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ABSTRACT

Many foundational tools in causal inference are based on graphical structure and can
involve complex conditions that obscure the underlying causal logic. Given the inherent
complexity and subtlety of cause-and-effect phenomena, establishing formal guarantees about
these tools is both challenging and important. This thesis presents a semantics-driven
formalization of causal models within the Coq proof assistant, enabling precise, mechanized
reasoning about causal relationships. Central to this work is a new function-based definition of
conditional independence, which captures how changes propagate through a causal graph. We
prove that this semantic notion is equivalent to the standard graphical criterion of d-separation,
thereby establishing a rigorous bridge between structural and semantic interpretations of
independence. The formalization includes a library of graph-theoretic and causal-reasoning
tools, encompassing key concepts such as mediators, confounders, and colliders. By linking
the syntactic and semantic perspectives on causality, this work lays a robust foundation for
formally verifying causal assumptions and guiding experimental design.
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Chapter 1

Introduction

Formal verification is a methodology in computer science for mathematically proving that a
system satisfies its specifications under all valid conditions. One tool that enables formal
verification is Coq, an interactive theorem prover that provides a rigorous logical framework
for formalizing concepts and constructing proofs [1]. Formal verification provides a level
of precision and certainty often unachievable through empirical methods alone, making it
widely applicable in designing software and hardware systems where reliability, safety, and
correctness are critical.

We apply formal verification to the field of causal inference, the process of reasoning
about cause-and-effect relationships between variables. The Book of Why [2] highlights that
many aspects of causal analysis, such as counterfactual reasoning, require intuitive leaps
that are innate to humans but go beyond the capabilities of conventional computational
approaches. However, these human-driven methods are often susceptible to error due to
unaccounted biases, confounding variables, and incorrect assumptions. Randomized experi-
ments, when feasible, help alleviate some of these concerns. For instance, randomly assigning
participants to treatment groups in a drug trial reduces the influence of hidden confounding
variables. However, such interventions are not always possible or ethical. Causal inference
thus traditionally relies on assumptions and intuitive reasoning, which lack formal guarantees.

We develop a Coq framework to integrate formal verification with causal inference,
leading toward the goal of improving the accuracy and robustness of causal models and
the experimental conclusions derived from them. In addition to a Coq representation of
causal models and a library of graph- and causal inference-related functions with correctness
proofs, this thesis presents a function-based formal semantics of causal models and a formally
verified equivalence between the semantic and syntactic notions of the widely used term
“conditional independence.” Together, these results demonstrate how formal methods can
uncover hidden assumptions and increase the rigor of causal reasoning. The full Coq
implementation including all definitions and mechanized proofs discussed in this thesis is
available at https://github.com/annazhang03/causal_models_formalization.
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1.1 Fundamental Concepts in Causal Inference

Understanding causality begins with acknowledging that different types of questions about
the world require fundamentally different kinds of reasoning. The hierarchy known as the
“Ladder of Causation” [2] is helpful for categorizing these levels of causal understanding:

• Level 1: Association. This level concerns seeing patterns in data with questions like
“What behaviors are associated with high grades?” These can often be answered with
statistical correlations alone.

• Level 2: Intervention. This level goes beyond observation with questions concern-
ing the performance of some action, such as “What would happen to average test
scores if students were assigned a weekly project?” Answering such questions requires
understanding the effect of an intervention.

• Level 3: Counterfactuals. The most advanced level of causal reasoning deals with
imagining alternate worlds with questions such as “Would this student have performed
better if they had eaten lunch before the exam?” Counterfactual reasoning allows us to
evaluate hypothetical scenarios.

While correlations in observational data alone can answer questions at the first level,
answering intervention or counterfactual questions typically requires assumptions about the
underlying causal structure of the world. To support such reasoning, we turn to causal
models.

A causal model is a framework to represent and reason about causal relationships between
variables. These models are commonly represented by directed graphs, where each variable
is represented by a node, and a causal relationship between two variables is represented by
a directed edge between the two corresponding nodes in the direction of causal influence.
Throughout this thesis, we assume all causal models are acyclic, and we thus can model them
with directed acyclic graphs (DAGs).

In addition to being simple and intuitive, causal models provide insights into how changes
in one variable propagate to others, allowing rigorous reasoning about relationships between
variables, even in the presence of confounding factors. A simple example is shown in Figure
1.1.1b.

It is useful to consider causal paths because they represent possible routes through which
influence can flow between variables in a causal model. These paths are undirected in the
sense that they may contain edges pointing both forward and backward, allowing us to
examine dependencies that emerge from various structural configurations. We define three
central structures that appear in such paths:

Definition 1.1.1. Let G = (V , E) be a causal model, where a, b, c ∈ V .

• b is a mediator of a and c if (a, b) ∈ E and (b, c) ∈ E or if (b, a) ∈ E and (c, b) ∈ E .

• b is a confounder of a and c if (b, a) ∈ E and (b, c) ∈ E .
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distance to finals week students on campus boba sales

(a) The number of students studying on campus mediates the effect of finals season on boba sales.

courseload

caffeine GPA

(b) From analysis of experimental data alone, it may appear that higher caffeine consumption is
a cause of a lower GPA. However, the causal model shows that the confounding variable, a heavy
courseload, is actually the cause of both.

exam grades

procrastination test anxiety

(c) While lots of procrastination and high test anxiety are otherwise unrelated, conditioning on the
collider (e.g., looking only at students with low exam grades) can create a false association between
the two.

Figure 1.1.1: The subfigures illustrate examples of mediators, confounders, and colliders in
academic settings. These simple causal models help demonstrate how different structures can
influence observed relationships among variables.
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• b is a collider of a and c if (a, b) ∈ E and (c, b) ∈ E .

Examples of all three of these structures are shown in Figures 1.1.1a, 1.1.1b, and 1.1.1c.
Understanding how to adjust for these structures is central to causal inference. For instance,
adjusting for a confounder is necessary, but adjusting for a collider introduces bias.

More formally, causal relationships are naturally related to the concept of independence. In
particular, a relevant property in a causal model is whether two nodes a and b are independent
conditioned on some subset of nodes Z ⊆ V. If so, then an experiment conditioning on the
variables of Z will ensure that a has no effect on b, and vice versa.

This concept can be formalized using probabilities.

Definition 1.1.2. Let V be a finite set of variables, and let P(·) be a probability distribution
over V. Let a, b ∈ V and Z ⊆ V . Then, variables a and b are conditionally independent
given Z if

P(a = α | b = β, Z = (ζ1, ..., ζk)) = P(a = α |Z = (ζ1, ..., ζk))

for all possible assignments of values α, β, (ζ1, ..., ζk).

While this definition is precise, there is no clear mapping to reasoning about causal
graphs. The probabilistic notion of conditional independence is inherently algebraic: it
tells us that knowing Z renders a and b independent, but it offers no guidance on how to
determine this relationship from the structure of a graph. In practice, repeatedly checking
conditional independencies from joint distributions is computationally expensive and provides
little insight into why the independence holds. What we need is a way to read off these
relationships directly from the graph itself through a structural criterion that corresponds to
conditional independence in the underlying distribution. The notion of d-separation provides
this graphical notion.

Definition 1.1.3. Let G = (V , E) be a causal model. Then, nodes a and b are d-connected
given Z, where Z ⊆ V, if and only if there exists an undirected path P from a to b in G
such that the following two conditions hold:

1. No mediator or confounder on P is in Z.

2. Every collider on P has at least one descendant in Z (here, we consider a node to be
its own descendant).

We say a and b are d-separated given Z if and only if they are not d-connected given Z.

We can think of the variables in Z as “blocking” any effect that a may have on b. For
example, in Figure 1.1.1b, caffeine and GPA are d-separated given Z = {courseload} but
not Z = ∅.

In Causality [3], Pearl connects the notions of conditional independence and d-separation,
stating that for a causal model G, if a and b are d-separated given Z, then conditional
independence given Z holds between a and b for every probability distribution P(·) compatible
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with G. Conversely, if a and b are not d-separated given Z, then there is at least one distribution
P(·) compatible with G in which a and b are not conditionally independent given Z.

While d-separation offers a graph-theoretic criterion for deciding conditional independence,
and the probabilistic definition formalizes it algebraically, both leave a semantic gap: they do
not explicitly connect the structure of a DAG to the mechanisms that generate the observed
distributions. The probabilistic definition treats conditional independence as a black-box
property of distributions, and d-separation provides a syntactic rule without grounding it
in the actual data-generating process. Neither approach fully captures the intuition that
conditional independence should arise from how variables are causally related through
structural assignments and shared randomness. We will introduce a semantic definition to fill
this gap by grounding conditional independence in the functional dependencies encoded by
the DAG.

1.2 Relevant Work

This thesis draws inspiration from several strands of research in causal inference, spanning
both theoretical frameworks and practical tools. We discuss four major areas of influence,
which differ from our approach in purpose and scope but provide both motivation and context
for the formalization.

We conclude with a fifth area of influence outside the causal-inference literature: the formal
verification of the security of hardware systems, which adopts a graph-based perspective on
world semantics and information flow that closely parallels our approach to modeling causal
systems.

1.2.1 Modeling Counterfactuals

In the Ladder of Causation [2], counterfactuals are on the highest rung, representing the most
advanced reasoning about hypothetical scenarios that we cannot directly observe. Modeling
these counterfactual scenarios is crucial in experimentation to assess potential interventions
and examine hypothetical alternatives. These ideas are particularly prominent when applied
to domains such as medicine, where choices regarding interventions could have profound
consequences.

Causal models are effective at illustrating the relationships between variables, but their
generic form lacks the expressiveness needed to capture counterfactuals. We describe two
models, which aim to provide not only the visual intuition of causal models but also explicit
mechanisms for representing hypothetical scenarios.

The twin-network model, introduced by Balke and Pearl [4], extends the graph-based
framework by constructing two parallel versions of the same causal model: one represents
the observed world, and the other represents the counterfactual world. These “twin” graphs
share the same structure; each variable in the observed world has a corresponding variable in
the counterfactual world, and these two variables share an unobserved confounder accounting
for experimental error. Depending on the exact query of interest, specific variables can
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H

X1 Z

X0

Y

Figure 1.2.1: This causal model [5] represents the relationships among anti-retroviral treatment
at time 0 (X0), HIV viral load after time 0 (Z), anti-retroviral treatment at time 1 (X1), and
CD4 count after time 1 (Y ). Here, H is an unmeasured common cause between Z and X1.

undergo interventions in either world; for example, asking the question “Would providing only
one treatment have an effect on the recovery results of the patient, who actually received
two treatments?” would be modeled by intervening on the variables representing the two
treatments in the counterfactual world. More concretely, consider the causal model of Figure
1.2.1, which models sequential randomness. The posed question considers the counterfactual
assignments of X0 and X1. The corresponding twin network is shown in Figure 1.2.2a.

However, the original twin-network model faced limitations because it did not fully address
deterministic relationships between some pairs of observed and counterfactual nodes. In its
original form, the model can overlook situations where the counterfactual outcome might
be entirely predictable based on the observed data. This oversight resulted in an error in
Example 11.3.3 of Causality [3], where two nodes, X1 and Y ∗ in Figure 1.2.2a, were incorrectly
determined to be independent conditioned on Z and X0 = x∗

0.
To address this error, a “preprocessing step” was introduced to merge certain pairs of nodes

where such deterministic relationships exist [6]. However, the algorithm for the preprocessing
step is difficult to apply and thus not commonly used. A recent development in this space
is the introduction of shadow graphs [7], which offer an alternative visual and conceptual
organization of the twin network. While the underlying structure remains the same with
identical nodes and edges, shadow graphs arrange the counterfactual nodes directly beneath
their corresponding factual counterparts. This layout makes dependencies and relationships
easier to trace and interpret, preserving the twin network’s expressive power while enhancing
readability, making it a useful stepping stone toward more formal semantic definitions of
counterfactuals.

An additional model for counterfactual reasoning is the single world intervention graph
(SWIG) [8]. Instead of creating two separate networks, a SWIG “splits” nodes that are subject
to interventions, which creates a modified graph where counterfactual variables and observed
variables exist within a single model.

The SWIG was introduced with the benefit of overcoming errors such as the one described
above. Due to the method of splitting a node into an observed portion and a counterfactual
portion, SWIGs do not face the same dependency issues as the twin network. However, the
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H

X1 Z

X0

Y

H∗

x∗1 Z∗

x∗0

Y ∗

UY

UZ

UH

(a) Prior to the preprocessing step

H

X1 Z∗

x∗0

Y Y ∗

x∗1

UY

(b) After the preprocessing step

Figure 1.2.2: Using the causal model of Figure 1.2.1, we generate its twin-network model
[4] on the left, with counterfactual nodes represented with asterisks and counterfactual
assignments {X0 = x∗

0, X1 = x∗
1} applied in the graph. The twin network after undergoing

the preprocessing step [6] is on the right.

A B

L

C

Figure 1.2.3: This causal model has a common structure, where A is termed an instrumental
variable. It was used by John Snow to determine the source of cholera in 1853 [2]. In that
diagram, the water company (A) was the instrumental variable, with water purity (B) and
cholera (C) confounded by poverty, location, etc. (L).

twin network is often preferable to the SWIG because it adheres more closely to the traditional
representation of causal models. Nevertheless, the complications with the preprocessing step
suggest that while the twin-network approach offers a necessary framework for visualizing
and analyzing counterfactuals, its practical utility would benefit from a formalization that
carefully accounts for the nuances of dependencies between observed and counterfactual
worlds.

1.2.2 Inducing Paths

In the work by Spirtes [9], inducing paths are introduced as a strategy for making inferences
about causal relationships when there may be latent variables that are not included in the
causal model. The motivating example is the common causal-model structure shown in
Figure 1.2.3.
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Definition 1.2.1. In a causal model G = (V , E), let P be an undirected path between a and
b, where a, b ∈ V . Then, P is an inducing path over O, where O ⊆ V , if and only if every
member of O on P is a collider on P , and every collider on P is an ancestor of either a or b.

Inducing paths are closely related to d-separation in a manner captured in the following
theorem:

Theorem 1.2.2. Let G = (V , E) be a causal model, where O ⊆ V and a, b ∈ V. Then, a and
b are not d-separated by any subset of O \ {a, b} if and only if there is an inducing path over
O between a and b.

In Figure 1.2.3, let O = {A,B,C}. Then, A→ B ← L→ C is an inducing path over O.
By Theorem 1.2.2, A and C are not d-separated by any subset of O \ {A,C} = {B}. This
statement is true, since conditioning on nothing leaves the path A → B → C open, while
conditioning on B opens the path A→ B ← L→ C. While we can simply confirm these two
cases, the result was not immediately obvious, suggesting that for more complicated graphs,
the same conclusion would be difficult to draw manually. Theorem 1.2.2 gives us a more
straightforward way of reaching the same result, allowing us simply to find an inducing path.

Inducing paths have been important in the analysis of maximal ancestral graphs (MAGs)
and partial ancestral graphs (PAGs), which are used in causal inference to model causal
structures in the presence of latent variables [10]. Additionally, several open questions about
inducing paths remain, particularly concerning their role in notions like d-separation and the
distributions associated with causal graphs [9].

Formally proving the relationship stated in Theorem 1.2.2, which establishes the equiva-
lence between d-separation and the existence of inducing paths, would provide a rigorous
foundation for this concept. While Spirtes outlines a proof [9], it includes nontrivial logical
leaps, such as the assertion that all nodes on an inducing path are either ancestors of one of
the endpoints or ancestors of a collider. A formal proof in Coq would eliminate any ambiguity,
as well as allow inducing paths to be integrated seamlessly into the broader causal-model
framework, enabling further reasoning and development related to these structures.

1.2.3 Tooling for Causal Inference: Causal Fusion

Causal Fusion [11] is a recent tool developed to support interactive reasoning about causal
graphs following the methodology in Bareinboim and Pearl [12]. Through a graphical user
interface, it enables users to input causal models as DAGs and test for path-based properties
such as d-separation, backdoor and frontdoor criteria, and do-calculus derivability. It also
performs probabilistic computations tied to the structure of the model.

While Causal Fusion and our work overlap in the types of queries they support, particularly
path analysis and do-operator transformations, our formalization diverges in intent. Causal
Fusion is designed as a practical, exploratory tool for researchers and practitioners; in contrast,
our work seeks to develop a mathematically rigorous foundation for causal semantics, with a
larger goal of applying this foundation to formal reasoning tasks such as experimental design,
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as discussed in Section 6.5. Ultimately, we hope that the functions and theorems we define
can complement tools such as Causal Fusion by providing correctness guarantees.

1.2.4 Probabilistic Results in Causal Inference

While tools like Causal Fusion support both structural and probabilistic inference in practice,
foundational questions remain about the semantics underlying such probabilistic reasoning.
Another important thread of related work concerns the relationship between causal structure
and probabilistic conclusions, particularly the identification and bounding of probabilities of
causation.

Tian and Pearl [13] explore how quantities such as the probability of necessity and
sufficiency can be computed or bounded using the functional form of a structural causal
model and available observational or interventional data. These results are especially relevant
to our work because they leverage semantics that align closely with our own, treating causal
models as deterministic functions of parent variables and unobserved background factors.

In the future, we aim to extend our formalization to incorporate probabilities in a similarly
principled way. Our goal is not only to replicate identification results within Coq but also
explore how semantics-grounded reasoning can clarify the assumptions required to justify
probabilistic inferences. In doing so, we hope to bridge the gap between graphical and
probabilistic reasoning.

1.2.5 Formal Verification and Hardware-Design Security

While the previous sections discussed work within the field of causal inference, our approach
is also informed by formal methods, specifically prior work on mechanized reasoning about
systems with complex information flow. In particular, our semantic modeling of worlds draws
inspiration from work on verified side-channel security for hardware designs [14]. In this
system, graphs are used to represent the flow of information between various components of a
hardware architecture, especially when some inputs and outputs are designated as public or
private. A goal in such settings is to verify noninterference, the property that private inputs
do not affect public outputs, ensuring that there is no information leakage.

This paradigm, while conceptually distinct from causal inference, shares an important
foundation: both frameworks seek to track how information flows through a system and
what guarantees can be made about such flows. However, the structure of the world modeled
by causal graphs is more complex; unlike the clean dichotomy of inputs and outputs in
confidentiality analysis, causal models often contain latent variables and ambiguous structural
roles. For example, confounding variables, which may not be directly observable and do not
fall neatly into categories like “inputs” or “outputs,” can still undermine experimental designs.

This added complexity means we cannot simply assert properties like noninterference by
labeling nodes; instead, we must carefully define what it means for one variable to influence
another within the semantics of causal models. The need to justify the impact (or lack
thereof) of variables like confounders, mediators, and colliders from first principles calls for
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a rigorous semantics in order to bring causal inference closer to the same level of formal
assurance that confidentiality analysis has achieved in systems verification.
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Chapter 2

Formalizing Causal Models in Coq

This chapter presents the foundational work of implementing causal diagrams and reasoning
principles within the Coq proof assistant. We begin by implementing DAGs and then build
upon this framework to formalize key causal concepts and theorems, combining classic graph
theory with domain-specific ideas from causal inference.

2.1 Causal Diagrams as Directed Acyclic Graphs

In order to formalize causal models, we first build the representation of DAGs within Coq.
This step involves creating data structures to represent DAGs and implementing various
graph-related functions, such as those for pathfinding, cycle detection, and topological sort.
Importantly, each of these functions should have its correctness formally proven using Coq,
ensuring that it performs as expected under all circumstances.

We choose to represent causal models as directed graphs in terms of nodes and edges:

Definition node: Type := nat.
Definition nodes := list node.

Definition edge: Type := node * node.
Definition edges := list edge.

Definition graph: Type := nodes * edges.

Nodes are simply natural numbers. These choices allow us to reuse several nat-specific
functions and theorems that are available in the Coq standard library, while still representing
nodes in an intuitive way.

Paths are also a crucial part of causal models, since d-connectedness requires the existence
of a d-connecting path. We represent paths as follows:

Definition path: Type := node * node * nodes.
Definition paths := list path.
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Here, a path is represented as a tuple of its start node, end node, and intermediate nodes.
For example, the path (1, 4, [2; 3]) would represent the path 1 → 2 → 3 → 4. This choice
of representation allows us to access the endpoints of a path easily as well as require that a
path has a start and an end node. Note that by this definition, a path has at least one edge;
the path (1, 1, []) would denote the self-loop at node 1, rather than the 1-path consisting only
of node 1.

Formalizing basic graph operations in Coq is far from straightforward. Unlike imperative
programming environments, Coq’s purely functional setting and totality constraints mean
that even relatively simple procedures require careful construction. Moreover, Coq demands
not only executable functions but also formal proofs of their correctness, each one built from
axiomatic foundations. While not all graph-related functions have been fully verified in our
formalization, the unproven parts pertain to well-established classical results (e.g., that there
exists a function that finds all acyclic, undirected paths between two nodes in a DAG, or that
parents precede children in a valid topological sort). Thus, correctness failures, if any, would
reflect limitations in the implementation of these individual functions, not in the logical
consistency of the overall system. We revisit this distinction in Section 6.1.

We highlight two major categories of graph functionality: pathfinding and topological
sorting. Together, they illustrate both the expressive potential and technical difficulty of
working with graph structures in a proof assistant like Coq.

2.1.1 Pathfinding

Identifying paths between nodes is a core operation in graph-based causal reasoning. However,
implementing even a basic pathfinding function in Coq is difficult due to its functional nature
and the need for total, terminating programs and well-founded recursion.

Our pathfinding implementation relies on recursive exploration. Given a graph G and two
nodes u, v, we aim for the function find_all_paths_from_start_to_end(u, v,G) to return
a list of paths that contains all undirected paths between u and v in G. The function relies
on numerous intermediate results.

• Fixpoint edges_as_paths_from_start (u: node) (E: edges): paths

Returns list of paths of length 2 that start from u by transforming edges that are
incident to u into paths, i.e., (u, v) 7→ (u, v, []).

• Fixpoint extend_paths_from_start_by_edge (e: edge) (l: paths): paths

Returns list of paths that contains all paths in l, as well as all paths that can be
constructed from extending a path in l by e. For example, (1, 4, [2; 3]) can be extended
by (5, 4) into (1, 5, [2; 3; 4]). Note that these paths are undirected, meaning that edges
can be either forward or backward. Furthermore, a path is not added if it would be
made cyclic; for example, (1, 4, [2; 3]) would not be extended by (4, 2), since node 2
would appear twice in the resulting path.
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• Fixpoint extend_paths_from_start_by_edges (E: edges) (l: paths): paths

Returns result of repeatedly calling extend_paths_from_start_by_edge for all edges
in E on the result of the previous call, beginning with l.

• Fixpoint extend_paths_from_start_iter
(E: edges) (l: paths) (k: nat): paths

Returns result of repeatedly, k times, calling extend_paths_from_start_by_edges on
the result of the previous call, beginning with l.

Then, given a graph G = (V , E), a start node u, and an end node v, we can find all undirected
paths from u to v in G:

Definition find_all_paths_from_start_to_end
(u v: node) (G: graph): paths :=

match G with
| (V, E) => filter (fun p => v =? path_end p)

(extend_paths_from_start_iter E
(edges_as_paths_from_start u E) (length V))

end.

Since we only want acyclic paths that do not have any repeating nodes, it is enough to
iterate |V| times, which ensures that the function terminates. While the resulting function is
inefficient compared to typical imperative algorithms, these definitions are intended primarily
to be used as part of a formal semantics rather than for execution on large graphs. For the
relatively small causal models used in practice, however, this function is sufficient.

Building on the pathfinding routine, we can define a function to detect directed paths,
which are essential for identifying descendants and ancestors of nodes, both of which are
concepts used extensively in our semantic treatment of causal models. We also define a
function to detect cycles by adapting the directed pathfinding function. Since causal graphs
are assumed to be acyclic, cycle detection is a necessary safeguard. Many downstream
functions, such as topological sort and tests for d-separation, rely on this acyclicity. As
such, cycle detection not only confirms the integrity of the graph but also ensures the
well-formedness of the causal reasoning built upon it.

2.1.2 Topological Sort

Having established basic graph traversal and cycle detection, we now turn to topological sort.
Since causal graphs are directed and acyclic by assumption, they admit a linear ordering of
nodes such that for every directed edge (u, v), u appears before v in the ordering. Topological
sorting plays a central role in causal inference, providing an ordering of variables consistent
with the direction of causality. This ordering is also crucial for defining the semantics of
causal models, which rely on evaluating each node’s value based on the values of its parents.
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In Coq, our function for topological sort must account for the possibility that the inputted
graph is not acyclic. To this end, the return type is wrapped in an option; the function
returns Some ts if a valid topological sort ts exists and None otherwise:

Definition topological_sort (G: graph): option nodes

Our implementation is based on indegree counting. We iterate |V| times, where G = (V , E)
is the inputted graph. In each step, we find a node with indegree zero (a node with no
parents), append it to the resulting list, and remove it and all its incident edges from the
graph. The algorithm recurses on the remaining subgraph until either all nodes are processed
or no indegree-zero node is found (in which case the graph contains a cycle and the function
returns None).

Once this function is defined, we prove several important properties of topological sort,
most notably the existence guarantee:

Theorem 2.1.1. For acyclic graphs, the function always returns a valid topological or-
der. More concretely, for an acyclic graph G, there exists some (ts: nodes) such that
topological_sort(G) = Some ts.

Proof. We must show that at each iteration of the function, there is always a node with
indegree 0. We proceed via contradiction: assume that in acyclic graph G = (V , E), no nodes
have indegree 0. Then, we can construct a path of length |V|+ 1 by repeatedly prepending
parents of the first node. Using the pigeonhole principle, we show that this path must contain
a repeated node, implying the existence of a cycle and contradicting our assumption that G
is acyclic. Given this result, we conclude that any acyclic graph must have at least one node
with indegree 0, enabling the topological sort to proceed.

In the mechanized proof, we perform induction on |V| and carefully address all auxiliary
results, such as showing that an acyclic graph remains acyclic when a node is removed.

We also formalize and prove several other key properties of the topological sort, such as
the length of the resulting sort being exactly |V|, as well as a node u being in the sort if and
only if u ∈ V . Both of these are proven by induction on the size of the graph.

2.2 Formalizing Key Causal Concepts

Now that the basic DAG framework is established, we shift focus to more specific elements
of causal models. The next step involves identifying mediators, confounders, and colliders,
which are key components in understanding the causal relationships within a graph. We also
define d-separation and d-connectedness and formalize concepts such as interventions via the
do operator and the backdoor criterion, which connects structure to computable probabilistic
quantities.
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2.2.1 Identifying Mediators, Confounders, and Colliders

We begin by defining functions to extract mediators, confounders, and colliders from a given
path. For instance, to identify colliders, we define a function that, given a path (u, v, l) and a
graph G, iterates through the node list [u]++l++[v] and inspects each triplet of consecutive
nodes. If the triplet satisfies the criteria for a collider, namely, the two edges are both
incoming into the center node, we append the center node to the result. The output is a list
of all colliders in the path.

However, the fact that a node is a collider in a path does not directly reveal which
neighboring nodes make it a collider. To address this gap, we prove the following theorem:

Theorem colliders_vs_edges_in_path: forall (L: nodes) (G: graph) (x: node),
In x (find_colliders_in_nodes L G)
<-> exists y z: node, sublist [y; x; z] L = true

/\ is_edge (y, x) G = true /\ is_edge (z, x) G = true.

Here, the input L would be the full list of nodes in a path, i.e., [u]++l++[v]. This result
allows us to extract the specific neighbors in the path that cause a node to be a collider,
bridging the gap between the abstract identification and concrete structure.

We also prove useful structural lemmas, including that the set of mediators, confounders,
and colliders is preserved under path reversal and that every internal node of a directed path
is a mediator. These are proven by induction on the length of the path.

Importantly, we show that in acyclic graphs and acyclic paths, no node can simultaneously
play more than one of these structural roles. The specific case for mediators is shown below:

Theorem if_mediator_then_not_confounder_collider_path:
forall (G: graph) (u: node) (p: path),

contains_cycle G = false /\ acyclic_path p
/\ In u (find_mediators_in_path p G)

-> ~In u (find_confounders_in_path p G)
/\ ~In u (find_colliders_in_path p G).

This theorem is proven by case analysis, showing that the structural criteria for these roles are
mutually exclusive in an acyclic setting. These foundational results are critical for building
the semantics of causal inference, which rely on these roles to characterize paths.

2.2.2 Determining d-Separation and d-Connectedness

With the structural elements defined, we implement a function to determine whether a path
is blocked by a conditioning set Z. We define three separate functions that test whether a
given path is blocked by a mediator, confounder, or collider, and we combine them into a
single predicate:

Definition path_is_blocked_bool (G: graph) (Z: nodes) (p: path): bool :=
is_blocked_by_mediator p G Z ||
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is_blocked_by_confounder p G Z ||
is_blocked_by_collider p G Z.

We can now define the central notion of d-separation:

Definition d_separated_bool (u v: node) (G: graph) (Z: nodes): bool :=
forallb (path_is_blocked_bool G Z)

(find_all_paths_from_start_to_end u v G).

This definition checks that all paths between u and v are blocked by Z, which corresponds to
the classic notion of d-separation in causal DAGs.

We also define d-connectedness in terms of path structure as stated in Definition 1.1.3:

Definition d_connected (p: path) (G: graph) (Z: nodes): Prop :=
overlap Z (find_mediators_in_path p G) = false /\
overlap Z (find_confounders_in_path p G) = false /\
all_colliders_have_descendants_conditioned_on

(find_colliders_in_path p G) G Z = true.

We prove the equivalence between these two definitions via a theorem that formalizes the
relationship between d-separation and d-connectedness:

Theorem d_separated_vs_connected: forall (u v: node) (G: graph) (Z: nodes),
d_separated_bool u v G Z = false <->
exists (l: nodes), acyclic_path (u, v, l) /\

is_path_in_graph (u, v, l) G = true /\
d_connected (u, v, l) G Z.

This result, which relies on applications of De Morgan’s Law and properties of path enumera-
tion, allows us to move fluidly between the two perspectives.

In our formalization, we typically require paths considered in settings related to d-
connectedness and d-separation to be acyclic. While the original definitions in causal-inference
literature do not explicitly require paths to be acyclic, the acyclicity of the underlying graph
implicitly suggests that the paths of interest are simple. In practice, cyclic paths introduce
ambiguity: a node may appear multiple times and play conflicting roles, such as being both
a confounder and a collider along the same path. Such overlap creates logical inconsistencies
and undermines the clean structural interpretation that d-separation provides. Requiring
acyclic paths also significantly simplifies reasoning in Coq. For example, many key lemmas
and inductive proofs assume that a node’s role in a path (e.g., as a mediator, confounder, or
collider) is unique and unambiguous. While ensuring paths are acyclic adds some technical
burden (especially when handling overlapping paths), it ultimately makes the formal system
more robust and intuitive.
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2.2.3 Interventions and Backdoor Criterion

We define other functions critical to causal inference, such as the do operator, which models
the effect of externally intervening on a variable. This operation is implemented by modifying
the graph to remove incoming edges to the intervened node, simulating a causal override.

Additionally, we implement a predicate for checking whether two nodes (typically the
treatment and the outcome) satisfy the backdoor criterion with respect to a set of nodes Z.

Definition 2.2.1. For G = (V , E) and a, b ∈ V, a set of variables Z satisfies the backdoor
criterion relative to (a, b) if no node in Z is a descendant of a, and Z blocks every path
between a and b that contains an arrow into a.

The backdoor criterion is an important property because if it holds, then the causal effect
of b on a can be computed with a simple formula of probabilities.

A noteworthy outcome from the formalization process was the identification of an informal
assumption related to the backdoor criterion. It is commonly accepted that Pa(a), the set of
parents of a, always satisfies the backdoor criterion relative to (a, b) [15]. However, attempting
to rigorously prove this theorem in Coq uncovered a subtle edge case: if b is actually a parent
of a, then the path b → a is not blocked by Z = Pa(a), since the path has no mediators,
confounders, or colliders. Thus, this claim is not universally true. Upon review, Judea Pearl
also acknowledged the ambiguity, which is difficult to conceptualize since the meaning of a
blocked 2-path is unintuitive, suggesting the importance of this rigorous formalization.

2.3 Results From Graph Theory and Causal Theory

In this section, we present a collection of formally verified theorems that bridge structural
graph theory and causal reasoning. These results arise repeatedly in downstream proofs
involving conditional independence and causal semantics. While some of these results may
appear intuitive or straightforward, their formal verification in Coq requires careful definitions
and extensive auxiliary lemmas.

Often in formalizing causal reasoning, we must construct or merge paths. To ensure
correctness, we need criteria for when d-connectedness is preserved under concatenation.

Theorem 2.3.1. Let two paths (u,m, l1) and (m, v, l2) be d-connected, and assume that the
two paths do not share any nodes besides m. Then, the concatenated path (u, v, l1++[m]++l2)
is d-connected if m satisfies one of the following:

1. It is a mediator in the concatenated path and not in Z.

2. It is a confounder in the concatenated path and not in Z.

3. It is a collider in the concatenated path and has a descendant in Z.
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Proof. Assume, for contradiction, that the concatenated path is not d-connected. Then there
exists some node that blocks the path: either a mediator or confounder in Z, or a collider with
no descendant in Z. This node must lie in the first path, the second path, or at the midpoint
m. In the first two cases, we contradict the d-connectedness of the original paths. In the third
case, we contradict the assumption that m satisfies one of the three listed conditions, since
by assumption the resulting path is acyclic, so m can only be one of a mediator, confounder,
or collider. Hence, the concatenated path must be d-connected.

When composing paths, we also often want to avoid cycles or redundancies. Thus,
identifying the first point of overlap between two node lists is useful.

Lemma 2.3.2. Given two lists of nodes l1 and l2 that share at least one node, there exists a
node x such that:

l1 = l′1++[x]++l′′1 and l2 = l′2++[x]++l′′2 ,

and there is no overlap between l′1 and l′2.

Proof. We proceed via induction on l1, identifying the first point where a node in l1 appears
in l2. Once found, we split each list at that node and verify the disjointness of prefixes.

We can in fact strengthen this lemma to avoid later collisions:

Theorem 2.3.3. Given two lists of nodes l1 and l2 that share at least one node, there exists
a node x such that:

l1 = l′1++[x]++l′′1 and l2 = l′2++[x]++l′′2 ,

and there is no overlap between l1 and l′2.

Proof. We perform induction on l2, finding the first point of overlap in l2 with l1 and splitting
both lists at that node.

These results help us construct acyclic concatenated paths from intersecting segments,
crucial for later disjointness reasoning.

In many proofs, we begin with a directed path between two nodes (e.g., from a collider to
its descendant) but require that the path be acyclic. Fortunately, we can always find such a
path without losing essential structure.

Theorem 2.3.4. Let u ≠ v, and suppose there is a directed path from u to v. Then there
exists an acyclic directed path from u to v consisting of a sublist of the original nodes.

Proof. We perform strong induction on the length of the path. Whenever a cycle is detected
(i.e., a repeated node), we remove it, maintaining the original start and end nodes. We prove
that subpaths of directed paths remain directed and, by construction, acyclic.

This result ensures that path-based properties involving descendants can always be
reasoned about within the class of acyclic paths.

Continuing with the ideas of intersection points and directed paths, it is often useful to
construct new paths by following one directed path to a shared node and continuing along
the reverse of the second directed path. This node will always be a collider.
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Theorem 2.3.5. Let (u1, v1, l1) and (u2, v2, l2) be two directed paths that intersect. Let x
be the intersection point guaranteed by Theorem 2.3.3. Let P be the path from u1 to u2

constructed from following the first path from u1 to x and continuing along the reverse of the
second path to u2. Then, P is acyclic, and x is a collider in P .

Proof. By Theorem 2.3.4, we can assume the two directed paths are both acyclic. Note
that using the notation of Theorem 2.3.3, P = (u1, u2, l

′
1++[x]++rev(l′2)). Since there is no

overlap between l1 and l′2, P is acyclic.
Furthermore, since both original paths are directed, both edges into x in the resulting

path are incoming. Thus, we prove that x satisfies the collider definition by performing
casework on the structures of l′1 and l′2 and using colliders_vs_edges_in_path, as stated
in Section 2.2.1.
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Chapter 3

Semantics of Causal Models

Formalizing a system involves both syntactic and semantic components. The syntactic aspect
focuses on the structural rules and relationships, such as how nodes and edges in a DAG
interact and satisfy certain properties. Semantics, on the other hand, provide meaning to
these structures by specifying how values propagate through the graph. In causal modeling,
semantics help us understand not only the presence of relationships but also what these
relationships imply about the behavior of variables under interventions or counterfactual
scenarios. Integrating semantics into the formalization bridges the gap between abstract
causal reasoning and a more practical interpretation, enabling deeper insights and intuitive
understanding.

3.1 Function-Based Formal Semantics

Causal models tell us the relationships that may exist between nodes. We choose to capture
those relationships using nodefuns, which assign a value to each node based on the values of
its parents and an additional unobserved term. These unobserved terms, common in causal
inference, represent latent factors not explicitly included in the DAG. They are often visualized
as greyed-out parent nodes. This abstraction reflects the reality that causal graphs rarely
model all relevant background factors, so any omitted influences on a node are absorbed into
its unobserved term. However, a nodefun is of course free to ignore or allow little influence
to the unobserved term.

We represent a causal model with an overarching graphfun, which maps each node in
the graph to its corresponding nodefun:

Definition nodefun (X: Type): Type := X * list X -> X.
Definition graphfun {X: Type}: Type := node -> nodefun X.

Here, X denotes the type of values assigned to the nodes, e.g., bool, nat, or more complex
types like list nat or finite enumerations.

To illustrate how a graphfun captures meaningful causal relationships, consider a simple
example modeling how a student’s sleep, study hours, and concentration influence their test
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sleep
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Figure 3.1.1: This causal model encodes the intuition that amount of sleep affects concentration
level, and test score is affected by both concentration and study time.

score. Suppose our causal graph is as shown in Figure 3.1.1. Then, we might have the
following graphfun, where X = R:

Definition g_student: graphfun := fun w =>
match w with
| sleep => fun (e, _) => e
| study => fun (e, _) => max 0.0 (e +. 3.0)
| concentration => fun (e, [sleep]) => (2.0 * sqrt sleep) + e
| score => fun (e, [concentration; study])

=> (0.6 * concentration) + (0.4 * study) + e
| _ => fun _ => 0.0
end.

Here, sleep and study are exogenous, concentration depends on sleep, and score is a
weighted sum of concentration and study. Each variable is also influenced by an unobserved
term e (e.g., stress, natural ability, distractions).

To track the values assigned to nodes during evaluation, we define the following types:

Definition assignment {X: Type}: Type := node * X.
Definition assignments {X: Type}: Type := list assignment.

An assignments X object functions like a dictionary, mapping nodes to their values. Inter-
nally, it is a list of node-value tuples where a lookup returns the most recent match.

In practical applications, a causal model will likely have known values for some of its
nodes but not all. To evaluate others, we define the function find_value, which computes
the value of a node u in a given graph G with graph function g, using unobserved-term
assignments U :

Definition find_value {X: Type} (G: graph) (g: graphfun)
(u: node) (U: assignments X): option X

Since each node’s value depends on its parents, and the graph is assumed to be acyclic, a
topological sort provides an evaluation order that guarantees termination, as established in
Theorem 2.1.1.

The implementation of find_value proceeds in stages. The core function is:
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Definition get_value_of_node {X: Type} (u: node) (G: graph) (g: graphfun)
(U A: assignments X): option X

The function get_value_of_node takes in A, a set of precomputed values. It searches for the
parent values of u within A. If any parent is not already assigned, it returns None. Otherwise,
it evaluates graphfun g on u, then evaluates the resulting nodefun on the precomputed
parent values and the unobserved term assigned to u in U .

We then define get_values, which computes the topological sort of the graph and
iteratively computes the value of each node in order using get_value_of_node. The resulting
list of assignments accumulates values as they are computed. After going through the entire
topological sort, get_values returns the computed values of all nodes as a set of assignments.
Finally, the find_value function invokes get_values and looks up the value for the desired
node.

While it is cleanest to refer to the value of a node u with the find_value function,
i.e., find_value(G, g, u, U), this notation is generally not useful in proofs, since it unfolds
to simply get_assigned_value(V, u), where V is the result to the call to get_values(G).
Instead, most proof work must proceed by reasoning directly about get_value_of_node.
Fortunately, the following theorem shows that the find_value and get_value_of_node
functions are equivalent as long as the parent values are correctly supplied:

Theorem 3.1.1. Let G = (V , E) be an acyclic graph with graph function g, and let U be an
assignment of unobserved terms for the nodes in V. For u ∈ V, if P maps parents p of u to
find_value(G, g, p, U), then find_value(G, g, u, U) = get_value_of_node(u,G, g, U, P ).

Proof. While this theorem is quite intuitive, it is difficult in a mechanized proof due to the
repeated calls and changing arguments to get_value_of_node in get_values. We cannot
simply perform induction on the topological sort of G because after removing the first node
to get a shorter topological sort, any child of that node may now have a different nodefun or
value.

Instead, we divide the proof into two primary lemmas. Let V be the result of the
get_values function, which returns the values assignments for the nodes in V in topological
order. Suppose u is the i-th node of the topological sort of G. Let Vi be the first i elements
of V .

1. get_value_of_node(u,G, g, U, Vi) = get_value_of_node(u,G, g, U, P ).

2. find_value(G, g, u, U) = get_value_of_node(u,G, g, U, Vi).

The first statement is a result of using induction on the parents of u, as well as several lemmas
about the topological sort of G. The second statement is a result of using induction on i to
show that the get_values function preserves index; in other words, the assignment for u in
V must be at index i. The result then follows.

With this foundation established, we now shift focus away from implementation-specific
details and toward how these semantics can be used to define and reason about conditional
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independence. For the remainder of this thesis, we adopt more abstract notation and move
toward a semantics-driven formalism.

In particular, let G = (V , E) be a DAG. For any U of type assignments X, such as the
unobserved-terms assignments for nodes of V, we can think of U as a function U : V → X.
We write U(w) for the value that w is assigned within U , for all w ∈ V .

Furthermore, each nodefun can be computed with knowledge of the unobserved-terms
assignments for V and the structure of G, since it can then determine the unobserved term
and parents of the desired node. Thus, for simplicity, let a function f encode the information
about G’s graphfun and each nodefun, and let fU denote the function fU : V → X, which
takes in a node, finds its nodefun, and computes its value using U as the unobserved-terms
assignments for V. The function fU thus captures the entire semantics of the causal model
under given assignments of unobserved terms.

3.2 Defining Conditional Independence

The semantic framework enables us to define conditional independence in a way that aligns
with intuition. Informally, two nodes should be considered independent if changing the value
of one has no effect on the value of the other. Under our model, the value of a node is
determined by its function, which depends on the values of its parents and an unobserved
term. Therefore, a natural semantic notion of independence would assert that altering the
output of one node’s function does not influence the output of the other’s.

We consider more generally conditional independence, of which independence is the case
where the conditioning set is empty. In this context, conditioning on a set of nodes Z means
we want to hold fixed the values of all nodes in Z while assessing the influence of u on v. To
provide the fixed values, we introduce an additional set of assignments, AZ , which maps
each node in Z to its desired conditioned value.

Definition 3.2.1. We say that a world modeled by unobserved-terms assignments U properly
conditions on Z if, for the given assignments AZ , fU(z) = AZ(z) for all z ∈ Z.

In particular, if u and v are conditionally independent, then in a world where f(u) = α and
all nodes in Z are properly conditioned, if we were to modify the world so that f(u) = β and
all nodes in Z remain properly conditioned, then f(v) would be unaffected. The randomness
or error leading to these different settings of the world can be absorbed into the unobserved-
terms assignments, U . With this setup, we attempt our first formal semantic definition of
conditional independence.

Definition Attempt 3.2.2. Let G be a graph with graph function f , and let u and v be
nodes in G. We say u and v are conditionally independent given Z if given values α, β
and conditioned assignments AZ , then for all unobserved assignments Uα and Uβ such that

1. fUα(u) = α, and fUα properly conditions on Z.

2. fUβ
(u) = β, and fUβ

properly conditions on Z.
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Figure 3.2.1: In the above, Z = {t}, and Anc∗Z(u) = {u, s, y, x}. Note that although x has a
blocked path to u through t, we only require the existence of any unblocked path.

the value of v stays constant, i.e., fUα(v) = fUβ
(v).

While this definition captures the idea that changing u’s value should not affect v if they
are conditionally independent, it fails to isolate why f(v) changed. Specifically, the change in
f(v) might be attributable not to f(u) but to other aspects of the changing unobserved-terms
assignments. For example, if u and v are disconnected nodes (and thus should be conditionally
independent for any Z), we could still have Uα(v) ̸= Uβ(v), causing a difference in f(v) that
is entirely unrelated to u.

Attempt 3.2.2 is therefore too permissive, making it impossible to attribute observed
differences in f(v) specifically to the change in f(u). To address this issue, we need to restrict
how Uα and Uβ are allowed to differ. The goal is to make a change minimally in a way
that would ensure that the only possible influence on f(v) comes from changes that causally
descend from u. Since a node’s value is affected only by its parents (and its own unobserved
term), which are in turn only affected by their parents, we are led to restrict change to the
ancestors of u. However, since conditioned nodes have fixed values, changes to ancestors of u
can only affect f(u) if they do not have to pass through a conditioned node. We thus define
the following notion.

Definition 3.2.3. Given a node u and a conditioning set Z, a node w is an unblocked
ancestor of u if either w = u, or there exists a directed path from w to u such that no
internal nodes on the path (including w) are in Z. The set of unblocked ancestors of u given
Z is denoted Anc∗Z(u).

An example is shown in Figure 3.2.1.
This restriction helps us ensure that when we compare two different worlds, represented

by different unobserved-terms assignments, those differences are localized to the nodes that
could actually affect u. In doing so, we rule out irrelevant sources of variation.

Definition Attempt 3.2.4. Let G be a graph with graph function f , and let u and v be
nodes in G. We say u and v are conditionally independent given Z if given values α, β
and conditioned assignments AZ , then for all unobserved assignments Uα and Uβ such that

1. fUα(u) = α, and fUα properly conditions on Z.
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2. fUβ
(u) = β, and fUβ

properly conditions on Z.

3. Uβ differs from Uα for only a ∈ Anc∗Z(u).

the value of v stays constant, i.e., fUα(v) = fUβ
(v).

A third condition has been added from Attempt 3.2.2, where we now only allow changes
to unblocked ancestors of u in order to affect f(u). This definition improves on Attempt 3.2.2
by ensuring that any change in the unobserved assignment from Uα to Uβ must be localized
to nodes that can causally influence u.

However, this approach fails to account for how values of Z could affect f(u); their effect
will not be from the ancestors of u, since their passed-on values are fixed. For example,
suppose we have a simple collider structure u→ c← v, and Z = {c}. Note that u, v ∈ Pa(c).
Thus, suppose we define f(c) := f(u) ⊕ f(v). Then, we would expect for u and v to be
dependent conditioned on Z. For example, if AZ(c) = 1, and we change the value of u from 0
to 1, then the value of v would have to change from 1 to 0. However, Attempt 3.2.4 does not
allow us to observe this dependence, since the effect of u on v in this case is indirect through
conditioned node c, whose value must be held fixed.

This example highlights a key insight: determining conditional independence requires not
only a change to the value of u but also the propagation of that change throughout the rest
of the graph. We are interested in whether the value of v stays constant once the change has
been fully propagated. In particular, after the initial catalyst change to f(u), if any values of
Z are no longer properly conditioned, we allow changes to recondition them. We refer to this
second stage as “reparative propagation.”

Definition Attempt 3.2.5. Let G be a graph with function f , and let u and v be nodes
in G. We say u and v are conditionally independent given Z if given values α, β and
conditioned assignments AZ , then for all unobserved assignments Uα, Uβ, and U ′

β such that

1. fUα(u) = α, and fUα properly conditions on Z.

2. fUβ
(u) = β, and Uβ differs from Uα for only a ∈ Anc∗Z(u).

3. fU ′
β
(u) = β, fU ′

β
properly conditions on Z, and U ′

β differs from Uβ for only

a ∈
⋃
z∈Z

fUβ
(z)̸=AZ(z)

Anc∗Z(z).

the value of v stays constant, i.e., fUα(v) = fU ′
β
(v).

This attempt brings us closer to a robust definition by allowing a two-stage process: first,
we change u’s value via its unblocked ancestors (step 2), then we adjust any conditioned
nodes that are no longer correctly fixed (step 3).

However, Attempt 3.2.5 fails to account for two cases that may arise due to indirect effects
among nodes in Z. First, consider the case of two consecutive nodes in Z, such as in the path
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u→ z1 → z2 ← a, where Z = {z1, z2}. It is clear that conditioning on z2 is redundant, since
conditioned on z1, z2’s value is fixed. If changing f(u) affects z1, then it will also affect z2.
However, restoring z1 to its correct value should automatically fix z2. Attempt 3.2.5 allows
for an alternate repair of z2 via a, introducing potential noncausal paths of influence.

Second, consider a sequential case of conditioned nodes, such as in the path u→ z1 ←
x→ z2 ← y, where Z = {z1, z2}. Repairing z1 in the propagation step via x may now cause
changes to z2. Note that the repair of z2 is disallowed in step 3 because z2 was initially
correct under Uβ. However, after z2 is perturbed, U ′

β would no longer properly condition on
Z. Thus, the propagation step in Attempt 3.2.5 does not allow for full repair of the graph.

To handle these cases, we generalize the reparative-propagation assignments U ′
β into

a sequence of assignments of unobserved terms, where each incrementally restores the
conditioning set using only changes justified by the previous set of assignments.

Definition 3.2.6. Let G = (V , E) be a graph with graph function f , and let u, v ∈ V. We
say u and v are conditionally independent given Z if given values α, β and conditioned
assignments AZ , then for all unobserved-terms assignments Uα, Uβ =: U0, and U1, ..., Uℓ such
that

1. fUα(u) = α, and fUα properly conditions on Z.

2. fUβ
(u) = β, and Uβ differs from Uα for only a ∈ Anc∗Z(u).

3. For all i = 1, ..., ℓ, Ui differs from Ui−1 for only

a′ ∈
⋃
z∈Z

∃a∈Anc∗Z(z),
Ui−2(a) ̸=Ui−1(a)

Anc∗Z(z).

For i = 1, we let Ui−2 = Uα.

4. 0 ≤ ℓ ≤ |V|.

5. fUℓ
(u) = β, and fUℓ

properly conditions on Z (note if ℓ = 0, then this condition applies
to U0 = Uβ).

the value of v stays constant, i.e., fUα(v) = fUℓ
(v).

In this formulation, the unobserved-terms assignments contained in Uβ trigger a change
to f(u), and the subsequent (possibly empty) sequence of unobserved-terms assignments
repairs any disrupted values in the conditioning set Z. In particular, each Ui is responsible
for repairing changes to conditioned nodes that were affected by Ui−1.

While this definition introduces some complexity, it reflects the full structure of the
causal model and guarantees that conditioned nodes remain truly fixed. Since at least one
conditioned node must be repaired for each i, we can bound the length of the sequence by the
number of conditioned nodes, which is of course upper-bounded by the total number of nodes
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|V|. It is worth considering whether this sequence can be cyclic, in that a repaired node is
unconditioned again in a later set of assignments and must be repaired again. While cyclic
sequences are not forbidden by Definition 3.2.6, the definition must hold for all sequences
satisfying the criteria, so redundant or oscillating repair paths can be ignored. It is in fact
possible to derive a tighter bound on ℓ, which we explore in Section 4.5.

Ultimately, Definition 3.2.6 encapsulates the three phases of the process laid out in the
Definition Attempts: the initialization in step 1, the catalyst update in step 2, and the
reparative propagation in step 3, ending with a properly conditioned set of unobserved-terms
assignments that still has u evaluating to β.

3.3 Conditional Independence ⇐⇒ d-Separation

Using the notion of conditional independence established in Definition 3.2.6, we now present
the central result of this thesis:

Theorem 3.3.1. The notions of conditional independence and d-separation coincide exactly.
In particular, for a causal model G = (V , E), two distinct nodes u, v ∈ V, and a conditioning
set Z ⊆ V with u, v /∈ Z, u and v are conditionally independent given Z if and only if they
are d-separated given Z in G.

In the Coq formalization, Theorem 3.3.1 is stated generically over all types X for which
node values may be drawn. To ensure soundness of the semantics, we assume the following
constraints on X:

• X contains at least two distinct elements.

• X is equipped with a Boolean equality function eqb satisfying reflexivity and symmetry.

Additionally, G must satisfy the following well-formedness conditions:

• Each node in V and each edge in E appears at most once.

• All nodes referenced in any edge must appear in V .

• The conditioning set Z (whose type is nodes in the formalization) contains no duplicates.

We prove Theorem 3.3.1 by splitting it into its two logical directions. We show the forward
direction via the contrapositive: assuming that there exists a d-connecting path from u to
v, we define a specific graph function in which changing the value of u alters the value of v,
thereby violating conditional independence. We prove the backward direction by showing
that if u and v are not semantically conditionally independent, i.e., there exist unobserved
assignments satisfying the conditions of Definition 3.2.6 that propagate a change to the value
of v, then we can show the existence of a d-connected path from u to v. The forward and
backward directions are proven in detail in Chapters 4 and 5, respectively. Assuming the
equivalence is true, we next examine situations in which the semantic definition offers benefits
over the purely structural perspective offered by d-separation.

38



3.4 Advantages of Semantic Conditional Independence

The semantic definition of conditional independence provides several advantages over the
traditional graphical approach of d-separation. While d-separation is a useful and well-
established syntactic criterion, its rules can often appear opaque, and it can be difficult to
gain intuition about why a pair of nodes are or are not conditionally independent. Our
semantics-based definition, by contrast, directly captures the idea of how changes propagate
through a causal model and makes explicit the mechanisms by which one variable may
influence another. By relying on this higher-level understanding, we also hope to avoid the
need to analyze very technical aspects of graphs, such as mediators, colliders, and confounders,
in exhaustive detail for every proof.

As a toy example, consider the case where we wish to determine whether two nodes
u and v are conditionally independent given an empty conditioning set Z = ∅. From the
d-separation perspective, we must verify that every undirected path from u to v is blocked
by the empty set. Since there are no nodes in Z, no noncollider on a path can satisfy the
blocking condition, while any collider satisfies the criterion. Thus, u and v are independent
if and only if every path from u to v contains a collider. While correct, this result is not
especially intuitive and requires manipulating a set of graph rules to arrive at a conclusion
about independence.

From the perspective of our semantic definition, the conclusion is both simpler and more
intuitive. Since no nodes are conditioned, no reparative propagation steps will occur in a
sequence of unobserved-terms assignments. Therefore, in order for a change in the value of u
to result in a change in v, the change must occur directly between Uα and Uβ without any
further propagation. In this case, such a change is only possible if u and v share an unblocked
ancestor. So u and v are conditionally independent if and only if the sets of their unblocked
ancestors are disjoint. This condition is more intuitive because it aligns with the idea that if
two nodes do not share a source of variation, then they should not influence one another.

Another key advantage of the semantic definition is that it incorporates not just the
structure of the graph but also more specific relationships between its nodes via its graphfun.
While the definition of conditional independence must hold across all possible graph functions,
in practice, we may have prior knowledge about how certain nodes behave. For example,
suppose a node depends deterministically on just one of its parents or ignores its unobserved
term. In such cases, we can rule out a large space of possible graph functions from considera-
tion, making the semantic definition strictly stronger than d-separation: while d-separation
must assume the worst-case influence of all parents and confounding paths, the semantic
perspective can exploit additional structure or constraints in the system.

The most important advantage is how the semantic definition enhances our intuition for
causal reasoning. While d-separation can tell us that two nodes are independent, it does little
to tell us why. By contrast, the semantic definition makes it possible to reason explicitly
about which changes propagate, which ones do not, and why certain conditional relationships
hold in terms of actual values and dependencies. For example, when debugging a causal
model or trying to explain the effect of an intervention, the semantic approach gives a clearer
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picture of what must remain fixed to preserve certain outcomes, or how an intervention at
one node might ripple through the system. This insight is especially valuable in complex
settings such as counterfactual analysis or experimental design, where understanding why a
conclusion holds is often as important as the conclusion itself.

Although the semantic definition is more expressive, d-separation remains computationally
simple to check using tools such as our formalization or existing systems like Causal Fusion [11].
In practice, the two can be used together, d-separation for fast initial screening of independence
relationships and the semantic definition for the understanding of these relationships in richer
detail.
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Chapter 4

Forward Direction: Conditional
Independence Implies d-Separation

We now prove the forward direction of Theorem 3.3.1, restated below for clarity.

Lemma 4.1. For a causal model G = (V , E), two different nodes u, v ∈ V , and a conditioning
set Z ⊆ V with u, v /∈ Z, if u and v are conditionally independent given Z, then they are
d-separated given Z in G.

We proceed by proving the contrapositive. Suppose that u and v are not d-separated
given Z, so there exists a d-connected path from u to v in G. We will show that, under
this condition, u and v are not conditionally independent given Z. Concretely, we will
construct a graph function f and unobserved-terms assignments Uα, Uβ, U1, ..., Uℓ that satisfy
the initialization, catalyst, and reparative-propagation steps of Definition 3.2.6 but result in
different values for fUα(v) and fUℓ

(v), thus violating conditional independence.
At a high level, the strategy is as follows: we define a specific graph function f that

evaluates each node differently based on its structural role in the d-connected path, specifically
whether it is a mediator, confounder, or collider. This function will be constructed such that
all noncolliders on the path are assigned the same value, effectively propagating the value
from u to v. Since both u and v are endpoints and thus noncolliders, this property ensures
that f(u) = f(v). We will then construct a valid sequence of unobserved-terms assignments
that modifies u’s value and causes the change to propagate through the path to v, ultimately
changing f(v) as well, which will demonstrate that u and v are not conditionally independent
and complete the contrapositive proof.

4.1 Constructing a Function to Equate Node Values

We begin by constructing a function f that equates the values of all noncollider nodes along
a d-connected path. We examine simple cases before generalizing to an arbitrary path.
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4.1.1 A Chain of Mediators

We start with the simplest case: the path from u to v consisting of a single edge u→ v. Since
u is a parent of v, we can define f(v) := f(u) to propagate the value directly.

Now suppose the path is a longer chain of mediators:

u→ m1 → m2 → · · · → mk → v.

In this case, we define f(v) := f(mk), f(mi) := f(mi−1) for i = 2, ..., k, and f(m1) := f(u).
Each node’s value depends only on its parent in the path, and so this definition satisfies the
structure of a causal model while ensuring all values along the path are equal.

We must also ensure that such a function respects conditioning on Z; otherwise it cannot
be used in Definition 3.2.6. In particular, if some descendant of a node on the path lies in Z,
its value could be disrupted if the values along the path change. To prevent this improper
conditioning, we simply define f(z) := AZ(z) for all z ∈ Z, ensuring that all conditioned
nodes remain fixed and do not rely on any values of nodes in the path. Thus, we have shown
that if u and v are connected by a path of all mediators (i.e., a directed path), then there is
a graph function that equates their values.

Note that the assumption that the path is d-connected is crucial. If any mi ∈ Z, then
changing f(u) could violate the conditioning of mi. Furthermore, the change would not
propagate past mi to v, since f(mi) = AZ(mi) would be fixed.

The case of a directed path in the opposite direction (i.e., towards u) is symmetric; we
flip the function definitions accordingly to again ensure all nodes evaluate to the same value.

4.1.2 A Single Confounder

We now consider a simple fork: u ← c → v, where c is a confounder. Since both u and v
have c as a parent, we define f(u) := f(c), and f(v) := f(c). This graph function definition
will equate all values along the path to equal the value of the confounder.

In a more general case, suppose the path is two chains of mediators connected by a single
confounder:

u← m1 ← · · · ← mk ← c→ nj → · · · → n1 → v.

Then, we combine this idea with the ideas in Section 4.1.1, defining the values of the left
chain to be equal to f(mk) and the right chain to be equal to f(nj), and finally f(mk) := f(c)
and f(nj) := f(c). Again, all values are equated along the path.

4.1.3 A Single Collider

Suppose the path is u→ c← v, where c is a collider. We wish to equate all noncollider nodes
on the path (just u and v in this case). This case is the least intuitive because u and v are
both parents of c, so any effect of the value of u on the value of v must occur through c, their
shared child node.
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c

d1

...

dk

d

Figure 4.1.1: Assuming the path highlighted in blue is d-connected, then c must have a
descendant in Z. Assuming c ̸∈ Z, it must have a descendant d ∈ Z and a descendant path
to d.

By the definition of d-connectedness, c must have a descendant in Z. First, consider the
case where c ∈ Z. Then, there is some assigned value x := AZ(c) which c must evaluate to in
every properly conditioned setting of unobserved-terms assignments. Choose some y ̸= x,
using the assumption that node values come from a type with at least two elements. Then,
we can define

f(c) :=

{
x f(u) = f(v)

y else.

Then, any unobserved-terms assignments that properly condition on Z necessarily force
f(u) = f(v).

Now, suppose c ̸∈ Z, so it has some descendant d ∈ Z. Let d1, ..., dk be the intermediate
nodes of the directed path from c to d, as shown in Figure 4.1.1. Using the mediator-chain
strategy of Section 4.1.1, we can equate the values of nodes on c’s descendant path:

f(d) := f(dk), f(di) := f(di−1), f(d1) := f(c),

so that f(d) = f(c). We then define f(c) in the same way as above, where x := AZ(d). Again,
any unobserved-terms assignments that properly condition on Z force f(u) = f(v).

4.1.4 General Construction of fpath

We now generalize the above ideas to an arbitrary d-connected path P from u to v. We
construct a graph function fpath that forces all noncollider nodes on P to take on the same
value in any setting of unobserved terms that properly conditions on Z.

Specifically, we partition the nodes in V into six sets:
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Figure 4.1.2: In the above graph, consider the d-connected path from u to v highlighted in
blue, where Z = {s, x}. Then, the partition is as follows: S1 = {u, r}, S2 = {t, v}, S3 = {q},
S4 = {y, x}, S5 = {s}, S6 = {p}.

• S1 (sources): nodes on P whose neighbors on the path are not parents

• S2 (transmitters): every node on P with exactly one neighboring parent on the path

• S3 (colliders): every node on P whose two neighboring nodes on the path are both
parents

• S4 (descendants): nodes along descendant paths from colliders in P

• S5 (Z-residual): conditioned nodes not included in S1 ∪ S2 ∪ S3 ∪ S4

• S6 (residual): all remaining nodes.

Here, all confounders lie in S1 and mediators in S2. The endpoints u and v fall into either S1

or S2 depending on the directions of the edges adjacent to them. An example is shown in
Figure 4.1.2.

For each collider c, note that c ∈ S3. If c ̸∈ Z, then we select a descendant d ∈ Z, which
exists because P is d-connected, and add all nodes on the directed path from c to d (excluding
c, including d) to S4.

In order to construct fpath to equate all values of noncollider nodes on P , we will define a
specific nodefun for each node based on the set into which it falls.

An issue arises upon introducing the set S4: we know that sets S1, S2, S3 are disjoint since
we assume the path from u to v is acyclic, and thus each node on the path is categorized into
exactly one set. Then, we can assign each node in each set a different nodefun. However,
nodes in S4 may also be on P or appear on multiple descendant paths. This complication
prevents the clean assignment of nodefuns. We address this problem in Section 4.2.

Momentarily assuming that all descendant paths are disjoint and do not intersect P , the
sets defined above indeed form a disjoint partition on V . We can then define a nodefun for
each set:

• S1 (sources): use unobserved term directly.

Definition f_unobs (X: Type) (val: X * list X): X := fst val.
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• S2 (transmitters): use value of parent on P , where i is the index of the designated
parent node in the transmitter’s parent list.

Definition f_parent_i (X: Type) (i: nat) (val: X * list X): X :=
nth_default (fst val) (snd val) i.

• S3 (colliders): enforce equality of two parents on P , where x = AZ(d), d is the descendant
of the collider in Z (possibly the collider itself), y ̸= x, and i and j are the indices of
the two parents on P in the collider’s parent list.

Definition f_equate_ij (X: Type) `{EqType X} (i j: nat) (x y: X)
(val: X * (list X)): X :=

if eqb (nth_default (fst val) (snd val) i)
(nth_default (fst val) (snd val) j) then x else y.

• S4 (descendants): use f_parent_i X i as in S2, where the parent in the descendant
path is at index i in the descendant’s parent list.

• S5 (Z-residual): force to their assigned values in AZ .

Definition f_constant (X: Type) (res: X) (val: X * (list X)): X := res.

• S6 (residual): assign an arbitrary nodefun, since these nodes play no role.

For example, using the graph in Figure 4.1.2, we would assign

fpath(t) := fpath(u)

fpath(v) := fpath(r)

fpath(x) := fpath(y)

fpath(y) := fpath(q)

fpath(q) :=

{
AZ(x) f(t) = f(r)

ρ else,

for some ρ ̸= AZ(x). We see that if fpath properly conditions on Z, then all noncollider values
along the path are equal.

We will formally show in Section 4.4 that fpath equates all noncollider values under
appropriate unobserved-terms assignments. At a high level, a node in S2 copies its parent’s
value, and chains of S2 nodes are anchored by S1 nodes, whose values are set directly by the
unobserved terms. S3 nodes enforce equal values on their two neighboring nodes since they
must pass down their values to their conditioned descendants.

This structure will ensure the propagation of value from u to v in any d-connected path,
allowing us to construct a sequence of assignments that violates conditional independence.
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(a) The path highlighted in blue is a d-
connected path, but the descendant path of
collider q overlaps with the path at s.

u q r s t v

x

y

(b) The alternate path in blue is still d-
connected, since q is now a mediator. This
path is a clean d-connected path.

Figure 4.2.1: Given a d-connected path from u to v where a descendant path of a collider
intersects the path itself, we can construct an alternate d-connected path that satisfies
Definition 4.2.1.

u q r s t v

x y

z

(a) The path highlighted in blue is a d-
connected path, but the two descendant paths
of colliders q and t overlap each other at y.

u q r s t v

x y

z

(b) The alternate path in blue is a clean d-
connected path, since q and t are now media-
tors, and y has a descendant path to z.

Figure 4.2.2: Given a d-connected path from u to v where the descendant paths of two
colliders intersects each other, we can construct an alternate d-connected path that satisfies
Definition 4.2.1.

4.2 Finding Disjoint Descendant Paths

In the previous section, we defined S4, the set of nodes that appear on the descendant path
from any collider in the d-connecting path from u to v. However, while d-connectedness
guarantees the existence of such descendant paths, it does not prevent problematic overlaps,
such as:

• A collider’s descendant path might intersect the path itself (see Figure 4.2.1a).

• Descendant paths from two different colliders could intersect (see Figure 4.2.2a).

These situations pose issues for our construction of fpath, which requires handling each
node in a descendant path with a specific function corresponding to its predecessor in the
descendant path. This logic breaks if a node is shared between multiple descendant paths
(with multiple predecessors) or if the node is simultaneously a path node (e.g., an S2 node).
For instance, in Figure 4.2.1a, node s would be assigned conflicting roles.

To address this issue, we define a stricter notion of a d-connected path:

46



Definition 4.2.1. Let Z ⊆ V , and let P be a path. Let c1, ..., ck be the colliders in P . We
say P is a clean d-connected path if P is d-connected given Z, and for each ci, either
ci ∈ Z, or ci ̸∈ Z and there exists a path Qi := (ci, dn, [d1, ..., dn−1]), where n ≥ 1, satisfying
the following conditions:

1. dn ∈ Z.

2. di ̸∈ Z for i < n.

3. di ̸∈ P for i = 1, ..., n.

4. For all cj ̸= ci such that cj ̸∈ Z, Qi does not intersect Qj.

Our formulation of fpath requires a clean d-connected path. Fortunately, when descendant
paths intersect either the path or each other, we can construct an alternative clean path using
the strategies shown in Figures 4.2.1b and 4.2.2b. These ideas motivate the following result.

Theorem 4.2.2. If u and v are d-connected, then there exists a clean d-connected path from
u to v.

The proof involves extensive case analysis on the structure of the path and descendant
relationships. Since the proof is already fully mechanized in Coq, we present here only a
high-level sketch to convey the main ideas.

We introduce the following helper function, which determines the direction of a path
immediately after a specific node:

Definition 4.2.3. For an acyclic path P = (u, v, l) and a node w, let dirP (w) ∈ {←,→,⊥}
represent the direction of the path immediately after the node w in P . Concretely, if w ̸∈ P
or w = v, then dirP (w) = ⊥. Otherwise, let w′ be the node immediately following w on P .
Then,

dirP (w) :=

{
← (w′, w) ∈ E
→ (w,w′) ∈ E .

Note that since we restrict attention to acyclic paths within acyclic graphs, there is no
ambiguity in the dir function, since each node appears at most once in the path, and for any
adjacent pair of nodes w,w′, only one of (w′, w) or (w,w′) can be an edge in the graph. This
notion plays a crucial role in the proof; for example, for a directed path P , every intermediate
node w satisfies dirP (w) =→. More generally, in any acyclic path P , if dirP (w) =→, then w
cannot be a collider on P .

To prove Theorem 4.2.2, we proceed by induction. At each step, we require the path
to satisfy specific structural conditions in order to construct the induction step from the
hypothesis. Thus, we establish a stronger, more precisely formulated version of Theorem
4.2.2 that incorporates these additional constraints.

Lemma 4.2.4. Let P = (u, v, l) be a d-connected path. Then there exists a clean d-connected
path P ′ = (u, v, l′) such that for any node w satisfying either of:
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I. w ∈ P ′ and w ̸∈ P .

II. dirP (w) ̸= dirP ′(w).

the following conditions hold:

1. One of:

(a) w ̸∈ Z, and there exists a directed path (w, d, p) with d ∈ Z.
(b) w ∈ Z, and dirP ′(w) ∈ {←,⊥}.

2. If dirP ′(w) =→, then w ̸∈ Z.

Proof sketch. We perform induction on the length of P . In particular, we identify the node
immediately after u in P and invoke the induction hypothesis to construct a clean d-connected
path from that node to v. We then prepend u and analyze the overlaps that are introduced:

• Node u could overlap the induction path or its descendant paths.

• If the addition of u makes the next node a collider, then its new descendant path could
intersect the induction path or any of its descendant paths.

For each of these intersections, we construct alternate paths as in Figures 4.2.1b and 4.2.2b.
Conditions 1 and 2 on the induction path allow us to track how how path direction and

collider status changed from P . We must reason about the orientations of the intersection
nodes in the original and new paths to ensure that the new path remains d-connected, acyclic,
clean, and satisfying Conditions 1 and 2.

Intuitively, nodes that satisfy Condition I are those that originally appeared on a descen-
dant path of a collider in the original path. For example, node x in Figures 4.2.1b and 4.2.2b
falls into this category. These nodes satisfy Conditions 1(a) and 2.

In the case of nodes appearing on the second path of two intersecting descendant paths,
such as y in Figure 4.2.2b, the rerouted path P ′ enters with direction ←, so Condition 2
does not apply. Depending on whether the node is the conditioned descendant or not, it will
satisfy either 1(b) or 1(a), respectively.

Condition II is satisfied by nodes that were colliders in the original path and for which the
rerouting process altered the path structure to avoid overlaps. This set includes two types of
colliders: those whose descendant paths intersected the original path and the first of a pair of
colliders whose descendant paths intersected each other. In both cases, the collider w satisfies
Condition 1(a) through its original descendant path. Additionally, since dirP (w) =← and
dirP ′(w) =→,as with node q in Figures 4.2.1b and 4.2.2b, we check Condition 2, which is
satisfied because w ̸∈ Z (since it has a descendant path). For the second collider w′ in such a
pair, the path direction does not change at w′, i.e., dirP (w′) = dirP ′(w′), since the rerouted
path reuses the same outgoing edge from w′.

At a high level, by preserving the roles and directions of nodes carefully and redirecting
overlaps only when safe, we can maintain the required structure and ensure all conditions of
cleanliness hold. The mechanized proof in Coq is available for full rigor.
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It is clear that with Lemma 4.2.4, Theorem 4.2.2 is true.
We can now carry out our implementation of fpath, since we can assume by Theorem 4.2.2

that there exists a clean d-connected path between u and v.
In Coq, we must be able to express not just the path portion of a clean d-connected path

but also the disjoint descendant paths and the collider that each corresponds to so that we
can access the nodes in the descendant paths to assign specific nodefuns.

We again use the assignments type, this time mapping collider ci to a tuple nodes * node.
Let D be of type assignments (nodes * node). If ci ∈ Z, then D at ci is simply ([], ci).
Otherwise, D at ci is a tuple (pi, di), where pi represents the (possibly empty) intermediate
nodes on the directed path from pi to di, and di ∈ Z.

We can then formalize Definition 4.2.1 to be a Prop, given such a set D representing the
descendant paths of clean d-connected path (u, v, l) in graph G with conditioning set Z:

1 Definition descendant_paths_disjoint (D: assignments (nodes * node))
2 (u v: node) (l: nodes) (G: graph) (Z: nodes): Prop :=
3 forall (c: node), In c (find_colliders_in_path (u, v, l) G)
4 -> get_assigned_value D c = Some ([], c) /\ In c Z
5 \/
6 exists (p: nodes) (d: node), get_assigned_value D c = Some (p, d)
7 /\ In d Z /\ is_directed_path_in_graph (c, d, p) G = true
8 /\ acyclic_path_2 (c, d, p)
9 /\ overlap (c :: p) Z = false

10 /\ overlap (p ++ [d]) (u :: l ++ [v]) = false
11 /\ forall (c' d': node) (p': nodes),
12 c =? c' = false /\ get_assigned_value D c' = Some (p', d')
13 -> overlap (c :: p ++ [d]) (c' :: p' ++ [d']) = false.

In the above, line 4 is the case that the collider c is conditioned on, and thus we do not need
a descendant path. Lines 6-8 describe the alternate case, that instead there is an acyclic,
directed path from c to a conditioned descendant d along p. Line 9 ensures that d is the first
node in the path that is in Z, and line 10 ensures that the descendant path does not intersect
the path from u to v itself. Lines 11-13 ensure that no two different descendant paths given
by D overlap each other.

Definition 4.2.5. Given a clean d-connected path P = (u, v, l) conditioned on Z, then D is
a descendant map for P if descendant_paths_disjoint(D, u, v, l,G, Z) holds.

It is clear by Definition 4.2.1 that any clean d-connected path will have at least one
descendant map.

4.3 Existence of Node Set Assignments

As described in Section 4.1.4, fpath relies on a partition of V into S1, S2, ..., S6. However, in
order to implement fpath, we need to know the specific indices to which to bind the nodes in
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S2, S3, and S4. For example, for w ∈ S2, we must have the structure pw → w in the path,
and we wish to assign w the nodefun f_parent_i X i, where pw is at index i in Pa(w), the
list of w’s parents.

Specifically, define the following assignments A2, A3, A4, corresponding to the nodes of
S2, S3, and S4 respectively:

• A2: assignments nat. Maps node w ∈ S2 to i, corresponding to the index of w’s
single parent in the path in w’s parent list.

• A3: assignments (nat * nat * X * X). Maps node w ∈ S3 to (i, j, x, y), where i
and j are the indices of w’s two parents in the path in w’s parent list, x is the value of
w’s conditioned descendant given by AZ , and y is some value unequal to x.

• A4: assignments nat. Maps node w ∈ S4 to i, corresponding to the index of the
previous node in the descendant path in w’s parent list.

Specifically, for the clean d-connected path from u to v, given the set S1 and the assignments
A2, A3, A4, as well as some arbitrary default nodefun hdef, and the conditioned assignments
AZ , we can implement the graphfun fpath:

Definition g_path (X: Type) `{EqType X} (S1: nodes) (A2: assignments nat)
(A3: assignments (nat * nat * X * X)) (A4: assignments nat)
(AZ: assignments X) (default: nodefun X)
(w: node): nodefun X :=

match member S1 w with
| true => f_unobs X
| false =>

match get_assigned_value A2 w with
| Some i => f_parent_i X i
| None =>

match get_assigned_value A3 w with
| Some (i, j, x, y) => f_equate_ij X i j x y
| None =>

match get_assigned_value A4 w with
| Some i => f_parent_i X i
| None =>

match get_assigned_value AZ w with
| Some x => f_constant X x
| None => default
end

end
end

end
end.
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fpath := g_path(S1, A2, A3, A4, AZ , hdef). (4.3.1)

We now must show the existence of these sets and assignments for arbitrary d-connected
nodes u and v. For the following lemmas, let P be a clean d-connected path conditioned on
Z between u and v in G. Let S1, S2, S3, S4, S5, and S6 be the sets described by the partition
for fpath given P . Let D be any descendant map for P , as described in Definition 4.2.5.

Lemma 4.3.1. There exists A2, assignments for the nodes of S2 to N, satisfying that for all
(w, i) ∈ A2, there exists a node a such that a is the i-th node in Pa(w), and either a→ w or
w ← a is a subpath in P .

Proof. We perform strong induction on the length of P . In the base case, P is simply an
edge between u and v. Suppose P is u→ v. Then, S2 = {v}. Since u is a parent of v, we
can determine iu such that u is the iu-th node in Pa(v). Let A2 := {v : iu}. Similarly, if P is
u← v, then S2 = {u}. Let iv be the index of v in Pa(u). Then, let A2 := {u : iv}.

For the induction step, suppose the statement is true for paths of length k, where
2 ≤ k < n. Suppose P has length n > 2. Let w be the node following u in P . We consider
different cases for the edge orientations at the start of the path surrounding w:

Case 1: u← w · · · v. By the induction hypothesis, there is a set A′
2 corresponding to

S ′
2 for the path w · · · v. Note that if the path continues into w, e.g., w ← · · · v, then w ∈ S ′

2,
and w ∈ S2. If the path continues out of w, e.g., w → · · · v, then w ∈ S ′

1, and w ∈ S1. Thus,
S2 = {u} ∪ S ′

2. Let iw be the index of w in Pa(u). Then, we define A2 := {u : iw} ∪ A′
2.

Case 2: u→ w → · · · v. By the induction hypothesis, there is a set A′
2 corresponding

to S ′
2 for the path w → · · · v. Note that w ∈ S ′

1, but w ∈ S2. Furthermore, u ∈ S1. Thus,
S2 = {w} ∪ S ′

2. Let iu be the index of u in Pa(w). Then, we define A2 := {w : iu} ∪ A′
2.

Case 3a: u→ w ← v. Consider the case of a three-node path, in which w is a collider.
Then, S2 = ∅, so let A2 := ∅.

Case 3b: u → w ← w′ · · · v. Now suppose there are more than three nodes in the
path. By the induction hypothesis, there is a set A′

2 corresponding to S ′
2 for the path w′ · · · v.

Note that w ∈ S3, and u ∈ S1. Thus, S2 = S ′
2. So, we define A2 := A′

2.
Thus, we can define A2 as desired for a path of length n for all cases of edge orientations.

Lemma 4.3.2. There exists A3, assignments for the nodes of S3 to N×N× X× X, satisfying
that for all (w, (i, j, x, y)) ∈ A3, there exist nodes a, b, such that a and b are the i-th and j-th
nodes in Pa(w), respectively, and a→ w ← b is a subpath in P . Furthermore, there exist list
of nodes p and node d such that (w, (p, d)) ∈ D, AZ(d) = x, and x ̸= y.

Proof. Again, we proceed via strong induction on the length of P . For the base case, P has
only two endpoints and no intermediate nodes, so S3 = ∅. Thus, A3 := ∅.

For the induction step, we follow the same setup as Lemma 4.3.1: suppose the statement
is true for paths of length k, where 2 ≤ k < n and that P has length n. Let w be the node
following u in P . By the induction hypothesis, there is a set A′

3 corresponding to S ′
3 for the

path w · · · v. Suppose w is not a collider in P . Then, S3 = S ′
3, and D is also a descendant

map for the path w · · · v. Thus, we define A3 := A′
3.
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Now suppose w is a collider in P . We consider two cases:
Case 1: u → w ← v. Here, P is the three-node path in which w is a collider. Then,

S3 = {w}. Since u and v are parents of w, they must appear in Pa(w). Let iu and iv be
the indices of u and v in Pa(w), respectively. If w ∈ Z, let x := AZ(w). Otherwise, there
exists p, d such that (w, (p, d)) ∈ D. Let x := AZ(d). Since we assume that X has at least
two distinct elements, we can choose a y such that y ̸= x. Let A3 := {w : (iu, iv, x, y)}.

Case 2: u→ w ← w′ · · · v. Now there are more than three nodes in the path. Consider
the path w′ · · · v. It is clear that D is also a descendant map for this path, since any overlaps
in the descendant paths with each other or with the path itself would also occur for P . Then,
by the induction hypothesis, there exists A′

3 corresponding to S ′
3 for the path w′ · · · v. Note

that S3 = {w} ∪ S ′
3. Thus, we only need to add on an entry for w to A′

3, and we do so using
the same methods as Case 1, defining A3 := {w : (iu, iv, x, y)} ∪ A′

3.

Lemma 4.3.3. There exists A4, assignments for the nodes of S4 to N, satisfying that for all
(w, ia) ∈ A4, there exists iD, nodes c, d, a and list of nodes p, such that (c, (p, d)) ∈ D where
c ̸= d, w is at index iD in path (c, d, p), a is at index iD − 1 in (c, d, p), and a is the ia-th
node in Pa(w).

Proof. If w ∈ S4, then w must belong to the descendant path of some collider in D. We
define the following function which, given a descendant path (c, d, p), assigns the correct
index bindings for the nodes on that path.

Fixpoint get_A4_nodes_for_path (c d: node) (p: nodes) (G: graph):
option (assignments nat) :=

match p with
| [] => match index (find_parents d G) c with

| Some i => Some [(d, i)]
| None => None
end

| h :: t => match index (find_parents h G) c with
| Some i => match get_A4_nodes_for_path h d t G with

| Some r => Some ((h, i) :: r)
| None => None
end

| None => None
end

end.

Induction on the length of p will show that get_A4_nodes_for_path(c, d, p,G) exists as long
as (c, d, p) is a directed path. Then, given D, we can go through each node of S3 (colliders)
and append the results of get_A4_nodes_for_path together to get A4. Induction on the
length of the path (which affects the number of nodes in S3) shows that this result exists as
long as D is a descendant map.
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By construction, it is easy to see that any (w, ia) ∈ A4 computed as described above must
correspond to a node in a descendant path and the index of the previous node in the path in
Pa(w). Mechanistically, induction on the colliders of P will show that this result is true.

Thus, we have shown the existence of A2, A3, and A4 for arbitrary clean d-connected path
P from u to v. We can then define the graphfun fpath using Equation 4.3.1, which we will
now show equates all values of noncollider nodes.

4.4 Equating Node Values and Conditioning on Z

We will now show that for a specific choice of unobserved-terms assignments U , fpath indeed
equates noncollider values and properly conditions on Z. We will then select a sequence of
unobserved-terms assignments to satisfy the requirements of Definition 3.2.6.

Definition 4.4.1. For any α, we say U is source-fixed to α if U(w) = α for all sources
w ∈ S1.

Let P be a clean d-connected path given Z and AZ from u to v in G. Let S1, ..., S6 be
the partition as described in Section 4.1.4. Let U be any unobserved-terms assignments
source-fixed to α. Choose some arbitrary nodefun hdef. Let A2, A3, A4 be as given in Lemmas
4.3.1, 4.3.2, and 4.3.3, respectively. Let fpath be as described in Equation 4.3.1.

Theorem 4.4.2. For all noncollider nodes w ∈ P , fpath
U (w) = α.

Proof. Note that all noncollider nodes w ∈ P must be in S1 or S2. It is clear that for all
w ∈ S1, fpath

U (w) = α, since fpath
U (w) = U(w) = α (recall that the nodefun corresponding to

a source is f_unobs).
Now consider any transmitter w ∈ S2. Let i be the mapping of w given by A2. Let a be

the i-th node in Pa(w). By Lemma 4.3.1, either a→ w or w ← a is a subpath of P . Note that
since the nodefun corresponding to w is f_parent_i, fpath

U (w) = fpath
U (Pa(w)i) = fpath

U (a).
Consider first the case that a → w is a subpath of P . We induct on the index of the

subpath in the path. For the base case, a and w are the first and second nodes of P ,
respectively. Then, a ∈ S1, so fpath

U (a) = α. Thus, fpath
U (w) = fpath

U (a) = α, as desired.
For the induction hypothesis, suppose that all S2 nodes coming before w in P evaluate to

α. Note that since a has an arrow out to w, a is not a collider. Thus, a ∈ S1 ∪ S2. If a ∈ S1,
then fpath

U (a) = α. If a ∈ S2, then by the induction hypothesis, fpath
U (a) = α as well. Thus,

fpath
U (w) = fpath

U (a) = α, as desired.
Consider now the case that w ← a is a subpath of P . Here, we induct on the index of

the subpath a→ w in the reverse of P . For the base case, a and w are the first and second
nodes, respectively, in the reverse path; thus w and a are the second-to-last and last nodes,
respectively, in P . Then, a ∈ S1, so fpath

U (a) = α. Thus, fpath
U (w) = α.

For the induction hypothesis, suppose that all S2 nodes coming before w in the reverse of
P (or after w in P ) evaluate to α. Again, a is not a collider, so a ∈ S1 ∪ S2. If a ∈ S1, then
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fpath
U (a) = α. If a ∈ S2, then fpath

U (a) = α by the induction hypothesis. Thus, fpath
U (w) = α,

as desired.
Thus, we have shown that all nodes w ∈ S1 ∪ S2 (the noncollider nodes in P ) all evaluate

to α.

We have now shown that for all noncollider nodes wi, wj ∈ P , fpath
U (wi) = fpath

U (wj).
Importantly, this result means that fpath

U (u) = fpath
U (v), which intuitively tells us that u and

v cannot be conditionally independent, as their values are equal. However, we still must show
a sequence of unobserved-terms assignments that can propagate a change in fpath

U (u) all the
way to v. We show this construction in Section 4.5.

Of course, fpath is of no use if it does not properly condition on Z given assignments AZ .
Thus, we must show that all nodes in Z evaluate to the correct values. Recall that U is
source-fixed to α.

Theorem 4.4.3. For all nodes z ∈ Z, fpath
U (z) = AZ(z).

Proof. First, we show that for all nodes w ∈ S3 (colliders), if w maps to (i, j, x, y) in A3, then
fpath
U (w) = x. Let a and b be the i-th and j-th nodes of Pa(w), respectively. Then, by Lemma

4.3.2, a→ w ← b is a subpath of P . Since the nodefun corresponding to w is f_equate_ij,

fpath
U (w) :=

{
x fpath

U (a) = fpath
U (b)

y else.

Since a and b both have arrows out towards w, neither can be in S3. Thus, both are in S1∪S2

(noncollider nodes in P ). Then, by Theorem 4.4.2, fpath
U (a) = fpath

U (b). Thus, fpath
U (w) = x.

Now, consider any z ∈ Z. By construction of the partition, z ∈ S3 ∪ S4 ∪ S5. Suppose
z ∈ S5 (one of the residual nodes in Z). Then, by definition, fpath

U (z) = AZ(z). Furthermore,
if z ∈ S3 is a collider, then for descendant map D, we must have (z, ([], z)) ∈ D, since z does
not need a descendant path. By Lemma 4.3.2, AZ(z) = x. Then, by the above paragraph,
fpath
U (z) = x = AZ(z), as desired.

It remains to show that fpath
U (z) = AZ(z) if z ∈ S4 is the conditioned descendant of a

collider. More specifically, (c, (p, z)) ∈ D for some c ∈ S3. We will show that for all nodes
w ∈ S4 in the path (c, z, p), fpath

U (w) = fpath
U (c). Let i be the mapping of w given by A4.

Let a be the i-th node in Pa(w). Since the nodefun corresponding to w is f_parent_i,
fpath
U (w) = fpath

U (Pa(w)i) = fpath
U (a).

We proceed via induction on the index of w in the path. For the base case, we assume w
is the first node of p. Then, a = c, so fpath

U (w) = fpath
U (c). For the induction hypothesis, we

assume all nodes in (c, z, p) prior to w evaluate to fpath
U (c). We can then apply the induction

hypothesis on a, and we thus have fpath
U (w) = fpath

U (a) = fpath
U (c), as desired.

Then, since z is a node in the path (c, z, p), we have fpath
U (z) = fpath

U (c). We furthermore
know that fpath

U (c) = x, where (ic, jc, x, y) is the mapping of c given by A3. Lemma 4.3.2 says
that x = AZ(z), so fpath

U (c) = AZ(z). Thus, fpath
U (z) = AZ(z), as desired.
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We have thus shown that with a source-fixed U , we have a function that properly conditions
on Z and forces the values of all noncollider nodes, and importantly, the values of u and v,
to be equal. We now demonstrate how this construction can be used to violate the definition
of conditional independence.

4.5 The Sequence of Unobserved-Terms Assignments

We aim to use fpath to prove that u and v are not conditionally independent given Z, as
described in Definition 3.2.6. We know that for any unobserved-terms assignments U that
are source-fixed to some α, fpath

U conditions on Z and forces fpath
U (u) = fpath

U (v). Choose some
α ̸= β. Then, if Uα is source-fixed to α, we will have fpath

Uα
(u) = fpath

Uα
(v) = α. If we can

create a sequence Uβ, U1, ..., Uℓ satisfying the requirements of Definition 3.2.6 such that Uℓ is
source-fixed to β, then fpath

Uℓ
(u) = fpath

Uℓ
(v) = β, and notably fpath

Uα
(v) ̸= fpath

Uℓ
(v), proving that

u and v are not conditionally independent given Z.
Consider the simple case of P being a single directed edge u→ v. Then, S1 = {u}. We

can simply define Uα = {u : α} and Uβ = {u : β}, where the assignments for other nodes
are arbitrary for both Uα and Uβ = U0. Note that Uα and Uβ indeed differ only for members
of Anc∗Z(u) (in particular, only u). Here, ℓ = 0, and note that Uα and Uℓ both properly
condition on Z by Theorem 4.4.3, and furthermore fpath

Uα
(v) ̸= fpath

Uℓ
(v), so u and v are not

conditionally independent.
Now consider the case that P is a simple fork u ← w → v. Here, S1 = {w}. Define

Uα = {w : α}, where other nodes are assigned arbitrarily. Note that changing the unobserved
term of u will not cause any change in fpath(u), since fpath(u) depends on the value of w.
However, w is an unblocked ancestor of u. Thus, we can define

Uβ(w
′) :=

{
β w′ = w

Uα(w
′) else.

Note that Uα and Uβ are both source-fixed (to α and β, respectively), so if we let ℓ = 0, we
once again see that Uα and Uβ = Uℓ satisfy the requirements from Definition 3.2.6, and thus
u and v are not conditionally independent.

Now, consider the case that P has a single collider: u → w ← v. Suppose w ∈ Z, and
(i, j, x, y) is the mapping of w given by A3. Note that AZ(w) = x and x ̸= y by Lemma 4.3.2.
Here, S1 = {u, v}. Define Uα = {u : α, v : α}. Define

Uβ(w
′) :=

{
β w′ = u

Uα(w
′) else.

Note that fpath
Uβ

(u) = Uβ(u) = β, but we are no longer properly conditioning on Z. In
particular, fpath

Uβ
(v) = Uβ(v) = α. Recall that

fpath
Uβ

(w) :=

{
x fpath

Uβ
(u) = fpath

Uβ
(v)

y else,
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so fpath
Uβ

(w) = y ̸= AZ(w), since α ̸= β.
Thus, we define

U1(w
′) :=

{
β w′ = v

Uβ(w
′) else.

Note that U1 differs from Uβ for only v ∈ Anc∗Z(w), which satisfies Condition 3 of Definition
3.2.6. We let ℓ = 1, and note that Uℓ is source-fixed to β. Thus, fpath

Uℓ
(v) = β ̸= fpath

Uα
(v), so u

and v are not conditionally independent.
These simple cases show us that the propagation of a change in the value of u can occur

via the sources in the path (the nodes in S1). In particular, if we change the unobserved terms
of the sources, one-by-one, until the unobserved-terms assignments are source-fixed, and the
value of v is changed, then we can show that u and v are not conditionally independent.

Specifically, suppose there are ℓ sources, and suppose they are organized in order of
their appearance in P , such that S1 = [s0, s1, ..., sℓ]. Choose some α ̸= β. Define Uα to be
any unobserved-terms assignments source-fixed to α. Then define the following sequence of
unobserved-terms assignments:

Uβ =

{
β w = s0

Uα(w) else

U1 =

{
β w = s1

Uβ(w) else
...

Ui =

{
β w = si

Ui−1(w) else
...

Uℓ =

{
β w = sℓ

Uℓ−1(w) else

(4.5.1)

Note that for all edge orientations of P , S1 will have at least one node. Thus, the sequence
will contain at least Uβ, as needed for Definition 3.2.6.

Note that Uα satisfies Condition 1 of Definition 3.2.6. Furthermore, fpath
Uα

(v) = α ̸= β =

fpath
Uℓ

(v) by Theorem 4.4.2. Thus, if we show that the sequence satisfies the conditions of
Definition 3.2.6, then we will show that u and v are not conditionally independent.

To do so, we must establish relationships between the nodes of S1 with other nodes in the
path, particularly nodes of which they are unblocked ancestors.

Lemma 4.5.1. The first node in P that is a member of S1 is an unblocked ancestor of u.

Proof. Proceed via induction on the length of P . For the base case, P consists of only u and
v. If P is u→ v, then u is the first member of S1, and u ∈ Anc∗Z(u). If P is u← v, then v is
the first member of S1, and it is clear that v ∈ Anc∗Z(u), since v ̸∈ Z by assumption.
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For the induction hypothesis, we assume that for paths of length n, the first node in S1

is an unblocked ancestor of the first node in the path. Suppose P has length n+ 1, where
n ≥ 2. If the edge out of u is outwards, then u is the first member of S1, and u ∈ Anc∗Z(u).
Otherwise, P is u← w · · · v for some node w. Let P ′ be the subpath w · · · v with respective
partitions S ′

1, S ′
2, etc. Note that u ∈ S2, so the first node in P ′ in S ′

1, a, will also be the first
node in S1. By the induction hypothesis, a is an unblocked ancestor of w. Note that since P
is d-connected, w ̸∈ Z, since w is not a collider. Thus, a ∈ Anc∗Z(u).

Lemma 4.5.2. If x, y ∈ S1 are consecutive sources (no nodes between them on P are in S1),
then there exists a node z ∈ Z such that x ∈ Anc∗Z(z) and y ∈ Anc∗Z(z).

Proof. Intuitively, x and y must both have arrows out; in other words, x → · · · ← y is a
subpath of P . Then, at some point in the subpath, there must be a collider. Since P is
d-connected, this collider has a conditioned descendant z ∈ Z, of which x and y are unblocked
ancestors.

To formally prove the statement, we induct on the length of the path. Note that P
must have length at least 3 in order to have two nodes in S1. Thus, for the base case, P is
u→ w ← v (the other arrow orientations result in only one node in S1), where u = x and
v = y. If w ∈ Z, then let z = w. It is clear that x ∈ Anc∗Z(w) and y ∈ Anc∗Z(w). Otherwise, w
must have a conditioned descendant z ∈ Z such that there is a directed path from w to z that
does not go through other nodes in Z. Then, it is clear that x ∈ Anc∗Z(z) and y ∈ Anc∗Z(z).

Suppose the statement is true for paths P ′ of length n and corresponding set of nodes
S ′
1. Suppose P has length n + 1, where n ≥ 3, so P is u ↔ w1 ↔ w2 · · · v. Let P ′ be the

subpath w1 · · · v. If P has an arrow into u, then u ∈ S2, so x, y are still consecutive nodes
in S ′

1 corresponding to P ′. Thus, we can apply the induction hypothesis on P ′ to get the
desired z.

Now consider the case that P has an arrow out of u. If u ̸= x, then x and y are again still
consecutive nodes in S ′

1 corresponding to P ′, so we again can apply the induction hypothesis
on P ′. Suppose u = x. We first consider the case that P is u → w1 → w2 · · · v. Then,
note that the first node of S ′

1 will be w1, and the second will be y. Thus, w1 and y are
consecutive nodes in S ′

1, so we can find a z ∈ Z such that w1 ∈ Anc∗Z(z) and v ∈ Anc∗Z(z).
Then, u ∈ Anc∗Z(z) since u→ w1 is an edge and w1 ̸∈ Z, since w1 is a mediator.

We now consider the case that P is u→ w1 ← w2 · · · v. By Lemma 4.5.1, y ∈ Anc∗Z(w1).
Since w1 is a collider, it has a conditioned descendant z ∈ Z. Applying the same logic as the
base case, we have that u = x ∈ Anc∗Z(z), as desired.

We now show that the sequence satisfies Condition 3 of Definition 3.2.6.

Theorem 4.5.3. For the sequence defined in Equation 4.5.1, each two consecutive unobserved-
terms assignments Ui−1, Ui in the sequence differ from each only for

a′ ∈
⋃
z∈Z

∃a∈Anc∗Z(z),
Ui−2(a)̸=Ui−1(a)

Anc∗Z(z),
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where we let Ui−2 = Uα if i = 1.

Proof. Note that the statement applies only to paths with at least two sources, since ℓ must
be at least 1 for Ui−2 to make sense. Consider Ui and Ui−1 for some i ≥ 1. By definition,
they differ from each other only for si. By Lemma 4.5.2, there is a node z ∈ Z such that
si−1, si ∈ Anc∗Z(z). Note that by definition, Ui−2(si−1) = α ≠ β = Ui−1(si). Thus, the
statement holds.

In order to prove the above formally, we proceed via induction on the length of S1, proving
a key lemma that S ′

1 corresponding to the subpath si · · · v of P is the subset of S1 containing
nodes beginning from si and continuing to the end of the subpath.

We can now prove Lemma 4.1, restated below for convenience.

Lemma 4.1. For a causal model G = (V , E), two different nodes u, v ∈ V , and a conditioning
set Z ⊆ V with u, v /∈ Z, if u and v are conditionally independent given Z, then they are
d-separated given Z in G.

Proof. We proceed via the contrapositive. Suppose that u and v are not d-separated, so
there exists a clean d-connected path P from u to v. Let Uα, Uβ, U1, ..., Uℓ be defined as in
Equation 4.5.1. We show that all conditions of Definition 3.2.6 are satisfied, using graph
function fpath:

1. Since Uα is source-fixed to α, fpath
Uα

(u) = α, and the function properly conditions on Z
by Theorems 4.4.2 and 4.4.3, respectively.

2. By construction, Uβ differs from Uα for only s0, where s0 ∈ Anc∗Z(u) by Lemma 4.5.1.
To show that fpath

Uβ
(u) = β, we consider the edge orientation associated with u on P : if

P has an edge out of u, then u ∈ S1, so fpath
Uβ

(u) = Uβ(u) = β. Otherwise, u ∈ S2. Via
induction on the length of the path, we show that the chain of S2 nodes starting at u
will terminate at s0, and all nodes along the chain will take on the value of s0, which is
β.

3. By Theorem 4.5.3, this condition is satisfied.

4. Note that ℓ = |S1| − 1, and |S1| ≤ |V|, so the condition is satisfied.

For a tighter bound, we note that at most every other node in P can belong to S1, since
between two consecutive nodes, one must be the parent of the other, so at most one can
be in S1. Thus, |S1| ≤ 1

2
|P |. Thus, for constructing sequences to violate conditional

independence, we can bound ℓ by half the length of the shortest clean d-connected path
from u to v.

5. Since Uℓ is source-fixed to β, fpath
Uℓ

(u) = β, and the function properly conditions on Z
by Theorems 4.4.2 and 4.4.3, respectively.

By Theorem 4.4.2, fpath
Uα

(v) = α ̸= β = fpath
Uℓ

(v). Thus, u and v are not conditionally
independent.
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Chapter 5

Backward Direction: d-Separation Implies
Conditional Independence

We now prove the backward direction of Theorem 3.3.1, again restated below for clarity.

Lemma 5.1. For a causal model G = (V , E), two different nodes u, v ∈ V , and a conditioning
set Z ⊆ V with u, v /∈ Z, if u and v are d-separated given Z, then they are conditionally
independent.

We prove the contrapositive: assume that u and v are not conditionally independent,
so there exists some graph function f and sequence of unobserved-terms assignments
Uα, Uβ, U1, ..., Uℓ satisfying the conditions of Definition 3.2.6, such that fUα(v) ̸= fUℓ

(v).
We then use this sequence to show the existence of a d-connected path given Z from u to v,
which will show that the two nodes are not d-separated.

5.1 Change Originates From Unblocked Ancestors

While in Chapter 4, we leveraged a specific d-connected path to propagate a change to v, we
now need to consider what a change in a function’s value must imply about the structure of
the graph.

In particular, recall that a node’s value depends on its unobserved term and the values
of its parents. Thus, if fU(v) ̸= fU ′(v) for some U,U ′, then it must be true that either
U(v) ̸= U ′(v), or fU (a) ̸= fU ′(a) for some a ∈ Pa(v). In the latter case, it again must be true
that U(a) ̸= U ′(a), or fU(a

′) ̸= fU ′(a′) for some a′ ∈ Pa(a). Since G is acyclic, this chain of
parents must eventually terminate at a node whose unobserved term in U differs from its
unobserved term in U ′. Furthermore, note that each node in the chain is not in Z, since f(z)
is fixed for all z ∈ Z.

Thus, we see that a change in f(v) between two different unobserved-terms assignments
must originate from an unblocked ancestor of v. Specifically, some unblocked ancestor of v
must have a different unobserved term in the two assignments. We formally describe this
conclusion in the following lemma:
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Lemma 5.1.1. For any graph function f and two unobserved-terms assignments U,U ′, such
that fU and fU ′ both properly condition on Z, if fU(w) ̸= fU ′(w) for some w ∈ V, then there
exists a node a ∈ Anc∗Z(w) such that U(a) ̸= U ′(a).

Proof. We proceed via strong induction on the index of w in the topological sort of G. For
the base case, suppose w is the first node in the topological sort. Then, it has no parents, so
fU(w) and fU ′(w) depend only on U(w) and U ′(w), respectively. Thus, it must be true that
U(w) ̸= U ′(w), so we can simply let a = w, where clearly w ∈ Anc∗Z(w).

For the induction hypothesis, assume that the statement is true for all nodes with index
at most i in the topological sort of G, and suppose the index of w is i+ 1. If U(w) ̸= U ′(w),
we can once again simply let a = w. Assume U(w) = U ′(w). Then, there must be some
w′ ∈ Pa(w) such that fU(w

′) ̸= fU ′(w′), since fU(w) ̸= fU ′(w). Since w′ ∈ Pa(w), the index
of w′ in the topological sort of G must be less than i+ 1. Thus, by the induction hypothesis,
there exists a node a ∈ Anc∗Z(w

′) such that U(a) ̸= U ′(a). Note that since fU and fU ′

both properly condition on Z, it must be true that w′ ̸∈ Z, since fU(w
′) ̸= fU ′(w′). Thus,

a ∈ Anc∗Z(w), as desired.

Lemma 5.1.1 already leads us towards a d-connected path to v because it points us to a
specific unblocked ancestor of v. Unblocked ancestors are useful for constructing d-connected
paths because they ensure that all mediators on the directed path are not conditioned on and
furthermore that the ancestor itself, which could be a mediator or a confounder if the path is
further extended, is also not conditioned on. We will see how to use unblocked ancestors to
discover a d-connected path from a sequence of unobserved-terms assignments.

5.2 d-Connected Paths For Short Sequences

We sketch the processes of finding a d-connected path between u and v for short sequences of
unobserved-terms assignments that satisfy the conditions of Definition 3.2.6 but change the
value of v.

We begin with a lemma that finds the existence of a d-connected path given a shared
unblocked ancestor of two nodes:

Lemma 5.2.1. For distinct nodes w1, w2, if there is a node a such that a ∈ Anc∗Z(w1) ∩
Anc∗Z(w2), then one of the following is true:

1. There is a d-connected, acyclic directed path (w1, w2, l) such that w1 ̸∈ Z.

2. There is a d-connected, acyclic directed path (w2, w1, l) such that w2 ̸∈ Z.

3. There is a d-connected, acyclic path (w1, w2, rev(l1)++[a′]++l2) such that (a′, w1, l1)
and (a′, w2, l2) are both directed.

Proof. Since a is a shared unblocked ancestor of w1, w2, we use Definition 3.2.3 to produce
the following cases:
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1. a = w1, shown in Figure 5.2.1a. Then, since w1, w2 are distinct, a ̸= w2, so there is a
directed path to w2 that does not go through any member of Z. Then, the path is d-
connected, since all intermediate nodes are mediators. Furthermore, since a ∈ Anc∗Z(w2)
and a ̸= w2, a = w1 ̸∈ Z, as desired. Thus, Condition 1 is satisfied.

2. a ̸= w1, a = w2, shown in Figure 5.2.1b. By symmetric logic as the case above,
Condition 2 is satisfied.

3. a ̸= w1, a ̸= w2. Then, there are directed paths from a to u and from a to v, both of
which do not go through members of Z. It is clear that a ̸∈ Z. If the two directed
paths do not overlap, shown in Figure 5.2.1c, then we simply concatenate them and
satisfy Condition 3. If they do overlap, shown in Figure 5.2.1d, then we find the first
intersection a′ of the reverse paths given by Theorem 2.3.3, and we take the path from
w1 to a′ via the reverse of l1, then to w2 via l2. By Theorem 2.3.3, this path is acyclic.
Since the original directed paths do not pass through Z, this path is d-connected.
Furthermore, it is clear that the two paths making up the resulting path are directed,
since they are subpaths of the original directed paths.

Thus, one of the conditions is satisfied in all cases.

Suppose ℓ = 0, so we change the value of v between Uα and Uβ. Then, since Uα and Uβ

both properly condition on Z, Lemma 5.1.1 tells us that there exists a node a ∈ Anc∗Z(v)
such that Uα(a) ̸= Uβ(a). However, Uα and Uβ are constrained such that they only differ for
values in Anc∗Z(u). Thus, a ∈ Anc∗Z(u) ∩ Anc∗Z(v). We can then apply Lemma 5.2.1, seeing
that in all three cases, there is a d-connected path between u and v, and thus u and v are
d-connected.

Now, consider the case that ℓ = 1, so fUα(v) ̸= fU1(v). Again, by Lemma 5.1.1, there
exists a node a ∈ Anc∗Z(v) such that Uα(a) ̸= U1(a). If Uβ(a) = U1(a), then we follow the
same steps as ℓ = 0 above to see that u and v are d-connected. Otherwise, if Uβ(a) ̸= U1(a),
then there must exist z ∈ Z such that a ∈ Anc∗Z(z), and there is an a′ ∈ Anc∗Z(z) such that
Uα(a

′) ̸= Uβ(a
′). Then, a′ ∈ Anc∗Z(u). We can then construct the path shown in Figure 5.2.2a.

We again must consider the possibility that the directed paths making up the path overlap
each other, which we handle formally in Section 5.4. One particularly interesting possible
overlap is between the directed paths a′ · · · z and a · · · z. Note that if they do not overlap,
then z is a collider in the path, and z ∈ Z, so the path is indeed d-connected. It is however
possible that the paths must overlap at some node c, and they then can take the same path
to z. Luckily, this resulting path exactly mimics the setup of d-connectedness for a collider
that has a descendant in Z, as shown in Figure 5.2.2b.

We have already taken advantage of many components of d-connectedness, such as
mediators and confounders being unconditioned and colliders either being in the conditioning
set or having conditioned descendants. However, thus far we have only constructed examples
involving paths with at most one collider and two confounders. To establish full equivalence,
we expect to rely on d-connected paths of arbitrary structure with any number of mediators,
confounders, and colliders, since intuitively, every d-connected path from u to v should
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w1

...

w2

(a) a = w1 and has a directed path to
w2.

w2

...

w1

(b) a = w2 and has a directed path to
w1.

a

...
. . .

w1 w2

(c) The two directed paths from a to w1

and w2 do not overlap.

a

...

a′

...
. . .

w1 w2

(d) The two directed paths from a to w1

and w2 overlap at a′.

Figure 5.2.1: Given that a ∈ Anc∗Z(w1) ∩ Anc∗Z(w2), there are four possible cases for the path
structure between w1 and w2, resulting in either a directed path or a single-confounder path.
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a′

...
. . .

w1 z

...

a

. . .

w2

(a) The two confounder path constructed from unblocked ancestors a′ and a. Note that by construc-
tion, the path is d-connected.

a′

...
. . .

w1 c

...

z

...

a

. . .

w2

(b) If the paths overlap at collider c, then the path is still d-connected since z is a conditioned
descendant.

Figure 5.2.2: For any w1, w2 such that w2’s value is affected by a change in w1 with a sequence
of unobserved-terms assignments Uα, Uβ, U1, we can construct a d-connected path from w1 to
w2 using z ∈ Z and shared ancestors a′, a.

63



correspond to some valid sequence of unobserved-terms assignments that alters the value
of v without violating conditioning on Z. This observation highlights why our definition
of semantic conditional independence requires a sequence of assignments rather than a
single comparison: the change must propagate through potentially many intermediate nodes,
depending on the structure of G. In the following section, we generalize this reasoning to
arbitrary-length sequences that satisfy the constraints in Definition 3.2.6, thereby leveraging
the full expressive power of d-connectedness.

5.3 Generalizing to Arbitrary-Length Sequences

As illustrated in the previous section, the change in f(v) originates from u and propagates
through a chain of intermediate assignments. At a high level, each transition from Ui to
Ui+1 introduces a change via a different unblocked ancestor whose effect passes through a
shared descendant z ∈ Z. Each such transition introduces a collider to the overall path,
and the full path formed by concatenating the directed paths from unblocked ancestors to
descendants in Z is d-connected. The existence of this path ultimately shows that u and v
must be d-connected.

A natural strategy for generalizing this logic to arbitrary-length sequences Uα, Uβ, U1, ..., Uℓ

is to attempt induction on ℓ. However, this approach does not directly succeed. Suppose the
induction hypothesis were that if a sequence of unobserved-terms assignments of length n
demonstrates conditional dependence between two nodes, then there exists a d-connected
path between them. Now suppose we have a sequence of length n+ 1 for u and v. One might
hope to apply the inductive hypothesis to the subsequence U ′

α = Uβ, U
′
β = U1, ..., U

′
n = Un+1

to obtain a d-connected path from some z ∈ Z to v, and then prepend a d-connected path
from u to z, which exists via the constraints on Uα, Uβ, and U1. However, this approach fails
because the initial step Uβ is constrained to differ from Uα only on unblocked ancestors of u,
while later steps may involve changes across ancestors of many different nodes z1, . . . , zk ∈ Z.
Since there is no guarantee of a d-connected path from each of these zi to v, we cannot
inductively extend the argument as hoped.

Instead, we could attempt to apply the induction hypothesis to the prefix Uα, Uβ, U1, ..., Un

to produce a d-connected path from u to z ∈ Z, then append a d-connected path from z to v.
However, we encounter another asymmetry: Un+1 is special in that it must fully recondition
on Z, while any intermediate Ui need not. This asymmetry once again prevents a clean
inductive step.

Note that we do not assume that the given sequence is minimal in that the value of
v necessarily changes only at the final step. It is possible that the value of v has already
changed after the changes made in Uβ, for example. However, we can see that if the value of
v changes after Uβ, then some z ∈ Z must have been affected during the propagation, and
its change enabled the downstream effect on v.

To make this reasoning precise, we now define functions to identify the set of z ∈ Z
whose values are affected during the sequence. These nodes serve as intermediaries in the
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propagation chain and will be used to construct an explicit d-connected path from u to v.

Fixpoint find_unblocked_ancestors_in_Z_contributors {X: Type} `{EqType X}
(G: graph) (Z: nodes) (AZ: assignments X) (S: nodes): nodes :=

match AZ with
| [] => []
| (z, x) :: AZ' => if overlap (find_unblocked_ancestors G z Z) S

then z :: find_unblocked_ancestors_in_Z_contributors G Z AZ' S
else find_unblocked_ancestors_in_Z_contributors G Z AZ' S

end.

Fixpoint get_conditioned_nodes_that_change_in_seq {X: Type} `{EqType X}
(L: list (assignments X)) (Z: nodes) (AZ: assignments X)
(G: graph): nodes :=

match L with
| U1 :: L' => match L' with

| U2 :: U3 :: L''' =>
find_unblocked_ancestors_in_Z_contributors G Z AZ

(unblocked_ancestors_that_changed_A_to_B (nodes_in_graph G) U1 U2)
++ get_conditioned_nodes_that_change_in_seq L' Z AZ G

| _ => []
end

| _ => []
end.

In the above, unblocked_ancestors_that_changed_A_to_B(V , U1, U2) returns every node
with an unobserved term differing between U1 and U2. Let

∆Z(L) := get_conditioned_nodes_that_change_in_seq(L,Z,AZ ,G).

If L = [Uα, Uβ, U1, ..., Uℓ], then ∆Z(L) gives the subset of Z whose values were affected by
changes in the sequence U1, . . . , Uℓ.

We now prove a result similar to Lemma 5.1.1 tailored to sequences:

Lemma 5.3.1. For any graph function f and sequence of unobserved-terms assignments
Uα, Uβ, U1, ..., Uℓ satisfying the conditions of Definition 3.2.6, if fUα(v) ̸= fUℓ

(v), then there
exists a node a ∈ Anc∗Z(v) such that one of the following is true:

1. a ∈ Anc∗Z(u).

2. There exists z ∈ Z such that a ∈ Anc∗Z(z) and z ∈ ∆Z(Uα, Uβ, U1, ..., Uℓ).

Proof. By Lemma 5.1.1, we know that there is a node a ∈ Anc∗Z(v) such that Uα(a) ̸= Uℓ(a).
If a ∈ Anc∗Z(u), then Condition 1 is satisfied. Suppose a ̸∈ Anc∗Z(u).
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Then, Uα(a) = Uβ(a), so ℓ ≥ 1. To show that Condition 2 above is satisfied for any
Uα, Uβ, U1, ..., Uℓ satisfying Condition 3 of Definition 3.2.6, we perform induction on ℓ. Note
that for the rest of the proof, we no longer require that the sequence satisfy Condition 2 of
Definition 3.2.6.

For the base case, ℓ = 1. Then, Uβ(a) ̸= U1(a), so there must be a node z ∈ Z and a node
a′ such that a ∈ Anc∗Z(z), a′ ∈ Anc∗Z(z), and Uα(a

′) ̸= Uβ(a
′). Then, letting

S := unblocked_ancestors_that_changed_A_to_B(V , Uα, Uβ),

we have that

z ∈ find_unblocked_ancestors_in_Z_contributors(G, Z, AZ , S),

and thus z ∈ ∆Z(Uα, Uβ, U1).
For the induction hypothesis, we assume that the statement is true for ℓ = n. Suppose the

sequence has length ℓ = n+ 1, where n ≥ 2. If Uβ(a) ̸= U1(a), proceed as in the base case.
Otherwise, apply the induction hypothesis to the sequence U ′

α = Uβ, U
′
β = U1, ..., which tells

us that there must be a node z ∈ Z such that a ∈ Anc∗Z(z) and z ∈ ∆Z(Uβ, U1, U2, ..., Un+1).
Then, by definition of ∆Z , we have that z ∈ ∆Z(Uα, Uβ, U1, ..., Un+1), as desired.

We now can pinpoint the change in v’s value to a specific conditioned node z. We now
relate syntactic structure in the sequence to the nodes in ∆Z(L).

Lemma 5.3.2. For a node z ∈ Z and L = [Uα, Uβ, U1, ..., Uℓ], z ∈ ∆Z(L) if and only if there
exists a subsequence Ui, Ui+1, Ui+2 of L such that

z ∈ find_unblocked_ancestors_in_Z_contributors(G, Z, AZ , S),

where S := unblocked_ancestors_that_changed_A_to_B(V , Ui, Ui+1). In words, z was
affected by changes between Ui and Ui+1.

Proof. In the mechanized proof, we would proceed via induction on ℓ. However, it is clear
from the Coq function definitions that the statement is true.

This lemma isolates the part of the sequence that causes a particular z to change. It is
possible for this change to come directly from Uβ; if not, it is caused by reparative changes
initiated by a different z′ ∈ Z in a previous transition. The following lemma sets up this
recursive structure:

Lemma 5.3.3. Let L = [Uα, Uβ, U1, ..., Uℓ] satisfy Condition 2 of Definition 3.2.6. Suppose
Ui, Ui+1, Ui+2 is the subsequence corresponding to z ∈ ∆Z(L) as given by Lemma 5.3.2.
Furthermore, suppose there exists U ′ such that U ′, Ui, Ui+1 is a subsequence of L. Then, there
exists a node a and a node z′ ∈ Z such that

a ∈ Anc∗Z(z) ∩ Anc∗Z(z
′)

and
z′ ∈ find_unblocked_ancestors_in_Z_contributors(G, Z, AZ , S

′),

where S ′ := unblocked_ancestors_that_changed_A_to_B(V , Ui−1, Ui).
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Proof. We perform induction on L. For the base case, suppose U ′ = Uα, Ui = Uβ, and
Ui+1 = U1. Then, since z is affected by changes from Uβ to U1, there must be a node
a ∈ Anc∗Z(z) such that Uβ(a) ̸= U1(a). Then, there must be a node z′ ∈ Z such that
a ∈ Anc∗Z(z

′), and z′ is affected by changes from Uα to Uβ, as desired.
For the induction step, we assume that the result holds for L′ = [Uβ, U1, ..., Uℓ]. If U ′ = Uα,

Ui = Uβ, and Ui+1 = U1 again, we follow the same steps as above. If not, the result follows
directly from the induction hypothesis.

5.4 Concatenating Paths from Unobserved-Terms Assign-
ments

Recall that our goal is to construct a d-connected path from u to v using the existence of
a sequence of unobserved-terms assignments Uα, Uβ, U1, ..., Uℓ satisfying the conditions of
Definition 3.2.6, under the assumption that fUα(v) ̸= fUℓ

(v).
The case where Anc∗Z(u)∩Anc∗Z(v) ̸= ∅ yields a d-connected path via Lemma 5.2.1. In the

case where Anc∗Z(u) ∩ Anc∗Z(v) = ∅, Lemma 5.3.1 guarantees the existence of some z ∈ Z and
a ∈ Anc∗Z(z) ∩ Anc∗Z(v) such that z is affected by changes in the sequence. If z is influenced
directly by Uβ, we can construct a d-connected path from u to z. Otherwise, Lemma 5.3.3
provides a recursive structure in which the change to z propagates through another node
z′ ∈ Z. Repeated applications of Lemmas 5.3.2 and 5.3.3, together with induction, allow
us to construct a d-connected path from u to z. Finally, we concatenate this path with a
d-connected path from z to v.

We now formalize the construction of a d-connected path from u to such a node z ∈ Z.
Note that we will eventually have to concatenate this path with a d-connected path from z to
v, in which z will have to be a collider to guarantee d-connectedness, as shown in Theorem
2.3.1. Thus, we require the additional constraint that the final edge is into z.

Lemma 5.4.1. Let z ∈ Z, z ∈ ∆Z(Uα, Uβ, U1, ..., Uℓ). Then, there is a path Pu,z from u to z
that is acyclic, d-connected given Z, and into z at the last edge.

Proof. By Lemma 5.3.2, there must be a subsequence U ′, U ′′, U ′′′ of Uα, Uβ, U1, ..., Uℓ such
that z was affected by changes between U ′ and U ′′. Let i be the index of the subsequence in
the sequence (the i-th entry of the sequence is U ′, the (i+ 1)-th is U ′′, and the (i+ 2)-th is
U ′′′). Note further that this index does not have to be unique; we do not require that the
sequence of unobserved-terms assignments are minimal. We can choose any index i that
satisfies the requirements.

Now, we proceed via strong induction on i. For the base case, suppose that i = 0, so
U ′ = Uα, U

′′ = Uβ, U
′′′ = U1. Then, there must exist some a such that a ∈ Anc∗Z(z), and

Uα(a) ̸= Uβ(a). Thus, a ∈ Anc∗Z(u). Since z ∈ Z, one of Conditions 1 or 3 of Lemma 5.2.1
must be true. Either way, it is clear that the path goes into z, is d-connected, and is acyclic.

For the induction hypothesis, suppose that for any z′ ∈ Z that is affected by changes
between assignments appearing at index at most some n, where n ≥ 0, there is a path Pu,z′
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from u to z′ that is acyclic, d-connected given Z, and into z′. Assume i = n+ 1 > 0. Then,
there must be some U that immediately precedes the subsequence U ′, U ′′, U ′′′; in other words,
U appears at index (i− 1) in the sequence. Then by Lemma 5.3.3, there is a z′ ∈ Z and a
node a such that a ∈ Anc∗Z(z) ∩ Anc∗Z(z

′), and z is affected by changes between U and U ′. It
is clear that (i− 1) is a valid index of the subsequence U,U ′, U ′′ in the sequence. Thus, we
apply the induction hypothesis to get a path Pu,z′ that goes into z′.

Furthermore, since z, z′ ∈ Z, Condition 3 of Lemma 5.2.1 must be true, giving us some
single-confounder path Pz′,z from z′ to z. We aim to concatenate these two paths; however,
we must consider the possibility that they intersect at some point. Luckily, the casework here
is much easier than in Section 4.2.

If Pu,z′ and Pz′,z do not intersect, we concatenate them directly. Since the last edge of
Pu,z′ is into z′, z′ is a collider, and the path remains d-connected because z′ ∈ Z.

If u lies on Pz′,z, then we simply take the subpath of Pz′,z starting from u and continuing
to z. Since Pz′,z is acyclic, d-connected, and into z, so is this subpath. If z lies on Pu,z′ , then
we simply take the subpath of Pu,z′ starting from u and continuing to z. This subpath must
be acyclic and d-connected. Since z ∈ Z, and Pu,z′ is d-connected, z must be a collider in the
path. Thus, the subpath is also into z.

Otherwise, let x be the first intersection point from Theorem 2.3.3. Construct the new
path by taking Pu,z′ to x, then continuing along Pz′,z. Let this composite path be Pu,z. This
path is acyclic by Theorem 2.3.3 and still into z. Note that since x ∈ Pz′,z, it must be a
mediator or confounder in Pz′,z and thus not in Z. In Pu,z, if x is a mediator or confounder,
then the path is d-connected, since x ̸∈ Z. If x is a collider in Pu,z, then we consider where x
falls in Pz′,z. In particular, if x falls before the confounder, then x has a descendant path to
z′. Otherwise, x has a descendant path to z. Either way, Pu,z is d-connected.

All the above cases result in paths Pu,z satisfying the requirements in the lemma statement.

We now have all the pieces to proceed with the proof of Lemma 5.1.

Lemma 5.1. For a causal model G = (V , E), two different nodes u, v ∈ V , and a conditioning
set Z ⊆ V with u, v /∈ Z, if u and v are d-separated given Z, then they are conditionally
independent.

Proof. We prove the contrapositive. Suppose that u and v are not conditionally independent,
so there exists some graph function f , some α ̸= β, and a sequence of unobserved-terms
assignments Uα, Uβ, U1, ..., Uℓ, where ℓ ≥ 0 satisfying the conditions of Definition 3.2.6, such
that fUα(v) ̸= fUℓ

(v). We will show that u and v are not d-separated given Z. We follow the
steps outlined at the beginning of this section.

By Lemma 5.3.1, there exists an a ∈ Anc∗Z(v) such that either a ∈ Anc∗Z(u), or there
exists z ∈ Z such that a ∈ Anc∗Z(z) and z ∈ ∆Z(Uα, Uβ, U1, ..., Uℓ). Consider the first case.
Then, by Lemma 5.2.1, there is a d-connected path from u to v, and thus u and v are not
d-separated.

In the second case, we know by Lemma 5.4.1 that there is a d-connected, acyclic path Pu,z

from u to z that goes into z at the last edge. Furthermore, since z and v share unblocked
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ancestor a, and z ∈ Z, one of Conditions 2 of 3 of Lemma 5.2.1 must hold, and thus there is
a d-connected path Pz,v from z to v that goes into z at the first edge.

We now consider the structure of the path from z to v and how it intersects with the
previously constructed path from u to z.

1. If Pu,z and Pz,v do not intersect anywhere, then we can simply concatenate them to get
Pu,v. Since Pu,z is into z, z becomes a collider in Pu,v, so Pu,v is d-connected.

2. If u lies on Pz,v or v lies on Pu,z, we take the appropriate subpath, which remains a
d-connected path.

3. If the first overlap of Pu,v and the reverse of Pz,v given by Theorem 2.3.3 is some node
x ̸∈ {u, v}, then we let Pu,v be the path Pu,z until x, then switch to the path Pz,v until
v. This path is acyclic by Theorem 2.3.3. Since x ∈ Pz,v, it is a mediator or confounder
and thus not in Z. Thus if x is a mediator or confounder in Pu,v, then Pu,v is still
d-connected. Suppose x is a collider in Pu,v.

Consider the structure of Pz,v as given by Lemma 5.2.1 (it must satisfy Condition 2 or
Condition 3). If Pz,v is a directed path from v to z, then the descendant path from x
to z along the reverse of Pz,v ensures that Pu,v is d-connected.

If Pz,v is a single-confounder path from z to v, then x must come before the confounder
in Pz,v, since otherwise, the edge on the right of x in Pu,v would be outwards, and thus
x would not be a collider. Thus, the descendant path from x to z along the reverse of
Pz,v still ensures that Pu,v is d-connected.

Thus, in all possible overlapping cases, there is a path Pu,v from u to v that is d-connected
given Z, so u and v are not d-separated, as desired.

We now can establish the equivalence of conditional independence and d-separation given
Z.

Theorem 3.3.1. The notions of conditional independence and d-separation coincide exactly.
In particular, for a causal model G = (V , E), two distinct nodes u, v ∈ V, and a conditioning
set Z ⊆ V with u, v /∈ Z, u and v are conditionally independent given Z if and only if they
are d-separated given Z in G.

Proof. Follows directly from Lemmas 4.1 and 5.1.
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Chapter 6

Future Work

While this thesis establishes a foundational framework for reasoning about causal models in
Coq, it also opens the door to many avenues of further exploration. This chapter outlines
promising directions for future development, ranging from completing correctness proofs for
existing functions to applying the framework to more advanced ideas in causal inference. In
particular, the final sections explore how formal semantics can inform counterfactual reasoning,
probabilistic extensions, and ultimately the formal verification of experimental-design validity.

6.1 Finish Correctness Proofs

There are still graph-theoretic functions that have not yet had their correctness fully proven
due to the implementation complexity introduced by Coq’s purely functional nature. In
particular, functions that involve recursion over graph structures, such as pathfinding or
topological sorting, require several intermediate steps and auxiliary lemmas to manage both
termination and logical soundness.

One major proof target is the correctness of the find_all_paths_from_start_to_end
function, which is central to reasoning about causal models. The correctness specification is
stated below:

Theorem paths_start_to_end_correct: forall (p: path) (u v: node) (G: graph),
(is_path_in_graph p G = true) /\ (path_start_and_end p u v = true)

/\ (acyclic_path p = true)
<-> In p (find_all_paths_from_start_to_end u v G).

Proving this theorem likely requires decomposing the implementation into a series of lemmas
that correspond to each step in the pathfinding pipeline, as described in Section 2.1.1.
Analogous reasoning can then be reused to prove the correctness of the similar functions for
finding directed paths, finding descendants and ancestors, and cycle detection.

The other important unproven result is the topological-sort correctness theorem. While
we have already proven the existence of a topological sort for acyclic graphs and shown many
key properties, we have not yet proven the positional constraints between nodes:
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Theorem topo_sort_correct: forall (G: graph) (u v: node) (sorted: nodes),
G_well_formed G = true /\ topological_sort G = Some sorted

/\ edge_in_graph (u, v) G = true
-> exists (i j: nat),

Some i = index sorted u /\ Some j = index sorted v /\ i < j.

This theorem states that any topological sort must respect the edge directionality of the
input graph. While its truth is well-known in the field of algorithms, proving it in Coq will
require careful management of the graph and its edges, serving as a valuable exercise in
formal algorithmic reasoning.

Importantly, although the correctness proofs for these functions are not yet complete, their
absence does not threaten the soundness of the overall system; the existence of algorithms
satisfying these theorems is already established in classical theory, so we are confident that
the specifications of the theorems themselves are accurate. If anything were to fail in proof,
it would more likely reveal an issue with the implementation rather than with the theorem
specification. Nonetheless, completing these correctness proofs is an essential step toward
building a fully verified system on trustworthy foundational components.

6.2 Modeling Counterfactuals

Counterfactuals play a crucial role in causal inference, allowing us to explore hypothetical
scenarios and understand the consequences of different actions. As discussed in Section
1.2.1, the twin-network model is intuitive and aligns closely with the traditional DAG
representation of causal models, but it has a difficult preprocessing step that was introduced
later on to overcome an error that resulted from the model failing to account for deterministic
dependencies between twin nodes. The original error could have been avoided with a
formalization, which would have enforced greater rigor in the development of the correct twin
network and the checks for d-separation. In addition, the formalization would be useful to
understand the conceptual difficulties that come with the preprocessing step fully.

We have implemented the twin-network method up to just before the preprocessing step,
which has formally replicated the error in Example 11.3.3 of Causality [3]. The graph involved
in the example was the model of sequential randomness shown in Figure 1.2.1. The conditional
independence in question was between X1 and Y ∗ conditioned on Z and X0 = x∗

0. In the
twin network shown in Figure 1.2.2a, the path X1 ← H ← UH → H∗ → Z∗ → Y ∗ d-connects
X1 to Y ∗, which led to the conclusion that the two nodes are not independent. However,
Z∗ is deterministically related to Z. Shpitser and Pearl describe in detail the algorithm for
determining this relation [6], but intuitively, Z∗ depends only on H∗ and x∗

0; X0 = x∗
0 since

we assume that the naturally occurring value of X0 is x∗
0, and H and H∗ are also equivalent,

since they represent the same value and are both only affected by UH . Figure 1.2.2b shows
the correct twin network post-preprocessing.

This error has now been verified within Coq:
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Example sequential_twin_network_error:
d_separated_bool X1 Y' sequential_twin [Z;X0] = false.

where Y' is Y ∗.
Additionally, we have formally proven that the conditional-independence relationships

remain identical in the duplicated twin graph before any unobserved confounders are added.
In the process, we also proved that many other causal-model properties, such as colliders,
descendants, and paths, are preserved in the twin graph. Thus, we have validated the
correctness of the initial stages of the formalization.

The next step is to implement and verify the preprocessing step of the twin-network model
in Coq, which would address the dependency issue by merging specific twin nodes that share
deterministic relationships [6]. This preprocessing step is critical, as it would have prevented
the replicated error from occurring in the first place. The implementation would ensure that
the twin-network model can accurately represent counterfactual scenarios without ambiguity.
Determining the appropriate notion of correctness for this algorithm and completing its proof
would make the natural and intuitive twin-network model also formally sound and robust.

6.3 Inducing Paths and d-Separation

As described in Section 1.2.2, inducing paths are a powerful concept in causal modeling,
particularly when dealing with latent variables, which are variables that are not directly
observed but may still influence the relationships between observed variables. Theorem
1.2.2 states an equivalence between the existence of an inducing path over a subset O and
d-connectedness of a and b conditioned on every subset of O \ {a, b}. This equivalence is
important because it links structural properties of causal graphs (inducing paths) with the
theoretical property of conditional independence (d-separation).

In our Coq formalization, Theorem 1.2.2 takes the form:

Theorem d_separation_and_inducing_paths:
forall (G: graph) (O: nodes) (a b: node),
contains_cycle G = false ->
(forall Z: nodes, subset Z (set_subtract O [a; b]) = true

-> d_separated_bool a b G Z = false)
<-> exists (U: path), path_start_and_end U a b = true

/\ inducing_path U G O.

The forward direction, showing that if a and b are d-connected given all subsets of O \ {a, b},
then there exists an inducing path between them, has already been proven. This proof
leverages numerous auxiliary lemmas about acyclic graphs and set-theoretic operations.

An important next step is to complete the backward direction of the theorem. The proof
strategy breaks into two main cases depending on whether the inducing path begins with an
arrow out of a or into a, corresponding to whether the resulting d-connected path is out of
or into a. In the former, we must reason about the structure of colliders along the path. If
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no colliders exist, then the path is already d-connected regardless of the conditioning set. If
colliders do appear, a more nuanced analysis is required. In particular, the key fact used in
the proof, originally stated without elaboration, is the following: in a DAG, every node in a
path is either an ancestor of one of the path’s endpoints or an ancestor of a collider [9].

While this claim appears nontrivial at first glance, working through the semantics of
d-connectedness in our framework makes its intuition much clearer. Specifically, using the
notation of Chapter 4, all nodes on a d-connected path fall into one of the sets S1, S2, or S3:
sources, transmitters, or colliders, respectively. If the node is past the first source and before
the last source, then it must lie on a path to or from a collider (i.e., be an ancestor of one).
Otherwise, it must be an ancestor of an endpoint. Thus, the semantic lens developed in this
thesis provides a natural and intuitive route toward formalizing this result, an insight that
would likely have remained opaque without the semantic framework.

Formalizing this observation and using it to complete the backward proof of Theorem 1.2.2
would solidify the connection between semantic reasoning and classical graphical notions
involving latent variables and independence. It would also pave the way for mechanized
reasoning about maximal ancestral graphs and other advanced representations that rely on
inducing paths as a central concept.

6.4 More Semantic Equivalences

The central contribution of this thesis is the development of a semantic definition of conditional
independence and the formal proof of its equivalence with the classical syntactic definition of
d-separation. This result is not just a correctness theorem; it provides a new lens through
which to understand what d-separation actually means by growing it from a purely graph-
theoretic rule into a semantically rich property of how node values respond to changes in other
nodes under constraints. It also opens the door to extending the same semantic treatment to
other syntactic constructs in causal inference.

One natural next target is the do operator. Syntactically, applying do(a := α) to a
graph means removing all incoming edges to node a, thus cutting it off from its usual causal
influences. Semantically, however, this operation should correspond to a transformation of the
graph function; rather than computing a from its parents and unobserved term, the function
for a should be replaced with the constant function f(a) := α. We conjecture that these two
views of intervention (syntactic graph surgery vs. semantic value override) are equivalent and
that this equivalence can be proven formally in Coq.

Another area where a semantic view would be especially useful is counterfactual reasoning,
a more subtle and error-prone component of causal inference. The standard approach using
twin networks can be difficult to interpret and reason about. In this thesis, we identified
specific ambiguities in the preprocessing step of the model, which led to errors even in
canonical sources such as Causality [3]. A semantic framing could describe counterfactual
worlds through modified graph functions and value propagations. The axioms of effectiveness,
composition, and consistency [13] map well onto the function-based semantics already built
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in this framework. In a formal equivalence between semantic counterfactuals and twin-
network–based reasoning, the preprocessing step in the twin-network model could be explained
not merely as a technical fix but as a semantic necessity to model dependencies between twin
nodes correctly.

One striking aspect of causal models is that much of their expressive power does not rely
on probabilities at all. Our formalization, for example, says nothing about probabilities yet
supports many parts of causal reasoning. This abstraction is powerful, especially given that
real-world experiments are inherently probabilistic and rarely yield deterministic conclusions.
However, probabilities remain a critical part of causal inference, particularly for evaluating
confidence and estimating causal effects. An extension of this work would incorporate
probability distributions into the formal framework, allowing us to reason about probabilistic
core results such as the backdoor criterion, frontdoor criterion, and rules of do-calculus. For
example, proving that the backdoor adjustment formula holds under a semantic definition of
the backdoor criterion would provide a compelling synthesis of probabilistic reasoning and
formal verification.

Establishing these connections would further validate the semantic framework and allow
us to improve the interpretability of causal inference tools.

6.5 Formally Verifying Experimental-Design Validity

This thesis is the first research thrust in a longer-term project to develop a formal framework
for verifying the validity of experimental designs. We believe that this is a promising but
underexplored area; while experimental science produces results at an accelerating pace,
the infrastructure for rigorously validating those results across disciplines has not kept up.
Establishing a mechanized way of validating experimental reasoning is crucial to addressing
this gap.

A key insight motivating this direction is that causal models can inform the validity of
experimental designs. They provide structure that can help identify key variables to measure,
detect potential confounders, and guide decisions on how to control for biases, ensuring
that the observed effects are due to the treatment or intervention rather than other factors.
They can also help researchers design experiments that can isolate causal effects, predict
the outcomes of different interventions, and improve the robustness and generalizability of
findings.

This direction of work aligns closely with another ongoing research effort: PLanet [16], a
domain-specific language for formalizing experimental design that generates assignment plans
for experiments given user constraints. The language supports complex patterns such as
counterbalancing and Latin squares, enabling researchers to specify experimental structures.
Combining PLanet’s design-specification capabilities with our semantic causal-modeling
framework could lead to powerful new verification tools. For instance, we might formally
prove that counterbalancing removes a confounding influence by showing that, semantically,
the design transformation results in two variables becoming conditionally independent. That is,
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experimental design would be understood not only in terms of assignments and randomization
but also in terms of the causal model it induces, verified formally in Coq to ensure that
experimental intent matches causal-inference validity.

Ultimately, this work lays the groundwork for building a full-stack formal system handling
experimental-design specification, causal-model generation, and formally proven analysis of
causal claims. This level of rigor could greatly enhance reproducibility, interpretability, and
validity in experimental science.
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