of nondeterminism, but the definition of kstep also extends to modules that
call external methods. Calls to methods not implemented by m are recorded in an
event trace, and the return values of these methods are modeled as nondeterministic.
For example, the pdec module from the previous subsection individually admits traces
where the external calls to memRq and its complement memRep give inconsistent and
nonsensical results.

As Kami does not have a notion of undefined behavior, the one-to-many relation
kstep m, which is defined using traditional operational semantics, can be soundly
extended to arbitrarily many steps (^*) and used for correctness specifications without
additional bookkeeping. The “implements” relation (<<==) is defined in terms of
(backward) trace inclusion, in a manner equivalent to the following transition-system-
style definition:

Definition Trace (m: Module) (tr : list Label) :=
∃ s, (kstep m)^* m.(initial) s Λ tr = s.(trace).

Notation "m1 <<== m2" := (∀ t, Trace m1 t -> Trace m2 t).

The main correctness lemma about the four-stage processor is stated using this rela-
tion: the trace of external interactions that the pipelined processor performs matches
a possible trace of the pdec model, p4st <<== pdec. This property is proven with-
out any assumptions about how the data memory operates. At the highest level, the
proof consists of a sequence of refinement steps that justify individual optimizations
in the four-stage processor such as pipelined instruction fetching.

p4st <<== p3st <<== ... <<== pdec
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The p4st module is the main artifact that is extracted from Kami and used in the
“lightbulb” case study at the end of this chapter. However, treating a processor
separately from memory is a rather hardware-centric perspective, and a higher-level
specification about the combined behavior of the processor is desirable both on its own
merits and for connection to Bedrock2. This model is constructed in two steps: first,
p4st is fitted with an adapter iom that answers asynchronous memory-access requests
by calling similar methods that return the answer right away. The combination
satisfies a new specification pinst: p4st ++ iom <<== pinst, where ++ is the Kami
operator that concatenates modules and matches up method calls between them.
Then, a mock memory implementation mm is concatenated to both sides; this module
serves data-memory accesses using a huge register file but forwards MMIO operations
to the only required external method mmioExec. Thus, the highest-level correctness
theorem stated in terms of native definitions of the Kami framework reads as follows:

p4st ++ iom ++ mm <<== pinst ++ mm

The two sides of this refinement fact are models of the implementation and the spec-
ification; they will be referenced later as p4mm := p4st ++ iom ++ mm and scmm :=
pinst ++ mm. Further, the traces constrained by <<== here are specifically the traces
of MMIO actions, each entry of which is either a store of a value to an address or a
load of an address with a return value. As input is modeled using nondeterminism:
if the system admits a trace with some load return value, it also admits traces with
all syntactically valid return values for the same load.

Specifying The Kami-Bedrock2 Connection The integration-verification goal
for this section is to bound the arguments the Kami processor passes to its MMIO
methods using properties proven about Bedrock2 programs’ I/O. More specifically,
we would like a top-level correctness theorem of the form ∀ t, Trace p4mm t ->
Bedrock2MMIOSpec t. However, Trace is defined using (kstep m)^*, which allows
an arbitrary (and not necessarily maximal) number of steps, potentially leading only
to the middle of the execution of a Bedrock2 function. Thus, the above is not provable
for any Bedrock2MMIOSpec that specifies that some I/O actions actually happened.
This limitation is not purely technical; rather, any theorem that is applicable to
observations of arbitrarily short or long executions of the Kami-Bedrock2 system
would have this limitation. It makes sense to state a system-correctness theorem
in this setting so that it directly asserts a trace property that is prefix-closed by
construction:

∀ t, Trace p4mm t -> ∃ T, Bedrock2MMIOSpec (t ;++ T)

where t ;++ T represents the event trace where events T happen after t. (In the Coq
development, further bookkeeping is required to mediate between Bedrock2, RISC-V,
and Kami trace formats, but I am omitting it here.) The correctness proof of p4mm in
terms of <<== guarantees that the traces of the implementation are a subset of those
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of the specification, so it suffices to show

∀ t, Trace scmm t -> ∃ T, Bedrock2MMIOSpec (t ;++ T)

As scmm is the simplest model of the Kami processor, it does not make sense to look
for a proof of this statement within the Kami framework alone. In fact, any proof of
the above must rely on assumptions about the initial state of scmm and specifically
about the program the processor is executing. Further, scenarios where the behavior
of scmm (and p4mm) deviates from that specified for general RISC-V must be ruled out
at all stages of execution. The most challenging example of this arises from the Kami
processor executing instructions from an internal copy of the initial memory while our
RISC-V specification demands sequential consistency between instruction fetches and
data stores. Programs can store to computed addresses, so no mechanically checkable
condition about the initial state can ensure compatible execution on scmm.

For formalizing this precondition, it is helpful to take a step back and notice a com-
monality between the requirement and the trace specification to be proven. The
formalization of the precondition should guarantee that all execution steps use in-
structions that have not been overwritten in data memory, and the conclusion claims
that all multi-step executions produce allowed I/O traces. We can abstract away
the details about instruction fetching and MMIO actions and state a more general
relationship between scmm and our omnisemantics for RISC-V: any invariant about
the RISC-V specification can be transferred to scmm as long as the invariant rules out
states where differences between the specifications can be observed. Indeed, fun t =>
∃ T, Bedrock2MMIOSpec (t ;++ T) is a (weak, noninductive) invariant for RISC-V
code compiled from Bedrock2 code that was proven to satisfy Bedrock2MMIOSpec, so
an invariant-transfer lemma can yield the desired specification above.

4.4.3 “Always” Combinator for Small-Step Omnisemantics
For traditional small-step semantics, the notion of an invariant is ubiquitous: P is an
invariant for Kami module m iff ∀ s, (kstep m)^* m.(initial) s -> P s. Defin-
ing the analogous concept for omni-small-step semantics in Coq is subject to the
same encoding challenges as big-step omnisemantics and the runsTo relation (see
Subsection 4.2.2). Additionally, the very idea of invariants applies to arbitrarily long
executions and to settings such as the current one, where there is no notion of ter-
mination. This difference means that an inductive definition in the style of runsTo
cannot capture the right notion: at some point, the inductive derivation would have
to end, but the invariant must continue. Intuitively, the appropriate definition should
guarantee that no matter how many times the omnisemantics relation step s Q is
chained in its own postcondition, that postcondition still implies P.

One option is to create a coinductive definition with rules similar to runsTo:
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CoInductive always s (P : RiscvMachine -> Prop) : Prop :=
| alwaysStep Q (_: P s) (_: step s Q) (_: ∀ s', Q s' -> always s' P).

The lack of a base case is intentional: proofs of always would have to show that
alwaysStep can be applied indefinitely, as many times as required by any proof that
relies on an always assumption. The name always is inspired by the temporal-logic
operator �, and the notation s →� P seems appropriate.

However, unlike inductive types, Coq does not generate any reasoning principles for
coinductive types automatically. To overcome this limitation, a coinduction principle
can be proven by implementing a proof function that (syntactically) yields at least
one application alwaysStep per recursive call. For this property, the coinduction
principle is actually simpler than the definition itself and can be used directly:

Definition inductively s (P : RiscvMachine -> Prop) : Prop :=
P s ∧ ∀ s', P s' -> step s' P.

Lemma always_inductively : ∀ s P, inductively s P -> always s P.

Equipped with either always or inductively, it is now possible to state the key
lemma that connects the Kami processor p4mm (including a mock memory) to the
RISC-V specification against which the Bedrock compiler is proven:

Lemma p4mm_implements_riscv : ∀ P rs ks ks', R ks rs ->
always rs P -> (kstep p4mm)^* ks ks' -> ∃ rs', R ks' rs' ∧ P rs'.

This concise statement packs quite a lot of detail. First, variables ks and ks' refer
to initial and final states of the Kami processor, whereas rs and rs' refer to the
corresponding states of the RISC-V specification. Notice that the representation
relation R is not a universally quantified variable; it encapsulates key invariants such
as the correspondence between registers, traces, and memory between Kami and
RISC-V states. This relationship is proven directly for the initial states but appears
as a premise in the inductive lemma statement.

Unusually for a lemma lifting a property from one semantics to another, both always
and (kstep p4mm)^* appear as premises. The syntactic similarity of the two occur-
rences in this lemma statement is explained away by the semantic difference between
the predicates themselves. One derivation of always talks about arbitrarily many
executions of RISC-V machine code and constrains all of them to satisfy P at every
step. It also makes sense for always to appear as premise so that if the RISC-V speci-
fication assigns undefined behavior to any state reachable from rs, always rs P does
not hold and the lemma is vacuous. On the other hand, (kstep p4mm)^* ks ks'
merely asserts that it is possible that the processor implementation reaches state ks'
during execution. This premise may hold for many ks' for the same ks, and quanti-
fying over all of them appropriately constrains all possible executions modeled using
traditional small-step semantics.
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The proof of this lemma first replaces p4mm with scmm using <<== and then proceeds
by induction over (kstep p4mm)^* ks ks'. Each kstep corresponds to zero or one
steps according to our RISC-V semantics. In the latter case, the always hypothesis
is inverted to reveal the corresponding step and a new always fact for the following
steps. I attribute the vast majority of the substantial (human and computer) ef-
fort that was required for this proof to reconciling mundane differences between how
the two frameworks model the same instruction decoding, arithmetic, and architec-
tural state updates. A number of discrepancies between the Kami implementation
of basic RISC-V instructions and our machine-code specification were found during
integration and proof; they were reconciled and, once proven, the processor passed
the appropriate RISC-V test suite. However, one more technically challenging piece
remains to make this proof possible at all: always rs P and R need to rule out ex-
ecutions that would observe the separate-instruction-memory limitation of p4mm and
scmm.

4.4.4 Reconciling Read-Only Instruction Memory
This subsection will describe how our RISC-V machine-code specification handles
read-only instruction memory in the sense implemented by Kami. Directly specifying
the exact behavior Kami implements would be feasible and possibly easier than the
solution described here, but this solution would not be satisfying as a specification
of RISC-V. Instead, I will present a nonobvious compromise that is compatible with
RISC-V as specified by its steering committee and allows for integrated proofs with
Kami.

While using read-only memory to store program code is common across embedded
systems with all instruction sets, the restriction of the Kami processor goes beyond
that pattern: in Kami, (writeable) data memory cannot be executed. The original
Kami proofs treated instruction and data memory as separate address spaces, plac-
ing p4mm in the trusty company of Harvard-architecture processor designs such as
AVR8 and PIC18. The appeal of this simplification from the perspective of processor
implementation does not last when the system is considered as a whole. Use cases
that benefit from the power-usage and processor-area reduction of read-only mem-
ory for instructions almost invariably rely on the same for storing constant data. If
this memory is in a separate address space, then different load and store instruc-
tions are needed to access constant and nonconstant memory, which in turn requires
duplication of library code for each combination of pointer-operand address spaces.

While Bedrock2 does provide a mechanism for address-space-independent access to
read-only constants, there does not appear to be a satisfying way to model the same
within the general design of RISC-V. Instead, the Kami-Bedrock2 integration takes
the perspective that the Kami instruction memory is a cache between the processor
and the data memory. Our modified version of p4st starts issuing memory requests
to fill this cache upon reset, and it only executes the first instruction after the last

126



instruction has been loaded. Later execution can use normal RISC-V instructions to
access and modify the same addresses that were loaded during processor initialization,
but the processor will continue executing the (potentially stale) cached code. Perhaps
surprisingly, this behavior is entirely valid according to the RISC-V specification
([WA17, §2.7]):

RISC-V does not guarantee that stores to instruction memory will be
made visible to instruction fetches on a RISC-V hart until that hart exe-
cutes a FENCE.I instruction.

The Kami processor does not implement FENCE.I. There are no known obstacles that
would prevent the same instruction-fetching logic that is used to initialize the internal
instruction memory from being triggered by an instruction. However, fetching instruc-
tions generates memory load requests which are treated as externally visible behavior
from the perspective of p4st and its immediate specification pdec, so the refetching
logic of FENCE.I could not be verified as an internal detail of the pipeline. A modular
verification of a processor that implements FENCE.I might involve a nondeterministic
specification where instructions can be fetched arbitrarily early using external calls
(to accommodate for the latency of the pipeline) and execution is allowed to use any
instruction fetched for the process-counter address since the last FENCE.I. Specifying
these details in a manner compatible with the component structure of an implemen-
tation is subtle, and a real effort for satisfying modular verification of a processor that
does not implement sequential consistency between the instruction and data paths
would likely uncover additional challenges.

As our RISC-V machine-code specification is formalized using omnisemantics, we have
the luxury of being able to assign undefined behavior to scenarios where deviations
from simple sequentially consistent semantics would be observed. (It is possible that
the informal RISC-V specification intends to ascribe a more fine-grained nondeter-
ministic behavior to execution of stale instructions, but our integration-verification
case study does not need this flexibility.) Specifically, the environment model we
use to instantiate our RISC-V specification for integration with Kami tracks a set of
executable byte addresses XAddrs in addition to the contents of the data memory.
Writing to an address removes this address from XAddrs, and a hypothetical imple-
mentation of FENCE.I would restore XAddrs to the entire domain of the memory. The
loadWord specified by the environment model is called by the instruction-set spec-
ification (see Section 4.2) in run1 as loadWord Fetch pc. The environment model
checks the access-type flag and, in case of Fetch, requires that all four byte addresses
spanned by the instruction designated by pc are in XAddrs.

The proof of any individual instruction-execution step in p4mm_implements_riscv
relies on this restriction. Specifically, inverting the assumption always rs P yields
step rs Q, and step unfolds to interp run1, which in turn unfolds to the following
hypothesis:
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H : isXAddr4 rpc riscvXAddrs ∧
match Memory.load_bytes 4 riscvDataMemory rpc with
| Some v => interp (execute (decode iset (combine 4 v));;

endCycleNormal)
...

The representation invariant R enforces that a fully initialized Kami processor’s in-
struction memory pgm matches riscvDataMemory for all addresses in riscvXAddrs
(and that the program counters match). Thus, the proof-automation script can re-
place the value returned by our RISC-V specification’s Memory.load_bytes with ap-
propriate reference to Kami instruction memory and proceed to consider instruction
decoding.

The XAddrs assumption for the Kami-processor-compatibility proof does not come
for free: the proof of the Bedrock2 compiler must discharge the XAddrs conjunct for
every instruction the generated code executes. In practice, proving this comes down
to threading the invariant that all program memory is covered by XAddrs through
the compiler proof, but the statement is not a tautology. First, nothing else about
the compiler’s specification prevents it from emitting self-modifying code or even
packaging a just-in-time compiler into the generated binary. Both of these compi-
lation strategies would misbehave on the Kami processor, and on most processors if
FENCE.I is not used appropriately. Additionally, Bedrock2 external calls for MMIO
are compiled to load and store instructions which would modify XAddrs if they acted
on data memory. The source-level requirement that addresses passed to the MMIO
external calls lie within ranges dedicated to I/O (see Subsection 2.3.1) is required to
show that XAddrs are preserved and execution of compiled code can resume after an
MMIO store.

4.5 Verified Application-System Integration
To demonstrate the Bedrock2-Kami integration, a minimal Ethernet server that turns
a light on and off in response to UDP packets was implemented and proven. This
section will give an overview of this system, its use of the components described so
far, and most importantly the overall correctness theorem proven about it.

The specification of this demonstration system is in terms of application-specific pred-
icates about MMIO traces and the semantics of the Kami hardware-description lan-
guage. Satisfyingly, the following intermediate specifications are not referenced by
the statement of the top-level correctness theorem:

• Separation-logic specifications of the Bedrock2 application code and libraries

• Weakest-precondition verification conditions for Bedrock2 (Section 3.2)
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• Omnisemantics for Bedrock2 (Section 4.1.1)

• Invariants and additional requirements of the Bedrock2 compiler

• Definitions of RISC-V instructions (Section 4.2)

• RISC-V environment model (Subsection 4.2.1)

• Kami processor specifications pdec and sc (Subsection 4.4.1)

Components associated with the above interfaces are proven correct, and these proofs
are used to prove the top-level theorem, but the interfaces themselves cancel out dur-
ing the composition of proofs. For example, the RISC-V specification is central to
the proofs of the Bedrock2 compiler and its compatibility with the Kami processor,
but the application-level trace specification and the Kami hardware-description lan-
guage are independent of it. This is a great example of how verification of more
components reduces the volume and complexity of the specifications, addressing the
ages-old concern that the specifications themselves may have bugs.

Nevertheless, the chosen boundaries of the demonstration system still call for speci-
fications of their own. While much simpler than the internal interfaces listed above,
the outermost interfaces are not entirely trivial. In particular, the semantics of the
Kami hardware-description language appear in the theorem statement to give mean-
ing to the p4mm processor initialized with our application code. Further, the desired
MMIO actions for driving an Ethernet controller, receiving Ethernet packets using it,
and actuating a general-purpose output pin are described in what could reasonably
be read as a program of its own. Still, both of these specifications require far fewer
concepts than the internal interfaces and are free of common programming pitfalls
such as the possibility of accidentally triggering undefined behavior.

4.5.1 Trace Predicates
The formal definitions of Bedrock2, RISC-V, and Kami all include I/O traces as a
core specification technique. In these cases, the traces of one component are related
to traces of another component in a general way, without writing down any concrete
traces or describing their contents. For example, RISC-V machine code generated
by the Bedrock2 compiler is proven to produce the same MMIO access traces as the
source-language program. But how can we actually write down the traces we want
to prove a concrete Bedrock2 program admits?

The trace of a program that only generates output and does not accept runtime input
could be specified as a pure function of its arguments. A bare-minimum extension of
functional programming with an input construct could be implemented similarly to
the interpreter for primitive operations in the RISC-V specification (Subsection 4.2.1).
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However, this model would only allow fully deterministic specifications, and under-
specification through nondeterminism is important for keeping specifications concise
and on-point.

Omnisemantics (or a similar interpreter) could be used to define a generic functional
language with input and internal nondeterminism. In the future, this approach may
be well and good, but using omnisemantics to state the top-level theorem of the
system that pioneers their use in systems verification may be less than compelling
for a skeptical reader. The relationships between omnisemantics and traditional se-
mantics proven in Subsection 4.3.3 and Subsection 4.4.4 do a fair bit to establish
omnisemantics as a satisfying alternative to traditional operational semantics. And
yet a complete system proven against a simple non-omnisemantics specification using
omnisemantics adds to this by demonstrating that no tricks relating to how the state
of the system is modeled are required to make the semantics work as desired.

Based on this outlook, I chose to specify the lightbulb demonstration using a set
of lightweight combinators for trace predicates inspired by regular expressions. The
standard regular-expression combinators are easily defined:

Definition choice {T} (P1 P2 : list T -> Prop) : list T -> Prop :=
fun l => P1 l ∨ P2 l.

Definition concat {T} (P1 P2 : list T -> Prop): list T -> Prop :=
fun l => ∃ l1 l2, l = l1 ;++ l2 ∧ P1 l1 ∧ P2 l2.

Inductive kleene {T} (P : list T -> Prop) : list T -> Prop :=
| kleene_empty : kleene nil
| kleene_step l1 l2 ( _ : P l1) (_ : kleene l2) : kleene (l1 ;++ l2).

As the trace specifications are proven in Coq, either interactively or using domain-
specific proof automation, non-regular combinators can be handled as well. In par-
ticular, it is important for application specifications to describe relationships between
earlier and later events. Popular matching engines that extend regular expressions
allow for named (or numbered) subexpressions and backreferences that assert that a
later part of the sequence must be equal to the sequence that matched the referenced
expression. Departing from procedural matching, I allow a generalization of this fea-
ture where the named value may have a type different from the sequence itself, with
a customizable relationship to trace contents. Semantically, this connective is just
existential quantification lifted to trace predicates:

Definition existsl {A T} (P : A -> list T -> Prop) : list T -> Prop :=
fun l => ∃ a, P a l.

These simple connectives are surprisingly powerful for defining practical specifications
of sequential programs. For a small example, here is the specification for the Bedrock2
hardware-abstraction-layer function for setting the value of a general-purpose output
pin on a microcontroller, presented without notations:
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Definition gpio_set_bit (i:Z) (b : bool) : list OP -> Prop :=
existsl (fun v : word =>

concat
(eq [("ld", GPIO_DATA_ADDR, v)])
(eq [("st", GPIO_DATA_ADDR,
let cleared := word.and v (word.of_Z (Z.clearbit (2^32-1) i)) in
word.or cleared (word.slu (word.of_Z (Z.b2z b)) (word.of_Z i)))]

)).

The predicate applies to lists of MMIO operations described as triples each with an
access-type marker ("ld" or "st"), the address, and the value. A trace would satisfy
this predicate if, for some value v, it consists exactly of a load returning v followed by a
store of v with the ith bit set to b. Note that input and output are handled completely
symmetrically in the specification, so specifications in this style do not inherently
enforce determinism or causality. In fact, it is easy to come up with examples of
specifications that cannot be reliably satisfied. Stating that a program will store a
value and then read a related value back from an MMIO register can be achieved by
swapping the arguments to concat, but no program would satisfy that specification
in the model where memory-mapped input is modeled as nondeterministic.

4.5.2 Specifying the Ethernet-Connected Lightbulb Controller
The top-level specification of the Ethernet-connected lightbulb controller is stated
using the same connectives to define nested abstractions for traces relevant to this
application. There are three levels:

1. Driving basic input and output peripherals of the processor, GPIO and SPI

2. Driving the external Ethernet controller over SPI

3. Application actions described in terms of driver actions

I specified the first two layers by translating usage instructions of the devices from
their programming manuals, occasionally relying on industry-standard register-naming
conventions to fill in the gaps. These trace predicates are tedious but conceptually
simple. It is not clear that the trace-predicate representation is any more or less
readable than expressing the same actions in a conventional programming language.
In fact, the very Bedrock2 programs that implement these specifications could make
for a reasonable description of the desired behavior. The main benefit of specifying
using trace predicates is that the semantics of Bedrock2, and in particular its absolute
requirements for programs, do not need to be considered when auditing the system
specification. For example, the proof of the receive function of the Ethernet driver
against its specification caught a classic, exploitable buffer-overflow bug.
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The top-level specification in terms of driver specifications is pleasantly simple and
much easier to read than the corresponding Bedrock2 code. The primary reason for
this is that the specification can be factored into conceptually separate behaviors
without needing to describe how the program chooses which case is satisfiable based
on the input it receives. This flexibility seems inherently linked to the ability to state
unsatisfiable specifications: in fact, an early draft of the specification for the initial-
ization sequence of the Ethernet card neglected the possibility of a timeout because
the C prototype would just infinite-loop in case the Ethernet card does not respond.
Describing the particular polling loop would needlessly complicate the specification,
but just allowing failure after too many unsuccessful attempts can be concise.

The full trace-predicate specification of the Ethernet-connected lightbulb controller
spans 144 lines, more than 100 lines of which are dedicated to driving the Ethernet
controller itself over SPI. Using notations |||, +++ and *̂ for choice, concat, and
kleene, the top-level specification in terms of these actions appears below:

Definition BootSeq : list OP -> Prop :=
iocfg +++ (lan9250_init_trace

||| lan9250_boot_timeout
||| (any+++spi_timeout)).

Definition Recv (cmd : bool) (t : list OP) : Prop :=
exists (packet : list byte),
lan9250_recv packet t ∧
lightbulb_packet_rep cmd packet.

Definition LightbulbCmd (cmd : bool) : list OP -> Prop :=
gpio_set_bit 23 cmd.

Definition goodHlTrace: list OP -> Prop :=
BootSeq +++ ((EX b: bool, Recv b +++ LightbulbCmd b)

||| RecvInvalid ||| PollNone) ^*.

System-Level Correctness Theorem The top-level correctness property is stated
directly in terms of this trace predicate:

Theorem end2end_lightbulb: ∀ mem0 t,
bytes_at (instrencode lightbulb_insts) 0 mem0 ∧
Trace (p4mm mem0) kt ->

∃ t: list (string * word * word),
KamiRiscv.KamiLabelSeqR kt t ∧
∃ T, goodHlTrace (t ;++ T)
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In words, running the pipelined processor p4mm with any memory mem0 that contains
the lightbulb-program machine code at address 0 only produces I/O traces that are
related to (prefixes of) traces allowed by the application specification. The prefix
closure is important because this theorem holds at any point during the execution,
without reference to any notion of the software having “completed” a loop iteration.
The relation KamiRiscv.KamiLabelSeqR simply maps Kami MMIO traces to triples
with "ld" and "st".

Another way to read this theorem is as system-bring-up recipe: compute the byte
list instrencode lightbulb_insts in Coq, place it at address 0 in a memory, and
arrange for this memory to be connected to a correctly synthesized copy of p4mm.
Then, behavior described by goodHlTrace is to follow based on our proofs. We
would like to emphasize that, compared to other verification projects, only requiring
the three items described above to be understood and trusted is very minimal. No
semantics of instruction sets nor software programming languages need to be trusted
in order to trust this theorem, and there is no unverified “host” device in our case
study. There is also no linker and no bootloader: the processor starts execution from
address 0, which is exactly where the system theorem says the program code should
be placed.

On the other hand, according to this theorem alone, the system is not guaranteed
ever to perform an I/O action. The correctness proofs of Bedrock2 programs and
the compiler to RISC-V guarantee termination. However, the Kami processor is only
specified in terms of what is true of all sequences of rule executions. There is no proof
that some rule can always execute (lack of deadlocks) or that the available rule exe-
cutions will complete each RISC-V instruction (lack of livelocks). This concern is not
entirely hypothetical. During early prototyping of the Bedrock2-Kami integration, I
observed a simple deadlock: a RISC-V load instruction with the destination-register
field set to zero should ignore its result, but it was never executed. This issue was
fixed along with other issues that were covered by the specification.

4.5.3 Physical Realization
I ran the system discussed in section this on an FPGA and confirmed that it works
as expected when communicating with an unmodified Linux computer over Ethernet.
This section will give a brief overview of the practical aspects of this experiment and
review the formal correctness guarantees and additional considerations in the context
of the physical artifact.

First, some steps are required to translate the in-Coq description of the system into
a format understood by other tools. The Bedrock2 compiler is executed inside Coq
and the resulting machine code (a list of bytes) is printed in hexadecimal using Coq
notations. The Kami processor design is extracted using the Coq OCaml extrac-
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Figure 4-2: Demonstration of hardware-and-software integration using an FPGA

tion feature and exported as Bluespec HDL5 using a dedicated tool from the Kami
framework. The exported code relies on Bluespec implementations of primitive Kami
modules for block RAM (for the instruction memory) and FIFOs (between pipeline
stages). A small module written in Bluespec wraps the generated code and exposes
methods to access the Bluespec FIFOs for memory requests and responses. The
open-source Bluespec compiler analyzes this description to find opportunities for par-
allel execution of rules while preserving one-rule-at-a-time semantics and generates a
Verilog RTL design.

The generated Verilog module is instantiated from the top-level Verilog module in this
case study along with a memory module and a SPI peripheral. The memory-FIFO
methods implemented in Bluespec are accessible from Verilog using a ready-enable
interface: the implementation indicates when the method is ready to be called using
an output wire, the user of the module can enable its execution using an input wire,
and values of data wires are considered exchanged when both control signals are
asserted. The memory module implements byte-addressable word-sized operations
using four banks of block RAM and specifies the machine code extracted from Coq as
the initial value for the memory. The SPI peripheral is triggered by requests to read
or write its MMIO address and uses an 8-bit deserializer and serializer concurrently
to input and output data; the input value can be retrieved through another MMIO
address. Altogether, the top-level Verilog module presents the following interface:

module system(input clk,
output spi_mosi, output spi_csn, output spi_clk, input spi_miso,

5https://github.com/B-Lang-org/bsc
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output lightbulb);

The five nonclock wires are mapped to FPGA balls and wired out to the Ethernet
controller and a power switch controlling a real lightbulb (see Figure 4-2).

To go over the key components of the system concretely, the Ethernet controller is
Microchip LAN9250, and the FPGA is Lattice ECP5-85k. Both are used on the
manufacturer-recommended development boards. The Verilog code was synthesized
for the FPGA using Yosys & Nextpnr [Sha+19]. I would like to emphasize that all
software tools used are open-source and actively maintained. The hardware compo-
nents have some inherent risk of becoming unavailable in the future, but they are
simple enough to be simulated on an FPGA in case a direct replication is of interest.

Implications and Limitations of the System Theorem By instantiating all
components with appropriate parameters and connecting their correctness proofs, the
proof of the main theorem stands on its own. The Coq command Print Assumptions
can be used to confirm that it only depends on standard Coq axioms: functional and
propositional extensionality, Axiom K, and JMeq_eq. Thus, there is an unparalleled
level of assurance that the system-correctness theorem is true as stated.

Proving any non-degenerate specification about a system also provides assurance of
a number of harder-to-formalize but intuitively important properties. For example,
the top-level theorem of the lightbulb controller rules out the possibility that an in-
tentional attack through the network interface might take control of the processor,
perhaps by exploiting a buffer-overflow bug. If an arbitrary-code-execution attack
were possible, the injected code could perform an MMIO operation disallowed by
goodHlTrace, violating the top-level theorem. Thus, one can rest assured that the
verified lightbulb controller is not conscripted to a botnet. Further, the system-
correctness theorem also rules out its unwitting participation in denial-of-service at-
tacks by responding to misaddressed packets: the SPI interface can be used to send
packets, but the specification only allows receiving them.

An obvious limitation of the top-level theorem is that it only covers a part of the
aparatus whose operation is demonstrated. Tooling used to implement the hardware-
description-language model of the system is not verified, and its output is executed
by an FPGA whose desired operation is assumed. This last requirement is a bit more
specific than just “correctness”: reprogramming the same FPGA using the interface
used to upload our design would obviously result in a different behavior. Finally, the
theorem applies to the interface between the FPGA and the Ethernet controller shown
in Figure 4-2, i.e. the network interface card is excluded from the verification. This
last limitation is also a feature: even if the Ethernet controller behaves maliciously
(perhaps because it is compromised), it cannot take control of the processor. In short,
the system behaves as specified if executed as modeled.
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Chapter 5

Connecting Fiat Cryptography

The chapters so far have discussed the integration and combined correctness proof of
Bedrock2 programs and a software-and-hardware stack for executing them. A cross-
cutting challenge for specifying interfaces and proving the components has been the
desire to allow for direct and efficient implementations without locking in particu-
lar implementation choices through overspecification. This pursuit is motivated by
extensibility and portability as much as by performance. While some standard op-
timizations such as register allocation are included to exercise the flexibility of the
formal interfaces, most components are rather naive from an algorithmic standpoint.

This modest choice of scope was a conscious decision based on the expectation that
seeking to verify low-level computer-systems components with many monotonous
proof obligations would lead to proof-automation performance scaling issues. This
concern was confirmed in multiples: the core proofs of each major component take
tens of minutes to build in spite of substantial proof-performance-engineering efforts
and occasional use of more manual, less computationally intensive proof methods.
For proof-performance reasons alone, pursing verification of a substantial and sophis-
ticated program using the Bedrock2 program would require substantial work on the
obligation-proving procedures themselves. The Bedrock2-specific qualitative aspects
of the program-proof experience could also stand being improved, but predictable
and fast building blocks for solving proof obligations are a major bottleneck for that
work as well. Yet it appears desirable to demonstrate that the integration-verification
strategy behind the Bedrock2 ecosystem is compatible with code that performs non-
trivial computations with good runtime performance. To do so, I will start from
an artifact where proof-performance issues have already been addressed and make a
connection to the Bedrock2 ecosystem.

This chapter covers the integration verification associated with Fiat Cryptography, a
library of high-performance elliptic-curve cryptography implementations proven cor-
rect in Coq. There are two branches to this work. First, I will discuss optimizing com-
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pilation of field-arithmetic implementations generated from Fiat-Cryptography tem-
plates to competitively fast assembly code for common x86 processors. The Coq proof
of correctness of the generated code is derived from the proofs of arithmetic-algorithm
templates, a compiler-correctness theorem about a fast partial evaluator and rewriting
engine, and the correctness proof of a translation validator that checks low-level opti-
mizations. Separately, both field-arithmetic implementations and elliptic-curve code
from Fiat Cryptography are compiled to Bedrock2. A traditional certified compiler
serves unrolled low-level code, while relational compilation using Rupicola is used for
higher-level functions. Integrating these functions with a simple application written in
Bedrock2 culminates in another Ethernet-connected demonstration system, this time
running on a commercial RISC-V processor and serving as a public-key authenticated
garage-door opener.

Historical Overview of Fiat Cryptography I started the Fiat Cryptography
project in 2015 and demonstrated the first template that generates modulus-specific
field-arithmetic code similar to what an expert would write by the beginning 2016.
Specification work for higher-level elliptic-curve algorithms also started around the
same time. The MEng theses of myself [Erb17] and Jade Philipoom [Phi18] docu-
ment early work, including the overall architecture of the library, details of template
implementation of field arithmetic, and Coq performance challenges tackled to get
the effort off the ground at all. A compact pitch for the template-based strategy for
generating proven-correct field-arithmetic code can be found in the subsequent con-
ference paper [Erb+19]. The same publication also presents performance results for
the algorithms and prime moduli for which straight-line C code could be generated
using built-in Coq partial evaluation mechanisms without exhausting system mem-
ory or failing a one-hour timeout. Fiat Cryptography output appears distinctly faster
than modulus-generic alternatives, comparable to optimized C code, but slower than
expert-written assembly code.

Based on these results, field-arithmetic code generated by Fiat Cryptography was
adopted by a number of cryptography libraries for popular software such as web
browsers, Linux, OpenBSD, MirageOS, Google and Apple products. Working with
the BoringSSL developers, I integrated some of the elliptic-curve code into that library
as well. However, the first version of the Montgomery-ladder code transcribed from
Coq had a simple (and fortunately inconsequential) pointer-passing bug, highlighting
the practical importance of integration proofs for verified elliptic-curve-cryptography
code. But the time was not right to tackle this challenge head-on: there was no veri-
fication infrastructure that could readily handle C-like code with the simple aliasing
patterns that are common in code calling field-arithmetic routines, and iterating on
Fiat Cryptography’s compilation pipeline was inconvenient due to its slowness.

Seeking to extend Fiat Cryptography’s field-arithmetic templates to larger param-
eters and more complicated arithmetic algorithms, Jason Gross set out to build a
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faster, proven-correct partial evaluator. Collaborating closely on the design, we even-
tually arrived at a solution that supports evaluation-order-directed application of
arbitrary rewrite rules, opening up the possibility for its application for constructing
certified compilers outside Fiat Cryptography. The new reflection-based implemen-
tation achieved a 10x-1000x speedup on existing Fiat-Cryptography build targets,
enabled development of new algorithm templates that would have been infeasible to
instantiate without it, and substantially simplified the template code by removing the
need for the most annoying performance hacks [Gro+22]. This years-long effort also
resulted in a new (and faster) trick for feeding Coq goals into certified decision proce-
dures [GEC18] and contributed to a thorough analysis of the performance-engineering
landscape of Coq proofs [GE22; Gro21].

5.1 Optimized Assembly Code for Fiat Cryptogra-
phy

This section describes the extension of Fiat Cryptography to generate x86 assem-
bly code using a compiler based on combinatorial optimization. The code generated
in this manner runs faster than that from the previous C backend and enjoys an
integrated correctness proof against a mechanized semantics of the assembly lan-
guage. The techniques used to establish this equivalence are pleasantly simple, and
no changes to the previous lowest-level formal interface of Fiat Cryptography were
required.

The Fiat-Cryptography toolchain starts from generic functional programs represent-
ing arithmetic algorithms. These templates are instantiate with parameters that
specify the concrete modulus and key representation choices, for example how many
machine words to use to represent each field element. The template instantiations are
then partially evaluated, optimized using a database of rewrite rules, and analyzed to
determine an appropriate finite-width integer type for each intermediate value. Con-
veniently, unrolling loops and inlining all functions below the field-arithmetic level
is already common due to its performance benefits, so the code generated by Fiat
Cryptography can be presented as a list of arithmetic operations. Both the templates
and the compiler passes are proven correct for all compile-time and run-time inputs.

Before the improvements described in this chapter, the only supported usage of Fiat
Cryptography was pretty-print the generated code as C (or Go, Zig, or Rust). This
output would be augmented with documentation comments derived from the theorems
proven about the arithmetic operations, but the translation itself is trusted. As the
subset of required language features is relatively simple, there has not been a specific
reason to be concerned about correctness, but an unverified translation would be an
obstacle for integrated verification. Separately, conventional compilers are not all
that good at compiling long sequences of arithmetic instructions that make heavy use
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of one-bit registers to store carry bits. This limitation was highlighted as the biggest
performance bottleneck during performance evaluation of Fiat Cryptography.

Joel Kuepper and collaborators designed a new code-generation backend for Fiat
Cryptography that produces highly efficient code tailored to the architecture it runs
on. CryptOpt treats the problem of finding efficient machine-code realizations of a
straight-line program a combinatorial optimization problem. In other worse, choices
about instruction scheduling, instruction selection, and register allocation are treated
as parameters to a black-box function that maps the Fiat-Cryptography output to
an assembly program. A randomized search algorithm is then used to optimize this
function through incremental changes to the parameters and rapid experimental eval-
uation of the performance of the generated assembly code.

In short, the following mutation rules are used:

• Reordering the computation of an intermediate value to any point between
when its arguments are computed and when its result is used.

• Switching to an alternative instruction or snippet to implement the same arith-
metic operation, for example add vs. lea vs. adox.

• Assigning a variable to a register or a stack slot.

The optimization is initialized with a family of random variants of the same program.
First, each candidate is optimized separately using random local search, iteratively
switching to a mutated variant of the candidate unless the mutation makes it slower.
Finally, the fastest candidate is run through additional optimization cycles. The
performance comparisons are performed with a great deal of care to minimize noise
and systematic errors [Kue+22, Appendix A].

Using these optimizations, CryptOpt compiles 9 representative Fiat-Cryptography-
Generated functions to assembly code that is (on average) 2̃0% faster than code
generated by Clang’s output and within the ballpark of assembly-language imple-
mentations. Further, a compiler backend that efficiently handles carry flags created
the opportunity to usefully add new templates that heavily rely on this feature to
Fiat Cryptography. With my guidance, Samuel Tian and Owen Conoly implemented
new arithmetic-algorithm templates that capture and generalize state-of-the-art field-
arithmetic techniques used for Curve25519 and secp256k1. Instantiating these tem-
plates using CryptOpt yields the fastest-known implementations for the relatively
new 12th-generation Intel processors and top-tier performance across architectures.
A slightly faster microarchitecture-specific implementation is likely to be possible,
but a clear benefit of automated code generation is that fast code for new processor
designs can be generated with minimal human effort.
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5.1.1 Equivalence Checker for Data-Flow-Graphs

CryptOpt’s random-mutation process is intended to only generate correct realizations
of the input code. However, the standard of confidence for cryptographic implemen-
tations that are relied on Internet-wide is higher than that, at least aspirationally.
Further, some bugs were observed when using development versions of the optimizer.
Some of these bugs resulted in generation of invalid code that was easily detected
during testing, whereas others led to generated code that seemed to pass tests but
could not be judged correct or incorrect by human analysis.

I designed an equivalence checker to confirm that CryptOpt-generated assembly code
is semantically equivalent to the programs produced by Fiat Cryptography’s certified
pipeline. Chuyue Sun and Jason Gross joined me to implement, prove, and extend this
checker as development continued. The basic strategy is simple: both input programs
are internalized to a data-flow-graph representation and canonicalized using rewrite
rules, with special nodes for associative and commutative operations. Nodes that
compute the same function of the same inputs are coalesced on-the-fly. Thus, it is
sufficient to check that the outputs of the two programs being checked are represented
using the same nodes in the data-flow graph. This checker is proven correct once-
and-for-all and integrated with Fiat Cryptography compiler infrastructure.

The complete data model of the equivalence checker is remarkably simple. Inputs
to the function are treated as opaque symbols, integer constants and standard word
operations can be used, and each node in the data-flow graph can reference any
previous nodes using a natural-number index.

Variant op :=
| input (bitwidth : N) (_ : symbol)
| const (_ : Z)
| iszero
| add (bitwidth : N)
| addcarry (bitwidth : N)
...
Definition dag : Type := list (op * list N).

The key operation for dag is merging a new expression, returning the index at which
a node representing the root of the expression tree is stored. The expression to be
merged is allowed to refer to nodes in the data-flow graph:

Inductive expr :=
| ExprRef (_ : N)
| ExprApp (_ : op) (args : list expr).

Rewrite rules that translate CryptoOpt’s instruction-selection snippets to the arith-
metic operation they implement can be implemented as functions that transform ex-
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pressions, applied right before merging, and proven correct one-by-one. Specifically,
the correctness condition for a rewrite rule is that it should not change the value the
expression evaluates to regardless of the dag contents or function arguments G:

Definition rewrite_rule_ok r :=
∀ G d e v, dag_ok G d -> eval G d e v -> eval G d (r d e) v.

5.1.2 Checking Assembly-Level Optimizations
Symbolic execution of assembly code operating on registers (including flags) is imple-
mented on top of the data-flow graph. Specifically, the symbolic state of an assembly
program represents register contents using references to data-flow-graph nodes that
evaluate to the appropriate values, or None for unknown values. The current value of
the symbolic state is threaded through operations using the state monad, with getters
and setters for registers, flags, and assembly-instruction operands defined to return
data-flow-graph indices instead of values. For example, the test instruction that can
be used to check whether a register is zero is symbolically executed as follows:

Definition Symex (instr : NormalInstruction) : M unit :=
match instr.(mnemonic), instr.(args) with
| test, [ea;eb] =>
a <- GetOperand ea;
b <- GetOperand eb;
_ <- HavocFlags;;
_ <- ZeroFlag CF;;
_ <- ZeroFlag OF;;
if Syntax.Equality.ARG_beq ea eb
then zf <- Merge (rewriterules (iszero, [a])); SetFlag ZF zf
else ret tt

...

It is acceptable for the symbolic-execution routine to be partial: the above snipped
does leaves the output ZF havoced (None) if the ttest instruction is used with two
different registers as arguments. Symbolic execution is proven sound against a de-
terministic semantics of the relevant subset of x86 assembly, which is formalized
similarly to RISC-V (see Section 4.2). For example, the reference behavior of test is
to compute the bitwise and of its arguments:

Definition run1x86 (st: machine_state) instr : option machine_state :=
match instr.(mnemonic), instr.(args) with
| test, [src1; src2] =>
v1 <- DenoteOperand sa s st src1;
v2 <- DenoteOperand sa s st src2;
let v := Z.land v1 v2 in
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let st := FlagsFromResult s st v in
let st := SetFlag st CF false in
let st := SetFlag st OF false in
Some (HavocFlag st AF) (* leaves AF unspecified per refman *)

Unlike with RISC-V, it is important for efficient formalization that x86 is modeled at
the level of the assembly language rather than machine code. There are many more
instruction formats than there are assembly-language mnemonics, and instructions
vary in what operands they allow. It is much easier to specify a generalization of x86
that, for example, allows arithmetic operations with two memory operands, than to
try to exhaustively specify which combinations are allowed. (This approach means
that an assembly-language program verified against this specification may fail to
be assembled, but it is sound as long as all implemented constructs are modeled
correctly). Verifying assembly code is also expedient because Fiat Cryptography’s
users accept assembly code (not binaries) as contributions to their codebases.

5.1.3 Symbolic Execution of Stack and Array Access
Field-arithmetic routines generated by Fiat Cryptography accept pointers to word
arrays as arguments and store results to other designated arrays. Additionally, Cryp-
tOpt uses the stack for spilling word-sized temporaries. Thus, there is no pointer-
chasing, and all addresses can be represented as offsets from arguments of the function.
The symbolic state for memory is simply a list of (address, value) pairs, where both
the address and the value are references to the data-flow graph (and the address
node is usually an addition node). In this simple bag-of-arrays model, a store can be
symbolically executed by updating the value associated with the right address:

Definition store a v (s : mem_state) : option mem_state :=
n <- indexof (fun p => fst p =? a)%N s;
Some (ListUtil.update_nth n (fun ptsto => (fst ptsto, v)) s).

Of course, it is only sound to overwrite just one address node’s value if no other
address nodes represent the same address. This invariant is enforced by specifying
the relationship between the symbolic memory state and the x86 memory state using
separation-logic:

Fixpoint Rmem (sm : Symbolic.mem_state) : mem_state -> Prop :=
match sm with
| nil => F
| cons (ia, iv) sm' => Rcell64 ia iv * Rmem sm'
end.

Given this definition, the correctness of store can be proven in the same sense as in
Bedrock2:
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Lemma store_Rmem : ∀ d s m (HR : R_mem d s m) a va i v v' s'
eval d a va -> eval d i v ->
Symbolic.store a i s = Some s' ->
∃ m', set_mem m va 8 v' = Some m' ∧ Rmem d s' m'.

The memory-representation relation is then used to refine the overall representation
relation R that relates symbolic-execution states s to x86 machine-model states m. In
terms of this relation, the correctness of the symbolic-execution engine can be stated
as follows:

Lemma SymexLines_ok : ∀ F G s m asm _tt s',
R F G s m ->
Symbolic.SymexLines asm s = Success (_tt, s') ->
∃ m', Semantics.DenoteLines m asm = Some m' ∧ R F G s' m'.

5.1.4 Integration With Fiat Cryptography’s Pipeline
The preexisting verified-compiler pipeline in Fiat Cryptography is implemented using
Parametric Higher-Order Abstract Syntax (PHOAS) [Chl08] and specified using a
structurally recursive interpreter. As the intermediate language of Fiat Cryptography
has no undefined behavior and no nondeterminism, the interpreter can be easily
defined in a type-safe manner. Pipeline.Expr t is the type of expressions whose
evaluation yields values of the type encoded by t, which is an enumeration of simple
types like integers, pairs, and lists. (The input language of the pipeline also supports
higher-order functions, but these are eliminated during compilation through inlining.)

These expressions are translated to data-flow-graph nodes by a simple recursive func-
tion whose correctness can be proven by induction on the expression structure. Impor-
tantly, op symbolic execution of assembly code and symbolic evaluation of PHOAS
expressions start with the same symbol values for corresponding function inputs.
Specifically, a calling-convention model places the arguments of the functional pro-
gram in arrays at freshly generated symbolic addresses and initializes the argument-
passing registers with these addresses before symbolic execution. Fresh values are
also used for other registers to track that callee-saved registers are restored to their
original value by the end of the execution of the assembly function. Finally, the data-
flow-graph indices associated with symbolic addresses of the designated output array
are compared to the data-flow-graph indices returned by symbolic evaluation of the
PHOAS expression. If the assembly code is correct and rewrite-rules appropriately
match the instruction-selection flexibility afforded to CryptOpt, merging correspond-
ing output expressions into the data-flow graph already mapped them to the same
index!

The key theorem statement connecting the PHOAS pipeline to the x86 symbolic-
execution engine is rather verbose due to calling-convention details and support for
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functions with arbitrary numbers of arrays and scalars as input and output. A sim-
plified snippet that shows the structure appears below:

Theorem equivalence_checker_correct {t} (F : mem_state -> Prop)
(asm : Assembly.Syntax.Lines)
(expr : Pipeline.Expr t) (Hwf : API.Wf expr)
(args : list (word + list word))
...,
check_equivalence asm expr ... = Success tt ->
∃ st' retvals,
∧ runx86Lines st asm = Some st'
∧ Pipeline.apply (Pipeline.Interp expr) args = Some retvals
∧ Rout F retvals stack_size base (to_asm args) savedregs ... st'

The verified equivalence-checker was successfully used to check all champion imple-
mentations produced by CryptOpt against the Fiat Cryptography code it started
from. Most verification tasks completed within a second or two, but the slowest one
took five minutes. Experience from Bedrock2 and earlier Fiat-Cryptography proto-
types suggests that attempting to use the Coq proof engine to symbolically execute
hundreds of lines of code whose compact representation inherently depends on sharing
subexpressions would have taken much longer, if successful at all. Implementing a
and verifying a dedicated functional program to check the equivalence was feasible be-
cause the set of optimizations whose results were to be reconciled with starting-point
code was relatively small.

Intuitively, it seems that both the Bedrock2 symbolic-execution strategy and the
x86 symbolic-execution strategy here could be implemented either as a functional
program or as a proof script, but the engineering tradeoff between these options
is steep. Despite being a relatively new addition to Fiat Cryptography, the x86
equivalence checker already has a backlog of feature wishes and annoyance-fixes that
would require substantial refactoring and reproving to be implemented. In some
cases, a less satisfying but easier-to-apply solution has been adopted instead, further
complicating the code and hindering future extension.

5.2 Compiling Field Arithmetic to Bedrock2
Jade Philipoom implemented a compiler from the intermediate representation of Fiat
Cryptography to Bedrock2 and proved it correct once-and-for-all. The translation is
very simple and does not make any attempt to generate optimized code. Specifically,
the generated code for each field-arithmetic operation works in three phases:

1. All inputs are loaded to local variables.
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2. Arithmetic operations on local variables are used to compute the result.

3. The words representing the returned field element are stored to memory.

The interface of the Bedrock2 backend is similar to the x86 backend: pointers to input
and output arrays are passed into the field-arithmetic function, avoiding the need for
it to allocate memory. Further, as all inputs are read before any outputs are written,
the generated code (and its proof) support usage where the input and output arrays
overlap. The convenience lemma that establishes correctness of compiled code for an
arbitrary binary field-arithmetic operation op reads as follows:

Definition binop_spec {name} (op : BinOp) :=
fnspec! name (pout px py : word) / (out x y : felem) R,
{ requires t m :=

bounded_arg1 op x ∧ bounded_arg2 op y ∧
m =*> FElem px x ∧ m =*> FElem py y ∧
m =* FElem pout out * R;

ensures t' m' := t = t' ∧
∃ out, eval out = interp_op op (eval x) (eval y) ∧
m' =* FElem pout out * R ∧ bounded_ret op out}.

The definition FElem designates an array that is of appropriate length to store a field
element and whose cells satisfy the representation predicate of the chosen field-element
representation relation from Fiat Cryptography.

The Fiat-Crypto-to-Bedrock2 compiler is available both in the command-line inter-
face of Fiat Cryptography and inside Coq. For example, Bedrock2 code to multiply
integers modulo 2255 − 19 using an efficient 10-position base-225.5 representation can
be generated along with an appropriate instance of the compiler-correctness proof as
follows:

Let n := 10. Let s := 2^255. Let c := [(1, 19)]%Z.
Derive fe25519_mul SuchThat (forall functions,

binop_spec "fe25519_mul" bin_mul
(field_representation:=field_representation n s c)
(&,fe25519_mul :: functions))

As fe25519_mul_correct. Proof. derive_bedrock2_func mul_op. Qed.

Translating Arithmetic Operations The arithmetic operations supported by
Bedrock2 are not an exact match for those that appear in field-arithmetic code gen-
erated by Fiat Cryptography. For example, Bedrock2 (and RISC-V) does not sup-
port add-with-carry or other word-arithmetic operations that return more than one
register’s worth of output. These discrepancies are resolved by running the Fiat-
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Cryptography rewriting pipeline with Bedrock2-specific rewrite rules. While the de-
sign of an appropriate rewrite system can require careful thought, the rules can be
proven correct one-by-one. This use of the Fiat-Cryptography rewriter to support a
later compiler backend is a testament to its flexibility: indeed, new compiler features
can be added and verified using new rewrite rules.

PHOAS-to-Omnisemantics Proofs The Fiat-Cryptography rewriting engine op-
erates on a functional language specified using a total, deterministic interpreter from
PHOAS expressions to Coq values. The verification of the compiler to Bedrock2
uses the cmd_ok definition (see Section 3.2) for output code. Similarly to other
compilers from PHOAS, the proof of this translation proceeds by induction on the
well-formedness assumption of the input expression. It is not surprising to me that
this combination works, but this example is a first, so I am pointing out its suc-
cess nonetheless: a semantics with the omnisemantics type signature can be used for
compilation from PHOAS even when the generated code uses simple variable names.

5.2.1 If Fiat Cryptography Had Omnisemantics
Avoiding nondeterminism and undefined behavior in the compiler infrastructure of
Fiat Cryptography was a conscious choice, but it is less clear-cut now that omni-
semantics are available. Like with the CompCert C semantics (see 2.4), specifying
the Fiat-Cryptography intermediate language as total and deterministic required non-
trivial compromises and forced the design into arbitrary decisions that ended up being
revisited multiple times. Specifically, a phase near the end of the pipeline analyzes
straight-line code to infer possible ranges of values for variables and intermediate
expressions. The syntax tree is then annotated with these ranges. But is is the
semantics of a range annotation?

Considering this feature alone, I would like to argue that the appropriate definition for
how to evaluate an expression with a range annotation would evaluate the expression,
check that the resulting value is within the indicated range, and trigger undefined
behavior otherwise. Notice that this particular use of undefined behavior sidesteps the
most common criticism of it: the input language does not allow for range annotations
on intermediate variables or expressions, so it would not be possible to accidentally
trigger undefined behavior or have difficulty proving the lack of it. Instead, (the proof
of) the range-analysis pass would have to prove that the annotations it generates are
valid, which is already the case.

From the perspective of the subsequent compilation pass, undefined behavior allows
for more compilation options. For example, a translator to a target architecture
where 64-bit addition is preferable to 32-bit addition (e.g., lea on 64-bit x86) could
map a 32-bit addition marked with a 32-bit range to a 64-bit operation. The same
transformation is not possible if the range annotation has unspecified semantics, or
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if it specified to truncate its argument to 32 bits: the latter explicitly invalidates the
proposed optimization.

Currently, Fiat Cryptography includes a less-than-elegant function-level “bounds-
relaxation-function” knob for controlling the sizes assigned to intermediate variables.
Specifically, when compiling to 64-bit Bedrock2, the range-analysis pass itself is con-
figured to relax the range annotations to 0 <= x < 264 for all intermediates that fit in
this range. Even so, the proof of the Fiat-Cryptography-to-Bedrock2 compiler relies
on the seemingly arbitrary choice that range annotations generated by the (sound)
range-analysis pass truncate their argument. This seems inevitable: the same an-
notation could have been inserted by a different analysis: rewriting x mod 2^k to a
range annotation on x would be silly but provably equivalent according to the current
semantics.

Thus, I wonder whether defining the semantics of an otherwise purely functional lan-
guage modeled using PHOAS would lead to as smooth of a compiler-proof experience
as a definition based on a total interpreter. Some syntactic overhead in postcondi-
tions would be inevitable, but it seems like a low price to pay for being able to encode
static-analysis results in the syntax tree in a meaningful way. Further, the same en-
coding would also allow unspecified behavior to be encoded smoothly. This feature
could be used to handle operators such as bit-shifts whose fast implementations on
different CPU architectures disagree on nonsensical inputs.

5.2.2 Arithmetic-Library Specification Issue Found During
Integration Proof

The integration proof of an elliptic-curve library function and the Bedrock2 versions
of appropriate Fiat-Cryptography arithmetic routines revealed an undocumented and
dissatisfying limitation of an arithmetic-library function. Initializing a field element
(which is represented by a number of machine words) with the value of a single ma-
chine word is often implemented by simply assigning the argument to the position
with weight 1 and zeroing the other positions. However, many multiword represen-
tations of field elements also include an invariant about the range of possible values
each individual position can take on. The simple implementation is only valid if the
posited initial value is within the bounds of the weight-1 position.

All uses of this initialization function that were tracked in Fiat Cryptography passed
in single-digit values and were compatible with invariants of all representations in Fiat
Cryptography. It thus seems be appealing to keep the uses and the function itself
as-is, but making the specification of the word-to-field-element function depend on
the internal representation invariant of the field-arithmetic implementation does not
allow for modular verification of callers. Specifying a global threshold, say single-digit
values, is dissatisfying because it is arbitrary – it gives no guidance for picking the
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right threshold that works with future field-arithmetic implementations and elliptic-
curve code. Instead, I decided to change the implementation of initializing a field
element from a machine word to propagate carries from the initialized position to
higher-weight positions. The specification conundrum was thus bypassed at the cost
of a handful of extra instructions in the non-performance-critical function.

5.3 Deriving Bedrock2 Code Using Rupicola
Rupicola [Pit+22] is a relational compilation toolchain for translating functional Coq
code to Bedrock2 programs and generating proofs of correct translation on-the-fly. A
translation from an input language as flexible as Coq’s is inherently partial, and Rupi-
cola embraces the partiality at compilation time to make room for sound extension of
the compiler with domain-specific patterns. Specifically, Rupicola casts the problem
of optimizing compilation as proof search. When asked to compile f x, Rupicola
asserts the goal that there exists a Bedrock2 program whose cmd_ok-postcondition is
related to f x and proceeds to prove that goal using a database of compilation hints,
filling in the definition of the conjectured Bedrock2 program on the fly.

The expected usage of Rupicola involves adding custom lemmas to the compilation-
hint database for each Coq function to be compiled. Arbitrarily complicated program
fragments with application-domain-specific preconditions and postconditions can be
used as compilation hints, but each hint must be triggered by a designated syn-
tactic construct in the Coq code fed to Rupicola. A common pattern is mapping
let-bound calls to Coq functions to calls of Bedrock2 functions that implement the
same operation. For example let x := y * z mod (2^255-19) in ... is mapped
to fe25519_mul from Section 5.2.

The key aspect to keep in mind is that the compilation rule is chosen based on the
source-code function alone, but if it has preconditions, these preconditions must be
solved by proof automation operating on the symbolic state of the Bedrock2 program
being generated. In this case, the symbolic state must contain the field elements y
and z at some addresses that Rupicola can use to call fe25519_mul. The proving of
preconditions can determine values of arguments with which the compilation lemma
is instantiated by filling in existential variables, so the symbolic state of the Bedrock2
correctness proof that Rupicola is building incrementally is also an input to each
compilation step. The Bedrock2-level precondition needs to be explicitly specified
when starting to compile a function. In this and a number of other ways, deriving a
Bedrock2 program using Rupicola is closely related to using the Bedrock2 program
logic to derive proof-context definitions (functional programs) that correspond to the
computations performed by the Bedrock2 program.

For example, the implementation of IP-packet checksums used in the case study at
the end of this chapter is translated from a functional program by using Rupicola
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with the following specification:

fnspec! "ip_checksum" data_ptr wlen / (data : list byte) R ~> chk,
{ requires t m :=

wlen = word.of_Z (Z.of_nat (length data)) ∧
Z.of_nat (Datatypes.length data) < 2 ^ 32 ∧
m =*> listarray_value AccessByte data_ptr data * R;

ensures t' m' := t' = t ∧ m' = m ∧ chk = ip_checksum_impl data }.

The main benefit of using Rupicola is that the input code has purely functional
semantics. While a number of marker notations are required for reliable compilation,
these markers unfold to standard Coq primitives. For example let/n is just let,
except it communicates to Rupicola that the location where the value will be stored in
Bedrock2 should be chosen based on the name of the variable being defined. Similarly,
special definitions to get Rupicola to produce Bedrock2 code with loops unfold to
simple recursive functions when proving properties of the source code intended to be
compiled with Rupicola. For example, IP checksums for even-length packets can be
computed as follows:

Definition ip_checksum2_impl (bs: list byte) : word :=
let/n chk16 := 0xffff in
let/n chk16 := nd_ranged_for_all

0 (Z.of_nat (List.length bs) / 2)
(fun chk16 idx =>

let/n b0 := ListArray.get bs (2 * idx) in
let/n b1 := ListArray.get bs (2 * idx + 1) in
let/n chk16 := ip_checksum_upd chk16 b0 b1 in
chk16) chk16 in

let/n chk16 := (~w chk16) &w 0xffff in
chk16.

This approach offers great control over the generated Bedrock2 code:

func! (data, len) ~> chk16 {
chk16 = $0xffff;
_i = $0;
while _i < len >> $1 {
b0 = load1(data + $1 * ($2 * _i));
b1 = load1(data + $1 * ($2 * _i + $1));
w16 = b0 | b1 << $8;
chk17 = chk16 + w16;
chk16 = (chk17 & $0xffff) + chk17 >> $16;
_i = _i + $1

};
chk16 = (chk16 ^ $(-1)) & $0xffff))
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}

A similar derivation is used to implement the ChaCha20 stream cipher used to gen-
erate pseudo-random numbers in the case study at the end of this chapter.

Supporting programmatic derivation of Bedrock2 programs was one of my design goals
for Bedrock2 and cmd_ok in particular; the existence of Rupicola indicates at least
some level of success. The vast majority of the design and implementation of Rupi-
cola, including the examples presented in this section and the next, was completed by
Clément Pit-Claudel, Jade Philipoom, and Dustin Jamner. A full IP-checksum im-
plementation originally written as a benchmark for Rupicola and an implementation
of the ChaCha20 stream cipher are included

5.3.1 Compiling Elliptic-Curve Operations using Rupicola
In parallel with the work to integrate Fiat Cryptography with verified lower-level
toolchains, collaborators and I extended the Coq library of proofs of elliptic-curve
theory and algorithms. Building on optimized differential addition formulas I ver-
ified earlier, David Benjamin and I implemented and proved three variants of the
projective x-coordinate ladder for Montgomery curves. I implemented and verified
Jacobian coordinates for Weierstrass curves, including mixed addition between affine
and Jacobian points that is commonly used with precomputed lookup tables. I im-
plemented and verified precomputation-friendly formulas for XYZT coordinates for
Edwards curves. Krit Boonsiriseth and I described and proved the isomorphism be-
tween Edwards curves and Montgomery curves, completing the set of connections
between different affine coordinate systems for elliptic curves modeled in Fiat Cryp-
tography. With some guidance from me, Krit Boonsiriseth decribed and proved a
state-of-the-art lookup-table-based algorithm for computing multiplications between
a constant point and variable but secret scalars [Ham12, §3.3].

Relatedly, Ashley Lin implemented an addition-chain generator for fast exponentia-
tion with constant powers. This template is in turn used to implement field-element
inversion as per Fermat’s little theorem. Thus, the theorem that our implementation
of the X25519 Diffie-Hellman function is correct relies on a computer-checked proof
that 2255 − 19 is prime, which is discharged through repeated use of a Coq proof of
Pocklington’s theorem (from Coqprime [TH07]).

All these algorithms are described as functional programs consisting of sequences
of field-arithmetic-operation invocations and simple loops, making them excellent
candidates for compilation with Rupicola. For the case study in the next section, the
derivations for Montgomery ladder and addition-chain exponentiation were realized
by Jade Philipoom, Dustin Jamner, and Ashley Lin.
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Stack Allocation Rupicola strictly follows the structure of the input program dur-
ing compilation. This includes not generating memory-management code unless re-
quested. By default, assigning a value to a variable whose Bedrock2 representation is
stored in memory means that the contents of the current memory location associated
with that variable should be overwritten. This allows for manual control over vari-
able lifetimes, but means that code needs to be annotated with the Rupicola-specific
identity function stack for every new (nonoverwriting) assignment:

Definition ladderstep_gallina (m : positive) (a24 : F m)
(X1 X2 Z2 X3 Z3: F m) : \<< F m, F m, F m, F m \>> :=

let/n A := stack (X2+Z2) in
let/n X2 := (X2-Z2) in
let/n Z2 := (X3+Z3) in
let/n Z3 := (X3-Z3) in
...

Read-Before-Write Aliasing The last subtraction in the above code snippet uses
the same memory location for the right-hand-side input and the function output. The
field-arithmetic implementations generated by Fiat Cryptography work correctly in
spite of aliasing, and their specifications make this clear (see Section 5.2). Compiling
Coq code that uses this flexibility using Rupicola does not require any additional
effort from the developer. Specifically, Rupicola invokes Bedrock2’s separation-logic
cancellation (see Section 3.3) to discharge the three memory-related preconditions
shown in binop_spec, and two of them just happen to be solved identically. This is
a great example of how sufficiently predictable proof automation can be reused with
ease.

5.4 Garage-Door-Opener Demonstration
I created another demonstration system to illustrate the integration of Fiat Cryptog-
raphy and Bedrock2. The same drivers and Ethernet controller as in Subsection 4.5.3
are used, this time for both sending and receiving packets. Code generated by the
field-arithmetic compiler and Rupicola derivations is linked with Bedrock2 code that
was implemented and proven manually. The application is simple: an authorized
user identified by an X25519 public key can remotely open and close a garage door
controlled by the verified system (Figure 5-1).

Unlike the previous case study, the cryptography-enbaled software here is executed
on a commercial RISC-V microcontroller. The Bedrock2-to-RISC-V compiler is still
used, and the binary it generates is programmed directly to flash memory that the
microcontroller boots from. Again, a system theorem is proven in terms of an invari-
ant that holds throughout execution of RISC-V instructions. Unlike the Kami-based
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Figure 5-1: Garage. Development board by Jessie Grosen, Adam Suhl, and myself.

system where hardware-description-language execution was defined using traditional
semantics, the omnisemantics-based specification of RISC-V makes it easy to specify
that the top-level loop of the demonstration program will keep executing:

invariant initial ∧
∀ st, invariant st ->
mcomp_sat (run1 Decode.RV32IM) st invariant ∧
∃ suffix s0 s1, good_trace s0 (getLog (getMachine st) ;++ suffix) s1.

The trace predicate that makes up the substance of the top-level specification is
stated in terms of Ethernet-driver actions, motor-driver actions, and a high-level
specification of the X25519 Diffie-Hellman function, which is defined in terms of
back-of-the-napkin elliptic-curve formulas. The complete specification is moderately
verbose, but below is an illustrative sample from the key authentication check. First,
the contents of the incoming packet are specified in terms of existentially quantified
fields with implicit lengths:

let incoming : list byte :=
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(mac_local ++ mac_remote ++ be2 ethertype ++
ih_const ++ be2 ip_length ++
ip_idff ++ [ipproto] ++ le_split 2 ip_checksum ++
ip_remote ++ ip_local ++
udp_remote ++ UDP_LOCAL ++
be2 udp_length ++ be2 udp_checksum ++
garagedoor_header ++ garagedoor_payload) in

Then, the I/O trace is related to the packet just described as well as two I/O actions:

(∃ gpiostate action : word,
(lan9250_recv _ incoming +++
eq ("ld", GPIO_DATA_ADDR, gpiostate) +++
eq ("st", GPIO_DATA_ADDR, action)) t ∧

Reading and writing the GPIO register is not conditional on the contents of the
packet. However, the values the motor-control pins are set to are determined based
on the Diffie-Hellman shared secret between the authorized public key and a one-time
secret key sk. In case an invalid command is received, both motor-control signals are
set to zero, commanding no action. A client in possession of the authorized key
can indicate a request to open or close the garage door by revealing the appropriate
16-byte half of the ephemeral Diffie-Hellman shared secret:

let m := firstn 16 garagedoor_payload in
let v := le_split 32 (F.to_Z (x25519 sk GARAGEOWNER)) in
∃ set0 set1 : word,
(set0 = 1 ↔ firstn 16 v = m) ∧ (set1 = 1 ↔ skipn 16 v = m) ∧
action = drive_fwd_bwd gpiostate set0 set1)

Nondeterminism and Side Channels A weakness of this specification is that
it does not enforce that the system behaves in a deterministic manner or otherwise
ensure that seemingly arbitrary choices do not leak the secret key. Standard engi-
neering practices were nonetheless used to keep memory accesses and accesses flow
independent of secrets, but nothing was proven about this discipline. For example, the
Montgomery ladder implementation compiled from Fiat Cryptography using Rupi-
cola relies on a branch-free conditional-move operation for field elements, and the
comparison of the shared secret is implemented using memequal from Section 3.2.7.
The functional correctness of these countermeasures is covered by the proofs, but
the formal model does not account for timing attacks or other side channels. (I did
consider enriching the semantics of Bedrock2 and RISC-V with a leakage trace of
memory-access addresses and branch decisions and proving that implementations of
these interfaces transform it deterministically, but arguing this property for compila-
tion passes such as spill-code generation seems challenging.)
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5.4.1 Experimental Confirmation
The first execution of the binary artifact did not respond to the command immedi-
ately, leading to a surprise debugging session of supposedly verified code. After im-
plementing support for exporting gdb-compatible function symbols from Bedrock2,
it became clear that the verified code was in fact running the x25519 computation,
which even completed a handful of seconds later. The reason for the unexpected slow-
ness was mundane: the microcontroller used for this experiment boots with the main
clock frequency configured to 5̃% of the supported maximum. Fixing this setting
reduced the delay from command to garage-door action to a fraction of a second.
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Conclusion

Integration verification works.

Computer-systems components designed and implemented using different methodolo-
gies but specified and proven correct in the same proof assistant can be verified to
work together based on specifications that capture requirements already informally
associated with the roles of these components. Actually realizing the mechanized
proofs for nontrivial systems requires pushing the limits of today’s proof assistants,
but the conceptual possibility does not appear precarious, and the payoff is immense.
The integrated proof rules out violations of engineering disciplines associated with
the interfaces between the components verified together. In particular, many of the
nastiest bugs and security vulnerabilities fall into this category.

The practical impact of this approach hinges on a solution to the chicken-and-egg
problem between creation of tooling-quality proof assistants and systems that rely
on them. On one hand, the systems whose integrated correctness was proven as a
part of the effort covered in this thesis are very small and simple, leaving room for
reasonable skepticism about whether similarly satisfying and rigorous interface speci-
fications can be found for larger systems. This uncertainty in turn leads to hesitation
about investing into proof-assistant tooling. On the other hand, directly testing the
hypothesis whether larger systems can be specified and proven in a modular manner
already requires better proof-automation building blocks in a proof assistant suitable
for soundly defining and reasoning about these specifications.

The state of the art today is just about at the threshold where select real-world
applications can rely on system-level proofs to achieve assurance out-of-reach for
other quality-assurance methods. Some celebration is warranted, and there is a lot
to be optimistic about. But the path forward is unclear: who will build the GCC and
SQLite of proof assistants and integration-proof libraries?
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