
MLVR: Regular Expression-Based Specification for
Verified Model Checking of Hardware

by

Gabriel A. Kammer

SB, Computer Science and Engineering, MIT, 2023

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2024

© 2024 Gabriel A. Kammer. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce, preserve,

distribute and publicly display copies of the thesis, or release the thesis under an
open-access license.

Authored by: Gabriel A. Kammer
Department of Electrical Engineering and Computer Science
January 19, 2024

Certified by: Adam Chlipala
Professor of Computer Science, Thesis Supervisor

Accepted by: Katrina LaCurts
Chair, Master of Engineering Thesis Committee



2



MLVR: Regular Expression-Based Specification for Verified Model
Checking of Hardware

by

Gabriel A. Kammer

Submitted to the Department of Electrical Engineering and Computer Science
on January 19, 2024 in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

ABSTRACT

Model checking is an approach to verification of finite-state systems which relies on iterating
through all possible states and checking whether some condition holds at each state. One
challenge with this approach is that in the majority of real-world systems, the number of
states to traverse is too large to feasibly fully explore. In this thesis, we present MLVR
(Multi-Layer Variable Regexp), a specification language designed for model checking against
hardware system implementations. The syntax of MLVR is based on regular expressions,
where we specify what traces of inputs and outputs from the system are acceptable. We
offer support for variables to be remembered and later recalled, and we allow for treating the
values of variables symbolically during model checking. This allows the state space of systems
primarily dealing with variable input/output (for example, hardware buses) to be reduced
enough that model checking is feasible for formal verification of the system. We provide a
simplified language, SLVR (Single-Layer Variable Regexp), with some of the core features
of MLVR and formal proofs of correctness for model checking with SLVR, implemented in
the Coq proof assistant. The style and structure of the proofs about SLVR provide insight
into how proofs of correctness of MLVR might be written, and they demonstrate solutions
to some of the technical challenges raised in proving correctness of MLVR.
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Chapter 1

Introduction

When designing hardware systems, it is common practice to write a collection of tests to
ensure that the system behaves as the designer intended. However, this approach typically
makes no formal guarantees about the correctness of the system; it merely increases one’s
confidence of the correctness of the design. In certain high-risk systems, such an informal
assurance is not acceptable, and formal methods instead are preferred.

One of the most straightforward techniques for proving correctness of a system is model
checking. This approach involves iterating through every possible state that a finite-state
system could be in, inspecting that some correctness condition holds in each state. For
small-state-space systems, model checking is typically directly feasible. Unfortunately, as
soon as a system incorporates variables or memory storage, the state space general becomes
too large to explore via naïve model checking: one would need to check that the correctness
condition holds for every possible value of a variable, which would grow exponentially in its
length. In order to perform model checking efficiently on such larger-state-space systems, it
is necessary to explore entire sets of states at a time, rather than one at a time.[1]

This thesis explores the possibility of using symbolic variable values in order to make
model checking possible on systems whose large state spaces are primarily a result of stored
variable values. We first construct a regular expression-based simplified language, SLR, for
writing specifications without allowing for variable inputs and outputs, to which we match
traces of inputs and/or outputs. We use SLR to model-check a simple example problem.
This demonstrates the viability of using regular expressions to describe systems.

Next, we extend this language into SLVR, a language which allows for inputs and outputs
of variables of a fixed length. We define two different behaviors of this language: First, we
define its behaviour given inputs of concrete Boolean values. Second, we define its behaviour
given inputs that treat variables symbolically, which is to say that we no longer concern
ourselves with the actual values of inputted variables, which by extension drastically reduces
our state space. We provide proofs indicating a correspondence between the executions of
the symbolic-variable version of the system and the original non-symbolic version.

Finally, we provide a language, MLVR, which is capable of describing systems with
multiple input and output streams, variables of variable length being sent from one channel
to another, and arbitrary function calls. We show that in order for a regular expression-
based language to be this expressive yet still have enough formal guarantees to be useful for
model checking, various constraints must be met. Although we do not provide a full proof
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of correctness for this language, we discuss the technical challenges surrounding such proofs
and show that many of the techniques used for proving correctness of SLVR are applicable
to MLVR.
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Chapter 2

Regular Expression Specification

In traditional model checking, some correctness criterion is specified as a logical formula
and checked against a finite state graph corresponding to the system implementation. In
contrast, MLVR directly specifies a finite state graph, which is then compared to the finite
state graph of the system implementation. To understand the general behavior of MLVR,
we look first at a simplified example language, SLR, over an alphabet Σ, which does not
support variables. The syntax of this language is exactly the syntax of regular expressions1:

p : SLR ::=
| ∅ (empty set)
| ε (empty string)
| _ (any character)
| a (a ∈ Σ)
| ¬p (logical not)
| p1p2 (concatenation)
| p1∥p2 (logical or)
| p1&p2 (logical and)
| pn (repeat p n times)
| p∗ (Kleene star)

The language Σ represents the type of inputs being passed to the system, for example,
bits. For a full description of a system, we specify both a pattern p : SLR and the output
we expect when the input trace matches the pattern.

As an example, if we wanted to define a system with bit inputs whose behavior is to
output 1 whenever we receive a 1 followed by an even number of 0s, followed by another 1,
we would describe this system with the pair, (_∗1(00)∗1, 1).

1Credit to Clement Pit-Claudel, Jason Chen, and Thomas Bourgeat for writing the first iteration of the
Coq syntax of this language and implementing most of the functions defined below.
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We define a function accε which checks whether a given p : SLR accepts the empty string:

accε∅ = ⊥
accεε = ⊤
accε_ = ⊥
accεa = ⊥

accε¬p = ¬accεp
accε(p1∥p2) = (accεp1) ∨ (accεp2)
accε(p1&p2) = (accεp1) ∧ (accεp2)

accε(p1p2) = (accεp1) ∧ (accεp2)
accε(p0) = ⊤
accε(pn) = accεp (n ̸= 0)

accε(p∗) = ⊤

Now, we define a transition function between states of SLR under inputs a as the deriva-
tive function[2]:

∂a∅ = ∅
∂aε = ∅
∂a_ = ε

∂aa = ε

∂ab = ∅ (b ̸= a)

∂a¬p = ¬∂ap
∂a(p1∥p2) = (∂ap1)∥(∂ap2)
∂a(p1&p2) = (∂ap1)&(∂ap2)

∂a(p1p2) = (∂ap1)p2∥∂ap2 (accεp1)
∂a(p1p2) = (∂ap1)p2 (¬accεp1)

∂ap
0 = ∅

∂ap
n+1 = (∂ap)p

n

∂ap
∗ = (∂ap)p

∗

We define the derivative function for lists of inputs. For a ∈ Σ and l ∈ Σ∗,

∂[]p = p

∂a::lp = ∂l∂ap

Finally, we define an acceptance function:

acclp = accε(∂lp)

In order to perform model checking between a system implementation state impl0 and
a specification written in this language spec0, we can exhaustively search the space of pairs
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of states (impl, spec), corresponding to the implementation state impl0 after taking in a
certain string of inputs s ∈ Σ∗ and a specification state spec = ∂s(spec0). For every such
distinct pair, we check that the output (or lack thereof) is equal between spec and impl.

One last consideration in this language is that there is no guarantee that the set of
states reachable by taking derivatives of a given start state is finite. Because there is an
equivalence between finite state automata and regular expressions[3], we know that the set
of semantically distinct reachable states will be finite, but there may be multiple instances
of SLR which are semantically identical. As a trivial example, if we start with (_∗) and take
successive derivatives, we get:

(_∗)→ (ε_∗)→ ((∅_∗)∥(ε_∗))→ ((∅_∗)∥(∅_∗)∥(ε_∗))

All of these are clearly synonymous with (_∗). In order to prevent this syntactical
explosion, we define a reduction function R:

R((p1&p2)&p3) = p1&(p2&p3)

R((p1∥p2)∥p3) = p1∥(p2∥p3)
R(∅∥p) = p

R(p∥∅) = p

R(∅&p) = ∅
R(p&∅) = ∅
R(∅p) = ∅
R(p∅) = ∅
R(εp) = R(p)

R(pε) = R(p)

R(p1p2) = R(p1)R(p2)

We also prove the following theorem stating that this reduction function does not change
the semantics of a given pattern:

Theorem reduce_ok : ∀ p s. accs p = accsR(p).

Every time that we call ∂ during model checking, we apply R (perhaps more than once)
on the output, which allows us to keep the state space finite more often. Note that we have
no guarantee that we will end up with a finite state space. If the reduction function is not
powerful enough to result in a finite state space for some particular example, model checking
will simply fail. In practice, this method has been successful in keeping state spaces finite.
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Chapter 3

The MANatEE Example

The MANatEE example was provided by Sandia National Labs and is a simple toy problem
to test out model-checking approaches. It consists of two buttons, each of which can be
pressed or unpressed. There are two layers to the system: first, the button interface reads
whether each button is pressed or unpressed at each clock cycle and outputs when a button
press is finished. Then, this output is read by the lock section of the system, which checks for
a specific “passcode” sequence of button presses and “pulses” when this passcode is received.
The system state chart is shown in Fig. 3.11.

Although it is possible to write a single regular expression to describe what series of
inputs triggers a pulse, this approach is not ideal in practice since the expression would
be syntactically large and unintuitive. Instead, we can use one SLR pattern for each type
of output we expect from the button interface and then pipe the outputs from these pat-
terns into the input of a second-layer pattern representing the operation of the lock section.
Now, instead of a single pattern representing a system, we have a tuple of patterns, each
representing a portion of the system.

With this approach, we end up with a readable specification for each section of the
system2. In the following specification, {C, I,G,R} is the alphabet of inputs to the first
layer, where C represents both buttons pressed at the same time, R and G represent just the
red or green buttons pressed, and I represents neither button pressed. We then get outputs
ereset,ered, egreen and eclear, representing which buttons actions we interpret to have occurred.
If none of the patterns are matched at a given time step, then we represent the output of
the first layer as enone.

1State chart provided by Sandia National Labs.
2Credit to Clement Pit-Claudel, Jason Chen, and Thomas Bourgeat for writing the following regular

expressions for this example.
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Figure 3.1: Stateflow chart of the MANatEE system.

waveform_to_button :=[

(_∗C, ereset);

(_∗IRR∗I, ered);

(_∗IGG∗I, egreen);

(_∗I(¬I)(¬I)∗I, eclear);
((¬I)∗I, eclear)].

button_to_output := [(.∗ecleare
∗
noneegreene

∗
noneerede

∗
noneegreene

∗
noneegreene

∗
noneered(¬eclear), pulse)].

We can then write an implementation of this system in the hardware design language
Kôika[4] and prove that the specification and the implementation are equivalent using model
checking.
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Chapter 4

Symbolic Variables

One construct that SLR is not able to handle well is the notion of variables. Suppose we
have a system that is intended to take in as input some string of inputs and then send that
same string back as output. Depending on the length of the input string, we might be able
to write a SLR pattern describing this system, but it would require listing all possible values
of input strings, which is exponential in the length of input. We would like to add support
for describing and model-checking such systems using variables instead.

In extending the regular-expression language to allow for expressing variables as inputs
and outputs, we cannot simply add a constructor that matches and stores input strings as
variables to be recalled later as outputs when matched to a pattern. To see why such a
constructor leads to issues, suppose we naïvely keep the same definition of SLR as before
and add one additional constructor:

| V (x, l) (remember the next l input characters as variable x)

We immediately run into issues with examples such as the following:

V (x, 2)∥(_V (x, 1))

Should the variable x that we remember be both of the next two characters or just the
second one? This and various other forms of ambiguity force unavoidable constraints on our
specification language. Some other examples of specifications that would generally not be
expressible with most methods of implementing variables include:

• Wait for an input string to repeat itself after n characters, then pulse.

• Receive as input an n-character string encoding a number l, then receive as input a
variable v of length l, then output v.

• Receive as input an n-character variable v, then start outputting v, but stop outputting
partway if receiving any input characters of value 1.

The approach that MLVR takes is to write regular expressions that match not only input
values but also output values, and give a specified scope within which that variable value
is live, which prevents variable-value ambiguity. In this formulation, a user would describe
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an entire system’s inputs and outputs as one large expression. The model checker would
then take derivatives of it based on whatever output the implementation returns for a given
input, and check whether the new state is still acceptable (for a definition of acceptable
which will be described later). We note that this means our specification language no longer
guarantees that for every possible set of inputs, there will be an acceptable output, nor that
an accepting output value is unique. This gives users the flexibility to not fully constrain
their specifications, but they must take care to describe the expected output behavior for all
input edge cases.

Since the inputs to the specification now correspond to both inputs and outputs of the
system, we can no longer treat the inputs as s ∈ Σ. Instead, we accept inputs s ∈ Σn, where
it is assumed that the number of input and output channels remains constant and that their
input/output alphabets are the same. In order to express patterns of multiple streams of
characters, we create a two-layered definition for our language (along with a definition of
lengths of variables, allowing for variable-length variables1):

l : Len ::=
| n (constant length n > 0)
| xi (value of ith stream of variable of name “x”)

p : FLVR ::=
| ∅ (empty set)
| ε (empty string)
| _ (any character)
| a (a ∈ Σ)
| p1p2 (concatenation)
| p1∥p2 (logical or)
| pn (repeat p n times)
| p∗ (Kleene star)
| xi (recall value of ith stream of variable of name “x”)

p : MLVR ::=
| ∅ (empty set)
| ε (empty string)
| _ (any character)
| p1p2 (concatenation)
| p1∥p2 (logical or)
| pn (repeat p n times)
| p∗ (Kleene star)
| let x : l = p1 in p2 (introduce variable of name “x” of length l : Len in p2,

as long as its value matches p1)
| [p1|p2|...|pn] (match first stream against p1 : FLVR,

second stream with p2 : FLVR, etc.)

1We currently restrict variables to strictly positive lengths due to some quirks in dealing with zero-length
variables, but it would be possible to add support for zero-length variables.
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In writing a specification, a user must also provide a function a2l : Σ∗ → Z. This is
used to determine what the length should be of a variable-length variable. As an example,
a system with bitstring inputs and outputs might convert a string of bits into binary and
then take the value of that binary string.

The derivative functions for FLVR and MLVR are generally quite similar to the derivative
function for SLR, plus additional handling of variables.

In the following equalities, the notation p/(x ← a) means to append the value a to any
reference to x in p. More specifically, given ai the ith element of a, we substitute xi with aixi.
Similarly, the notation p/(x ← ε) represents the termination of x, meaning that we substi-
tute xi with ε and substitute (let y : a1a2...akxi = p1 in p2) with (let y : (a2l(a1a2...ak)) = p1
in p2).

∂axi = ∅

∂a(let x : 1 = p1 in p2) = p2/(x← a)/(x← ε) (accap1)

∂a(let x : 1 = p1 in p2) = ∅ (¬accap1)

∂a(let x : l + 1 = p1 in p2) = let x : l = ∂ap1 in p2/(x← a)

∂a(let x : yi = p1) in p2) = ∅

∂a[p1|...|pn] = [∂ap1|...|∂apn]

As an example, suppose we start with the following pattern.

let x : 2 = _∗ in [y1|x0]

If we take the derivatives sequentially for inputs (0,1) followed by (5,7), we would obtain
the following patterns:

∂(0,1) (let x : 2 = _∗ in [y1|x0]) = let x : 1 = _∗ in [y1|0x0]

∂(5,7) (let x : 1 = _∗ in [y1|0x0]) = [y1|05]

We provide a similar acceptance function as the one from SLR, starting with the function
that checks for acceptance of the empty string and taking consecutive derivatives to check
if a pattern accepts a given nonempty input.

For model checking, our approach of matching both inputs and outputs against a pattern
presents a new challenge. In order to catch an error in model checking, we need an error
condition for when a given pair of inputs and outputs does not match the specification.
Since we treat inputs as a potentially infinite stream, we must check whether there exists
any future input which still matches the current pattern or, equivalently, whether the current
pattern is semantically equivalent to ∅. The definition of a function to perform such a check
is nontrivial, and in fact it is the reason for dropping the logical not (¬) and logical and (&)
constructors which were present in the original regular-expression language.
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We first define a helper function LF over patterns of FLVR which returns all of the
lengths of inputs accepted by the pattern as a list of values (a, b) : N×N, each representing
that for all n ∈ N, there exists an input of length a+ bn that is accepted by the pattern. We
also define a similar function LM over patterns of MLVR. We supply L with an additional ar-
gument which is a map m of lengths of fixed-length variables representing a pattern’s context.

LF
m∅ = []

LF
mε = [(0, 0)]

LF
m_ = [(1, 0)]

LF
ma = [(1, 0)]

LF
m(p1∥p2) = LF

mp1 ∪ LF
mp2

LF
m(p1p2) = LF

mp1
⊕
× LF

mp2

LF
mp

0 = [(0, 0)]

LF
mp

n+1 = LF
mp

⊕
× LF

mp
n

LF
mp
∗ = [(0, 0)] ∩

⊕∏
(a,b)∈LF

mp

(
[(0, a)] ∪

⋃
1≤k≤b

[(ak, b)]

)
LF
mxi = [(m(x), 0)] (x ∈ m)

LF
mxi = [] (x /∈ m)
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LM
m∅ = []

LM
m ε = [(0, 0)]

LM
m _ = [(1, 0)]

LM
m (p1∥p2) = LM

m p1 ∪ LM
m p2

LM
m (p1p2) = LM

m p1
⊕
× LM

m p2

LM
m p0 = [(0, 0)]

LM
m pn+1 = LM

m p
⊕
× LM

m pn

LM
m p∗ = [(0, 0)] ∩

⊕∏
(a,b)∈LM

m p

(
[(0, a)] ∪

⋃
1≤k≤b

[(ak, b)]

)
LM
m (let xi : n = p1 in p2) = [(n, 0)]

⊕
× LM

m←(x:n)p2 (∃(a, b) ∈ LM
m p1,∃k ∈ N, a+ bk = n)

LM
m (let xi : n = p1 in p2) = [] (∀(a, b) ∈ LM

m p1,∀k ∈ N, a+ bk ̸= n)

LM
m (let xi : yj = p1 in p2) = []

LM
m [p1|...|pn] = ⊔nk=1 L

M
m pk

Various operators used above are defined here2:

2Credit to TJ Machado for his implementation and proof of correctness of the ⊓ function.
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(a1, 0)⊕ (a2, b2) = [(a1 + a2, b2)]

(a1, b1)⊕ (a2, b2) =
b1−1⋃
k=0

[(a1 + a2 + kb2, b1)] (b1 ̸= 0)

l1
⊕
× l2 =

⋃
x∈l1,y∈l2

x⊕ y

(a, b1) ⊓ (a, b2) = [(a, lcm(b1, b2))]

(a1, b1) ⊓ (a2, b2) = [] (gcd(b1, b2) ∤ (a1 − a2))

(a1, 0) ⊓ (a2, b2) = [] (a2 > a1)

(a1, b1) ⊓ (a2, 0) = [] (a1 > a2)

(a1, b1) ⊓ (a2, b2) = [(a1+
(a2−a1)(extgcd(b1,b2)[2])b1

gcd(b1,b2)
mod lcm(b1,b2),

lcm(b1,b2))]
(a2 > a1)

(a1, b1) ⊓ (a2, b2) = [(a2+
(a1−a2)(extgcd(b1,b2)[1])b2

gcd(b1,b2)
mod lcm(b1,b2),

lcm(b1,b2))]
(a1 > a2)

⊔x1,x2,...
f = f(x1) ⊓ f(x2) ⊓ ...

⊕∏
x1,x2,...

f = f(x1)
⊕
× f(x2)

⊕
× ...

Finally, we can check that there exists some string which a given p accepts by checking
that LM

[] p is nonempty. Unfortunately, since variables can be of variable length dependent
on the function a2l that a user supplies, we cannot guarantee that this function finds all
possible acceptable lengths, as we may not yet know the exact length of any given variable.
In practice, this means the specification language can only model-check systems that only
have fixed-length variables, since variable-length variables will always be determined not to
accept any inputs. We discuss potential solutions to this problem in section 8.1.
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Chapter 5

The TINCAN Example

The TINCAN Bus example is a second example problem provided by Sandia National Labs.
It describes a shared bus protocol which should be implemented by a transmitter. The
protocol has various sequential steps, including arbitration with the other users of the bus,
sending the destination address, sending the message length, performing a cyclic redundancy
check (CRC), and receiving an acknowledgement (ACK) and a flow control transmission from
the receiver. If all of these steps go correctly, only then may the transmitter transmit their
message (along with another CRC and another ACK). A diagram of the phases is shown in
Fig. 5.11.

This example demonstrates the utility of providing support for variable introduction and
recall in writing regular expression-based specification. Using this feature, we can keep track
of the current message we want to send, and try to send it multiple times if the first attempt
fails. However, we notice a few places where MLVR is not quite expressive enough to fully
describe the intended behavior of TINCAN. In particular, the CRC is a more complicated
function of various inputs and is not suited to be expressed in regular expression syntax. One
possible addition to the MLVR syntax would be to add a constructor for specific user-defined
Gallina functions such as the CRC function. The user would also have to provide some proof
that the functions behave identically to a given component of the implementation system,
although the details of how this would be done have not yet been fully explored.

If we omit the CRC section, we can start to write a specification for the rest of TINCAN.
From a transmitter’s perspective, it reads two input bitstreams: a stream of messages that
it ought to send and a stream of readouts from the bus. It also has one output bitstream
corresponding to its output to the bus. Therefore, when describing this system, we should
write a MLVR expression that accepts tuples of three bits as inputs. Let us arbitrarily define
the 0th bit as the stream of messages, the 1st bit to be readouts from the bus, and the 2nd
bit to be the output to the bus. Let us also define a2l(b = b1b2...) = 8 · b1b2...2, that is, in
order to get a variable length from a string of bits, we read those bits as a binary number
and multiply by eight. Our first attempt might be something like the following (using ⟨addr⟩

1TINCAN Bus Protocol and diagram provided by Sandia National Labs.
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Figure 5.1: TINCAN Bus Protocol Diagram.

as a placeholder for our personal address):

([0|_|0]∗ (wait for message)
[1|_|_] (message input begins)
let a : 8 = [_|_|0]∗ in (receive message destination address)
let l : 4 = [_|_|0]∗ in (receive message length)
let m : l = [_|_|0]∗ in (receive message content)
[_|0|0]200 (wait until bus is quiet)
[_|_|1] (start of frame)
[_8|⟨addr⟩|⟨addr⟩] (arbitration)
[_8|_8|a0] (transmit address)
[_4|_4|l0] (transmit message length)
[__|00|00] (wait for ACK - 3 lines)
[_4|(11__∥_11_∥__11)|04]
[__|00|00]
[__|00|00] (wait for FLOW - 3 lines)
[_4|(11__∥_11_∥__11)|04]
[__|00|00]
[_∗|_∗|m] (transmit message)
[__|00|00] (wait for ACK - 3 lines)
[_4|(11__∥_11_∥__11)|04]
[__|00|00]
)∗
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The issue with this specification is that it is not complete. We have only written out
the expected behavior if all of the arbitrations, acknowledgements, and other signalling go
exactly as intended. If anything doesn’t go as expected, we would need to stop sending bits
to the bus immediately and wait to try again later. Unfortunately for us, MLVR does not
give us the flexibility to express this concisely and legibly. We could try to implement an
if/else-like statement in MLVR in the following way. Suppose we want to write (if pc then
pt else pf ). We could do something like (pcpt∥(¬pc)pf ), except that we are no longer able
to use the ¬ (logical not) constructor in MLVR2. As such, we would need to write out the
negation of all branching subexpressions by hand, which is impractical and would result in
large and unreadable pattterns.

2We cannot re-add a negation constructor to MLVR because we would be unable to decide whether strings
of a particular length would be accepted by patterns using the negation constructor, which would mean that
we would not be able to tell whether they are valid or not.
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Chapter 6

Single-Stream Language

Due to the difficulties and unresolved issues in MLVR as described in the previous chapters,
we provide SLVR, a toy version of MLVR, which only adds support for basic fixed-length
variables and a single stream of Boolean input. We use SLVR to demonstrate what the core
proofs of correctness might look like for a more expressive language such as MLVR and how
such a language might be used for model checking. First, we define the language as:

p : SLVR ::=
| ∅ (empty set)
| ϵ (empty string)
| _ (any character)
| a (a ∈ Σ)
| p1p2 (concatenation)
| p1∥p2 (logical or)
| p∗ (Kleene star)
| let x : l in p (introduce variable of name x and length l ∈ Z+ in scope p)
| x (recall value of variable name x)
| Sym(i) (recall value of variable introduced i variables ago).

Of note, we have an additional constructor Sym which represents a symbolic variable
value which will only be used in symbolic model checking. It should not be used when
writing an actual specification. As such, we also specify a well-formedness condition for
SLVR patterns, checking that they do not contain any Sym constructors or unintroduced
variable names.

We define a derivative function ∂ and an accept function acc in a similar fashion as in
the previous languages. Next, we also define an alternative symbolic derivative function δ,
which instead of taking just concrete Boolean values as inputs, takes a variant which can
either take a concrete Boolean value or the symbolic introduction of a variable of a partic-
ular length or the repetition of a previously introduced symbolic variable value (referenced
in de-Bruijn index style) (with an option to express that the value being inputted does not
actually match the original value of the variable):
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s : Inp :=
| b (Boolean bit, where b ∈ {0, 1})
| vl (newly introduced variable of length l)
| ri (recall the ith most recently introduced variable)
| r̄i (incorrectly recall the ith most recently introduced variable)

In the following definitions, δa is treated as the symbolic derivative with respect to any
a ∈ Inp, δb is treated as the symbolic derivative with respect to a Boolean bit b, δvl is the
symbolic derivative with respect to a new variable, and δri is the symbolic derivative with
respect to a recalled variable. Any symbolic derivative not specifically listed below should
be interpreted as ∅.

δa∅ = ∅
δaε = ∅
δb_ = ε

δbb = ε

δbb
′ = ∅ (b ̸= b′)

δa(p1∥p2) = (δap1)∥(δap2)
δa(p1p2) = ((δap1)p2∥∂ap2) (accεp1)
δa(p1p2) = (δap1)p2 (¬accεp1)

δap
0 = ∅

δap
n+1 = (δap)p

n

δap
∗ = (δap)p

∗

δvl
let x : l in p = p/x

δvl
let x : l′ in p = ∅ (l ̸= l′)

δriSym(i) = ε

δriSym(j) = ∅ (i ̸= j)

Here, p/x means that we substitute all occurrences of x inside p with Sym(0), and all
occurrences of Sym(k) with Sym(k + 1).

Next, we define an accepts function that behaves identically to the accepts functions in
previous examples.

Lastly, we provide a definition of equivalence between concrete and symbolic input strings.
To do this, we end up needing to express symbolic inputs in a tree-like data structure to
represent different contexts in which variables are live:

t : sym_tree ::=
| Node(t1, t2)
| Leaf(s : Inp, t)
| Empty

We provide a ‘flatten’ function that flattens instances of sym_tree into lists:
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flatten(Node(t1, t2)) = flatten(t1)⌢flatten(t2)
flatten(Leaf(s, t)) = s⌢flatten(t)

flatten(Empty) = []

Then we define a helper function substr that takes in an optional list of concrete Boolean
values, a sym_tree, and a list of introduced variables, and outputs the optional substring of
the concrete values that would be left if we matched the symbolic tree to the beginning of
the concrete list, under the listed introduced-variable context, or ∅ if the symbolic tree does
not match any initial substring of the concrete input:

substr(∅, t, v) = ∅
substr(c, [], v) = c

substr(c,Node(t1, t2), v) = substr(substr(c, t1, v), t2, v)

substr(b⌢c, Leaf(b, t), v) = substr(c, t, v)

substr(b⌢c, Leaf(¬b, t), v) = ∅
substr(b⌢1 b⌢2 ...b⌢l c, Leaf(vl, t2), v) = substr(c, t2, (b

⌢
1 ...⌢bl)

⌢v)

substr(c, Leaf(vl, t2), v) = ∅ ((length c) < l)

substr(c, Leaf(vl, t2), v) = ∅ ((length c) < l)

substr(v[k]⌢c, Leaf(rk, t2), v) = substr(c, t2, v)

substr(c, Leaf(rk, t2), v) = ∅ (c doesn’t start with v[k])

substr(v[k]⌢c, Leaf(rk, t2), v) = ∅ (length v[k] = n)

substr(b⌢1 ...⌢b⌢n c, Leaf(rk, t2), v) = substr(c, t2, v) (length v[k] = n)

With this, we can finally express concrete/symbolic input equivalence:

substr(c, t, []) = []←→ t ∼ c

With these definitions of concrete derivatives and acceptance and symbolic derivatives
and acceptance, we provide proofs of two theorems relating the definitions. The first theorem
states that for all well-formed patterns p, if p accepts concrete input conc, then there exists
an equivalent symbolic input sym which is accepted by pattern p. An approximate theorem
statement is as follows:

Theorem sym_ok_wrong : ∀ conc p. accconcp→ ∃ sym. (sym ∼ conc ∧ accsymp).

The second theorem states that for all well-formed patterns p, if p accepts symbolic input
sym, then p accepts every concrete input conc equivalent to sym. An approximate theorem
statement is as follows:

Theorem conc_ok_wrong : ∀ sym p. accsymp→ (∀ conc. sym ∼ conc→ accconcp).

However, due to the differences in types between sym_tree and raw lists of symbolic
inputs, we instead need to loosen the statement of sym_ok and conc_ok to:
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Theorem sym_ok : ∀ conc p. accconcp→ ∃ sym_t. (sym_t ∼ conc ∧ acc(flatten sym_t)p).

Theorem conc_ok : ∀ sym p. accsymp → ∃sym_t. (flatten sym_t = sym)∧(∀ conc.
sym_t ∼ conc→ accconcp).

Now, we would like to be able to prove that that for all other pairs of related concrete
and symbolic systems such that these same two theorems hold, equivalence between sym-
bolic systems implies equivalence between concrete systems. More precisely, suppose we are
given an arbitrary system Sys and acceptance functions (sys_acc : Sys→ {0, 1}∗ → {⊤,⊥})
and (sys_sym_acc : Sys→ Inp∗ → {⊤,⊥}). Suppose also that we prove the following two
theorems (identical to the ones we proved about SLVR):

Theorem sys_sym_ok : ∀ conc p. sys_accconcp→ ∃ sym_t. (sym_t ∼ conc∧ sys_acc(flatten sym_t)p).

Theorem sys_conc_ok : ∀ sym p. sys_accsymp → ∃sym_t. (flatten sym_t = sym)∧(∀
conc. sym_t ∼ conc→ sys_accconcp).

Then we would like to prove that the following theorem holds:

Theorem model_check_ok : ∀ sys p. (∀ sym. sym_accsymp↔ sys_sym_accsymsys)→ (∀
conc. accconcp↔ sys_accconcsys).

We run into issues proving this statement, however, because we can have multiple dif-
ferent sym_trees which flatten to the same list of symbolic inputs, but which have different
meanings. This prevents us from being able to make generalizable statements about accep-
tance definitions. As an example, consider the following two patterns.

let x : 1 in (let y : 2 in xy)

let x : 1 in (let y : 2 in x)x

Both patterns would accept the following symbolic input list:

[v1; v2; r1; r0]

The interpretation of this list is different in each of the two patterns, though. In the first
pattern, the r0 input refers to the variable introduced by v2, whereas in the second, the r0
input refers to the variable introduced by v1. We discuss this issue and possible solutions in
section 8.4.
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Chapter 7

Single-Stream Proof Sketch

In order to make it easier to work with definitions of acceptance in proofs, we first define
an equivalent inductive definition of the accept function, for both the concrete and symbolic
definitions of acceptance. Here, we keep the original Coq code used in the source code to
make more clear how we have structured the inductive nature of these definitions.

Inductive accepts_ind : pattern → list bool → Prop :=
| accepts_Epsilon : accepts_ind Epsilon []
| accepts_Atom : ∀ a, accepts_ind (Atom a) [a]
| accepts_Any : ∀ a, accepts_ind Any [a]
| accepts_Seq : ∀ p1 p2 b1 b2,

accepts_ind p1 b1 →
accepts_ind p2 b2 →
accepts_ind (Seq p1 p2) (app b1 b2)

| accepts_Or_l : ∀ p1 p2 b, accepts_ind p1 b → accepts_ind (Or p1 p2) b
| accepts_Or_r : ∀ p1 p2 b, accepts_ind p2 b → accepts_ind (Or p1 p2) b
| accepts_Repeat_0 : ∀ p, accepts_ind (Repeat p) []
| accepts_Repeat_S : ∀ p b bs,

accepts_ind p b →
accepts_ind (Repeat p) bs →
accepts_ind (Repeat p) (app b bs)

| accepts_IntroVar : ∀ name len p v b,
length v = S len →
accepts_ind (subst_full_var p name v) b →
accepts_ind (IntroVar name len p) (app v b)

Inductive sym_accepts_ind : pattern → list sym_input → Prop :=
| sym_accepts_Epsilon : sym_accepts_ind Epsilon []
| sym_accepts_Atom : ∀ a, sym_accepts_ind (Atom a) [Bool a]
| sym_accepts_Any : ∀ a, sym_accepts_ind Any [Bool a]
| sym_accepts_Seq : ∀ p1 p2 b1 b2,

sym_accepts_ind p1 b1 →
sym_accepts_ind p2 b2 →
sym_accepts_ind (Seq p1 p2) (app b1 b2)

| sym_accepts_Or_l : ∀ p1 p2 b, sym_accepts_ind p1 b → sym_accepts_ind (Or p1 p2) b
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| sym_accepts_Or_r : ∀ p1 p2 b, sym_accepts_ind p2 b → sym_accepts_ind (Or p1 p2) b
| sym_accepts_Repeat_0 : ∀ p, sym_accepts_ind (Repeat p) []
| sym_accepts_Repeat_S : ∀ p b bs,

sym_accepts_ind p b →
sym_accepts_ind (Repeat p) bs →
sym_accepts_ind (Repeat p) (app b bs)

| sym_accepts_IntroVar : ∀ name len p str,
sym_accepts_ind (intro_symvar p name true) str →
sym_accepts_ind (IntroVar name len p) (NewVar len :: str)

| sym_accepts_SymVar : ∀ index, sym_accepts_ind (SymVar index) [RepeatVar index true]

We also provide a proof of equivalence between these definitions and the derivative-based
definitions:

Lemma accepts_ind_ok’ : ∀ p b,
(wf p) = true →
(accepts p b = true ↔ accepts_ind p b)).

Lemma sym_accepts_ind_ok’ : ∀ p b names,
sym_wf p = true →
(sym_accepts p b = true ↔

sym_accepts_ind p b).

Here, wf and sym_wf are well-formedness conditions on patterns to check that they don’t
have references to unintroduced variables.

Each of these two equivalence proofs is done by induction on pattern p. These two lemmas
can then be used in the proofs of two theorems found in chapter 6: sym_ok and conc_ok.
The general strategy is to convert all derivative-based accept functions into inductive-based
definitions, and then perform induction over the structure of the inductive acceptance defi-
nitions.
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Chapter 8

Conclusions and Future Work

The work in this thesis demonstrates that regular expression-based specification can be
used to write human-readable specifications that can be used for verified model checking.
More work needs to be done to make this strategy viable for model checking with symbolic
variables, both in writing proofs of correctness of the existing specification languages in this
work and in extending the languages to be expressive enough to describe a more diverse
set of systems. The greatest limitation of our approach is the constraint that one needs
a decidable function to check whether there exists an input that matches against a given
pattern, which poses a significant challenge to providing even basic constructors such as the
logical not (¬) and the logical and (&). Here we provide a list of future work that could
make our approach useful in practice.

8.1 Variable-Length Variables

Although MLVR already offers a constructor for variables whose lengths depend on the
value of other variables, this feature could not be used in practice to model check a system
because we have no way of checking whether there exist any inputs that match a given
pattern mentioning variable-length variables. One promising possibility would be to remove
the variable reference constructor from the first layer (FLVR), and instead have a constructor
for referencing variables in the top layer, where while a particular variable x is being recalled,
every stream has to either be outputting the value of one of the streams of x, or be a pattern
that accepts only strings of length 1, which will be repeated for the length of x. We might
have an expression like [v2|_]x, which would mean that in the zeroth stream, we accept the
value at the second stream of variable x, and in the first stream, we accept any string of the
same length as x.

This solution leaves a few issues to be resolved. We still cannot check whether a given
pattern in MLVR accepts any inputs of a particular length, but we can check that a pattern
in FLVR accepts an input of a particular length. We can then nearly check whether there
exists an input at all which a given pattern in MLVR accepts, except that in the constructor
(let x : l = p1 in p2) we need to be able to tell whether p1 accepts inputs of a given length
l. We may resolve this by forbidding references to variable-length variables inside the first
MLVR expression in let constructors. This approach has not yet been implemented in Coq.
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8.2 Arbitrary Function Calls

As mentioned in chapter 5, it would be helpful to allow users to specify their own functions,
which they would be able to reference within an MLVR pattern. These functions would take
one or more variables’ values and return a string to be used in the MLVR. More work needs
to be done to understand how the support for such functions would affect theorems relating
to the correctness arguments in model checking.

8.3 Conditional Branching

As mentioned in chapter 5, MLVR currently lacks any sort of branching constructor which
depends on the success of matching on a particular subpattern. The issue with adding such
a constructor is that in order to check whether such a branching constructor accepts some
input, we need to check whether it’s possible for any string to not match against the pattern
being branched on. Unfortunately, this is a difficult condition to check, and we have not
found a way to do it yet for the full MLVR language.

8.4 More Expressive Symbolic Input Language

In order to complete the equivalence proofs between symbolic and concrete model checking
for the SLVR language, we would need to use a more expressive language for the symbolic
inputs. Such an input language would need to incorporate information about the context in
which a variable is being referenced. One possibility would be to add one additional con-
structor to the input language:

s : Inp :=
| b (Boolean bit, where b ∈ {0, 1})
| vl (newly introduced variable of length l)
| ri (recall the ith most recently introduced variable)
| r̄i (incorrectly recall the ith most recently introduced variable)
| EndCtx (Match with the end of a SLVR pattern with a let constructor)

This would eliminate ambiguity about the semantics of variable references described at
the end of chapter 6. How this would affect the symbolic derivative function is an open
question as it is not currently possible to check whether a given subpattern was previously
inside a let constructor. It may be necessary to extend the SLVR definition to indicate
variable contexts.

8.5 Finishing Proofs of Correctness

Currently, we only have the majority of the proofs of equivalence between symbolic and
concrete executions of SLVR. We would like to provide full proofs of equivalence between
symbolic and concrete executions of MLVR. This would likely involve a reworking of how

34



we treat variable lengths in symbolic inputs. For the proofs relating to SLVR, we could
use a natural number to represent the length of each variable we wanted to input, but with
variable-length variables, it would become more involved to check whether lengths match up
between concrete and symbolic inputs.

We would also like to create a symbolic-variable step function for Kôika and prove equiv-
alence between this version and the original Kôika semantics. This would allow us to model
check real systems with MLVR.
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