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Abstract

Microcontrollers – low-power, real-mode cpus – drive digital electronics
all over the world, making their safety and reliability critical. However,
microcontrollers generally lack the memory protection common in
desktop processors, so memory safety must come through other means.
One such mechanism is Bedrock, a library for the Coq proof assistant
that applies separation logic to a small c-like language, allowing
programmers to prove memory-related properties about their code. I
used Bedrock to build a security peripheral out of a Cortex-m3
microcontroller; my peripheral provides both aes encryption and
append-only logging to a host system, and I showed the software it runs
is memory-safe. Working with Bedrock was challenging but rewarding,
and it provides a glimpse into a future where system programmers can
prove code correct as a matter of course.

Thesis Supervisor: Adam Chlipala
Assistant Professor of Electrical Engineering and Computer Science
Department of Electrical Engineering and Computer Science
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Chapter 1

A Microcontroller-Based
Security Peripheral

Microcontrollers – low-power, real-mode cpus – drive digital electronics
all over the world. Because microcontroller systems lack virtual memory,
however, their software cannot leverage the hardware memory
protection common in desktop processors. Fortunately, improvements
in static analysis and programming languages allow developers
nowadays to statically guarantee memory safety before their software
ever hits bare metal. To investigate this methodology, I used the
domain-specific Bedrock programming language to program a
microcontroller, and I then used the Coq proof assistant to prove my
Bedrock code memory safe.

The result is a tiny system that demonstrates microcontroller memory
safety is not only possible but also quite valuable. Connected to a
computer via a serial line, a microcontroller flashed with my software
offers important security primitives – aes encryption and append-only
logging – to the host, all the while guaranteeing memory isolation at the
level generally offered by a memory management unit. Data sent for
logging will not leak into or overwrite data sent for encryption, and vice
versa. Bedrock also provides several other assurances, including that the
system’s memory allocator is correct, the application will never
stack-overflow, and no null-pointer dereferences are possible.

While these guarantees are exciting, using Bedrock to program a
system as simple as a microcontroller might seem like overkill. Why
spend time and effort guaranteeing memory safety statically when a few
dollars more can buy an mmu that will do so at runtime? However, as I
discuss in chapter 2, my work grows more relevant each day:
Microcontroller systems are becoming more and more widespread, and
we simply cannot afford to lose the data they protect. Furthermore, while
safe programming languages are common, options for safe system
programming languages are limited; Bedrock is one of the only
reasonable choices.

It is certainly not c, though, so I spend chapter 3 reviewing the
Bedrock system and filling in some gaps in published material, before
turning full attention to my software and proof engineering work in
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chapter 4. I examine the Bedrock compilation process and how it
interacts with the microcontroller environment; look at the c++ support
code I needed to write to bring Bedrock’s i/o model to bare metal; and
show some of the specifications, code, and proofs that ensure my
system works safely. I conclude with a qualitative evaluation of my work
and an exploration into the future of safe microcontroller software
(chapters 5 and 6).
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Chapter 2

Proof Assistants …
and Microcontrollers?

This entire report is about building microcontroller software with the
Coq proof assistant and the Bedrock programming language. However,
it’s likely not obvious why I would want to do such a silly thing. Why
target a microcontroller when full-featured arm cpus are both plentiful
and inexpensive? Why use a proof assistant to statically verify memory
safety when a garbage-collected language can fill the same role? In short,
microcontrollers are more plentiful and less expensive than other cpus,
and Bedrock offers more useful guarantees than garbage-collected
languages. In this chapter, I’ll examine both questions in greater detail.

2.1 Why Not an Application Processor?

Most computer engineers don’t think of microcontrollers as a ‘serious’
software development platform: Microcontrollers run household
appliances, Timex watches, and occasionally, student projects. At the
same time, general-purpose cpus are cheaper than ever and offer
substantial benefits over microcontroller systems – notably, hardware
memory protection via virtual memory. (I’ll discuss this further in the
next section.) However, my work targets microcontrollers, for two
reasons: They’re everywhere, and they’re not going away. 1. The current size records for sd cards are

512 gigabytes for the sd form factor ($500)
and 200 gigabytes for the microsd form
factor ($400), both produced by industry
leader SanDisk.

2. LexisNexis quotes 677,963 pages of
text per gigabyte,3 meaning some 135 mil-
lion pages (70 million sheets) could fit on
the microsd described in note 1. This is
135,000 reams of paper, or 34,000 basis
reams; assuming 20 lb. paper, this is
700,000 pounds or 300 tonnes.

3. LexisNexis. ‘How Many Pages in a
Gigabyte?’ url: http:// lexisnexis.com/
applieddiscovery/lawlibrary/whitePapers/
ADI_FS_PagesInAGigabyte.pdf.

Consider, for instance, the sd card, the workhorse of modern portable
storage and a poster child for modern engineering. Today, $40 buys me
a 32-gigabyte high-speed microsd1 – a flash peripheral sufficiently
powerful to boot Linux and sufficiently small to get lost under loose
change. Five years ago, however, $40 bought 8 gigabytes; ten years ago,
it was just 1. Fifteen years ago, when I purchased my first flash
peripheral, I paid $40 – for 32 megabytes of flash in a keychain-sized usb
stick. So the last fifteen years have seen a thousandfold increase in
capacity and a tenfold decrease in physical volume, not to mention
universal proliferation of sd-compatible sockets in workstations, laptops,
and phones. Flash memory is a symbol of an age in which storage is so
cheap and so small that we can store 300 tonnes of paper in a pocket,
next to pennies from the cashier at lunch.2
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And yet, beneath this monumental exterior, hidden among layers
upon layers of precisely fabricated memory, sits a beast waiting to
pounce: an embedded microcontroller working around defects in the
flash!

In reality, all flash memory is riddled with defects – without
exception. The illusion of a contiguous, reliable storage
medium is crafted through sophisticated error correction
and bad block management functions. This is the result of a
constant arms race between the engineers and Mother
Nature; with every fabrication process shrink, memory
becomes cheaper but more unreliable. Likewise, with every
generation, the engineers come up with more sophisticated
and complicated algorithms to compensate for Mother
Nature’s propensity for entropy and randomness at the
atomic scale.

These algorithms are too complicated and too
device-specific to be run at the application or os level, and
so it turns out that every flash memory disk ships with a
reasonably powerful microcontroller to run a custom set of
disk abstraction algorithms. Even the diminutive microsd
card contains not one, but at least two chips – a controller,
and at least one flash chip (high density cards will stack4. Andrew ‘bunnie’ Huang. ‘On Hacking

Microsd Cards’. In: bunnie:studios (29 Dec.
2013). url: http://www.bunniestudios.
com/blog/?p=3554

multiple flash dies)….
The embedded microcontroller is typically a heavily

modified 8051 or arm cpu.4

That’s right, the scourge of every 6.115 student’s waking hours5 lurks5. 6.115 is currently mit’s Microcontrol-
ler Project Laboratory, in which students
complete a number of projects using 8051-
compatible microcontrollers.

underneath virtually every sd card money can buy, mediating access
from our every device to the data we take everywhere. And in the era that
we live in – this modern era where storage is consumable and we can
always buy more – how much more these microcontrollers must worm
their way into our lives every single day!

To be sure, it would be wonderful for microcontrollers to leave
common use. Replacing a microcontroller with an application processor
promises easier programming and better memory protection, and
thereby safer systems. However, microcontrollers aren’t going away.

Amazingly, the cost of adding these controllers to the device
is probably on the order of $0.15–$0.30, particularly for
companies that can fab both the flash memory and the
controllers within the same business unit. It’s probably
cheaper to add these microcontrollers than to thoroughly
test and characterize each flash memory chip….66. Huang, ‘On Hacking Microsd Cards’.

When you’re building a million units, the difference between a $2
application processor and a $0.30 microcontroller becomes massive –
large enough to far outweigh the cost of developing for and testing on7. Texas Instruments. Automotive: Low-

Cost Anti-Lock Braking System. 2015. url:
http://www.ti .com/solution/antilock_
braking_system.

the more restricted platform. And this phenomenon isn’t limited to sd
card manufacturers: today, microcontrollers bear complicated or critical
software loads across the board,7, and thanks to the economics of the
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situation, they will continue to do so for many years. As microcontroller
systems embed themselves deeper into the modern world, building
software that works and works well on them becomes only more critical.

2.2 Why Use Coq and Bedrock?

Now, one might argue that this proliferation of microcontrollers is
actually a panacea. After all, the systems seem to have worked
adequately so far, and beyond increased production, they don’t seem to
be changing all that much. But it’s precisely this trend of increased
production that worries me – how many sd cards already have been
produced with latent firmware bugs, left unexposed even by the most
aggressive testing and quality control? How many petabytes distributed
on sd cards worldwide will be lost when a tiny error in firmware
date-handling code suddenly cascades into a massive memory
corruption problem? This situation is well within the realm of possibility
– on a system with only 128 kilobytes of ram, a buffer overflow is pretty
much guaranteed to wipe out something important. It’s a moderate
miracle it hasn’t happened already. 8. Freertos. url: http://www.freertos.

org/.

9. Travis Geiselbrecht. The lk Embedded
Kernel. url: https://github.com/travisg/lk.

10. Chicken Scheme: A Practical and Port-
able Scheme System. url: http : / / call -
cc . org/.

11. Java. url: https://java.com/.

12. Attentive readers will note that neither
of these languages is truly free from
runtime faults; Java throws a RuntimeError
on null pointer dereferences, and Scheme
behaves similarly when inspecting the
empty list with car or cdr. However, pro-
grammers can generally handle these ex-
ception conditions.

13. Java Mobile Edition is a rare case, a
garbage-collected language tailored for em-
bedded systems. (Indeed, Java was origin-
ally designed for safe embedded program-
ming.) Today, Java me supports common
microcontroller platforms (the Cortex-m3
and m4)14 and is a reasonable choice for
a number of applications. Safety in any
Java code, however, is still predicated on
correctness in the complicated Java Virtual
Machine and associated garbage collection
routines.

14. Oracle. ‘Frequently Asked Questions:
Oracle Java me Embedded 8 and 8.1’. url:
http://www.oracle .com/technetwork/
java/embedded/ javame/embed -me/
documentation/me-e-otn-faq-1852008.pdf.

arm’s Cortex-m3 and m4 microcontrollers feature an interesting
hardware-based guard against this sort of problem: the memory
protection unit. An mpu provides no virtual memory management, but it
does provide a memory protection table, which allows software to define
hardware-enforced access policies for various memory regions.
Standard mpu usage usually relies on a tiny kernel (e.g.,
Freertos8 or lk9) which sets region controls either for itself (if it is the
only process running on the system) or for each environment (if it is also
handling context switching). In the latter case, a context switch triggers a
change in the memory protection regions, just as a context switch on an
application processor generally triggers a change in the virtual memory
map. If software violates policy, the microcontroller triggers an interrupt.

Unfortunately, this behaviour is fundamentally a fail-safe, and it
leaves open the question of exactly how, having discovered a memory
fault, firmware should behave. Should it attempt to check its own
integrity? Should it notify the user? Should it simply reboot? No matter
what, the microcontroller will spend precious cycles recovering from a
memory fault, with potentially disastrous results. (Imagine slamming on
the brakes while the anti-lock brake controller is inside a high-priority
interrupt service routine.)

A better solution is to prevent memory faults before they even occur,
by programming firmware in a garbage-collected language like Chicken10

or Java.11,12 This technique, however, produces a dependency on a
garbage collector, which must necessarily be written in a programming
language supporting unsafe memory operations. This rather frustrates
the safety goals of using a garbage-collected language to begin with; it
simply moves concern about bugs from application code to support
code. Additionally, garbage collection can cause severe performance
issues, as garbage-collected languages are generally not designed for
embedded applications.13

13



Better than a garbage-collected language is a language that uses15. Trevor Jim et al. ‘Cyclone: A Safe Dialect
of c’. In: Proceedings of the 2002 usenix
Annual Technical Conference. (Monterey,
California, 10–15 June 2002). url: https:
//www.usenix.org/legacy/event/usenix02/
jim.html.

16. The Rust Programming Language. url:
http://www.rust- lang.org/.

17. inria. CompCert. url: http://compcert.
inria.fr/.

18. Xavier Leroy. ‘Formal Certification of
a Compiler Back-End or: Programming
a Compiler with a Proof Assistant’. In:
sigplan Notices 41.1 (2006), pp. 42–54.

19. Adam Chlipala. ‘The Bedrock Struc-
tured Programming System: Combin-
ing Generative Metaprogramming and
Hoare Logic in an Extensible Program
Verifier’. In: Proceedings of the 18th acm
sigplan International Conference on Func-
tional Programming. (Boston, 25–27 Sept.
2013). New York: acm, pp. 391–402. doi:
10.1145/2500365.2500592.

20. Adam Chlipala. ‘From Network Inter-
face to Multithreaded Web Applications:
A Case Study in Modular Program Ver-
ification’. In: Proceedings of the 42nd acm
sigplan–sigact Symposium on Principles
of Programming Languages. (Mumbai, 15–
17 Jan. 2015). New York: acm, pp. 609–622.
doi: 10.1145/2676726.2677003.

static analysis to check for memory-related bugs. Cyclone,15 for instance,
looks like c but restricts pointer arithmetic. Coupled with state-of-the-art
analysis techniques, this enables the compiler to eliminate buffer
overrun, use-before-initialization, and use-after-free bugs. Nonetheless,
it remains unable to statically eliminate all memory problems, and the
compiler occasionally must resort to runtime checking, which presents
all the same problems as hardware memory protection. (Cyclone also
has not been actively developed for nearly a decade.) Rust16, developed
by Mozilla Research, is a more radical departure from traditional c-like
programming; its compiler can statically verify memory safety, although
it requires the programmer to shoulder substantial complexity. Its
compiler is also very immature, which raises the question of compiler
correctness analogous to the question of runtime correctness discussed
previously. On the other end of the spectrum, CompCert c17 boasts a
compiler with a machine-checkable correctness proof,18 but the
language itself admits unsafe operations, making it unsuitable for
high-assurance microcontroller development.

The best microcontroller programming language would not permit
the programmer to code unsafely, and it would also have a compiler
guaranteed to preserve semantics during compilation. Currently, no
language satisfying these requirements exists; however, Bedrock19,20

comes close. Bedrock is a c-like programming language, but its
operations correspond to actions in a formal system of separation logic,21

21. Zhaozhong Ni and Zhong Shao. ‘Cer-
tified Assembly Programming with Em-
bedded Code Pointers’. In: Conference
Record of the 33rd acm sigplan–sigact
Symposium on Principles of Programming
Languages. (Charleston, South Carolina, 11–
13 Jan. 2006). New York: acm, pp. 320–333.
doi: 10.1145/1111037.1111066.

allowing its compiler to thoroughly check memory safety properties.
Furthermore, the compiler itself is implemented inside the Coq proof
assistant,22 and it comes with a machine-checkable proof of semantic

22. inria. The Coq Proof Assistant. url:
https : / / coq . inria . fr/.

preservation from the source language to a linear intermediate
representation. Because Coq incorporates a fairly small trusted base
(fewer than 20,000 lines of OCaml), we may be confident in the Bedrock
compiler’s correctness and therefore in the safety of executables it
generates. Bedrock is far from perfect – compilation is slow, the
compiler lacks an optimizer, i/o is constrained to a socket model, and
the system fairly bristles with sharp edges. However, working with
Bedrock provides real, powerful memory safety guarantees, offering an
unmatched level of confidence in compiled code. For truly safe
microcontroller software, it is an excellent option.
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Chapter 3

Bedrock Specifications and Code

Bedrock documentation exists in two primary forms: the official Bedrock
tutorial1 and various papers.2,3 However, when I first began 1. Adam Chlipala. ‘The Bedrock Tutorial’.

28 Mar. 2013. url: http://plv.csail.mit.edu/
bedrock/tutorial.pdf.

2. Chlipala, ‘The Bedrock Structured Pro-
gramming System: Combining Generative
Metaprogramming and Hoare Logic in an
Extensible Program Verifier’.

3. Chlipala, ‘From Network Interface to
Multithreaded Web Applications: A Case
Study in Modular Program Verification’.

programming Bedrock, I found both sources quite challenging to get
through. I thus give here a gentler introduction to programming with
Bedrock, which should prepare the reader to examine my code samples
through the rest of this book. In the interest of simplicity, I do not
discuss the Bedrock language as deeply as either the tutorial or the
papers; I strongly encourage the reader to follow up with close reading
of both.

Writing a program in Bedrock consists of three steps: writing a
specification, writing code, and proving that the code implements the
specification. Writing code is fairly easy, and writing specifications can
be challenging but not overwhelming. Proving that code implements the
specification, however, can be extremely difficult, and understanding
how to create Bedrock proofs is not essential to understanding my work.
I therefore refrain from discussing the mechanics of Bedrock proofs in
this book, referring the interested reader to the aforementioned
documentation.

3.1 Specifications

Fundamental to the specification-writing process is realizing that one is
programming in two different specification languages at once. The first
is Coq’s calculus of inductive constructions (cic), the standard,
constructive, higher-order logic Coq programmers are familiar with. The
second is xcap,4 a specialized program logic that allows reasoning about 4. Ni and Shao, ‘Certified Assembly Pro-

gramming with Embedded Code Pointers’.pointer arithmetic. Any cic predicate can be ‘lifted’ to an xcap predicate
using barred brackets (e.g., [| x <> 0 |]).

Definition addS :=
SPEC("n", "m") reserving 0
PRE[V] [| True |]
POST[R]
[| R = V "n" ^+ V "m" |].

Figure 3.1: Bedrock specification for an
addition function, as shown in the Bedrock
tutorial.

In some cases, one only need write cic specifications. For instance,
figure 3.1 illustrates the specification for an addition function, a function
which

• accepts two arguments, n and m;

• uses 0 words of stack space for local variables (function
parameters are always stack-allocated);

15



• has a trivial precondition ([| True |]); and

• ensures that the return value is n + m.

Note the bound variables V and R, which refer to the environment at the
time of function entry and the function return value, respectively. Thus,
V "n" is the value of n at the time the function begins, and
R = V "n" ^+ V "m" is the proposition that the function computes the
correct value. (^+ is the addition operator on 32-bit words.)

Frequently, though, one must use some of the many xcap operators
Bedrock defines.

• xcap supports both universal and existential quantification,
indicated in Bedrock with Al x, P and Ex x, P.

• Bedrock denotes implication with a extra-long double arrow (e.g.,
P ===> Q).

• Bedrock defines operators for discussing memory allocation.
p =?> n is the proposition that p points to an n-word buffer, and
similarly, p =?>8 n means p points to an n-byte buffer. (In Bedrock,
words are 32 bits.)

• Bedrock also defines operators for inspecting memory contents.
p =*> x means p points to the word x, and p ==*> x, y, …
means that p points to a word buffer containing x, y, ….
array8 lst p means that the contents of some cic byte list lst
also exist in Bedrock’s memory at address p.

• Conjunction is indicated with the asterisk. (Actually, the asterisk
indicates more than simple conjunction; it also makes a statement
about disjointness of memory regions. However, for most Bedrock
programming, it’s best to think of it as a conjunction.)

As an example, consider figure 3.2, which specifies an in-place swap
function. This function accepts two pointer arguments px and py, and it
swaps the values to which they point. Note the universal quantification
over those values (x and y), as well as the * conjunction operator.

Definition swapS :=
SPEC("px", "py") reserving 2
Al x, Al y,
PRE[V] V "px" =*> x

* V "py" =*> y
POST[_] V "px" =*> y

* V "py" =*> x.

Figure 3.2: Bedrock specification for a swap
function, as shown in the Bedrock tutorial.

Bedrock specifications can get much more complicated than this.
Figure 3.3 shows the specification for the posix connect function, which
takes an address buffer and a size and returns a socket representing a
connection to that address. The function uses 29 words of stack space
and requires that address points to a size-word buffer. In return, it
promises that address will still point to a size-word buffer at function
return and that the function will establish some new set of open file
descriptors. (%in denotes set membership here, and %<= denotes the ⊆
relation.) Furthermore, the function requires (and preserves) abstract
invariants Scheduler.invariant and mallocHeap required by the
Bedrock multithreading system and Bedrock memory allocator,
respectively. And this is a fairly liberal specification! It does not, for
instance, require that the function creates a new file descriptor set (after
all, openFDs might simply equal openFDs’), nor does it require that
address is a valid ip address.

16



Definition connectS := SPEC("address", "size") reserving 29
Al openFDs,
PRE[V]
V "address" =?>8 wordToNat (V "size")
* Scheduler.invariant openFDs
* mallocHeap 0

POST[R]
V "address" =?>8 wordToNat (V "size")
* Ex openFDs’,

[| R %in openFDs’ |]
* [| openFDs %<= openFDs’ |]
* Scheduler.invariant openFDs’
* mallocHeap 0.

Figure 3.3: Specification for connect.

c Bedrock

x = 42; "x" <- 42;;
x += x; "x" <- "x" + 1;;
x = *y; "x" <-* "y;;"
*x = y; "x" *<- "y";;
mem_init(); Call "mem"!"init"()

[condition];;
x = rand_int(3, y); "x" <-- Call "rand"!"int"(3, "y")

[condition];;
assert(condition); Assert [condition];;
while (condition) {
action;
action;

}

[loop invariant]
While (condition) {
action;;
action

};;

Figure 3.4: Equivalent forms in c and Bed-
rock. Despite the inclusion of double
semicolons on the Bedrock side, double
semicolons separate rather than termin-
ate Bedrock statements. Also, the <--
when binding to the result of a function
call is not a typographical error; it’s a con-
sequence of Bedrock’s (rather silly) parser.

3.2 Programming

In contrast to the specification language, the Bedrock programming
language is remarkably simple.

• Bedrock is generally brace-delimited.

• Bedrock code is packaged into modules. Each module contains
imports and functions.

• Each function declares parameters, local variables, and an
associated specification. Parameters and variables are
indistinguishable in function definitions; the specification controls
the function’s actual arity.

• Double-semicolons separate rather than terminate statements.
(Pascal programmers will find this behaviour familiar.)

• All keywords – Call, While, If, etc. – are capitalized.

• Operators generally mimic c’s.

Figure 3.4 summarizes the syntactic differences between Bedrock and c
at the level of individual statements.
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A number of Bedrock constructs (notably, while loops and function
calls) require the programmer to provide explicit xcap assertions. These
go in square brackets and appear very similar to function specifications,
though they have slightly different semantics. When used at a call site, a
precondition actually indicates a precondition for the rest of the function –
that is, it indicates a postcondition for the function call. A postcondition,
on the other hand, indicates an additional postcondition for the function,
which must be satisfied before the function returns. These semantics
are evident in figure 3.5, which illustrates Bedrock code to allocate and
free a buffer. The bizarre semantic change results mostly from the
Bedrock compilation strategy; in general, when reading Bedrock, it’s safe
to ignore the postconditions in inline invariants.

Assert
[PRE[_] mallocHeap 0
POST[_] mallocHeap 0];;

"buffer" <-- Call "malloc"!"malloc"(0, 8)
[PRE[_, result]

[| result <> 0 |]
* [| freeable result 16 |]
* result =?> 16
* mallocHeap 0

POST[_] mallocHeap 0];;
Assert
[PRE[V]

[| V "buffer" <> 0 |]
* [| freeable (V "buffer") 16 |]
* V "buffer" =?> 16
* mallocHeap 0

POST[_] mallocHeap 0];;
Call "malloc"!"free"(0, "buffer", 8)
[PRE[_] mallocHeap 0
POST[_] mallocHeap 0]

Figure 3.5: Bedrock code which allocates
and then frees a 32-byte (8-word) buf-
fer. The implementation uses four Bed-
rock instructions: an Assert, a Call to
"malloc"!"malloc", another Assert, and
one final Call to "malloc"!"free". The
implementation assumes the memory al-
locator has been initialized and stores its
heap at address 0 (as indicated by the first
Assert).
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Chapter 4

Embedded Bedrock

Adam’s Bedrock research programme has produced a moderate amount
of Bedrock software,1 but all that software is designed to work atop a 1. Chlipala, ‘From Network Interface to

Multithreaded Web Applications: A Case
Study in Modular Program Verification’.

well-developed, powerful kernel. To explore development closer to bare
metal, I created a Bedrock driver for the arm Cortex-m3 microcontroller
that transforms the m3 into a simple system for secure computation.
When activated, my system provides a basic serial-based api for aes 2. United States National Institute of

Standards and Technology. ‘Specification
for the Advanced Encryption Standard’.
In: Federal Information Processing Stand-
ards Publication 197 (26 Nov. 2001). url:
http://csrc.nist.gov/publications/fips/
fips197/fips- 197.pdf.

3. Chlipala, ‘The Bedrock Structured Pro-
gramming System: Combining Generative
Metaprogramming and Hoare Logic in an
Extensible Program Verifier’.

encryption2 and append-only logging, both common security-related
tasks. Because the m3 is a widely available, representative
microcontroller, working with it provides a powerful window into
Bedrock’s suitability for general embedded tasks.

Building my application proceeded in several phases. I first
constructed a new backend for the Bedrock compiler targeting the m3’s
Thumb-2 instruction set. I then built my software in Bedrock,
constructing a c++ runtime system to support my code with the system
calls Bedrock expects. Along the way, I constructed proofs that my
Bedrock code is ‘safe’ in the sense described in ‘The Bedrock Structured
Programming System’:3 that it has no invalid jumps, makes no
out-of-bounds memory accesses, and (in the case of the logger)
maintains a properly laid out singly-linked list.

4.1 Generating Thumb-2 Assembly

At the start of this project, Bedrock supported only the 32- and 64-bit
Intel architectures. However, arm’s cpus use their own 32-bit risc
instruction set, and the Cortex-m3 uses an even more exotic 16-bit
encoding known as Thumb-2. (Figure 4.1 provides an extensional
comparison between Intel-64 and Thumb-2.) To run code on the m3, I
thus needed to extend the Bedrock compiler to produce Thumb-2.

fact: mov $1, %rax
loop: test %rdi, %rdi

je done
imul %rdi, %rax
dec %rdi
jmp loop

done: ret
(a)

fact: mov r3, r0
movs r0, #1

loop: cbz r3, done
muls r0, r3, r0
subs r3, r3, #1
b loop

done: bx lr
(b)

Figure 4.1: Factorial function implement-
ations in Intel-64 (a) and Thumb-2 (b)
instruction sets. While Thumb-2 is a 32-
bit architecture, it uses a register calling
convention and is thus more directly com-
parable to 64-bit Intel machines than 32-bit
ones.

The Bedrock il was designed for Intel systems: it requires only three
registers, and it relies on extremely powerful single instructions (e.g.,
memory-to-memory moves). Translating cisc Bedrock il to the risc
Thumb-2 instruction set thus produces unavoidable overhead: each
Bedrock il instruction expands to as many as seven Thumb-2 ones. I
use six general-purpose registers – three to store the Bedrock il
registers and three as scratchpad temporaries during intermediate
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description Intel-32 Thumb-2

assign constant to
register

mov $42, %eax ldr r3, =42
mov r0, r3

multiply register by
constant

imul $42, %ebx
mov %ebx, %eax

mov r3, r2
ldr r4, =42
mul r3, r3, r4
mov r0, r3

direct branch jmp L mov r5, =L
mov pc, r5

indirect branch
through register

mov %eax, %edx
jmp *%edx

mov r3, r0
mov pc, r3

indirect branch
through memory

mov _heap(%eax), %edx
jmp *%edx

ldr r5, =_heap
add r5, r5, r0
ldr r3, r5
mov pc, r3

conditional direct
branch if less than or
equal to

cmp %eax, %ebx
jb L1
jmp L2

mov r3, r0
mov r4, r1
cmp r3, r4
ite lo
ldrlo r5, =L1
ldrhi r5, =L2
mov pc, r5

Figure 4.2: Examples of compiling the
Bedrock il. These examples are non-
comprehensive, but they are sufficient
to illustrate all concepts of the translation.
To save space, I have written _heap instead
of bedrock_heap.

computation. Furthermore, while Thumb-2 has some support for
conditional branches (as demonstrated in figure 4.1), it is insufficiently
general to implement Bedrock’s conditional branch mechanism; I
therefore opted to emit ite instructions (which cause conditional
execution) followed by unconditional jumps. Figure 4.2 contains a
non-comprehensive comparison of instructions emitted on Intel
platforms and instructions emitted by my backend.

I did not prove my backend preserves the semantics of the Bedrock il
when translating it to Thumb-2. However, this is par for the course as far
as Bedrock backends are concerned: without a formal semantics for the
target architecture, proving semantic preservation is impossible! Like
the other Bedrock backends, mine is small and easy to understand –
sufficiently simple as to be obviously correct. I ran into only one bug
during development, in which I misunderstood the semantics of the
Bedrock il and accidentally emitted signed comparison instructions
instead of unsigned ones.

4.2 Implementing the Bedrock Socket Model
Figure 4.3: My microcontroller platform,
the mbed lpc1768, is available for about
$50 on SparkFun and offers a Cortex-m3
microprocessor clocked at 96 MHz, 512 kiB
of flash memory, 32 kiB of ram, and an
ftdi usb controller.

Code generation is enough to run basic Bedrock programs, but any
serious system requires input and output – which, as mentioned in
chapter 2, Bedrock assumes is socket-based. However, my Cortex-m3
development board, the mbed lpc1768 (figure 4.3), provides only serial4. Hubert Zimmerman. ‘osi Reference

Model – The iso Model of Architecture for
Open Systems Interconnection’. In: ieee
Transactions on Communications 28.4 (Apr.
1980), pp. 425–432. doi: 10.1109/TCOM.
1980.1094702.

input and output, one layer lower in the osi protocol stack4 than
socket-based communication. I therefore needed to implement some
c++ runtime system that would provide socket-based i/o primitives to
my Bedrock code, yielding the system illustrated in figure 4.4. My
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usb

application application

operating system

cpu usb

aes logging

runtime system

mbed os

usb Cortex-m3

host microcontroller Figure 4.4: Overall system architecture,
indicating components running on both
the host cpu and the microcontroller. I
wrote the aes and logging applications on
the microcontroller, as well as the micro-
controller’s runtime system. That runtime
system relies on the mbed os to mediate
usb communication with the host.

runtime system runs atop the mbed os, a small c++ embedded
operating system available publicly from arm.

31 0

session id

payload length

payload
hhhhhhhhhhhhhh

hhhhhhhhhhhhhh

Figure 4.5: Schematic for a message in my
frame-based communication protocol.

While I could have built some well-known protocol (e.g., ppp) into my
design, I instead implemented something simpler. Its fundamental data
unit is the message (figure 4.5), a frame containing a 32-bit session
identifier, a 32-bit payload size, and an arbitrary-length payload. The
session identifier is used by the endpoints to group messages into
sessions, streams of related data as would be handled by a posix-style
socket; clients select a session identifier when connecting. The session
identifier also does double duty to associate incoming messages with
either the aes service or the logging service – a session identifier with a
zero low-order bit indicates a message bound for encryption, while a
session identifier with a one low-order bit indicates data to be logged.

In my system, the microcontroller plays the role of the server, and the
host plays the role of the client. The microcontroller listens for
connections; when the host transmits data, my protocol driver interprets
its frame metadata and queues it for the appropriate socket, where
Bedrock can retrieve it via a read system call. Conversely, when Bedrock
writes to a socket, my protocol driver captures the data, associates
metadata with it, and transmits it down the serial line.

4.3 My Bedrock System: A Platform for Certified Services

With frame-based protocol and Thumb-2 code generator in hand, only
one component of the system remains: my Bedrock code itself. My
code, upon startup, establishes a serial connection with a host computer
and waits for data. Depending on the data content, the system either
responds with an aes-encrypted version of the data, or it simply logs the
data to memory. The aes cryptosystem is simple in implementation but
makes heavy use of Bedrock’s i/o primitives; the logging system is more
complicated, but it gives correspondingly stronger guarantees about its
behaviour.

Booting the Microcontroller

When the microcontroller boots, its firmware loads the mbed os, which
saves me the trouble of setting up the microcontroller – installing
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interrupt vectors, initializing serial communication over usb, and setting
up the c++ memory allocator. Once the microcontroller is up and
running, it executes a tiny c++ shim (figure 4.6) that statically allocates a
scratchpad buffer for Bedrock, switches from the Thumb-2 calling
convention to the Bedrock one, and jumps into Bedrock code.55. I have optimized this code snippet, like

all I present in this section, for readability
by removing uninteresting comments and
eliding uninteresting assertions or debug-
ging printfs. My full code is available at
the end of this report.

Bedrock’s first order of business is to partition the amorphous blob of
memory provided by the c++ shim into heap, stack, and globals regions
(figure 4.8). Figure 4.7 shows the code required to do so. There is only
one global – schedule, which points to a data structure used by the
multithreading system. Stack usage is also fairly conservative in my
system; Bedrock needs fewer than 100 words of stack space. This allows
for a large heap region used primarily in the logging component of the
system; the last action Bedrock takes before spawning application
threads is to initialize the Bedrock memory allocator on that heap. This6. Chlipala, ‘The Bedrock Structured Pro-

gramming System: Combining Generative
Metaprogramming and Hoare Logic in an
Extensible Program Verifier’.

allocator, distinct from the mbed os’s memory allocator, is implemented
as part of the Bedrock standard library6 and is, like the rest of my
Bedrock code, verified safe with Coq.

uint32_t result;
__asm__ __volatile__(
// Tell Bedrock how much heap it has.
"mov r0, %[heap_size]\n\t"
// Tell Bedrock where to branch after it’s done working.
"adr r1, 0f\n\t"
// Branch into Bedrock code.
"b main_main\n\t"
"0:\n\t"
// Save the result from Bedrock’s main.
"mov %[result], r2"
: [result]"=X"(result)
: [heap_size]"X"(bedrock_environment::kHeapSlots),
"m"(*bedrock_heap)

: "r0", "r1", "r2", "r3", "r4", "r5", "r6", "lr",
"cc");

return result;

Figure 4.6: Entering Bedrock from c++. At
this point, bedrock_heap (an unfortunately-
named variable which actually points to
the entire memory region reserved for Bed-
rock’s use) has already been initialized to
point to a valid, statically allocated buffer.

Definition m :=
bimport [[ "malloc"!"init" @ [Malloc.initS],

"mainPrime"!"main" @ [MainPrime.mainS] ]]
bmodule "main" {{
bfunctionNoRet "main"()

[Bootstrap.bootS MemoryLayout.heapSize 1]
(* Set the stack pointer. *)
Sp <- (MemoryLayout.heapSize * 4)%nat;;
(* Ensure globals are set correctly and initialize the
allocator. *)
Assert
[PREmain[_] MemoryLayout.schedule =?> 1

* 0 =?> MemoryLayout.heapSize];;
Call "malloc"!"init"(0, MemoryLayout.heapSize)
[PREmain[_] MemoryLayout.schedule =?> 1

* mallocHeap 0];;
(* Pass off control to the application. *)
Goto "mainPrime"!"main"

end
}}.

Figure 4.7: Bedrock initialization. The
"mainPrime"!"main" goto at the end of
this code jumps to a simple function which
spawns application threads.
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Because this area of my code bridges the gap between c++ and
Bedrock, it requires a few hand-checked assumptions to prove safety
(figure 4.11) – notably, that the c++ shim actually allocates the correct
amount of memory. With these assumptions in hand, however, it’s easy
to prove that this Bedrock code and everything it calls is correct.

heap

stack

globals

bedrock_heap

Figure 4.8: Bedrock memory layout.
Memory addresses increase as one pro-
ceeds vertically up the page, and memory
not explicitly marked is reserved for c++.

aes Encryption

The first thread my Bedrock code spawns is an aes encryption service,
the core of which is described by the specification in figure 4.9. It
accepts sixteen-byte blocks (the native size of the aes cipher) over a
socket and returns encrypted versions of same; however, since I have
not reified aes within Coq, I can only specify that encryption preserves
the size of the block. I implement this specification using the code in
figure 4.12, and I present its proof in figure 4.10.

In the initial planning phase for this project, I hoped to work with a
microcontroller system with built-in aes hardware. Unfortunately,
acquiring appropriate hardware was challenging, and I ended up using a
more general-purpose microcontroller instead. However, I still
constructed my aes service with a view toward hardware encryption, and
it uses the Bedrock socket interface to abstract a handle to the
hypothetical aes hardware. Thus, whenever the service receives a
sixteen-byte block, it immediately requests a new outgoing connection to
the address "AES" and writes the data to the resulting socket.

However, that socket is only a socket in the most limited sense of the
word. It’s actually a special handle that shares the same namespace as

Definition encryptS := SPEC("block") reserving 38
PRE[V] V "block" =?>8 16 (* 128 bit AES block *)
POST[_] V "block" =?>8 16.

Figure 4.9: aes encryption routine spe-
cification. Because I must treat the aes
operation abstractly, this specification is
rather weak.

Local Hint Extern 2 =>
match goal with
| [ H : Datatypes.length _ = _

|- context[Datatypes.length] ] => rewrite H
end.

Local Hint Extern 1 (_ = _) => words.

Local Ltac finish :=
try match goal with

| [ |- context[please_unfold_buffer] ] =>
unfold buffer

end;
try match goal with

| [ |- context[please_unfold_buffer_joinAt] ] =>
unfold Arrays8.buffer_joinAt

end;
TAThread.sep EncryptionTacPackage.hints;
auto.

Lemma ok : moduleOk m.
Proof. vcgen; abstract finish. Qed.

Figure 4.10: Proof that my aes routine is
safe.
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Hypothesis heapSizeLowerBound :
(3 <= MemoryLayout.heapSize)%nat.

Hypothesis requiredMemoryIsReasonable :
goodSize (MemoryLayout.wordsAvailable * 4)%nat.

Let heapSizeUpperBound : goodSize (MemoryLayout.heapSize * 4).
Proof. goodSize. Qed.

Variable mySettings : settings.
Variable myProgram : program.

Hypothesis labelsInjective :
forall label1 label2 address,
Labels mySettings label1 = Some address
-> Labels mySettings label2 = Some address
-> label1 = label2.

Hypothesis labelsAgreeWithBlocks :
forall label pre block,
LabelMap.MapsTo label (pre, block) (XCAP.Blocks m)
-> exists address,

Labels mySettings label = Some address
/\ myProgram address = Some block.

Hypothesis noCodeShadowing :
forall label pre,
LabelMap.MapsTo label pre (XCAP.Imports m)
-> exists address,

Labels mySettings label = Some address
/\ myProgram address = None.

Hypothesis noSysShadowing :
forall label address,
Labels mySettings ("sys", label) = Some address
-> myProgram address = None.

Variable entryPointAddress : W.
Hypothesis atStart :
Labels mySettings ("main", Global "main")
= Some entryPointAddress.

Variable executionState : state.

Hypothesis memUpperBound :
forall address,
(address < MemoryLayout.wordsAvailable * 4)%nat
-> executionState.(Mem) address <> None.

Hypothesis memLowerBound :
forall address,
$(MemoryLayout.wordsAvailable * 4) <= address
-> executionState.(Mem) address = None.

Theorem safe : sys_safe mySettings
myProgram
(entryPointAddress, executionState).

Proof. safety ok. Qed.

Figure 4.11: Top-level safety proof. The
theorem at the end, safe, is that my entire
Bedrock program is safe relative to the c++
runtime system; it is, of course, subject to
the previous assumptions.
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Definition m :=
bimport [[ "scheduler"!"close" @ [closeS],

"scheduler"!"connected" @ [connectedS],
"scheduler"!"read" @ [readS],
"scheduler"!"write" @ [writeS],
"taConnect"!"connect" @ [TAConnect.connectS] ]]

bmodule "encryption" {{
bfunction "aesEncrypt"("block", "cryptoChannel")

[Encryption.encryptS]
(* Connect to the AES service. *)
"cryptoChannel" <-- Call "taConnect"!"connect"(""AES"", 3)
[Al openFDs,

PRE[V, R] [| R %in openFDs |] * V "block" =?>8 16
POST[_] Ex openFDs’, [| openFDs %<= openFDs’ |]

* V "block" =?>8 16];;
(* Wait until we’re actually connected. *)
Call "scheduler"!"connected"("cryptoChannel")
[Al openFDs,

PRE[V] [| V "cryptoChannel" %in openFDs |]
* V "block" =?>8 16

POST[_] Ex openFDs’, [| openFDs %<= openFDs’ |]
* V "block" =?>8 16];;

(* Send the data block to the (fake) AES hardware. *)
Call "scheduler"!"write"("cryptoChannel", "block", 16)
[Al openFDs,

PRE[V] [| V "cryptoChannel" %in openFDs |]
* V "block" =?>8 16

POST[_] Ex openFDs’, [| openFDs %<= openFDs’ |]
* V "block" =?>8 16];;

(* Get the encrypted block back. *)
Call "scheduler"!"read"("cryptoChannel", "block", 16)
[Al openFDs,

PRE[V] [| V "cryptoChannel" %in openFDs |]
* V "block" =?>8 16

POST[_] Ex openFDs’, [| openFDs %<= openFDs’ |]
* V "block" =?>8 16];;

Call "scheduler"!"close"("cryptoChannel")
[Al openFDs,

PRE[V] V "block" =?>8 16
POST[_] Ex openFDs’, [| openFDs %<= openFDs’ |]

* V "block" =?>8 16];;
Return 0

end
}}.

Figure 4.12: aes encryption routine in Bed-
rock. Bedrock does not actually support
the doubly-quoted string literal syntax I
use in the call to connect (""AES""), which
makes this call more complicated in actual
code.
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sockets; writes to the handle invoke aes encryption, and reads from the
handle return buffered results. This special semantics is provided by a
bit of extra code in my c++ runtime (figure 4.13), which calls out to a
trivial aes implementation furnished by Inverse Limit. As this is a
prototype, I attempted to ease the coding burden by using electronic
codebook mode with a fixed key. In future systems based on this, of
course, one would use a stronger cipher mode like cipher block chaining
or an authenticated encryption mode like Galois/counter mode, and one
would provide an index into a key array stored in the device’s nonvolatile
memory.

After writing the plaintext block to the aes handle, Bedrock then
performs a blocking, sixteen-byte read on the handle. It sends the
results – the ciphertext – back to the client and resumes waiting for
more. My c++ library, like any sane operating system, ensures that data
transmitted to the microcontroller in the interim are appropriately
collated and buffered; Bedrock therefore never risks losing data because
it’s not listening.

Append-Only Logging

While aes encryption is useful, my implementation is little more than a
demonstration of Bedrock’s i/o primitives. In contrast, my append-only
logging service, implemented in figure 4.15, is much more involved and
uses substantially more complicated assertions. The result is a
trustworthy append-only log system which accepts data blocks and
dumps them into a linked list. I prove the trustworthiness of the service
in figure 4.14.

The append-only log, like the aes appliance, listens continually for
incoming data from the host. (For simplicity’s sake, I assume incoming
data blocks for the logger, like incoming plaintext blocks for the
encryption system, are sixteen bytes in length.) Upon receiving data, the
logger performs a standard cons operation: it allocates a cons cell,
setting the car to point to the received data and the cdr to point to the
old head of the list. It then updates the list pointer to refer to the new
head. Currently, logs disappear when power is removed; however, it’s
feasible to store logs in nonvolatile memory for later administrative
retrieval.
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uint32_t SysWrite(const uint32_t fd, void* const buffer,
const uint32_t n_bytes) {

std::shared_ptr<Handle> handle =
Handle::DecodeFromBedrock(fd);

if (handle->IsAESHandle()) {
if (n_bytes != AES_128_KEY_SIZE) {
error("write: Invalid AES block size.\r\n");

}
AES::Block key =
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

AES::Block plaintext;
std::memcpy(plaintext.data(), buffer, AES_128_KEY_SIZE);
// Encrypt plaintext, storing the result in a static
// buffer for SysRead to send back.
AES::Encrypt(key, plaintext);
return AES_128_KEY_SIZE;

} else {
assert(handle->IsSessionHandle());
auto session = dynamic_cast<SessionHandle*>(handle.get())

->GetSession();
if (!session) {
error("write: Invalid FD.");

}
uint8_t* const byte_buffer =
reinterpret_cast<uint8_t*>(buffer);

return session->Write(
ByteVector(byte_buffer, byte_buffer + n_bytes));

}
}

Figure 4.13: c++ implementation of the
Bedrock write system call; the read imple-
mentation is analogous. The code sorts file
descriptors into aes handles and handles
associated with sessions and dispatches
appropriately. Note the fixed key (all zer-
oes) used for aes encryption.

Local Hint Extern 2 (_ %in _) =>
eapply incl_mem;
[ eassumption | solve [eauto using incl_trans] ].

Local Ltac finish :=
try match goal with

| [ |- context[please_unfold_buffer] ] =>
unfold buffer

end;
TAThread.sep BufferList.hints;
auto.

Lemma ok : moduleOk m.
Proof. vcgen; abstract finish. Qed.

Figure 4.14: Proof that my logging routine
is safe.
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Definition m :=
bimport [[ … ]]
bmodule "logging" {{
bfunctionNoRet "main"("cell", "inputBuffer", "inputSocket",

"list", "listenSocket")
[Logging.mainS]

"list" <- 0;;
"listenSocket" <-- Call "taListen"!"listen"(1)
[Al openFDs, Al lst,

PREmain[V, R] [| R %in openFDs |]
* sll lst (V "list")];;

[Al openFDs, Al lst,
PREmain[V] [| V "listenSocket" %in openFDs |]

* sll lst (V "list")]
While (0 = 0) {
(* Get a new connection and read in the data. *)
"inputSocket" <--
Call "scheduler"!"accept"("listenSocket")
[Al openFDs, Al lst,

PREmain[V, R] [| R %in openFDs |]
* [| V "listenSocket" %in openFDs |]
* sll lst (V "list")];;

"inputBuffer" <-- Call "buffers"!"bmalloc"(4)
[Al openFDs, Al lst,

PREmain[V, R] [| R <> 0 |]
* [| freeable R 4 |] * R =?>8 16
* [| V "inputSocket" %in openFDs |]
* [| V "listenSocket" %in openFDs |]
* sll lst (V "list")];;

Call "scheduler"!"read"("inputSocket",
"inputBuffer", 16)

[Al openFDs, Al lst,
PREmain[V] V "inputBuffer" =?>8 16

* [| V "inputBuffer" <> 0 |]
* [| V "inputSocket" %in openFDs |]
* [| V "listenSocket" %in openFDs |]
* sll lst (V "list")];;

(* Close the connection so we don’t have to carry its
invariants around. *)
Call "scheduler"!"close"("inputSocket")
[Al openFDs, Al lst,

PREmain[V] V "inputBuffer" =?>8 16
* [| V "inputBuffer" <> 0 |]
* [| V "listenSocket" %in openFDs |]
* sll lst (V "list")];;

(* Allocate a cons cell for the new data. *)
"cell" <-- Call "malloc"!"malloc"(0, 2)
[Al openFDs, Al lst,

PREmain[V, R] [| R <> 0 |] * [| freeable R 2 |]
* R =?> 2 * V "inputBuffer" =?>8 16
* [| V "inputBuffer" <> 0 |]
* [| V "listenSocket" %in openFDs |]
* sll lst (V "list")];;

"cell" *<- "inputBuffer";;
"cell" + 4 *<- "list";;
"list" <- "cell";;
Note [please_unfold_buffer]

}
end

}}.

Figure 4.15: Append-only logging
service. I have elided the import
clauses for this Bedrock module. The
sll lst (V "list") predicate (called
BufferList.singlyLinkedList in the
actual source) asserts that the Bedrock
pointer list points to a singly-linked list
whose contents are equivalent to the Coq
term lst. However, Bedrock’s i/o model
does not allow quantification over data that
it reads, making it impossible to guarantee
all data read actually make it into the log; I
discuss this issue in section 5.3.
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Chapter 5

Next Steps

The system I described in the previous chapter works – I’ve checked
encryption results against the official nist aes test vectors,1 and I can 1. United States National Institute of Stand-

ards and Technology, ‘Specification for the
Advanced Encryption Standard’.

trace the logger to verify that it actually logs incoming data. However,
the system remains a research prototype, and much more work is
needed before it is ready for use in production.

5.1 Feature-Complete and More Secure aes

Currently, the system does not support decryption. However,
implementing it would not be difficult. I’d allow Bedrock to connect to
two aes addresses – "AESEncrypt" and "AESDecrypt" instead of just
"AES" – and then extend the c++ runtime to execute decryption routines
appropriately.

The system also currently only permits electronic codebook mode
and uses a fixed key. Both of these problems should be fixed, though
solutions are a bit more challenging. The runtime will have to change
quite a bit to support a better cipher mode, as it will need to track state
and initialization vectors. (Currently, the cryptosystem is stateless.)
Similarly, supporting multiple keys requires the cryptosystem to keep
track of what key is in use, and it should provide Bedrock some
mechanism to switch keys.

5.2 Proving aes Works Correctly

The specification I showed in figure 4.9 is disappointing to any
verification connoisseur: the encryption function merely guarantees it
does not change the block size during encryption, rather than providing
any kind of functional specification.

Rectifying this should be a straightforward proof engineering task, but
it would not come without substantial effort. The basic idea would be to
build a trivial (obviously correct) aes implementation in Coq, and then
prove it extensionally equal to some Bedrock implementation. I
refrained from attempting this, as it appeared far more difficult than it
would be worth and would distract from the more basic theorem of
statically guaranteed system memory safety.
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Naturally, formalizing aes in Coq would only prove functional
correctness; it would not provide any guarantees regarding side
channels. However, attempting to prove properties about side channels
using a proof assistant is a substantial research topic in its own right,
and methodology for doing so is not yet fully developed.

5.3 Proving Data Are Logged

Similarly, the invariants in figure 4.15 are almost totally unbound from
the actual data being logged – the only binding is a weak and abstract
quantification over the data the logger holds in its linked list. I’d rather
prove a much stronger relation between the data which the logger
receives and the data the logger stores in the list, but unfortunately,
Bedrock currently does not allow quantifying over data passing through
its socket interface.

I’m insufficiently familiar with Bedrock internals to estimate the work
required to correct this, but it would likely involve rethinking the Bedrock
i/o model and possibly providing stronger axiomatic specifications for
its system calls.

5.4 Proving No Socket Is Leaked
Definition closeGS : spec :=
SPEC("fr") reserving 11
Al fs,
PRE[V] [| V "fr" %in fs |]

* sched fs
* mallocHeap 0

POST[_] sched fs
* mallocHeap 0.

Figure 5.1: Axiomatized Bedrock specifica-
tion for close. The specification requires
that the input file descriptor is in fact open,
but its postcondition does not specify that
the file descriptor is closed.

Stronger system call specifications would also allow me to prove more
general theorems about resource safety. For instance, consider the
specification of close in the Bedrock master (figure 5.1). While this is a
valid specification for close, it doesn’t actually state the critical
functional property any implementation of close should satisfy: that it
actually closes the file descriptor passed as an argument! This
specification even allows double-closing the same file descriptor, a
potential nightmare in a systems language.

Correcting this issue would definitely require deep changes to the
Bedrock i/o model: one would need to introduce the notion of file
descriptor state into the logic. On the other hand, one could use this
work to statically guarantee obedience to the posix socket state machine
model – e.g., by requiring that a socket is in the listening state before it
gets passed to accept.

5.5 Making Bedrock Go Faster

Bedrock is in perpetual need of experienced Coq developers to make its
automation run faster, but the code the Bedrock compiler generates is
also quite inefficient. In fact, the Bedrock compiler has no optimizer at
all. Building optimization passes into Bedrock would improve generated
code performance substantially – there’s a lot of low-hanging fruit, and
proving optimization passes correct is an interesting and generally
useful body of work.
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Chapter 6

Bedrock Programming:
A Retrospective

In addition to producing an interesting piece of software, my work over
the last year has been enlightening regarding Bedrock’s suitability for
general-purpose programming. It is certainly a powerful system, and I
got done what I needed to get done. But programming and proving with
Bedrock is frustrating and complicated at times – it’s definitely not for
the faint of heart.

It’s also not for the newcomer to the field: programmers need both
familiarity with Coq and comfort with separation logic to write Bedrock
code. When programming Bedrock, one programs inside Coq using
Coq’s parser and Coq’s type checker, so errors are extremely coarse;
parse errors manifest as Coq rejecting an entire Bedrock module, leaving
the programmer to carefully check their source code for minor
typographical errors. References to undefined variables or functions,
rather than producing informative compiler output, simply cause proof
automation to fail. Furthermore, Bedrock’s integration with separation
logic could be substantially improved. Current versions of the system
require exhaustive annotations at function call sites to properly track
invariants, and again, failure to properly annotate calls results in
massive unsolved proof goals. And then there are a whole host of minor
infelicities: The programmer must manually enter stack space
constraints which could be inferred, Bedrock variables must be entered
as strings to appease the Coq parser, and the quantity of symbolic
operators Bedrock defines is simply massive.

However, Coq knowledge and high confusion threshold are still not
quite sufficient to properly program Bedrock: One also needs a lot of
time. The extant proof automation is exceedingly slow, with compilation
times of over five minutes standard for even my simple embedded 1. Gregory Malecha, Adam Chlipala and

Thomas Braibant. ‘Compositional Compu-
tational Reflection’. In: Interactive Theorem
Proving. 5th International Conference, itp
2014. (Vienna, 14–17 July 2014). Ed. by
Gerwin Klein and Ruben Gamboa. Lecture
Notes in Computer Science 8558. Springer,
2014. doi: 10.1007/978-3-319-08970-6.

systems work. Much of Bedrock’s speed problems arise because
Bedrock turns Coq to a novel use – Coq was designed for formalizing
mathematics with limited automation, not proving programs correct via
large-scale proof search. Even with the specialized reflection library
Bedrock uses for proof automation,1 proofs are slow, and iterative
development is very difficult.
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However, even with these issues, programming in Bedrock was often
exciting. Andrew Appel calls Coq ‘the world’s best video game’,1 and1. Andrew Appel. Software Verification. Lec-

ture series. At: The Oregon Programming
Languages Summer School. (Eugene, Ore-
gon, 16–28 June 2014). url: https://www.
cs.uoregon.edu/research/summerschool/
summer14/.

he’s right: I’ve rarely felt as excited or as accomplished as I have when
finally proving a difficult theorem in Coq. And Bedrock’s programming
model is actually rather nice; it is truly a portable assembly language,
and it’s easy to reason about how Bedrock code will behave. (Contrast
this with c, which purports to be a portable assembly but constantly
resorts to undefined or unexpected behaviour to achieve this goal.)

With Adam’s help throughout this project, I was able to specify and
prove most of what I wanted: The limitations were in the current
implementation of Bedrock, not in the underlying language model.
Bedrock thus provides a tantalizing look into a future in which proofs of
memory safety in embedded systems – or, more generally, strong proofs
about program behaviour – are easy and fun to produce. The next
iteration of Bedrock no doubt will be better than the current one. For the
time being, though, proving memory safety in the embedded context
remains a highly challenging but quite rewarding pursuit.
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Complete Source Listings

Bedrock

BufferList
(** * Lists of buffers

Theorems about singly-linked lists of buffers. *)

Require Import PreAutoSep. Local Open Scope Sep_scope.

(** List invariant. [singlyLinkedList lst headPointer] states that at
[headPointer], there is a valid singly-linked list containing the same objects
as the Gallina term [lst]. *)

Fixpoint singlyLinkedList (lst : list (list B)) (headPointer : W) : HProp :=
match lst with
| nil => [| headPointer = 0 |]
| buffer :: buffers =>
[| headPointer <> 0 |]
* Ex car, Ex cdr,

(headPointer ==*> car, cdr)
* array8 buffer car * singlyLinkedList buffers cdr

end.

Section Facts.
Variable lst : list (list B).
Variable headPointer : W.

Theorem extensional : HProp_extensional (singlyLinkedList lst headPointer).
Proof. destruct lst; reflexivity. Qed.

(** If the head pointer is a null pointer, the only way for the list to be
valid is for it to be empty. *)

Section Empty.
Hypothesis headPointerNull : headPointer = 0.

Theorem nil1 : singlyLinkedList lst headPointer ===> [| lst = nil |].
Proof. destruct lst; sepLemma. Qed.

Theorem nil2 : [| lst = nil |] ===> singlyLinkedList lst headPointer.
Proof. destruct lst; sepLemma. Qed.

End Empty.

(** If the head pointer is nonnull, the only way for the list to be valid is
if its cdr is also valid list. *)

Section Nonempty.
Hypothesis headPointerNonnull : headPointer <> 0.

Theorem cons1 :
singlyLinkedList lst headPointer
===> Ex car, Ex buffer, Ex buffers,

[| lst = buffer :: buffers |]
* Ex cdr,

(headPointer ==*> car, cdr)
* array8 buffer car * singlyLinkedList buffers cdr.

Proof. destruct lst; sepLemma. Qed.

Theorem cons2 :
(Ex car, Ex buffer, Ex buffers,
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[| lst = buffer :: buffers |]
* Ex cdr,

(headPointer ==*> car, cdr)
* array8 buffer car * singlyLinkedList buffers cdr)

===> singlyLinkedList lst headPointer.
Proof.
destruct lst; sepLemma;
match goal with
| [ H : _ :: _ = _ :: _ |- _ ] => injection H; sepLemma

end.
Qed.

End Nonempty.
End Facts.

Module Import Hints.
Hint Immediate extensional.

End Hints.

Definition hints : TacPackage.
prepare (nil1, cons1) (nil2, cons2).

Defined.

Encryption
Require Import Scheduler.

Require TAThread.

Definition encryptS := SPEC("block") reserving 38
Al openFDs,
PRE[V]
V "block" =?>8 16 (* 128 bit AES block *)
* TAThread.invariant openFDs * mallocHeap 0

POST[_]
Ex openFDs’,
[| openFDs %<= openFDs’ |]
* V "block" =?>8 16
* TAThread.invariant openFDs’ * mallocHeap 0.

EncryptionImplementation
Require Arrays8 Buffers Scheduler. Import Scheduler.

Require Encryption EncryptionTacPackage TAConnect TAThread. Import TAThread.

Inductive please_unfold_buffer : Prop := PleaseUnfoldBuffer.
Hint Constructors please_unfold_buffer.

Inductive please_unfold_buffer_joinAt : Prop := PleaseUnfoldBufferJoinAt.
Hint Constructors please_unfold_buffer_joinAt.

Definition m :=
bimport [[ "buffers"!"bfree" @ [Buffers.bfreeS],

"buffers"!"bmalloc" @ [Buffers.bmallocS],
"scheduler"!"close" @ [closeS],
"scheduler"!"connected" @ [connectedS],
"scheduler"!"read" @ [readS],
"scheduler"!"write" @ [writeS],
"taConnect"!"connect" @ [TAConnect.connectS] ]]

bmodule "encryption" {{
bfunction "aesEncrypt"("block", "cryptoChannelName",

"cryptoChannel") [Encryption.encryptS]
(* Bedrock doesn’t support string literals yet, so create a buffer to hold
the string "AES". We only need to allocate 3 bytes, but bmalloc must must
allocate at least 8. *)
Note [please_unfold_buffer];;
"cryptoChannelName" <-- Call "buffers"!"bmalloc"(2)
[Al openFDs, Al cryptoChannelName,

PRE[V, R]
V "block" =?>8 16
* [| R <> 0 |]
* [| freeable R 2 |]
* array8 cryptoChannelName R
* [| length cryptoChannelName = 8 |]
* [| natToW 0 < natToW (length cryptoChannelName) |]%word
* TAThread.invariant openFDs * mallocHeap 0

POST[_]
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Ex openFDs’,
[| openFDs %<= openFDs’ |]
* V "block" =?>8 16
* TAThread.invariant openFDs’ * mallocHeap 0];;

(* Write "AES" into the buffer. *)
"cryptoChannelName" + 0 *<-8 65 (* A *);;
Assert
[Al openFDs, Al cryptoChannelName,

PRE[V]
(* 1 < 8, so it’s safe to write to "cryptoChannelName" + 1. *)
[| natToW 1 < natToW (length cryptoChannelName) |]%word
* V "block" =?>8 16
* [| V "cryptoChannelName" <> 0 |]
* [| freeable (V "cryptoChannelName") 2 |]
* array8 cryptoChannelName (V "cryptoChannelName")
* [| length cryptoChannelName = 8 |]
* TAThread.invariant openFDs * mallocHeap 0

POST[_]
Ex openFDs’,
[| openFDs %<= openFDs’ |]
* V "block" =?>8 16
* TAThread.invariant openFDs’ * mallocHeap 0];;

"cryptoChannelName" + 1 *<-8 69 (* E *);;
Assert
[Al openFDs, Al cryptoChannelName,

PRE[V]
(* 2 < 8, so it’s safe to write to "cryptoChannelName" + 2. *)
[| natToW 2 < natToW (length cryptoChannelName) |]%word
* V "block" =?>8 16
* [| V "cryptoChannelName" <> 0 |]
* [| freeable (V "cryptoChannelName") 2 |]
* array8 cryptoChannelName (V "cryptoChannelName")
* [| length cryptoChannelName = 8 |]
* TAThread.invariant openFDs * mallocHeap 0

POST[_]
Ex openFDs’,
[| openFDs %<= openFDs’ |]
* V "block" =?>8 16
* TAThread.invariant openFDs’ * mallocHeap 0];;

"cryptoChannelName" + 2 *<-8 83 (* S *);;
Note [please_unfold_buffer];;
Assert
[Al openFDs,

PRE[V]
(* We don’t need to reify cryptoChannelName anymore; simply state
that it points to an 8-byte buffer. *)
V "cryptoChannelName" =?>8 8
* V "block" =?>8 16
* [| V "cryptoChannelName" <> 0 |]
* [| freeable (V "cryptoChannelName") 2 |]
* TAThread.invariant openFDs * mallocHeap 0

POST[_]
Ex openFDs’,
[| openFDs %<= openFDs’ |]
* V "block" =?>8 16
* TAThread.invariant openFDs’ * mallocHeap 0];;

(* Connect to the AES service. *)
Assert
[Al openFDs,

PRE[V]
(* Split the "cryptoChannelName" buffer into the part containing
"AES" (3 bites) and the part that contains garbage (5 bytes). The
automation isn’t smart enough to realize 3 is less than 8 on its
own, so we have to remind it. *)
[| 3 <= 8 |]%nat
* Arrays8.buffer_splitAt 3 (V "cryptoChannelName") 8
* [| V "cryptoChannelName" <> 0 |]
* V "block" =?>8 16
* [| freeable (V "cryptoChannelName") 2 |]
* TAThread.invariant openFDs * mallocHeap 0

POST[_]
Ex openFDs’,
[| openFDs %<= openFDs’ |]
* V "block" =?>8 16
* TAThread.invariant openFDs’ * mallocHeap 0];;

"cryptoChannel" <-- Call "taConnect"!"connect"("cryptoChannelName", 3)
[Al openFDs,

PRE[V, R]
[| R %in openFDs |]
* (* Now we can join the buffer back together (we need to before
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freeing it). *)
[| 3 <= 8 |]%nat
* Arrays8.buffer_joinAt 3 (V "cryptoChannelName") 8
* V "block" =?>8 16
* [| V "cryptoChannelName" <> 0 |]
* [| freeable (V "cryptoChannelName") 2 |]
* TAThread.invariant openFDs * mallocHeap 0

POST[_]
Ex openFDs’,
[| openFDs %<= openFDs’ |]
* V "block" =?>8 16
* TAThread.invariant openFDs’ * mallocHeap 0];;

(* Now that we’re connected, free the "AES" buffer so we don’t have to
carry around the invariants. *)
Note [please_unfold_buffer_joinAt];;
Call "buffers"!"bfree"("cryptoChannelName", 2)
[Al openFDs,

PRE[V]
[| V "cryptoChannel" %in openFDs |]
* V "block" =?>8 16
* TAThread.invariant openFDs * mallocHeap 0

POST[_]
Ex openFDs’,
[| openFDs %<= openFDs’ |]
* V "block" =?>8 16
* TAThread.invariant openFDs’ * mallocHeap 0];;

(* Wait until we’re actually connected. *)
Call "scheduler"!"connected"("cryptoChannel")
[Al openFDs,

PRE[V]
[| V "cryptoChannel" %in openFDs |]
* V "block" =?>8 16
* TAThread.invariant openFDs * mallocHeap 0

POST[_]
Ex openFDs’,
[| openFDs %<= openFDs’ |]
* V "block" =?>8 16
* TAThread.invariant openFDs’ * mallocHeap 0];;

(* Send the data block to the AES appliance. *)
Call "scheduler"!"write"("cryptoChannel", "block", 16)
[Al openFDs,

PRE[V]
[| V "cryptoChannel" %in openFDs |]
* V "block" =?>8 16
* TAThread.invariant openFDs * mallocHeap 0

POST[_]
Ex openFDs’,
[| openFDs %<= openFDs’ |]
* V "block" =?>8 16
* TAThread.invariant openFDs’ * mallocHeap 0];;

(* Get the encrypted block back. *)
Call "scheduler"!"read"("cryptoChannel", "block", 16)
[Al openFDs,

PRE[V]
[| V "cryptoChannel" %in openFDs |]
* V "block" =?>8 16
* TAThread.invariant openFDs * mallocHeap 0

POST[_]
Ex openFDs’,
[| openFDs %<= openFDs’ |]
* V "block" =?>8 16
* TAThread.invariant openFDs’ * mallocHeap 0];;

Call "scheduler"!"close"("cryptoChannel")
[Al openFDs,

PRE[V]
V "block" =?>8 16
* TAThread.invariant openFDs * mallocHeap 0

POST[_]
Ex openFDs’,
[| openFDs %<= openFDs’ |]
* V "block" =?>8 16
* TAThread.invariant openFDs’ * mallocHeap 0];;

Return 0
end

}}.

Local Hint Extern 2 =>
match goal with
(* TODO: Why can’t I match on [?x = _ |- _ < ?x]? *)
| [ H : Datatypes.length _ = _ |- context[Datatypes.length] ] => rewrite H
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end.

Local Hint Extern 1 (_ = _) => words.

Local Ltac finish :=
try match goal with

| [ |- context[please_unfold_buffer] ] => unfold buffer
end;

try match goal with
| [ |- context[please_unfold_buffer_joinAt] ] =>
unfold Arrays8.buffer_joinAt

end;
TAThread.sep EncryptionTacPackage.hints;
auto.

Lemma ok : moduleOk m.
Proof. vcgen; abstract finish. Qed.

EncryptionService
Require Import Thread.

Require TAThread.

Definition mainS := SPEC reserving 43
Al openFDs,
PREmain[_] TAThread.invariant openFDs * mallocHeap 0.

EncryptionServiceImplementation
Require Arrays8 Thread. Import Thread.

Require Encryption EncryptionService EncryptionServiceTacPackage TAThread.
Import TAThread.

(** For reasons explained in the comments in the Bedrock code, this module going
needs an opaque version of multiplication. (It’s declared with [Arguments]
instead of [Opaque] for future compatibility with 8.5.) *)

Definition opaqueMult := mult.
Arguments opaqueMult : simpl never.

Definition m :=
bimport [[ "encryption"!"aesEncrypt" @ [Encryption.encryptS],

"malloc"!"malloc" @ [mallocS],
"scheduler"!"accept" @ [acceptS],
"scheduler"!"close" @ [closeS],
"scheduler"!"listen" @ [listenS],
"scheduler"!"read" @ [readS],
"scheduler"!"write" @ [writeS] ]]

bmodule "encryptionService" {{
bfunctionNoRet "main"("inputSocket", "listenSocket",

"scratch") [EncryptionService.mainS]
(* Create a buffer for the input. *)
"scratch" <-- Call "malloc"!"malloc"(0, 4)
[Al openFDs,

PREmain[_, R]
R =?> 4
* TAThread.invariant openFDs * mallocHeap 0];;

(* Convert the four-word buffer that malloc gives to a sixteen-byte buffer
suitable for use with AES. The proof automation for this bit is very
finicky -- it can’t tell that 16 = 4 × 4, so it will fail unless it’s very
obvious exactly what we’re doing. Use the opaque multiplication function
defined earlier to prevent Coq from expanding [4 * 4] to [16] and thereby
confusing the automation. *)
Note [Arrays8.please_materialize_buffer 4];;
Assert
[Al openFDs,

PREmain[V]
V "scratch" =?>8 opaqueMult 4 4
* TAThread.invariant openFDs * mallocHeap 0];;

(* Start listening for connections. *)
"listenSocket" <-- Call "scheduler"!"listen"(0)
[Al openFDs,

PREmain[V, R]
[| R %in openFDs |]
* V "scratch" =?>8 16
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* TAThread.invariant openFDs * mallocHeap 0];;
(* Loop forever, accepting plaintext and echoing ciphertext back. *)
[Al openFDs,

PREmain[V]
[| V "listenSocket" %in openFDs |]
* V "scratch" =?>8 16
* TAThread.invariant openFDs * mallocHeap 0]

While (0 = 0) {
(* Take a new connection. *)
"inputSocket" <-- Call "scheduler"!"accept"("listenSocket")
[Al openFDs,

PREmain[V, R]
[| R %in openFDs |]
* [| V "listenSocket" %in openFDs |]
* V "scratch" =?>8 16
* TAThread.invariant openFDs * mallocHeap 0];;

(* Read some data out of it. *)
Call "scheduler"!"read"("inputSocket", "scratch", 16)
[Al openFDs,

PREmain[V]
[| V "inputSocket" %in openFDs |]
* [| V "listenSocket" %in openFDs |]
* V "scratch" =?>8 16
* TAThread.invariant openFDs * mallocHeap 0];;

Call "encryption"!"aesEncrypt"("scratch")
[Al openFDs,

PREmain[V]
[| V "inputSocket" %in openFDs |]
* [| V "listenSocket" %in openFDs |]
* V "scratch" =?>8 16
* TAThread.invariant openFDs * mallocHeap 0];;

(* Echo the data back. *)
Call "scheduler"!"write"("inputSocket", "scratch", 16)
[Al openFDs,

PREmain[V]
[| V "inputSocket" %in openFDs |]
* [| V "listenSocket" %in openFDs |]
* V "scratch" =?>8 16
* TAThread.invariant openFDs * mallocHeap 0];;

(* Close the connection and exit. *)
Call "scheduler"!"close"("inputSocket")
[Al openFDs,

PREmain[V]
[| V "listenSocket" %in openFDs |]
* V "scratch" =?>8 16
* TAThread.invariant openFDs * mallocHeap 0]

}
end

}}.

Local Hint Extern 2 (_ %in _) =>
eapply incl_mem;
[ eassumption | solve [eauto using incl_trans] ].

Ltac finish :=
TAThread.sep EncryptionServiceTacPackage.hints;
auto.

Lemma ok : moduleOk m.
Proof. vcgen; abstract finish. Qed.

EncryptionServiceTacPackage
Require Arrays8 PreAutoSep. Import PreAutoSep.

Definition hints : TacPackage.
prepare tt Arrays8.materialize_buffer.

Defined.

EncryptionTacPackage
Require Arrays8 PreAutoSep. Import PreAutoSep.

Definition hints : TacPackage.
prepare Arrays8.buffer_split_tagged Arrays8.buffer_join_tagged.

Defined.
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Extraction
Require Import Thumb2_gas.
Require FinalLink.

(** All that’s left is to extract the assembly to OCaml for pretty-printing. *)

Definition compiled := moduleS FinalLink.m.
Recursive Extraction compiled.

FinalLink
Require Import Bedrock.

Require Import Bootstrap Thread.

Require MemoryLayout.
Require
EncryptionImplementation
EncryptionServiceImplementation
LoggingImplementation
MainImplementation
MainPrimeImplementation
TAConnectImplementation
TAListenImplementation
TAThread.

Local Notation "f $$ x" := (f x)
(at level 100, right associativity, only parsing).

Definition m :=
link EncryptionImplementation.m $$
link EncryptionServiceImplementation.m $$
link LoggingImplementation.m $$
link MainImplementation.m $$
link MainPrimeImplementation.m $$
link TAConnectImplementation.m $$
link TAListenImplementation.m $$
link Buffers.m

TAThread.System.m.

Parameter heapSizeLowerBound : (3 <= MemoryLayout.heapSize)%nat.

Parameter requiredMemoryIsReasonable :
goodSize (MemoryLayout.wordsAvailable * 4)%nat.

Local Ltac use theorem :=
match goal with
| [ |- moduleOk (link ?x ?y) ] =>
cut (moduleOk y);
[ let H := fresh "H" in intro H; solve [link theorem H] | idtac ]

| [ |- moduleOk _ ] => exact theorem
end.

Theorem ok : moduleOk m.
Proof.
unfold m.
use EncryptionImplementation.ok.
use EncryptionServiceImplementation.ok.
use LoggingImplementation.ok.
use (MainImplementation.ok heapSizeLowerBound requiredMemoryIsReasonable).
use MainPrimeImplementation.ok.
use TAConnectImplementation.ok.
use TAListenImplementation.ok.
use Buffers.ok.
use TAThread.System.ok.

Qed.

Section Safety.
Hypothesis heapSizeLowerBound : (3 <= MemoryLayout.heapSize)%nat.

Hypothesis requiredMemoryIsReasonable :
goodSize (MemoryLayout.wordsAvailable * 4)%nat.

Let heapSizeUpperBound : goodSize (MemoryLayout.heapSize * 4).
Proof. goodSize. Qed.

Variable mySettings : settings.
Variable myProgram : program.
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Hypothesis labelsInjective :
forall label1 label2 address,
Labels mySettings label1 = Some address
-> Labels mySettings label2 = Some address
-> label1 = label2.

Hypothesis labelsAgreeWithBlocks :
forall label pre block,
LabelMap.MapsTo label (pre, block) (XCAP.Blocks m)
-> exists address,

Labels mySettings label = Some address
/\ myProgram address = Some block.

Hypothesis noCodeShadowing :
forall label pre,
LabelMap.MapsTo label pre (XCAP.Imports m)
-> exists address,

Labels mySettings label = Some address
/\ myProgram address = None.

Hypothesis noSysShadowing :
forall label address,
Labels mySettings ("sys", label) = Some address
-> myProgram address = None.

Variable entryPointAddress : W.
Hypothesis atStart :
Labels mySettings ("main", Global "main") = Some entryPointAddress.

Variable executionState : state.

Hypothesis memUpperBound :
forall address,
(address < MemoryLayout.wordsAvailable * 4)%nat
-> executionState.(Mem) address <> None.

Hypothesis memLowerBound :
forall address,
$(MemoryLayout.wordsAvailable * 4) <= address
-> executionState.(Mem) address = None.

Theorem safe :
sys_safe mySettings myProgram (entryPointAddress, executionState).

Proof. safety ok. Qed.
End Safety.

Logging
Require Import Thread.

Require TAThread.

Definition mainS := SPEC reserving 41
Al openFDs,
PREmain[_] TAThread.invariant openFDs * mallocHeap 0.

LoggingImplementation
Require Buffers Thread. Import Thread.

Require BufferList Logging TAThread TAListen. Import BufferList.Hints TAThread.

Inductive please_unfold_buffer : Prop := PleaseUnfoldBuffer.
Hint Constructors please_unfold_buffer.

Definition m :=
bimport [[ "buffers"!"bmalloc" @ [Buffers.bmallocS],

"malloc"!"malloc" @ [mallocS],
"scheduler"!"accept" @ [acceptS],
"scheduler"!"close" @ [closeS],
"scheduler"!"read" @ [readS],
"taListen"!"listen" @ [TAListen.listenS] ]]

bmodule "logging" {{
bfunctionNoRet "main"("cell", "inputBuffer", "inputSocket", "list",

"listenSocket") [Logging.mainS]
"list" <- 0;;
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"listenSocket" <-- Call "taListen"!"listen"(1)
[Al openFDs, Al lst,
PREmain[V, R]

[| R %in openFDs |]
* BufferList.singlyLinkedList lst (V "list")
* TAThread.invariant openFDs * mallocHeap 0];;

[Al openFDs, Al lst,
PREmain[V]
[| V "listenSocket" %in openFDs |]
* BufferList.singlyLinkedList lst (V "list")
* TAThread.invariant openFDs * mallocHeap 0]

While (0 = 0) {
"inputSocket" <-- Call "scheduler"!"accept"("listenSocket")
[Al openFDs, Al lst,

PREmain[V, R]
[| R %in openFDs |]
* [| V "listenSocket" %in openFDs |]
* BufferList.singlyLinkedList lst (V "list")
* TAThread.invariant openFDs * mallocHeap 0];;

"inputBuffer" <-- Call "buffers"!"bmalloc"(4)
[Al openFDs, Al lst,

PREmain[V, R]
[| R <> 0 |] * [| freeable R 4 |]
* R =?>8 16
* [| V "inputSocket" %in openFDs |]
* [| V "listenSocket" %in openFDs |]
* BufferList.singlyLinkedList lst (V "list")
* TAThread.invariant openFDs * mallocHeap 0];;

Call "scheduler"!"read"("inputSocket", "inputBuffer", 16)
[Al openFDs, Al lst,

PREmain[V]
V "inputBuffer" =?>8 16
* [| V "inputBuffer" <> 0 |]
* [| V "inputSocket" %in openFDs |]
* [| V "listenSocket" %in openFDs |]
* BufferList.singlyLinkedList lst (V "list")
* TAThread.invariant openFDs * mallocHeap 0];;

Call "scheduler"!"close"("inputSocket")
[Al openFDs, Al lst,

PREmain[V]
V "inputBuffer" =?>8 16
* [| V "inputBuffer" <> 0 |]
* [| V "listenSocket" %in openFDs |]
* BufferList.singlyLinkedList lst (V "list")
* TAThread.invariant openFDs * mallocHeap 0];;

"cell" <-- Call "malloc"!"malloc"(0, 2)
[Al openFDs, Al lst,

PREmain[V, R]
[| R <> 0 |] * [| freeable R 2 |]
* R =?> 2
* V "inputBuffer" =?>8 16
* [| V "inputBuffer" <> 0 |]
* [| V "listenSocket" %in openFDs |]
* BufferList.singlyLinkedList lst (V "list")
* TAThread.invariant openFDs * mallocHeap 0];;

"cell" *<- "inputBuffer";;
"cell" + 4 *<- "list";;
"list" <- "cell";;
Note [please_unfold_buffer]

}
end

}}.

(* Experimentation with the cost of this hint shows that it has insignificant
effect on the time required for a proof. *)
Local Hint Extern 2 (_ %in _) =>
eapply incl_mem;
[ eassumption | solve [eauto using incl_trans] ].

Local Ltac finish :=
try match goal with

| [ |- context[please_unfold_buffer] ] => unfold buffer
end;

TAThread.sep BufferList.hints;
auto.

Lemma ok : moduleOk m.
Proof. vcgen; abstract finish. Qed.
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MainImplementation
Require Import Bedrock.
Require Bootstrap Malloc Thread. Import Thread.

Require MainPrime MemoryLayout.

(** Just after entering Bedrock, our memory space is totally unstructured: it’s
just some amorphous blob of memory given to us by the OS. Our first task is
thus to bring it under Bedrock’s control. *)

Definition m :=
bimport [[ "malloc"!"init" @ [Malloc.initS],

"mainPrime"!"main" @ [MainPrime.mainS] ]]
bmodule "main" {{
bfunctionNoRet "main"()

[Bootstrap.bootS MemoryLayout.heapSize 1 (* global *)]
(* Set the stack pointer. *)
Sp <- (MemoryLayout.heapSize * 4)%nat;;
(* Ensure globals are set correctly and initialize the allocator. *)
Assert
[PREmain[_]

MemoryLayout.schedule =?> 1
* 0 =?> MemoryLayout.heapSize];;

Call "malloc"!"init"(0, MemoryLayout.heapSize)
[PREmain[_]

MemoryLayout.schedule =?> 1
* mallocHeap 0];;

(* Pass off control to the application. *)
Goto "mainPrime"!"main"

end
}}.

(** Proving this code correct relies on two critical assumptions -- assumptions
about how well the target platform plays with Bedrock’s memory model. *)

Section Correctness.
Hypothesis heapSizeLowerBound : (3 <= MemoryLayout.heapSize)%nat.

Hypothesis requiredMemoryIsReasonable :
goodSize (MemoryLayout.wordsAvailable * 4)%nat.

Let heapSizeUpperBound : goodSize (MemoryLayout.heapSize * 4).
Proof. Bootstrap.goodSize. Qed.

Ltac finish :=
unfold localsInvariantMain, MemoryLayout.schedule;
Bootstrap.genesis.

Lemma ok : moduleOk m.
Proof.
vcgen; finish.

apply H1. rewrite <- H8. rewrite -> H7. rewrite -> H.
cut (Regs x Sp = Regs x Sp ^+ $4 ^- $ (4)). intros; solve [auto].
solve [words].

rewrite -> H7. rewrite -> H.
cut (freeable (Regs x Sp ^+ $4 ^- $ (4)) 50). intros; solve [auto].
let H := fresh "H" in
assert (H : Regs x Sp ^+ $4 ^- $4 = Regs x Sp) by words;
rewrite -> H.

solve [assumption].

apply H1.
let H := fresh "H" in
assert (H : Regs b Sp = Regs x Sp ^- $4) by auto;
rewrite <- H.

solve [assumption].

rewrite -> H. solve [auto].
Qed.

End Correctness.
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MainPrime
Require Import Thread.

Require MemoryLayout.

Definition mainS := SPEC reserving 49
PREmain[_]
MemoryLayout.schedule =?> 1
* mallocHeap 0.

MainPrimeImplementation
Require Arrays8 Thread. Import Thread.

Require EncryptionService Logging MainPrime MemoryLayout TAThread.
Import TAThread.

Definition m :=
bimport [[ "encryptionService"!"main" @ [EncryptionService.mainS],

"logging"!"main" @ [Logging.mainS],
"malloc"!"malloc" @ [mallocS],
"scheduler"!"accept" @ [acceptS],
"scheduler"!"close" @ [closeS],
"scheduler"!"exit" @ [exitS],
"scheduler"!"init" @ [initS],
"scheduler"!"listen" @ [listenS],
"scheduler"!"read" @ [readS],
"scheduler"!"spawn" @ [spawnS],
"scheduler"!"write" @ [writeS] ]]

bmodule "mainPrime" {{
bfunctionNoRet "main"("socket") [MainPrime.mainS]
(* Start the scheduler. *)
Init
[Al openFDs,

PREmain[_] sched openFDs * mallocHeap 0];;
(* Spawn application threads. Theoretically, we could make one of these a
goto, but that would constrain the thread main to have the same size stack
allocation as this function. Instead, we spawn both threads and then
permanently yield to the scheduler (by exiting). *)
Spawn("encryptionService"!"main", 44)
[Al openFDs,

PREmain[V]
TAThread.invariant openFDs * mallocHeap 0];;

Spawn("logging"!"main", 42)
[Al openFDs,

PREmain[V]
TAThread.invariant openFDs * mallocHeap 0];;

(* This is /not/ an exit code! It’s the number of words of stack space
this function uses. *)
Exit 50

end
}}.

Local Ltac finish :=
TAThread.sep auto_ext (* empty [TacPackage] *);
auto.

Lemma ok : moduleOk m.
Proof. vcgen; abstract finish. Qed.

MemoryLayout
(** * Memory layout *)

Require Import Bedrock.

(** ** Available memory *)

(* Ideally, these would be shared with C++ somehow. However, doing so is
difficult, so for the time being, these are duplicated with values in C++. If
you update one of these values, you MUST update a corresponding value in
compiler/memory.h! *)
Section Available.
(* The number of 32-bit words allocated to the Bedrock heap. *)
Definition heapSize := 1024.

43



(* The number of 32-bit words allocated to the Bedrock stack. *)
Definition stackSize := 49.

(* The number of 32-bit words allocated to the Bedrock globals. In addition
to the aforementioned duplication, this value better be equal to the number
of globals defined below. *)
Definition globalsSize := 1.

(* The amount of memory initially allocated to the main thread. *)
Definition wordsAvailable :=
heapSize
+ stackSize
+ 1 (* return pointer *)
+ globalsSize.

End Available.

(* Treat memory layout constants as opaque to prevent Coq from unfolding them
into giant [nat] terms. *)
Global Opaque heapSize stackSize globalsSize.

(** ** Global variables *)

Section Globals.
(* This expression is extremely brittle. *)
Definition schedule : W := (heapSize + (1 + 49)) * 4.

End Globals.

TAConnect
Require Import Scheduler.

Require TAThread.

(** The Bedrock [connect] specification is unfortunately not quite powerful
enough to prove what I want without effort. I provide my own instead. *)

Definition connectS := SPEC("address", "size") reserving 29
Al openFDs,
PRE[V]
V "address" =?>8 wordToNat (V "size")
* TAThread.invariant openFDs * mallocHeap 0

POST[R]
V "address" =?>8 wordToNat (V "size")
* Ex openFDs’,

[| R %in openFDs’ |]
* [| openFDs %<= openFDs’ |]
* TAThread.invariant openFDs’ * mallocHeap 0.

TAConnectImplementation
Require Import Scheduler.

Require TAConnect TAThread. Import TAThread.

Definition m :=
bimport [[ "scheduler"!"connect" @ [connectS] ]]
bmodule "taConnect" {{
bfunction "connect"("address", "size", "result") [TAConnect.connectS]
"result" <-- Call "scheduler"!"connect"("address", "size")
[PRE[_, R] Emp
POST[R’] [| R’ = R |] ];;

Return "result"
end

}}.

Local Ltac finish :=
TAThread.sep auto_ext (* empty [TacPackage] *);
try words;
auto.

Lemma ok : moduleOk m.
Proof. vcgen; abstract finish. Qed.
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TAListenImplementation
Require Import Scheduler.

Require TAListen TAThread. Import TAThread.

Definition m :=
bimport [[ "scheduler"!"listen" @ [listenS] ]]
bmodule "taListen" {{
bfunction "listen"("port", "result") [TAListen.listenS]
"result" <-- Call "scheduler"!"listen"("port")
[PRE[_, R] Emp
POST[R’] [| R’ = R |] ];;

Return "result"
end

}}.

Local Ltac finish :=
TAThread.sep auto_ext (* empty [TacPackage] *);
try words;
auto.

Lemma ok : moduleOk m.
Proof. vcgen; abstract finish. Qed.

TAListen
Require Import Scheduler.

Require TAThread.

(** The Bedrock [listen] specification is unfortunately not quite powerful
enough to prove what I want without effort. I provide my own instead. *)

Definition listenS := SPEC("port") reserving 28
Al openFDs,
PRE[_] TAThread.invariant openFDs * mallocHeap 0
POST[R]
Ex openFDs’,
[| R %in openFDs’ |]
* [| openFDs %<= openFDs’ |]
* TAThread.invariant openFDs’ * mallocHeap 0.

TAThread
(** Cooperative multithreading system *)

Require Import Thread. Local Open Scope Sep_scope.

Require MemoryLayout.

(** Instantiate the Bedrock scheduler. *)

Module Private.
Module SchedulerParameters <: Scheduler.S.
Definition globalSched := MemoryLayout.schedule.

Definition globalInv (_ : files) : HProp := Emp.

Lemma globalInvMonotonic :
forall x y, x %<= y -> globalInv x ===> globalInv y.

Proof. sepLemma. Qed.
End SchedulerParameters.

End Private.

Module Export System := Make(Private.SchedulerParameters).

Definition invariant fds : HProp :=
System.Q’’.Sched.sched fds * Private.SchedulerParameters.globalInv fds.

Module Import Hints.
Hint Extern 4 (himp _ _ _) =>
eapply Private.SchedulerParameters.globalInvMonotonic; eassumption.

End Hints.

Ltac sep :=
System.sep ltac:(unfold invariant, Private.SchedulerParameters.globalInv).
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c, c++, and Assembly

compiler/memory.h
// Recall that Bedrock must manage its own memory in order to reason about it
// using separation logic. One of the primary jobs of the C++ support
// libraries in this project is thus to allocate memory that Bedrock can use.
// In this file, we define constants which describe that hunk of memory.
//
// Ideally, these would be autogenerated from Bedrock code. However, doing so
// is difficult, so for the time being, these are duplicated with values in
// Bedrock. If you update one of these values, you MUST update a corresponding
// value in src/MemoryLayout.v!

#ifndef TRUSTANCHOR_COMPILER_MEMORY_H_
#define TRUSTANCHOR_COMPILER_MEMORY_H_

#include <cstddef>

// TODO(bbaren): Move this into a trust_anchor namespace.
namespace bedrock_environment {

// The number of 32-bit words allocated to the Bedrock heap.
constexpr size_t kHeapSlots = 1024;

// The number of 32-bit words allocated to the Bedrock stack.
constexpr size_t kStackSlots = 49;

// The number of 32-bit words allocated to the Bedrock globals.
constexpr size_t kGlobalSlots = 1;

} // namespace bedrock_environment

#endif // TRUSTANCHOR_COMPILER_MEMORY_H_

runtime/aes/aes.h
// Copyright (C) 2014 Inverse Limit

#ifndef AES_H_
#define AES_H_

#define AES_BLOCK_SIZE 16

typedef enum {
AES_128 = 0,
AES_192 = 1,
AES_256 = 2

} aes_algo_t;

typedef struct aes_ctx_s {
aes_algo_t algo;
uint32 ks[60];

} aes_ctx_t;

#define AES_128_KEY_SIZE (128 / 8)
#define AES_192_KEY_SIZE (192 / 8)
#define AES_256_KEY_SIZE (256 / 8)

extern uint8 aes_sbox(uint8 U, int inv);

extern void aes_setkey(aes_ctx_t *ctx, aes_algo_t algo, void *key);
extern void aes_ecb_encrypt(aes_ctx_t *ctx, void *data_in, void *data_out);
extern void aes_ecb_decrypt(aes_ctx_t *ctx, void *data_in, void *data_out);

#endif /* AES_H_ */

runtime/aes/types.h
#ifndef TRUSTANCHOR_RUNTIME_AES_TYPES_H_
#define TRUSTANCHOR_RUNTIME_AES_TYPES_H_

#include <stdint.h>
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typedef uint8_t uint8;
typedef uint32_t uint32;

#endif // TRUSTANCHOR_RUNTIME_AES_TYPES_H_

runtime/aes.h
// Utility header file to properly load the AES library.

#ifndef TRUSTANCHOR_RUNTIME_AES_H_
#define TRUSTANCHOR_RUNTIME_AES_H_

extern "C" {
#include "runtime/aes/types.h"
#include "runtime/aes/aes.h"
}

#endif // TRUSTANCHOR_RUNTIME_AES_H_

runtime/boot.cc
// Start Bedrock code.
//
// This code bruns as soon as the microcontroller boots. It’s responsible for
// setting up the Bedrock stack, heap, and communication primitives before
// jumping directly into Bedrock code.

#include "runtime/boot.h"

#include <cstdint>

#include <mbed.h>

#include "runtime/io.h"
#include "runtime/io_constants.h"
#include "runtime/singleton.h"

// Define the Bedrock memory region declared in runtime/boot.h.
uint32_t bedrock_heap[

bedrock_environment::kHeapSlots
+ 1 // for the Bedrock return pointer
+ bedrock_environment::kStackSlots
+ bedrock_environment::kGlobalSlots];

namespace {

// Jumps into Bedrock code, starting at ’main_main’. Returns the Bedrock
// return value.
uint32_t RunBedrock() {
// This inline assembly has some rather important side effects, so it needs
// to be an __asm__ __volatile__ rather than just an __asm__.
//
// Every line of assembly except the last ends in \n\t, which produces the
// prettiest assembly when compiled with gcc -S.
uint32_t result;
__asm__ __volatile__(

// Tell Bedrock how much heap it has.
"mov r0, %[heap_size]\n\t"
// Tell Bedrock where to branch after it’s done working.
"adr r1, 0f\n\t"
// Branch into Bedrock code.
"b main_main\n\t"
"0:\n\t"
// Save the result from Bedrock’s main.
"mov %[result], r2"
: [result]"=X"(result)
: [heap_size]"X"(bedrock_environment::kHeapSlots),
"m"(*bedrock_heap)

: "r0", "r1", "r2", "r3", "r4", "r5", "r6", "lr", "cc");
return result;

}

} // namespace

// Sets up the Bedrock environment and runs Bedrock code.
#define UNUSED __attribute__((__unused__))
int main() {
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// The Bedrock stack and heap have already been set up (in runtime/boot.h).
// Set up serial communication.
trust_anchor::Singleton<trust_anchor::USBSerial>::get()->baud(

trust_anchor::kMbedBaudrate);
for (int i = 0; i < 80; i++) {
SERIAL_DEBUG("-");

}
SERIAL_DEBUG("\r\n");
// Run some Bedrock.
SERIAL_DEBUG(

"Bedrock code starting; Bedrock’s memory is at %p\r\n",
bedrock_heap);

const uint32_t result UNUSED = RunBedrock();
SERIAL_DEBUG(

"Bedrock main returned (should never happen!)\r\n"
"Return value was %d\r\n",
result);

return 0;
}
#undef UNUSED

// Catches hard faults and halts execution for debugging.
extern "C" void HardFault_Handler();
void HardFault_Handler() {
error("PANIC: hard fault\r\n");

}

runtime/boot.h
// Symbols essential for running Bedrock code.

#ifndef TRUSTANCHOR_RUNTIME_BOOT_H_
#define TRUSTANCHOR_RUNTIME_BOOT_H_

#include <cstdint>

#include "compiler/memory.h"

// Here’s the Bedrock entry point. Ideally, this would be extracted from
// Bedrock code somehow, but this is difficult, so for the time being, this
// symbol is duplicated with that defined in the Bedrock main module. You
// shouldn’t be changing this without also changing that.
extern "C" void main_main();

// Bedrock is very picky about its memory: not only must it be a contiguous
// blob under Bedrock’s total control, but it actually has to be available as a
// linker symbol, unfortunately named ’bedrock_heap’. (It actually encompasses
// the stack and global variable space as well.)
extern "C" uint32_t bedrock_heap[

bedrock_environment::kHeapSlots
+ 1 // for the Bedrock return pointer
+ bedrock_environment::kStackSlots
+ bedrock_environment::kGlobalSlots];

#endif // TRUSTANCHOR_RUNTIME_BOOT_H_

runtime/byte_vector.h
// Byte vector data type.

#ifndef TRUSTANCHOR_RUNTIME_BYTE_VECTOR_H_
#define TRUSTANCHOR_RUNTIME_BYTE_VECTOR_H_

#include <cstdint>
#include <vector>

using ByteVector = std::vector<uint8_t>;

#endif // TRUSTANCHOR_RUNTIME_BYTE_VECTOR_H_

runtime/connection.cc
#include "runtime/connection.h"

#include <algorithm>
#include <cassert>
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#include <deque>
#include <iterator>
#include <type_traits>
#include <unordered_map>

#include "runtime/byte_vector.h"
#include "runtime/io.h"
#include "runtime/lazy_static_ptr.h"

using ::trust_anchor::LazyStaticPtr;
using ::trust_anchor::Session;
using ::trust_anchor::SessionID;
using ::trust_anchor::WireSerializableUInt32Hash;

namespace {

// Session IDs belonging to new sessions.
LazyStaticPtr<std::deque<SessionID>> kNew;

// All sessions, indexed by session ID.
LazyStaticPtr<
std::unordered_map<SessionID, Session, WireSerializableUInt32Hash>> kAll;

// A template to check if a type T has an iterator that implements
// iterator_tag. iterator_tag should be one of the five iterator category tags
// described at <http://en.cppreference.com/w/cpp/iterator/iterator_tags>. The
// result is computed in the value data member of the struct.
//
// Examples:
//
// HasIterator<int, std::random_access_iterator_tag>::value == false
//
// HasIterator<std::vector<int>, std::input_iterator_tag>::value == true
//
template<typename T, typename iterator_tag>
using HasIterator = std::is_base_of<
iterator_tag,
typename std::iterator_traits<typename T::iterator>::iterator_category>;

// Like Python’s extend function, this function extends one iterable with the
// contents of another, and as in Python’s extend function, the two iterables
// need not have the same type--they need only satisfy the relevant iterable
// constraints. In particular, the left (target) value must be of a type with
// a RandomAccessIterator, and the right (source) value must be of a type with
// an InputIterator.
//
// Example:
//
// std::vector<int> x = {1, 2, 3};
// std::vector<int> y = {4, 5, 6};
// // extend(x, 3); // compiler error
// extend(x, y);
// // x now has {1, 2, 3, 4, 5, 6}
template<
typename L,
typename R,
typename std::enable_if<HasIterator<L, std::random_access_iterator_tag>::value

&& HasIterator<R, std::input_iterator_tag>::value>
::type* = nullptr>

void extend(L& left, const R& right) {
left.insert(left.end(), right.begin(), right.end());

}

} // namespace

namespace trust_anchor {

WireSerializableUInt32 WireSerializableUInt32::Receive(
BufferAwareSerial* const serial) {

auto raw = serial->Get(sizeof(value_));
return WireSerializableUInt32( (static_cast<uint32_t>(raw[0]) << 24)

| (static_cast<uint32_t>(raw[1]) << 16)
| (static_cast<uint32_t>(raw[2]) << 8)
| static_cast<uint32_t>(raw[3]));

}

void WireSerializableUInt32::Send(BufferAwareSerial* const serial) const {
serial->Put({static_cast<uint8_t>(value_ >> 24),

static_cast<uint8_t>(value_ >> 16),
static_cast<uint8_t>(value_ >> 8),

49



static_cast<uint8_t>(value_)});
}

Message Message::Receive(BufferAwareSerial* const serial) {
const auto header = Header::Receive(serial);
return Message(header.session_id(), serial->Get(header.payload_size()));

}

void Message::Send(BufferAwareSerial* const serial) const {
MakeHeader().Send(serial);
serial->Put(payload_);

}

Message::Header Message::Header::Receive(BufferAwareSerial* const serial) {
return Header(SessionID::Receive(serial),

WireSerializableUInt32::Receive(serial));
}

void Message::Header::Send(BufferAwareSerial* const serial) const {
session_id_.Send(serial);
payload_size_.Send(serial);

}

Message::Header Message::MakeHeader() const {
return Header(session_id_, payload_.size());

}

bool Session::AcceptWillBlock(BufferAwareSerial* const serial,
Session::IDSelector predicate) {

// Clear out the mbed’s serial buffer to try to find new sessions.
while (!serial->IsEmpty()) {
// There’s at least one byte in the buffer, so a message is either waiting
// or in the process of being transmitted. We can afford to block a little
// bit while receiving it, and it might give us a new session.
ProcessMessage(serial);

}
// The mbed buffer is clear. Did we get any interesting sessions?
for (auto new_session_id : *kNew) {
if (predicate(new_session_id)) {
// There is an interesting session waiting, so we won’t block.
return false;

}
}
// There are no interesting sessions.
return true;

}

Session* Session::Accept(BufferAwareSerial* const serial,
Session::IDSelector predicate) {

while (true) {
// Do we have any interesting sessions?
for (auto new_session_id = kNew->begin();

new_session_id != kNew->end();
new_session_id++) {

SERIAL_DEBUG("Session::Accept: Looking at session 0x%08x\r\n",
new_session_id->value());

if (predicate(*new_session_id)) {
// Yes, we do!
const auto result = Lookup(*new_session_id);
assert(result); // We found the session.
// Clear the session ID from the new queue.
kNew->erase(new_session_id);
// All done.
return result;

}
}
// There aren’t any interesting sessions in the new queue yet. Wait until
// a new session comes in.
ProcessMessage(serial);

}
}

void Session::Close(const SessionID& session_id) {
for (auto session = kAll->begin();

session != kAll->end();
session++) {

if (session->first == session_id) {
kAll->erase(session);
return;

}
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}
assert(false);

}

Session* Session::Lookup(const SessionID& session_id) {
const auto session = kAll->find(session_id);
if (session == kAll->end()) {
return nullptr;

}
return &(session->second);

}

ByteVector Session::Read(const ByteVector::size_type& n_bytes) {
// Prepopulate the read buffer.
const auto bytes_to_read = CanRead(n_bytes);
ByteVector result;
for (ByteVector::size_type i = 0; i < bytes_to_read; i++) {
result.emplace_back(read_buffer_.front());
read_buffer_.pop_front();

}
return result;

}

ByteVector::size_type Session::CanRead(
const ByteVector::size_type& n_bytes) const {

while (read_buffer_.size() < n_bytes && !serial_->IsEmpty()) {
// We don’t yet have |n_bytes| available to return, but there’s at least
// one byte waiting in the serial buffer. This means that at least the
// start of a message has arrived at the mbed, and it’s likely that the
// rest will shortly follow. Thus, calling |ProcessMessage| here is
// unlikely to trigger blocking.
//
// TODO(bbaren): This is a bit hackish; make it more elegant. Ideally,
// determine how much data is sitting in the serial buffer and ensure that
// a message is actually waiting.
ProcessMessage(serial_);

}
return std::min(n_bytes, read_buffer_.size());

}

ByteVector::size_type Session::Write(const ByteVector& bytes) {
if (CanWrite(bytes.size()) == 0) {
// The hardware serial buffer is full.
return 0;

}
// At this point, the hardware serial buffer is currently empty. We’re
// probably going to block a bit doing our write, since the serial is
// probably clocked slower than the CPU, but it’s dangerously complicated to
// try to make this entirely nonblocking.
//
// TODO(bbaren): Actually make this nonblocking, possibly by creating a
// shadow buffer in front of the hardware.
Message(session_id_, bytes).Send(serial_);
return bytes.size();

}

ByteVector::size_type Session::CanWrite(
const ByteVector::size_type& n_bytes) const {

// Assume we always can write--i.e., the serial chip has an unlimited buffer.
// This isn’t always the case, but it’s a useful abstraction for this
// particular app.
return n_bytes;

}

void Session::ProcessMessage(BufferAwareSerial* const serial) {
const auto message = Message::Receive(serial);
auto session = kAll->find(message.session_id());
if (session == kAll->end()) {
// We’ve never seen this session before, so create it.
auto emplace_result = kAll->emplace(message.session_id(),

Session(serial, message.session_id()));
assert(emplace_result.second); // The insertion should have taken place.
session = emplace_result.first;
kNew->emplace_back(message.session_id());

}
// Assign the message payload to the session.
extend(session->second.read_buffer_, message.payload());

}

} // namespace trust_anchor
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runtime/connection.h

// The Bedrock system calls are tailored to a session-based protocol like TCP.
// However, the mbed only has a serial line. To bridge this gap, this module
// implements (the server side of) a simple session-based protocol that can
// execute over a serial line.
//
// WARNING: THIS PROTOCOL HAS SECURITY PROBLEMS. It got written as a prototype
// during somebody’s thesis project, and it needs to be replaced with something
// better before entering production.
//
// At the lowest level, the protocol consists of _messages_. A message
// contains three parts: a session identifier, a size, and a data set. The
// first two fields are called the header, and the data set is also called the
// payload.
//
// 31 0
// +------------------------------+
// | session ID |
// +------------------------------+
// | size |
// +------------------------------+
// | |
// | data |
// | |
// +------------------------------+
//
// The session identifier and size are both big-endian 32-bit unsigned
// integers.
//
// - The session identifier is used by the endpoints to group messages into
// sessions. It is the client’s responsibility to never reuse session
// identifiers. (This restriction is obviously unrealistic in a production
// system, but it simplifies the code substantially and seems appropriate
// for a research proof-of-concept.)
//
// - The size field specifies the size of the data field (_not_ of the entire
// message) in bytes.
//
// The data are simply a free-form byte stream.
//
// Here’s an example session between a server and two clients.
//
// C1: (0x41414141, 12, ’Hello there.’)
// S: (0x41414141, 15, ’Hello yourself.’)
// C2: (0x80808080, 21, ’I am a second client.’)
// S: (0x41414141, 16, ’You still there?’)
// C1: (0x41414141, 4, ’Yes.’)
//
// The parties should simply ignore any message which does not conform to the
// protocol.

#ifndef TRUSTANCHOR_RUNTIME_CONNECTION_H_
#define TRUSTANCHOR_RUNTIME_CONNECTION_H_

#include <cstdint>
#include <deque>
#include <functional>

#include "runtime/byte_vector.h"
#include "runtime/macros.h"
#include "runtime/io.h"

namespace trust_anchor {

// Abstract base class to describe things which can be wire-serialized.
class WireSerializable {
public:
virtual ~WireSerializable() {}

// Subclasses should define a static member function which receives.
// Recommended signature: static T Receive(BufferAwareSerial* serial)

// Serializes the object and sends it along the wire.
virtual void Send(BufferAwareSerial* serial) const = 0;

};

// Abstract class which provides a default serialization for uint32_ts--in
// particular, as four bytes in big-endian order. This may seem a bit
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// unnecessary, but it lets us eliminate duplication among classes representing
// header fields.
class WireSerializableUInt32 : public WireSerializable {
public:
// This constructor is an implicit constructor and therefore violates the
// Google style guide. However, it seems appropriate in this case to be able
// to say something like
//
// SerializableUInt32 x = 42; // implicit construction
//
WireSerializableUInt32(const uint32_t value) noexcept : value_(value) {}

~WireSerializableUInt32() override {}

uint32_t value() const noexcept { return value_; }
void set_value(const uint32_t value) noexcept { value_ = value; }

static WireSerializableUInt32 Receive(BufferAwareSerial* serial);

void Send(BufferAwareSerial* serial) const;

bool operator==(const WireSerializableUInt32& other) const noexcept {
return value_ == other.value_;

}

protected:
uint32_t value_;

};

// Hash routine for WireSerializableUInt32s, allowing that type to be used in
// unordered containers.
class WireSerializableUInt32Hash {
public:
size_t operator()(const WireSerializableUInt32& key) const noexcept {
// If size_t is 32 bits wide, we’re hashing a 32-bit value into a 32-bit
// value and the hash function can be the identity function! Check to
// ensure that size_t is actually 32 bits wide, and go for it.
static_assert(sizeof(size_t) == sizeof(uint32_t),

"size_t and uint32_t not sized identically");
return key.value();

}
};

// Forward declaration for friend specification in class SessionID
class Message;

// 32-bit value which identifies a session on the wire. This needs to get
// passed with every wire message so we can keep track of the session.
class SessionID : public WireSerializableUInt32 {
public:
explicit SessionID(const uint32_t value) noexcept

: WireSerializableUInt32(value) {}

private:
// Downcast constructor: converts a SerializableUInt32 to a SessionID. This
// is a potentially dangerous operation if the SerializableUInt32 in question
// does not actually represent a SessionID, and it’s therefore reserved for
// internal use.
SessionID(const WireSerializableUInt32& value) noexcept

: WireSerializableUInt32(value) {}

// Message will have to construct SessionIDs by reading them off the wire, so
// it needs to be able to use the SessionID(WireSerializableUInt32)
// constructor.
friend class Message;

};

// Wire message as detailed in the file comments.
class Message : public WireSerializable {
public:
Message(const SessionID& session_id)

: payload_({}), session_id_(session_id) {}

Message(const SessionID& session_id, const ByteVector& payload)
: payload_(payload), session_id_(session_id) {}

const ByteVector& payload() const noexcept { return payload_; }
const SessionID& session_id() const noexcept { return session_id_; }

static Message Receive(BufferAwareSerial* serial);
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void Send(BufferAwareSerial* serial) const;

private:
// Wire message header as detailed in the file comments.
class Header {
public:
Header(const SessionID& session_id,

const WireSerializableUInt32& payload_size)
: payload_size_(payload_size), session_id_(session_id) {}

ByteVector::size_type payload_size() const noexcept {
return payload_size_.value();

}
const SessionID& session_id() const noexcept { return session_id_; }

static Header Receive(BufferAwareSerial* serial);

void Send(BufferAwareSerial* serial) const;

private:
WireSerializableUInt32 payload_size_;
SessionID session_id_;

};

// Generates a Header for this Message.
Header MakeHeader() const;

ByteVector payload_;
SessionID session_id_;

};

// Handle onto a wire session.
//
// A |Session| is either new or active. Any time the server receives a message
// with an unrecognized session ID, it creates a new session; once a server API
// user calls |Session::accept|, the session becomes active. (Sessions become
// active in the order they appear.) Only active sessions can send messages.
class Session {
public:
using IDSelector = std::function<bool(const SessionID&)>;

// Move constructor
Session(Session&& other) = default;

const SessionID& session_id() const noexcept { return session_id_; }

// Determines if |Accept| will block when called with the same arguments.
static bool AcceptWillBlock(BufferAwareSerial* serial, IDSelector predicate);

// Blocks until a session appears whose ID satisfies the |predicate|.
// Returns that session.
static Session* Accept(BufferAwareSerial* serial, IDSelector predicate);

static void Close(const SessionID& session_id);

// Looks up a session, returning |nullptr| if none exists.
static Session* Lookup(const SessionID& session_id);

// Performs a non-blocking read of up to |n_bytes| bytes from this session.
ByteVector Read(const ByteVector::size_type& n_bytes);

// Determines how many bytes a call to |Read| will return.
ByteVector::size_type CanRead(const ByteVector::size_type& n_bytes) const;

// Performs a non-blocking write of up to |bytes.size()| bytes from this
// session. Returns the number of bytes actually written.
ByteVector::size_type Write(const ByteVector& bytes);

// Determines how many bytes a call to |Write| will write.
ByteVector::size_type CanWrite(const ByteVector::size_type& n_bytes) const;

private:
explicit Session(BufferAwareSerial* serial, const SessionID& session_id)

: read_buffer_(std::deque<uint8_t>()), serial_(serial),
session_id_(session_id) {}

// Blocks until a message is ready to read, and then reads it. Data are
// entered into the read buffer for the relevant session, which is created if
// necessary.
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static void ProcessMessage(BufferAwareSerial* serial);

// Data which has been read off the serial line for this Session but has not
// yet been consumed. This needs to be a deque so that certain iterator
// operations can occur (see |extend| in runtime/connection.cc).
mutable std::deque<uint8_t> read_buffer_;

BufferAwareSerial* const serial_;

SessionID session_id_;

DISALLOW_COPY_AND_ASSIGN(Session);
};

} // namespace trust_anchor

#endif // TRUSTANCHOR_RUNTIME_CONNECTION_H_

runtime/handle.cc
#include "runtime/handle.h"

#include <cassert>
#include <cstdint>
#include <memory>

#include "runtime/aes.h"
#include "runtime/connection.h"
#include "runtime/io.h"

namespace trust_anchor {

uint32_t Handle::EncodeForBedrock() const {
if (IsListener()) {

switch (dynamic_cast<const Listener*>(this)->channel()) {
case Listener::Channel::kEncryption:
return 0;

case Listener::Channel::kLogging:
return 1;

default:
assert(false);

}
} else if (IsAESHandle()) {
return 2;

} else {
assert(IsSessionHandle());
return dynamic_cast<const SessionHandle*>(this)->session_id().value() + 3;

}
}

std::shared_ptr<Handle> Handle::DecodeFromBedrock(const uint32_t encoded) {
using HandlePtr = std::shared_ptr<Handle>;
switch (encoded) {
case 0:
return HandlePtr(new Listener(Listener::Channel::kEncryption));

case 1:
return HandlePtr(new Listener(Listener::Channel::kLogging));

case 2:
return HandlePtr(new AESHandle());

default:
return HandlePtr(new SessionHandle(SessionID(encoded - 3)));

}
}

bool Listener::IsReady(const Direction& direction) const {
switch (direction) {
case Direction::kRead:
return !Session::AcceptWillBlock(

Singleton<USBSerial>::get(),
[this](const SessionID& id) {
return id.value() % 2 == channel_;

});
case Direction::kWrite:
// We can never write to a listener.
return false;

default:
assert(false);
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}
}

Session* SessionHandle::GetSession() const {
return Session::Lookup(session_id_);

}

bool SessionHandle::IsReady(const Direction& direction) const {
const auto* session = GetSession();
assert(session);
switch (direction) {
case Direction::kRead:
return session->CanRead(1);

case Direction::kWrite:
return session->CanWrite(1);

default:
assert(false);

}
}

bool AESHandle::IsReady(const Direction& direction) const {
// We can always read from or write to the AES appliance. Whether that read
// or write makes any sense is up to the application to decide.
return true;

}

void AESHandle::Encrypt(const Block& key, const Block& plaintext) noexcept {
// The AES code we got is not const-correct, so better create some mutable
// versions of |key| and |data|.
auto m_key = key;
auto m_plaintext = plaintext;
// Do the AES operation.
SERIAL_DEBUG("Encrypting!\r\nKey: %s\r\nPlain: %s\r\n",

ShowHex(key.data(), key.size()).data(),
ShowHex(plaintext.data(), plaintext.size()).data());

aes_ctx_t context;
aes_setkey(&context, AES_128, m_key.data());
aes_ecb_encrypt(&context, m_plaintext.data(), last_result_.data());
SERIAL_DEBUG("Cipher: %s\r\n",

ShowHex(last_result_.data(), last_result_.size()).data());
}

} // namespace trust_anchor

runtime/handle.h
// Resource handles for the mbed.
//
// Bedrock’s system calls need to be able to refer to handles. On x86, file
// descriptors fill this role; on the mbed, I have to implement them myself.

#ifndef TRUSTANCHOR_RUNTIME_HANDLE_H
#define TRUSTANCHOR_RUNTIME_HANDLE_H

#include <cstdint>
#include <memory>

#include "runtime/aes.h"
#include "runtime/connection.h"

namespace trust_anchor {

// Resource handle as described in file comments. Bedrock needs to be able to
// refer to these, so I provide a mechanism to serialize and deserialize them
// using |uint32_t|s.
class Handle {
public:
enum class Direction {
kRead,
kWrite,

};

virtual ~Handle() {}

virtual bool IsReady(const Direction& direction) const = 0;

uint32_t EncodeForBedrock() const;

56



static std::shared_ptr<Handle> DecodeFromBedrock(const uint32_t encoded);

// Functions to help with downcasting.
virtual bool IsListener() const { return false; }
virtual bool IsSessionHandle() const { return false; }
virtual bool IsAESHandle() const { return false; }

};

// Resource handle which represents a socket in the listening state.
class Listener : public Handle {
public:
// What the socket is listening for.
enum Channel : uint32_t {
kEncryption = 0, // data to be encrypted
kLogging = 1, // data to be logged

};

Listener(const Channel& channel) : channel_(channel) {}

const Channel& channel() const noexcept { return channel_; }

virtual bool IsReady(const Direction& direction) const override;

virtual bool IsListener() const override { return true; }

protected:
Channel channel_;

};

// Resource handle which represents a socket connected to a session.
class SessionHandle : public Handle {
public:
SessionHandle(const SessionID& session_id) : session_id_(session_id) {}

const SessionID& session_id() const noexcept { return session_id_; }

// Looks up the session associated with this resource. Returns |nullptr| if
// no such session exists (i.e., if this resource handle is invalid).
Session* GetSession() const;

virtual bool IsReady(const Direction& direction) const override;

virtual bool IsSessionHandle() const override { return true; }

protected:
SessionID session_id_;

};

// Resource handle which represents the AES appliance.
class AESHandle : public Handle {
public:
using Block = std::array<uint8_t, AES_128_KEY_SIZE>;

AESHandle() {}

const Block& last_result() const noexcept { return last_result_; }

virtual bool IsReady(const Direction& direction) const override;

void Encrypt(const Block& key, const Block& plaintext) noexcept;

void Decrypt(const Block& key, const Block& ciphertext) noexcept;

virtual bool IsAESHandle() const override { return true; }

protected:
Block last_result_;

};

} // namespace trust_anchor

#endif
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runtime/io.cc
// Serial I/O using the mbed.

#include "runtime/io.h"

#include <cassert>
#include <cstdint>
#include <iomanip>
#include <ios>
#include <sstream>
#include <stdexcept>
#include <string>

#include "runtime/byte_vector.h"

namespace trust_anchor {

ByteVector BufferAwareSerial::Get(const ByteVector::size_type& size) {
uint8_t raw_bytes[size];
const auto n_bytes_read = this->read(raw_bytes, size);
assert(0 <= n_bytes_read);
assert(static_cast<size_t>(n_bytes_read) == size);
return ByteVector(raw_bytes, raw_bytes + n_bytes_read);

}

bool BufferAwareSerial::IsEmpty() {
return !this->readable();

}

void BufferAwareSerial::Put(const ByteVector& data) {
const auto n_bytes_written = this->write(data.data(), data.size());
assert(0 <= n_bytes_written);
assert(static_cast<size_t>(n_bytes_written) == data.size());

}

USBSerial::USBSerial() : BufferAwareSerial(USBTX, USBRX) {
this->attach(this, &USBSerial::HandleReceiveInterrupt);

}

ByteVector USBSerial::Get(const ByteVector::size_type& size) {
ByteVector result;
while (result.size() < size) {
uint32_t queued_byte;
try {
queued_byte = buffer_.Dequeue();

} catch (std::domain_error) {
continue;

}
result.push_back(static_cast<uint8_t>(queued_byte));

}
return result;

}

bool USBSerial::IsEmpty() {
return buffer_.IsEmpty();

}

void USBSerial::HandleReceiveInterrupt() {
while (this->readable()) {
const uint8_t raw_byte = this->getc();
this->putc(’.’);
buffer_.Enqueue(static_cast<uint32_t>(raw_byte));

}
}

std::string ShowHex(const uint8_t* data, const size_t length) {
std::ostringstream result;
for (std::size_t i = 0; i < length; i++) {
result << std::setw(2) << std::setfill(’0’) << std::hex

<< static_cast<int>(data[i]);
}
return result.str();

}

} // namespace trust_anchor
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runtime/io_constants.h
// Constants for input and output useful in places other than just the program
// that runs on the mbed.

#ifndef TRUSTANCHOR_RUNTIME_IO_CONSTANTS_H_
#define TRUSTANCHOR_RUNTIME_IO_CONSTANTS_H_

namespace trust_anchor {

constexpr int kMbedBaudrate = 230400;

} // namespace

#endif // TRUSTANCHOR_RUNTIME_IO_CONSTANTS_H_

runtime/io.h
// Serial I/O using the mbed.

#ifndef TRUSTANCHOR_RUNTIME_IO_H_
#define TRUSTANCHOR_RUNTIME_IO_H_

#include <cstddef>
#include <cstdint>
#include <string>

#include <mbed.h>

#include "runtime/byte_vector.h"
#include "runtime/queue.h"
#include "runtime/singleton.h"

namespace trust_anchor {

// A serial line which can read and write STL vectors in addition to character
// buffers.
class BufferAwareSerial : public mbed::Serial {
public:
BufferAwareSerial(const PinName& tx, const PinName& rx)

: mbed::Serial(tx, rx) {}

~BufferAwareSerial() override {}

virtual ByteVector Get(const ByteVector::size_type& size);

virtual bool IsEmpty();

void Put(const ByteVector& data);
};

// The serial line connected to the USB port.
class USBSerial : public BufferAwareSerial {
public:
USBSerial();
~USBSerial() override {}

virtual ByteVector Get(const ByteVector::size_type& size) override;

virtual bool IsEmpty() override;

private:
void HandleReceiveInterrupt();

MichaelScottQueue buffer_;
};

// Prints a debugging string to the serial line.
#ifdef PRINTF_DEBUGGING
# define SERIAL_DEBUG(...) \
trust_anchor::Singleton<trust_anchor::USBSerial>::get()->printf(__VA_ARGS__)

#else
# define SERIAL_DEBUG(...) do {} while (false)
#endif
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// A useful debugging routine to format a buffer.
std::string ShowHex(const uint8_t* data, const std::size_t length);

} // namespace trust_anchor

#endif // TRUSTANCHOR_RUNTIME_IO_H_

runtime/lazy_static_ptr.h
// Copyright (C) 2013 Google, Inc.
// Copyright (C) 2015 the Massachusetts Institute of Technology
//
// Based on lazy_static_ptr, which is licensed under the Apache License v2.0.

// Google’s LazyStaticPtr implementation is a bit heavyweight for the mbed, so
// we’ve modified it to work with our Trust Anchor code base. It is now most
// decidedly not thread-safe. On the other hand, though, this is running on a
// microcontroller, so worrying about thread safety seems to be putting the
// cart before the horse.

#ifndef TRUSTANCHOR_RUNTIME_LAZY_STATIC_PTR_H_
#define TRUSTANCHOR_RUNTIME_LAZY_STATIC_PTR_H_

#include "runtime/macros.h"

namespace trust_anchor {

// Lazily allocates an object of the specified type.
template <typename T>
class LazyStaticPtr {
public:
LazyStaticPtr() : ptr_(nullptr) {}

T &operator*() const { return *get(); }
T* operator->() const { return get(); }
T* get() const {
if (ptr_ == nullptr) {
ptr_ = new T();

}
return ptr_;

}

private:
mutable T* ptr_;

DISALLOW_COPY_AND_ASSIGN(LazyStaticPtr);
};

} // namespace trust_anchor

#endif // TRUSTANCHOR_RUNTIME_LAZY_STATIC_PTR_H_

runtime/macros.h
// Copyright (C) 2013 Google, Inc.
// Copyright (C) 2015 the Massachusetts Institute of Technology
//
// These macros were originally licensed under the Apache License v2.0.

// Various macros useful for high-quality C++.

#ifndef TRUSTANCHOR_RUNTIME_MACROS_H_
#define TRUSTANCHOR_RUNTIME_MACROS_H_

// A macro to disallow the copy constructor and operator= functions
// This should be used in the private: declarations for a class
//
// For disallowing only assign or copy, write the code directly, but declare
// the intent in a comment, for example:
// void operator=(const TypeName&) = delete; // DISALLOW_ASSIGN
// Note, that most uses of DISALLOW_ASSIGN and DISALLOW_COPY are broken
// semantically, one should either use disallow both or neither. Try to
// avoid these in new code.
#if (201100L <= __cplusplus)
# define DISALLOW_COPY_AND_ASSIGN(TypeName) \

TypeName(const TypeName&) = delete; \
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void operator=(const TypeName&) = delete
#else
# define DISALLOW_COPY_AND_ASSIGN(TypeName) \

TypeName(const TypeName&); \
void operator=(const TypeName&)

#endif

#endif // TRUSTANCHOR_RUNTIME_MACROS_H_

runtime/queue.cc
// TODO(bbaren): _Very_ occasionally, this implementation causes the
// microcontroller to crash. (This isn’t entirely surprising, since this
// implementation doesn’t use hazard pointers.) Figure out why the crash
// occurs and fix it.

#include "runtime/queue.h"

#include <cassert>
#include <cstdint>
#include <memory>
#include <stdexcept>

#include <mbed.h>

namespace trust_anchor {

MichaelScottQueue::MichaelScottQueue() {
std::shared_ptr<Node> node(new Node);
node->next.pointer = nullptr;
head_.pointer = node;
tail_.pointer = node;

}

using Queue = MichaelScottQueue;

uint32_t Queue::Dequeue() {
uint32_t result;
Pointer head;
while (true) {
head = head_;
Pointer tail = tail_;
Pointer next = head.pointer->next;
if (head == head_) {
if (head.pointer == tail.pointer) {
if (next.pointer == nullptr) {
throw std::domain_error("queue is empty");

}
Pointer::CAS(&tail_, tail, Pointer{next.pointer, tail.count + 1});

} else {
result = next.pointer->value;
if (Pointer::CAS(&head_, head, Pointer{next.pointer, head.count + 1})) {
break;

}
}

}
}
return result;

}

void Queue::Enqueue(const uint32_t value) {
std::shared_ptr<Node> node(new Node);
node->value = value;
node->next.pointer = nullptr;
Pointer tail;
while (true) {
tail = tail_;
Pointer next = tail.pointer->next;
if (tail == tail_) {
if (next.pointer == nullptr) {
if (Pointer::CAS(&tail.pointer->next,

next, Pointer{node, next.count + 1})) {
break;

}
} else {
Pointer::CAS(&tail_, tail, Pointer{next.pointer, tail.count + 1});

}
}
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}
Pointer::CAS(&tail_, tail, Pointer{node, tail.count + 1});

}

bool Queue::IsEmpty() {
return head_.pointer == tail_.pointer;

}

bool Queue::Pointer::CAS(Queue::Pointer* const pointer,
const Queue::Pointer& old_value, const Queue::Pointer& new_value) {

bool result;
// This is privileged code, so we can dispense with ldrex and strex and
// simply disable interrupts during the operation.
__disable_irq();
if (*pointer == old_value) {
*pointer = new_value;
// Duplicate the __enable_irq call between branches of the if to keep
// interrupts turned off for as little time as possible.
__enable_irq();
result = true;

} else {
__enable_irq();
result = false;

}
return result;

}

} // namespace trust_anchor

runtime/queue.h
// Michael & Scott lock-free queue
//
// This is a direct implementation of the queue from Maged M. Michael and
// Michael L. Scott, ’Simple, Fast, and Practical Non-Blocking and Blocking
// Concurrent Queue Algorithms’, PODC ’96, pp 267-275,
// doi:10.1145/248052.248106.

#ifndef TRUSTANCHOR_RUNTIME_QUEUE_H_
#define TRUSTANCHOR_RUNTIME_QUEUE_H_

#include <cstdint>
#include <memory>

#include "runtime/macros.h"

namespace trust_anchor {

class MichaelScottQueue {
public:
MichaelScottQueue();

uint32_t Dequeue();

void Enqueue(const uint32_t value);

bool IsEmpty();

private:
struct Node;

struct Pointer {
std::shared_ptr<Node> pointer;
unsigned int count;

static bool CAS(Pointer* const pointer,
const Pointer& old_value, const Pointer& new_value);

bool operator==(const Pointer& other) const noexcept {
return pointer == other.pointer && count == other.count;

}
};

struct Node {
uint32_t value;
Pointer next;

};
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Pointer head_;
Pointer tail_;

DISALLOW_COPY_AND_ASSIGN(MichaelScottQueue);
};

} // namespace trust_anchor

#endif // TRUSTANCHOR_RUNTIME_AES_H_

runtime/reservation.cc
#include "runtime/reservation.h"

#include <cassert>
#include <map>
#include <memory>

#include "runtime/io.h"
#include "runtime/handle.h"
#include "runtime/lazy_static_ptr.h"

namespace {
using ::trust_anchor::LazyStaticPtr;
using ::trust_anchor::Reservation;

// All valid reservations.
LazyStaticPtr<std::map<Reservation::ID, Reservation>> kValid;

} // namespace

namespace trust_anchor {

Reservation::ID Reservation::Make(const std::shared_ptr<Handle> handle,
const Handle::Direction& direction) {

const auto result = kValid->emplace(GenerateID(),
Reservation(handle, direction));

assert(result.second); // assert insertion actually took place
return result.first->first; // return copy of inserted ID

}

std::unique_ptr<Reservation::ID> Reservation::FindSatisfiable() {
for (auto reservation_iter = kValid->begin();

reservation_iter != kValid->end();
reservation_iter++) {

auto& reservation = reservation_iter->second;
if (reservation.handle_->IsReady(reservation.direction_)) {
// Erase |reservation|, but grab its ID first so we can return it.
// (Erasing it will invalidate its iterator, so we can’t do so
// afterward.)
auto result = std::unique_ptr<Reservation::ID>(

new Reservation::ID(reservation_iter->first));
kValid->erase(reservation_iter);
return result;

}
}
return nullptr;

}

Reservation::ID Reservation::GenerateID() {
// TODO(bbaren): Come up with a better way to do this, preferably one that
// doesn’t have overflow problems.
static ID max_id;
return max_id++;

}

} // namespace trust_anchor

runtime/reservation.h
// Reservation class for implementing epoll-style I/O control.

#ifndef TRUSTANCHOR_RUNTIME_RESERVATION_H_
#define TRUSTANCHOR_RUNTIME_RESERVATION_H_

#include <cstdint>
#include <memory>
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#include "runtime/handle.h"

namespace trust_anchor {

class Reservation {
public:
using ID = uint32_t;

static ID Make(std::shared_ptr<Handle> handle,
const Handle::Direction& direction);

// Finds a reservation which can be satisfied and invalidates it. Returns
// its ID. Returns |nullptr| if no reservation can be satisfied.
static std::unique_ptr<ID> FindSatisfiable();

private:
explicit Reservation(std::shared_ptr<Handle> handle,

const Handle::Direction& direction)
: handle_(handle), direction_(direction) {}

static ID GenerateID();

std::shared_ptr<Handle> handle_;

Handle::Direction direction_;
};

} // namespace trust_anchor

#endif // TRUSTANCHOR_RUNTIME_RESERVATION_H_

runtime/singleton.h
// Copyright (C) 2013 Google, Inc.
// Copyright (C) 2015 the Massachusetts Institute of Technology
//
// Based on lazy_static_ptr, which is licensed under the Apache License v2.0.

// The mbed libraries don’t provide any kind of singleton object support, so
// we’ve written our own. It’s heavily based off of Google’s LazyStaticPtr
// implementation; unlike it, however, it is most decidedly not thread-safe.
// On the other hand, though, this is running on a microcontroller, so worrying
// about thread safety seems to be putting the cart before the horse.

#ifndef TRUSTANCHOR_RUNTIME_SINGLETON_H_
#define TRUSTANCHOR_RUNTIME_SINGLETON_H_

#include "runtime/macros.h"

namespace trust_anchor {

// Singleton object wrapper. The wrapped object must have a nullary
// constructor, and its destructor will never get called.
//
// Example usage:
//
// Serial* const serial = Singleton<Serial>::get();
// serial->puts("foo");
//
template<typename T>
class Singleton {
public:
static T* get() {
// This if statement looks a bit sketchy--when did ptr_ ever get
// initialized to nullptr? See just below the class definition.
if (!ptr_) {
ptr_ = new T();

}
return ptr_;

}

private:
static T* ptr_;

DISALLOW_COPY_AND_ASSIGN(Singleton);
};
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// Do a static initialization to make sure Singleton<T>::ptr_ = nullptr when
// control hits main. C++ disallows setting ptr_ to nullptr in the class
// definition, but doing it here is just fine.
template<typename T>
T* Singleton<T>::ptr_ = nullptr;

} // namespace trust_anchor

#endif // TRUSTANCHOR_RUNTIME_SINGLETON_H_

runtime/syscall_entry.h
// Bedrock relies on untrusted system calls. Numbers for those system calls
// are defined here (as preprocessor macros, so they can be used in both C++
// and assembly).
//
// These system calls use the Bedrock calling convention, not the C++ one.
// They’re defined in runtime/syscall_entry.S, which adapts them to the C++
// calling convention.

#ifndef TRUSTANCHOR_RUNTIME_SYSCALL_ENTRY_H_
#define TRUSTANCHOR_RUNTIME_SYSCALL_ENTRY_H_

// Immediately halts Bedrock execution, printing an error.
// Prototype: void sys_abort();
#define SYS_ABORT_NUMBER 0

// (Server) Creates a new socket and sets it to listen on a given port.
// Returns a handle to the socket. If an error occurs, execution halts.
//
// Currently, two ports--0 and 1--are legal, and they identify the encryption
// service and the logging service, respectively.
//
// Prototype: uint32_t sys_listen(uint32_t port);
#define SYS_LISTEN_NUMBER 1

// (Server) Grabs a new incoming connection on the given socket, returning a
// file descriptor referring to that connection. Blocks until a connection
// comes through. If an error occurs, execution halts.
//
// Prototype: uint32_t sys_accept(uint32_t socket);
#define SYS_ACCEPT_NUMBER 2

// (Client) Connects to a socket listening on a given address. Returns a
// description referring to the created connection. If an error occurs,
// execution halts.
//
// Prototype:
// uint32_t sys_connect(const char* address, uint32_t address_length);
#define SYS_CONNECT_NUMBER 3

// (Client/server) Reads a certain number of bytes from a file descriptor into
// a buffer. Returns the number of bytes read. Unlike Unix, this does _not_
// block! If not enough bytes are available, ’read’ will read as many as
// possible.
//
// Prototype: uint32_t sys_read(uint32_t fd, void* buffer, uint32_t n_bytes);
#define SYS_READ_NUMBER 4

// (Client/server) Writes a certain number of bytes from a buffer into a file
// descriptor. Returns the number of bytes written. Like ’read’, this will
// not block.
//
// Prototype: uint32_t sys_write(uint32_t fd, void* buffer, uint32_t n_bytes);
#define SYS_WRITE_NUMBER 5

// (Client/server) Closes a file descriptor. This is _not_ the function to use
// to close a socket! (In fact, no such function exists. Don’t create too
// many sockets.)
//
// Prototype: void sys_close(uint32_t fd);
#define SYS_CLOSE_NUMBER 6

// (Client/server) The last two system calls, ’declare’ and ’wait’, can be used
// to implement blocking I/O on top of these primitives. They mimic the Linux
// epoll(7) interface.
//
// The most basic use case is waiting for a file descriptor to have data
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// available. To do so, call
//
// declare(some_fd, false);
// wait(true);
//
// The second call will then block until data are available on some_fd. (Don’t
// worry about the boolean arguments for now; you will probably not want to
// change them. We discuss them later.)
//
// However, we can get much more complicated. For instance, say you have two
// FDs you’d like to monitor. You can do
//
// fd1_reservation = declare(fd1, false);
// fd2_reservation = declare(fd2, false);
// event = wait(true);
//
// Now, we’re capturing return values from ’declare’. Every time ’declare’ is
// called, it returns a ’reservation’--a receipt that identifies the request to
// monitor an FD. When ’wait’ returns, it will return either fd1_reservation
// or fd2_reservation. You can thus figure out which FD got an event by
// looking at the value in ’event’:
//
// if (event == fd1_reservation) {
// // fd1 has data
// } else {
// assert (event == fd2_reservation);
// // fd2 has data
// }
//
// Note that when ’wait’ returns, the receipt it returns becomes invalid. So
// if you want to repeatedly wait on an FD, you need to get a new reservation
// each time:
//
// while (true) {
// declare(some_fd, false);
// wait(true);
// // process some_fd
// }
//
// Finally, the boolean arguments: If you pass ’true’ to ’declare’, you can get
// notified when _writes_ occur to an FD. (We’re not sure why you would want
// to do this, but the functionality is there.) More usefully, if you pass
// ’false’ to ’wait’, ’wait’ itself will become nonblocking, and it will return
// 0xffffffff if no event is available. This might be useful if you’re
// managing your own event loop or something like that.
//
// Prototypes:
// uint32_t sys_declare(uint32_t fd, bool monitor_writes);
// uint32_t sys_wait(bool blocking);
#define SYS_DECLARE_NUMBER 7
#define SYS_WAIT_NUMBER 8

#endif // TRUSTANCHOR_RUNTIME_SYSCALL_ENTRY_H_

runtime/syscall_entry.S
// Interwork between Bedrock calling convention and C++ calling convention so
// the former can call functions in the latter. I would have done this as C++
// with inline assembly, but current versions of GCC (4.9) have a codegen bug
// involving structs in naked functions, so it’s easier to just do it as
// assembly.

.syntax unified

.text

#include "runtime/syscall_entry.h"

// Bedrock system call entry points. These are the actual system call symbols
// declared in runtime/syscalls.h.

.globl sys_abort
sys_abort:

mov r2, #SYS_ABORT_NUMBER
b SyscallEntry

.globl sys_listen
sys_listen:

mov r2, #SYS_LISTEN_NUMBER
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b SyscallEntry

.globl sys_accept
sys_accept:

mov r2, #SYS_ACCEPT_NUMBER
b SyscallEntry

.globl sys_connect
sys_connect:

mov r2, #SYS_CONNECT_NUMBER
b SyscallEntry

.globl sys_read
sys_read:

mov r2, #SYS_READ_NUMBER
b SyscallEntry

.globl sys_write
sys_write:

mov r2, #SYS_WRITE_NUMBER
b SyscallEntry

.globl sys_close
sys_close:

mov r2, #SYS_CLOSE_NUMBER
b SyscallEntry

.globl sys_declare
sys_declare:

mov r2, #SYS_DECLARE_NUMBER
b SyscallEntry

.globl sys_wait
sys_wait:

mov r2, #SYS_WAIT_NUMBER
b SyscallEntry

// Calls BedrockSyscall with three arguments: the Bedrock stack pointer, the
// Bedrock continuation pointer, and the Bedrock system call number.
SyscallEntry:

// Stash away a copy of the Bedrock stack pointer and continuation
// pointer.
push {r0, r1, lr}
// Do the syscall.
bl BedrockSyscall
// Save the result for Bedrock.
mov r2, r0
// Restore the Bedrock stack pointer and continuation pointer.
pop {r0, r1, lr}
// Jump back into Bedrock code.
mov pc, r1

runtime/syscall_implementation.cc
// Bedrock system call implementations.

#include <cassert>
#include <cstdint>
#include <cstring>
#include <memory>
#include <sstream>
#include <string>

#include <mbed.h>

#include "runtime/aes.h"
#include "runtime/boot.h"
#include "runtime/connection.h"
#include "runtime/io.h"
#include "runtime/handle.h"
#include "runtime/reservation.h"
#include "runtime/singleton.h"
#include "runtime/syscall_entry.h"

// System call implementations.
namespace {

// Constant for |wait| to indicate no reservation can be satisfied.
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constexpr uint32_t kNoReservationIsReady = 0xffffffff;

// Tells you what system call got called.
std::string SyscallName(const int syscall_number) {
switch (syscall_number) {
case SYS_ABORT_NUMBER: return "abort";
case SYS_LISTEN_NUMBER: return "listen";
case SYS_ACCEPT_NUMBER: return "accept";
case SYS_CONNECT_NUMBER: return "connect";
case SYS_READ_NUMBER: return "read";
case SYS_WRITE_NUMBER: return "write";
case SYS_CLOSE_NUMBER: return "close";
case SYS_DECLARE_NUMBER: return "declare";
case SYS_WAIT_NUMBER: return "wait";
default:
std::ostringstream name;
name << "<unknown: " << syscall_number << ">";
return name.str();

}
}

// Converts a Bedrock buffer address to an actual pointer.
void* BedrockBuffer(const uint32_t bedrock_offset) {
return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(&bedrock_heap)

+ bedrock_offset);
}

} // namespace

namespace trust_anchor {

void SysAbort() {
SERIAL_DEBUG("abort: Called.\r\n");
error("Bedrock program terminated.");

}

uint32_t SysListen(const uint32_t port) {
// We can listen for crypto requests or for log requests.
uint32_t result;
switch (port) {
case 0:
result = Listener(Listener::Channel::kEncryption).EncodeForBedrock();
break;

case 1:
result = Listener(Listener::Channel::kLogging).EncodeForBedrock();
break;

default:
error("listen: Invalid port ‘%u’.\r\n", port);
break;

}
return result;

}

uint32_t SysAccept(const uint32_t socket) {
// |socket| corresponds to a |Listener|.
std::shared_ptr<Handle> handle = Handle::DecodeFromBedrock(socket);
assert(handle->IsListener());
// Wait until somebody shows up on the serial port asking for a connection to
// the requested channel.
const uint32_t channel_id = dynamic_cast<Listener*>(handle.get())->channel();
const auto new_session = Session::Accept(

Singleton<USBSerial>::get(),
[channel_id](const SessionID& id) {
return id.value() % 2 == channel_id;

});
return SessionHandle(new_session->session_id()).EncodeForBedrock();

}

uint32_t SysConnect(const void* const address, const uint32_t address_length) {
// |address| can only be "AES" right now.
const std::string aes_address = "AES";
if (std::memcmp(address, aes_address.data(), aes_address.size())) {
char bad_address[address_length + 1];
std::memcpy(bad_address, address, address_length);
bad_address[address_length] = ’\0’;
error("connect: Invalid address ‘%s’.\r\n", bad_address);

}
return Singleton<AESHandle>::get()->EncodeForBedrock();

}
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uint32_t SysRead(const uint32_t fd, void* const buffer,
const uint32_t n_bytes) {

// |fd| corresponds to a handle.
std::shared_ptr<Handle> handle = Handle::DecodeFromBedrock(fd);
if (handle->IsAESHandle()) {
if (n_bytes != AES_128_KEY_SIZE) {
error("read: Invalid AES block size ‘%d’ (expected ‘%d’).\r\n", n_bytes,

AES_128_KEY_SIZE);
}
std::memcpy(buffer, Singleton<AESHandle>::get()->last_result().data(),

AES_128_KEY_SIZE);
SERIAL_DEBUG("read: filled buffer with ‘%s’.\r\n",

trust_anchor::ShowHex(reinterpret_cast<uint8_t*>(buffer),
AES_128_KEY_SIZE)

.data());
return AES_128_KEY_SIZE;

} else {
assert(handle->IsSessionHandle());
// Look up the session.
auto* session = dynamic_cast<SessionHandle*>(handle.get())->GetSession();
if (!session) {
error("read: Invalid FD.");

}
// Do the read.
const auto bytes = session->Read(n_bytes);
std::memcpy(buffer, bytes.data(), bytes.size());
return bytes.size();

}
}

uint32_t SysWrite(const uint32_t fd, void* const buffer,
const uint32_t n_bytes) {

std::shared_ptr<Handle> handle = Handle::DecodeFromBedrock(fd);
if (handle->IsAESHandle()) {
if (n_bytes != AES_128_KEY_SIZE) {
error("write: Invalid AES block size ‘%d’ (expected ‘%d’).\r\n", n_bytes,

AES_128_KEY_SIZE);
}
AESHandle::Block key = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
AESHandle::Block plaintext;
std::memcpy(plaintext.data(), buffer, AES_128_KEY_SIZE);
Singleton<AESHandle>::get()->Encrypt(key, plaintext);
return AES_128_KEY_SIZE;

} else {
assert(handle->IsSessionHandle());
auto session = dynamic_cast<SessionHandle*>(handle.get())->GetSession();
if (!session) {
error("write: Invalid FD.");

}
// Do the write.
uint8_t* const byte_buffer = reinterpret_cast<uint8_t*>(buffer);
SERIAL_DEBUG("write: writing ‘%s’.\r\n",

trust_anchor::ShowHex(byte_buffer, n_bytes).data());
return session->Write(ByteVector(byte_buffer, byte_buffer + n_bytes));

}
}

uint32_t SysClose(const uint32_t fd) {
// |fd| corresponds to a handle.
std::shared_ptr<Handle> handle = Handle::DecodeFromBedrock(fd);
if (handle->IsSessionHandle()) {
auto session = dynamic_cast<SessionHandle*>(handle.get())->GetSession();
Session::Close(session->session_id());
return 0;

} else {
return 0xffffffff;

}
}

uint32_t SysDeclare(const uint32_t fd, const bool monitor_writes) {
SERIAL_DEBUG("declare: interested in fd 0x%08x for %s.\r\n",

fd,
monitor_writes ? "writes" : "reads");

return Reservation::Make(Handle::DecodeFromBedrock(fd),
monitor_writes ? Handle::Direction::kWrite

: Handle::Direction::kRead);
}

uint32_t SysWait(const bool blocking) {
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// Busy-wait for a reservation to become ready. Yes, busy-waiting is nasty,
// but it’s easy to do, and we don’t care about power consumption or resource
// starvation for this demo anyway.
SERIAL_DEBUG("wait will%s block.\r\n", blocking ? "" : " not");
do {
if (const auto reservation_id = Reservation::FindSatisfiable()) {
return *reservation_id;

}
} while (blocking);
return kNoReservationIsReady;

}

// Generic system call dispatcher. Make sure the compiler emits code for this!
#define USED __attribute__((__used__))
extern "C" uint32_t USED

BedrockSyscall(uint32_t, void (*)(), int);
#undef USED

uint32_t BedrockSyscall(const uint32_t stack_offset,
void (* const continuation)(),
const int syscall_number) {

SERIAL_DEBUG("Entered C++ syscall dispatcher for syscall %s.\r\n",
SyscallName(syscall_number).c_str());

uint32_t result;
// Get arguments off the Bedrock stack.
const uint32_t* const arguments =

bedrock_heap
+ 1 // skip over return pointer
+ (stack_offset / sizeof(uint32_t)); // convert to word offset

// Dispatch.
switch (syscall_number) {
case SYS_ABORT_NUMBER:
SysAbort();
result = -1;
break;

case SYS_LISTEN_NUMBER:
result = SysListen(arguments[0]);
break;

case SYS_ACCEPT_NUMBER:
result = SysAccept(arguments[0]);
break;

case SYS_CONNECT_NUMBER:
result = SysConnect(BedrockBuffer(arguments[0]), arguments[1]);
break;

case SYS_READ_NUMBER:
result = SysRead(arguments[0], BedrockBuffer(arguments[1]), arguments[2]);
break;

case SYS_WRITE_NUMBER:
result = SysWrite(arguments[0], BedrockBuffer(arguments[1]),

arguments[2]);
break;

case SYS_CLOSE_NUMBER:
result = SysClose(arguments[0]);
break;

case SYS_DECLARE_NUMBER:
result = SysDeclare(arguments[0], arguments[1]);
break;

case SYS_WAIT_NUMBER:
result = SysWait(arguments[0]);
break;

default:
error("Unrecognized syscall.");
result = -1;
break;

}
// All done.
SERIAL_DEBUG("System call returns 0x%08x.\r\n", result);
return result;

}

} // namespace trust_anchor
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