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Abstract

A recurring problem in cryptography engineering is the
potential for secret data to be leaked through aspects of
software and hardware that are orthogonal to functional
correctness. In particular, much effort is put into writing
cryptography code whose timing behavior — how many CPU
clock cycles it takes to complete a given cryptographic
operation — is independent of any secret inputs to that
operation. This is a difficult problem because it depends not
only on the code itself, but also on various optimizations
such as branch prediction and memory caching
implemented by the underlying hardware the program runs
on. We make use of Kami, a domain-specific language for
describing and formally verifying hardware modules, to
build a system for constructing machine-checked proofs
that a given piece of code running on a given RISC-V CPU
design will not leak secret inputs through timing behavior.
Our system allows software and hardware to be analyzed
and verified independently, and we prove that any
combination of software and hardware that meet our
validation criteria will be safe from timing-based side
channels. We demonstrate an example of validating a real
cryptographic program and a concrete RISC-V CPU using our
system, illustrating the applicability of our tools and laying
the groundwork for validating more complex programs and
CPUs.
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Chapter 1

Introduction

1.1 Formal Verification

When one is developing software, it is important to ensure
that the software is actually correct — that is, that for all
possible inputs it may receive, it functions in accordance
with a given specification of its desired behavior. Developers
often attempt to check correctness through manual code
review, hand-written test cases, or automatically generated
tests. However, these methods do not comprehensively
guarantee correctness and are prone to oversights. A code
review is only as reliable as the person doing the reviewing,
and hand-written or automatically generated test cases
merely show that code behaves correctly on a hopefully
representative sample of possible inputs.

In order to provide stronger assurances of correctness,
much work is being done today on formally verifying the
correctness of software. In formal verification, a
programmer constructs mathematical proofs that their code
obeys a desired specification, guaranteeing that the code is
free from bugs and always produces correct results. Rather
than writing these proofs with pencil and paper and
checking manually that the proofs are logically sound,
formal verification uses machine-checked proofs written in
and validated by a computer proof assistant such as Coq,
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Isabelle, or Agda. Thus, as long as the proof assistant itself
is correct, the system of formal logic it implements is
consistent, and specifications are expressed properly within
the proof assistant, any code that has been proved to obey a
specification is guaranteed to satisfy that specification in all
cases. Formal verification is already being used to verify
code with real-world applications, from file systems1 to
operating-system kernels2 to C compilers3.

1.2 Side Channels

Unfortunately, even writing proper specifications for code is
deceptively complex. There are many properties that a
program needs to satisfy to be safe for actual production
use, and a developer can easily overlook important
requirements. Sometimes, a specification may fail to
address important edge cases, allowing programs to behave
in unexpected ways. Specifications may also fail by relying
on faulty abstractions and making incorrect assumptions
about how programs interact with their environments. This
problem of faulty abstractions is quite common with regard
to physical hardware; a specification may attempt to enforce
functional correctness by fully specifying the relationship
between inputs and outputs of a program, but even if a
program is functionally correct, it may not be safe to run on
an actual computer.
In particular, many implementations of cryptographic

algorithms have been found to be vulnerable to
“side-channel attacks,” which exploit properties of computer
hardware to leak secret data in ways that aren’t accounted
for at the level of software. Side-channel attacks may rely
on analysis of complex physical properties such as power
consumption4, electromagnetic emissions5, or even sounds
produced by computers running cryptography code6. While
programmers tend to model computers as abstract systems
that execute logical rules to transition between states, only
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interacting with the outside world through predefined
channels, real hardware made of actual electrical
components can have much more complex behaviors that
leak information in unforeseen ways.
In this project, we will not concern ourselves with side

channels based on physical properties of hardware, as these
are difficult to formally reason about without accurate
formal models of the relevant physical systems. Instead, we
will focus on timing-based side channels and cache-based
side channels.
Timing-based side channels leak secrets through the

number of CPU clock cycles a program takes to execute,
which may vary depending on secret inputs7. For example,
consider a modular exponentiation algorithm based on
repeated squaring. As the algorithm goes through each bit
of the exponent, if it only performs a multiplication by the
base when the current bit of the exponent is 1, then the
presence or absence of this multiplication instruction may
affect the number of CPU clock cycles the algorithm takes,
thus leaking the value of the exponent.
Related to timing-based side channels are cache-based

side channels, which leak secrets through the pattern of a
program’s memory accesses8. When programs access the
computer’s memory, the segments of memory they access
are stored in a cache which operates more quickly than
regular memory, allowing for faster repeated lookups.
However, when two processes running on the same
computer share a cache, some of one process’ cached data
may be evicted when the other process loads data into the
cache. This eviction can then be observed by measuring how
much time it takes to read the same memory again, as the
read will be faster if the data is still in the cache. Thus, one
program can observe which memory addresses another
program accesses, by observing which parts of the cache are
evicted at what times. This pattern of memory accesses may
depend on the values of cryptographic secrets, allowing a
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malicious program to steal secrets from programs running
on the same computer.

1.3 Goals
Developers of cryptography software use various techniques
to prevent timing-based side channels and cache-based
side channels. For example, to avoid leaking information
through delays in a CPU’s pipeline caused by
branch-prediction misses, it is considered good practice to
avoid branching on secret data. To avoid leaking
information through memory accesses, a program may
deliberately re-read an entire region of memory whenever it
needs to look up a single address in that region. However, it
is important that we be able to verify that these techniques
are being used correctly and comprehensively, fully
preventing any information leakage through timing behavior
or memory-access patterns.
Unlike side channels involving physical properties of

hardware, timing-based side channels and cache-based side
channels are relatively amenable to formal reasoning, as
they only depend on the logical behavior of the CPU and
memory. This is a much simpler and more discrete system
that is easier to model precisely. Thus, by proving theorems
about the scheduling of a program’s instructions by the CPU
and the pattern of the program’s memory accesses, one can
formally prove that the program is safe from timing-based
and cache-based side channels.
Our goal, then, is to create a framework for formally

proving that code and CPU designs are safe from timing and
cache side channels, and to use this framework to construct
safety proofs for realistic example systems. We would like
this framework to apply to software and hardware in an
independent fashion, so that introducing a new
implementation of a CPU architecture does not necessitate
re-verifying already-verified code, and vice versa.
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Chapter 2

Kami

Reasoning in this way about how code runs on real hardware
requires formal models of CPUs and memory. Fortunately,
such models already exist: the Kami project, created by the
Programming Languages and Verification research group at
CSAIL, provides a framework for designing and verifying
hardware circuits within the Coq computer proof assistant1.

2.1 Motivation

The goal of Kami is to allow reasoning about the behavior of
hardware at a higher level of abstraction than the level of
circuits and gates, and facilitate a style of verification
similar to what is commonly done for verifying software. The
desired specification for a hardware module can be written
as a functional program within the proof assistant, and a
more concrete implementation can be proved equivalent to
the specification. The verified module can then be extracted
into a format suitable for fabrication.

2.2 Structure and Semantics

Kami provides a domain-specific language within the Coq
proof assistant for describing hardware as a collection of
modules. Each module consists of a set of registers which
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store data; rules which may fire if specific guard conditions
are satisfied; and methods which may be called by that
module or other modules. The syntax and semantics of
Kami closely follow that of the Bluespec hardware design
language2; Kami modules can be extracted into Bluespec
source code and compiled with the Bluespec compiler,
which produces a low-level description of a physical circuit
in a register-transfer language (RTL). This physical circuit
implements the logic of the modules’ rules and methods,
and decides which rules fire on which clock cycles based on
the guard conditions governing when each rule may fire.
This circuit may then be simulated on an FPGA or laid out
with actual physical components.

A key feature of Kami is that it allows modules to be
verified against specifications, allowing similar sorts of
formal correctness proofs for hardware as for software.
These specifications take the form of special Kami modules
whose rules make use of the full expressive power of the
Gallina functional language used within Coq, rather than the
much simpler language that ordinary Kami modules are
constrained to. Such modules cannot be extracted to
Bluespec code but can provide a clear and concise
description of a module’s desired functionality, and an
extractable module can be proved to only behave in ways
the specification allows.

Furthermore, in a hardware system composed of multiple
interconnected modules, Kami allows for easy replacement
of one module with little added verification burden. As long
as the new submodule has been proved to behave only in
ways the old module behaved, Kami provides a theorem
stating that the entire new system of modules behaves only
in ways the old system behaved. This modularity allows
developers to redesign complex systems on a
module-by-module basis without needing to re-verify the
entire system each time a single module is replaced.
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Example

To illustrate how hardware modules are represented in
Kami, figure 2.1 shows an example Kami module
implementing a producer-consumer pattern.
The module consists of three submodules, producer,

consumer, and queue, which are concatenated to form the
complete prodQCons module.
producer contains one register holding a word of size

cSz bits, and one rule produce which reads the value from
the register, calls the enq method with that value as an
argument, and writes the incremented value back to the
register. Note that producer is parameterized over the
value of cSz; for any value n, producer n will be a module
which operates on n-bit words.
consumer contains only a single rule consume, which

calls the deq method and then calls output with the value
returned by deq.
queue contains three registers: elts, which holds an

array of length 2qSz containing elements of type dataType;
and head and tail, which hold qSz+ 1-bit words. queue
also has methods enq and deq, which use head and tail
as indices into queue and implement a circular queue.
Because producer calls a method named enq, and

queue defines a method named enq, when these two
modules are concatenated together, a firing of rule produce
will result in the operations defined in enq being performed
in the concatenated module. (To be well-formed, a module
must not define multiple methods with the same name.) In
the concatenated module prodQCons, the only method that
is called but not defined is output; therefore, calls to
output will be the only externally visible behavior of the
module under the Kami semantics.
Note also that the enq method asserts that the circular

queue is not full, and the deq method asserts that the
queue is not empty. Under the Kami semantics, these
asserts provide guard conditions which must be satisfied in

13



order for the method to be called. Therefore, if the guard
condition of enq is not met, a rule which calls enq cannot
fire.
To summarize, the behavior of prodQCons is as follows:

On every clock cycle, rule produce may fire if the queue is
not full, and rule consume may fire if the queue is not
empty. The Kami semantics place no constraints on whether
these rules will fire together, separately, in any given order,
or at all. All that is required is that any simultaneous
execution of rules be consistent with some serial execution.

14



Definition producer cSz := MODULE {
Register ”counterReg” : Bit cSz <- Default
with Rule ”produce” :=
Read val <- ”counterReg”;
Call ”enq”(#val);
Write ”counterReg” <- #val + $1;
Retv

}.
Definition consumer cSz := MODULE {

Rule ”consume” :=
Call val: Bit cSz <- ”deq”();
Call ”output”(#val);
Retv

}.
Definition queue dataType qSz := MODULE {
Register ”elts” : Vector dataType qSz <- Default
with Register ”head”: Bit (qSz+1) <- Default
with Register ”tail”: Bit (qSz+1) <- Default
with Method ”enq”(d : dataType) : Unit :=
Read elts <- ”elts”;
Read head <- ”head”;
Read tail <- ”tail”;
Assert (#tail + $(1<<qSz) != #head);
Write ”elts” <- #elts@[#head <- #d];
Write ”head” <- #head + $1;
Retv

with Method ”deq”() : dType :=
Read elts <- ”elts”;
Read head <- ”head”;
Read tail <- ”tail”;
Assert (#tail != #head);
Write ”tail” <- #tail + $1;
Return #elts@[#tail]

}.
Definition prodQCons cSz qSz :=
producer cSz + queue (Bit cSz) qSz + consumer cSz.

Figure 2.1: Example producer-
consumer module in Kami,
taken from Joonwon Choi, Mu-
ralidaran Vijayaraghavan, Ben-
jamin Sherman, Adam Chli-
pala, and Arvind. “Kami: A Plat-
form for High-Level Parametric
Hardware Specification and Its
Modular Verification”. In: Pro-
ceedings of the 22nd ACM SIG-
PLAN International Conference
on Functional Programming
(ICFP’17). Sept. 2017
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2.3 CPU Designs in Kami
To demonstrate the applicability of Kami for real-world
hardware design, and to illustrate how complex hardware
modules are verified in Kami, several implementations of
the RISC-V CPU architecture3 have been designed and
verified in Kami as case studies. The simplest of these is an
unpipelined CPU where each instruction is completed in a
single cycle, and memory requests receive instant
responses. There are also more complex RISC-V
implementations with three-stage and four-stage pipelines,
which have been proved to behave consistently with the
unpipelined version. Our project makes heavy use of these
Kami modules and is focused on the RISC-V ISA and RISC-V
CPU implementations.
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Chapter 3

Reasoning About Timing
Behavior in Kami

The relatively high level at which the Kami language
describes hardware, while useful for simplifying the work of
hardware design, poses significant challenges to this
project. In particular, reasoning about the timing behavior
of code running on a Kami CPU is difficult, because a Kami
module has no well-defined timing behavior in and of itself.
As described above, a Kami module simply provides a set of
rules, which include guard conditions governing when the
rules may fire. The actual timing of rule firings is determined
at the RTL level by the scheduler circuit produced by the
Bluespec compiler, which has not yet been formalized at the
time of this writing.

3.1 Proof Structure

To work around this difficulty, and also to maximize the
usefulness of the security proofs we create, we establish a
clear set of boundaries in our reasoning between machine
code, RISC-V CPU implementations, and Bluespec compiler
implementations. In particular, we define a condition that
machine code should be expected to satisfy, a condition
that Kami RISC-V processor implementations should be

17



expected to satisfy, a condition that Kami memory
implementations should be expected to satisfy, and a
condition that Bluespec compilers should be expected to
satisfy. This allows reasoning about the system of code, CPU,
memory, and Bluespec compiler in a modular fashion,
verifying each component independently of the others. We
then prove that if each component satisfies its
requirements, the given machine code running on the given
CPU+memory module compiled with the given compiler will
not leak secret data through timing behavior.

For the sake of simplicity, our model systems read in all
secret data through a special FROMHOST CPU instruction,
which receives a word of data from some external source
and writes it to a register. Thus, the goal is that the timing
behavior of the full processor+memory system should be
completely independent of the values returned by
FROMHOST calls. There is an analogous TOHOST method
which sends data back to the external source; this is the
only channel by which we will allow secret data to be sent.

Our ultimate goal is to prove that the externally visible
timing behavior of a compiled RTL hardware module is
independent of values received through FROMHOST calls. We
express this proposition in the following way: under the
semantics of the register-transfer language, an RTL module
can be said to produce a trace of operations it performs —
updating registers, sending signals to external modules, and
so forth. At the RTL level, this trace is fully determined by
the initial register contents and the values received from
external method calls. We provide a censorship function,
which takes a trace and hides various parts of the trace that
would not be observable externally. Our safety condition,
then, is that given any trace which receives a given sequence
of values in FROMHOST calls, we can choose another
arbitrary sequence of FROMHOST values, and find a second
trace which has the same initial register values and receives
our chosen sequence of FROMHOST values, such that the

18



censored first trace is identical to the censored second
trace. Thus, the externally visible parts of the trace do not
depend on the FROMHOST values, since changing the
FROMHOST values yields a trace which is identical to the
original under censorship.
The theorems we prove about machine code, and about

CPU implementations, follow the same pattern of trace
censorship. Each layer has its own type of trace, its own
semantics, and its own censorship function. The exact
details of what is censored, and what is not, at each level
are chosen to facilitate the proofs at adjacent levels. To
prove that a Kami CPU implementation is safe within our
framework, we prove that given any code which satisfies the
code-level censorship theorem, our chosen CPU running
that code satisfies the CPU-level censorship theorem. Once
the RTL layer is formally specified in future work, we will
prove that given any Kami CPU which satisfies the CPU-level
censorship theorem, the compiled RTL version of that Kami
CPU will satisfy the RTL-level censorship theorem. Thus, we
can reason about code, Kami CPU implementations, and
Kami compilers independently.
Essentially, our proofs for each level have the following

structure:

Instructions ∈ Set
State ∈ Set

TraceElement ∈ Set
hasTrace ∈ Instructions→ State→ list(TraceElement) → Prop

censorTrace ∈ list(TraceElement) → list(TraceElement)
extractFhTrace ∈ list(TraceElement) → list(word32)

We have instructions and state (the distinction is fairly
arbitrary); a datatype to represent execution traces; a
predicate for when a given instruction/state pair produces a
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given trace; and functions to censor a trace and to extract a
sequence of FROMHOST values from a trace.
Our safety property that an instruction/state pair needs

to satisfy is then

hiding(i, s) :=
∀t f,

hasTrace(i, s, t) →
extractFhTrace(t) = f →

∀f ′,

length(f) = length(f ′) →

∃t′,

hasTrace(i, s, t′) ∧
censorTrace(t) = censorTrace(t′) ∧
extractFhTrace(t′) = f ′

3.2 The Machine Code Layer

We begin by defining a notion of a behavior trace for a piece
of RISC-V machine code, considered independently of any
specific hardware. Our “instructions” are the contents of a
program memory, an array of RISC-V machine instructions.
Our “state” consists of a register file, a program counter
indicating our current location in program memory, and a
data memory. We define a trace as a list of elements of a
TraceEvent datatype, representing events that can happen
on a given clock cycle:

c ∈ ProgramCounter
a ∈ Address
v ∈ Data
b ∈ Bool

20



TraceEvent := Rd(c, a, v) | RdZ(c, a) | Wr(c, a, v)
| FromHost(c, v) | ToHost(c, v) | Branch(c, b)
| Nm(c) | Nop(c)

• Rd (pc : address) (laddr : address) (val
: data) (At program location pc, value val was read
from memory address laddr.)

• RdZ (pc : address) (laddr : address) (A
read was made from memory address laddr to
register 0. The RISC-V spec designates register 0 as
special: reads from register 0 always return 0 and
writes are silently discarded. Since the value loaded
from memory is never used, some CPU designs may
not actually perform the memory access, so this case
must be treated as different from the general case of
reading a value from memory, and the actual value at
the memory address is completely irrelevant.)

• Wr (pc : address) (saddr : address) (val
: data) (Value val was written to memory address
saddr.)

• FromHost (pc : address) (val : data) (Value
val was received via a FROMHOST call.)

• ToHost (pc : address) (val : data) (Value
val was sent via a TOHOST call.)

• Branch (pc : address) (taken : bool)
(There was a conditional branch at program location
pc. The value of taken indicated whether the branch
was taken or not.)

• Nm (pc : address) (A “normal” instruction with no
externally visible effects; for instance, performing an
arithmetic operation on register contents.)

• Nop (pc : address) (A cycle where no instruction
is executed. This does not correspond to anything in
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the RISC-V semantics; it exists to make it easier to draw
a correspondence later on between machine-code
traces and Kami traces, as the Kami semantics allow
dead cycles where no rule fires.)

We then define an inductive predicate for what it means
for a particular program memory, starting from a particular
register file, program counter, and data memory, to have a
particular trace:

r ∈ Regfile p ∈ ProgMem
c ∈ ProgramCounter m ∈ Memory

hasTrace(r, p, c,m, [])

This rule means that after we’ve built a trace up to some
point, we can always end the trace at that point. This is
important because our current semantics for RISC-V have no
halt condition, other than encountering a malformed
instruction that doesn’t have any opcode we know how to
handle. Thus, we conceptualize a program as executing
forever, and any finite prefix of its execution trace is a valid
trace produced by the program.

hasTrace(r, p, c,m, t)

hasTrace(r, p, c,m,Nop(p) :: t)

hasTrace(r[d → m[a]], p, c+ 4,m, t) OpType(p[c]) = opLd
a = LdAddr(p[c], r) d = Dest(p[c]) d ̸= 0

hasTrace(r, p, c,m,Rd(p, a,m[a]) :: t)

hasTrace(r, p, c+ 4,m, t) OpType(p[c]) = opLd
a = LdAddr(p[c], r) Dest(p[c]) = 0

hasTrace(r, p, c,m,RdZ(p, a) :: t)
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hasTrace(r, p, c+ 4,m[a → r[s]], t) OpType(p[c]) = opSt
a = StAddr(p[c], r) s = Src(p[c])

hasTrace(r, p, c,m,Wr(p, a, r[s]) :: t)

hasTrace(r[d → v], p, c+ 4,m, t)

OpType(p[c]) = opFh d = Dest(p[c]) v ∈ Data
hasTrace(r, p, c,m,FromHost(p, v) :: t)

hasTrace(r, p, c+ 4,m, t) OpType(p[c]) = opTh s = Src(p[c])
hasTrace(r, p, c,m,ToHost(p, r[s]) :: t)

hasTrace(r, p,NextPc(c, p[c], r),m, t)

Opcode(p[c]) = opBRANCH
hasTrace(r, p, c,m,Branch(p,BranchTaken(p[c], r)) :: t)

hasTrace(r[d → ExecVal(p[c], r)], p,NextPc(c, p[c], r),m, t)

OpType(p[c]) = opNm Opcode(p[c]) ̸= opBRANCH
d = Dest(p[c])

hasTrace(r, p, c,m,Nm(p) :: t)

Note that under this definition, the trace produced by a
given program is fully determined (aside from
inserting/removing Nop events at any point) by the starting
conditions and the values received via FromHost events.
Following the structure laid out in Section 3.1, we then

need to define a censorship function and a function to
extract FROMHOST values. To censor a trace element, we
simply set to zero any values that are not visible to
adversaries and might reasonably hold secret data — i.e.,
the values (but not the addresses) in Rd and Wr events, and
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the values in FromHost and ToHost events. (We assume
that FROMHOST and TOHOST are our communication channel
with a trusted entity which supplies us with secrets and
receives the results of our computations on those secrets.)
Our extractFhTrace function simply compiles a list of the
data values from all FromHost events in a trace.
To illustrate our definitions of traces and censorship,

consider the following example code:

x = fromHost();
y = *x;
z = fromHost();
y += z;
toHost(y);

If this code were compiled and loaded into program
memory, it might look as follows:

0x1234 FROMHOST x1
0x1238 LW x1 x2 $0
0x123c FROMHOST x3
0x1240 ADD x2 x3 x2
0x1244 TOHOST x2

Now, under the semantics we’ve defined, consider
possible traces that might be produced by this program,
starting at instruction address 0x1234 with a zeroed
register-file and the following memory contents:

0x0badcafe 0x11111111
...
0xdeadbeef 0x20202020

Potential traces include

• []

• [Nop(0x1234), Nop(0x1234),
FromHost(0x1234, 0xfeedbacc), Nop(0x1238)]
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• [FromHost(0x1234, 0x0badcafe),
Rd(0x1238, 0x0badcafe, 0x11111111),
FromHost(0x123c, 0x12345678), Nm(0x1240),
ToHost(0x1244, 0x23456789)]

• [FromHost(0x1234, 0xdeadbeef),
Rd(0x1238, 0xdeadbeef, 0x20202020),
FromHost(0x123c, 0x04040404), Nm(0x1240),
ToHost(0x1244, 0x24242424)]

The censored versions of these traces are as follows:

• []

• [Nop(0x1234), Nop(0x1234),
FromHost(0x1234, 0x0), Nop(0x1238)]

• [FromHost(0x1234, 0x0),
Rd(0x1238, 0x0badcafe, 0x0),
FromHost(0x123c, 0x0), Nm(0x1240),
ToHost(0x1244, 0x0)]

• [FromHost(0x1234, 0x0),
Rd(0x1238, 0xdeadbeef, 0x0),
FromHost(0x123c, 0x0), Nm(0x1240),
ToHost(0x1244, 0x0)]

As discussed above, our safety condition for machine
code is as follows: given any trace such as the ones above,
and any sequence of FROMHOST values, there must exist
another trace produced from the same initial state, which
receives our chosen FROMHOST values, and whose trace is
equal to the original trace when both are censored.
Consider the trace

[FromHost(0x1234, 0x0badcafe),
Rd(0x1238, 0x0badcafe, 0x11111111),
FromHost(0x123c, 0x12345678),
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Nm(0x1240),
ToHost(0x1244, 0x23456789)]

The sequence of FROMHOST values it receives is

[0x0badcafe,0x012345678]

If we now consider the set of possible traces which
receive values

[0xdeadbeef,0x04040404]

instead, we see that traces produced with these values must
resemble the fourth trace presented above (aside from
truncation of the trace and insertion of Nops). As we saw,
the censored form of this trace is not equal to the censored
form of our original trace; the memory addresses in the Rd
events are not the same. Thus, this program does not satisfy
our safety condition.

Taint Tracking

To simplify the process of proving that machine code
satisfies our safety condition, we also provide a simple
taint-analysis tool, with proofs that passing this analysis
implies the safety condition holds.
The taint-analysis function takes in a program memory, an

initial register file, an initial program-counter value, and
initial memory contents. It also takes a goal
program-counter value, goal register file, and goal memory
contents. It then simulates an execution of the program,
using the same semantics as above, and determines
whether the program reaches the goal state within some
bounded number of execution steps.
However, the register file and memory contents provided

to the taint tracker hold values of type option data rather
than data. A None value indicates that the contents of this
register or memory address have been tainted by
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dependencies on secret data. In the simulated execution,
calls to FROMHOST always return None. None values are
read, written, and copied like normal data; if a computation
is performed that uses a None value, the result is also None.
If a None value is ever used as the address of a memory
access, used to determine a branch condition, or used to
calculate the target of a jump, the taint-analysis function
stops its execution and returns false.
In summary, this taint-analysis function decides whether

a program goes from a start state to a goal state without
ever using data derived from FROMHOST calls in forbidden
ways. We then prove the following theorems:

• If the taint-analysis function returns true for some
initial state and some goal state, and the goal state
satisfies our safety property, then the initial state
satisfies the property as well.

• If the taint-analysis function returns true when the
initial state and goal state are the same, then the state
satisfies the safety property.

With these two theorems, we can now prove any program
safe as follows: We consider the program as an initial setup
routine followed by an infinite loop. We run our
taint-analysis function to check the program from the initial
state to the start of the loop, and run it again to check the
program from the start of the loop to the start of the loop. If
both of these checks return true, we have a proof that the
program satisfies our safety property starting from the given
initial state.

Implementation Effort

Most of the effort in implementing the machine-code
definitions and proofs was in defining the taint-analysis
function and in showing that the semantics of the
taint-analysis function matched the semantics of hasTrace.
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The hasTrace semantics calculates opcodes, branches, and
instruction results using the same functions that the
unpipelined RISC-V processor uses. However, because the
taint-analysis function operates on a different datatype,
some of these functions needed to be reimplemented.
Furthermore, we discovered that several of the low-level

bit-manipulation functions used by Kami were defined using
opaque proofs that various bit-lengths were equal, in order
for uses of our dependently typed variable-length word
datatype to typecheck. These opaque equality proofs made
it drastically slower to perform actual computations using
these operations, but by rewriting the relevant functions
using transparent lemmas, we were able to remove the
slowdowns.
Having completed the one-time effort of proving the

taint-analysis function correct, proving that any specific
piece of code satisfies the machine-code-safety condition is
now substantially easier. A proof that the code satisfies the
safety condition can be reduced to proving that the
taint-analysis function returns true on the code’s initial
setup routine and on the code’s infinite loop, and these can
be proved directly by evaluating the function.

3.3 The Hardware Layer

At the level of Kami, our “instructions” as considered in
Section 3.1 are now the rules and methods of our module,
and our “state” is module register contents, which include
the register file, program memory, program counter, and
data memory from the previous section. When proving the
processor safety theorems, we assume that the code
running on the processor satisfies the machine-code safety
theorems.
We define the behavior trace of a Kami module according

to the Kami semantics. A Kami trace is a list of labels; each
label contains the name of a rule that fired on that clock
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cycle (if any rule did), a list of all method calls to external
modules, and a list of all method calls from external
modules.
For example, a trace of just the producer module from

figure 2.1 might look as follows:

[(”produce”, [”enq” → (0, 0)], [])

(”produce”, [”enq” → (1, 0)], [])

(”produce”, [”enq” → (2, 0)], [])]

A trace of the complete prodQCons module might look
like this:

[(”produce”, [], [])

(”produce”, [], [])

(”consume”, [”output” → (0, 0)], [])

(”consume”, [”output” → (1, 0)], [])]

Note that the internal method calls among producer,
consumer, and queue are hidden from the trace of the
concatenated module.
Our highest-level theorems for Kami modules consider a

module that includes both a processor and a memory. For
such a module, we censor its trace by finding any calls to the
external toHost and fromHost methods in the trace and
setting their arguments and return values respectively to 0.
We extract FROMHOST values in the obvious way, by finding
all calls to fromHost and extracting the return values.
To make it easier to prove the safety property for a

combined processor/memory module, we introduce safety
properties for a processor alone and for a memory module
alone, and we prove that when these properties are
satisfied, the concatenated module will satisfy our overall
Kami safety property.
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The Processor

Our processor-only safety property closely resembles the
overall Kami safety property, but with some small changes.
Instead of censoring only calls to fromHost and toHost,
we also censor calls to the methods that read and write data
in the memory module, zeroing the values (but not the
addresses) passed in these calls. This is essentially the
same type of censorship that was used at the machine-code
layer; it was used there precisely so that this processor
property would be provable.
Note that while the overall Kami safety property makes no

assumptions about the details of how the processor and the
memory interact, in order to define this processor
censorship function, we need to know the specific interface
between processor and memory. In the unpipelined RISC-V
processor implemented in Kami, this interface consists of
just a method exec in the memory module, which takes an
address, an operation (read or write), and a value, and
returns a value accordingly. The pipelined processors
implement a more realistic interface where memory
accesses do not yield results instantly; instead, there is one
method to enqueue a memory request and another method
to dequeue a result when the result is ready. The censorship
function must be designed with a specific
processor/memory interface in mind, and a new interface
necessitates new proofs connecting the processor-only and
memory-only safety properties to the overall Kami safety
property.
Our processor-only safety property adds another

requirement: the results of memory accesses as reflected in
the trace must be consistent with some initial memory state.
That is, whenever we read a value from memory, it must
match the last value we wrote. (We consider shared memory
in Section 5.2.) This constraint is necessary for our processor
safety property to be meaningful. Consider the following
program:
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x = fromHost();
y = *(0x10101010);
*(x + y) = 0xdeadbeef;

This program clearly accesses a memory address which
depends on data from FROMHOST and is therefore not
constant-time. However, if our processor safety property
does not require memory accesses to return consistent
values, then consider the following trace:

[(”execFh”, [”fromHost” → (0,0x22222222)], [])
(”execLd”, [”exec” → ((0x10101010,false,0),

0x33333333)], [])
(”execSt”, [”exec” → ((0x55555555,true,0xdeadbeef),

0)], [])]

If we consider possible traces of this program receiving
FROMHOST value 0x5050505050 instead of 0x22222222,
the same initial state can yield the following trace under the
Kami semantics:

[(”execFh”, [”fromHost” → (0,0x50505050)], [])
(”execLd”, [”exec” → ((0x10101010,false,0),

0x05050505)], [])
(”execSt”, [”exec” → ((0x55555555,true,0xdeadbeef),

0)], [])]

Note that the value loaded from memory is also different;
because the memory is an external module, the Kami
semantics place no restrictions on it, so it may return
arbitrary values. This means that both of these traces
censor to

[(”execFh”, [”fromHost” → (0,0)], [])
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(”execLd”, [”exec” → ((0x10101010,false,0),0)], [])
(”execSt”, [”exec” → ((0x55555555,true,0),0)], [])]

Even though the FROMHOST values were different, the
nondeterminism of the Kami semantics allowed us to find a
censorship-equivalent trace. To prevent this, we define our
memory-consistency predicate and modify our processor
safety condition to say that for all consistent traces, and for
all FROMHOST values, there exists another consistent trace
which receives those values and is equivalent to the first
trace under censorship.
There is another subtle detail which must be considered:

the Kami RISC-V processors in general use a single method
for both reads and writes to memory. Thus, this method
includes a parameter for a value to be written, even when
we’re performing a read; and includes a return value for the
result of a read, even when we’re performing a write.
Therefore, it is important for correctness’ sake to enforce
that these spare parameters are not used to leak
information. We do not censor these unused parameters in
our censorship function, forcing them to remain identical no
matter what FROMHOST values we receive. We also prove
that the processor always sets the unused write value to 0.

The Memory

The properties that must be proved for the memory module
are relatively simple. We must show that all interactions
with the memory module do in fact obey the consistency
property the processor relies on, and that the memory sets
the unused return value on writes to 0. We must also show
that the behavior of the memory module does not depend
on what values are written to memory. This is a simple and
obvious-seeming property, but it must be proved rigorously
in order for our reasoning to be sound. One can also
imagine well-intentioned memory designs that violate this
property: for instance, a deduplicating memory module that
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transparently maps blocks of identical data onto a single
location internally. Such a module would then need to
analyze the contents of memory in order to deduplicate
effectively. Note also that what we refer to as “memory”
really means “everything other than our processor running
trusted code”. In real-world instances, the memory module
could include other untrusted processors in a
multiprocessor system; we are then proving that the memory
properly implements access controls and does not give the
other untrusted processors access to our private data.
The proof that memory behavior is independent of values

written follows the same censorship-equivalence pattern as
the other proofs. We define a censorship function that
removes read and write values from memory accesses in the
memory’s behavior trace, and we prove that for any trace,
there exists another trace with write values of our choosing
which is censorship-equivalent to the first trace.

Implementation Effort

In proving the theorems to connect the Kami safety
condition with the processor-only and memory-only safety
conditions for the synchronous memory interface, we
encountered some difficulties in reasoning about the
behavior of our censorship functions. Method calls are
represented in Kami traces in a dependently typed way
which includes both the datatypes of the parameters/return
values and the values themselves. Thus, in order to
selectively modify specific parts of a method’s
parameters/return values, we needed to perform a
case-match on the datatypes of these values. For methods
whose parameters are complicated data structures, this
required very complex match terms which slowed down
proofs. There were also a large number of simple results
about finite maps that needed to be proved manually,
perhaps suggesting the need for a proof tactic that
implements a more comprehensive decision procedure for
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propositions about finite maps.
Figuring out the exact details of what needed to be

censored, and what needed to remain uncensored, was also
surprisingly tricky. In particular, the issues with the unused
parameters in the memory access method were not
immediately obvious and became an obstacle somewhat
late in the proof process, necessitating modifications to
earlier proofs. However, the lessons learned from this case
can be reused for defining censorship functions and writing
proofs for other processor/memory interfaces in future
work.
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Chapter 4

Concrete Case Study

In this section, we discuss a specific machine-code program
and hardware module that we have proved satisfy their
respective safety conditions, giving us an end-to-end proof
that this software running on this processor/memory
module has a Kami behavior pattern which is independent
of secret inputs.

4.1 Machine Code: Salsa20

The program we chose to validate was an implementation by
Andres Erbsen of the Salsa20/20 stream cipher1. Starting
from C source code, we modified the code to use our
FROMHOST/TOHOST interface for input and output; our
modified code is shown in figure 4.1. We then compiled this
code using the RISC-V compiler webapp at
https://cx.rv8.io/, translated the RISC-V assembly into
the format used within Kami, identified a setup routine and
infinite loop, and validated each of these stages with the
taint-analysis function. The result is a proof that this
compiled Salsa20 code satisfies the machine-code-safety
condition; this proof can be composed with our proof
described below for an unpipelined RISC-V processor to
show that the combined software/hardware system is safe
(at least down to the level of Kami semantics, as semantics
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for RTL have not yet been formalized in Coq).

Implementation Effort

While the actual theorem-proving was made fairly easy by
the taint-analysis function, the work required to produce
machine code suitable for Kami was highly nontrivial, due in
part to unfortunate limitations of the current Kami RISC-V
implementations. One source of difficulty, which we were
not previously aware of, was the fact that current Kami
processor implementations have a hard-coded size limit of
256 instructions in their program memory. This number
appears to be relied on by other parts of the codebase, and
changing it might require substantial refactoring. However,
256 instructions is a frustratingly small amount of space in
which to write secure constant-time crypto code. Our first
compiled version, before we noticed the limit, was roughly
350 instructions, but by replacing a frequently-used macro
with a function and by passing the -Os flag to the compiler
to optimize for small program size, we were able to reduce it
to 209 instructions.
Another difficulty arose due to the small number of

instructions that appeared to actually be implemented in
Kami’s version of the RISC-V ISA. In particular, at first glance
the only instructions with immediate variants appeared to
be ADDI and LI, requiring other instructions such as ANDI,
SLLI, and so on to be replaced with an LI followed by a
non-immediate instruction. Eventually, we noticed that
several more instructions had in fact been implemented, but
had not been included in the inductive datatype intended to
simplify writing RISC-V machine code.
We also needed to essentially link our compiled code

ourselves, using a combination of Python scripts and
manual inspection of the code. The compiled assembly code
used labels to refer to jump targets, rather than address
offsets, and included pseudo-instructions such as call and
ret that needed to be replaced by jump instructions. In
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// rotate x to left by n bits, the bits that go over
// the left edge reappear on the right
#define R(x,n) (((x) << (n)) | ((x) >> (32-(n))))

// addition wraps modulo 2^32
// the choice of 7,9,13,18 ”doesn't seem very important” (spec)
static void quarter(uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d) {

*b ^= R(*d+*a, 7);
*c ^= R(*a+*b, 9);
*d ^= R(*b+*c, 13);
*a ^= R(*c+*d, 18);

}

void salsa20_words(uint32_t *out, uint32_t in[16]) {
uint32_t x[4][4];
int i;
for (i=0; i<16; ++i) x[i/4][i%4] = in[i];
for (i=0; i<10; ++i) { // 10 double rounds = 20 rounds

// column round: quarter round on each column; start at ith element and wrap
quarter(&x[0][0], &x[1][0],&x[2][0], &x[3][0]);
quarter(&x[1][1], &x[2][1], &x[3][1], &x[0][1]);
quarter(&x[2][2], &x[3][2], &x[0][2], &x[1][2]);
quarter(&x[3][3], &x[0][3], &x[1][3], &x[2][3]);
// row round: quarter round on each row; start at ith element and wrap around
quarter(&x[0][0], &x[0][1], &x[0][2], &x[0][3]);
quarter(&x[1][1], &x[1][2], &x[1][3], &x[1][0]);
quarter(&x[2][2], &x[2][3], &x[2][0], &x[2][1]);
quarter(&x[3][3], &x[3][0], &x[3][1], &x[3][2]);

}
for (i=0; i<16; ++i) out[i] = x[i/4][i%4] + in[i];

}

// inputting a key, message nonce, keystream index and constants to that transormation
void salsa20_block(uint32_t *out, uint32_t key[8], uint64_t nonce, uint64_t index) {

static const char c[17] = ”expand 32-byte k”; // arbitrary constant
#define LE(p) ( (p)[0] | ((p)[1]<<8) | ((p)[2]<<16) | ((p)[3]<<24) )
uint32_t in[16] = {LE(c), key[0], key[1], key[2],

key[3], LE(c+4), nonce&0xffffffff, nonce>>32,
index&0xffffffff, index>>32, LE(c+8), key[4],
key[5], key[6], key[7], LE(c+12)};

salsa20_words(out, in);
}

// enc/dec: xor a message with transformations of key, a per-message nonce and block index
void salsa20(uint64_t nonce) {

int i, j;
uint32_t msgword;
uint32_t block[16];

uint32_t key[8];
for (i = 0; i < 8; i++) {

key[i] = fromhost();
}

for (i=0; ; i++) {
salsa20_block(block, key, nonce, i);
for (j = 0; j<16; j++) {

msgword = fromhost();
tohost(msgword ^ block[j]);

}
}

}

Figure 4.1: Salsa20/20 imple-
mentation, modified from
https://github.com/
andres-erbsen/salsa20/
blob/master/salsa20.c
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addition, we needed to deduce enough of the calling
conventions used by the compiler in order to figure out what
kinds of values the various registers needed to be initialized
to.
We also discovered some unfortunate interactions

between existing Kami infrastructure and the taint-analysis
function. In particular, the taint-analysis function previously
used the getRs1 and getRs2 functions provided by Kami in
order to figure out the operands of arithmetic operations
and similar instructions. If either operand was tainted, the
result of the operation would be flagged as tainted.
Unfortunately, for immediate instructions with no second
operand, getRs2 still returned an arbitrary value, and if
that register happened to be tainted, the result of the
immediate operation would be incorrectly marked as
tainted. We first attempted to rewrite getRs2 to return 0 for
immediate instructions, as register 0 always holds the value
0 and is never tainted. However, we eventually realized that
the ISA treated JAL and JALR instructions as having a first
register operand, as this register is used to calculate the
new program counter, even though the value stored to the
destination register depends only on the current program
counter and not on any registers. Faced with this, we
rewrote the taint-analysis function to use a function we
wrote ourselves that properly inspects what operands are
actually being used, rather than relying on Kami functions.

4.2 Hardware: Unpipelined RISC-V

To prove that the unpipelined RISC-V processor satisfies the
processor-only safety condition, assuming that the code on
the processor satisfies the machine-code safety condition,
we define a relation between Kami traces of the processor
and machine-code traces as defined by our abstract
semantics. We show that this relation preserves FROMHOST
value extraction (that is, if a code trace and a Kami trace are
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related, their extracted sequences of FROMHOST values are
the same); that for every code trace derived from the code
semantics, there is a related consistent Kami trace derived
from the Kami semantics, and vice versa; and that if two
code traces are censorship-equivalent, their related Kami
traces are also censorship-equivalent. This allows us to lift
the safety property from the machine-code layer to the Kami
layer.

Implementation Effort

Proving theorems about a specific processor involved a large
amount of wrangling with the Kami semantics. In particular,
we needed to write lemmas specialized to the specific
modules we were proving that would allow us to perform
simpler case-analyses on the possible steps a Kami module
could perform under the Kami semantics. For instance, we
showed that the only possible step the unpipelined
processor could perform was to fire a single rule from its set
of rules.
Reasoning about the values of expressions written in

Kami’s domain-specific language was also difficult, as the
function for evaluating Kami expressions could cause
extremely slow proofs if it was not manipulated carefully.
This could be sidestepped to some extent by using the right
sorts of proof tactics, but many of the proofs about the
processor safety condition are still annoyingly slow and
memory-hungry.
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Chapter 5

Conclusion

By building on existing work in Kami and adding a
framework for reasoning about timing behavior of code
running on compiled Kami circuits, we are able to make
powerful new security guarantees about real-world
implementations of cryptographic algorithms. This project
fills an important gap in the field of formally verified
cryptography and hopefully lays groundwork for other
proofs about low-level properties of formally verified
hardware.

5.1 Related Work

Another project that provides formal guarantees of safety
from timing side channels for hardware CPU designs is
SecVerilog1. SecVerilog is based on the Verilog hardware
design language with the addition of security labels; it uses
static type analysis to enforce information-flow constraints
according to a lattice of security levels. SecVerilog
guarantees that no information can flow from a high security
level to a low security level, including timing-based
information flows. The particular property it enforces is
called observational determinism; it states that for any two
executions of a hardware module where all low-security
inputs are identical, the low-security portions of the
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execution traces will be identical. These traces include
clock-cycle counts, thus guaranteeing that even timing
behavior is independent of high-security inputs. (Unlike
Bluespec and Kami, Verilog and SecVerilog describe
hardware at a lower level where it is possible to reason
directly about timing behavior.) Security types of
components in SecVerilog can vary dynamically depending
on data values, with some constraints for ease of type
checking. Existing demonstrations of SecVerilog include a
secure MIPS processor and a simplified prototype of the
ARM TrustZone hardware security architecture2.
While SecVerilog is a powerful tool for designing secure

hardware, it cannot be used for verifying preexisting
hardware designs, or for implementing hardware
architectures that don’t involve security levels. It can only
be meaningfully used to implement architectures with
special instructions for setting the current security level, or
architectures that are partitioned into secure and insecure
regions. This project constructs proofs of security properties
about code running on standard RISC-V processors, which
lack security levels of the sort used by SecVerilog.
Furthermore, it allows this hardware to be described in a
higher-level hardware design language, reducing the burden
on hardware developers.

5.2 Further Work

Pipelined Processors

Currently, the only concrete Kami modules that have been
proved to satisfy the Kami safety condition are the
unpipelined processor with instantaneous memory. We
would like to have safety proofs for the more realistic
pipelined processors that have been implemented in Kami.
The first step is to define processor-only and

memory-only safety conditions for the asynchronous
memory interface used by the pipelined processors, and
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show that these conditions together imply the Kami safety
condition. Much of the proof logic from the synchronous
interface can probably be reused for these proofs.
More challenging will be proving the processor-only

safety condition for pipelined processors. With the
unpipelined processor, it was easy to define a relation where
every step of a Kami trace corresponds to a step in a
machine-code trace. Once instructions take multiple steps
to execute, this becomes more complicated. It may still be
possible to define a relation that can be used in the same
way as the relation for the unpipelined processor, or an
entirely different proof strategy may be needed.

The RTL Layer

For true end-to-end proofs of side-channel safety, we need
to extend our reasoning down to the level of a
register-transfer language, where actual timing behavior can
be analyzed concretely unlike in Kami. Essentially, the goal
is to prove a theorem about the Kami-to-RTL compiler,
stating that for any Kami module which satisfies the Kami
safety condition, the compiler will produce an RTL circuit
which satisfies an RTL safety condition analogous to those
we have already proved. For any trace produced by the RTL
circuit under the RTL semantics, it should be possible to
change the FROMHOST values received and find a
censorship-equivalent trace, for some appropriate definition
of censorship. This depends heavily on formalization of RTL
semantics and a Kami compiler, which have not yet been
accomplished.

Shared Memory

Currently, our proof framework is based on the assumption
that our processor running our trusted code has sole access
to the entire memory, and no other processor can read or
write it. In general, we would like to be able to prove
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theorems about multiprocessor systems where some
memory is private to our trusted processor, and some
memory is shared with other processors. There are several
changes that would need to be made to support reasoning
about such systems. Firstly and most importantly, we would
need to write a new Kami memory module which
implements access controls on memory. The
processor/memory interface would likely also need to be
changed to reflect this new design element. The remaining
changes are relatively simple for the most part. The
censorship functions for machine code and for the
processor-only safety property would need to be changed to
only censor values written to private addresses; values
written to shared addresses would remain uncensored and
thus would be required to be independent of secret data.
Furthermore, the machine-code semantics and the
memory-consistency property would need to be loosened to
allow reads on shared memory addresses to return arbitrary
values, as the contents of these addresses could be
rewritten by other processors in between our writes.

The most interesting changes would be required in the
taint-analysis function for machine code. Currently, the
taint-analysis function is able to neatly sidestep the
nondeterminism present in the machine-code semantics;
the only source of nondeterminism is FROMHOST calls,
whose return values are unspecified, but fortunately these
unspecified values are required to never be relevant to any
decision we make during our simulated execution. No value
derived from a FROMHOST value is allowed to affect control
flow or to determine what memory addresses we access.
Thus, the simulated execution can treat the FROMHOST
values as opaque and proceed in a deterministic fashion. If
values read from shared memory addresses became an
additional source of nondeterminism in the semantics, we
might need to modify the taint-analysis function to allow for
this. However, it seems inadvisable to allow values from
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untrusted sources to affect control flow, so it may be
possible to still consider these values as opaque and
mandate that our branches, jumps, and memory-access
patterns not depend on foreign data.

Other Sources of Secret Data

We model all secret data as being sent into the processor
through FROMHOST instructions, which receive data from
some unspecified external source. In practice, sensitive data
may originate in other places; perhaps there are specific
registers or memory addresses that hold secret data at the
start of execution of some cryptographic routine. It would be
useful to be able to prove safety in this more general case.
At the machine-code level, this is essentially already

accomplished. In order to inductively prove the necessary
theorems about our taint-analysis function, we proved a
connection to a more general safety property which allows
for initial states where tainted secret data already exists in
registers and/or memory. In this general property, we
demand a censor-equivalent trace for all sets of FROMHOST
values, tainted register contents, and tainted memory
contents. A corresponding Kami-level safety property could
presumably be written and proved, but this would likely be
more difficult than the current proofs.
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