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ABSTRACT
Purely functional programs verified using interactive theorem provers typically need to
be translated to run: either by extracting them to a similar language (like Coq to OCaml)
or by proving them equivalent to deeply embedded implementations (like C programs).
Traditionally, the first approach is automated but produces unverified programs with
average performance, and the second approach is manual but produces verified, high-
performance programs.
This thesis shows how to recast program extraction as a proof-search problem to au-

tomatically derive correct-by-construction, high-performance code from shallowly em-
bedded functional programs. It introduces a unifying framework, relational compilation, to
capture and extend recent developments in program extraction,with a focus onmodularity
and sound extensibility. To demonstrate the value of this approach, it then presents Rupi-
cola, a relational compiler-construction toolkit designed to extract fast, verified, idiomatic
low-level code from annotated functional models.
The originality of this approach lies in its combination of foundational proofs, extensi-

bility, and performance, backed by an unconventional take on compiler extensions: unlike
traditional compilers, Rupicola generates good code not because of clever built-in opti-
mizations, but because it allows expert users to plug in domain- and sometimes program-
specific extensions that allow them to generate exactly the low-level code that they want.
This thesis demonstrates the benefits of this approach through case studies and perfor-
mance benchmarks that highlight how easy Rupicola makes it to create domain-specific
compilers that generate code with performance comparable to that of handwritten C
programs.
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1 Introduction

Vulnerabilities in critical systems fall into roughly two categories: logic mistakes (incorrect

business logic) and programmingmistakes (use-after-free, out-of-bounds accesses, etc.).

High-level languages attempt to eliminate logic mistakes by promoting higher levels of

abstraction that facilitate reasoning about program behavior, and they protect against low-

level issues using static and dynamic checks and safer programming paradigms (garbage

collection to rule out use-after-free errors, stream- and result-oriented APIs for out-of-

bounds accesses, etc.).

At one extreme, purely functional languages offer very strong protections against low-

level mistakes and readily lend themselves to mathematical reasoning. By eliminating

arrays, exceptions, state, and other low-level concerns and encouraging higher-order

programming, languages like Coq [58], Lean [10], Idris [5], or the pure subsets of Haskell

and F* [56, 18] offer programming models much less susceptible to the low-level issues

that plague the vast majority of today’s critical systems.

Unfortunately, this combination of flexibility and safety comes at a significant per-

formance cost: it is an unsolved problem to program a compiler for any of these purely

functional languages that verifiably preserves all of their high-level guarantees while offer-

ing performance competitive with the usual low-level suspects, especially C.

1.1 An example problem

In fact, to ground this discussion of high-level inefficiencies, let us consider the simple task

of converting an ASCII string str to uppercase,maybe as part of a network program that

receives a request and normalizes its contents to use them as a key in a table of records.

In a purely functional language like Gallina (part of the Coq proof assistant), this task

can be implemented succinctly as follows:

String.map Char.toupper str
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This program accurately captures the intent of the task, with strings being linked lists

of characters, characters an inductive type with 256 cases, and Char.toupper a switch with

one case per lowercase letter — but how fast does it run? When extracted to OCaml,

it will pointer-chase through a linked list to traverse the original string (creating data

dependencies and cache pressure), create a fresh string (costing allocations, cache misses,

and an extra traversal for garbage collection), and either stack-overflow on long strings

(due to a non-tail-recursive map, though there have been recent developments in that

space), or traverse the string twice (doubling allocation and pointer-chasing costs), or

accumulate continuations (evenmore allocations).

In contrast, the low-level implementation below performs a single pass, occupies con-

stant stack space, does not allocate, is cache-friendly, can be unrolled, and is trivially

vectorizable (toupper on ASCII chars is just a comparison and a bitmask): it assumes that

the original string is never reused, represents str as a contiguous array of characters, and

mutates it with a simple for loop.

for (int i = 0; i < len; i++)

str[i] = toupper(str[i]);

It is possible to see this low-level program as a transformation of the high-level one

above, but only if we broadly generalize the way we think about compiler extensions.

1.2 State of the art

The traditional extension point in a compiler is a single-language rewrite rule (e.g., in

GHCHaskell), andmuch past research has studied compiler optimizations through the

lens of term-rewriting systems. In fact, many compilers are implemented as sequences of

lowering passes interleavedwith optimization passes that operate on single languages. Un-

fortunately, single-language rewrite rules are poorly suited to the kind of cross-language

transformations with potentially complex side conditions that would be needed to auto-

matically generate the C program above from the Coq one preceding it.

Expressing the translation of String.map into for loopwithmutation as a rewrite rule, for

example, would require us either to encode mutation and for loops explicitly in the source

language (so that the transformation could be performed within Gallina), or to extend C to

support higher-order functions and folds (so that the transformation could be performed

9
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within C), or to use a generic compiler to lower folds into C and subsequently eliminate all

the resulting cruft (including closures and aGC) usingmore rewrite rules. This expressivity

issue, in addition to the fact that such transformations are often conditional on relatively

complex side conditions that are best solved by user-provided partial decision procedures,

makes rewrite rules poorly suited to our problem.

1.3 A new approach

The aim of this thesis is tomake it possible to build custom compilers that support complex

cross-language optimizations, allowing users to translate the functional String.map pro-

gram above into an efficient in-place loop. Such transformations are crucial to get good

performance, easy to express for specific programs or domains, but either too narrow in

scope or too complex to generalize to be a good fit for a general-purpose compiler.

To realize this vision, this thesis describes a different approach to the compilation of

functional programs. Its defining characteristic is that it trades completeness for per-

formance: in my approach, users assemble custom compilers for specific programs or

collections of programs, and as a result these compilers do not need to support the full

complexity of the source language. By abandoning completeness, code patterns that would

be complex and costly to compile in full generality (e.g. requiring garbage collection, clo-

sures, a runtime system, etc.) can be mapped to simple low-level constructs like loops and

mutations by exploiting domain- or program- specific assumptions.

The key idea is to recast compilation as a proof-search problem. While traditional

compilers transform abstract syntax trees of high-level programs into ASTs of low-level

programs, Rupicola compilers are proof scripts that establish the existence of low-level

programsmatching high-level specifications (in the constructive logic of the Coq proof

assistant, the resulting proofs must include derivations of witnesses — the compiled

programs).1

1An unconventional aspect of this approach is that it bridges the gap between shallowly embedded source
programs and deeply embedded target programs: it transforms functional programs written directly in the
native language of Coq (Gallina) into instances of a Coq type that models concrete abstract syntax trees
of low-level code.
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1.4 Rupicola

This vision is realized as a compiler-construction toolkit, Rupicola, implemented in the Coq

proof assistant. In Rupicola, users assemble compilers by combining individual theorems

that connect high-level patterns in Gallina code (Coq’s functional programming language)

to low-level code fragments in Bedrock2 (a low-level imperative language developed at MIT

[14]). So, for example, a Rupicola user may prove a theorem that translates all maps on lists

into for loops that mutate arrays in place. Such an implementation choice is not applicable

to all uses of maps and lists: it works only if mutation is acceptable (i.e. if the original list is

not needed anymore after the map), and if the original code neither adds to nor removes

from the list (these operations have no direct equivalent on a fixed-length array).

Rupicola is not intended to replace all program extraction. Instead, Rupicola is re-

stricted, out of the box, to a minimal set of constructs (essentially arithmetic, simple data

structures, and some control flow), yielding a predictable and transparent compilation

process. Users are expected (and enabled) to extend it as needed for each new domain,

plugging in domain- or program-specific compilation hints that capture the insight that

humans would normally apply whenmanually implementing high-level specifications in a

low-level language: details of memory layout andmemory management, implementation

strategies for data-structure traversals, etc.

Figure 1.1 shows where Rupicola fits in a complete pipeline from high-level specifica-

tions to assembly code. First, starting from high-level specifications, a user generates a

functional program suitable for compilation with Rupicola (“Lowered Gallina”) using their

favorite technique for generating or verifying shallowly embedded code. Then, Rupicola

derives a verified Bedrock2 program. Finally, that deeply embedded imperative code is

compiled to machine code using traditional compilation techniques. (Shallowly embedded

means that the input consumed by Rupicola is a native program in Gallina, and deeply

embeddedmeans that the output of Rupicola is a concrete value of an abstract syntax tree

type.)

Rupicola’s target audienceanduse cases—Rupicolaworks best for small, performance-

critical programs, where precise control over implementation choices and optimization

is crucial — the kind of programs that experts write directly in C, to avoid the overheads

introduced by traditional functional-programming compilers. In other words, Rupicola’s

users are expected to knowwhat kind of low-level code they want, and Rupicola’s task is

11
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proof

fold
bindnth
let

*p = a
while(…)
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j .L6

Figure 1.1: Where Rupicola fits in the bigger picture. Rupicola is not a universal compiler:
it bridges the gap between shallowly embedded purely functional programs
and deeply embedded imperative code by accepting a restricted (but extensible)
input that can reliably and predictably be translated to fast low-level code. Right:
Rupicola’s namesake, the Guianan cock-of-the-rock, Rupicola Rupicola.

to allow them to generate that code from functional models instead of writing it directly.

Rupicola’s value proposition, in this use case, is a combination of automation and ease of

reasoning:

• Transformations thatwould be repeatedly applied by handwhenmanually implementing

a low-level program from a high-level description are instead encoded a single time as

compiler extensions, and subsequently applied many times across a range of related

programs. Users pay a bit more upfront (they have to encode the transformation into a

Rupicola plug-in) but reap the benefits down the line.

• Reasoning about the source programs becomesmuch simpler: since the source programs

are valid Gallina code, proofs about these programs do not have to deal with the sub-

tleties of low-level languages like mutation, complex control flow, or memory allocation.

This makes verifying code from end to endmuch easier, because all program-specific

reasoning and proofs happen on shallowly embedded purely functional programs, which

are only then translated into efficient imperative code.

In a sense, Rupicola codifies and automates away the most unpleasant part of traditional
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end-to-end verification pipelines. In the traditional world, authors not willing to rely

on Coq’s extraction (for performance or trust reasons) will manually relate handwritten,

deeply embedded low-level programs to functional models, and then they will separately

relate each functional model to a high-level specification. In that world, authors must

repeatedly deal with the complexities of the low-level language’s semantics andwith details

such as when to allocate or free memory or how to relate low-level memory layouts to

high-level functional models.

Rupicola, in contrast, completely automates the first phase of this process, generating

the deeply embedded low-level program from its functional model by leveraging user-

provided hints and program annotations. In Rupicola, programmers only supply shallowly

embedded programs written in a subset of Gallina that naturally maps to low-level con-

structs, and the tooling produces low-level, deeply embedded code. Unchanged is the

second phase that relates these functional models to abstract specifications: that part is

still the programmer’s responsibility.2 But because Rupicola’s inputs are shallowly embed-

ded, this phase is disconnected from the details of the low-level language’s semantics, and

the traditional reasoning patterns best supported by Coq—especially structural induction

— are fully applicable.

1.5 Dissertation outline

This dissertation starts with an in-depth presentation of relational compilation, the theo-

retical foundation that Rupicola is built on, with special emphasis on composability and

extensibility (chapter 3). Relational compilation is a unifying framework that I developed

to capture and extend recent developments in program extraction: a collection of program-

derivation techniques that soundly bridges the gap from shallowly embedded programs to

deeply embedded executable code. Some of the ideas that I present in this section were

previously known, but the presentation itself is new, as are many of the advanced use cases

that I demonstrate. By leveraging this technique, I show how to construct modular, exten-

sible domain-specific compilers that perform advanced domain- or even program-specific

transformations in a safe manner.

2This rule is somewhat overstated: in simple cases, Rupicola is sufficiently extensible that high-level
executable specifications can in fact directly be mapped into low-level code, so the second phase can at
times be eliminated entirely; such is the case of the String.map example of this section.
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I then provide a real-world perspective on relational compilation (chapter 4), using

it to derive, in the Coq proof assistant, high-performance implementations of various

small yet bug-prone low-level programs. The resulting framework, Rupicola, is a compiler-

construction toolkit, not a standard compiler. Because our focus is on low-level program-

ming, we3made no attempt to compile all or evenmost functional programs. Instead, we

focused on relatively small, loop-oriented programs such as those often found in binary

parsers, text-manipulation libraries, cryptographic routines, system libraries, and other

high-risk, high-performance code. These programs are not traditionally implemented in

purely functional languages, but this thesis shows that relational compilation can in fact

be used to write performance-critical programs in that style, directly within the native,

pure logic of an interactive theorem prover, combining straightforward reasoning and

verification with excellent performance— on par with handwritten code. In other words,

Rupicola’s inputs are pure and written with maps and folds, but they compile to C code that

manages its ownmemory, mutates its inputs, and runs at the speed of vectorizable for

loops.

To support these claims, this dissertation then presents a collection of case studies and

benchmarks. The benchmarks measure the performance of code generated using Rupicola

for a variety of example programs and show that it generally matches that of handwritten

code (section 5.2). Case studies quantify the effort needed to plug in new translations

(section 5.1.1) and expose low-level features to source programs (section 5.1.2); demonstrate

benefits from switching from reification to relational compilation on Rupicola’s expression

compiler (a 10× reduction in Ltac code size, section 5.1.3); show how Rupicola fits within an

end-to-end pipeline by measuring the effort needed to connect high-level specifications

to a functional model suitable for compilation with Rupicola (section 5.1.4); and describe

third-party uses of Rupicola (section 5.1.5).

1.6 Thesis contributions

This thesis claims twomain contributions:

• A novel, systematic presentation of relational compilation, in Coq, with a focus on com-

posability and extensibility;

3Rupicola is a joint effort, so I use “we” liberally in the rest of this document to discuss design decisions. I
give a detailed account of individual contributions in section 6.4 below.
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• The description and evaluation of Rupicola, a relational compiler from Gallina, Coq’s

programming language, to Bedrock2 [14], a low-level imperative language. Rupicola

advances the state of the art through its composable support for arbitrary monadic

programs, novel treatment of loops, and output-code performance.

In other words, Rupicola demonstrates that, at least for some simple loop-oriented pro-

grams, users do not have to choose between slow but reliable high-level code and fast but

bug-prone low-level programs.

While the techniques that this thesis develops are presented in the context of the Coq

proof assistant, they are more largely applicable. In particular, Rupicola innovates in the

way it treats loops and effects, and these innovations could carry to other systems:

• Most verification systems handle loops in a unified way: for example, the semantics of

Bedrock, the language that Rupicola targets, has a single deduction rule for while loops.

This means that reasoning about loops is often done in terms of the lowest-level loop

primitive (high-level loops aremapped to a low-level iteration primitive and proofs about

loop bodies mention symbolic state also phrased in terms of that primitive). In Rupicola,

in contrast, each type of loop is compiled using a custom lemma: there are distinct

lemmas for maps, folds, iteration on ranges of numbers, etc.; sometimes more than one

lemma for a single type of loop. These custom loop lemmas differ in the way they encode

intermediate loop states: each one of them exclusively mentions the corresponding high-

level iterator (map and fold), independently of the way the loop is eventually compiled.

Thanks to this, invariant inference for Rupicola loops can be entirely automated (the

computation of the loop’s strongest postcondition is trivial), and all reasoning about loops

and loop states is done at the level of purely functional code (section 4.5.2, section 4.6.2.3).

• Control over low-level features such as memory allocation and over effects such as muta-

tion is critical for performance, but rewriting functional programs to make uses of these

features explicit (e.g. usingmonadic encodings) is costly. Rupicola instead introduces

most effects and low-level features as part of the compilation process, using lightweight

annotations that are semantically transparent — that is, they do not make reasoning

about the program anymore complicated, and they are not reflected in the program’s

type (section 4.5.1.1). As a bonus, however, most of Rupicola is parametric on a choice of

monad, so even code best expressed using monads can be mapped to low-level code with

minimal effort (section 4.5.1.2).
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There have been many previous efforts in this space, foremost among them developments

on Imperative/HOL [23, 24], CakeML [36, 19],Œuf [34, 21],HOL compilation toVerilog [30],

Fiat-to-Facade [48] (my own previouswork), CertiCoq [1], and Low* [52]. Rupicola’s novelty

is its combination of performance, foundational proofs, and extensibility:

• All projects above except CertiCoq and Low*use relational compilation pipelines. Among

these, only Fiat-to-Facade focuses on generating high-performance low-level code from

functional programs, but it did not come close to achieving Rupicola’s performance

(other relational compilers target either garbage-collected languages or other types of

languages like Verilog; LLVM/HOL for example compiles from a one-to-one shallow

embedding of LLVM).

• KreMLin, Low*’s compiler, does produce code with performance matching handwritten

programs, but it is not formally verified (Rupicola’s output is certified by a proof of total

correctness). CertiCoq has proofs (though not for the initial reification step), but it is a

standard compiler forcing use of a runtime system.

• Among the above, only Fiat-to-Facade strove for straightforward user extensions, but

unlike in Rupicola users were limited by linearity of the target language, and support for

loops and effects was ad-hoc (a loop could mutate only one object, and the nondetermin-

ismmonad was hardcoded).
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2 Prelude: Interactive theorem proving
and formal verification

The software artifacts that support this thesis are built within the Coq proof assistant.

Coq is a venerable piece of software: its development started in 19844, and has over time

produced a powerful and versatile programming and verification environment.

At the core of Coq is a programming language called Gallina. It resembles traditional

functional languages like SML, OCaml, F#. Here, for example, is how one can define a Coq

function that filters a list according to a predicate:

From Coq Require Import List.

Import ListNotations.

Fixpoint filter {α} (p: α -> bool) (l: list α) {struct l} :=

match l with

| [] => []

| h :: t => let t' := filter p t in

if p h then h :: t' else t'

end.

This function is named filter. It takes two arguments p (a predicate mapping values of

type α to Booleans) and l (a list of values of type α). It is implemented by recursion: if l is

empty filter returns an empty list, and otherwise (when l is a cons of a head h and a tail l)

it filters the tail and optionally prepends the head h to the result.

A function defined in this way can be executed interactively using the Compute command:

Compute filter Nat.even [1; 2; 4; 13; 42; 139; 506].

= [2; 4; 42; 506]

: list nat

4For a complete history of the development of Coq, the reader is encouraged to consult the excellentHis-
tory chapter of Coq’s reference manual [58], available online at https://coq.github.io/doc/v8.14/refman/
history.html.
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The same function can then be extracted— that is, translated — to other languages, in-

cluding OCaml (this is the way most Coq programs are converted into executable binaries

today):

Extraction filter.

(** val filter : ('a1 -> bool) -> 'a1 list -> 'a1 list **)

let rec filter p = function

| [] -> []

| h :: t -> let t' = filter p t in if p h then h :: t' else t'

Beyond these superficial similarities, Coq diverges from traditional functional languages

in multiple important ways— some theoretical and some practical. For the purposes of

the discussion to follow, the following are the most relevant differences.

First, there are no effects in Coq: no mutable variables, no exceptions, no nondetermin-

ism, no I/O and no control flow except for recursion and pattern matching. As a result,

computations in Coq are similar to mathematical computations: calling the same function

twice with the same arguments always returns the same values.

Second, all programs written in Coq terminate (there are no unbounded loops, only

well-founded recursion); hence Coq rejects the following incorrect program, for example:

Fixpoint filter {α} (p: α -> bool) (l: list α) {struct l} :=

match l with

| [] => []

| h :: t =>

let t' := filter p l in

if p h then h :: t' else t'

end.
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Recursive definition of filter is ill-formed.

In environment

filter : forall α : Type, (α -> bool) -> list α -> list α

α : Type

p : α -> bool

l : list α

h : α

t : list α

Recursive call to filter has principal argument equal to

"l" instead of "t".

Recursive definition is:

"fun (α : Type) (p : α -> bool) (l : list α) =>

match l with

| [] => []

| h :: _ => let t' := filter α p l in if p h then h :: t' else t'

end".

As a consequence, with a few exceptions irrelevant to this discussion, the choice of eval-

uation strategy (and in particular of evaluation order) does not matter in Coq. This is

important because computation is at the core of everything in Coq, and unlike most lan-

guages Coq supports partial evaluation, reduction under binders, and reduction with

holes:

Eval cbv in filter ?[f] [1; 2].

= if ?f 1

then 1 :: (if ?f 2 then [2] else [])

else if ?f 2 then [2] else []

: list nat

Eval simpl in (fun x => filter Nat.even [1; x; 4; 13; 42]).

= fun x : nat => if Nat.even x then [x; 4; 42] else [4; 42]

: nat -> list nat

Third, Coq has a particularly powerful type system, capable of capturing not just the

simple types of OCaml but also relations between types and values— in fact, Coq does not

distinguish between types and values. The types of natural numbers and lists are defined by

induction, and so are the types of logical disjunctions, existentially quantified propositions,

or even equalities:

Print nat.

Inductive nat : Set := O : nat | S : nat -> nat
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Print list.

Inductive list (A : Type) : Type :=

nil : list A | cons : A -> list A -> list A

Print or.

Inductive or (A B : Prop) : Prop :=

or_introl : A -> A \/ B | or_intror : B -> A \/ B

Print ex.

Inductive ex (A : Type) (P : A -> Prop) : Prop :=

ex_intro : forall x : A, P x -> exists y, P y

Print "=".

Inductive eq (A : Type) (x : A) : A -> Prop := eq_refl : x = x

This allows Coq’s language, Gallina, to be used not just for writing programs, but also for

stating properties and proving them. For example,we can define predicates and prove theo-

rems about the filter function above. Thepredicate containsbelow returns amathematical

proposition capturing whether a value is contained in a list:

Fixpoint contains {α} (l: list α) (x: α) : Prop :=

match l with

| [] => False

| h :: t => h = x \/ contains t x

end.

Proofs in Coq are simply values that inhabit certain types: just like we can say that 5 has

type nat (for natural numbers), we can say that Nat.add_comm has type forall n m: nat, n +

m = m + n—which really means that Nat.add_comm is a function that, given two numbers m

and n, returns a proof (a value) of type n + m = m + n:

From Coq Require Import Arith.

Check Nat.add_comm.

Nat.add_comm

: forall n m : nat, n + m = m + n

Here is a theorem about the filter function defined above. Its statement is a type, that of

a function which given a function f, a list l, a value x, and a proof of type contains (filter

f l) x, returns a proof that f x equals true:
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Lemma f_if {A B} (f: A -> B) (b: bool) a a':

f (if b then a else a') = if b then f a else f a'.

Proof. destruct b; reflexivity. Qed.

Theorem filter_sound {α} (f: α -> bool):

forall l x, contains (filter f l) x -> f x = true.

Proofs in Coq are typically written using a metalanguage that generates terms under the

hood, called the tactic language. Coq is an interactive system: proofs are written step-by-

step, and after each step the system displays the current state of the proof, a collection of

open “goals”, which are secondary theorems that need to be proved to complete the main

proof. Let us see a concrete example; in what follows the gray boxes indicate Coq’s output,

and the text without background is user input.5

Proof.

The Proof command begins the proof. Above the bar are the hypotheses that hold at this

point in the proof. Below the bar is the goal, the theorem that we are trying to prove. Since

the contains predicate is defined by induction on l, we follow that structure in the proof,

using the induction command. This corresponds to distinguishing two cases in the proof:

empty and nonempty lists.

induction l.

α: Type f: α -> bool
1

forall x : α, contains (filter f []) x -> f x = true

α: Type f: α -> bool a: α l: list α

IHl: forall x : α, contains (filter f l) x -> f x = true

forall x : α, contains (filter f (a :: l)) x -> f x = true

We are now presented with two “subgoals”— two cases. In the first (1) the list l has been

replaced by the empty list []; in the second the list is assumed to be nonempty, and l has

been replaced by a cons of a newly introduced element a and a new list l.

The all: combinator below applies a tactic to all goals, and intros moves forall-

quantified variables and premises of implications into the context as hypotheses:

5These boxes are automatically generated using a program called Alectryon, which I wrote [45].
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all: intros.

α: Type f: α -> bool x: α H: contains (filter f []) x 2

f x = true

α: Type f: α -> bool a: α l: list α

IHl: forall x : α, contains (filter f l) x -> f x = true x: α

H: contains (filter f (a :: l)) x

f x = true

The hyphen (-) below focuses the proof on the first subgoal. In that goal, hypothesis

H: contains (filter f []) x (2) is contradictory, as filter f [] reduces to [], and contains

[] x reduces to False. We can use the simpl tactic to perform evaluation:

- simpl in H.

α: Type f: α -> bool x: α H: False

f x = true

What H: Falsemeans is that hypothesis H has type False. In Coq False is defined as an

empty inductive type, so H inhabiting the type False is inconsistent: case analysis on H

completes this branch of the proof:

destruct H.

The second goal is less simple; this time, simplification suggests two cases: f a = true and

f a = false, so we can perform a case analysis on that value:

- simpl in H.

α: Type f: α -> bool a: α l: list α

IHl: forall x : α, contains (filter f l) x -> f x = true x: α

H: contains (if f a then a :: filter f l else filter f l) x

f x = true

destruct (f a) eqn:Hf.

α: Type f: α -> bool a: α l: list α

IHl: forall x : α, contains (filter f l) x -> f x = true x: α

Hf: f a = true H: contains (a :: filter f l) x

f x = true
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α: Type f: α -> bool a: α l: list α

IHl: forall x : α, contains (filter f l) x -> f x = true x: α

Hf: f a = false H: contains (filter f l) x

f x = true

We find ourselves with two new subgoals: in the first f a is true (as indicated by Hf: f a =

true), and filter f (a :: l) reduced to a :: filter f l; in the second f a is false (Hf: f a

= false), and filter f (a :: l) reduced to filter f l. Further simplification will suggest

one more case split, as contains (a :: filter f l) itself reduces to a disjunction: either a

= x or x is in the result of filter f l.

+ simpl in H.

α: Type f: α -> bool a: α l: list α

IHl: forall x : α, contains (filter f l) x -> f x = true x: α

Hf: f a = true H: a = x \/ contains (filter f l) x

f x = true

destruct H.

α: Type f: α -> bool a: α l: list α

IHl: forall x : α, contains (filter f l) x -> f x = true x: α

Hf: f a = true H: a = x

f x = true

α: Type f: α -> bool a: α l: list α

IHl: forall x : α, contains (filter f l) x -> f x = true 3 x: α

Hf: f a = true H: contains (filter f l) x

f x = true

In the first case we know that a = x, and we are in the case in which f a is true; hence the

goal holds:

* rewrite H in Hf.

α: Type f: α -> bool a: α l: list α

IHl: forall x : α, contains (filter f l) x -> f x = true x: α

Hf: f x = true H: a = x

f x = true
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assumption.

In the second casewe know by assumption that x is in (filter f l) (3) but also by induction

that all x in (filter f l) satisfy f (3):

* apply IHl.

α: Type f: α -> bool a: α l: list α

IHl: forall x : α, contains (filter f l) x -> f x = true x: α

Hf: f a = true H: contains (filter f l) x

contains (filter f l) x

assumption.

Finally we read the case in which f a = false, and the induction hypothesis applies imme-

diately:

+ apply IHl. assumption.

A satisfying Qed closes the proof:

Qed.

Under the hood tactics generate proof terms, and in fact it is possible to write proofs

directly as plain Gallina programs. The result is seldom readable, however:

Fixpoint filter_complete {α} (f: α -> bool) l {struct l}:

forall x, contains l x -> f x = true -> contains (filter f l) x :=

match l return (forall x, contains l x -> f x = true ->

contains (filter f l) x) with

| [] => fun x (H: False) _ => H

| a :: l => fun x (Hc: a = x \/ contains l x) Hf =>

match Hc with

| or_introl Heq =>

eq_rect_r

(fun a => contains (if f a then a :: _ else _) x)

(eq_rect_r (x := true)

(fun b => contains (if b then x :: _ else _) x)

(or_introl eq_refl) Hf)

Heq

| or_intror Hc =>

if f a as b return (contains (if b then a :: _ else _) x)
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then or_intror (filter_complete f l x Hc Hf)

else filter_complete f l x Hc Hf

end

end.

Afinal distinguishing characteristic of Coq is its support for advanced notations: unlike tra-

ditional languages, almost all the syntax of Coq is defined through extensions of its parser;

later in this document we will use this feature to define special syntax for dictionaries,

Hoare triples, function specifications, etc.

Coq proofs are usually written using specialized IDEs [3, 47] that support showing Coq

code side-by-side with the corresponding proof state.

For more information on the Coq proof assistant, readers can consult any of the books

and tutorials listed at https://coq.inria.fr/documentation. The following chapter, which

presents relational compilation, should be accessible to readers with limited Coq experi-

ence; the following chapters assume some Coq proficiency.
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3 On relational compilation

The traditional process for developing a verified compiler is to define types that model the

source (S) and target (T ) languages, and to write a function f : S → T that transforms an

instance s of the source type into an instance t = f(s) of the target type, such all behaviors

of tmatch existing behaviors of s (“refinement”) and sometimes additionally such that all

behaviors of s can be achieved by t (“equivalence”, or “correctness”).

Naturally, proving correctness for such a compiler requires a formal understanding of

the semantics of languages S and T (that is, a way to give meaning to programs s ∈ S and

t ∈ T , so that it is possible to speak of the behaviors of a program: return values, I/O,

resource usage, etc.). Then the refinement criterion above translates to σT (t) ⊆ σS(s)

(where σS(s) denotes the behaviors of s and σT (t) those of t), and the correctness criterion

defines a relation∼ between source and target programs such that t ∼ s iff σT (t) = σS(s).

With that, a compiler f is correct iff f(s) ∼ s for all s.

Relational compilation is a twist on that approach: it turns out that instead of writing

the compiler as amonolithic program and separately verifying it, we can break up the com-

piler’s correctness proof into a collection of orthogonal correctness theorems and use these

theorems to drive a code-generating proof-search process. It is a Prolog-style “compilers as

relations” approach but taken one step further to get “compilers as (constructive) decision

procedures”.

Instead of writing our compiler as a function f : S → T , we will write the compiler as

a (partial) decision procedure: an automated proof-search process for proving theorems

of the form ∃ t. σT (t) = σS(s). In a constructive setting, any proof of that statement

must exhibit a witness t, which will be the (correct) compiled version of s. (Note that the

theorem does not ∀-quantify s, as we want to generate one distinct proof per input program
—otherwise, with a ∀s quantification, the theoremwould be equivalent by skolemization

to ∃ f. ∀s, σT (f(s)) = σS(s), which is the same as defining a single compilation function

f… and precisely what we’re trying to avoid.)
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The twomain benefits of this approach are flexibility and trustworthiness: it provides a

very natural andmodular way to think of compiler extensions, and it makes it possible to

extract shallowly embedded programs without trusting an extraction routine (in contrast,

extraction in Coq is trusted). The main cost? Completeness: a (total) function always

terminates and produces a compiled output; a (partial) proof-search process may loop or

fail to produce an output.6

This is not an entirely new idea: variations on this trick have been variously referred to

in the literature as proof-producing compilation, certifying compilation, and, when the source

language is shallowly embedded (we will get to that a bit later), proof-producing extraction,

certifying extraction, or binary extraction. I like to call this style of compilation “relational

compilation”, and to explain it I like to start from a traditional verified compiler and

progressively derive a relational compiler from it.

3.1 A step-by-step example

Here is a concrete pair of languages that we will use as a demonstration. Language S is a

simple arithmetic-expressions language. Language T is a trivial stack machine.

3.1.1 Language definitions

On the left is the Coq definition of S, with only three constructors: constants, negation,

and addition; on the right is the definition of T: a program in T is a list of stack operations

T_Op, which may be pushing a constant, popping the two values on the top of the stack and

pushing their difference, or popping the two values on the top of the stack and pushing

their sum.

6Of course things are not so clear-cut: a compilermay bewritten as a partial function that sometimes fails to
compile input programs, like ill-typed programs in OCaml, programs with too-deep template recursion
in C++, programs with too-long lines in Python, etc. — but the extensibility of relational compilers also
tends to make themmore susceptible to incompleteness, and since they’re written in meta-language it is
often not easy or even possible to prove their completeness.
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Inductive S :=

| SInt z

| SOpp (s : S)

| SAdd (s1 s2 : S).

Inductive T_Op :=

| TPush z

| TPopSub

| TPopAdd.

Definition T := list T_Op.

Concretely, a program in Smight be SAdd (SInt 3) (SInt 4), which computes the sumof

the constants 3 and 4. A correspondingprogram in Twouldbe [TPush 3; TPush 4; TPopAdd],

which pushes the constants 3 and 4 and then places their sum on the stack.

3.1.2 Semantics

The semantics of these languages are easy to define using interpreters. On the left, opera-

tions on terms in S aremapped to corresponding operations onZ, producing an integer. On
the right, stack operations are interpreted one by one, starting from a stack and producing

a new stack.

Fixpoint σS s : Z :=

match s with

| SInt z => z

| SOpp s => - σS s

| SAdd s1 s2 => σS s1 + σS s2

end.

Notation Stack := (list Z).

Definition σOp (ts: Stack) op : Stack :=

match op, ts with

| TPush n, ts => n :: ts

| TPopAdd, n2::n1::ts => n1+n2 :: ts

| TPopSub, n2::n1::ts => n1-n2 :: ts

| _, ts => ts (* Invalid: no-op *)

end.

Definition σT t (ts: Stack) : Stack :=

List.fold_left σOp t ts.

With these definitions, program equivalence is straightforward to define (the definition

is contextual, in the sense that it talks about equivalence in the context of a non-empty

stack):

Notation "t ∼ s" := (forall ts, σT t ts = σS s :: ts).

3.1.3 Compilation

In the simplest case, a compiler is a single recursive function; more typically, a compiler is

engineered as a sequence (composition) of passes, each responsible for a well-defined task:

typically, either an optimization (within one language, intended to improve performance of

the output) or lowering (from one intermediate language to another, intended to bring the
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program closer to its final form), though these boundaries are porous. Here is a simple

one-step compiler for our pair of languages:

Fixpoint StoT s := match s with

| SInt z => [TPush z]

| SOpp s => [TPush 0] ++ StoT s ++ [TPopSub]

| SAdd s1 s2 => StoT s1 ++ StoT s2 ++ [TPopAdd]

end.

The SInt case maps to a stack-machine program that simply pushes the constant z on the

stack; the SOpp case returns a program that first puts a 0 on the stack, then computes the

value corresponding to the operand s, and finally computes the subtraction of these two

using the TPopSub opcode; and the SAdd case produces a program that pushes both operands

in succession before computing their sum using the TPopAdd opcode.

The Coq command Compute lets us run this compiler and confirm that it seems to operate

correctly:

Example s7 :=

SAdd (SAdd (SInt 3) (SInt 6))

(SOpp (SInt 2)).

• Running the example program s7 directly returns 7:

Compute σS s7.

= 7

: Z

• Compiling the program and then running it produces the same result (a stack with a

single element, 7):

Compute StoT s7.

= [TPush 3; TPush 6; TPopAdd; TPush 0; TPush 2; TPopSub;

TPopAdd]

: list T_Op

Compute σT (StoT s7) [].

= [7]

: Stack
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3.1.4 Compiler correctness

Of course, one example is not enough to establish that the compiler above works; instead,

here is a proof of its correctness, which proceeds by induction with three cases:

Lemma StoT_Rok : forall s, StoT s ∼ s.

Proof. 4

induction s.

all: intros; unfold σT; simpl.

- (* `SInt` case *)

reflexivity.

- (* `SOpp` case *)

rewrite fold_left_app.

rewrite IHs.

reflexivity.

- (* `SAdd` case *)

rewrite !fold_left_app.

rewrite IHs1, IHs2.

reflexivity.

Qed.

Thiscompiler operates ina singlepass,but arguably evena small compiler like this one could

benefit from amulti-pass approach: for example, we might prefer to separate lowering

into two phases translating all unary SOpp operations to a new binary operator SSub (SOpp x

→ SSub (Sconst 0) x) in a first pass, and dealing with stack operations in a second pass.

3.1.5 Compiling with relations

Wewill observe two things about StoT and its proof.

First, StoT, like any function, can be rewritten as a relation (any function f : x 7→ f(x)

defines a relation∼f such that t ∼f s iff t = f(s); this relation is sometimes called the

graph of the function). Here is one natural way to rephrase StoT as a relation <; notice
how each branch of the recursion maps to a case in the inductive definition of the relation

(each constructor defines an introduction rule for<, which corresponds to a branch in the
original recursion, and each x < y premise of each case corresponds to a recursive call to

the function):

Inductive StoT_rel : T -> S -> Prop :=

| StoT_RNat : forall z,
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[TPush z] < SInt z

| StoT_ROpp : forall t s,

t < s ->

[TPush 0] ++ t ++ [TPopSub] < SOpp s

| StoT_RAdd : forall t1 s1 t2 s2,

t1 < s1 ->

t2 < s2 ->

t1 ++ t2 ++ [TPopAdd] < SAdd s1 s2

where "t '<' s" := (StoT_rel t s).

Now,what does correctness mean for StoT? Correctness for this compilation relation is…

just a subset relation:

The relation< is a correct compilation relation for languagesS andT if its graph
is a subset of the graph of∼.

This condition is sufficient: any relation that is a subset of ∼ defines a correct (pos-

sibly one-to-many, possibly suboptimal, but correct) mapping from source programs to

destination programs.

And indeed, the relation above is a correct compilation relation:

Theorem StoT_rel_ok : forall t s,

t < s -> t ∼ s.

Proof. 5

induction 1.

all: intros; unfold σT; simpl.

- (* `StoT_RNat` case *)

reflexivity.

- (* `StoT_ROpp` case *)

rewrite fold_left_app.

rewrite IHStoT_rel.

reflexivity.

- (* `StoT_RAdd` case *)

rewrite !fold_left_app.

rewrite IHStoT_rel1, IHStoT_rel2.

reflexivity.

Qed.

Now that we have<, we can use it to prove equivalences for specific programs: for example,
we can write a proof to show specifically that the compiled version of our example program
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s7matches the original s7 by applying each of the constructors of the relation < one by

one:

Goal ([TPush 3] ++ [TPush 6] ++ [TPopAdd]) ++

([TPush 0] ++ [TPush 2] ++ [TPopSub]) ++

[TPopAdd] <
SAdd (SAdd (SInt 3) (SInt 6))

(SOpp (SInt 2)).

Proof.

apply StoT_RAdd.

[TPush 3] ++ [TPush 6] ++ [TPopAdd] < SAdd (SInt 3) (SInt 6)

[TPush 0] ++ [TPush 2] ++ [TPopSub] < SOpp (SInt 2)

- apply StoT_RAdd.

[TPush 3] < SInt 3

[TPush 6] < SInt 6

+ apply StoT_RNat.

+ apply StoT_RNat.

- apply StoT_ROpp.

[TPush 2] < SInt 2

+ apply StoT_RNat.

Qed.

Now, how can we use this relation to run the compiler instead? By using proof search! This

is standard practice in the world of logic programming. To compile our earlier program s7,

for example, we can simply search for a program t7 such that t7 < s7, which in Coq terms

looks like this:

Example t7_rel: { t7 | t7 < s7 }.

Proof.

unfold s7; eexists.

?t7 < SAdd (SAdd (SInt 3) (SInt 6)) (SOpp (SInt 2))
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Now the goal includes an indeterminate value ?t7, called an existential variable (evar),

corresponding to the program that we are attempting to derive, and each application or a

lemma refines that evar by plugging in a partial program:

apply StoT_RAdd.

?t1 < SAdd (SInt 3) (SInt 6)

?t2 < SOpp (SInt 2)

After applying the lemma StoT_RAdd, we are asked to provide two subprograms, each corre-

sponding to one operand of the addition:

- apply StoT_RAdd.

?t1 < SInt 3

?t20 < SInt 6

+ apply StoT_RNat.

+ apply StoT_RNat.

- apply StoT_ROpp.

?t < SInt 2

+ apply StoT_RNat.

Defined.

We get the exact same program, but this time instead of validating a previous compilation

pass, we have generated the program from scratch:

Compute t7_rel.

= exist

[TPush 3; TPush 6; TPopAdd; TPush 0; TPush 2; TPopSub;

TPopAdd]

: {t7 : T | t7 < s7}

We can also use Coq’s inspection facilities to see the proof term as it is being generated

(this time the boxes show the internal proof term, not the goals):
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(exist ?t7)

apply StoT_RAdd.

(exist (?t1 ++ ?t2 ++ [TPopAdd]))

- apply StoT_RAdd.

(exist ((?t1 ++ ?t20 ++ [TPopAdd]) ++ ?t2 ++ [TPopAdd]))

+ apply StoT_RNat.

(exist (([TPush 3] ++ ?t20 ++ [TPopAdd]) ++ ?t2 ++ [TPopAdd]))

+ apply StoT_RNat.

(exist (([TPush 3] ++ [TPush 6] ++ [TPopAdd]) ++ ?t2 ++ [TPopAdd]))

- apply StoT_ROpp.

(exist

(([TPush 3] ++ [TPush 6] ++ [TPopAdd]) ++

([TPush 0] ++ ?t ++ [TPopSub]) ++ [TPopAdd]))

+ apply StoT_RNat.

(exist

(([TPush 3] ++ [TPush 6] ++ [TPopAdd]) ++

([TPush 0] ++ [TPush 2] ++ [TPopSub]) ++ [TPopAdd]))

This derivation shows how the program gets built: each lemma application is equivalent to

one recursive call in a run of the compilation function StoT.

Coq has facilities to perform proof search automatically using a set of lemmas, which

we can use to automate the derivation of t7: it suffices to register all constructors of< in a

“hint database”, as follows:7

Create HintDb cc.

Hint Constructors StoT_rel : cc.

Example t7_rel_eauto: { t7 | t7 < s7 }.

Proof. eauto with cc. Defined.

Compute t7_rel_eauto.

7In the following we use eauto as an abbreviation for typeclasses eauto, a more flexible version of Coq’s
eauto tactic. In particular, using typeclasses eauto allows us to specify priorities on lemmas.
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= exist

[TPush 3; TPush 6; TPopAdd; TPush 0; TPush 2; TPopSub;

TPopAdd]

: {t7 : T | t7 < s7}

And of course, the result is correct-by-construction, in the sense that it carries its own proof

of correctness:

Eval cbn in type of (proj2_sig t7_rel_eauto).

= [TPush 3; TPush 6; TPopAdd; TPush 0; TPush 2; TPopSub;

TPopAdd] < s7

: Type

This is traditional logic programming, applied to compilers. We have now learned one fact:

Correctly compiling a program s is the same as proving ∃ t. t ∼ s.

3.1.6 Open-ended compilation

The proofs of correctness for the functional version of the compiler (StoT, 4) and for the

relational version (StoT_rel, 5) have the exact same structure. They are both composed of

three orthogonal lemmas:

1. [TPush z] ∼ SInt z

2. [TPush 0] ++ t ++ [TPopSub] ∼ SOpp s

3. t1 ++ t2 ++ [TPopAdd] ∼ SAdd s1 s2

Each of these is really a standalone fact, and each corresponds to a partial relation between

S and T , each connecting some programs in S to some programs in T . In other words:

A relational compiler is really just a collection of facts connecting programs in

the target language to programs in the source language.

This means that we don’t even need to define a relation. Instead, we can have three

lemmas that directly refer to the original equivalence ~:

35



Lemma StoT_Int z :

[TPush z] ∼ SInt z.

Lemma StoT_Opp t s :

t ∼ s ->

[TPush 0] ++ t ++ [TPopSub] ∼ SOpp s.

Lemma StoT_Plus t1 s1 t2 s2 :

t1 ∼ s1 ->

t2 ∼ s2 ->

t1 ++ t2 ++ [TPopAdd] ∼ SAdd s1 s2.

And from these, we can build a compiler! We just need to place all these facts into a new

database of lemmas, which Coq will use as part of its proof search:

Create HintDb c.

Opaque σS σT.

Hint Resolve StoT_Int : c.

Hint Resolve StoT_Opp : c.

Hint Resolve StoT_Plus : c.

And then we can derive compiled programs and their proofs:

Example t7_fn_eauto: { t7 | t7 ∼ s7 }.

Proof. eauto with c. Defined.

Compute t7_fn_eauto.

= exist

[TPush 3; TPush 6; TPopAdd; TPush 0; TPush 2; TPopSub;

TPopAdd]

: {t7 : T | t7 ∼ s7}

That is the core idea of relational compilation. On this simple example it looks mostly

like an odd curiosity, but it is actually very useful for compiling (shallowly) embedded

domain-specific languages (EDSLs), especially when the compiler needs to be extensible.

3.2 Use case 1: Compiling shallowly embedded DSLs

The original setup of the problem (compiling from language S to language T ) required us

to exhibit a function f : S → T . Not so with the new set up, which instead requires us to
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Box 1 — Opacity

Making σS and σT opaque prevents commands like eauto from unfolding our definitions

too aggressively. Without it, since our example languageS is so simple that all programs

are actually just constants (!), our new compiler would just reduce programs before

compiling them:
Transparent σS σT.

Example t7_fn_eauto_t: { t7 | t7 ∼ s7 }. Proof. eauto with c. Defined.

Compute t7_fn_eauto_t.

= exist [TPush 7]

: {t7 : T | t7 ∼ s7}

The alternative would be to give priority to StoT_Opp and StoT_Plus over StoT_int, which

we demonstrate later in this document.
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prove instances of the ∼ relation (one per program). What this means is that we can apply

this compilation technique to compile shallowly embedded programs, including shallowly

embedded DSLs8.

Here is how we would change our previous example to compile arithmetic expressions

written directly in Gallina:

1. Start by redefining the relation to use Gallina expressions on the right side of the equiva-

lence (there are nomore references to S nor σS):

Notation "t ≈ s" := (forall ts, σT t ts = s :: ts).

2. Add compilation lemmas (the proofs are exactly the same as before, so they are omitted).

Note that on the right sidewe have plainGallina + and -, not SAdd and SOp, so each lemma

now relates a shallow program to an equivalent deep-embedded one:

Lemma GallinatoT_Z z :

[TPush z] ≈ z.

Lemma GallinatoT_Zopp t z :

t ≈ z ->

[TPush 0] ++ t ++ [TPopSub] ≈ - z.

Lemma GallinatoT_Zadd t1 z1 t2 z2 :

t1 ≈ z1 ->

t2 ≈ z2 ->

t1 ++ t2 ++ [TPopAdd] ≈ z1 + z2.

These lemmas are sufficient to create a small compiler: as before we populate a hint

database with our compilation lemmas:

Create HintDb stack.

Hint Resolve GallinatoT_Z | 10 : stack.

Hint Resolve GallinatoT_Zopp : stack.

Hint Resolve GallinatoT_Zadd : stack.

And then we run our relational compiler on shallowly embedded input programs:

8A shallow embedding is one where programs are defined directly in the host language in contrast with a
deep embedding where programs are represented as abstract syntax trees, i.e. data.
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Example g7 := 3 + 6 + Z.opp 2.

Example t7_shallow: { t7 | t7 ≈ g7 }.

Proof. eauto with stack. Defined.

Compute t7_shallow.

= exist

[TPush 3; TPush 6; TPopAdd; TPush 0; TPush 2; TPopSub;

TPopAdd]

: {t7 : T | t7 ≈ g7}

Of course, it is easy to package this process in a convenient notation (the pattern match Set

return T with _ => X end is a roundabout way to force the type of the value X):

Notation compile gallina_term :=

(match Set return { t | t ≈ gallina_term } with

| _ => ltac:(eauto with stack)

end)

(only parsing).

Compute compile (3 + 6 + Z.opp 2).

= exist

[TPush 3; TPush 6; TPopAdd; TPush 0; TPush 2; TPopSub;

TPopAdd]

: {t : T | t ≈ 3 + 6 + - (2)}

There is something slightly magical happening here. By rephrasing compilation as a

proof search problem,we have been able to construct a compiler that would not even be

expressible (let alone provable!) as a regular Gallina function. Reasoning on shallowly

embedded programs is oftenmuch nicer than reasoning on deeply embedded programs,

and this technique offers a convenient way to bridge the gap.

3.3 Use case 2: Extensible compilation

Up to this point we assumed that the input language was fixed, but in fact now that we

are compiling shallowly embedded Gallina programs we can trivially extend the source

language with additional constructs. The relational compilation technique above readily

supports extending the compiler to support new source expressions.
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In fact, building extensible languages is one application for which relational compilation

shines. As an example, suppose we are modeling combinational hardware circuits in Coq.

Our target type (deep-embedded Boolean expressions) is very simple:

Inductive circuit :=

| Const (z: Z)

| Read (reg_name: string)

| Mux (cond l r: circuit)

| Op (op_name: string) (args: list circuit).

Noticehow the Op and Read constructors (used to call built-in operators and to read registers)

take names as strings. To define an interpreter for the languagewe need to givemeaning to

these strings,whichwe can do using an environment Σ of functions to define the semantics

of the built-in operators of the language (6) and a context R to give the value of each register

(7). The code below uses the notation c.[k] to look up key k in context c (it defaults to an

arbitrary value if the key k cannot be found):

Section Interp.

Variable Σ: string -> (list Z -> Z). 6

Variable R: list (string * Z). 7

Fixpoint cinterp (c: circuit) : Z := match c with

| Const z => z

| Read r => R.[r]

| Mux cond t f =>

if cinterp cond =? 0 then cinterp f else cinterp t

| Op op args =>

Σ op (List.map cinterp args)

end.

End Interp.

Here is an example.

• First, we define an environment of built-in functions:

Definition testbit z n :=

if Z.testbit z n then 1 else 0.

Example Σ0 fn args := match fn, args with

| "add", [z1; z2] => Z.add z1 z2

| "xor", [z1; z2] => Z.lxor z1 z2

| "nth", [z; n] => testbit z n
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| _, _ => 0 (* Default to 0 for simplicity *)

end.

• Then, we define an environment of registers:

Example R0 :=

[("pc", 16); ("ppc", 14); ("r1", 5); ("r2", 7)].

• And finally we can run the interpreter on an example circuit c1:

Example c1 :=

Mux (Op "xor" [Read "pc"; Read "ppc"])

(Read "r1") (Read "r2").

Reducing everything but Σ0 shows the interpretation of Mux in this term:

Eval cbn -[Σ0] in cinterp Σ0 R0 c1.

= if Σ0 "xor" [16; 14] =? 0 then 7 else 5

: Z

…and reducing everything gives us the value of this example circuit:

Compute cinterp Σ0 R0 c1.

= 5

: Z

Relational compilation is a simple and convenient way to generate such circuits from

Gallina expressions. First, we need a compilation relation:

Notation "c ≋ g @ Σ // R" := (cinterp Σ R c = g).

Then, we need compilation lemmas relating source programs in Gallina and their circuit

equivalents.

First, constants:

Lemma compile_Const {Σ R} z:

Const z ≋ z @ Σ // R.

Then variable accesses, compiled to register reads:
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Lemma compile_Read {Σ R} r z:

z = R.[r] ->

Read r ≋ z @ Σ // R.

Then conditionals:

Lemma compile_Mux {Σ R} ccond gcond ct gt cf gf:

ccond ≋ gcond @ Σ // R ->

ct ≋ gt @ Σ // R ->

cf ≋ gf @ Σ // R ->

Mux ccond ct cf ≋ if gcond =? 0 then gf else gt @ Σ // R.

And finally operators. Note that compilation lemmas are parametric on the environment

of functions, only requiring that the one function it uses be found in the environment:

Lemma compile_add {Σ R} c1 g1 c2 g2:

(forall x y, Σ "add" [x; y] = Z.add x y) ->

c1 ≋ g1 @ Σ // R ->

c2 ≋ g2 @ Σ // R ->

Op "add" [c1; c2] ≋ Z.add g1 g2 @ Σ // R.

Lemma compile_xor {Σ R} c1 g1 c2 g2:

(forall x y, Σ "xor" [x; y] = Z.lxor x y) ->

c1 ≋ g1 @ Σ // R ->

c2 ≋ g2 @ Σ // R ->

Op "xor" [c1; c2] ≋ Z.lxor g1 g2 @ Σ // R.

Lemma compile_nth {Σ R} cz gz cn gn:

(forall z n, Σ "nth" [z; n] = testbit z n) ->

cz ≋ gz @ Σ // R ->

cn ≋ gn @ Σ // R ->

Op "nth" [cz; cn] ≋ testbit gz gn @ Σ // R.

That is enough to compile a simple EDSL for circuits. There are a few things worthy

of note here; first, we now have a mechanism to refer to bound variables, through the

R environment; second, each compilation lemma is parametric on the environment of

functions, so the whole compiler can be extendedmodularly to support new functions. Let

us see these two points in action with a more complex program:

Definition gc1 pc ppc (r1 r2: Z) :=

let correct := pc =? ppc in

let v := if correct then r1 else r2 in

testbit v 4.
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This program checks its first two arguments to see if they are equal and returns a different

value in each case. The relational-compilation goal looks a bit different from previous ones,

because we now need to account for an environment of variables:

Example cc1 : { cc1 | forall pc ppc r1 r2,

cc1 ≋ gc1 pc ppc r1 r2 @ Σ0

// [("pc", pc); ("ppc", ppc); ("r1", r1); ("r2", r2)] }.

In other words: there exists a circuit cc1 equivalent to the Gallina program gc1 for all inputs

pc, ppc, r1, and r2, assuming that these inputs are available in registers and that the circuit

runs with the environment of built-ins Σ0. The proof too looks a bit different, because there

now are side conditions for certain lemmas:

Proof.

eexists; intros; unfold gc1.

?cc1 ≋ testbit (if pc =? ppc then r1 else r2) 4 @ Σ0 //

[("pc", pc); ("ppc", ppc); ("r1", r1); ("r2", r2)]

The program starts with a call to testbit, so we plug in the circuit primitive "nth":

eapply compile_nth.

We now get three subgoals: one asserting that we can call the function "nth" given the

current function environment Σ, and twocorresponding to eachof the arguments to testbit

in Gallina:

1: reflexivity.

Of the two argument subgoals, the first one is a conditional to which none of our compila-

tion lemmas apply: as we defined it, compile_Mux requires a specific Gallina pattern, _ =?

0, which is not present here:

?cz ≋ if pc =? ppc then r1 else r2 @ Σ0 //

[("pc", pc); ("ppc", ppc); ("r1", r1); ("r2", r2)]
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apply compile_Mux.

In environment

pc, ppc, r1, r2 : Z

Unable to unify

"Mux ?M1440 ?M1442 ?M1444 ≋ if ?M1441 =? 0 then ?M1445 else ?M1443 @

?Σ // ?R"

with

"?cz ≋ if pc =? ppc then r1 else r2 @ Σ0 //

[("pc", pc); ("ppc", ppc); ("r1", r1); ("r2", r2)]".

This is the first instance where the extensibility of relational compilation comes into play.

For this example, we can extend the compiler by plugging in a rewrite rule that transforms

the program to match a shape supported by the compiler, after which Compile_Mux applies:

Z_lxor_eqb

: forall z1 z2, (z1 =? z2) = (Z.lxor z1 z2 =? 0)

rewrite Z_lxor_eqb.

?cz ≋ if Z.lxor pc ppc =? 0 then r1 else r2 @ Σ0 //

[("pc", pc); ("ppc", ppc); ("r1", r1); ("r2", r2)]

apply compile_Mux.

Compiling the conditional leaves us with three more subgoals: one for the test, one for the

right branch, and one for the left branch:

?ccond ≋ Z.lxor pc ppc @ Σ0 //

[("pc", pc); ("ppc", ppc); ("r1", r1); ("r2", r2)]

?ct ≋ r2 @ Σ0 // [("pc", pc); ("ppc", ppc); ("r1", r1); ("r2", r2)]

?cf ≋ r1 @ Σ0 // [("pc", pc); ("ppc", ppc); ("r1", r1); ("r2", r2)]

The first part can be handled using the compile_xor lemma:

apply compile_xor; try reflexivity.

And this is where the second interesting part of this proof comes about: handling variables.

First, let us try something that looks right but will not work:
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apply compile_Const.

In environment

pc, ppc, r1, r2 : Z

Unable to unify "?c1" with "Const pc" (cannot instantiate

"?c1" because "pc" is not in its scope).

It is very important that this shouldn’t work, but it is not immediately obvious why it

wouldn’t. The value pc is indeed not a constant, but if you look just at the types, things do

line up:

?c1 ≋ pc @ Σ0 // [("pc", pc); ("ppc", ppc); ("r1", r1); ("r2", r2)]

compile_Const pc

: Const pc ≋ pc @ Σ0 //

[("pc", pc); ("ppc", ppc); ("r1", r1); ("r2", r2)]

The reason it doesn’t work is captured in the error message above. When Coq creates the

evars denoted by ?…, it associates with each of them a context that records which variables

they may refer to. Here is, for example, the internal goal that Coq generated for ?c1:

c1
circuit

In other words, the evar ?c1 cannot refer to any of the local variables—which is good, since

we’re trying to build a closed term! What we want, of course, is compile_Read, which reads

from the environment of registers, not compile_Const:

apply compile_Read with (r := "pc"); reflexivity.

The same lemma applies to the next three goals, in fact:

?c2 ≋ ppc @ Σ0 // [("pc", pc); ("ppc", ppc); ("r1", r1); ("r2", r2)]

apply compile_Read with (r := "ppc"); reflexivity.

?ct ≋ r2 @ Σ0 // [("pc", pc); ("ppc", ppc); ("r1", r1); ("r2", r2)]

apply compile_Read with (r := "r2"); reflexivity.
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?cf ≋ r1 @ Σ0 // [("pc", pc); ("ppc", ppc); ("r1", r1); ("r2", r2)]

apply compile_Read with (r := "r1"); reflexivity.

And finally we have the second argument to the original testbit, the index of the bit that

we want to extract:

?cn ≋ 4 @ Σ0 // [("pc", pc); ("ppc", ppc); ("r1", r1); ("r2", r2)]

apply compile_Const.

Defined.

The resulting generated program is as expected, and correct by construction:

Print cc1.

cc1 =

exist

(Op "nth"

[Mux (Op "xor" [Read "pc"; Read "ppc"]) (Read "r2") (Read "r1");

Const 4])

: {cc1 : circuit

| forall pc ppc r1 r2 : Z,

cc1 ≋ gc1 pc ppc r1 r2 @ Σ0 //

[("pc", pc); ("ppc", ppc); ("r1", r1); ("r2", r2)]}

3.3.1 Automating the derivation

The process above is closer to tool-assisted program derivation than to “compilation”.

Automating it is not hard, but it requires tricks beyond what we have seen above. We will

start by creating a hint database to hold our custom compilation lemmas:

Create HintDb circuits.

For readability,wewill useCoq’s Derive feature to state our compilationgoal. Derivedefines

a dependent pair (a term and a proof of a property about it) as two separate names:

Derive cc1' SuchThat (forall pc ppc r1 r2,

cc1' ≋ gc1 pc ppc r1 r2 @ Σ0

// [("pc", pc); ("ppc", ppc); ("r1", r1); ("r2", r2)])

As cc1'ok.

46



Proof.

unfold cc1', gc1; clear cc1'.

forall pc ppc r1 r2 : Z,

?Goal ≋ testbit (if pc =? ppc then r1 else r2) 4 @ Σ0 //

[("pc", pc); ("ppc", ppc); ("r1", r1); ("r2", r2)]

Thefirst trick we will introduce is forward reasoning. Until now, we have used eauto to pull

from a database of lemmas to try to derive a complete proof of a goal. In this mode, eauto

is all-or-nothing: it will not make any progress on this goal until we introduce all relevant

lemmas:

eauto using compile_nth.

forall pc ppc r1 r2 : Z,

?Goal ≋ testbit (if pc =? ppc then r1 else r2) 4 @ Σ0 //

[("pc", pc); ("ppc", ppc); ("r1", r1); ("r2", r2)]

This isn’t sustainable: we need to guess exactly all lemmas that are required, or nothing

happens. Insteadwewill use apartialprogress stylepopularizedby [68], inwhichweprogram

eauto to take a single step and then return to its caller:

Hint Extern 2 => simple apply compile_Const; shelve : circuits.

Hint Extern 2 => simple apply compile_add; shelve : circuits.

Hint Extern 2 => simple apply compile_xor; shelve : circuits.

Hint Extern 2 => simple apply compile_nth; shelve : circuits.

Each of these hints allow eauto to shelve the current goal after applying the corresponding

lemma, which removes the subgoals generated by that lemma from the pool of things the

eauto is required to solve and places them on Coq’s shelf.

These hints are enough to get us started with the derivation of our program. forward with

… is a tactic similar to eauto, but it supports partial progress:

forward with circuits.

forall z n : Z, Σ0 "nth" [z; n] = testbit z n

?cz ≋ if pc =? ppc then r1 else r2 @ Σ0 //

[("pc", pc); ("ppc", ppc); ("r1", r1); ("r2", r2)]
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Box 2 — The shelf
Coq’s shelf is a side collection of goals that typically hold terms whose definition will

follow from solving other goals. For example, in the following proof, the definition of ?x

is on the shelf: it is expected that solving ?x + 1 = 2will instantiate ?x (note how the call

to Show Existentialsmentions that ?x is shelved):
Goal exists x, x + 1 = 2.

eexists.

?x + 1 = 2

Show Existentials.

Existential 1 = ?x : [ |- Z] (shelved)

Existential 2 = ?Goal : [ |- ?x + 1 = 2]

Using the shelf allows us to define forward-reasoning tactics: we use unshelve to

bring back the intermediate goals that were shelved within eauto (typeclasses eauto,

in fact, since eauto puts things on the wrong shelf — Coq has more than one), and

shelve_unifiable to move evars that are not propositional goals back on the shelf:

Tactic Notation "step" "with" ident(db) :=

intros; unshelve typeclasses eauto with db; shelve_unifiable.

Tactic Notation "forward" "with" ident(db) :=

progress repeat step with db.
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The first goal we get asks us to prove that we have the right function under the name "nth"

in our function context, as before:

forall z n : Z, Σ0 "nth" [z; n] = testbit z n

Hint Extern 1 => reflexivity : circuits.

forward with circuits.

The second goal is where this new approach of partial compilation begins to be useful: we

have partially compiled our program, and we can now addmore hints to continue making

progress. As before, compile_Mux doesn’t apply:

?cz ≋ if pc =? ppc then r1 else r2 @ Σ0 //

[("pc", pc); ("ppc", ppc); ("r1", r1); ("r2", r2)]

apply compile_Mux.

In environment

pc, ppc, r1, r2 : Z

Unable to unify

"Mux ?M1502 ?M1504 ?M1506 ≋ if ?M1503 =? 0 then ?M1507 else ?M1505 @

?Σ // ?R"

with

"?cz ≋ if pc =? ppc then r1 else r2 @ Σ0 //

[("pc", pc); ("ppc", ppc); ("r1", r1); ("r2", r2)]".

We could use Z_lxor_eqb as before to rewrite the equality test pc =? ppc into an exclusive-or

test Z.lxor pc ppc =? 0, but for consistencywewill prove a new compilation lemma instead

(this approach gives us a unified way to handle all extensions):

Lemma compile_Mux_eqb {Σ R} c1 g1 c2 g2 ct gt cf gf:

(forall x y, Σ "xor" [x; y] = Z.lxor x y) ->

c1 ≋ g1 @ Σ // R ->

c2 ≋ g2 @ Σ // R ->

ct ≋ gt @ Σ // R ->

cf ≋ gf @ Σ // R ->

Mux (Op "xor" [c1; c2]) ct cf ≋

if g1 =? g2 then gf else gt @ Σ // R.

This is enough to step further in the compilation process, leaving us with four very similar

goals:
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Hint Extern 2 =>

simple apply compile_Mux_eqb; shelve : circuits.

forward with circuits.

This time, we get stuck because we did not register compile_Read:

?c1 ≋ pc @ Σ0 // [("pc", pc); ("ppc", ppc); ("r1", r1); ("r2", r2)]

?c2 ≋ ppc @ Σ0 // [("pc", pc); ("ppc", ppc); ("r1", r1); ("r2", r2)]

?ct ≋ r2 @ Σ0 // [("pc", pc); ("ppc", ppc); ("r1", r1); ("r2", r2)]

?cf ≋ r1 @ Σ0 // [("pc", pc); ("ppc", ppc); ("r1", r1); ("r2", r2)]

Why not? Because as written, compile_Read applies to all goals, often leaving an unsolvable

goal: when applied to a goal _ ≋ g @ _ // R, compile_Readwill simply generate a goal asking

to find g in R, regardless of whether such a binding in fact exists in R. For example:

eexists ?[c].

?c ≋ 1 + 1 @ Σ0 // [("r0", 14)]

apply compile_Read.

1 + 1 = [("r0", 14)].[?r]

Abort.

There are two ways to proceed in such cases: add logic to apply compile_Read eagerly, and

backtrack if no corresponding binding can be found; or use a more clever strategy to apply

compile_Readmorediscerningly. Up to this point ourderivationshaveall beendeterministic,

and we want the compiler to be as predictable as possible, so we will do the latter by

restricting the use of the compile_Read lemma to cases where the Gallina term g is a single

variable. Additionally, we will give compile_Read a low priority (the backtracking approach

is discussed in a note at the end of this section):

Hint Extern 3 (_ ≋ ?v @ _ // _) =>

is_var v; simple apply compile_Read; shelve : circuits.

all: forward with circuits.
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The remaining goals are the preconditions of compile_Read: the variables should in fact be

in context:

pc = [("pc", pc); ("ppc", ppc); ("r1", r1); ("r2", r2)].[?r]

ppc = [("pc", pc); ("ppc", ppc); ("r1", r1); ("r2", r2)].[?r0]

r2 = [("pc", pc); ("ppc", ppc); ("r1", r1); ("r2", r2)].[?r1]

r1 = [("pc", pc); ("ppc", ppc); ("r1", r1); ("r2", r2)].[?r2]

To solve these goals automatically, we will use two simple lemmas.

1. assoc_hd, which handles the case in which the value we’re looking for is the first in the

list:

Lemma assoc_hd (v: V) k tl:

v = ((k, v) :: tl).[k].

2. assoc_tl, which handles the case in which the value we’re looking for is in the tail of the

list:

Lemma assoc_tl (v v': V) k k' tl:

v = tl.[k'] ->

k != k' ->

v = ((k, v') :: tl).[k'].

Here is how these come into play, on a standalone example. We start with a goal asking us

to locate the value 3 in a context. Applying assoc_tl discards the first binding ("x", 1) and

asks us to find 3 among the remaining bindings; then, applying assoc_hd selects the first of

the remaining bindings ("y", 3):

3 = [("x", 1); ("y", 3)].[?k]

apply assoc_tl.

3 = [("y", 3)].[?k]
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"x" != ?k

- apply assoc_hd.

- congruence.

Plugging in these two lemmas completes the derivation:

Hint Extern 1 => congruence : circuits.

Hint Resolve assoc_hd assoc_tl | 2 : circuits.

all: forward with circuits.

Qed.

Print cc1'.

cc1' =

Op "nth"

[Mux (Op "xor" [Read "pc"; Read "ppc"]) (Read "r2") (Read "r1");

Const 4]

: circuit

3.3.1.1 Automating the initial setup

This handles the derivation itself; the initial unfolding phase of the derivation can also be

handled automatically using a simple Ltac script to reveal the evar created by Derive and

unfold top-level program definitions, like gc1 above; we do all this in a new tactic compile

with <database>:

Tactic Notation "setup" "with" ident(db) :=

intros; autounfold with db;

lazymatch goal with c := _ |- _ => subst c end.

Tactic Notation "compile" "with" ident(db) :=

setup with db; forward with db.

And with this, we have our first, tiny, extensible compiler! Of course, this new compiler is

applicable to a wide range of programs, not just the one we just compiled:

Derive c SuchThat (forall z, c ≋ z + z @ Σ0 // [("z", z)]) As cok.

Proof. compile with circuits. Qed.

Print c.

c = Op "add" [Read "z"; Read "z"]

: circuit
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Box 3 — Backtracking

In my experience, it is almost always best to reduce or eliminate backtracking. Crafting

compilers is already a tricky business, and introducing backtracking makes debugging

significantly harder. Generating proofs along with programs ensures that the compiler

does not produce incorrect output, but it does not rule out undesirable output, such as

inefficient programs.

Still, in the compile_Read case above, an alternative approach would have been to

apply the lemma unconditionally butwithout shelving: in that case eautowould only have

applied it when it is able to solve the resulting assoc subgoals:
Hint Resolve compile_Read assoc_hd assoc_tl : circuits.

53



3.3.2 Extending the compiler

There are all sorts ofwayswe can extend this compiler; the following are just a few examples:

3.3.2.1 Compiling open terms (macros)

Because the compilation process does not have to start in an empty environment, we can

compile macros, not just functions: all that is needed is to compile the function with an

indeterminate function environment and indeterminate registers. We will allow ourselves

to call the add function (through Hadd), as well as an arbitrary precompiled program c

(through Hc):

Context Σ R c z

(Hadd: forall x y, Σ "add" [x; y] = x + y)

(Hc: c ≋ z @ Σ // R).

Derive c3 SuchThat (c3 ≋ z + z + z @ Σ // R) As c3ok.

Proof. compile with circuits. Qed.

Print c3.

c3 = Op "add" [Op "add" [c; c]; c]

: circuit

After that, the c3macro can be called automatically where appropriate by adding a compi-

lation hint:

Hint Extern 2 => simple apply c3ok : circuits.

Derive c6 SuchThat (c6 ≋ (z+z+z) + (z+z+z) @ Σ // R) As c6ok.

Proof. compile with circuits. Qed.

Print c6.

c6 = Op "add" [c3; c3]

: circuit

3.3.2.2 Plugging in new built-ins

We canmake use of additional functions by extending the function environment Σ, which

defines the semantics of built-ins, and adding appropriate compilation lemmas:

Lemma compile_lsl {Σ R} c1 g1 c2 g2:

(forall x y, Σ "lsl" [x; y] = x << y) ->
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c1 ≋ g1 @ Σ // R -> c2 ≋ g2 @ Σ // R ->

Op "lsl" [c1; c2] ≋ g1 << g2 @ Σ // R.

Proof. cbn; repeat intros ->; reflexivity. Qed.

Hint Extern 2 => simple apply compile_lsl; shelve : circuits.

Example Σ1 fn args := match fn, args with

| "lsl", [z1; z2] => z1 << z2

| _, _ => Σ0 fn args

end.

Derive c4 SuchThat (forall z, c4 ≋ z << 2 @ Σ1 // [("z", z)]) As c4ok.

Proof. compile with circuits. Qed.

Print c4.

c4 = Op "lsl" [Read "z"; Const 2]

: circuit

3.3.2.3 Using custom logic to prove side conditions

Instead of the two lemmas that we proved earlier for compile_Read side-conditions (assoc_-

hd and assoc_tl), we can use a custommetaprogram (a tactic) to figure out the right variable

name and plug it right in. For that, we need a tactic that performs a reverse lookup in an

association list, defined below by recursion:

Ltac assocv v ctx :=

lazymatch ctx with

| [] => fail

| (?k, v) :: _ => k

| _ :: ?ctx => assocv v ctx

| _ => let ctx := eval red in ctx in assocv v ctx

end.

Compute assocv 14 [("x", 3); ("y", 14)].

= "y"

: string

And using assocvwe can define a tactic that guesses the right variable name ?k in goals like

v = ctx.[?k]. In the example below, instantiate_assoc_eq guesses "y" for the value "3":

Ltac instantiate_assoc_eq := match goal with

| |- ?v = ?ctx.[?k] =>
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is_evar k; let k0 := assocv v ctx in unify k k0

end.

3 = [("x", 1); ("y", 3)].[?k]

instantiate_assoc_eq.

3 = [("x", 1); ("y", 3)].["y"]

And finally we add a hook in the compiler to use that tactic as appropriate:

Hint Extern 1 => instantiate_assoc_eq : circuits.

Derive cc2 SuchThat

(forall x y, cc2 ≋ x + y @ Σ0 // [("x", x); ("y", y)])

As cc2ok. compile with circuits. Qed.

Print cc2.

cc2 = Op "add" [Read "x"; Read "y"]

: circuit

3.3.3 Leveraging contextual information

The last extension is important enough that it deserves its own section. It is a common

pattern in functional programming languages to use amonad to describe an effect that

is not supported by the language. Part of compiling the program down to a lower-level

language is mapping the monadic structure to low-level primitives, and we can do that

using relational compilation.

Even better, we can support native compilation of arbitrary monads (!): unlike a tradi-

tional compiler that hardcodes a list of built-in monads that get special compiler support

(think IO in Haskell), we can plug in native compilation support for arbitrary user-defined

monads. Hence we never have to define an interpreter for a free monad (this is a common

approach in Coq for extracting effectful program: define a free monad specialized to a

functor capturing effects, extract to OCaml, and define an unverified interpreter to map

the effects to native OCaml effects; here, we can instead directly map the monad to effects

of the target language).

We will start by exploring the example of the Writermonad with a compiler specialized

for that monad, and then we will see an extra twist that allows us to define the pure parts
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of the compiler in a monad-agnostic way, so that they can be shared between different

EDSL compilers specialized to different monads, reducing duplication. Rupicola itself has

manymore examples of relational compilation for monadic programs.

3.3.3.1 The writer monad

In this example, a programwill return not just a value, but also a lists of strings,modeling

its printed output:

Definition Trace := list string.

Record S {α: Type} := { val: α; trace: Trace }.

Example puts str := {| val := tt; trace := [str] |}.

The usual monadic operators are readily defined: a pure computation is like a monadic

computation with an empty trace, and two effectful computations running in sequence

produce the result of the second and the concatenation of the two traces:

Definition ret (a: α) : S α :=

{| val := a; trace := [] |}.

Definition tr_bind (a: S α) (b: S β) :=

{| val := b.(val); trace := a.(trace) ++ b.(trace) |}.

Definition bind (a: S α) (k: α -> S β) : S β :=

tr_bind a (k a.(val)).

Notation "v ← a ; body" := (bind a%string (fun v => body)).

It is straightforward to prove that the usual monad properties hold:

Lemma bind_ret (ca: S α) :

bind ca ret = ca.

Lemma ret_bind a (k: α -> S β) :

bind (ret a) k = (k a).

Lemma bind_bind ca (ka: α -> S β) (kb: β -> S γ) :

bind (bind ca ka) kb = bind ca (fun a => bind (ka a) kb).

Wewill compile this to a simple imperative string language with traces. Here is the defini-

tion of expressions and statements in that language; this will also give us the opportunity

to start discussing assignments:
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Inductive Expr :=

| Ref var

| Const str

| Concat (e1 e2: Expr).

Inductive T :=

| Seq (t1 t2: T)

| Assign var (e: Expr)

| Puts (e: Expr)

| Skip.

The semantics of expressions is given by an interpreter:
Definition Ctx := list (Var * string).

Fixpoint interp ctx e : string := match e with

| Ref var => ctx.[var]

| Const str => str

| Concat e1 e2 => interp ctx e1 ++ interp ctx e2

end.

…and, to spice things up, the semantics of statements is given by a big-step evaluation

relation:

Inductive RunsTo : Ctx -> T -> Ctx -> Trace -> Prop :=

| RunsToSeq ctx0 t1 ctx1 tr1 t2 ctx2 tr2:

⟨ctx0, t1⟩ ⇓ ⟨ctx1, tr1⟩ ->

⟨ctx1, t2⟩ ⇓ ⟨ctx2, tr2⟩ ->

⟨ctx0, Seq t1 t2⟩ ⇓ ⟨ctx2, tr1 ++ tr2⟩

| RunsToAssign ctx var e:

⟨ctx, Assign var e⟩ ⇓ ⟨(var, interp ctx e) :: ctx, []⟩

| RunsToPuts ctx e:

⟨ctx, Puts e⟩ ⇓ ⟨ctx, [interp ctx e]⟩

| RunsToSkip ctx e:

⟨ctx, Skip⟩ ⇓ ⟨ctx, []⟩

where "⟨ ctx , p ⟩ ⇓ ⟨ ctx' , tr ⟩" :=

(RunsTo ctx p ctx' tr).

The relational compiler for expressions is routine at this point, so we omit it for brevity.

We simply define a relation ~ₑ for expressions and prove lemmas relating outputs and

inputs of interp. For very simple cases like this one, what we are really building is in fact a

reification procedure, implemented by programming a decision procedure to invert the

function interp:

Notation "e ~ₑ g // ctx" := (interp ctx e = g%string).

Derive eHello SuchThat (forall name,
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eHello ~ₑ ("hello, " ++ name) // [("name", name)])

As eHello_ok. compile with str. Qed.

Print eHello.

eHello = Concat (Const "hello, ") (Ref "name")

: Expr

Conversely, there are a fewnew things in the relational compiler for statements. Specifically,

wewant to convert uses ofmonadic bind into sequences, translating pure expressions using

the expression compiler and using primitives to implement stateful computations like

puts.

There is one significant difference from previous examples, however: our new target

language has assignments, and these assignments are not directly reflected in the source

language. As a result the final state of the programmay contain arbitrary bindings, and

it would be quite inconvenient to have to declare exactly which temporary variables may

be used when starting the compilation process. Instead, we will use a slightly more com-

plicated compilation relation. Unlike the equalities used previously, we now state that a

low-level program is related to a high-level one if they produce the same traces, and if the

result of the high-level program can be found in the final context, under a name specified

as part of the compilation relation. Beyond this, the final context is allowed to contain

arbitrary bindings.

Definition related t g var ctx :=

(forall ctx' tr,

⟨ ctx, t ⟩ ⇓ ⟨ ctx', tr ⟩ ->

g.(trace) = tr /\

g.(val) = ctx'.[var]).

Notation "t ~ₜ g @ var // ctx" :=

(related t g%string var ctx).

Each lemma about the new compilation relation ~ₜmatches a corresponding constructor

of RunsTo closely, but not exactly, because we need to phrase things in terms of monadic

operations. First we show how to compile Puts, which writes a value out:

Lemma compile_Puts ctx e g t k var:

e ~ₑ g // ctx ->

t ~ₜ k tt @ var // ctx ->

Seq (Puts e) t ~ₜ bind (puts g) k @ var // ctx.
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Then Assign (quantifying over the value v prevents the expression g from getting inlined

into the continuation k):

Lemma compile_Assign ctx e g t k var tmp:

e ~ₑ g // ctx ->

(forall v, v = g -> t ~ₜ k v @ var // (tmp, v) :: ctx) ->

Seq (Assign tmp e) t ~ₜ bind (ret g) k @ var // ctx.

And finally a lemma to conclude the compilation, which uses an assignment because of the

way our compilation relation is phrased.

Lemma compile_Skip ctx e str var:

e ~ₑ str // ctx ->

Assign var e ~ₜ ret str @ var // ctx.

These compilation rules are enough to compile full programs (below, the tactic binder_-

name translates a Coq-level binder name into a string):

Hint Extern 1 => simple apply compile_Puts; shelve : str.

Hint Extern 1 => simple apply compile_Skip; shelve : str.

Hint Extern 1 (_ ~ₜ bind ?s ?k @ _ // _) =>

simple apply compile_Assign

with (tmp := ltac:(binder_name k)); shelve : str.

Definition greet (name: string) :=

greeting ← ret ("hello, " ++ name);

_ ← puts greeting;

_ ← puts "!";

ret greeting.

Hint Unfold greet : str.

Derive tHello SuchThat (forall name,

tHello ~ₜ greet name @ "out" // [("name", name)])

As tHello_ok. compile with str. Qed.

Print tHello.

tHello =

Seq (Assign "greeting" (Concat (Const "hello, ") (Ref "name")))

(Seq (Puts (Ref "greeting"))

(Seq (Puts (Const "!")) (Assign "out" (Ref "greeting"))))

: T
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Box 4 — No rules for arbitrary sequences (no cuts)

It may be surprising that we do not have a lemma for compiling an arbitrary sequence

— one that would handle any Gallina bind. Instead, we have two lemmas, specialized to

the two kinds of expressions thatmay be bound, Puts and Assign, both with an arbitrary

continuation. Is that not limiting? Not really.

The reason we do not have an arbitrary bind is that our equivalence relation is not

precise enough: it does not specify exactly what the environment of variables is after

running a piece of code. This is convenient, since it allows us to phrase our lemmas

concisely and easily; but it prevents us from phrasing a lemma to relate bind and Seq in

general (and it makes it so that our Skip lemma does not in fact use Skip). What would

such a bind lemma look like? Wemight hope to write something like the following, but

this is not valid:
Lemma compile_Seq ctx t1 s1 t2 s2 var tmp:

t1 ~ₜ s1 @ tmp // ctx ->

t2 ~ₜ s2 s1.(val) @ var // (tmp, s1.(val)) :: ctx ->

Seq t1 t2 ~ₜ bind s1 s2 @ var // ctx.

Abort.

Indeed, the first premise says very little about the state of the machine after running

t1: only that it will contain a binding tmp ↦ s1.(val). It does not say that ctxwill be

unmodified otherwise (t1may create new bindings), and hence the environment in

which Seq t1 t2will run t2 is not guaranteed to be (tmp, s1.(val)) :: ctx, as required

by the second premise.

This is not an issue for straightline code, but it does cause trouble for conditionals

and loops that appear in the value part of a bind (what local variables can we assume the

environment to contain after an if?). Themonad-agnostic approach that we present in

the next step solves this problem.
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3.3.3.2 Monad-agnostic extraction

In the above,we defined a new extraction procedure for eachmonad, but we can reduce the

required effort by generalizing further. We can define things in such a way that lemmas

about non-monadic code work for all monads,whichmeans that different domain-specific

languages, using different monads, can all use the same code for compiling pure values.

The key here is to generalize completely over the pre- and postconditions that the compiler

uses, leaving only a distinguished argument to the postcondition indicatingwhichprogram

we are compiling. For this we define a Hoare triple on top of our program semantics (for

brevity we define it on top of our big-step semantics instead of defining a new relation,

and we omit the precondition, which will live in the ambient proof context instead):

Definition triple {α}

(ctx: Ctx) (prog: T) (spec: α)

(post: α -> Trace -> Ctx -> Prop) :=

forall ctx' tr,

⟨ctx, prog⟩ ⇓ ⟨ctx', tr⟩ -> post spec tr ctx'.

Notation "<{ ctx }> prog <{ spec | post }>" :=

(triple ctx prog spec post).

Note how the postcondition post takes a special argument spec, which is where we will

plug in our Gallina programs (this trick makes it easy to spot the program that we’re

compiling when writing tactics that inspect the goal). Crucially, spec does not take a

monadic argument in: any Gallina program is fair game to plug into this spot that drives

the compiler. Our previous relation is a special case of this one, and in fact all lemmas will

carry naturally. Specifically, we have:

Goal forall t g var ctx,

<{ ctx }>

t

<{ g | fun g tr' ctx' =>

g.(val) = ctx'.[var] /\

g.(trace) = tr' }> ->

t ~ₜ g @ var // ctx.

Here is compile_Assignwritten in this new style. We quantify the hypothesis about expres-

sions over all states allowed by the precondition, and as the postcondition we plug in the

strongest postcondition for the assignment statement (which looks simpler than the usual

SP of an assignment because of the choice tomove preconditions to the surrounding logic).
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Lemma compile_Assign e g ctx tmp:

e ~ₑ g // ctx ->

<{ ctx }>

Assign tmp e

<{ g | fun v tr ctx' =>

tr = [] /\ ctx' = (tmp, v) :: ctx }>.

And with these generalized pre-post pairs, we can now define a compilation lemma for

bind, as well as a proper Skip lemma, both of which vexed us previously. This time, the

first program is compiled with an arbitrary postcondition, which will be resolved through

unification as part of the compilation process; and the second program assumes this

intermediate postcondition as its starting point and completes its run with a modified

postcondition that appends the corresponding trace. Because this lemma doesmention

low-level effects, of course, we do need to mention the monad that we use to implement

trace-modifying effects.

Lemma compile_Seq {α β} ctx post middle p1 p2 (s1: S α) (s2: α -> S β):

<{ ctx }> p1 <{ s1 | middle }> ->

(forall g1 tr1 ctx1, g1 = s1 -> middle g1 tr1 ctx1 ->

let post' g2 tr2 := post (tr_bind g1 g2) (tr1 ++ tr2) in

<{ ctx1 }> p2 <{ s2 g1.(val) | post' }>) ->

<{ ctx }> Seq p1 p2 <{ bind s1 s2 | post }>.

Lemma compile_Skip g ctx post :

post g [] ctx ->

<{ ctx }> Skip <{ g | post }>.

Conditionals and loops can be handled similarly to sequences. For straightline code, we

do not need to instantiate this “middle” clause explicitly: instead we can simply let it be

derived by unification as part of compiling the first part of the sequence. For conditionals

and for loops there is no free lunch, however, so we need to infer a predicate that captures

the effect of both branches (for conditionals) or arbitrary repetitions (for loops). Luckily

this inference problem is easier than it seems at first: specifically, we can pick the strongest

postcondition, with carefully chosen heuristics andmanipulations to ensure that we chose

a postcondition that is readable and workable for the rest of the compilation process. The

exact choice of heuristics is out of scope for this section, but we detail it later when we dive

into the specifics of Rupicola (section 4.5.2).
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At this point, if we consider the case of a source program made of a sequence of let-

bindings, we realize that the compilation process will now be an alternation of compile_Seq

and specialized compilation lemmas, the former introducing cuts in the derivation and

the latter refining the precondition of the program. Once we’re done with all let-bindings

(or monadic binds), we unify the final precondition that the compiler has derived with the

postcondition that we were hoping to achieve.

It is because of this last step that we usually prefer to add an explicit continuation to

each lemma, even though our new representation allows for a general cut lemma compile_-

Seq: making continuations explicit allows us to craft our intermediate postconditions

very precisely as part of writing each lemma, instead of relying on unification. (Careful

readers will have noticed the difficulty already popping up in a small way in compile_Assign

above, which referred to a variable name tmp that we could not infer from the goal, since

we had already eliminated the corresponding let binding.) This makes the last unification

step trivial in almost all cases. Here is what compile_Assign looks like in this style (using a

wrapper blet—for “blocked let”— around let-bindings to prevent Coq from unfolding too

aggressively without depending on a specific monad and bind + ret):

Lemma compile_Assign {α} ctx e g t (k: string -> α) tmp post:

e ~ₑ g // ctx ->

(forall v, v = g -> <{ (tmp, v) :: ctx }> t <{ k v | post }>) ->

<{ ctx }> Seq (Assign tmp e) t <{ blet g k | post }>.

Proof. unfold triple; hammer. Qed.

This is the last step of our journey, and since our final compiler looks so similar to the previ-

ous iteration, we omit it for brevity; curious readers can consult the complete development

for details.
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4 Relational compilation for
performance-critical applications

Thefirst part of this dissertation presented the key ideas behind relational compilation,

keeping implementation details to aminimum. In this part I discuss how these ideas come

together to implement a realistic compiler-construction toolkit. Specifically, I present

the design and implementation of Rupicola, a Gallina-to-Bedrock2 compiler-construction

framework with a focus on simple, low-level performance-critical programs.

Rupicola’s core is very small (hundreds of lines), but thanks to a variety of extensions

the whole distribution ends up with a reasonably expressive input language. With all

extensions loaded, Rupicola supports arithmetic over many types (Booleans, bounded

and unbounded natural numbers, bytes, integers,machine words), various control-flow

patterns (conditionals as well as iteration patterns like maps and folds, with and without

early exits), various flat data structures such asmutable cells and arrays; plain andmonadic

binds; variousmonadic extensions including the nondeterminism,writer, and I/Omonads

andageneric freemonad; and various low-level effects and features such as stack allocation,

inline tables, intrinsics, and external functional calls (details about these features are given

in section 4.6.2).

For the programs that fit within Rupicola’s existing input language, using Rupicola is

not very different from using any other (research-quality) compiler: plug in a function

body and a signature and get compiled output back. For programs that Rupicola does

not support out of the box, or for programs that require custom reasoning to jump the

functional-to-imperative gap (typically array-bounds side conditions), users are able to

plug in new compilation lemmas or new logic at a reasonable cost.

I designed the framework so that the default reaction to unexpected input would be to

stop and ask for user guidance rather than default to a slower generic implementation.

As a result, Rupicola makes few guesses and consequently very few incorrect guesses: pro-
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grams compiled using Rupicola achieve performance comparable to that of equivalent

handwritten C programs, because Rupicola produces C programs that are (semantically9)

very close to handwritten C programs.

I start with a description of Rupicola’s input and output languages: subsets of Gallina

for inputs, and Bedrock2 (a low-level programming and verification language developed

at MIT) for outputs. I then review the high-level architecture of Rupicola, combining a

minimal compiler core and various compilation domains as orthogonal extensions. Then, I

dive deep on two new ideas thatmake Rupicola possible, showcasing the unique challenges

each of them pose and explaining how I tackled them.

Before all that, however, let us get a taste of programming in Rupicola by revisiting our

introductory example (uppercasing a string).

4.1 Compiling with Rupicola

Recall the setup: we are programming some sort of web service, and part of the work of

resolving a query is to change an input string to uppercase (section 1.1). Gallina represents

strings using a data type similar to a linked list of characters, and ASCII characters as 8-

tuples ofBooleans (bits). On topof thesedefinitionswe implement a recursive String.map to

apply a transformation to each individual character, and we pass it a new function toupper

implemented using a matchmapping each lowercase ASCII character to its uppercase coun-

terpart. There are four main ways in which we want the final, compiled implementation of

this program to differ from the execution strategy suggested by the high-level program,

and accordinglywewill need to combine four compiler extensions to translate this program

to Bedrock2, the C-like language that Rupicola targets.

• First, we want to change the way strings and characters are represented: we want strings

to be contiguous arrays of characters, not linked lists, and we want characters to be

machine bytes, not structs with eight single-bit fields.

• Second, we want to get rid of higher-order iteration: we would like to translate the string

map to a loop, thereby reducing pressure on the stack andmemory.

9Rupicola uses Bedrock2’s pretty-printer to C, whose output is not optimized for readability and does not
use the whole range of C types.
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• Third, we want to introduce mutation: the source program is pure, but the result should

modify the string in-place.

• Fourth, we want to optimize the calculation of the per-character uppercasing operation,

using specific properties of the ASCII encoding that we use to represent characters.

Some of these transformations are expressible at source level, but not all, or at least not

equally easily. For example, Gallina, the language that we start with, defines strings as

linked lists of 8-Boolean records, but we can define our own pure array, chars, and string

types; Gallina has no loop built-ins, but we can define higher-order iterators that simulate

low-level loops; Gallina does not natively support mutation, but we could rewrite the

program using the state monad; and the bit tricks that we want to perform on ASCII

characters to uppercase them are not easy to express on 8-Boolean records, but we can

cast to and from a better representation. And yet, even if we performed all that encoding

work,wewould still have noway using Coq’s native extraction to generate code that reliably

matches handwritten-C performance.

Rupicola solves the problem nicely. The four implementation choices are domain- or

program-specific design choices, and Rupicola enables the user to leverage amix of source-

level annotations, transformations, and compiler extensions to communicate them to the

compiler.

In the simplest cases, including this one, source-level annotations are not necessary:

judiciously chosen compiler hints suffice to derive low-level code directly from an unmodi-

fied high-level representation. In more complex cases, or in cases requiring more precise

control of the output, users instead provide a “low-level Gallina” version of the program

directly suitable for compilation to Bedrock2 and separately relate that functional model

to a high-level specification. This second approach is the most common, so that is the one

that I demonstrate here.

Let us start from a high-level specification of the problem:

Definition toupper (c: ascii) :=

match c with

| "a" => "A" | "b" => "B" | "c" => "C" | "d" => "D"

| "e" => "E" | "f" => "F" | "g" => "G" | "h" => "H"

| "i" => "I" | "j" => "J" | "k" => "K" | "l" => "L"

| "m" => "M" | "n" => "N" | "o" => "O" | "p" => "P"

| "q" => "Q" | "r" => "R" | "s" => "S" | "t" => "T"

| "u" => "U" | "v" => "V" | "w" => "W" | "x" => "X"
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| "y" => "Y" | "z" => "Z" | c => c

end%char.

Definition upstr (s: string) :=

String.map toupper s.

Compute upstr "rupicola".

= "RUPICOLA"

: string

Wethendefinea lowered versionof the samecode. Becauseof the simplicity of this example,

the lowering from the natural high-level version is almost trivial: it suffices to define a

variant upstr' of upstr on the type list byte instead of string, using the ListArray.map

iterator instead of String.map (the notation let/n is a hint to Rupicola to mutate s in place;

it will be explained soon):

Definition upstr' (s: list byte) :=

let/n s := ListArray.map

(fun b => byte_of_ascii (toupper (ascii_of_byte b)))

s in

s.

The equivalence proof is a matter of just a few lines:

Lemma string_map_is_map f s:

String.map f s =

string_of_list_ascii (List.map f (list_ascii_of_string s)).

Proof. induction s; simpl; congruence. Qed.

Hint Unfold nlet upstr upstr'

list_byte_of_string string_of_list_byte : lowering.

Hint Rewrite string_map_is_map map_map

list_ascii_of_string_of_list_ascii : lowering.

Lemma upstr_ok bs:

list_byte_of_string (upstr (string_of_list_byte bs)) = upstr' bs.

Proof.

autounfold with lowering; autorewrite with lowering;

reflexivity.

Qed.

And with that, we are ready to start assembling a compiler.
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• The first transformation (strings as arrays, chars as bytes) we encode as part of the pre-

condition of our low-level program: we state that we have a pointer s_ptr to a buffer

containing the same data as the string. The postcondition is written as translating the

string into a list of bytes and invoking the array predicate. The corresponding speci-

fication is shown below; it helps to see it as a signature (or a calling convention) for

the low-level program that we intend to generate. The function takes two arguments

(machine words) p (a pointer to a string) and wlen (its length as a number) and a ghost

argument s (a list of bytes), and it returns nothing; the requires clause specifies how the

function is called (with a condition on argument wlen and a separation-logic predicate,

plus a condition to ensure that all elements of the array are addressable10); and the ensures

clause states that the program does not produce observable I/O (tr' = tr) and that it

overwrites the original string with the update one (upstr' s).

Notation nbytes := (sizedlistarray_value AccessByte).

Instance spec_of_upstr : spec_of "upstr" :=

fnspec! "upstr" p wlen / (s: list byte) r, {

requires tr mem :=

wlen = of_nat (length s) /\

Z.of_nat (length s) < 2 ^ 64 /\

(nbytes (length s) p s ? r) mem;

ensures tr' mem' :=

tr' = tr /\

(nbytes (length s) p (upstr' s) ? r) mem'

}.

• The second transformation (map as a loop) is done using a lemma to translate ListArray.

map into a for loop. This sort of translation is a common pattern, so Rupicola’s standard

library has built-in support for it: it suffices to import the corresponding compilation

module, and to register a hint to solve indexing-related side-conditions.

Import LoopCompiler.

Hint Extern 1 => lia : compiler_side_conditions.

• The third transformation (mutation) comes as a side effect of using an in-place map-to-

loop lemma; in Rupicola I call it an intensional effect, since it is introduced automatically

10The nbytes separation-logic precondition implicitly guarantees that the s has atmost 264 characters (length
s ≤ 2^64), indexed from 0 to 264 − 1. Frustratingly, this is not sufficient to iterate over the array: for that
we need the length of the array to be representable as a 64-bits integer, i.e. length s < 2^64 - 1, which
requires a separate premise.
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by analyzing the source code (and not explicitly encoded using a monad). All we need

is to give guidance to the compiler on how to compile array operations, which we do by

importing a standard library module:

Import SizedListArrayCompiler.

• The last transformation, efficient uppercasing, can be plugged into the compiler as a

rewrite: we prove a program equivalence between our toupper function on 8-tuples of

Booleans and an efficient byte computation:

Definition toupper' (b: byte) :=

if byte.wrap (b - "a") <? 26

then byte.and b x5f else b.

Once again the proof is trivial, and we can plug the resulting lemma into the compiler as

a rewrite rule, followed by an unfolding rule to allow it to inline upchar':

Lemma toupper'_ok b:

byte_of_ascii (toupper (ascii_of_byte b)) = toupper' b.

Proof. destruct b; reflexivity. Qed.

Hint Rewrite toupper'_ok : compiler_cleanup.

Hint Unfold toupper' : compiler_cleanup.

With these four pieces in placewe can invoke the compiler, andweget the expected low-level

program out with no further manual intervention:

Derive upstr_br2fn SuchThat

(defn! "upstr"("s", "len") { upstr_br2fn },

implements upstr') As upstr_br2fn_ok.

Proof. compile. Qed.

The result is a Bedrock2 program upstr_br2fn and its proof of correctness upstr_br2fn_ok;

the program can then be compiled using Bedrock2’s verified compiler (with support for

linking against separately verified fragments of RISC-Vmachine code as needed, though

this example is self-contained), or it can be pretty-printed to C, fed to a traditional C

compiler, and linked with a larger C program (the details of Bedrock2’s pretty-printer are

discussed in section 5.2.1):
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void upstr(uintptr_t s, uintptr_t len)

{

uintptr_t _gs_to, _gs_tmp, _gs_from;

_gs_from = (uintptr_t) 0ULL;

_gs_to = len;

while ((uintptr_t) ((_gs_from) < (_gs_to))) {

_gs_tmp =

_br2_load((uintptr_t)

(((char *) (s)) + (((uintptr_t) 1ULL) * (_gs_from))),

1);

if ((uintptr_t)

((((_gs_tmp) - ((uintptr_t) 97ULL)) & ((uintptr_t) 255ULL)) <

((uintptr_t) 26ULL))) {

_gs_tmp = (_gs_tmp) & ((uintptr_t) 95ULL);

} else {

/*skip */

}

_br2_store((uintptr_t)

(((char *) (s)) + (((uintptr_t) 1ULL) * (_gs_from))),

_gs_tmp, 1);

// unset _gs_tmp

_gs_from = (_gs_from) + ((uintptr_t) 1ULL);

}

return;

}

4.2 Rupicola's target language: Bedrock2

Rupicola compiles to Bedrock2 [14], an untyped version of the C programming language.

It has a verified compiler to RISC-V with a complete correctness proof as well as a minimal

program logic. The semantics divide the program state in three parts: the heap (a flat

array of bytes indexed by natural numbers, with an optional layer of separation logic in the

program logic), the current function context (a map of names to machine words), and an

event trace capturing externally observable events.

Bedrock2’s structured control flow includes function calls, conditionals, and loops; the

semantics only givemeaning to terminating loops, so proofs about Bedrock2 programs are

total-correctness proofs11. Additionally, stack usage is measured and restricted, so there is

no general recursion. Memory allocation is handled by client code, except for allocation on

the stack, which is available through a language primitive that gives client code access to
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temporary scratch space that is lexically scoped within a function’s body. Finally, Bedrock2

has no global constants except through the heap, but it has a language primitive for static

arrays of byte constants (inline tables).

The choice of Bedrock2 was mostly one of convenience, along with consideration for

the long-term goal of end-to-end verification. Bedrock2’s flat-array-of-bytes model of

memory lends itself nicely to writing efficient programs, too, since it makes it easy to

program patterns that are hard to write in C (for example, ISO C makes it particularly

difficult to safely reinterpret pointers, e.g. to iterate over an array of one type as an array of

another type, or to reinterpret a structure as a sequence of bytes). Conversely, its support

for a local context of variables and structured programming constructs saves Rupicola

from having to grapple with issues such as register allocation or instruction selection.

4.3 Rupicola's source language(s): Coq EDSLs

There is no single, well-defined “input language” for Rupicola. Out of the box the compiler

supports a number of patterns, and Rupicola’s standard library provides support for many

more, but extensibility is a key feature: we want users to be able to plug in new transfor-

mations, and support both new constructs and newways to compile already-supported

constructs.

In other words, Rupicola’s input language is flexible, and howwide a semantic gap to

cross as part of the translation done with Rupicola is left to the user’s appreciation: users

may start from relatively high-level specifications and use a complex set of compilation

lemmas, or start from lower-level (yet still purely functional) code but use simpler compila-

tion lemmas. In the upstr example above, for example, users can compile directly from the

original upstrwith no changes, leaving all complexity to compilation lemmas and rewrite

rules; or they may write upstr' as we did but leave the translation from upchar to upchar'

to a rewrite rule; or they may plug upchar' directly into upstr', at the cost of making the

proof of upstr' against upstr a touchmore complex; or they may write an even lower ver-

sion of the code by appealing to a lower-level loop primitive (nd_ranged_for_all stands for

nondependent for loop on all elements of a numeric range— a typical for loop):

Definition upstr' (s: list byte) :=

11Total correctnessmeans that correctness proofs guarantee no just that programs compute the right values
when they do terminate (partial correctness), but also that they always terminate.
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let/n s := nd_ranged_for_all

0 (Z.of_nat (length s))

(fun s idx =>

let/n b := ListArray.get s idx in

let/n b := toupper' b in

let/n s := ListArray.put s idx b in

s) s in

s.

In our experience, starting from lower-level code (not necessarily as low-level as nd_ranged_-

for_all above) is almost always a better approach: it works best to useRupicola to introduce

effects that are unpleasant to encode in the source such asmutation and to handle low-level

concerns such as manual memory management, while relying on other high-level tech-

niques to lower abstract specifications into inputs suitable for compilation with Rupicola

(the point of this division is to completely separate technicalities of the low-level imperative

programming language from proofs of performance optimizations and implementation

tricks).

With this layered methodology, which Rupicola shares with languages and frameworks

like Low* [52], Fiat [11, 9], and VST [2], users have complete flexibility on how to develop

the low-level Gallina code and connect it to high-level specs, all in shallowly embedded

style and without worrying about Bedrock2; then, as a completely separate step, they

can use Rupicola to jump the verification gap from shallowly embedded Gallina to deeply

embedded Bedrock2, with end-to-end proofs.

An example may help make things more concrete, so let us borrow one from Fiat Cryp-

tography [15], where some of my colleagues have started to use Rupicola to derive imple-

mentations of cryptographic protocols. The highest-level specifications for that code fit in

just a few lines (this code was written by Andres Erbsen):

Definition poly1305 (p:=2^130-5)

(k: list byte) (m: list byte): list byte :=

let r := Z.land (le_combine (firstn 16 k))

0x0ffffffc0ffffffc0ffffffc0fffffff in

let t := fold_left (fun a n =>

(a + le_combine(n ++ [x01])) * r mod p)

(chunk 16 m) 0 in

le_split 16 (t + le_combine (skipn 16 k)).

Compiled as-is, this code would be very slow, and there are many transformations that we
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may wish to perform as part of compiling it to Bedrock; a small sample follows:

1. We want to represent lists of bytes as arrays; this is easy to do using a compilation

lemma.

2. The code creates new lists from the first and last 16 bytes of k; instead, we would like to

take slices of the original array.

3. The computation of r is phrased by converting k into a number and bitwise and-ing

it with a large constant. A direct implementation of this would require unbounded

integers, which we do not want to introduce here; instead, the constant can be chunked

up into bytes, and the and operation can be performed over the bytes of the original k.

4. The loop over chunk 16 m performsmodular arithmetic on large integers, which wemay

want to convert to use an optimized implementation.

5. Thecall to le_combine to construct a number from n and \x01 implicitly allocatesmemory;

ideally, this should be done on the stack.

Trying to cram all these transformations into compilation lemmas has two disadvantages.

First, the compiler becomes hard to reason about (too much happens for users to com-

fortably predict characteristics of the output code - this is one mistake that I made in the

design of the Fiat-to-Facade compiler). Second, the whole compilation process becomes

more brittle, because of the amount of reasoning that is performed inside the compiler.

Instead, a different process is much preferable: first write a lower-level version of this

code, still in Gallina12, that is much more explicit about how execution is expected to

proceed and then compile that lowered program using Rupicola. In the example below, the

functions used are chosen to all have unambiguous translations to low-level programs.

Definition poly1305_impl (k: array_t byte) (msg: array_t byte)

(output: Z): array_t byte :=

let/n (f16, l16) := array_split_at 16 k in

let/n scratch := buf_make byte felem_size in

let/n scratch := buf_append scratch f16 in

let/n (scratch, padding) := buf_split scratch in

let/n scratch := List.map (fun '(w1, w2) => byte.and w1 w2)

(combine scratch [xff;xff;xff;x0f;xfc;xff;xff;x0f;

xfc;xff;xff;x0f;xfc;xff;xff;x0f]) in

let/n scratch := buf_unsplit scratch padding in

let/n scratch := buf_push scratch x00 in
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let/n scratch := bytes_as_felem_inplace scratch in

let/n output := felem_init_zero in

let/n output := array_fold_chunked msg 16

(fun idx output ck =>

let/n nscratch := buf_make byte felem_size in

let/n nscratch := buf_append nscratch ck in

let/n nscratch := buf_push nscratch x01 in

let/n nscratch := bytes_as_felem_inplace nscratch in

let/n output := felem_add output nscratch in

let/n output := felem_mul output scratch in

output)

output in

let/n output :=

uint128_add (felem_as_uint128 output) (bytes_as_uint128 l16) in

let/n output := uint128_as_bytes output in

let/n k := array_unsplit f16 l16 in

output.

Thankfully, connecting these two versions of the code is not hard; this is what makes

Rupicola’s approach viable. Because the code is pure, all the bindings can be unfolded, all

the custom functions reduced to primitives that manipulate lists, etc. —all in all, the proof

in Coq that relates these two versions is a matter of 5 to 15 lines, depending on howmuch

one cares to automate it.

4.4 The anatomy of a Rupicola lemma

Rupicola has two relational compilers: one for expressions and one for statements, each

based on the corresponding Bedrock2 judgment. Accordingly, Rupicola extension lemmas

are of mainly two kinds.

4.4.1 Expression lemmas

Bedrock2’s judgment for expressions, which I write DEXPR in Rupicola, is defined such that

DEXPR m l e wmeans “expression e reduces to machine word wwhen run with memory m

12This version, while more complex, is in fact arguably closer to the original specification in section 2.5.1 of
RFC7539 (https://datatracker.ietf.org/doc/html/rfc7539#section-2.5.1) than the more concise specifi-
cation above.
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and locals l.” Rupicola lemmas for expressions relate DEXPR judgments, optionally with

preconditions. A typical lemma is thus:

Lemma expr_compile_Z_shiftr m l z1 z2 e1 e2:

0 <= z1 < 2^width ->

0 <= z2 < width ->

DEXPR m l e1 (of_Z z1) ->

DEXPR m l e2 (of_Z z2) ->

DEXPR m l (expr.op sru e1 e2) (of_Z (Z.shiftr z1 z2)).

The function of_Z truncates an unbounded integer. The first two premises restrict the

application of the lemma to certain inputs; in this case a right shift on Z (unbounded

integers) is expressible as aword operation only if its operand is representable as amachine

word and if the shift amount does not exceed the word width (shifting to the left commutes

with truncating, but shifting to the right does not, so wemust ensure that the upper bits

of the original operand are zero). The next two premises are two compilation subgoals for

the operand of the shift and the shift amount.

Of course, not every operation maps directly to a Bedrock2 operator; for example:

Lemma expr_compile_Z_lnot m l z1 e1:

DEXPR m l e1 (of_Z z1) ->

DEXPR m l (expr.op xor e1 (expr.literal (-1))) (of_Z (Z.lnot z1)).

In these two examples m and l are not used; for l there is really a single lemma (reading

a variable from the context), and for m there are many lemmas, with separation-logic

preconditions asserting the presence of specific structures at given addresses (Bedrock2

expressions include pointer dereferences).

Maps of locals l use a custom notation to improve readability: #{ ...m; k₁ => v1; k₂ =>

v₂ }# is short for ``map.put (map.put m k₁ v₁) k₂ v₂.

4.4.2 Statement lemmas

Bedrock2’s statement judgment is what Rupicola spends most of its time wrangling with.

In Rupicola we write it as a Hoare triple {{ t;m; l;σ }} c {{ P p }}. In the precondition t

is the trace accumulated up to this point in the program (which tracks I/O events),m the

memory, l the locals , and σ the environment of functions that the programmay call; in the

postcondition P is a predicate and p is a Gallina value (the source program); and c is the
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Bedrock2 program being derived (always an evar). The judgment states that running cwith

the given starting state (precondition) leads to a final state verifying Pp (here P is partially

applied; the result is a predicate on trace, memory, and locals). As an example, here is a

statement lemma about translating a replacement in a dependently typed (length-indexed)

vector of bytes into a pointer assignment:

Lemma compile_vectorarray_put_byte {n} [t m l σ]

(a: Vector.t byte n) (i: Fin.t n) (b: byte)

{T} a_var a_ptr (k: _ -> T) I B K pred r :

map.get l a_var = Some a_ptr ->

(bytes_vector a_ptr a ? r) m ->

DEXPR m l I (of_Fin i) ->

DEXPR m l B (of_byte b) ->

(forall m',

let a' := Vector.replace a i b in

(bytes_vector a_ptr a' ? r) m' ->

{{ t; m'; l; σ }} K {{ pred (k a') }}) ->

{{ t; m; l; σ }}

seq (store access_size.one (expr.op add a_var I) B) K

{{ pred (nlet [a_var] (Vector.replace a i b) k) }}.

The lemma has 5 premises. Variables a, i, and b are the arguments to the operation being

compiled (seen in a' := Vector.put a i b and at the bottom as the argument to nlet).

The first premise indicates that a pointer a_ptrmay be found in local variable var. The

second premise states that memory m contains the vector a at address a_ptr, alongside

some separate memory r. The third and fourth premises are expression-compilation

subgoals for expressions computing the values of i and b (by convention in this lemma I

write deeply embedded terms in uppercase). The final premise is a statement-compilation

subgoal: it asserts that a program K can be found to implement the remainder k a' of the

original computation, assuming amodifiedmemory containing the updated vector and

the untouched separate memory r.

The curious pattern of including a continuation in the compilation lemma allows us

precise control on the shape of the next statement-compilation goal. This is in our experi-

ence more convenient than using a generic sequencing lemma, in part due to the fact that

Bedrock2’s predicates are asymmetric (the precondition is not a predicate but a collection

of values that are universally quantified over in the Coq context of the proof).
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Also worthy of note is the way the continuation is invoked: the nlet form includes not

only a value and a continuation (the usual encoding of (let var := val in body) as ((fun

var ⇒ body) val)) but also a list of names ([a_var] in this case) that are provided by the

user to describe which objects are intended to be mutated13.

Definition nlet {A T} (vars: list string) (a: A) (body: A -> T) : T :=

let x := a in body x.

This wrapper has three purposes:

1. It helps direct the compiler: users introduce nlet bindings to direct the compiler to

overwrite or mutate existing bindings or to create new ones.

2. It prevents overly aggressive reduction: many Coq tactics tend to inline let bindings

(ζ-reduction) as a side effect of performing some useful tasks.

3. It materializes the body of the let binding as a function— there is no other way to write

a Coq lemma that matches a let binding parametrically on its body without relying on

higher-order unification.

The vars part of nlet is automatically captured by a Coq notation [46], so the experience of

authors of source programs is the same aswriting regular let bindings, onlywith additional

meaning given to the choice of names14:

Check let/n x := 1 in x + x.

nlet ["x"] 1 (fun x : nat => x + x)

: nat

In fact, for maximal generality, Rupicola compilation lemmas are usually written using a

dependently typed version of nlet, named nlet_eq:

Definition nlet_eq {A} {P: forall a: A, Type}

(vars: list string) (a: A)

(body: forall a' (Heq: a' = a), P a') : P a :=

let x := a in body a eq_refl.

13A variant of this lemma exists that ignores the variable and instead searches for any pointer to a, but
making the name explicit makes compilationmore predictable: without it Rupicolamight pick the wrong
object to mutate if there were two indistinguishable objects present in memory at a given point in a
compilation run.

14In other words, the nlet form itself preserves α-equivalence at the semantic level as it discards its var
argument, but the compiler takes it into account.
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The reason this variant is needed is that, in Coq, the forms let x: T := a in body and (fun

x: T => body) a are not equivalent15. The former is transparent, in the sense that bodymay

depend on the value of a for type-checking purposes, whereas the latter is opaque, in that

it may only depend on the type T of x:

Compute let n: nat := 3 in Vector.hd (Vector.const true n).

= true

: (fun (n : nat) (_ : Vector.t bool (S n)) => bool) 2

(Vector.const true 3)

Compute (fun n: nat => Vector.hd (Vector.const true n)) 3.

In environment

n : nat

The term "Vector.const true n" has type "Vector.t bool n"

while it is expected to have type "Vector.t bool (S ?n)".

The first program computes the head of a constant vector containing 3 elements; this is a

well-typed operation, because 3 is S 2, and the type of Vector.hd requires a vector whose

length matches S _:

Check @Vector.hd.

@Vector.hd

: forall (A : Type) (n : nat), Vector.t A (S n) -> A

Thesecond program fails, because the body of the function does not have access to the value

of n: the function itself must typecheck in all circumstances. Trying to write the program

with nlet fails in the same way, but it succeeds with nlet_eq, at the cost of an explicit cast:

Compute let/n n := 3 in

Vector.hd (Vector.const true n).

In environment

n : nat

The term "Vector.const true n" has type "Vector.t bool n"

while it is expected to have type "Vector.t bool (S ?n)".

Compute let/n n eq:Heq := 3 in

15This fact was first pointed out to me by Jasper Hugunin in the thread Unfold a constant in Program constraints
on Coq’s Zulip channel.
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Vector.hd (rew Heq in (Vector.const true n)).

= true

: (fun _ : nat => bool) 3

Part of Rupicola’s default compiler automation transforms nlet into nlet_eq before looking

for lemmas to apply—this allows authors tophrase compilation lemmas in termsof nlet_eq

and have them apply to both nlet_eq and plain nlet goals (otherwise there would have two

be two lemmas per code pattern, one for nlet bindings and one for nlet_eq bindings).

4.5 Relational compilation in Rupicola

Rupicolamostly follows the structure laid out in the later parts of chapter 3, but two aspects

are particularly interesting and worthy of discussion: effects and control flow.

4.5.1 Compiling effectful programs

A key tool to achieve excellent performance for extracted programs is leveraging the target

language’s native effects. In Rupicola, effects are classified into two categories: intensional

and extensional.

4.5.1.1 Intensional effects

Intensional effects are not explicitly encoded in the source (they do not appear in type

signatures). Instead, they are introduced by special-casing certain code patterns through

compiler extensions.

State and certain aspects of allocation are handled this way in Rupicola. For state, in

particular, we do not typically use an explicit encoding: instead, we add lemmas to map,

for example, list accesses to pointer dereferences, or pure replacements in a list to pointer

assignments. Allocation of short-lived objects on the stack is handled similarly; I discuss it

in a case study in section 5.1.2.1.

In general, intensional effects are either inferred or introduced explicitly using semanti-

cally transparent annotations on source programs. Every let-binding in functional models

fed to Rupicola, for example, is annotated with the name of the variable it binds, allowing

the compiler to make decisions about mutating existing variables and objects or creating
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new ones based on the user’s choice of names (in general, Rupicola expects input programs

to be sequences of let-bindings, one per desired assignment in the target language). Sim-

ilarly, to indicate that a let-binding should result in a copy instead of a mutation, a user

might wrap the value being bound in a call to a copy function of type ∀ α. α → α. Finally,

while in simple cases data-structure mappings can be inferred automatically, in complex

cases the user can control memory layout explicitly by usingmodules that transparently

wrap underlying functional types (for example, the ListArraymodule reexposes list opera-

tions in a semantically transparent way that Rupicola can still use to drive compilation).

With this lightweight approach to intensional effects, and especiallymutation, compiled

programs canmake full use of low-level state while source programs remain easy to reason

about, with no explicit heap at the source level. This is a key advantage of Rupicola’s

intensional encoding of effects: it essentially does not impede verification efforts. When

proving a functional model against a higher-level specification, annotations can simply

be unfolded away: Rupicola’s name-carrying let-bindings unfold to regular let-bindings,

functions like copy above simply disappear, andmodules wrapping standard types unfold

to reveal them.

4.5.1.2 Extensional effects

Extensional effects, in contrast, are introduced using explicit monadic encodings. This is

how Rupicola handles nondeterminism and I/O, but the methodology generalizes.

Specifically, Rupicola’s encoding of postconditions is designed to be monad-agnostic, in

the sense that lemmas about nonmonadic terms apply regardless of the monad that the

program is using. This consolidation is possible because the postcondition of a Rupicola

compilation goal is split between a term being compiled and a predicate on that term. The

choice of monad changes the type of the predicate but not the (head of the) term, when

that term starts with a pure computation (such a termwould look like let x := a in k x,

where kmight have a monadic type). Writing lemmas about nonmonadic computations

parametrically on the predicate and the current continuation guarantees that they are

applicable regardless of the ambient monad.

Lemmas about monadic computations, on the other hand, are by definition not monad-

agnostic: these lemmas recognize terms of the form bind ma k, refine the current low-level

program with an implementation of ma, and produce a goal for the continuation with

a term of the form k a for some a. For this last step to be possible, the predicate being
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compiled needs to obey certain properties: in short, given P: M A → state → Prop and a

term bind ma k, we need to find a relation between P (bind A k) st and P (k a) st for all

st and for some (potentially universally quantified) value a. We guarantee alignment by

using a monad-specific lift when compiling monadic programs, so that the postcondition

always has shape lift P (bind ma k).

The following two examples illustrate this pattern:

For the nondeterminism monad, we can encode nondeterministic computations re-

turning values of type A as functions of type A → Prop (for example, a list of n unspeci-

fied bytes is represented as (fun bs: list byte ⇒ length bs = n)). Then, we just need

to require predicates to be lifted using the function P 7→ λ ma st. ∃ a. ma a ∧ P a st,

which is such that {{ t;m; l;σ }} c {{ lift P (bind ma k) }} is implied for all a by

ma a ∧ {{ t;m; l;σ }} c {{ lift P (k a) }} (this is similar to what happens with non-

monadic bindings presented in section 4.4, but the value is constrained by the computation

ma).

As an example, the following lemma exposes stack allocation as a nondeterministic com-

putation. The lemma assumes that an arbitrary predicate holds about the memory m and

runs the continuation kwith that samememory augmentedwith an array of undetermined

values. While the initial goal (bottom) contains amonadic bind, the continuation goal does

not; instead, bs is a universally quantified list of bytes, only subject to the constraint length

bs = n. Note also how the predicate pred changes, to allow the stack-allocated memory to

be released after the execution of k completes.

From Rupicola Require Import NonDeterminism.

Definition stack_alloc (nbytes: nat) : ND.M (list byte) :=

(fun bs => length bs = nbytes).

Notation lift := ndspec_k.

Lemma compile_stack_alloc [t m l σ] (sz: nat) :

forall B (pred: B -> predicate) (k: list byte -> ND.M B) K r var,

r m ->

sz mod (Memory.bytes_per_word width) = 0 ->

(forall ptr bs m',

length bs = sz ->

(nbytes sz ptr bs ? r) m' ->

let pred g t' m'' l' :=
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∃ r' bs', (nbytes sz ptr bs' ? r') m'' /\

forall m0, r' m0 -> pred g t' m0 l' in

{{ t; m'; #{ … l; var => ptr }#; σ }}

K

{{ lift pred (k bs) }}) ->

{{ t; m; l; σ }}

cmd.stackalloc var sz K

{{ lift pred (mbindn [var] (stack_alloc sz) k) }}.

For the writer monad, we can encode a computation as a pair of a value and some accumu-

lated output, and require predicates to be lifted using the following function:

(o, P ) 7→ λ ma st. P (fst ma) (o++ snd ma) st

. Parameter o of the lift accumulates previous output, allowing us to compile monadic

binds by accumulating their output into that parameter while reducing the source term.

Here the relation is that

{{ t;m; l;σ }} c {{ lift (o++ snd ma) P (k (fst ma)) }}

{{ t;m; l;σ }} c {{ lift o P (bind ma k) }}

Thanks to this approach, only control-flow lemmas and lemmas that implementmonadic

computations need to be programmed.

4.5.2 Predicate inference for conditionals and loops

Compiling loops and conditionals poses specific challenges in Rupicola. To understand

why, recall that the compilation process often needs to consult the current precondition,

which captures the state reached after symbolically executing the already-derived prefix of

the output program. This means that Rupicola needs careful control on the shape of the

preconditions that get derived as compilation progresses; in other words, Rupicola needs

to infer invariants and predicates at control-flow join points — a well-known challenge in

automated verification (for readers familiar with predicate-transformer semantics, Box

5 gives a different intuition about the difficulty of compiling loops and conditionals in

Rupicola).

Thankfully, the specifications for the loops and conditionals that Rupicola compiles
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are pure functional programs and hence may appear directly in invariants. As a result,

loop invariants can be inferred automatically and predictably, by capturing strongest

postconditions in terms of partial executions of the functional model that defines a loop.

4.5.2.1 The issue with branches

For straightline programs, the postcondition used to drive the compiler is given by the user

in the form of a distinguished value (the source program) and a predicate relating that

value to the final state of the low-level program (in terms of predicates about local variables

and about the heap). The predicate is not inspected until the very last step, while the source

program is progressively consumed,moving bindings into the context of the derivation.

Each new binding yields exactly one new compilation goal, for the continuation of the

program. For programs with conditionals, loops, and other forms of control flow, we have

multiple compilation goals corresponding to multiple program paths (one per branch of a

conditional, or one for the body of a loop, plus one for the continuation of the program).

These goals do not have the same postcondition as the original program16, and depending

on how we state these postconditions, wemay not be able to continue compiling.

This concern applies to all forms of branching: introducing a new join point in the

control-flow graph of the output program requires stating or inferring a predicate that

characterizes its locals andmemory at the join point, and that predicate needs to be in a

shape that can be exploited by the rest of the compilation process.

To illustrate the issue, let us start with the simpler case of finding an invariant that holds

after a conditional. Suppose that we are compiling code that writes value x to amemory cell

at address p conditionally on a test t and returns a Boolean indicating whether a write has

happened (in code: let (r, c) := (if t then (true, put c x) else (false, c)) in k c, a

trivial compare-and-swapwith k standing for the program’s continuation),with locals {"c":

p} and a memory predicate cell p c (stating that cell c is in a block of memory at address

p). To compute the next symbolic state (the precondition used to compile k), we might

naively attempt to compile both branches and then use a naive merge of their strongest

postconditions. The result, unfortunately, is a new predicate (t ∧ cell p (put c x)) ∨ (¬t

∧ cell p c) that is incomprehensible to later compilation steps: code in kwill be looking

16An exception is when the postcondition is for a conditional that appears in tail position in the program, in
which case things are essentially the same as for a linear program.
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Box 5 — Rupicola as a Predicate-Transformer Calculus

To understand the challenges with nonlinear control flow in Rupicola, it may help to

think of compilation lemmas as specialized rules plugged into an extensible predicate

transformer.

A Rupicola compilation run begins with a proof context describing a symbolic state

(local variables using amapof strings tomachinewords and the heapusing a separation-

logic predicate). With each application of a compilation lemma, we (1) make progress

in the derivation of the low-level program, (2) record the effect of running that newly

added part of the low-level program on the symbolic state, and (3) simplify the source

program,moving its head binding into the context of the current proof.

Part (1) is simply generating a program, but parts (2) and (3) describe a postcondition

calculation: specifically, part (2) is one step in the computation of a postcondition

capturing the semantics of the partial evaluation of the target programup to the current

point in the derivation, and part (3) takes a similar step in the evaluation of the source

program.

And, as always with predicate-transformer semantics, conditionals and loops require

special care: while it is possible to derive a strongest postcondition automatically for

conditionals and for loops (since loops are guaranteed to terminate), the results of

that computation would not be in a shape compatible with the rest of the compilation

process.

(This is anotherway inwhichRupicola codifies and automates reasoningpatterns that

are otherwise performedmanually: when verifying a handwritten Bedrock2 program,

users will commonly develop custom lemmas to relate the execution of a low-level

fragment to a convenient functional model, and these lemmas have a shape very similar

to Rupicola compilation lemmas. Rupicola’s insight is that with just a bitmore structure,

we canuse these lemmas to derive the low-level codedirectly from the functionalmodel.)
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for a single cell predicate mentioning the new value of c (if t then … else …), not a

disjunction.

The situation is even worse with loops: compiling the body of a loop requires a concrete

precondition (a symbolic state that we can inspect), and since that precondition needs to

have the same shape as the postcondition of the body (both of these are instances of the

loop invariant), we cannot even consider delaying the computation of the postcondition.

4.5.2.2 Rupicola's solution

The solution I implemented in Rupicola is based on a relatively simple heuristic. It takes

advantage of the chance to impose rules on exactly which functional programs Rupicola

will accept, such that a prepass of proved program transformationmay be needed to enable

compilation, but in return compilation is very predictable. The algorithm is as follows:

1. Identify targets of the control-flow construct (loop or conditional) based on the names

in the corresponding bindings. In the compare-and-swap example above, this would

be two variables, "r" and "c".

2. For each target, determine whether it is a scalar or a pointer by inspecting the current

locals and memory predicate. In the CAS example, we would determine that "r" is a

scalar and "c" is a pointer: "r" because we do not find a binding for it in the map of

locals, and "c" because the binding we find for it ("c": p) is to a pointer (p appears in

the separation-logic predicate cell p c).

3. For each scalar, generalize over the correspondingbinding in the locals. For eachpointer,

generalize over the corresponding entry in the predicate describing the memory. For

CAS, we build a newmap of locals {"c": p, "r": _} and a newmemory predicate cell

p _.

4. Close over the results. For CAS, we obtain the predicate (fun '(r, c) l m ⇒ l = {"c":

p, "r": r} ∧ (cell p c) m).

The resulting predicate is parameterized on the source-level values of the variables be-

ing created or mutated: to obtain a plain predicate, we need to plug them in. For for-

ward edges (conditionals) they are exactly the source program being compiled, so for

CAS we obtain (fun l m ⇒ let (r, c) := (if t then (true, put c x) else (false, c))

in (l = {"c": p, "r": r} ∧ (cell p c) m)).
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Loops are trickier to deal with: for backwards edges (loop invariants), we need a source-

level characterization of partial progress through the loop to close the parameterized pred-

icate derived using the algorithm above. In other words, when stating a loop-compilation

lemma, we need to give not just the precondition of the continuation, which refers to the

results of iteration, but also the pre- and postconditions of the loop body, which refer to

partially processed inputs.

In traditional verification, this would be done by asking users to supplymanually crafted

invariants. In Rupicola, however, we have an easier way: since we are only concerned

with compilation of functional programs using constructs from a curated menu (we have

one compilation lemma per type of loop), we can build the “symbolic” variable values

corresponding to partially processed inputs simply by running the functional program for

a reduced number of iterations!

In general, these partial-progress characterizations are very easy to express: for iterators

on lists, they correspond to iteratingonprefixesof listswhile leaving the suffixesuntouched;

for iterators on ranges of numbers, they correspond to iterating on the first parts of the

ranges.

For example, suppose we are compiling the loop let c := Nat.iter 10 incr c in k c

(where incr increments the content of a cell, and Nat.iter n composes a function with

itself n times). We obtain a general invariant (fun i l m ⇒ let c := Nat.iter i incr c in

l = {"c": p} ∧ (cell p c) m), where the value of c is derived from the number of already-

completed iterations i.

This process works without extensions for all examples presented in this dissertation.

There are a few cases that it does not handle, but fewer than it may seem (for example,

arithmetic on pointers may appear not to be inferred correctly, but arithmetic on point-

ers is in fact not expressible as such in the source language). Most of them stem from

simplifications in step 2: first, as written, it will always attempt to swap the contents

of objects and never swap pointers (for example, let (x, y) := if … then (y, x) else

(x, y) in …will swap the contents of x and yword by word, rather than reassigning the

corresponding pointers); second, it will always assume that new bindings refer to new

scalars (no conditional allocations). The first issue can be solved by adding semantically

transparent annotations in the source; so can the second, but in practice it is seldom a

concern for the programs we consider.
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4.5.2.3 A note on loop invariants

Conveniently, this approach solves a second concern, specific to loops: while there may

be properties that we want to prove across loop iterations, it would be a significant issue

if users had to write invariants mentioning low-level states to supplement their purely

functional code (it would break Rupicola’s promise that translation to deeply embedded

imperative programs can be automated and decoupled fromwriting the purely functional

models). For example, we may need to prove that a particular value is in bounds (in the

incr example above,maybe the contents of the cell are then used to index into an array).

Usually, these sorts of properties are expected to be plugged in by users, but we do not

want users to have to state properties in terms of the memory or the locals of the program.

In practice properties of interest fall into two categories, and these two are handled

differently:

4.5.2.3.1 Structural properties Properties inherent to the choice of representation of a

value (we call them structural) are encoded in separation-logic predicates. This is the case

for properties like the length of an object not changing when it is mutated, for example.

(This is a concern when running a loop over an array: how do we know whether a later

array access is valid, if an earlier iteration of the loop might have grown or shrunk the

array?) Concretely, in our original uppercasing, we chose a separation-logic predicate

that captured the length of the string in addition to its contents. Structural properties are

automatically captured by our loop-invariant inference, so encoding properties structurally

is almost always beneficial.

4.5.2.3.2 Incidental properties Properties specific to a particular algorithm or program

(we call them incidental) are proven at the source level and recovered during compilation

using hints. For example, if in addition to incrementing a cell our loop also accessed an

array at the index corresponding to the value of the cell (arr[*p]), we would want to prove

that after each iteration, the value in the cell is still within the bounds of the array.

With our approach, rather than encoding them as low-level loop invariants, users prove

structural properties directly at the source level, by proving theorems about partial exe-

cutions of their loops (iteration over part of a list or a range of numbers). For example,

a user may prove that for all i, get (iter i incr c) equals get c + i. Plugging this as a
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compilation hint would then allow a linear solver to prove side conditions like 0 <= get

(iter i incr c) <= length arr from preconditions about c and length arr.

Early versionsofRupicoladidnotperform loop-invariant inference, treatedall properties

as incidental, and pushed all reasoning to compilation time. As a result, applying loop

lemmas required stating complex invariants and proving them by reasoning directly on

low-level Bedrock2 state. This led to slow, brittle derivations that performed complex

reasoning and tended to be hard to automate. In contrast, by eliminating all ghost state

and enforcing a specific shape of invariants, the new loop lemmas lend themselves nicely

to automated derivation.

A good example of the benefit of this approach is given in the discussion of theMont-

gomery ladder function in section 5.1.5.1.

4.6 Rupicola's architecture

Rupicola is divided into a minimal core and a collection of orthogonal extensions that

enables users to grow its input language. Not all programs use all these extensions: users

are able to mix and match, and in fact throughout Rupicola’s development a common

pattern has been to implement support for new constructs as part of the development of

an application and later to move these parts into Rupicola’s standard library.

4.6.1 The core

Rupicola’s core is composed of definitions, notations, forward-reasoning tactics, and

supporting architecture; together, they are enough to state program-compilation goals

and run the compiler but not to derive any concrete programs: almost all features of

Rupicola are implemented as extensions of this minimal core.

4.6.1.1 Core definitions and notations

Rupicola’s compilation relations are exactly the semantic judgments of Bedrock2 for expres-

sions and statements, applied to postconditions with a distinguished argument indicating

which program is being compiled. We write them as DEXPR m l e w and <{ Trace := t;

Memory := m; Locals := l; Functions := σ }> c <{ P p }> respectively, with t a trace, m a

memory, l a map of locals, e an expression, w a word, σ an environment of functions, c a

89



command, P a predicate, and p a Gallina value (the {{ … }} notation that we encountered

previously for statements is an abbreviation of the statement judgment notation when

there is no ambiguity).

Rupicola has notations for program specifications and compilation goals, which we have

briefly encountered previously; specifically, the notation for specifications attaches a pre-

and postcondition pair to a name:

Instance spec : spec_of name :=

fnspec! name args / ghost_args, {

requires tr mem := precondition;

ensures tr' mem' rets := postcondition

}.

It desugars to a forall-quantified statement (here […name] is a shorthand notation used to

indicate that we are constructing a list from the names in args):

Instance spec : spec_of name := fun σ =>

forall args ghost_args, forall tr mem,

precondition ->

WeakestPrecondition.call

σ name tr mem […args] (fun tr' mem' rets =>

postcondition).

Thenotation for compilation is intended to be used in tandemwith Coq’s Derive statement,

which provides convenient syntactic sugar to generate a term its proof in tandem:

Derive impl SuchThat

(defn! name (args) ~> rets { impl },

implements spec using fns)

As proof.

It desugars to a theorem stating that a piece of syntax impl verifies the specification above

(it finds that specification through typeclass resolution, based on the function’s name),

roughly equivalent to the following. The notation…fnspec → stands for a sequence of

implications, one per function in fns, each asserting the specification of that function. The

premise __rupicola_program_marker spec is vacuous; it simply helps Rupicola pick out the

program being compiled from the postcondition.

Derive body SuchThat

(__rupicola_program_marker spec ->
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forall σ, …fnspec σ ->

spec ((name, (args, rets, body)) :: σ))

As proof.

Finally, Rupicola’s core definitions include a type class that identifies which binding con-

structs are Rupicola binders; this is used when inspecting a program to determine whether

it is fully compiled (Rupicola assumes that input programs are written as sequences of

let bindings, each of which gets compiled to an individual assignment or mutation in the

target language17):

Inductive RupicolaBindingInfo :=

| RupicolaBinding (rb_type: Type) (rb_names: list string)

| NotARupicolaBinding.

Class IsRupicolaBinding {T} (t: T) :=

is_rupicola_binding: RupicolaBindingInfo.

Instances of this typeclass are derived dynamically, using a tactic and defaulting to

NotARupicolaBinding. Here is an example from Rupicola’s standard library:

Hint Extern 2 (IsRupicolaBinding (nlet (A := ?A) ?vars _ _)) =>

exact (RupicolaBinding A vars) : typeclass_instances.

This allows users to register hints to extend the set of patterns that are considered compila-

tion targets. The compiler uses these hints to decide whether it should attempt to invoke

additional compilation lemmas orwhether it should try to unify the pre- and postcondition

of the program.

The first implementation of Rupicola did not have this type class: Rupicola just tried to

apply lemmas as long as they were available and then tried to unify the pre- and postcon-

ditions of the program. The problemwith that approach is that it makes debugging and

incremental compiler construction significantly more difficult, since the user is presented

with a unification failure instead of a helpful message highlighting which construct is

unsupported by the compiler. Incremental compiler construction is discussed in more

detail in section 6.1.

17Compiler builders are free to plug rewrites into the compiler that new introduce bindings, e.g. by splitting
a larger term into a sequence of subterm calculations, though in our experience manually introducing
bindings leads to more reliable compilation, since Rupicola’s mixed embedding of binders allows it to
determine straightforwardly which operations should introduce mutation and which ones should not.
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4.6.1.2 Compilation tactics

The rest of Rupicola’s core defines tactics for driving the proof-search process. Rupicola’s

compiler is a single Coq tactic that runs the following steps in a loop until either the goal is

solved or nomore progress is possible:

1. Goal clean-up and context management: introduce quantified variables, prune stale

hypotheses, substitute variable equalities, and perform other user-specified cleanups.

2. Compilation: find a lemma that applies to the current goal from the current database of

lemmas and apply it. This is done in forward-reasoning style; the details are described

in the following section.

3. Automatic side-condition resolution: use generic and user-specified solvers to dis-

charge side conditions arising from the use of compilation lemmas.

Additionally, a set-up phase prepares the goal for compilation, translating the defn! goal

into a compilation goal stated as a Hoare triple. This translation phase also applies a few

compilation passes on the generated Bedrock2 AST, to make Rupicola’s output more read-

able: a transformation that removes Bedrock2 skips (no-ops), and another that removes

self-assignments (a = a). It may be surprising that these transformations are applied as

part of the setup phase of the compiler, before code is actually generated, but that is justified

by the structure of Rupicola’s compilation goals. Indeed, starting with a goal of the form {{

t; m; l; σ }} ?c {{ P p }}, applying a transformation T to resulting program ?c can be

done by ensuring that ?c be in the shape T ?c', for some other program ?c'. The correctness

of T is captured by a compilation lemma that states that if {{ t; m; l; σ }} ?c' {{ post

}} holds, then so does {{ t; m; l; σ }} T ?c' {{ post }}. Applying such a lemma as the

very first step of compilation unifies ?cwith T ?c', and the result after finishing to compile

is a programwrapped in the transformation T.

4.6.1.3 Extension points

Rupicola’s strength is its extensibility, so we need users to be able to plug in new lemmas

and new reasoning straightforwardly. Rupicola exposes the following extensions points:

compiler_setup (fw)
Used to preprocess compilation goals without bypassing the default setup automation.
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compiler_setup_post (fw)
Used to preprocess compilation and bypass part of the default setup automation. This is

used by monadic programs: the default setup automation refactors the postcondition of

the compilation goal as (P p), where P is a predicate and p a Gallina term, but for monadic

programsweneed P to have a specific shape lift P p (section 4.5.1.2). Part of implementing

support for a newmonad is to add a lemma to this database that refactors the postcondition

into this lifted shape (the default automation only runs if none of the lemmas in this

database apply).

compiler_cleanup (fw, rw, u)
Used to performmiscellaneous cleanups at each step of the compilation process, before

applying compilation lemmas. This is used to simplify expressions (e.g. repeated casts like

Z.to_nat (Z.of_nat …)), inline functions, plug in optimizations expressible as rewrites,

etc.

compiler_pull_binding (fw)
Used just before converting nlets into nlet_eqs. This is used to apply transformations

that are significantly more complex to state in terms of the dependently-typed nlet_eq—

typically transformations that reorder bindings, for example to flatten a nested tree of

bindings such as let/n x := (let/n y := 1 in y) in x.

compiler (fw)
The first of two main compilation entry points. This hook is used to plug in statement

compilation lemmas.

expr_compiler (fw)
The second of twomain compilation entry points. This hook is used to plug in expression

compilation lemmas.

compiler_side_conditions (fw, rw, u)
Used to solve side conditions that arise from applying lemmas from compiler and

expr_compiler.

compiler_cleanup_post (fw, rw, u)
Used for aggressive clean-ups that precede unification when compilation is complete.

All of these hooks are Coq hint databases; the ones marked fw (for forward) are only used

with typeclasses eauto: lemmas added to themwith a call to shelvemake forward progress,
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and other lemmas added to them are only used if they form a complete path to a solution

of the current goal; the ones marked rw and u are also used for rewriting and unfolding,

respectively.

4.6.2 Rupicola's standard library

Beyond the core compilation support, Rupicola’s standard distribution includes support

for the following features:

4.6.2.1 Arithmetic

Rupicola’s expression compiler supports arithmetic on nat, N, Z, byte, bool, Fin.t, and

machine words. Not all types support all operations, but new operations and new types are

very easy to add (details on extending the expression compiler are given in section 5.1.3).

The expression compiler ismostly straightforward, but one pattern is tricky, and is in fact

the only place where Rupicola currently uses backtracking18: comparisons on unbounded

integers. There are two ways to map a comparison on integers to a Bedrock2 operation:

the ltu and lts binary operators, which compare their operands as unsigned or signed,

respectively. Both of them require proving that the original integers are bounded, but the

bounds are different19: ltu is valid if the integers are in the range 0 ≤ . . . < 2w, while lts

is a valid implementation of Z.lt if the integers are in the range−2w−1 ≤ . . . < 2w−1.

This issue is handled by not shelving the side conditions generated by the expr_compile_-

Z_ltb_u and expr_compile_Z_ltb_s lemmas: this way, unless we can immediately prove the

required bounds, compilation stopswithoutmaking potentially incorrect assumptions that

would later lead to unsolvable goals. Of course, if a userwants to apply either lemmauncon-

ditionally, they are free to do so by registering hints for these lemmas with an additional

call to shelve.

4.6.2.2 Arrays

Rupicola has five encoding of arrays: unsized list arrays, sized list arrays, vector arrays,

buffers, and inline tables.

18In general, backtracking is not desirable; for a discussion of the reasons, see section 6.1.
19In contrast, there is a single eq operator, and it requires that both of its operands be in the same bounds,
but these bounds may be either the signed or the unsigned ones.
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The first three share a common API: get, put, and map; they are all mapped to flat arrays

of scalars (bytes or native ints), but they are parametric on the type of data being stored in

the array, so in addition to arrays of bytes and native ints it is possible to use byte arrays to

store values of any type that is representable within a byte, and word arrays for any type

whose values each fit in a single machine word. Concretely, that means that it is possible

to have, say, arrays of tagged values, e.g. encoded values with three bits used to store a

tag and the rest used to store a scalar value, or arrays of subsets of integers, e.g. an array

of numbers less than 7 (this helps when indexing repeatedly, e.g. when the result of one

array lookup is used to index into another array: if the first array has values of type {x | x

< length arr2}, then the bound checks are trivial in the second array).

Buffers are also flat arrays of words under the hood, but they are partially uninitialized:

the Gallinamodel of these values only captures the initialized part, but the separation-logic

predicate also includes additional unknown (existentially quantified) values:

Definition buffer_value (ptr: word)

(data: list word) (capacity: nat) (m: mem) :=

∃ padding: list word,

sizedlistarray_value AccessWord capacity ptr (data ++ padding) m.

The buffer API allows pushing words if there remains uninitialized data; popping words if

there remains initialized data; and converting into a regular buffer of bytes using the sized

array predicate if the buffer is full.

The inline-tables API is similar to the sized-array API but read-only and statically allo-

cated; I discuss it in detail in section 5.1.2.2.

4.6.2.3 Control flow

Out of the box, Rupicola has support for conditionals (if expressions) and for a variety of

loops. For conditionals there are two lemmas: one for conditionals in tail position, which

do not require predicate inference since the control-flow join point after such a conditional

is the function exit, and one for conditionals in expression position, which do require

predicate inference (I discussed predicate inference in detail in section 4.5.2).

To handle loops, Rupicola has a family of generic lemmas, with support for higher-

order iteration patterns built on top of them. Specifically, the library builds the following

definitions:
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foldl_dep, foldl
A dependently typed and a simply typed left fold (the body of the fold gets access to a proof

that the element is part of the original list), with support for stopping part-way through

the traversal (encoded as a stopping condition stop: A -> bool).

ranged_for_break, nd_ranged_for_break
Like foldl_dep, but specialized to a range of numbers (nd stands for nondependent).

ranged_for, nd_ranged_for
Like ranged_for_break, but with a flag set by the body of the loop to indicate early exits

instead of having a separate stop condition.

ranged_for_all, nd_ranged_for_all
Like ranged_for, but without early exits.

ranged_for_u, nd_ranged_for_u, ranged_for_all_u, nd_ranged_for_all_u, ranged_for_s, nd_-
ranged_for_s, ranged_for_all_s, nd_ranged_for_all_s
Like ranged_for and ranged_for_all, but specialized to ranges of machine words instead of

unbounded integers.

On top of these definitions we build a core loop-compilation lemma for the dependently

typed version of ranged_for and then derive a collection of more convenient lemmas from

it, starting with lemmas that initialize loop variables. Since Bedrock2 does not have a break

statement, early exits are encoded by having the body set the loop counter to themaximum

value.

All definitions past ranged_for, as well as maps and folds, are compiled by rewriting them

in terms of ranged_for and then applying the ranged_for compilation lemma, or using

specialized lemmas derived from that lemma and customized to apply to these higher-level

iterators. The latter requires a bit of additional development (new compilation lemmas),

but it is in general much preferable to the former, since it allows the intermediate state

exposed in the body of the loop to be expressed in terms of the higher-level iterator: for

example, compiling a map by rewriting it to a ranged_for gives an intermediate state with

a mutated array l' = ranged_for 0 k (fun k l Heq => put k (f (get k l))) l, whereas

using a specialized loop lemma gives l' = map f (firstn k l) ++ (skipn k l)—both are

equivalent, but the latter is much easier to work with.

This last point is a special case of the encoding difficulties that come up with loop

lemmas: loop lemmas are particularly tricky because they tend to have more complex
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side-conditions, and these side-conditions need to be phrased in a way that is amenable

to automated proof. As a standalone case study, let us look in more detail at the simplest

loop-compilation lemma: the one for Nat.iter.

Lemma compile_Nat_iter [t m l σ] n {A} f (a: A) :

let v := Nat.iter n f a in

forall B (pred: B -> predicate) (loop_pred: nat -> A -> predicate)

(k: A -> B) K F I i_var vars,

n < 2 ^ width ->

DEXPR m l I (of_nat n) ->

loop_pred n a t m #{ … l; i_var => of_nat n }# ->

(forall i st t m l, (* predicate stability *)

loop_pred i st t m l -> map.get l i_var = Some (of_nat i)) ->

(let loop_pred := loop_pred in (* loop body *)

forall t l m i, i < n ->

let st := Nat.iter (n - S i) f a in

loop_pred (S i) st t m l ->

{{ t; m; #{ … l; i_var => of_nat i }#; σ }}

F

{{ loop_pred i (f st) }}) ->

(let v := v in (* continuation *)

forall t l m, loop_pred 0 v t m l ->

{{ t; m; l; σ }} K {{ pred (k v) }}) ->

{{ t; m; l; σ }}

cmd.set i_var I;;

cmd.while (expr.op ltu 0 i_var)

(cmd.set i_var (expr.op sub i_var 1);; F);; K

{{ pred (nlet vars v k) }}.

This lemma has 6 premises:

1. n < 2 ^ width guarantees that the number of iterations we are performing fits in a

machine int.

2. DEXPR m l I (of_nat n) is a compilation subgoal: it requires us to compile an expression

that reduces to the number of iterations that we want to perform.

3. loop_pred n a t m #{ … l; i_var => of_nat n }# requires the loop predicate to hold

when the loop starts. It is not invoked with the original locals l, but with the result of
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adding i_var to l, because the code that we generate initializes a fresh loop counter

i_var (cmd.set i_var I).

4. The predicate stability premise ensures that the loop body does not overwrite the loop

counter.

5. The loop body premise is a compilation goal: it requires us to compile the function f.

There are a few interesting aspects to highlight. First, we have a seemingly redundant

binding let loop_pred := loop_pred: adding this binding prevents Coq from inlining

loop_pred into the postcondition of our compilation goal, whichmaintains the expected

shape of the postcondition (P pwith P a predicate and p a Gallina program). Second, we

have the assumption i < n and the state st; note how st is fully concrete and defined in

terms of the high-level iterator, Nat.iter (not in terms of the Bedrock2 implementation

of the body of the loop). Third, we have the loop predicate, applied to S i, not i: this is

because the loop body starts by subtracting 1 from the loop counter, so at the beginning

of the loop the subtraction has not happened yet. But, fourth, the body of the function

itself is invoked with a map of locals that contains i for i_var, not S i, since by the time

the Bedrock2 implementation F of f starts running the loop counter decrement has

happened (hence the i also in the postcondition of that same compilation goal).

6. The continuation premise is another compilation goal, this time for the code that follows

the loop; the binding for v ensures that the rest of the derivation will treat v opaquely

(instead of inlining Nat.iter f a into the rest of the code).

These design choices are the result of a long series of iterations on loops. Fundamentally,

a loop lemma in Rupicola connects an iteration function (which repeats a computation

a certain number of times) to a while loop in Bedrock2. This loop has a stop condition,

typically index < bound or index > 0, as well as an invariant (which is used to constrain the

derivation of the loop body), typically some formula giving exactly the state of the memory

and of the locals after a certain number of iterations.20

For the equivalence between the Gallina and Bedrock2 versions to hold, we need to know

that the loop body preserves the invariant and that the loop runs the right number of times.

20In reality the invariant is keyed by the (Gallina-level) iteration counter index, so it is not strictly an “invari-
ant”. An alternative style would read the value of the index from the local map of variables, but passing in
the expected value of the index makes invariants easier to phrase and is in keeping with our desire to
keep Gallina-level and Bedrock2-level reasoning separate.
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In particular, we need the loop body to update the loop counter (in the following, assume

that the update is an increment). There are a number of ways to design this, with the

difficulty being deciding which part of the code is responsible for that update, and hence

how the update is reflected in the invariant:

1. Include the counter increment in the postcondition that the body needs to satisfy and

derive the corresponding Bedrock2 code as part of the derivation of the loop body. This

isn’t convenient, because the Gallina code does not increment a counter, so there is no

Gallina code to drive the derivation of the increment in Bedrock2.

2. Change the Gallina code so that each iteration of the loop returns the next value of the

counter. This solves (1.), but it is hard to do it in a way that guarantees termination.

3. Put all loops in the nondeterminismmonad, so that loops are really an arbitrary repeat()

of a given Gallina function, until a given predicate holds. This solves (2.), since the

Gallina code does not need to check for termination anymore, but since Bedrock2

requires termination these loops could not be straightforwardly compiled.

4. Force the inclusion of an increment into the Bedrock2 loop body. That is, initialize the

evar corresponding to the Bedrock2 version of the Gallina loop body to include an incre-

ment: {{ t; l; m; σ }} ?body; index++ {{ invariant (S i) f }}. Unfortunately the

compiler is not prepared to deal with already-compiled code (the index++ part following

the ?body evar), and besides there is still no Gallina code matching that increment.

5. Append the increment to the synthesized Bedrock2 loop body; use the invariant spe-

cialized to a map containing an updated index as the postcondition of the synthesized

body.

Remember that the issue is to know which postcondition to use to compile the loop

body. Here, the idea is to say that the loop body’s postcondition is exactly the loop

invariant but applied to a map of locals in which the loop index is incremented. In

other words, the code will still be ?body; index++, but we only reason about ?body (so we

won’t run into the issues of (4.)): we give the ?body a postcondition {{ invariant (S i)

(map.put locals "i" (S i) }}. Morally, what this is doing is computing theWP of the

increment and specializing the loop predicate to it. If we know that the result holds

after executing the synthesized body, then in particular invariantwill still hold after

executing the increment.
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The problem here is the final step of unification, after we finish compiling the loop

body. The compiled code will have performed all sorts of locals manipulations, and

having to assert invariant with an additional layer of map.put throws a wrench into

the automation. For example, if the body unsets some local variables then sets others,

then we will find ourselves having to prove invariant (map.put (map.remove ?keys l)

…), with the additional difficulty that instantiating ?keys is in fact part of the final

unification process.

6. Do the same as (5.) but do not specialize the postcondition; instead, add constraints

on the invariant. Specifically, ensure that the only thing the invariant does with the

counter is to store it in the right place in themapof locals. This guarantees that invariant

i l implies invariant i' (map.put locals "i" i'); it is what we called predicate stabil-

ity in the discussion of Nat.iter above (note how it allows us to have an uncluttered

postcondition in the loop body premise above).21

In Rupicola I used solution (1.) to phrase and prove the most basic loop lemma and then

derive specialized variants of it in the shape of solution (6.).

4.6.2.4 Extensional effects (monads)

Rupicola’s standard library implements a writer monad, an I/Omonad, a nondeterminism

monad, and a generic free monad. For each of these we define a monad instance, from

which we derive a bindn constructor that captures binder names as strings in addition to

the usual value and continuation.

We then define two lifts: one to state postconditions in function specifications, and one

to state postconditions in compilation goals. For the nondeterminismmonad, the first

one is ndspec, and the second ndspec_k:

Definition ndspec {A} (c: ND.M A) (P: A -> Prop) :=

∃ a, c a ∧ P a.

Definition ndspec_k {A} (P: A -> predicate) (c: ND.M A) : predicate :=

fun tr mem locals => ndspec c (fun a => P a tr mem locals).

The lift criterion described in section 4.5.1.2 is a consequence of the same property of

ndspec:

21Thismay seem restrictive, but in fact it has to be true even for solution (5.) to work, since otherwise the
final increment would not set the index to the right value.
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Lemma ndbind_bindn {A B} pred vars (nd: ND.M A) a (k: A -> ND.M B):

nd a ->

ndspec (k a) pred ->

ndspec (mbindn vars nd k) pred.

Lemma WeakestPrecondition_ndspec_k_bindn {A B} c t m l σ post

vars (nd: ND.M A) a (k: A -> ND.M B) :

nd a ->

{{ t; m; l; σ }} c {{ ndspec_k post (k a) }} ->

{{ t; m; l; σ }} c {{ ndspec_k post (mbindn vars nd k) }}.

With these in place we then define a setup lemma that recognizes postconditions that

employ the first lift and changes them into the second lift, and finally we define lemmas

that provide support for compilingmonadic operations, such as stack allocation above, or in

the case of the nondeterminismmonad calls to any nondeterministic Bedrock2 functions.

4.6.2.5 Low-level features

Rupicola has intensional encodings of a variety of low-level Bedrock2 features. I discuss

inline tables and stack allocation in detail in two case studies in section 5.1.2. Rupicola

also supports mapping Gallina functions to arbitrary Bedrock2 functions, to be separately

compiled and linked.

4.6.3 Unsupported features and limitations

Rupicola does not aim to support all of Gallina, so incompleteness is one of its fundamental

limitations: its input language depends on the set of compilation lemmas provided by the

user.

This is not a significant issue in most cases, but it does mean that a lot of the facilities

that come for free in Gallina must be translated into individual compilation lemmas. A

prime example of this is matches: in Gallina patternmatching is automatically available

on all user-defined types, whereas in Rupicola pattern matching is not available on any

types out of the box (and, as it is a control-flow construct, it requires special care).

Other limitations stem from limitations inCoq’s pattern-matching, aswell as limitations

in Bedrock2. For example, Bedrock2 does not support arbitrary recursion (to rule out stack

overflows), and neither does Rupicola (an additional wart in implementing support for raw

Gallina fix constructs is that, like let-bindings, a Coq lemma cannot capture the body of
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a fix; but unlike let bindings where we can define the nlet combinator, for fixwe would

need a general fixpoint combinator, which is not expressible in Coq). Similarly, Bedrock2

distinguishes statements and expressions, and that design leaks into Rupicola (we need

to guess whether a particular binding needs a statement compilation lemma or can be

compiled as an expression).

Beyond this, the main pain point with Rupicola is compilation speed, which I discuss in

section 5.2.2.

4.7 Rupicola step-by-step

To tie everything together, let us revisit our original example one last time, this timepeeking

under the hood of the compile tactic.

Recall that in section 4.1 we defined specifications upstr and toupper, lowered functional

implementations upstr' and toupper', as well as a signature; here I reproduced only upstr'

and toupper':

Definition upstr' (s: list byte) :=

let/n s := ListArray.map

(fun b => byte_of_ascii (toupper (ascii_of_byte b)))

s in s.

Definition toupper' (b: byte) :=

if byte.wrap (b - "a") <? 26

then byte.and b x5f else b.

Let us now see what happens when we run compile. That tactic is defined to perform

three steps: compile_setup; repeat compile_step; and finally compile_done (the last step only

checks whether there are any compilation goals left, and if so shows some hints to the user).

For brevity in all goals below |s| stands for (length s) and casts from nat, byte, and Z to

word are implicit in values in local variables maps (so for example #{ ... m; k => |s| }# is

short for map.put m k (of_nat (length s))).

Derive upstr_br2fn SuchThat

(defn! "upstr"("s", "len") { upstr_br2fn },

implements upstr') As upstr_br2fn_ok.

Proof.
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The compile_setup tactic unfolds the defn! notation and refactors the postcondition of the

compilation relation to make it explicit which program we are compiling (based on the

implements clause in the call to Derive. For readability I omit uninteresting hypotheses, but

notice how hypothesis H0 captures all the information on the variables mentioned in the

precondition of the program:

compile_setup.

H0: wlen = of_nat |s| /\

Z.of_nat |s| < 2 ^ 64 /\ (nbytes |s| p s ? r) mem

{{ tr; mem; #{ "s" => p; "len" => wlen }#; σ }}

?Goal

{{ pred

(let/n s as "s" :=

ListArray.map

(fun b : byte => byte_of_ascii (toupper (ascii_of_byte b)))

s in

s) }}

At this point compile_step performs some cleanups. The next lemma to apply is compile_-

byte_listarray_map, but to be able to call it we need to (1) change the goal to an nlet_eq goal;

(2) infer a loop predicate; and (3) pick names for temporary variables. compile_step does (1);

the compile_map tactic does (2) using the invariant-inference infrastructure and (3) using a

simple gensym. We can peek at the results by invoking the loop-inference logic manually:

let lp := infer_ranged_for_predicate

"idx" "bound" (Z.of_nat (length s)) in

idtac lp.

(fun (idx : Z) (args : list byte) (tr' : Semantics.trace)

(mem' : BasicC64Semantics.mem) (locals' : locals) =>

tr' = tr /\

locals' =

#{ "s" => p; "len" => wlen; "idx" => idx; "bound" => |s| }# /\

(nbytes |s| p args ? r) mem')
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upstr_br2fn: bedrock_func H: __rupicola_program_marker upstr'

σ: list bedrock_func p, wlen: word s: list byte

r: BasicC64Semantics.mem -> Prop tr: Semantics.trace

mem: BasicC64Semantics.mem

pred: list byte ->

Semantics.trace -> BasicC64Semantics.mem -> locals -> Prop

H1: wlen = of_nat |s| H3: Z.of_nat |s| < 2 ^ 64

H4: (nbytes |s| p s ? r) mem

{{ tr; mem; #{ "s" => p; "len" => wlen }#; σ }}

?Goal

{{ pred

(let/n s as "s" :=

ListArray.map

(fun b : byte => byte_of_ascii (toupper (ascii_of_byte b)))

s in

s) }}

Applying the loop-compilation lemma produces a number of goals, most of which are

trivial side conditions; for concision I omit most of them here:

apply compile_nlet_as_nlet_eq; compile_map. (* ... *)

H3: Z.of_nat |s| < 2 ^ 64

0 <= Z.of_nat |s| < 2 ^ 64

H1: wlen = of_nat |s|

DEXPR mem #{ "s" => p; "len" => wlen; "_from" => 0 }#

?Goal (of_nat |s|)

{{ tr; mem0;

#{ "s" => p; "len" => wlen; "_from" => idx; "_to" => |s| }#; σ }}

?Goal0

{{ lp idx

(let/n tmp as "_tmp" := ListArray.get a idx in

let/n tmp0 as "_tmp" :=

byte_of_ascii (toupper (ascii_of_byte tmp)) in

let/n x as "s" := ListArray.put a idx tmp0 in x) }}
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{{ tr; mem0;

#{ "s" => p; "len" => wlen; "_from" => |s|; "_to" => |s| }#; σ }}

?Goal1

{{ pred v }}

The first goal captures the fact that the size of the array is representable as a 64-bit integer

(this compilation runassumesa64-bitmachine),whichweassumedaspart of the function’s

precondition; the second one needs us to provide an expression that reduces to the length

of s; the third, a program that implements the body of the loop; the fourth, a program to

implement the continuation of the original program, which does nothing.

4: solve [repeat compile_step].

1: lia.

The expression-compilation goal is straightforward, since the variable "len" contains the

value we need.

subst wlen; reify_change_dexpr_locals.

DEXPR mem

(map.of_list [("_from", of_Z 0); ("len", of_nat |s|); ("s", p)])

?Goal (of_nat |s|)

apply expr_compile_var.

map.get

(map.of_list [("_from", of_Z 0); ("len", of_nat |s|); ("s", p)])

?s = Some (of_nat |s|)

expr_instantiate_map_get.

map.get

(map.of_list [("_from", of_Z 0); ("len", of_nat |s|); ("s", p)])

"len" = Some (of_nat |s|)

apply map.get_of_str_list_assoc_impl.

map.list_assoc_str "len"

[("_from", of_Z 0); ("len", of_nat |s|); ("s", p)] =

Some (of_nat |s|)

reflexivity.
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Then we move on to a more interesting part, compiling the body of the loop. The first

step is to compile the array lookup; its side conditions are that we (1) have access a pointer

to an array whose contents match that of the list we are reading from, as evidenced by a

separation-logic predicate; (2) have a way to compute an expression yielding that pointer;

(3) have a way to compute the index being accessed; and (4) that the index be in bounds.

After that, we are left with a single continuation goal, corresponding to the rest of the

program:

apply compile_nlet_as_nlet_eq; eapply compile_byte_sizedlistarray_get.

pred: list byte ->

Semantics.trace -> BasicC64Semantics.mem -> locals -> Prop

H4: (nbytes |s| p s ? r) mem lp: Z -> list byte -> predicate

H8: (nbytes |s| p a ? r) mem0

(nbytes ?len ?a_ptr a ? ?R) mem0

DEXPR mem0 #{ "s" => p; "len" => |s|; "_from" => idx; "_to" => |s| }#

?Goal ?a_ptr

DEXPR mem0 #{ "s" => p; "len" => |s|; "_from" => idx; "_to" => |s| }#

?Goal0 (of_Z idx)

idx < Z.of_nat ?len

{{ tr; mem0;

#{ "s" => p; "len" => |s|; "_from" => idx; "_to" => |s|;

"_tmp" => v }#; σ }}

?k_impl

{{ lp idx

(let/n tmp as "_tmp" :=

byte_of_ascii (toupper (ascii_of_byte v)) in

let/n x as "s" := ListArray.put a idx tmp in x) }}

1-4: solve [repeat compile_step].

At this point we can rewrite the unoptimized toupper into its optimized counterpart and

inline the result, which we did using Hint Rewrite and Hint Unfold in the automated ver-

sion:

rewrite toupper'_ok; unfold toupper'.
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{{ tr; mem0;

#{ "s" => p; "len" => |s|; "_from" => idx; "_to" => |s|;

"_tmp" => v }#; σ }}

?k_impl

{{ lp idx

(let/n tmp as "_tmp" :=

if byte.wrap (v - "a"%byte) <? 26 then byte.and v "_" else v in

let/n x as "s" := ListArray.put a idx tmp in x) }}

The result is a conditional, which requires a similar predicate-inference trick as we saw

previously; for concision I omit the details and use the compile_if tactic directly. This time

we find ourselves with four goals (one for the test expression, two for the branches of the if,

and one for its continuation):

apply compile_nlet_as_nlet_eq; compile_if.

DEXPR mem0

#{ "s" => p; "len" => |s|; "_from" => idx; "_to" => |s|;

"_tmp" => v }# ?c_expr

(word.b2w (byte.wrap (v - "a"%byte) <? 26))

{{ tr; mem0;

#{ "s" => p; "len" => |s|; "_from" => idx; "_to" => |s|;

"_tmp" => v }#; σ }}

?t_impl

{{ val_pred (let/n x as "_tmp" := byte.and v "_" in id x) }}

{{ tr; mem0;

#{ "s" => p; "len" => |s|; "_from" => idx; "_to" => |s|;

"_tmp" => v }#; σ }}

?f_impl

{{ val_pred (let/n x as "_tmp" := v in id x) }}

{{ tr0; mem1; locals; σ }}

?k_impl

{{ lp idx (let/n x as "s" := ListArray.put a idx v0 in x) }}

The first three goals are solved by the expression compiler; for succinctness I show details

only for the first one. The purpose of the conversion to map.of_list that the first tactic

performs is to speed up later calls to expr_compile_var.
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{ apply expr_compile_Z_ltb_u.

DEXPR mem0

#{ "s" => p; "len" => |s|; "_from" => idx; "_to" => |s|;

"_tmp" => v }# ?e1 (of_Z (byte.wrap (v - "a"%byte)))

DEXPR mem0

#{ "s" => p; "len" => |s|; "_from" => idx; "_to" => |s|;

"_tmp" => v }# ?e2 (of_Z 26)

0 <= byte.wrap (v - "a"%byte) < 2 ^ 64

0 <= 26 < 2 ^ 64

- apply expr_compile_byte_wrap.

DEXPR mem0

#{ "s" => p; "len" => |s|; "_from" => idx; "_to" => |s|;

"_tmp" => v }# ?e1 (of_Z (Z.land (v - "a"%byte) 255))

apply expr_compile_Z_land.

DEXPR mem0

#{ "s" => p; "len" => |s|; "_from" => idx; "_to" => |s|;

"_tmp" => v }# ?e1 (of_Z (v - "a"%byte))

DEXPR mem0

#{ "s" => p; "len" => |s|; "_from" => idx; "_to" => |s|;

"_tmp" => v }# ?e20 (of_Z 255)

+ apply expr_compile_Z_sub.

DEXPR mem0

#{ "s" => p; "len" => |s|; "_from" => idx; "_to" => |s|;

"_tmp" => v }# ?e1 (of_byte v)

DEXPR mem0

#{ "s" => p; "len" => |s|; "_from" => idx; "_to" => |s|;

"_tmp" => v }# ?e21 (of_byte "a"%byte)

* reify_change_dexpr_locals.
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DEXPR mem0

(map.of_list

[("_tmp", of_byte v); ("_to", of_nat |s|); ("_from", of_Z idx);

("len", of_nat |s|); ("s", p)]) ?e1 (of_byte v)

expr_compile_var.

* apply expr_compile_Z_literal.

+ apply expr_compile_Z_literal.

- apply expr_compile_Z_literal.

- eapply byte_range_64.

- lia. }

1,2: solve [repeat compile_step].

As for the last goal, all that remains is to compile ListArray.put into a write into a pointer;

the reasoning is very similar to the ListArray.get case, so I omit it:

{{ tr0; mem1; locals; σ }}

?k_impl

{{ lp idx (let/n x as "s" := ListArray.put a idx v0 in x) }}

apply compile_nlet_as_nlet_eq;

eapply compile_byte_sizedlistarray_put. (* ... *)

pred: list byte ->

Semantics.trace -> BasicC64Semantics.mem -> locals -> Prop

lp: Z -> list byte -> predicate v: byte v0: byte

v1: ListArray.t byte H0: (nbytes |s| p v1 ? r) mem'

{{ tr; mem';

#{ "s" => p; "len" => |s|; "_from" => idx; "_to" => |s|;

"_tmp" => v0 }#; σ }}

?k_impl

{{ lp idx v1 }}

This final goal simply requires unifying the postcondition and the precondition (i.e. hy-

potheses in the context):

apply compile_unsets with (vars := ["_tmp"]).
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{{ tr; mem';

#{ "s" => p; "len" => |s|; "_from" => idx; "_to" => |s| }#; σ }}

?Goal

{{ lp idx v1 }}

apply compile_skip.

tr = tr /\

#{ "s" => p; "len" => |s|; "_from" => idx; "_to" => |s| }# =

#{ "s" => p; "len" => |s|; "_from" => idx; "_to" => |s| }# /\

(nbytes |s| p v1 ? r) mem'

tauto.

Qed.
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5 Evaluation

I claim that Rupicola’s novelty is its combination of foundational proofs, extensibility, and

performance. The second and third claims are measurable. To support them, I evaluated

Rupicola from two angles: programmer experience and expressivity, and performance. For

the first two I used case studies, and for the third, performance benchmarks.

5.1 Programmer experience and expressivity

5.1.1 Case study: Extending Rupicola

Extending a traditional compiler can be a daunting task: compilers sometimes supports

extensions of a very restricted kind (e.g. single-language rewrites), but these are not

sufficient: for Rupicola to generate code whose performance matches that of handwritten

programs we need users to be able to plug in new translation strategies, new logic, and

new decision procedures.

Implementing such complex extensions in a traditional compiler would be a daunting

task: it would typically require writing new compilation passes or extending existing ones

by directly modifying the implementation of the compiler itself. Rupicola is intended to

make this much easier, and this section gives some evidence to that effect.

Anecdotal observation suggests that the corresponding effort in Rupicola is minimal:

once users develop sufficient familiarity with our framework, they find it manageable to

teach the compiler new lemmas to support the patterns that they are interested in (I have

observed this anecdotally as more students became involved in this project). I summarize

some examples of estimated effort in development time and lines of code in table 5.1.

Adding support for newmonads is also straightforward, though naturally a bit more

complicated. As a concrete example, I estimate that adding support for a writer monad

starting from a blank file required about an hour and a half, with a bit over 15 minutes

111



Domain Operation Lemma Proof Time (min)

nondet alloc, peek 26+24 17+11 13+6

cells get, put 22+23 5+ 3 7+3

iadd 31 7 8

io read, write 25+26 7+10 11+8

Table 5.1: Verification effort for user extensions. Time estimates are rough indicators.
“Lemma”and “Proof” refer to line counts using a verbosenotation; amore succinct
notation would shrink the “Lemma” column by about 30%.

spent defining the monad and proving its properties (17 lines of code, 5 lines of proofs), 30

minutes spent setting up the compilation of that monad (56 lines of code, 8 lines of proofs),

20 minutes to add a Gallina primitive and compilation lemmas for it (mapping writes to

I/O trace operations at the Bedrock2 level; 50 lines of code, 15 lines of proofs), 15 minutes

to write a small example and compile it (4 lines of Gallina model, 6 lines for the Bedrock2

signature, and 1 line for the compilation “proof”: compile.), and about 3 seconds to derive

the actual code22. The same example written by imitating other monad examples would

probably take roughly a third to half as long.

5.1.2 Case study: Implementing compiler extensions to support new
low-level patterns

Section 4.5 above describes in detail two of the most significant classes of compiler exten-

sions that we implemented: support for various effects and support for conditionals and

loops. Here I give evidence of Rupicola’s usability through two additional examples, both

of which are instances of one of the most interesting kinds of extensions for a relational

compiler: extensions that expose features of the low-level language in the shallow world.

Specifically, I look at stack allocation and inline tables.

Implementation efforts for both of these extensions were led by Dustin Jamner, with

extensions by the author of this thesis; I report on them here as further evidence that

Rupicola is usable by experienced Coq users and as interesting case studies of Rupicola

22While the programs that Rupicola produces are fast, Rupicola itself is not. I give more details about this in
section 5.2.2.
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extensions.

5.1.2.1 Stack allocation

Bedrock2 supports (lexically scoped) stack allocations: a block of code can be wrapped in a

binding construct giving it access to a pointer to a block of compile-time constant-size

memory allocated on the stack. This is particularly useful for any program that needs access

to a small working area, and unlike a global buffer it does not pollute external specifications

(beyond changing the function’s stack-space requirements, which Bedrock2 tracks).

As a case study (and because a larger development using Rupicola was planning to make

use of it), we extended Rupicola to provide access to this feature in Coq programs. We

exposed it under three APIs.

• For allocating space intended to be fully initialized by a single operation or function call,

we use a semantically transparent annotation, stack. When Rupicola sees let/n x :=

stack (term) in …, it generates a stack allocation in Bedrock2 and resumes compilation

with the plain program let x/n := term in … and a memory context containing an

uninitialized block of memory pointed to by "x". The determination of how large a block

to allocate is done by looking up an instance of a type class. Then, the compilation of term

is expected to initialize the allocated block fully.

• For allocating space that is expected to be fully initialized in multiple small steps, we

use the buffer API discussed in section 4.6.2.2, with consecutive calls to push followed

by a final call to convert the buffer into an array. The idea generalizes: we construct a

separation-logic predicate that captures the initialized parts of the allocated space, with

APIs that progressively grow the allocated section, and finally an API to convert from

that predicate to a simpler one that applies only to fully allocated values.

• For allocating uninitialized space that is not expected to be fully initialized right away,we

use amonadic computation returning a list of fixed length containing arbitrary values in

Gallina, and wemap this to a stack allocation of the same width in Bedrock2. In cases

where it is possible to prove that a monadic computation involving stack allocations is in

fact deterministic (e.g. because the code in fact overrides all positions in the nondeter-

ministic list that the allocation returns), then the nondeterminism could be restricted

to the code fragment performing the allocation, and as a result the local effect does not

leak.

113



5.1.2.2 Inline tables

Inline tables are another Bedrock2 feature that is usefully exposed at the functional level;

they are const arrays local to a Bedrock2 function, useful for implementing lookup and

translation tables.

The Gallina API that we implemented is the same as that of arrays, except that only one

operation (get) is available. Crucially, the API does not impede reasoning about the code:

simply unfolding the definition of InlineTable.get reveals that it is just the function nth

on lists.

The Gallina API accepts any type in the array; it is the user’s responsibility to then show

how these values can be cast to a scalar type (bytes ormachinewords). This flexibilitymakes

it possible to store values of types such as Fin.t (a subset integer type equivalent to {i |

i < n }) in an inline table (as long as n is less than 256 for a byte or 2width for a word): we

use this in the UTF-8 decoder to store arrays of indices into another array, which makes it

trivial to statically encode the fact that all values in the first array are valid indices into the

second array.

We have Rupicola compilation lemmas to load either a single byte or a full machine word

from these tables. Due to the way the semantics of Bedrock2 are written, the effort for

machine words is much greater than the effort for the bytes version of the same lemmas

(hundreds versus tens of lines). Most required lemmas are due to an idiosyncrasy of the

semantics of inline tables: they are about basic properties of an otherwise seldom-used set

of Bedrock2 functions and are irrelevant to Rupicola (the plan is to offer these lemmas to

the authors of Bedrock2 for merging into that repository, which will bring the longer proof

back to tens of lines).

5.1.3 Case study: Rupicola's expression compiler

This section and the next attempt to give a sense of the effort involved in developing and

using relational compilers.

Rupicola is really two relational compilers rolled into one: one targeting Bedrock2’s

statements and one targeting its expressions. Originally, however, we assumed that the

expression part of the compilation process was so simple that it would not warrant the cost

of relational compilation. Instead, we compiled expressions by reifying them into an AST

type and then using a verified compiler targeting Bedrock2’s expression language, and
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we planned to handle all necessary extensions by plugging in new cases in our reflection

tactics and proofs.

We were wrong; over time this reflective compiler grewmore complicated and accumu-

lated various complications to make it easier to extend to more types andmore operations;

andweneeded constant extensions to it, becauseprogrammersuse awide rangeofnumeric

types in Gallina and expect to be able to map operations on them to low-level expressions

(rather than to a sequence of individual statements, each performing a single operation).

I switched to a relational compiler at a time when the reflective compiler had support

only for machine words, operations on Z, and a limited subset of Boolean operations. The

original reflective compiler was written with conciseness in mind, requiring about 450

lines of code (including 200 lines of tactics and 60 lines of typeclass definitions) and would

(we estimated) require about 100more lines of tactics, 100 lines of proofs, and about the

same amount in refactoring to existing tactics to add support for byte operations. In

addition, the implementation was fairly technical, so extensions had to be handled by

someone intimately familiar with the code base.

The relational compiler that I replaced it withwas about 250 lines of code (of which about

30 were Hint commands to assemble the lemmas into a compiler) and then quickly grew

to about 400 lines to support bytes, Booleans, integers, two representations of natural

numbers, and mixed expressions (with casts between different types). None of these

extensions required deep expertise; in fact, shown below is all of the code that we needed

to support byte.and, the change that daunted us into switching to relational compilation:

Lemma expr_compile_byte_and

(m: mem) (l: locals) (b1 b2: byte) (e1 e2: expr) :

DEXPR m l e1 (of_byte b1) ->

DEXPR m l e2 (of_byte b2) ->

DEXPR m l (expr.op and e1 e2) (of_byte (byte.and b1 b2)).

Proof. rewrite byte_morph_and; apply expr_compile_word_and. Qed.

Hint Extern 1 => simple eapply expr_compile_byte_and; shelve : compiler.

Even better, the switch to relational compilation allowed plugging in support for transfor-

mations with complex side conditions trivially — operations such as arithmetic shifts23 or

array dereferences24, for example.

23Our original reification-based expression compiler supported left shifts but not right ones, since they have
preconditions.

24Even with more elaborate infrastructure to generate side conditions, we have sufficiently many represen-
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Surprisingly, the performance cost (on compilation times, not on performance of com-

piled programs) was never more than two times, yielding an overall 30% slowdown in the

worst case; significant, but smaller than I feared given the performance benefits I had

hoped for when originally adopting a reflective approach.

5.1.4 Case study: End-to-end verification with Rupicola

Narrowly speaking, the exact techniques that programmers employ to generate input

suitable for compilation with Rupicola are out of the scope of this thesis: Rupicola is

built to be agnostic to this. Authors who find themselves missing features may chose to

implement compiler extensions to support them (confident in the knowledge that they will

not break the rest of the compiler) or may choose to lower these unsupported constructs

into ones that Rupicola does support, if their development process lends itself to that (in

a refinement-based pipeline, for example). As a concrete example, when this paragraph

was originally written, Rupicola had support for left folds on lists but not right ones: a

programmer employing the latter could have proven a new compilation lemma, or if their

program permitted it, lowered it either to a left-fold variant or to one of the more basic

iteration primitives that Rupicola supported (most likely iterating over a range of numbers,

retrieving the n-th element of the list after each iteration).

Still, asking authors to lower their programs leaves the question of the expressivity

of Rupicola’s input language: how easy is it to massage high-level functional programs

into ones that Rupicola will accept? In general, I have found it very easy, for two reasons.

First, all reasoning happens between shallowly embedded programs, so the verification

experience is one that interactive theorem provers excel at: proving equivalences between

relatively small pure functions that operate on inductive data types. Second, inmany cases,

the lowering that Rupicola requires is really a form of transparent or semitransparent

program annotation: for example, we specify which object we intend to mutate by using

a variant of let annotated with a variable name, or we specify that a particular object

should be stack-allocated by wrapping its initial value with the stack function. Because

these annotations are semantically irrelevant (they are just identity functions with extra

arguments), unfolding them returns to the original program.

tation of arrays that it would have been daunting to encode each of them in the reflective compiler; as
a result early versions of Rupicola required let-binding array accesses separately, to invoke a separate
compilation lemma.
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To illustrate these points on a concrete example, I implemented and verified the TCP/IP

checksum algorithm, a one’s-complement sum of 16-bit values (unsigned addition with

carries added back in).

I chose this specific program because it proved particularly vexing in previous work:

when we implemented this function in the context of Narcissus [12], we did not manage,

even with a careful (and unverified) extraction setup, to achieve satisfactory performance

for it. Instead, we resorted to replacing it as a whole by an unverified but sufficiently fast

implementation in OCaml.

For this instance, I sought to make the specification as readable and easily auditable as

possible (for example, instead of relying on a bitvector type, I used Coq’s built-in byte and

Z types).

Definition onec_add16 (z1 z2: Z) :=

let sum := z1 + z2 in

(Z.land sum 0xffff + (Z.shiftr sum 16)).

Definition ip_checksum (bs: list byte) :=

let c := List.fold_left onec_add16

(List.map le_combine (chunk 2 bs))

0xffff in

Z.land (Z.lnot c) 0xffff.

There is a subtlety in the program above: even though IP checksums are defined on 2-byte

blocks, the input may contain an odd number of octets. The specification handles this case

gracefully (the last chunk that it receives is only one byte long).

I then separately wrote a Rupicola-ready version of the same program (next page); this

version separates iteration over the even-length prefix of the input and the optional last

byte. In a more traditional development workflow, this is the functional model that one

would verify a handwritten low-level implementation against (direct verification against

the high-level spec would be possible but would involve all the complexity of the two-step

process forced into a single larger proof).

Proving the equivalence of these two versions is straightforward and proceeds in two

steps, none of which use lemmas particularly specific to IP checksums. First, we show

that we can remerge the loop and the last conditional step; this is because the nth function

that we use in the loop returns a default value if we ask for an out-of-bounds value25.

Then, we translate the remerged loop on an integer range into a fold, and from there, the

proof is straightforward. The total amount of proofs that is specific to IP checksums is a
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few tens of lines, including some properties of the original programs to guarantee that

one’s-complement sums fit in the finite types that we use in the implementation26.

Definition ip_checksum_upd (c16: word) (b0 b1: byte) :=

let/n w16 := b0 |w (b1 <<w 8) in

let/n c17 := c16 +w w16 in

let/n c16 := (c17 &w 0xffff) +w (c17 >>w 16) in

c16.

Definition ip_checksum' (bs: list byte) : word :=

let/n c16 := 0xffff in

(* Main loop *)

let/n c16 := nd_ranged_for_all

0 (Z.of_nat (length bs) / 2)

(fun c16 idx =>

let/n b0 := ListArray.get bs (2 * idx) in

let/n b1 := ListArray.get bs (2 * idx + 1) in

let/n c16 := ip_checksum_upd c16 b0 b1 in

c16) c16 in

(* Final iteration *)

let/n c16 := if Nat.odd (length bs)

then let/n b0 := ListArray.get bs (length bs - 1) in

ip_checksum_upd c16 b0 x00

else c16 in

(* Clean up *)

let/n c16 := (~w c16) &w 0xffff in

c16.

Finally, I wrote a signature for the function and ran the compiler. It takes a few seconds for

the derivation to complete, and it requires a single extension: a lemma to prove that if a

natural number n is odd then n − 1 ≥ 0, which is required to prove that the final array

access (at length bs - 1) is in bounds.

25Why not use themerged version as the input to Rupicola, then? Becausewe do not want to perform explicit
bounds checks in the generated code. In the separated version, we can trivially prove that all accesses
are in-bounds as part of the compilation process, whereas the merged version potentially performs an
out-of-bounds access, which we could only compile with a conditional that would slow all iterations of
the loop, not just the last.

26Take these numbers with a grain of salt, as they are easy to manipulate and hard to interpret. For example,
I had to prove that Z.odd (Z.of_nat n) = Nat.odd n and that an odd number equals one modulo two: I
did not consider these facts to be “specific to IP checksums”, but I did have to spend time proving them,
since they were missing from Coq’s standard library. Time spent is a more reliable metric.
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Instance spec_of_ip_checksum : spec_of "ip_checksum" :=

fnspec! "ip_checksum" data_ptr wlen / data R ~> chk, {

requires tr mem :=

wlen = of_nat (length data) /\

(bytes data_ptr data ? R) mem;

ensures tr' mem' :=

tr' = tr /\ chk = ip_checksum' data /\

(bytes data_ptr data ? R) mem'

}.

Overall, implementing and verifying IP checksums in Rupicola was amatter of a few hours,

and the resulting performance is on par with a hand-coded version in C—but with proofs!

5.1.5 Case study: Third-party contributions

Beyond the examples in its own repository, Rupicola is currently being used by members

of the Fiat Cryptography project [13, 43, 15] to extend the framework beyond individual

finite-field operations. This section briefly summarizes these efforts to give a sense of

developments in Rupicola that have happened beyondmy own efforts.

5.1.5.1 Montgomery ladder

Starting from code written by Jade Philipoom,Dustin Jamner is compiling an implementa-

tion of the Montgomery ladder, an algorithm for constant-timemultiplication on elliptic

curves [33, 4]. The implementation calls out to separately compiled Fiat Cryptography func-

tions for arithmetic operations. It requires a number of Rupicola extensions, including for

compiling individual arithmetic operations (that code is parametric on the choice of field

parameters) and support for stack allocation.

Below is the input that is fed to Rupicola. Its main loop calls a separate Gallina function

ladderstep—it, too, is compiled using Rupicola.

Definition montladder (sz: nat) (testbit: nat -> bool) (u: E) : E :=

let/n X1 := stack 1 in let/n Z1 := stack 0 in

let/n X2 := stack u in let/n Z2 := stack 1 in

let/n swap := false in

let/n (X1, Z1, X2, Z2, swap) :=

iter_down sz (fun i '⟨X1, Z1, X2, Z2, swap⟩ =>

let/n s_i := testbit i in
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let/n swap := xorb swap s_i in

let/n (X1, X2) := cswap swap X1 X2 in

let/n (Z1, Z2) := cswap swap Z1 Z2 in

let/n (X1, Z1, X2, Z2) := ladderstep u X1 Z1 X2 Z2 in

let/n swap := s_i in

⟨X1, Z1, X2, Z2, swap⟩)

⟨X1, Z1, X2, Z2, swap⟩ in

let/n (X1, X2) := cswap swap X1 X2 in

let/n (Z1, Z2) := cswap swap Z1 Z2 in

let/n r := Z1 ^ -1 in

let/n r := X1 * r in

r.

One feature that shines in this use case is Rupicola’s handling of mutation and allocation:

while the code reads like regular Gallina code, the names chosen for the let bindings and

the calls to stack indicate which variables should be mutated and when allocation should

be performed. When reasoning about the code, simply unfolding the definitions of nlet

and stack erases all traces of Rupicola, and as a result the proof connecting this lowered

implementation to the pure Gallina spec is a matter of just a few lines.

This ladderstep function plugs into a larger derivation, which also serves as a useful case

study of the convenience of our approach to loops. The original implementation used a

complex loop lemma that required the user to define ghost state and a custom invariant,

and consequently the compilation process was only partly automated: in fact, the first

implementation of the derivation was close to 200 lines of a complex mix of domain-

specific automation andmanual proofs, plus roughly 50 lines of invariant definitions and

80 lines of additional tactics. We performed three simplifications:

1. Use a better (more structural) encoding of the relation betweenmodular bignums and

integers: in memory bignums are arrays of bytes, which correspond to a certain integer

valuemodulo some constant M.The original derivation used a separation-logic predicate

that made the byte representation of bignums explicit, and as a result all arithmetic

has to reason about casts between byte arrays and integers. We introduced a new

separation-logic predicate to encapsulate the correspondence, essentially hiding the

interpretation of bytes under an existential (bignum z m := ∃ bs: list bytes, bytes bs

m /\ eval bs = z mod M), aswell as compilation lemmas to translatemodular arithmetic

on Z to operations on these new bignums (the actual predicate also hides encoding

details related to bounds on these bignums).
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2. Use automatic predicate inference: the previous change was enough to eliminate all

need for ghost state and custom invariants. Had it not been, we would have been able

to prove properties about partial runs of the loop body at the Gallina level and use these

as part of the derivation, still without having to reason at the Bedrock2 level.

3. Use nlet bindings to drive mutation vs. allocation decisions (the original implementa-

tion used annotations on the separation-logic predicates). This did not require much

effort: the original code already mostly conformed to Rupicola’s assumptions about

naming, even though it did not use nlet.

The result is a one-line derivation (compile.) supported by a handful of new bignum com-

pilation lemmas, about 10 lines of logic to drive the application of one of these lemmas,

and a few additional compilation hints to plug in rewrites and a linear arithmetic solver.

As a bonus, the new version of the code does more than the original: unlike its predecessor,

it takes care of allocating its own scratch space instead of requiring it to be passed in.

5.1.5.2 Modular exponentiation

Separately, I have been helping Ashley Lin derive optimized code for in-placemodular expo-

nentiation with known exponents using Rupicola, using a multiply-and-square algorithm.

Her implementation is verified from end to end.

The derivation starts from a high-level specification of exponentiation. The code uses an

axiomatic specification of field elements that states to_Z (pow x n) = (to_Z x) ^ n mod M

(where to_Z converts a field element to Z and pow is the field exponentiation), so here the

entire specification is simply pow x n.

The lowering phase is semi-automatic. We start with a traditional multiply-and-square

algorithm defined by induction over the binary decomposition of the exponent (below, the

type positive is a binary encoding of positive natural numbers,…~0matches numbers

whose lowest bit is 0, and…~1matches numbers with lowest bit 1). Its proof of correctness

is trivial by induction.

Fixpoint pow_sq (x: E) (n: positive) : E :=

match n with

| 1 => x

| n~0 => let/n r := pow_sq x n in

r ^ 2

| n~1 => let/n r := pow_sq x n in
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let/n r := r ^ 2 in

r * x

end.

Lemma pow_sq_ok (x: E) n:

pow_sq x n = x ^ (Z.pos n).

Proof.

induction n; simpl; unfold nlet; rewrite ?IHn.

(x ^ Z.pos n) ^ 2 * x = x ^ Z.pos n~1

(x ^ Z.pos n) ^ 2 = x ^ Z.pos n~0

x = x ^ 1

all: [> rewrite <- pow_sqm_distr |

rewrite <- pow_sq_distr |

rewrite pow_1 ].

x: E n: positive IHn: pow_sq x n = x ^ Z.pos n

x ^ Z.pos n~1 = x ^ Z.pos n~1

x: E n: positive IHn: pow_sq x n = x ^ Z.pos n

x ^ Z.pos n~0 = x ^ Z.pos n~0

x: E

x = x

all: reflexivity.

Qed.

Unfolding this definition for a specific exponent yields a tree of nested let bindings; for

example, for n := 71 (and naturally, unfolding the let/ns yields the expected Gallina code):

Eval simpl in fun x => pow_sq x 71.
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= fun x : E =>

let/n r as "r" :=

let/n r as "r" :=

let/n r as "r" :=

let/n r as "r" :=

let/n r as "r" := let/n r as "r" := x in r ^ 2 in

r ^ 2 in

r ^ 2 in

let/n r0 as "r" := r ^ 2 in r0 * x in

let/n r0 as "r" := r ^ 2 in r0 * x in

let/n r0 as "r" := r ^ 2 in r0 * x

: E -> E

Eval cbv in fun x => pow_sq x 71.

= fun x : E => (((((x ^ 2) ^ 2) ^ 2) ^ 2 * x) ^ 2 * x) ^ 2 * x

: E -> E

A subsequent phase of rewriting then transforms that definition into one that is suitable

for plugging in into Rupicola:

Eval simpl in (fun x => lower! pow_sq x 71).

= fun x : E =>

let/n x0 as "r" := x ^ 2 in

let/n x1 as "r" := x0 ^ 2 in

let/n x2 as "r" := x1 ^ 2 in

let/n x3 as "r" := x2 ^ 2 in

let/n x4 as "r" := x3 * x in

let/n x5 as "r" := x4 ^ 2 in

let/n x6 as "r" := x5 * x in

let/n x7 as "r" := x6 ^ 2 in x7 * x

: E -> E

Minimal extensions to Rupicola are needed to compile these programs: we simply reuse

lemmas developed for the Montgomery ladder to map field arithmetic to Bedrock2 primi-

tives.

5.1.5.2.1 Run-length-encoded modular exponentiation The naive implementation above

generates an amount of code proportional to log2(n) for an exponent n. For numbers

whose binary representations contain long runs of zeros or ones, a better implementation

is possible: we can use a loop to perform the corresponding operation (either square or
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square-and-multiply) as many times as the corresponding digit (0 or 1) is repeated. For

example, for n := 71, the code above performs three square operations followed by three

square and multiply operations, which we can compress using two loops (Nat.iter n f x

applies the function f n times to x):

Eval simpl in (fun x => lower! pow_rl x 71).

= fun x : E =>

let/n x0 as "r" := x ^ 2 in

let/n x1 as "r" := Nat.iter 2 (fun r : E => r ^ 2) x0 in

let/n x2 as "r" := Nat.iter 3 (fun r : E => r ^ 2 * x) x1 in

x2

: E -> E

Careful readers will notice that we perform a square operation before the first loop. This is

to avoid copying the input x into r before the first loop: instead we can square x directly

into the output argument r and thereby save a copy.

This code can similarly be fed to Rupicola, this time with an additional lemma tomap

Nat.iter to a loop (section 4.6.2.3). For large exponents, this yields significant space savings

(we are using this approach to implement modular inversion, which corresponds in the

field that we are working with to exponentiation by 2255 − 17):

Eval simpl in (fun x => lower! pow_rl x (2 ^ 255 - 17)).

= fun x : E =>

let/n x0 as "r" := x ^ 2 * x in

let/n x1 as "r" := Nat.iter 248 (fun r : E => r ^ 2 * x) x0 in

let/n x2 as "r" := x1 ^ 2 in

let/n x3 as "r" := Nat.iter 4 (fun r : E => r ^ 2 * x) x2 in

x3

: E -> E

Proving the correctness of pow_rl for all inputs is relatively straightforward, but it is not

evennecessary. Instead,we can just recycle the proof of correctness of pow_sq, applied to the

specific constant that we are interested in. It suffices because pow_rl executes operations

in the exact same order as pow_sq:

Goal forall x, pow_rl x (2 ^ 255 - 17) = x ^ (Z.pos (2 ^ 255 - 17)).

Proof. intros; rewrite <- pow_sq_ok. reflexivity. Qed.
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5.1.5.3 Future work

These efforts are intended to converge and eventually produce efficient implementations

of Poly1305 and ChaCha20 verified from end to end. Andres Erbsen wrote high-level

specifications, and we jointly wrote a lowered version in Rupicola, which I proved against

the original specifications (some of that code appears in section 4.3). Work is in progress

to compile that code to Bedrock2 using Rupicola.

5.2 Performance benchmarks

Extensibility is not the only metric that Rupicola is optimizing for: both are intended to

enable users to generate code that competeswith handwrittenC programs on performance.

To measure the performance of code generated by Rupicola, we took a collection of

tasks for which existing C implementations were available, implemented corresponding

programs in Coq, and used Rupicola to compile them. Here, we give evidence that the

performance of the resulting code is on par with C programs. To run these programs we

do not use Bedrock2’s compiler to RISC-V; instead we use a trivial pretty-printer to C to

feed our programs to a regular C compiler (it would be possible to use Bedrock2’s compiler

or CompCert for greater assurance, albeit at a performance cost).

We chose programs from a variety of domains, including string manipulation, hash

functions, and packet-manipulating (network) programs. Not discussed in the following

are an additional suite of dozens of programs testing features around arithmetic,monadic

extensions, and stack allocation (a subset of which are covered in table 5.1).

Table 5.2 gives a short description of each program that we benchmarked, and fig. 5.1

shows the results of benchmarking (running on an Intel Core i7-4810MQCPU@ 2.80GHz).

As usual, benchmarks involving C compilers are very sensitive to small encoding decisions,

sowemeasureperformance across three compilers: overall thedifferences both in favor and

against Rupicola are within the expected fluctuations across optimizing compilers, though

we do suffer from a missed vectorization opportunity in upstr with GCC (section 5.2.1

discusses this result in more detail).

Comparing the performance of the original Coq code extracted to OCaml using Coq’s

native extraction features versus the C code produced by Rupicola yields results that are

very problem-dependent: in most cases, extracting with Rupicola leads to algorithmic
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crc32 31 16 3 3 3 3 3

Error-detecting code (cyclic redundancy check)

utf8 56 - 6 3 3 3

Branchless UTF-8 decoding

m3s 11 - - 3

Scramble part of theMurmur3 algorithm

upstr 21 - 6 3 3 3 3 3

In-place string uppercase

ip 37 3 7 3 3 3 3

IP (one’s-complement) checksum (RFC 1071)

fasta 19 6 5 3 3 3 3 3

In-place DNA sequence complement

fnv1a 35 - 2 3 3 3

Fowler-Noll-Vo hash

Table 5.2: Our benchmark suite. The “Source”, “Lemmas”, and “Hints” columnsmeasure
programmer effort in lines of code to write the original program and its signa-
ture, to prove the properties needed byRupicola to compile that specific program,
and to configure Rupicola prior to running the compiler, respectively. The “End-
to-End” column indicates whether we have proofs from high-level specifications.
The remaining columns describe which compiler extensions each program lever-
ages.
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0 1 2 3 4 5 6 7 8
Cycles per byte on 1MiB input (lower is better)

fnv1a

utf8

m3s

upstr

ip

fasta

crc32

C GCC 9.4
C GCC 10.3
C GCC 11.1
Rupicola GCC 9.4
Rupicola GCC 10.3
Rupicola GCC 11.1
C Clang 11.0
C Clang 12.0
C Clang 13.0
Rupicola Clang 11.0
Rupicola Clang 12.0
Rupicola Clang 13.0

Figure 5.1: Performance benchmarks: Rupicola vs. handwritten C. Error bars indicate 95%
bootstrap confidence intervals over 1000 runs. The large fluctuations in upstr

are due to inconsistent vectorization.
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Cycles per byte on 1MiB input, linear scale (lower is better)

ip

Rupicola GCC 11.1
Rupicola Clang 13.0
C GCC 11.1
C Clang 13.0
Coq/OCaml ocamlopt 4.09

100 101 102
Cycles per byte on 1MiB input, log scale (lower is better)

ip

Rupicola GCC 11.1
Rupicola Clang 13.0
C GCC 11.1
C Clang 13.0
Coq/OCaml ocamlopt 4.09

Figure 5.2: Performance benchmarks: Rupicola and handwritten C vs OCaml extracted
from Coq specifications on one example. Error bars indicate 95% bootstrap
confidence intervals over 1000 runs. The first plot uses a linear scale; the second
one shows the same data with a logarithmic scale. The x axis on the second
plot starts at 1 cycle/byte. Of four variants of the OCaml code generated by
Coq (extracting the specs or the implementation, with or without additional
extraction commands) only the fastest (specs with Coq integers unsoundly
extracted to native ints) is shown, as the others have algorithmic complexity
issues and hence do not complete in a reasonable amount of time.
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complexity changes (e.g. changing a linear nth lookup into a constant-time pointer deref-

erence). When complexity is unchanged, a reasonable approximation is a speedup of 30

to 200× versus plain Coq extraction (typically closer to the latter). An example is given in

fig. 5.2. It is possible to improve the performance of the OCaml code using potentially

unsound extraction commands (as shown in fig. 5.2, which maps Coq’s unbounded inte-

gers to native integers), but only up to a point; and each additional customization of Coq’s

native extraction process is one opportunity for subtle bugs.

5.2.1 Performance considerations: C compilers and Bedrock2's C
pretty-printer

Bedrock2 is a low-level language, but it is not equivalent to C: in someways it is higher-level

(in particular, its control flow is more structured), but in other ways it is much lower level:

it has a single type,machine words, and all operations go through that type. Additionally,

the semantics of Bedrock2 and (ISO) C differ: Bedrock2 has a very simple view of memory

(a map from locations to bytes), whereas C attaches types to pointers and has complex

restrictions on aliasing memory and accessing it through pointers of different types.

None of this is a concern when using the native (and verified) Bedrock2 toolchain ([14]).

When pretty-printing Bedrock2 to C, however, these differences become problematic.

It might be possible to reconstruct enough information from a piece of Bedrock2 code

to produce a richly typed C program, but this would require relatively complex reasoning

and hence additional verification effort; instead, the authors of Bedrock2 chose to write a

very simple translator that produces C code in which all variables have type uintptr_t and

all memory accesses go through a memcpy to avoid alignment issues.

The result is most likely not valid according to the ISO specification of C, a dubious

distinction that Bedrock2’s pretty-printer shares with lots of systems software: low-level

C code tends to be written in the dialect of C supported by whichever compilers a project

targets, not in ISO C27. I find it best to think of this C pretty-printing approach as a quick

way to run programs compiledwith Rupicola, rather than as a lasting piece of a trustworthy

pipeline28: in the long run,wewill want either to verify the pretty-printer to C, pretty-print

to a language with fewer pitfalls, or to improve the Bedrock2 compiler enough to have

competitive performance (hence my note in fig. 1.1 that the traditional compilation pass
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from Bedrock2 to Asm should be “ideally, verified”).

5.2.1.1 Memory loads and stores

Modern C compilers are very good at optimizing the kind of programs that Rupicola

generates, but we did have to go through a few iterations before we found a way to phrase

memory accesses that compilers had no trouble with. The original implementation used

the following (this discussion assumes a little-endian platform):

static inline uintptr_t _br2_load(uintptr_t a, size_t sz) {

uintptr_t r = 0;

memcpy(&r, (void*)a, sz);

return r;

}

Unfortunately, GCC 9 does not recognize the fact that memcpywill not read from pointer

&r and hence generates code that allocates space for r in memory and zeroes it out.

Explicitlymasking the return value helpsGCC (it recognizes that themask is superfluous

and optimizes it away but additionally removes the unwanted store to &r), but this hurts

performance in Clang 10, which does not eliminate the mask:

static uintptr_t _br2_load(uintptr_t a, size_t sz) {

uintptr_t r = 0;

memcpy(&r, (void*)a, sizeof(uintptr_t));

uintptr_t mask = (uintptr_t)-1 >> (8 * (sizeof(uintptr_t) - sz));

return r & mask;

}

A commonly recommended alternative is to use byte-wide reads and use shifts and ors

to reconstruct wider values [63]:

#define READ8(S) ((255 & (S)[0]))

#define READ16LE(S) ((255 & (S)[1]) << 8 | (255 & (S)[0]))

27This friction between C standards and real-world C programs, if undesirable, is at least not new. Back in
1988, Dennis Richie wrote the following of an early draft of a C standard:The fundamental problem is that it
is not possible to write real programs using the X3J11 definition of C.The committee has created an unreal language
that no one can or will actually use. [54]. For an overview of the debate, start with [66].

28Mapping Bedrock2’s model to C is finicky business — early prototypes had type-casting mistakes that led
to incorrect results and stack overflows. These thin, unverified layers of translation are a well-known
source of issues in otherwise verified projects.
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#define READ32LE(S) \

((uint32_t)(255 & (S)[3]) << 030 | (uint32_t)(255 & (S)[2]) << 020 | \

(uint32_t)(255 & (S)[1]) << 010 | (uint32_t)(255 & (S)[0]) << 000)

#define READ64LE(S) \

((uint64_t)(255 & (S)[7]) << 070 | (uint64_t)(255 & (S)[6]) << 060 | \

(uint64_t)(255 & (S)[5]) << 050 | (uint64_t)(255 & (S)[4]) << 040 | \

(uint64_t)(255 & (S)[3]) << 030 | (uint64_t)(255 & (S)[2]) << 020 | \

(uint64_t)(255 & (S)[1]) << 010 | (uint64_t)(255 & (S)[0]) << 000)

static inline uintptr_t _br2_load(uintptr_t a, size_t sz) {

switch (sz) {

case 1: return READ8((unsigned char*)a);

case 2: return READ16LE((unsigned char*)a);

case 4: return READ32LE((unsigned char*)a);

case 8: return READ64LE((unsigned char*)a);

default: __builtin_unreachable();

}

}

Unfortunately, while both GCC 9+ and clang will optimize each branch of this function

to a singlememory load of the right width, that optimization interacts poorly with inlining

in GCC, and as a result the inlined version of this function sometimes ends up performing

individual byte-wide loads when compiled with GCC 10. Eventually, we settled on the

following definition, which is correctly optimized by GCC 9+ and Clang 10+:

static inline uintptr_t _br2_load(uintptr_t a, uintptr_t sz) {

switch (sz) {

case 1: { uint8_t r = 0; memcpy(&r, (void*)a, 1); return r; }

case 2: { uint16_t r = 0; memcpy(&r, (void*)a, 2); return r; }

case 4: { uint32_t r = 0; memcpy(&r, (void*)a, 4); return r; }

case 8: { uint64_t r = 0; memcpy(&r, (void*)a, 8); return r; }

default: __builtin_unreachable();

}

}

Naturally, none of this mess would be needed were we converting directly to a lower

language than C.

5.2.1.2 Machine integers

Beyond the implementation ofmemory loads and stores, Bedrock2’s use of uintptr_twhen

pretty-printing to C also introduces variationswhen compared to handwritten C code. This
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is particularly visible in the benchmark results for upstr, as code generated by Rupicola for

the former is poorly optimized by GCC (but runs at speed comparable to the handwritten

version in Clang).

That performance issue is readily explained: GCC simply misses a vectorization oppor-

tunity. It can be reproduced on the following simplified program:

#include <stdint.h>

void uintptr_mask(uintptr_t ubytes, int len) {

for (int i = 0; i < len; i++)

((char*) ubytes)[i] = 0x5f & ((char*) ubytes)[i];

}

Compiling this code with GCC 9.4.0 produces the following output (GCC 10 and 11.1.0

produce similar output):

$ gcc-9 -O3 -fopt-info-vec-all -S uintptr_mask.c -o /dev/null

<stdin>:4:3: missed: couldn't vectorize loop

<stdin>:5:25: missed: not vectorized: compilation time alias: _4 = *_3;

*_3 = _5;

<stdin>:3:6: note: vectorized 0 loops in function.

This is in contrast to the following program, which GCC 9+ vectorizes successfully:

#include <stdint.h>

void uintptr_maskv(uintptr_t ubytes, int len) {

char* bytes = (char*)ubytes;

for (int i = 0; i < len; i++)

bytes[i] = 0x5f & bytes[i];

}

$ gcc-9 -O3 -fopt-info-vec-all -S uintptr_maskv.c -o /dev/null

<stdin>:5:3: optimized: loop vectorized using 16 byte vectors

<stdin>:3:6: note: vectorized 1 loops in function.

Clang 10, in contrast, vectorizes both programs, and indeed we see no performance

difference between the Rupicola version of upstr and the corresponding handwritten code

in Clang:
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$ clang-10 -O3 -Rpass=loop-vectorize -S uintptr_mask.c -o /dev/null

uintptr_mask.c:4:3: remark: vectorized loop↲

(vectorization width: 16, interleaved count: 2)↲

[-Rpass=loop-vectorize]

for (int i = 0; i < len; i++)

^

$ clang-10 -O3 -Rpass=loop-vectorize -S uintptr_maskv.c -o /dev/null

uintptr_maskv.c:5:3: remark: vectorized loop↲

(vectorization width: 16, interleaved count: 2)↲

[-Rpass=loop-vectorize]

for (int i = 0; i < len; i++)

^

5.2.1.3 Speed-ups

The discussion above highlights one instance where a compiler struggles to optimize

Rupicola’s output as efficiently as it does handwritten code. The reverse also happens occa-

sionally, but it is harder to make a systematic case for: any output that Rupicola produces

could reasonably be produced, character-per-character, by hand, and then Rupicola would

no longer have an edge— in that sense, a program produced by Rupicola can never really

beat a handwritten program.

What I have observed, however, is cases where Rupicola’s implementation of memory

access plays better with compiler implementations. The original (handwritten) implemen-

tation of the ip benchmark, for instance, used memcpy to load potentially-unaligned 16-bits

value frommemory; the Rupicola implementation that I wrote at first, in contrast, used

two separate 8-bit loads and then combined them (it was easier to write the code that way

in Rupicola). It turns out that, for this particular example, Clang handles the latter better

than the former, which led to a roughly 30% speedup when using Rupicola and Clang over

handwritten C with Clang. Of course, the pattern used in Rupicola is also expressible in C,

so the results in fig. 5.1 show the manually corrected handwritten code, which runs at the

same speed as Rupicola.

5.2.2 Compilation speed

Theprograms thatRupicola produces are fast, butRupicola itself is not. On simple, straight-

line code, it compiles on the order of tens of bindings per second. On programs that require
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more complex context manipulations, or on programs that need to invoke solvers to solve

compilation side conditions (e.g. programs with loops), the code-generation process gets

much slower.

Compiling the entirety of Rupicola’s distribution on an 8-core machine (dozens of ex-

ample programs) takes on the order of minutes, and examples like the UTF-8 decoder

take tens of seconds to compile. The result is a compiler whose performance is sufficient

for the programs that this thesis focuses on (and a few orders of magnitude faster than

Fiat-to-Facade [44]!), but still painfully slow.

Where is all this time spent? Depending on the example, profiling suggests that about 50

to 80% of it is spent waiting for Coq’s autorewrite tactic to realize than none of anywhere

from 3 to 10 equations apply to the current goals29 (the interesting part of Rupicola’s work

mostly happens in the step_with_db line in the profile shown below, which takes about 5%

of the actual execution time):

tactic local total calls max

────────────────────────────────────────┴──────┴──────┴───────┴─────────┘

─compile ------------------------------- 0.0% 100.0% 1 38.922s

└compile_step -------------------------- 0.0% 99.9% 229 2.501s

├─compile_autocleanup with (ident) ---- 0.4% 56.1% 205 0.954s

│└autorewrite with (ne_preident_list) ( 55.1% 55.2% 386 0.945s

├─compile_solve_side_conditions ------- 38.0% 38.3% 333 1.546s

│ ├─compile_autocleanup with (ident) -- 0.3% 21.3% 145 1.182s

│ │└autorewrite with (ne_preident_list) 20.5% 20.5% 207 1.173s

│ ├─solve_map_get_goal ---------------- 0.0% 10.4% 12 1.539s

│ │└solve_map_get_goal_step ----------- 4.4% 10.4% 33 1.529s

│ │ ├─solve_map_get_goal_refl --------- 0.0% 6.0% 3 1.523s

│ │ │└reify_map ----------------------- 0.2% 5.6% 3 1.470s

│ │ │└set_change (uconstr) with (uconst 0.0% 5.3% 3 1.433s

│ │ │└set (sx := x) ------------------- 5.0% 5.0% 3 1.393s

│ │ └─rewrite map.get_put_diff -------- 4.2% 4.2% 9 0.210s

│ └─step_with_db (ident) -------------- 0.0% 5.7% 62 0.684s

│ └unshelve (tactic1) ---------------- 0.0% 5.7% 103 0.684s

│ └typeclasses eauto (nat_or_var_opt) 0.1% 5.7% 103 0.684s

│ └cbn ------------------------------- 4.3% 4.3% 57 0.609s

└─compile_triple ---------------------- 0.0% 5.2% 24 1.215s

└compile_unset_and_skip -------------- 0.0% 3.1% 5 1.209s

29Performance issueswith autorewritearewell known,andgenerallyRupicola is not running intoparticularly
exciting Coq performance issues— just run-of-the-mill slowness.

134



└compile_cleanup_post ---------------- 0.2% 3.1% 7 0.250s

└compile_autocleanup with (ident) ---- 0.1% 2.7% 16 0.210s

└autorewrite with (ne_preident_list) ( 2.6% 2.6% 30 0.203s

These profiles also do not suggest that there would be much to be gained in migrating

from Coq’s venerable Ltac1 tactic language to Ltac2. It is possible to speed things up quite

a bit by being more discerning in applying autorewrite, but this adds complexity for users,

who would have to grasp a more complex set of hint databases. Instead, I have chosen to

go for maximal ease of use.

Performance issues like the ones that Rupicola suffers from are a common plague of

projects that rely heavily on Coq’s proof language. They stem primarily from a mix of

asymptotically suboptimal algorithms and unoptimized implementation, which are not

particularly surprising (Coqwas not originally designedwith this kind of heavy automation

in mind).

Other performance issues pop up from time to time that come from unexpected pitfalls,

often related to reduction: to give two brief examples, at one point a colleague tracked down

the source of a tenfold slowdown to Coq eagerly unfolding the noskip function described

above while checking a proof30; at another I noticed that proof time was exponential

in the number of unfolding hints added to a Rupicola database31 (there is, thankfully, a

workaround for the problem).

30Rupicola commit 30dbd80d761ad3e8a26dd19d3cdcc264249ffd45.
31Coq bug #14874.
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6 Discussion

6.1 Incremental compiler construction and backtracking

Rupicola’s design makes it easy to build compilers incrementally. In that context, an

important feature is the ability to debug incomplete compilation runs: users need to be

able to determine straightforwardly which construct Rupicola failed to compile, and how

to add support for it.

Let us look at an example to see what concretely happens when Rupicola does not know

how to compile a source-code construct. We look at a simple program that takes as input

an array of bytes, reinterprets it as an array of little-endianmachine words, and counts the

number of matches for a given search term in the resulting array.

Definition count_ws (haystack: ListArray.t byte) (needle: word) :=

let/n r := 0 in

let/n haystack := bs2ws haystack in

let/n r := ListArray.fold_left (fun r w64 =>

let/n hit := word.eqb w64 needle in

let/n r := r + Z.b2z hit in

r)

haystack 0 in

let/n haystack := ws2bs haystack in

r.

Instead of applying the mask byte-by-byte, the program starts by casting its input into a

list of 64-bit words, processes these words, and finally casts the result back to a list of bytes.

Without loading appropriate libraries, Rupicola will not recognize these patterns:

Instance spec_of_count_ws : spec_of "count_ws" :=

fnspec! "count_ws" ptr wlen needle / (bs: list byte) R ~> r, {

requires tr mem :=

wlen = of_nat (length bs) /\
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Z.of_nat (length bs) < 2 ^ width /\

(Datatypes.length bs mod bytes_per_word = 0)%nat /\

(bytes ptr bs ? R) mem;

ensures tr' mem' :=

tr' = tr /\ r = of_Z (count_ws bs needle) /\

(bytes ptr bs ? R) mem'

}.

Context (bytes_per_word_nz : bytes_per_word != 0%nat).

Context (bytes_per_word_range: 0 < Z.of_nat bytes_per_word < 2 ^ width).

Derive count_ws_br2fn SuchThat

(defn! "count_ws"("haystack", "len", "needle")

~> "r" { count_ws_br2fn },

implements count_ws) As count_ws_br2fn_ok.

Proof.

compile.

Compilation incomplete.

You may need to add new compilation lemmas using `Hint Extern 1 =>

simple eapply … : compiler` or to tell Rupicola about your custom

bindings using `Hint Extern 2 (IsRupicolaBinding (xlet (A := ?A) ?vars

_ _)) => exact (RupicolaBinding A vars) : typeclass_instances`.

{{ tr; mem0;

#{ "haystack" => ptr;

"len" => of_Z Z.of_nat (Datatypes.length bs);

"needle" => needle;

"r" => of_Z v }#; functions }}

?k_impl

{{ pred

(let/n haystack as "haystack" := bs2ws bs in

let/n r as "r" :=

ListArray.fold_left

(fun (r : Z) (w64 : word) =>

let/n hit as "hit" := word.eqb w64 needle in

let/n r0 as "r" := r + Z.b2z hit in r0) haystack 0 in

let/n _ as "haystack" := ws2bs haystack in r) }}

In fact, compilation stops immediately, and Rupicola prints a message indicating that

we need new lemmas. Inspecting the goal indicates that Rupicola already combined the

binding for count and then ran into trouble with the second binding (the call to bs2ws), so

we add a lemma for it:
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Lemma compile_bs2ws [t m l σ] (bs: list byte):

let v := bs2ws bs in

forall {P} {pred: P v -> _} {k: nlet_eq_k P v} K r bs_var ptr,

(bytes ptr bs ? r) m ->

(length bs mod bytes_per_word = 0)%nat ->

(forall m',

(words ptr v ? r) m' ->

{{ t; m'; l; σ }} K {{ pred (k v eq_refl) }}) ->

{{ t; m; l; σ }} K {{ pred (nlet_eq [bs_var] v k) }}.

Proof. intros; seprewrite_in bytes_as_words H; eauto. Qed.

One we have defined this new lemma, we can plug it in andmake a bit more progress:

Hint Extern 1 => simple eapply compile_bs2ws; shelve : compiler.

compile_step; try solve [repeat compile_step].

{{ tr; m';

#{ "haystack" => ptr;

"len" => of_Z Z.of_nat (Datatypes.length bs);

"needle" => needle; "r" => of_Z v }#; functions }}

?k_impl

{{ pred

(let/n r as "r" :=

ListArray.fold_left

(fun (r : Z) (w64 : word) =>

let/n hit as "hit" := word.eqb w64 needle in

let/n r0 as "r" := r + Z.b2z hit in r0)

(bs2ws bs) 0 in

let/n _ as "haystack" := ws2bs (bs2ws bs) in r) }}

This timeRupicola stops becausewe have not given it away to compile ListArray.fold_left;

the default is fine, so we import the UnsizedListArrayCompilermodule:

Import UnsizedListArrayCompiler.

compile_step; try solve [repeat compile_step].

0 <= Z.of_nat (Datatypes.length (bs2ws bs)) < 2 ^ width
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DEXPR m'

#{ "haystack" => ptr; "len" => of_Z Z.of_nat (Datatypes.length bs);

"needle" => needle; "r" => of_Z v; (gs "_gs_from") => of_Z 0 }#

?e (of_Z (Z.of_nat (Datatypes.length (bs2ws bs))))

{{ tr; mem1;

#{ "haystack" => ptr;

"len" => of_Z Z.of_nat (Datatypes.length bs);

"needle" => needle; "r" => of_Z v0;

(gs "_gs_from") => of_Z Z.of_nat (Datatypes.length (bs2ws bs));

(gs "_gs_to") => of_Z Z.of_nat (Datatypes.length (bs2ws bs)) }#;

functions }}

?c

{{ pred (let/n _ as "haystack" := ws2bs (bs2ws bs) in v0) }}

This time we see that we are missing three components: a side condition about the length

of the result of converting bytes to words, an expression compilation goal to compute that

length for the loop, and a final goal to cast the list of words back to a list of bytes. We can

make progress on the first two by registering a hint:

Hint Rewrite bs2ws_len using solve[eauto] : compiler_side_conditions.

Hint Rewrite Nat2Z_inj_div : compiler_side_conditions.

Hint Extern 10 => nia : compiler_side_conditions.

all: repeat compile_step.

{{ tr; mem1;

#{ "haystack" => ptr;

"len" => of_Z Z.of_nat (Datatypes.length bs);

"needle" => needle; "r" => of_Z v0;

(gs "_gs_from") => of_Z

Z.of_nat (Datatypes.length bs) /

Z.of_nat bytes_per_word;

(gs "_gs_to") => of_Z

Z.of_nat (Datatypes.length bs) /

Z.of_nat bytes_per_word }#; functions }}

?Goal

{{ pred (let/n _ as "haystack" := ws2bs (bs2ws bs) in v0) }}

And finally all that is left is the call that casts the data back, which requires a lemma very

similar to the previous one:
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Hint Extern 1 => simple eapply compile_bs2ws_rev; shelve : compiler.

repeat repeat compile_step.

Qed.

Once this process of interactive development is complete, we canmove our new lemmas

out of the proof (and possibly into a library, if they are— like here— generally applicable).

The five hints that make up the proof are our compiler.

This interactive debugging and compiler construction experience is one of the main

reasons why backtracking is so unappealing in the context of Rupicola32: as long as there

is no backtracking, the user can be confident that the compilation goal they are looking

at is the furthest that Rupicola could progress. In a compiler with backtracking, the user

instead has to start by reconstructing the failed compilation path and then understandwhy

that path failed (this is a common problemwith Coq’s eauto tactic, and in fact with many

automated theorem-proving technologies: eauto is very pleasant to use when it works,

but when a call to it fails, e.g. due to a change in a theorem statement, the debugging

experience is quite poor).

Another important reason for avoiding backtracking is predictability: we want users

to be in complete control of the code-generation process, so to have at most one lemma

applicable to each source-code pattern loaded at any time— it is the responsibility of the

user to annotate their code to indicate which pattern applies and to load the appropriate

compilation modules.

Finally, the last reason to avoid backtracking is performance: going down unsuccessful

compilation paths wastes time.

6.2 Nondeterminism

The predecessor to Rupicola, Fiat-to-Facade, hardcoded the nondeterminismmonad: it

inherited that trait from the Fiat system [11], and we initially worried that Rupicola would

not have the same flexibility.

How Rupicola deals with nondeterminism depends on its kind:

32As of this writing, backtracking is used in only one place in Rupicola (for deciding between signed and
unsigned comparison operators when compiling arithmetic expressions on integers).
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6.2.1 Erasable nondeterminism

Some datastructures expose deterministic interfaces while relying on nondeterminism

internally. A fixed-size stack, for example, contains a data section and some uninitialized

space to grow into. Methods of the stack do not provide access to the uninitialized section,

so the stack exposes a deterministic interface.

Other structures operate deterministically, but we may prefer to abstract certain details

of their implementation. For example, a binary search tree used to implement a set data

structure with insert, remove, and containsmethods will answer contains queries deter-

ministically, even if its exact layout is unknown (e.g. we may not know which element is at

the root).

In these cases, it is possible to work with deterministic models of the data structure and

to capture the nondeterminism at the separation-logic-predicate level. Specifically, we

canmodel both the stack and the tree as the lists of elements that they contain and hide

the nondeterminism using existential quantification within our representation predicates.

For stacks, wemight write the following, which is essentially what we do with the buffer

API of section 4.6.2.2:

Definition stack_at addr capacity model :=

fun m: mem => ∃ suffix,

length (model ++ suffix) = capacity /\

bytes addr (model ++ suffix) m.

For sets, we might write something similar to the following:

Definition set_at {E} addr element_at (model: list E) :=

fun m: mem => ∃ t: tree E,

is_bst t /\

is_permutation model (tree_elements t) /\

tree_at addr element_at t m.

6.2.2 Observable nondeterminism

Other data structures expose nondeterminism to their callers.

This may be because the structure actually implements nondeterministic operations

(maybe because one of its operations uses concurrent programming under the hood), or it

may be because the model that we chose omits details of the implementation (perhaps to

allow changes in the implementation).
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For example, if we were to add a peek operation to our binary search tree returning the

root of the tree, we would get different results depending on the layout of the tree, which

did not matter for contains tests.

Nondeterminism stemming from underspecification is common, but not excessively so:

indeed, if we want to be able to verify a low-level program that implements the operation,

we need a sufficiently precise representation invariant: an invariant that abstracts away

the hash function used to build a hash table by existentially quantifying it, for example,

would not permit us to prove the correctness of a lookup operation.

When nondeterminism or underspecification is present, we write Rupicola programs

in the nondeterminism monad, and we adjust representation predicates and function

postconditions accordingly. For separation-logic predicates, we can generalize any deter-

ministic predicate element_at over a family of possible objects:

Definition nondet_at {A} addr

(element_at: word -> A -> mem -> Prop)

(val: A -> Prop) mem :=

∃ a, val a /\ element_at addr a mem.

For function postconditions, where we would have previously asserted that the output

of a Bedrock2 function should equal a given Gallina value, we assert instead that the

value returned by the Bedrock2 program should belong to the set of values allowed by the

nondeterministic Gallina program (section 4.5.1.2).

6.3 Trusted base

Whichmoving parts does one have to trust when running a program compiled with Rupi-

cola? Roughly the following:

Rupicola's inputs, or any higher-level specifications
Rupicola proves that its outputs match its inputs, but no more — bugs in the latter are

dutifully replicated in the former. If Rupicola’s inputs are verified against — or generated

from—higher-level specifications, then these need to be trusted. In the example of the

IP-checksum code, this means trusting the high-level Gallina implementation.

Bedrock2's pretty-printer to C — or to RISC-V
The conversion of Rupicola’s outputs from Bedrock2 to C is done using a small (~200 lines)
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but unverified pretty-printer written in Gallina. When compiling using Bedrock, the

trusted base is reduced to the Coq notations that are used to print a byte dump of the

assembled RISC-V code.

Any unverified portions of the lower-level compilation toolchain
Going through C to compile and run Rupicola requires trusting the lower-level compilation

toolchain: compiler, linker, and assembler. This is not an issue when compiling with

Bedrock2’s verified compiler.

Coq's proof checker
Rupicola’s guarantees are only as good as those provided by the Coq proof assistant: bugs

in its proof checker could lead it to accept incorrect proofs.

The environment in which programs execute, and assumptions about it
Issues in the operating system, if any, or hardware components of the machine running

programs compiled with Rupicola can derail an otherwise-verified execution.

6.4 Contributions and credits

I have been lucky to collaboratewith awonderful group of people atMIT; parts of Rupicola’s

development are due to them.

First and foremost is Jade Philipoom. We brainstormed many aspects of the design

of Rupicola together early on and pair-programmed some of the core definitions, and

she contributed multiple of Rupicola’s early examples and library functions, especially

cryptography-related ones. Jade and I also spent a lot of time brainstorming ways to

support complex borrowing andmutation schemes that are not part of this thesis.

Dustin Jamner later worked on the implementation of Rupicola’s support for inline

tables and stack allocation.

Andres Erbsen wrote and ranmost of Rupicola’s benchmarks.

A rough count attributing each source code line to the last author having edited them (git

blame) in the current head of Rupicola’s git repository, excluding a large Bedrock2-related

refactoring, returns the following results:

741 author Dustin Jamner

2759 author Jade Philipoom

15930 author Clément Pit-Claudel
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Outside of Rupicola’s repository, Ashley Lin is compiling modular exponentiation rou-

tines, and I amworking with Dustin Jamner and Andres Erbsen to use Rupicola to derive

implementations of cryptographic primitives.

Parts of this dissertation are under review for publication as a conference paper co-

authored with Jade Philipoom, Dustin Jamner, Andres Erbsen, and Adam Chlipala.
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7 Related work

Generally speaking, Rupicola’s unique strength is its combination of extensibility, foun-

dational proofs, and high performance. Specifically, Rupicola supports extension of the

source to introduce newmonads and datatypes in the input; extension of the compilation

process to support newdata representations and foreign function calls; support for soundly

linking against code written directly in Bedrock2; explicit memory management without

automatic garbage collection; and the ability to derive end-to-end proofs, as well as the

embedding in a proof assistant that makes the whole system interactive. Most other work

lacks at least one of these aspects.

7.1 Binary code extraction and extensible extraction of
imperative code

Maybe the most closely relevant project in the space of relational compilation is my own

previous work on Fiat-to-Facade (F2F) [48, 44]. It was the first demonstration of an end-

to-end pipeline for deriving code automatically from high-level specifications to low-

level code, and it strove for both performance and extensibility in a foundational context.

Unfortunately, it did not fully realize these goals:

• Extensions are possible in F2F, but many are hard to express, owing to the choice of a

linear language as the compilation target. (Consequently, authors are encouraged to

write most complex code directly in the lower-level languages, leaving F2F for the glue

code surrounding calls to low-level functions.) Rupicola uses separation logic directly,

and some of the data-structure primitives in Rupicola’s standard library are in fact

derived using Rupicola.

• F2F proves partial correctness: programs in F2F are only correct up to termination.

Rupicola proofs are total.
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• F2F’s code-derivation strategy is based on setoid rewriting, leading to significant per-

formance issues (a typical compilation run may take tens of minutes even for a small

program, compared to just tens of seconds for Rupicola).

• F2F compilers are assembled from compilation lemmas but cannot then be extended:

extensibility is done through hooks instead of hint databases as in Rupicola (the latter is

made possible, or at least much easier, by Rupicola’s encoding of continuations).

• F2F hardcodes the nondeterminismmonad and does not support extensions to other

monads. Rupicola encodes its pre- and postconditions in a different way that is agnostic

to the ambient monad,making it easy to represent values with custom representations

and to compile computations that represent target-language effects using a custom

monad.

The line ofwork on Imperative/HOLby P.Lammich et. al. is also closely related to thiswork,

starting from extraction from Isabelle/HOL to Imperative/HOL in 2015 [23] (a refinement

framework to translate functional code into a shallowly embedded imperative language

with GC), all the way to the generation of verified LLVM from Isabelle/HOL in 2019 [24]

through a similar refinement process. Early work targeted a shallowly embedded language,

but the latest work extracts directly to LLVM.Themain difference is the scope of the trans-

lation: LLVM/HOL uses a direct embedding of LLVM into HOL, so relational compilation is

used to perform what is essentially a one-to-one translation where all effects in the source

are encoded extensionally. Rupicola, on the other hand, accepts more complex inputs and

supports most effects intensionally, adding complexity in the compiler in exchange for

a richer input language. (Another difference is that Rupicola integrates into a verified

pipeline: code extracted with Rupicola can be soundly compiled and linked against other

code written in Bedrock2 or directly in machine code, within Coq, whereas there is no

verified implementation of LLVM is Isabelle/HOL today.)

Another closely related line of work uses proof-producing extraction to translate HOL

programs to deeply embedded CakeML (a dialect of ML for which there exists a verified

compiler [22]) [35, 36, 17]. It bridges a much narrower gap than Rupicola does (it targets

a language with garbage collection), but in exchange it offers a much more complete

translation pipeline, in the sense that it supports a better-defined and larger part of its

input language, HOL.

Members of the F* team take a slightly different approach in KreMLin [52], an extraction
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framework fromLow* (an imperative subset of the F* language) toC: the extraction process

is not verified (thoughaproof-producing strategy for a subsetwasdescribed in [32]), but the

closematch between the Low* style and Cmeans that KreMLin’s trusted base is reasonably

small, and the emphasis on output-code quality means that C code from KreMLin can

easily be integrated into larger, potentially unverified C programs (as has in fact been done

with cryptography routines [51]). This strategy is viable because F* provides convenient

facilities for reasoning about stateful programs in shallowly embedded style, making it

possible to prove the connection between code written in high-level functional style and

low-level imperative style without resorting to reasoning about deeply embedded low-level

terms. More recent developments explore metaprogramming and code generation using

stateful functors [50].

The authors of Cogent [38] take a different approach. Instead of translating between

two languages (one functional and one imperative), they guarantee (using a restrictive

type system) that all Cogent programs admit efficient implementations that do not depend

on a runtime or a garbage collector (this is similar to the way in which Facade [48] was

essentially a linear type system on top of Cito [64]). As a result, unlike Rupicola and F2F,

Cogent is complete, but it is alsomuchmore restrictive: unlikeRupicola, it does not support

arbitrary user-supplied extensions, nor custom translation of specific high-level patterns:

all optimizations must be expressed in the source program, not as transformations to be

applied as part of the source-to-target translation process.

7.2 Other related work

7.2.1 Coq extraction

Coq’s traditional extractionmechanism [41, 42] is not machine-verified, but it is proven on

paper [28], and it supports a form of (unsound) extension by remapping constructors and

functions to arbitrary OCaml expressions, a feature very commonly used in large extracted

Coq developments. With sufficiently arcane combinations of extraction commands, it

is often possible to improve performance significantly, at some risk to soundness. More

principled are approaches based on reification: with a sufficiently restricted subset of

Gallina, it is possible to reify terms into a deeply embedded AST using Ltac’s reflection and

certify correctness of that translation by interpreting deeply embedded results back into
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Gallina [34, 67]. This approach works best when the input language is restricted in a way

that makes the interpretation function easy to write.

The CertiCoq project [1] supports verified compilation from Coq to assembly: it starts by

reifying all of Coq into a deeply embedded AST type (this step is not proof-producing) and

then proceeds as a traditional verified compiler. Unlike in Rupicola, the extraction process

is not extensible, which forces users to pay the price of inefficiencies at the Gallina level —

but in exchange it supports all of Coq instead of small, custom subsets of it.

7.2.2 Verified compilation

More generally, the last few years have seen an explosion of work on the topic of com-

piler verification,most notably with CakeML [22] and CompCert [27]. F2F depended on a

verified compiler called Cito [64]; Rupicola uses Bedrock2 [14].

7.2.3 Translation validation

Complete verification of a compiler can be onerous, and verifying that the compiler pro-

duces correct outputs on all inputs is often qualitatively more complex that establishing

that property for any given input/output pair. As a result, many verified systems employ

translation validation instead of verification: a (trustworthy, ideally verified) checker is used

to confirm, for each run of the compiler, that the outputs are correct. The problem is

undecidable for most input and output languages, so a variety of heuristics coexist in

the literature [49, 37, 61, 62, 60, 20, 65], some quite close to the relational extraction style

that I advocate [16]. Often, the unverified compiler produces additional information (“wit-

nesses”) besides the output program, and that information is used to facilitate the work of

the checker. It would not be unreasonable to classify Rupicola as a translation-validation

system, since it uses unverified Ltac scripts to generate output programs along with “wit-

nesses” of correctness in the form of Coq proof terms. That proof term is then validated by

Coq’s kernel before being accepted, but this “verification” step is trivial, in the sense that it

can only fail in the presence of bugs in the implementation of the Ltac scripting language

and its primitive tactics (and not because of bugs in compilers built with Rupicola, since

these bugs manifest as compilation stopping early, in a partially compiled state).

There is an additional sense in which Rupicola is a translation-validation system, how-

ever: at its core, Rupicola is really a strongest postcondition (SP) calculator for Bedrock2
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code, except the code that it evaluates is constructed piecemeal, based on the shape of a

Gallina value (Box 5). Since evaluation in Gallina (unfolding consecutive let bindings) and

partial evaluation in Bedrock2 (SP computation) proceed in lockstep as the Bedrock2 code

is being derived, all that typically remains to be done at the end of a Rupicola compila-

tion run is to unify the result of symbolic evaluation with the expected postcondition—

the “translation-validation” step. This step is simple because each individual compilation

lemmamaintains the connection between Bedrock2 and Gallina.

7.2.4 Automatic generation of functional models (importing code into Coq)

The typical way to run code written in an interactive theorem prover like Coq [58] or in

a verification-aware language like Dafny [25] is to use program extraction to generate

executable code. This may be undesirable when precise control over the final software

artifact is needed, e.g. for performance or ease-of-integration reasons (for example, Dafny

supports code generation in Go, but the result is neither fully idiomatic nor customiz-

able). In these cases, an alternative to extraction (which generates executable code from

functional models) is to generate functional models from executable code, i.e. to take

a handwritten program and automatically translate it into an equivalent model in Coq,

Dafny, or some other tool. This is how hs-to-coq [55], CFML [8], or Goose [6] operate: they

take code in Haskell, OCaml, and Go respectively and translate it into a Gallina model that

can be reasoned about using Coq.

7.2.5 Optimizing compilation of functional programs

Finally, there is of course a long history of developing optimizations for functional lan-

guages. Recent development of note are the development of the FLambda backend for

the OCaml compiler, which significantly reduces boxing [7]; the introduction of a clever

analysis in the Lean compiler to automatically reuse space (introducing a form of trans-

parent mutation), leveraging reference counts to determine when it is safe to overwrite a

value [53]; andmultiple optimizations for CertiCoq [29, 39].
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7.2.6 Extensible compilers, optimization DSLs, and program synthesis

Stepping further, Rupicola’s design shares a lot with work on extensible compilation and

domain-specific languages for optimization [40, 59, 57, 26] andmore generally with work

on automated program derivation and program synthesis, all the way back to deductive

program synthesis [31].
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8 Conclusion

This thesis introduces the unifying framework of relational compilation and presented Rupi-

cola, a relational-compilation toolkit that leverages modular compiler extensions to derive

high-performance, verified low-level programs automatically from functional sources.

Rupicola is unique in its combination of extensibility, foundational proofs, and perfor-

mance. We are in the process of extending it to support further application domains, and

we are looking into integrating its verified outputs into existing widely used libraries. I

hope that, in the long run, the techniques presented in this thesis will provide a solid

foundation for systems verified from end to end and worthy of trust.
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