Beyond the Demo
Designing and Building a “Real” Ur/Web Application

Benjamin Barenblat

May 16, 2013

Today, learning management systems are widespread. However, they are invari-
ably difficult to maintain, slow, and proprietary. My 6.uap project focused on
designing a forum module for a different kind of learning management system — a
speedy, free,' secure Lms written in the Ur/Web research language. While I didn’t
accomplish all my initial goals, I did produce a reasonably-sized body of Ur/Web
code suitable for others to build upon in future development of both the proposed
Lms and other, unrelated projects. I also identified a number of Ur/Web design
patterns (and anti-patterns); I believe that promoting this “soft” knowledge is the
royal road to widespread Ur/Web deployment.

1 Background

1.1 Learning management systems

The Web has always been associated with academia; it’s thus natural that professors
use it to disseminate course materials to students. With the Web’s present ubiquity,
entire systems have been designed to help professors generate dynamic, featureful
course Web sites. These learning management systems typically integrate gradebooks,
assignment distribution and submission systems, calendars, and occasionally even
wikis or question-and-answer fora.

At mrT, rather than using an off-the-shelf Lms such as Blackboard [1] or Moo-
dle [2], 1s&'T has developed and deployed a custom solution known as Stellar [3].
Stellar, while a generally functional product, routinely garners the ire of students,

"Throughout this report, I use the term “free” as defined by the Free Software Foundation;
consider it roughly synonymous with “open source.”

professors, and administrators alike: It is difficult to maintain, difficult to cus-
tomize, and extraordinarily slow. Nonetheless, the miT Committee on Educational
Technology reported in 2011 that no commercial Lms provided the feature set and
customizability of Stellar, recommending that mIT retain the Stellar system for the
foreseeable future.

1.2 Ur and Ur/Web

Ur [4], designed and implemented by Professor Adam Chlipala, is an advanced,
strict, purely functional, statically typed programming language intellectually de-
scended from Haskell [5] and OCaml [6]. However, its type system is substan-
tially richer than that provided by either language, being more in the tradition
of dependently typed languages such as Coq [7]. In particular, while Haskell and
OCaml functions may only map values to values, Ur functions may also map types
to types. This enables metaprogramming a la Template Haskell [8] and Camlpy;
unlike metaprograms written in those languages, however, Ur metaprogramming
is typesafe — checked for well-typed behavior before expansion.

As its name 1mplies, Ur 1s designed as an ur-language: a programming language
which serves as a base to implement specialized, domain-specific languages. To
date, only one psL, Ur/Web, has been implemented; Ur/Web melds Ur’s advanced
metaprogramming features with a hefty standard library, enabling rapid develop-
ment of ResTful, sQr-backed Web applications. The Ur/Web compiler (there is
no separate compiler for Ur yet) compiles Ur/Web to ¢ and JavaScript, allowing
client and server code to be trivially combined in a single application, and the
generated code is highly efficient. To sweeten the pot, Ur/Web promises to stati-
cally guarantee generated programs immune to code injection, cross-site scripting
vulnerabilities, and certain types of cross-site request forgeries.

2 Motivation

Ur/Web has not gained much traction since its release in 2010; to date, only one
large application exists written in Ur/Web, and it is nonfree. Discussion of the
situation within Ur/Web’s patron research group, the Programming Languages
and Verification Group at csaIL, suggests that Ur/Web faces the chicken-and-egg
problem inherent in releasing any new programming language, and that the solu-
tion is to bootstrap Ur/Web by demonstrating its applicability to a large software
system. The group, aware of the MITcET report, thus began an informal project to

construct a modular learning management system in Ur/Web. The overall vision
describes a system in which professors would receive autogenerated Ur/Web skele-
tons for their course Web sites, which they would modify by adding or removing
modules — e.g., fora, wikis, or calendars. I chose to focus on one specific module: a
class forum which would combine the best features of Stack Overflow and Piazza
to offer students a safe, well-designed place to get the answers they needed. At the
same time, [would investigate Ur/Web best practices for applications “beyond the
demo” — that is, large, complicated applications, which need to sustain continual
development for a lengthy deployment period.

2.1 Prior work
2.1.1 Stack Overflow

In the world of top-tier online forums, Stack Overflow [g], catering to “profes-
sional and enthusiast programmers,” is the undisputed leader — one would be hard-
pressed to find a Course Sixer who has not consulted Stack Overflow at least once.
Stack Overflow presents a clean, typographically sound interface; it runs fast on
virtually any hardware selection, from twelve-core 17s to uLv Atoms; and for one
reason or another, it has attracted a massive body of over 1’2 million registered
users. However, Stack Overflow is designed for professionals and enthusiasts, not
for students. In fact, the Stack Overflow community has been at times openly
hostile toward students — “Smells like homework” is a common response to intro-
ductory programming questions on the site. And while anyone can create a Stack
Overflow clone specialized to another topic area, all such clones must be built
through Stack Overflow’s parent, Stack Exchange, and they all must be public.
(The Stack Overflow software itself is nonfree, so running a private or indepen-
dent Stack Overflow instance is impossible.)

2.1.2 Piazza

Piazza [10] attempts to fill this gap by providing private fora professors can cre-
ate for use in their classes. Each forum provides a safe environment for (possibly
anonymous) students to ask questions and for classmates and staff to answer. How-
ever, Piazza fails. In contrast to Stack Overflow, the Piazza user interface is ugly
— its designer obviously believes that jQuery, not tasteful design, is the hallmark of
a beautiful site. The site is sluggish, bringing my netbook to a crawl; the underly-
ing software 1s nonfree; and there is no public ap1, making writing a better client
a Herculean (and Sisyphean) task. Piazza’s underlying model suffers serious issues

as well: unlike Stack Overflow, where a proliferation of answers is common (and
indeed encouraged), Piazza supports only one real answer per question. Further-
more, while Stack Overflow’s voting and reputation systems allow users to easily
assess the quality of any answer, Piazza lacks any such mechanism other than direct
staff endorsement.

On campus, reaction to Piazza is mixed. General consensus finds it better than
nothing, but it obviously has a long way to go before it achieves wide satisfaction.

2.2 Designing a better system

Fundamentally, the major problem for both Stack Overflow and Piazza is that of
audience. Stack Overflow caters to professionals and enthusiasts, and while Piazza
claims to support students, the site’s slogan i1s ““T'he (Free) Efficient Way to Manage
Class Q&A” (emphasis mine), making it clear exactly who the site is intended for
— professors. In contrast, I sought to build a site intended for students, a site to
provide students the speed and design of Stack Overflow with the privacy and
support of Piazza. In short, I wanted to build a site optimized around a single
primary activity: asking a question.

To guide my work, I put forth the following concrete design principles, roughly
in priority order:

* A clean, intuitive interface will make the site a pleasure to use.

» A voting scheme will allow students to rate answers. Voting power will be
weighted according to institutional authority — stafl votes will carry more
weight than student votes.

e The site code will be free so that institutions can customize it to their needs
and students can easily code against it.

e The site will run fast on all hardware.

» A resTful a1 will allow the site to interact well with other projects.

3 My contribution

For my 6.uAP project, I constructed a basic forum module for the hypothetical pLv
LMs, a deployment of which is available at https://bbaren.scripts.mit.edu/urweb/
6.947. (Note that MIT personal certificates are required for authentication; while

https://bbaren.scripts.mit.edu/urweb/6.947
https://bbaren.scripts.mit.edu/urweb/6.947

you can browse the forum as an unauthenticated user, you cannot participate by
asking new questions, answering existing ones, or voting on questions or answers.)

3.1 Application architecture

Since I was the first person to write a module for the new Lwms, I got to design
the overall application architecture. To keep the system as modular as possible,
each subapp — the forum, the wiki, the gradebook, etc. —lives in its own Ur/Web
package, with its own Ur project file, its own static files, and potentially its own
build system. (Ur/Web’s compiler, as a whole-program compiler, makes a separate
build system for each subapp currently redundant; however, if future subapps make
calls to ¢ code via Ur’s foreign function interface, they will need integrated build
systems, probably using autotools.) Each subapp presents a templating functor,
which allows the main application to enforce a consistent look and feel over the
entire site. As an example, the forum application presents the following functor.

functor Make(Template : sig
val generic : option string (* title *) — xbody — page
end) : sig
val main : unit — transaction page
end

The larger application parametrizes the forum and exposes the generated main
function.

structure Forum = Forum.Make(struct
fun generic (pageName : option string) (content : xbody) : page =
<xml>
<head><title>{[pageName]|} </title> (* etc. *) </head>
<body>
(* Code to generate the page menu, etc. *)
{content}
< /body>
</xml>
end)
val forum = Forum.main

3.2 The forum itself

The forum subapp is a fairly straightforward sqL-backed application. At present,
it fulfills most of the design principles I describe in section 2.2. Its interface is

clean and the site code is free, licensed under the oNU AGpL [11]. The app is not
as featureful as I desired — one can only vote on questions at present, not answers,
and there is no support for weighting votes according to institutional role — but the
app In its current state is functional and performant.

The main page of the forum lists the five most recently-asked questions, along
with a friendly invitation to ask a new question. Users may enter a detail page for
any question by clicking its title; the detail page allows voting on and answering
the question.

Currently, the app relies on only two sQL tables — one for questions and answers
(collectively, “entries”) and one for votes.

3.2.1 Authentication

The forum leverages Ur’s type system to enforce policies regarding user access and
mutation. In particular, the Author module defines two types:

type usernameOrAnonymous = option string
type username = string

(These types are defined as synonyms, rather than wrappers, to ease sQL serializa-
tion; see section 4.3.) The types are exported abstractly; thus, functions which re-
quire users to be authenticated may accept a username as a parameter, while those
which allow anonymous access should accept usernameOrAnonymous parameters.

Currently, there is no sQL table for users; instead, users are identified entirely
through M1T personal certificates (ssL client authentication). Whenever a client con-
nects to a page, the page may use the function

val Author.current : transaction Author.usernameOrAnonymous
to request the MIT username of the connected user. Author defines the function
val name : usernameOrAnonymous — username

which pages may use to take differing actions based on whether or not a user is
authenticated. For instance, the detail page uses Author.name to determine whether
or not to display voting buttons.

3.2.2 Voting

Voting appears a deceptively simple scheme. However, it is actually quite com-
plicated to build a voting system incorporating well-defined invariants — e.g., that
each user may vote only a finite number of times. To simplify the problem, I chose

to allow each user up to one vote per question, and I temporarily abandoned my
goal to incorporate users classes (professor, student, etc.) into vote weight. The re-
sultant system stores each vote in a vote table, and it uses SQL constraints to ensure
that all votes are valid (and that each user only votes once).

4 Ur/Web in practice

In general, I was quite pleased with Ur/Web’s performance as a programming
language, and I’d certainly give it serious consideration when determining which
language to implement my next Web-based project in. The Ur/Web edit-compile-
test cycle was fairly rapid, and once I had a few support scripts set up, redeployment
was trivial. The language is generally well-documented — if only within the volu-
minous reference manual — and minimal examples, in the form of Ur/Web demos,
cover a surprisingly large number of potential use cases for the language. That the
Ur/Web compiler is free software was also a great boon; several times during de-
velopment, I encountered strange compiler bugs, and I was virtually always able
to patch the compiler and continue working. (Some of the bugs are specific to the
manner in which I deployed Ur/Web; others, which have wider ramifications, I
plan to enter into the Ur/Web bug tracker shortly after this project’s conclusion.)

4.1 Deployment on Scripts

I chose to deploy my project on s1pB’s Scripts service [12], a shared hosting platform
available to the mIT community. I was generally happy with deployment on Scripts,
though I encountered a few minor issues. First was the simple issue of getting a
working Ur/Web binary to exist on Scripts; since MLton produces dynamically
linked executables, I needed to compile Ur/Web on Scripts itself. Fortunately,
Scripts allows ssH access, and thus, with a bit of help from the service maintainers,
I was able to produce a working urweb executable.

However, the compiler did not work on first invocation — it was developed on
Debian, while Scripts runs on Fedora. Thus, when performing its final link, the
vanilla Ur/Web compiler generates a command line for cee which is incompatible
with the Scripts architecture. Happily, a trivial compiler patch fixed this.

So that others might have an easier time working with Ur/Web on Scripts, I
have made available my installation of the Ur/Web compiler (version 20120925)
via AFS. If you are deploying an Ur/Web application on Scripts, you can run
. /mit/bbaren/ur/setup.sh (note the initial period) to set your environment variables

appropriately; then, when you run urweb, you’ll run it out of my locker. You will
need to compile your application on Scripts itself, and since the Ur/Web runtime
1s not installed globally, you’ll need to pass the —static flag to the compiler.

4.2 Cross-site request forgery

My friends, upon hearing me brag about Ur/Web’s security model, enjoyed bang-
ing on the application to try to break it. (I remember in particular one friend, who
immediately stuffed script tags into a question and applauded when Ur/Web re-
fused to treat them as HTML.) I was eventually forced to eat my words by David
Benjamin, however, who discovered cross-site request forgery vulnerabilities in my
application. Ur/Web promises to protect against certain types of cross-site request
forgery; however, the Ur/Web compiler currently only defends against cross-site
request forgery when cookies are used for authentication. Since my application did
not use cookies, I inadvertently deactivated the csrF protection code paths, and my
application became vulnerable.

The workaround in this particular case (see commit b446185dlec6) was to
trick Ur/Web into believing I am using cookies when I am not. For instance, the
Author.current function described in section §.2.1 now begins

cookie bogus : unit

val current =
addressOpt < getenv (blessEnvVar "SSL_CLIENT_S_DN_Email");
_ignored < getCookie bogus;

(*.%)
getCookie bogus will always return None, but it doesn’t matter — Ur/Web 1s (for-
tunately) insufficiently intelligent to determine that the cookie is ignored, and so
this will properly trigger Ur/Web’s csrRF protection at the appropriate time. An
unfortunate consequence of this approach is that I had to sacrifice another of my
secondary goals, a REsTful apI for the forum; I simply lack the time to build a real
authentication system that enables secure ApI use without admitting CSRF.

It’s unclear to me precisely what impact this issue has upon the wider Ur/Web
ecosystem. Very few developers use ssL client authentication, so it’s unlikely that
this issue will manifest itself outside mIT. It should be possible to add certificate
authentication primitives which would trigger the Ur/Web csr¥ protection code
paths to the compiler itself; however, that project is certainly beyond the scope of
this one.

4.3 The pattern matching anti-pattern

One clear anti-pattern I identified through work in Ur/Web (as well as work on
my Decaf compiler in 6.095) i3 pattern matching on data constructors outside
of the module in which they were defined. While it may be tempting to define
data Foo = Bar | Baz in one module and pattern-match on Bar and Baz in an-
other, this is (to use Professor Chlipala’s favorite insult) anti-modular, coupling
Foo’s interface to its implementation in such a way as to make later implementation
changes extremely time-consuming. I strongly encourage developers to avoid pat-
tern matching across module boundaries, and indeed, to export all types opaquely.

In Ur/Web, there is an even larger incentive to export types opaquely. The
sql_injectable type class (representing those types which are trivially serializable
into sQL tables) is a closed class, meaning developers cannot add developer-defined
types to it. Even if an isomorphism exists between a developer-defined type and
(a subset of) a built-in type, the developer is out of luck: he or she must manually
serialize and unserialize values of the type when dealing with database operations.
While the Ur/Web type system prevents the developer from forgetting to serialize
correctly, an even better solution is to declare the isomorphism in the form of a type
synonym. The Author module follows this pattern (see section 3.2.1). However, this
pattern only works if the type is exported opaquely: if the developer exposes the
isomorphism to the rest of the program, usage of the type becomes unsafe, precisely
because the developer can now pattern-match on the isomorphic, but unrelated,
underlying type.

5 Future work

While I am pleased with the work I did this term, much future work remains. The
forum module is certainly not ready for prime time, and I'm hopeful that others
(and, potentially, myself) will continue work on it after I leave the Institute. More
generally, however, it’s clear that Ur/Web visibility needs to improve substantially
for it to acquire real market share.

I believe much progress can be made by improving the human factors:

* Ur/Web needs a better build system. The project abstraction is generally
pleasant to use, but certain small details — such as its lack of comment support
— threaten to render it unsuitable for extremely large projects.

* The Ur/Web compiler needs better error messages. At this point, I am ex-
tremely good at deciphering the messages it presents; I have even arrived

at the point where the messages are occasionally helpful, rather than uni-
versally confusing. However, for those who do not know what “unification”
is, or that the HTML tags embedded inside Ur files are secretly desugared
to xML-building combinators (with fairly complicated record types, I might
add), or that type variables in Ur/Web type signatures are not automatically
universally qualified, urweb’s error messages are less than ideal.

Parts of the Ur/Web standard library need prose documentation. Type sig-
natures in the standard library interface files provide almost enough docu-
mentation to use the standard library to its fullest potential. However, hy-
pertext (or even just PDF) documentation would allow better searchability
and easier perusal, particularly as Ur/Web stops being distributed in source
form.

Beyond this, however, I believe the best future for Ur/Web is simply one in

which developers use it. As more developers use Ur/Web and recommend it to
their coworkers, more code examples will appear online, more documentation and

tutorials will become available, and more feedback on improvement will return to
the authors. I look forward to seeing the forthcoming Ur/Web learning manage-

ment system as a large, complicated Ur/Web system — should it succeed, it will
not only be a major boon for the Ur/Web community, but one for mrt and the
collegiate environment as well.

References

[1]
2]
3]
(4]

e B e |

5]
[6]

[7]

Blackboard: Technology and Solutions Built for Education. http:/ /blackboard.com/.
Moodle: Powerful Free Tools to Educate the World. http://moodle.com/.
Stellar: The mxt Course Management System. https:/ /stellar.mit.edu/.

Adam Chlipala. The Ur Programming Language Famuly. http:/ /impredicative.
com/ur/.

The Haskell Programming Language. http:/ /haskell.org/.

Institut national de recherche en informatique et en automatique [INRIA].
The Caml Language: OCaml. http://caml.inria.fr/ocaml/.

. The Cogq Proof Assistant. http://coq.inria.fr/.

10

http://blackboard.com/
http://moodle.com/
https://stellar.mit.edu/
http://impredicative.com/ur/
http://impredicative.com/ur/
http://haskell.org/
http://caml.inria.fr/ocaml/
http://coq.inria.fr/

[8]

[9]
[10]
[11]

[12]

Tim Sheard and Simon Peyton Jones. “Template Meta-programming for
Haskell”. In: Proc. Haskell Workshop (2002). https://research.microsoft.com/
en-us/um/ people/simonpj/ papers/meta-haskell/. See http:/ /haskell.
org/haskellwiki/Template_Haskell for information on the current state of
Template Haskell.

Stack Overflow. http:/ /stackoverflow.com/.
Piazza: The (Free) Efficient Way to Manage Class Q& A. http:/ /piazza.com/.

Free Software Foundation. “cNu Affero General Public License.” 2007. https:
//www.gnu.org/licenses/agpl.html.

Student Information Processing Board. scripts.mit.edu. http:/ / scripts. mit.
edu/.

© 2019 Benjamin Barenblat

Copying and distribution of this file, with or without modification, are permitted

in any medium without royalty provided the copyright notice and this notice are
preserved. This file is offered as-is, without any warranty.

II

https://research.microsoft.com/en-us/um/people/simonpj/papers/meta-haskell/
https://research.microsoft.com/en-us/um/people/simonpj/papers/meta-haskell/
http://haskell.org/haskellwiki/Template_Haskell
http://haskell.org/haskellwiki/Template_Haskell
http://stackoverflow.com/
http://piazza.com/
https://www.gnu.org/licenses/agpl.html
https://www.gnu.org/licenses/agpl.html
http://scripts.mit.edu/
http://scripts.mit.edu/

	Background
	Learning management systems
	Ur and Ur/Web

	Motivation
	Prior work
	Stack Overflow
	Piazza

	Designing a better system

	My contribution
	Application architecture
	The forum itself
	Authentication
	Voting

	Ur/Web in practice
	Deployment on Scripts
	Cross-site request forgery
	The pattern matching anti-pattern

	Future work

