
Extensible Proof Engineering in Intensional
TypeTheory

a dissertation presented
by

Gregory Michael Malecha
to

The Harvard School of Engineering and Applied Sciences

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy
in the subject of
Computer Science

Harvard University
Cambridge, Massachusetts

November 2014

© 2014 - GregoryMichael Malecha
All rights reserved.

Thesis advisors: Greg Morrisett & Adam Chlipala Gregory Michael Malecha

Extensible Proof Engineering in Intensional TypeTheory

Abstract

We increasingly rely on large, complex systems in our daily lives—from the

computers that park our cars to the medical devices that regulate insulin levels to

the servers that storeour personal information in the cloud. As these systemsgrow,

they become too complex for a person to understand, yet it is essential that they

are correct. Proof assistants are tools that let us specify properties about complex

systems and build, maintain, and check proofs of these properties in a rigorous

way. Proof assistants achieve this level of rigor for a wide range of properties by

requiring detailed certificates (proofs) that can be easily checked.

In this dissertation, I describe a technique for compositionally building exten-

sible automation within a foundational proof assistant for intensional type theory.

My technique builds on computational reflection—where properties are checked

by verifiedprograms—which effectively bridges the gapbetween the low-level rea-

soning that is native to the proof assistant and the interesting, high-level prop-

erties of real systems. Building automation within a proof assistant provides a

rigorous foundation that makes it possible to compose and extend the automa-

tion with other tools (including humans). However, previous approaches require

using low-level proofs to compose different automation which limits scalability.

My techniques allow for reasoning at a higher level about composing automation,

which enables more scalable reflective reasoning. I demonstrate these techniques

through a series of case studies centered around tasks in program verification.

iii

Contents

1 Introduction 1
1.1 Formal Logic . 4
1.2 Intuitionistic Type Theory as a Logic 6
1.3 Automation . 10
1.4 Overview of the Dissertation 15

2 Background 17
2.1 Gallina: Coq’s Logic . 18
2.2 Constructing Proofs withLtac 26
2.3 Proof by Computational Reflection 28
2.4 Related Work . 34

3 Open Semantic Reflection 39
3.1 The Lambda Core . 40
3.2 Semantic Openness & Tautologies 46
3.3 Meta-level Dependency & Monad Simplification 57
3.4 Unification Variables & Backward Reasoning 66
3.5 Related Work . 73

4 Engineering Reflective Automation 81
4.1 Coq’s Reduction Mechanisms 82
4.2 Engineering Verifiable, Executable Code 85

iv

4.3 Crafting Proof Terms for Computational Reflection 93
4.4 Reification: Building Syntax for Semantic Terms 99

5 Case Study: Program Verification in Bedrock 104
5.1 Bedrock by Example . 106
5.2 Reflective Verification in Bedrock 110
5.3 Evaluation . 118
5.4 Related Work . 125

6 Rtac: A Reflective Tactic Language 130
6.1 Compositional Tactics . 132
6.2 Core Tactics . 142
6.3 Performance . 146
6.4 Related Work . 152

7 Case Study: Embedded Logics for Imperative Programs 156
7.1 Describing Axiomatic Logics with Charge! 158
7.2 Reifying Type Classes . 160
7.3 Case Study: Verifying Imperative Programs 163
7.4 Future Avenues and Ongoing Applications 170

8 Conclusions 172
8.1 Avenues for Future Work . 173
8.2 Final Thoughts . 176

References 177

v

Author List

Theworkdescribed inChapters 4 and5was jointwithThomasBraibant andAdam
Chlipala.

The work described in Chapter 7 was work with Jesper Bengston.

vi

To my wife, who is always there with a smile.
And to my parents, who raised me with love and support.

vii

Acknowledgments

I would like to thank my advisors, Prof. Greg Morrisett and Prof. Adam Chli-
pala, for their guidance and insight related to theworkpresentedhere and theother
projects that I worked on during my graduate career. Greg has always been full of
insights and remarks that helped me find where I was and led me in interesting
directions. And it was throughmywork with Adam that the ideas in this disserata-
tion first emerged.

My undergraduate reasearch advisor, Prof. Walid Taha, providedmy first expo-
sure to both computer science research and functional programming. He help lay
the foundations of my knowledge which was the seed that started me on the path
to graduate school.

My collaborators Ryan Wisnesky, who helped me disentangle “Coq” from de-
pendent type theory, and Thomas Briabant, who helped me understand compu-
tational reflection. Jesper Bengston and Josiah Dodds have been great collabora-
tors onRtac and its application to imperative program verification. Nothing helps
make things more useful than users. And I thank the people in Maxwell-Dworkin
309 for many years of interesting conversations, collaborations, and fun.

Finally, I would like to thank my wife, Elizabeth Smoot Malecha, who was and
is a constant source of joy and inspiration. And I thank my parents, Michael and
Karen Malecha, for constantly teaching, encouraging, and supporting me in my
many endeavors.

viii

1
Introduction

Software is a pervasive part of our lives, from theflight control systemson airplanes
to “apps” that entertain us on the bus. Despite this, at a formal level, we do not un-
derstand what most of it does. Methodologies for software development espouse
unit tests and test-driven development as engineering “best practices,” but these
do not convey a complete understanding of software. Rather, these methodolo-
gies extrapolate “correctness” from a collection of observations (test cases) in the
style of random variables in statistics where, in reality, there is nothing random
about correctness.

While this approach has served us well for many years, its flaws are becoming
apparent. In days before network computing there was no incentive to break your
software. Now, when global financial markets, utility grids, mass communication,
and social media are run by computers, the importance of robust and correct soft-
ware is more apparent than ever.

1

“Correctness” is one point on a spectrum of properties about systems. Because
“correctness” is a system-dependent property, it is often difficult to build fully au-
tomatic tools that can express and prove these properties. Instead, programming
languages research has focused, with great success, on shallow properties that can
be stated and often proved in a program-agnostic way. For example, type sys-
tems, both static and dynamic, can guarantee run-time invariants such as type and
memory safety [130]. These properties are so fundamental to abstraction and rea-
soning that researchers have developed tools to back-port some of these proper-
ties [5, 51, 79] to existing software using binary rewriting and instrumented com-
pilers.

However, systems that provide high-level properties out of the box often come
at a cost. High-level run-time systems such as Microsoft’s .Net [4] and Oracle’s
Java [2] as well as type safe languages such as OCaml [146] and Haskell [145]
prevent or make it difficult to exploit low-level properties of the underlying sys-
tem. For example, only recently did real-time garbage collection make program-
ming real-time systems in Java possible [20]. And even now, the overhead of fea-
tures such as garbage collection can drain resources such as power, which prevents
us from using these systems to their full potential. In many cases, optimization
comes from exploiting problem-specific knowledge, but when working in high-
level systems these properties cannot always be represented at the high level and
are not always seen by general-purpose compilers. For example, algorithms such
as union-find [64] can judiciously use imperative features to obtain asymptotic
performance improvements over purely functional code. While this use of imper-
ative features is safe, leveraging it in a purely functional language such as Haskell
in a transparent way requires leveraging unsafe features of the language. An escape
hatch for the brave is to enter the realm of the “under-specified.”

Outside of these very general properties, researchers have developed analyses
that automatically reason about software systems. For example, model checking
and abstract interpretation provide ways to abstract systems to make exhaustive
search possible in very large or unbounded systems. While often completely auto-
matic, as systems grow these approaches become increasingly expensive. Further,

2

pieces of these systems are property-dependent, with entire areas of research ded-
icated to building new abstractions to capture specific properties. While frame-
works exist for composing these properties, it is not clear that these domains can
capture arbitrarily rich properties such as “a path exists through the graph” or “this
compiler transformation is correct” while still being completely automated.

These approaches are focused on automated techniques for solving a problem.
However, they achieve this automation by sacrificing expressivity. Since shallow
properties are often sufficient, in practice this works well, but when more reason-
ing is necessary to go the extra mile from “safe” to “correct” these techniques often
fall short. Take, for example, a program that manipulates matricies. Safety of the
program might guarantee only that matrix sizes match up when performing ad-
dition or multiplication. Correctness, on the other hand might require reasoning
that a particular function correctly implements LU-decomposition, which, in turn,
requires stating what it means for a matrix to be lower-triangular.

What is needed to solve these problems is a foundational technique for build-
ing and reasoning about arbitrarily complex properties. While calculus is the lingua
francaofmost engineering disciplines, logic is the foundation of computer science.
The last twenty years has seen a massive growth in automated reasoning systems.
Logic tools such as SAT and SMT solvers [24, 68, 76], model checkers, and inter-
active proof assistants make it possible to approach problems that were previously
too large too understand on our own.

In this dissertation I focus on the task of building domain-specific automation
within foundational proof assistants. Proof assistants provide rich logical foun-
dations, but their automation necessarily is unable to solve all problems that can
be stated. However, the richness of the logic provides techniques for building ex-
tremely useful domain-specific automation. In this dissertation I develop a set of
abstractions and building blocks for composing this domain-specific automation.

Thesis Open computational reflection in intensional type theories
can lower the cost of writing trustworthy, scalable, and customizable
automation.

3

In the rest of this chapter I explain what this means, and in the rest of the dis-
sertation I justify it. I begin with a brief overview of formal logic, presented from a
computer science point of view (Section 1.1). Of particular interest is how formal
logics capturemeaning, which reduces reasoning, especially checking existing rea-
soning, to an algorithm. From this foundation I explain the term “intensional type
theory” (Section 1.2), focusing on its relationship to logic and then what makes it
intensional (as opposed to extensional). Finally, I give an overview of computa-
tional reflection and how it can facilitate scalable proofs of interesting properties
within rich logical theories (Section 1.3.2). I conclude the chapter by outlining
the remainder of the dissertation (Section 1.4).

1.1 Formal Logic

A logic is a systemof inference rules that describes how to justify a conclusion from
a collection of facts. Socrates’smodus ponens example is probably the best known
example of a logical inference:

All men are mortal and Socrates is a man implies Socrates is mortal.

This sentence uses the two facts “All men are mortal” and “Socrates is a man” to
conclude that “Socrates is mortal.”

Making logic “formal” means giving it syntactic (i.e. based on the shape or
form) rules for what constitutes a valid inference. In a formal syntax, I would write
Socrates’ statement as

(∀m,Manm→ Mortalm) ∧ (ManSocrates)→ Mortal Socrates.

Matching this up with the English above illuminates the differences. First, I have
eliminated as much of the English as possible. While useful as a communication
mechanism, the nuances of the English language are difficult to make precise. For
example, the previous statement uses both the singular “man” and the plural “men.”
Only our knowledge of the irregularity of the word “man” connects these two,

4

syntactically different, objects. As part of eliminating the English, I have replaced
statements of being with predicates. For example, I converted “Socrates is a man”
toManSocrates. While less natural to read, the uniformity of the representation
exposes high-level structure that will be essential for reasoning.

Continuing in the theme of syntax and building on its uniformity, it is useful to
give a syntax toproofs in addition to logical assertions. Aconvenientwayofwriting
and visualizing logical inferences is using inference rules phrased in the style of
natural deduction. As an inference rule, Socrates’ statement would be written as:

Manm→ Mortalm Manm MP
Mortalm

At the highest level, this rule can be read as an implication named using the text on
the right (MP). It states that if the top two statements, “Manm→ Mortalm” and
“Manm”, are derivable, then the bottom statement, “Mortalm”, is also derivable.
Free variables, e.g. m, are implicitly universally quantified, allowing us to instanti-
ate the above rule to prove that I am mortal.

ManGregory→ Mortal Gregory ManGregory
MP

Mortal Gregory

We can complete this proof by proving the premises. The left premise (statement
above the line) is the interesting part of Socrates’ statement, while the right hand
side is an axiom of the system. Thus, we can combine the inference rules into the
following proof tree.

Socrates
ManGregory→ Mortal Gregory

Fact
ManGregory Mp (Gregory)

Mortal Gregory

1.1.1 Machine Checkable Proofs & The Trusted Computing Base

While this level of rigor might seem excessively pedantic, it enables algorithmic
manipulation of both propositions and their proof. This in turn enables us to scale
reasoning to drastically larger problems by using computers to check, and some-
times even build, the proofs.

5

The critical factor to consider when trusting justifications attested by a com-
puter is the size of the “trusted computing base.” That is, what is the size and com-
plexity of the software that must be trusted in order to trust that a statement is
true?

Theexplicit syntax for propositions andproofsmakes it possible to implement a
checker for these rules in a relatively simplemanner. This checkermakes it possible
to separate the complexities of finding a proof from the relatively simple process of
checking it. Thus a relatively small proof checker can serve as the trusted comput-
ing base for arbitrarily large and sophisticated proofs as long as they are expressible
in the logic. For example, recent verification results for proving full correctness
properties for systems use proofs that are more than 5x the size of the system they
verify [85, 96, 98, 103, 110]. Extrapolating these techniques to amulti-million line
operating system results in hundreds ofmillions of lines of proof—far toomuch to
verify by hand. Even a thousand line proof checker results in a 100,000x reduction
in the size of the trusted code. This allows us to focus our attentionon the checker’s
correctness so that we can avoid spending time on the details of individual proofs.

The draw-back of a small trusted computing base is the need for very detailed
proofs. For example, to avoid trusting a sophisticatedalgorithm for reasoning about
arithmetic, all of the arithmetic manipulation in the proof must be justified within
the proof object itself. Abstraction may enable these proofs to be smaller, and au-
tomation (which I discuss in Section 1.3)maymake it easier to build these proofs,
but ultimately these proofs must exist somewhere within the logic.

1.2 Intuitionistic Type Theory as a Logic

There are many possible choices for the logic to use. Within the programming
language verification community, intensional type theory has been gaining pop-
ularity as a useful, expressive logic. Several factors contribute to this. First, in-
tensional type theory is higher-order, making it easier to state sophisticated theo-
rems. Second, intensional type theory unifies the languages of propositions and
proofs by way of the Curry-Howard correspondence (see the next paragraph).

6

This means that the several levels of syntax are merged into a single level and al-
lows writing very generic properties about both. Beyond the theoretical benefits
of the system are the practical ones. Intensional type theory has several imple-
mentations [8, 62] and some social processes (e.g. books [33, 56, 133] and active
research programs [148]) behind it.

The Curry-Howard correspondence makes precise the relationship between a
logic and a functional programming language. The correspondence states the fol-
lowing similarities:

Logical View Programming View
Logic ∼ Type system

Formula ∼ Type
Constructive Proof ∼ Typed Functional Program

To give a concrete example, consider the relationship between logical conjunc-
tion and pairs (tuples) in a functional programming language. A conjunction is
provedbyprovingeachof the twoconjuncts individually, while apair is constructed
by combining the value for each part. In inference rules these are expressed as fol-
lows:

Γ ⊢ P Γ ⊢ Q
∧-IΓ ⊢ P ∧ Q

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2 ×-I
Γ ⊢ (e1, e2) : τ1 × τ2

While the conclusions and premises look slightly more complex because the in-
corporate a context (Γ), these inference rules mean exactly the same as the simple
inference rules that I showed for Socrates’ example.

Note the similarity between the logical formulae to the right of the turnstile in
the logical realm(on the left) and the types to the right of the colon in theprogram-
ming realm (on the right). If we think of the Γ’s as the same, the only difference is
the e1 and e2 terms on the right. In theworld of programming languages, these cor-
respond to the program, while under the logical interpretation, these terms are the
proofs. Intensional type theory’s ability to represent and manipulate these proofs
within the logic enables it to build procedures that construct proofs and to use
proofs to implement procedures.

7

Intensional vs. Extensional Type Theory

The Curry-Howard correspondence explains how a type system can be viewed as
a logic, but what makes the logic intensional? The distinction between intension-
ality and extensionality lies in the definition of equality that is native to the logical
system. In extensional type theories, equality is interested in the objects them-
selves (i.e. the “extent” of the type). Intensional type theory, on the other hand, is
interested in the description of the object. To see the difference concretely, con-
sider two different ways to compute the sum of two integers n andm.

n+ m m+ n

Since plus is commutative, both expressions have the same value and can there-
fore be used interchangeably in an extensional type theory. In an intensional type
theory, however, these two terms are not freely interchangeable. Instead the proof
that witnesses their equality is necessary to convert one expression to the other.

The need for the proof as relevant to the term highlights the difference between
two types of equality: definitional and propositional. Definitional equality (which
I will notate using ≡) is the equality that the entire theory internalizes. Within
intensional type theory this equality is closely related to program reduction. For
example, (λx.x) 3 ≡ 3 and 1 + 1 ≡ 2 simply by running the plus function¹.

Propositional equality (which Iwill notate using=) requires proofs to shownot
only that two terms are equal, but how they are equal. In intensional type theory,
these proofs are themselves terms in the logic and thus have computational con-
tent. For example, a proof that x = y should be viewed as a function that describes
how to convert any proof of a property P about x into a proof of P about y.

While intensional type theory distinguishes between definitional and provable
equality, extensional type theory unifies them using the equality reflection rule.

Γ ⊢ A = B ≡-ExtΓ ⊢ A ≡ B

¹Here I use standard lambda calculus notation where λx.x is the identity function that takes
any number and returns it.

8

This rule states that any propositional equality can be converted into a definitional
equality. This makes sense in an extensional type theory because the meta theory
is concerned with the actual values, and if two values are provably equal it will not
be able to distinguish them.

The implication of equality reflection is most clearly seen in inconsistent con-
texts. In the following examples,⊥ denotes a false assertion. The following state-
ment is perfectly valid in an extensional theory but complete nonsense in an inten-
sional one.

⊥ → 3 = ‘x’

Here, equality requires two things of the same type, but 3 and ‘x’ clearly have dif-
ferent types since one is an integer and the other is a string. Using≡-Ext, however,
we can prove that

⊥ → Z = string

byappealing to the contradictorypremise. Thus the typingderivation for the above
statement is the following:

• ⊢ ⊥ : Prop
⊥ ⊢ 3 : Z

⊥ ⊢ Z = string
≡-Ext ⊥ ⊢ Z ≡ string ⊥ ⊢ ‘x’ : string
Conv ⊥ ⊢ ‘x’ : ZEq-I
⊥ ⊢ 3 = ‘x’ : Prop

→-I• ⊢ ⊥ → 3 = ‘x’ : Prop
By internalizing propositional equality into definitional equality, extensional the-
ories provide the ability to write terms such as this directly.

Intensional theories can also express properties such as the one above except
that the implicit uses of≡-Ext in the extensional proof must be converted into an
explicit cast in the intensional proof. This means that, for example, instead of stat-
ing 3 = ‘x’ in an intensional theory we would state 3 = cast pf ‘x’ where pf is
theproof that string = Zgiven⊥. While seemingly tedious sincewe thinkofcast
as simply being the identity function, considering the content of these proofs leads
to interesting structures and is central to current work on proof-relevant mathe-
maticswhich is championedby the emergingfieldof homotopy type theory [148].

9

While witnessing these casts explicitly in proofs may seem inconvenient, inten-
sional theories enjoy several convenient properties that extensional theories do
not. First, intensional theories have decidable, syntax-directed type checking be-
cause there is never a need to construct a proof out of thin air. Extensional theories,
on the other hand, require the entire typing derivation rather than just the term to
justify thewell-formedness of terms to the proof checker. Second, intensional the-
ories support reduction in inconsistent contexts. To see why this is a problem in
extensional type theory, consider the following term:

⊥ → (λx.x x)(λx.x x)

Since⊥ can be used to prove anything, the term on the right-hand-side of the ar-
row is well typed; however, reducing it to a normal formwill never terminate, thus
the proof checker will never terminate. In an intensional theory, the cast necessary
to make this term type check depends on the unknown proof of⊥ in the context.
Thus, reduction stops when this cast needs to be inspected, which prevents the
evaluation from diverging.

These theoretical properties, alongwith the existenceof several practical tools [8,
62], havemade intensional type theory a popular vehicle for formal developments
in recent years. I survey alternatives in the related work at the end of Chapter 2.

1.3 Automation

Building explicit proofs from scratch is often labor intensive. To mitigate the bur-
den, we use automation to build proofs for us. Fundamental limitations on the
decidability of certain logics prevent us from solving all problems completely au-
tomatically. However, automation still plays a large role in building proofs at scale.

The degree of automation can vary wildly between problem domains. Type in-
ference algorithms, such as those inOCaml [146] andHaskell [145], are excellent
examples of a simple but powerful form of automation for proving a shallow prop-
erty, i.e. the type safety of a program. At the other end of the spectrum, verify-

10

ing deeper properties—such as the functional correctness of an optimizing com-
piler [105] or deepmathematical results such as the Odd-OrderTheorem [83]—
is a much less automatic task. In instances such as these, automation is often rele-
gated to filling in the leaves of the proof while human insight is necessary to guide
the high-level proof structure. While not really automation itself, the ability to
combine human guidance with automation is extremely useful in developing so-
phisticated proofs and is a feature unique to proof assistants.

A crucial property of automation is that it should lie outside of the trusted com-
puting base. A proof generated by automation should be just as trustworthy as
one that is painstakingly filled in by an expert. This interchangeability allows so-
phisticated heuristics and complex, highly optimized implementations of automa-
tion without the need to worry about compromising the soundness of the system.
There are two high-level strategies for building trustworthy automation: have the
automation produce a proof object andwrite a proof that the automation is sound.

1.3.1 Generate and Check Automation

A common automation technique in a rigorous formal system is to use procedures
that build proof objects that can be checked after-the-fact by the trusted core. This
approach avoids theneed to trust, or even formalize, the procedures since the com-
plete justification is captured by the self-contained proof. The independence of
the automation from the trusted computing base provides considerable freedom
in building this type of automation. For example, automation of this sort can lever-
age non-determinism, side effects, and even human hints without compromising
the trustworthiness of the final proof.

Automation of this variety comes in two varieties: pre-packaged decision pro-
cedures that are tuned to solve particular problems and scripting-languages that
provide building blocks for building problem-specific automation. In the former
category, the Isabelle proof assistant [123] provides automation such as “sledge-
hammer” that invokes external tools such as SMT [24, 68, 76] solvers. While
these external tools are large and may contain bugs, they are built to export proof

11

sketches that provide a skeleton that can often (but not always) be filled in to pro-
duce a full Isabelle proof object. Even in cases when such proof objects cannot be
constructed, the results of these external tools can be helpful. For example, model
checkers [78] can point out problems in proof obligations that make them false,
e.g. detecting an off-by-one error or an incorrect sign in a theorem statement. This
early detection can highlight problems with the current development before sig-
nificant effort is invested in trying to prove a theorem.

Beyond external tools, some proof assistants provide “scripting” languages to
help automated the construction of proofs. For example, the Coq proof assis-
tant [62] providesLtac [69], a domain-specific language for writing backtracking
proof search procedures². While often not as fast as external tools, the customiz-
ability makes these scripting languages well suited for building simple, domain-
specific automation. In fact, the flexibility ofLtac coupled with the richness of de-
pendent type theory has madeLtac a powerful building block for entire tools such
as a synthesis engine [73] and numerous verification systems [14, 29, 54, 97] that
live within Coq.

“Generate and check”-style automation is especially useful when a large amount
of search is done to construct a relatively small proof witness. Classic satisfiabil-
ity solvers have this property. The proof is simply a valuation of the variables,
which can be easily checked, but the search needed to find those values is NP-
complete [64]. In cases such as these, the proof search can be done once, and the
results can be checked efficiently by any number of clients.

On the other end of the spectrum, some problems are very easily automated
but produce very large proof terms. For example, reasoning in algebraic structures
with associativity and commutativity often requires large proofs littered with ap-
peals to permutation theorems. In cases such as these, compressing these large
proofs can result in a substantial performance win.

²I discussLtac in more detail in Section 2.2.

12

1.3.2 Verified Automation: Computational Reflection

Within expressive logics that have a notion of computation another approach ex-
ists: implement automation within the logic and prove it sound. This style of
proving is referred to as “computational reflection” [34] and it is the topic of the
remainder of the dissertation. Using computational reflection, the automation
does not need to build the problem-specific proof. Instead the general proof of
the soundness of the automation can be instantiated to a particular instance and
serve as the proof of a property. In essence, computational reflection allows us to
extend the proof checker with custom proof checking procedures and use them,
to avoid constructing and checking large proof objects. This ability to use compu-
tation enables us to exploit domain-specific knowledge to check properties more
efficiently.

Example A simple, illustrative example of computational reflection in action is
proving the evenness or oddness of numbers. Evenness and oddness can be de-
fined by the following rules.

E0⊢ Even 0
⊢Odd n EO⊢ Even (1 + n)

⊢ Even n OE⊢Odd (1 + n)
Using these rules it is trivial to prove that any constant natural number is either
evenorodd: simply apply the appropriate constructoruntil you reach thebase case
when the number is 0. Unfortunately while this algorithm is complete, it produces
very inefficient proofs. For example, the proof tree justifying that 1024 is even
requires 1025 steps.

Abstraction can help us build a shorter proof by showing that 2 × n is even
for any n and using that proof with n = 512. This solves the problem but only
if we can figure out that 512 is the appropriate argument to n. Further, while this
approach works nicely for numbers and evenness more complex domains such as
propositional logic do not always have similarly nice properties.

To solve the even-odd problem reflectively we write a procedure isEven that
takes a natural number and returns a boolean. We then prove a derived inference
rule stating that if isEven returns true then the given number is even.

13

⊢ isEven n = true isEven-sound⊢ Even n
Using this rulewe can convert a proof obligation of Even n into an equality. Lever-
aging the conversion rule, which is not manifest inside the proof, the logic can
reduce isEven 1024 to true leaving us to prove true = true, which has a much
shorter proof. Concretely, the large proof tree on the left can be converted into a
small proof tree on the right.

⊢ Even 0
...

⊢ Odd 1023
⊢ Even 1024

=-Refl⊢ true = true Conv⊢ isEven 1024 = true isEven-sound⊢ Even 1024

Assuming that checking conversion can be done efficiently, checking the small
proof on the right will be significantly faster than checking the large proof on the
left³.

This example is purposefully simple. However, building these reflective pro-
cedures can be complex, and their scope is often limited. For example, while the
technique described here is sufficient to prove that 1024 is even, it cannot prove

⊢ ∀x,Even x→ Even (4 + x)

even though theproof is arguably simpler. InSection2.3 I discuss an enriched style
of computational reflection that can solve this problem. In the rest of the disserta-
tion I will present and apply my own techniques to make this style of automation
more compositional.

Adownside of computational reflection, however, is that it requires that the pro-
cedure be written and verified within the logic. This oftenmeans more upfront ef-
fort which is only justified if the automation is broadly applicable. Further, these
requirements make some programming features such as side effects and random-
ness difficult to use since the implementation must fit within the evaluation rules
of the logic.

³InCoq 8.4pl4 running on a 2.7GhzCore i7 the proof on the right takes 0.1 seconds to check
while the one on the left takes 1.8 seconds, an 18x speedup from using computational reflection.

14

1.4 Overview of theDissertation

Large-scale computational reflection is a powerful technique that can be used to
dramatically increase the usability of proof assistants. It offers a way to program
proof assistants, enabling them to more efficiently reason about large, domain-
specific problemswhile retaining access to rich logics that are essential when prov-
ing deep theorems. Rather than verifying stand-alone tools using proof assistants,
wecan leverage theengineering thatmakes interactive verificationpossible tobuild
automation that runs within the proof assistant. This allows us to combine differ-
ent automation procedures and for those procedures to degrade gracefully in the
face of undecidable problems and new domains that pre-packaged tools do not
support out of the box. Further, it allows us to accomplish all of these things in a
foundational way without enlarging the trusted computing base.

Achieving this goal requires compositionality of automated procedures, some-
thing that current techniques for computational reflection in intensional type the-
ory do not support. In the remainder of the dissertation I demonstrate several
techniques that make it easier to write, compose, customize, and verify reflective
procedures. These techniques lower the up-front cost of computational reflection,
making it easier to build automation that scales to large problems.

Before diving into my contributions, I give a brief overview of the Coq proof
assistant [62] and computational reflection (Chapter 2). In Chapter 3 I discuss
the core technical contributions of the dissertation and how I realize them in the
MirrorCore library for compositional computational reflection. I demonstrate
the key insights of my techniques using small case studies for tautologies, monads,
and generic proof search.

Next, I discuss the engineering decisions that contributed to the development
of MirrorCore (Chapter 4). Rich types and first-class proofs provide a range
of implementation choices for automation, and I describe some of the trade-offs
between performance and verifiability that different choices have. I also discuss
future directions that are promising ways to achieve the best of both worlds. In
addition, I record some of the tricks necessary to make reflective verification fast

15

in Coq.
InChapter 5 I demonstrate the systemat scale by showing thedegreeof automa-

tion that my techniques enable for Bedrock [54], a Coq library for low-level im-
perative program verification. While Bedrock does not leverage MirrorCore
directly, many of MirrorCore’s techniques grew out of the Bedrock automa-
tion.

InChapter 6, I develop a library of building blocks for assembling reflective pro-
cedures that greatly simplifies the verification task associated with computational
reflection. In Chapter 7 I return to the task of imperative program verification and
show how to combine the building blocks from Chapter 6 with custom automa-
tion to build a high-level verification framework within Coq.

I conclude in Chapter 8 by recapping my contributions and looking to future
avenues to further the goal of extensible, scalable, and foundational automation.

16

2
Background

In this chapter I provide an overview of relevant background material. Much of
the rest of the dissertation focuses on solving technical problems that arise from
technical aspects of formal type theory. These details are in service of producing
foundational proofs in a rich logic that is both decidable and efficient to check.

I begin with an overview of intensional type theory focusing in particular on
Gallina, the type theory of the Coq proof assistant (Section 2.1). While in the
dissertation I will avoid going into many of the technical details of proofs, a basic
understanding of them is important to see how computational reflection fits into
the larger picture of verification.

TheCoq proof assistant also providesLtac [69], a domain-specific language for
generating proofs. In Section 2.2, I discuss the basics of Ltac to provide insight
into the standard method of building proofs in Coq. This section also serves as
background for the reflective tactic language that I present in Chapter 6.

17

In Section 2.3 I discuss, in greater detail than in the introduction, computational
reflection, the core building block of the dissertation. In particular the tautology
prover that I develop illustrates the techniques prior to the work I present in the
remainder of the dissertation. I also explain the connection between proofs con-
structedbycomputational reflectionand those constructeddirectly (Section2.3.1).
Finally, I cover some of the drawbacks to computational reflection as a proof tech-
nique (Section 2.3.2). I conclude the chapter by surveying alternatives to inten-
sional type theory (Section 2.4).

Much of the remainder of the dissertation is built in the Coq proof
assistant. Therefore, the background focuses on the type theory and
primitives thatGallina, Coq’s logic, provides. Inmost cases, the ideas
translate directly into other higher-order, dependently typed proof
assistants/programming languages such as Agda [8].

2.1 Gallina: Coq’s Logic

NotaBeneAdvancedTopics inTypes andProgrammingLanguages [131]
provides a detailed introduction to dependent type theory, a task
better suited for a book then a section of a chapter. This section pro-
vides a high-level overview of the core of Coq’s logic predominantly
for the purpose of highlighting notation and terminology.

2.1.1 The Calculus of Constructions

The logical core of the Coq proof assistant is the calculus of inductive construc-
tions (CiC) [33]. CiC is a dependent type theory, the calculus of constructions
(CoC), enriched with inductive definitions and universes.

Ignoring the “dependent” part for just a moment, the simply typed lambda cal-
culus is defined inductively by the following definitions.

(types/formulae) τ ::= τ1 → τ2 | τbase
(terms/proofs) e ::= e1 e2 | λx : τ.ex | x | ebase

18

Here, τ represents types and e represents terms. Types are either function types
with domain τ1 and range τ2, written τ1 → τ2, or any of a collection of base types,
e.g. N the type of natural numbers¹.

At the term level, e1 e2 represents the function application (call) of e1 (the func-
tion) to e2 (the argument). λ abstraction builds a function by “abstracting” over
a term x of type τ. This abstracted term is referenced using the syntactic form for
variables x. I use the superscript ex to note that the variable x can occur “free”
in e and say that references to x within ex are captured by the lambda binder. For
brevity, I will abbreviate “λx:τx. (λy:τy. exy)” by “λ(x:τx)(y:τy). exy” and, when the
types are clear, I will elide them entirely. Despite the syntactic convenience of
eliding them, it is important to note that, in the style of Church, the terms actually
carry their types.

Interpreting this language under the lens of logic via the Curry-Howard corre-
spondence means that τ’s are logical formulas, i.e. propositions, and e’s are proofs.
A proposition τ is provable when there exists a value of the type, e.g. 1 is a “proof”
ofN.

The correspondence becomes more interesting for the function type. A func-
tion type corresponds to a constructive implication from the domain type to the
co-domain type. With this understanding, function application corresponds to
the logical rule of modus ponens that I showed in Chapter 1.

Adding Dependency

Things becomemore interesting whenwewish to reason about terms. In order for
logical formulae tomention terms, termsmust be embeddable in the type/formula
language. The foundation of Gallina is Coquand’s calculus of constructions [63],
which unifies the languages of types/propositions and terms/proofs in the follow-

¹I include base types simply so the above language contains programs. Without base types
there are no types at all.

19

ing way.

τ, e ::= e1 e2 | λx:τ. ex | x |Πx:τ.τx | Prop | Typei

Here, Π is the type of dependent functions, i.e. functions whose result types de-
pend on their input. In the remainder of the dissertation I will write ∀ in place
of Π when the function should be thought of as a proof and Π when it should be
thought of as a function². Or, in logical terms, propositions whose conclusions
depend on universally quantified values. For example, a proof that all numbers are
greater than or equal to 0 would be represented by the following type:

∀n : N.0 ≤ n

The final two constructors are the universes in Gallina. Prop is the universe
of propositions, which is impredicative, which means that it allows quantification
over itself, for example (∀ P: Prop, P → P) : Prop. Coqalso includes anhered-
itary, predicative heirarchy of universes indexed by natural numbers (the Typei).
Type being predicative means that types can only quantify over smaller types. For
example, (∀ T: Typei, T → T): Typei+1 butnot (∀ T: Typei, T → T): Typei. Their
hereditary nature of the hierarchy means that it is cumulative, i.e. x: Typei→
x: Typei+1. The inclusion of Prop is a fundamental difference from Agda [8], an-
other popular implementation of dependent type theory. In the remainder of the
dissertation I will elide the subscript on Type. Coq internally figures out appropri-
ate universes.

Definitional Equality

Given its status as a programming language, the calculus of constructions has the
same reduction rules as the lambda calculus. Within the dependent type theory,
these reductions form the definitional equality in the system.

²In reality, Π and ∀ are synonymous in Gallina.

20

Theprimary interesting feature of definitional equality for computational reflec-
tion is that it occurs for free in proof terms. While it does take time to reduce terms,
all type checking in Coq is donemodulo definitional equality without any explicit
proof terms stating how toperform reduction. This is important for computational
reflection because the reflective procedures that I will write require thousands or
millions of reductions to execute. Witnessing these reductions with explicit se-
quences of reduction steps would be prohibitively expensive in proof terms and
would eliminate much of the benefit of computational reflection.

The reason why definitional reduction can be free without sacrificing decidable
type checking is that convertibility of Gallina terms is decidable. This means that
given any twowell-typedCoq terms it is always possible to check whether the two
are definitionally equal.

The downside of this restrictive, built-in notion of equality is that it is one of
the few things in Gallina that is second-class. There is no way within Gallina to
state that two terms are definitionally equal; they either are or they are not. In
Chapter 3 I will present a powerful technique for circumventing this restriction in
some circumstances.

Inductively Defined Data Types

The main extension in Gallina comes from inductively defined types. Inductive
types are a way to extend Gallina with new types and values. For example, we can
define a type representing natural numbers in unary using the following inductive
definition.

Inductive N : Type := O : N | S : N→ N. (* also written “S (_ : N)” *)

In English, the inductive type N is freely generated by two constructors: O (rep-
resenting 0) of type N, and S of type N→ N (representing one more than the
number it is applied to). For example,

O = 0 SO = 1 S (SO) = 2

21

Constructing this type inductively corresponded to taking the least fixed-point
of a function that generates the type. To ensure that the least fixed-point exists,
Gallina places certain restrictions on the types of the constructors. In Gallina, the
key restriction is that the recursive type must only occur in strictly positive po-
sitions (i.e. it cannot be mentioned to the left of an arrow) in the constructor’s
argument types. For example, Gallina rightly rejects the following inductive type

Inductive Bad := bad : (Bad → False) → Bad.

since it can be used to prove False . I will return to this point in the related work
at the end of Chapter 3.

In addition to the constructors, used to build values, inductive types also induce
two more features: pattern matching and structural recursion.

PatternMatching(CaseAnalysis) In the context of logic, patternmatching
corresponds to case analysis and is written mimicking the syntax of OCaml. For
example, the following code computes the predecessor of n or returns 0 if n is 0.

match n with

| O ⇒ O

| S n’’ ⇒ n’’
end

Since types can depend on values, it is important to be able to refine the type
based on the value of the term being matched on (the discriminee). To do this,
Gallina’s pattern matching construct has dependency annotations as and return .
The typing rule is quite complicated, but an example is illustrative.

match n as n’ return n’ ≥ 0 with

| 0 ⇒ . . . : O≥ 0
| S n’’ ⇒ . . . : (S n’’) ≥ 0
end : n≥ 0

Here, the n’ after as is a binder which is referenced by the return clause. On the
“outside” the n’ in the return clause is substituted for thediscriminee,meaning that

22

the entire match expression has the type n≥0 (shown via the type ascription after
the end). In each branch, however, some information is learned about the value n,
allowing a more precise type to be given. In the first branch, the code knows that
n is 0, so the type of . . . in the first branch should be 0 ≥ 0. Similarly, the type for
the second branch should be (S n’’) ≥0. Note that in both branches n is still in
scope with the same type.

RecursiveFunctions (Induction) In addition todependent patternmatch-
ing, inductive data types also admit structural recursion. This is introduced by the
Fixpoint syntax (or fix when it is an expression). For example, the following is a
definition of plus.

Fixpoint plus (n m : N) {struct n} : N :=
match n with

| O ⇒ m

| S n’ ⇒ S (plus n’ m)
end.

Theneed for soundnessmakes recursive functions inGallina substantiallymore
complex than they are in normal programming languages. Termination is neces-
sary because divergent functions could be used to “witness” proofs of False. For
example, without termination the following is a proof that True → False:

fix bad (x : True) : False := bad x.

InGallina, termination is guaranteed extra-logically using a syntactic restrictionon
fixpoints that checks that all recursive calls are to syntactically structurally smaller
terms. In the above implementation of plus, addition is defined on natural num-
bers by recursion on the first argument (denoted by the {struct n} annotation).

In addition to the somewhat restrictive definition rules, there is also a subtlety
in defining reduction of fixpoints. Definitional equality is only allowed to unfold a
fixpoint if the argument on which the function recurses (e.g. the n in plus) starts
with a constructor, e.g. O or S. This restriction is necessary to retain decidable
conversion.

23

Indexed Inductive Data Types Beyond the simple definition of N above,
Gallina also supports indexed inductive types, sometimes called generalized al-
gebraic data types or GADTs. The most common indexed data type is the one
representing equality.

Inductive eq {T : Type} (a : T) : T → Prop :=
| eq_refl : eq T a a.
(* [eq T a b] is written [a = b] since [T] can be easily inferred.

* The implicitness of [T] is notated by the { }’s *)

At an intuitive level, this type expresses that terms are only equal if they are syntac-
tically identical. Here, the arguments T and a are “parameters” while the unnamed
T to the right of the : is an “index.” The main difference between parameters and
indices is that parameters must be constant in the return types of all of the con-
structors while the indices of the inductive type can vary. In the type of eq_refl
above the parameter is repeated in the index position stating that you can only
prove a = a for any value a. Note, however, since definitional equality is implicit
in Coq, we can still prove, e.g. 3+2 = 5 since 3 + 2 ≡ 5.

Pattern matching on inductive types with indices enables us to refine the type
based on the knowledge that we learn about it in each branch of the pattern. To
support this, Coq provides an in clause which provides binders for the indices of
an inductive data type in the return type of a dependent match. For example, the
following proof term uses a proof of equality to “rewrite” b into a in the type b≥0.

match pf : a = b in _ = b’ return b’ ≥ 0 with

| eq_refl ⇒ . . . : a≥ 0
end : b ≥ 0

Here, the in is binding values from the type of pf. Again, on the outside b’ unifies
with b producing the type F b. On the inside, however, the eq_refl constructor
uses a for both indices, so b’ unifies with a, thus the . . . requires a value of type
a≥0.

24

Toplevel Definitions, Sections & Variables

On top of Gallina, Coq provides a number of conveniences to help manage ab-
straction and build proof terms. I already showed implicit arguments as with the
T in the type of eq. When they are important, I will notate them using subscripts
on the function. For example, if I wish to call out the type of an equality I would
write eqN to represent equality of natural numbers. In more literal contexts where
I explicitly spell out all arguments I will use Coq’s standard @ notation, e.g. @eq N.
Coq also provides top-level definitions using the syntax Definition (or Fixpoint
if the function is recursive). When definitions should be thought of as local defi-
nitions I will use Let instead of Definition .

Coq also provides a section mechanism for implicitly quantifying many terms
by the same set of unchanging arguments. Take lists, for example, which are poly-
morphic in the type of elements. Using sections and variables, lists and the length
function can be defined as follows.

Section lists.
Variable T : Type.
Inductive list : Type := nil : list | cons : T → list → list.
Fixpoint length (l : list) : N :=

match l with

| nil ⇒ 0
| cons _ l’ ⇒ S (length l’)
end.

End lists.

Line 2 implicitly parameterizes the remaining definitions in the section by the vari-
able T which is a type. For example, the above code is the same as:

Inductive list (T : Type) : Type :=
| nil : list T

| cons : T → list T → list T.
Definition length (T : Type) : list T → N :=

(fix length (l : list T) : N :=

25

match l with

| nil ⇒ 0
| cons _ l’ ⇒ S (length T l’)
end).

In the dissertation, I will freely use Variable , but I will elide opening and closing
sections.

2.2 Constructing Proofs withLtac

Section 2.1 described the language of proofs in Coq. All proofs in Coq have cor-
responding Gallina proof terms; however, writing proofs directly in Gallina can
be cumbersome. To facilitate writing proofs, Coq comes packaged with a built-in
tactic language,Ltac [69], that interprets “proof-like” commands and generates the
corresponding Gallina proof terms.

The easiest way to explain Ltac is by a simple example. Consider proving the
following statement about addition.

Goal ∀ n : N, n + 0 = n.

Since addition is defined inductively on its first argument, which is a variable, the
proof follows from induction on n. Induction is a combination of a fixpoint and a
dependent patternmatch. We couldwrite this by hand, but inLtac we can generate
the Gallina code using the tactic induction n.

This results in two goals, one for the O case, and one for the S case.

Goal 1
=========================
O + O = O

Goal 2
n : N
IHn : n + O = n

=========================
(S n) + O = (S n)

26

Focusing on the first goal for a moment, we can askLtac to simplify the expression
producing the new goal: O = O which is solved using eq_refl . Using tactics³:

simpl. reflexivity .

This solves the first goal, leaving us with only the inductive case. Applying simpli-
fication reduces the call to plus, which changes the goal to the following.

S (n + O) = S n

This goal exposes the ability to use the inductive hypothesis to rewrite the n + O

into n. Again, we could write the dependent match with the in clause, but instead
we can haveLtac generate the code using the rewrite tactic. rewrite IHn gener-
ates a snippet of proof behind the scenes and leaves us to prove:

S n = S n

which is solved by reflexivity .
While we never wrote the proof term explicitly, we can ask Coq to show us the

term thatLtac generated.

(fun n : N⇒
N_ind (fun n0 : N⇒ n0 + O = n0)

eq_refl (* Base case *)

(fun (n0 : N) (IHn : n0 + O = n0) ⇒ (* Inductive case *)

eq_ind_r (fun n1 : N⇒ S n1 = S n0) (* rewrite IHn *)

eq_refl IHn) n)

This proof uses defined functions rather than the primitive fix and match for do-
ing both induction (N_ind) and rewriting (eq_ind_r) but ultimately, the term
reduces definitionally to the following term.

fun n : N⇒
(fix F (n0 : N) : n0 + 0 = n0 :=

match n0 as n1 return n1 + 0 = n1 with

³The simpl is optional since reduction in Coq occurs automatically during type checking.

27

| 0 ⇒ eq_refl

| S n1 ⇒
match match F n1 in _ = y return y = n1 + 0 with

| eq_refl ⇒ eq_refl

end in _ = y return S y = S n1

with

| eq_refl ⇒ eq_refl

end

end) n

While this proof was generated completely using Ltac, it is quite similar to a
hand-constructed proof (not shown) of the same fact. In general, tactic-based
proving produces less efficient proof terms than hand constructed terms. For this
reason all functions that are meant to be computed on in the remainder of the dis-
sertation are defined manually. Only proofs that are never reduced are defined
using tactics.

2.3 Proof by Computational Reflection

I discussed the high-level ideas of computational reflection in Section 1.3.2. In this
section I dig a little deeper with an example based on deciding tautologies.

The intuition of computational reflection is to prove a property by writing a
function and using a soundness theorem about it coupled with the internal reduc-
tion mechanism of the logic to build the proof. At the high level a propositional
tautology prover and its soundness lemma might look like this:

Definition rtauto ’ (H: list Prop) (G: Prop) : bool := . . .

Theorem rtauto ’ _sound : ∀ (H: list Prop) (G: Prop),
rtauto ’ H P = true →
Forall idProp H→ (* H1 ∧ H2 ∧ · · · ∧ Hn *)

G.

28

Prop Prop

prop prop

Semantic
SyntacticJ−K J−K

rtauto
Reductionsoundness

proof

Figure 2.1: The basic components of computational reflection. The dashed
line separates the semantic world (bottom) from the syntactic universe (top).J−K is the denotation function that connects the two. rtauto is the procedure
that performs the reasoning, and soundness is the proof that translates the
reduction into a proof object.

Intuitively, the rtauto function takes in a list of known facts H: list Prop and a
goal G: Prop and returns true if G is provable under the conjunction of the facts
in H.

While the above definitions are straightforward, there are no interesting imple-
mentations of rtauto ’ that satisfy the specification. This is because Gallina pro-
vides noway to inspect values of type Prop. That is, rtauto ’ cannotmatch on G or
any of the values in H to see how they are built.

The standard technique to enable the function to inspect the goal is to intro-
duce a level of indirection by defining a syntax that represents the structure of the
propositions that we wish to inspect. Figure 2.1 shows the solution graphically. In
the figure, the syntactic type prop represents a subset of all possible Props. A deno-
tation function—represented in the figure using Oxford brackets (J−K)—makes
the meaning of the syntax precise by computing a proposition for each piece of
syntax.

Figure 2.2 shows how this works using an inductive type and a denotation func-
tion. The prop inductive type provides constructors for each type of proposi-
tional fact that the automationwill reason about. Thedenotation function (propD)
shows how these syntactic objects map directly to their semantic meanings (lines

29

1 Inductive prop :=
2 | pRef (n : index)
3 | pTrue | pFalse

4 | pAnd (p q : prop) | pOr (p q : prop) | pImpl (p q : prop).
5

6 Variable ps : map index Prop.
7

8 Fixpoint propD (p : prop) : Prop := (* JpK *)

9 match p with

10 | pRef i ⇒ get i

11 | pTrue ⇒ True

12 | pFalse ⇒ False

13 | pAnd l r ⇒ propD l ∧ propD r

14 | pOr l r ⇒ propD l ∨ propD r

15 | pImpl l r ⇒ propD l → propD r

16 end.

Figure 2.2: Syntactic representation of propositional logic.

9-13). The pRef constructor is used to represent uninterpreted symbols which
rtauto will know nothing about. The denotation of these symbols is provided by
the ps map that is passed to the propD function using the section variable mecha-
nism.

Adapting rtauto and its specification to use the syntactic propositions is simply
a matter of replacing Prop with prop and using the denotation function to convert
the syntactic valuesof typeprop into semantic valuesof typeProp in the soundness
theorem.

Definition rtauto (H: list prop) (G: prop) : bool :=
. . .

Theorem rtauto_sound : ∀ (H: list prop) (G: prop),
rtauto ’ H P = true →
∀ (ps: map index Prop),

Forall (propD ps) H → (* propD psH1 ∧ · · · ∧ propD psHn *)

propD ps G.

Since Gallina can match on values of type prop, we can now write, and prove
sound, useful implementations of rtauto . Figure 2.3 shows a flavor of a simple

30

Fixpoint rtauto (hyps: list prop) (g: prop) : bool :=
match g with

| pTrue ⇒ true

| pAnd g1 g2⇒ rtauto hyps g1 && rtauto hyps g2
| pImpl g1 g2⇒ rtauto (learn g1 hyps) g2 (* assuming g1, prove g2 *)

| g ⇒ findAssumption hyps g

end.

Figure 2.3: A partial, simplified implementation of a reflective tautology prover.
The learn function breaks conjunctions in the term apart and adds the con-
juncts to the list of hypotheses. The findAssumption function searches for the
proposition in the list of hypotheses.

reflective procedure. Note that the code relies crucially on the ability to inspect
the input through pattern matching. Achieving this in an extensible way will be
the topic of Chapter 3.

2.3.1 Computational Reflection and Proofs

While we often think of proofs as being “extra” objects that do not affect com-
putation, proofs are actually an integral part of the computation in Gallina. For
example, when we perform a rewrite we are matching on a proof term, therefore,
computationally, there must be a proof to match on. How does this idea reconcile
with one of the coremotivations of computational reflection, to not generate proof
terms?

To answer this question, consider the proof term for a simple tautology.

⊢ P ∧ Q→ Q ∧ P

In Gallina, a simple (manually constructed) proof term for this goal is the follow-
ing⁴:

fun PQ: P ∧ Q ⇒ match PQ with

⁴conj is the constructor for the proof of a conjunction.

31

| conj pfP pfQ ⇒ conj pfQ pfP

end

The proof is a function that takes the proof of P ∧ Q, matches on it to extract the
independent proofs of P and Q, and then reassembles them into a proof of Q ∧ P.

On the surface, the proof by computational reflection is quite a bit different, and
longer.

rtauto_sound [] (* Hypotheses *)

(pImpl (pConj (pRef 0) (pRef 1))
(pConj (pRef 1) (pRef 0))) (* Goal *)

eq_refl (* Computation proof *)

{0 7→ P; 1 7→ Q} (* Environment *)

Forall_nil (* Proof of hypotheses *)

The verbosity here is predominantly due to the need to repeat the problem in its
syntactic form inorder to callrtauto_sound . As the amountof reasoning increases
relative to the size of the goal, the cost of repeating the goal becomes negligible
compared to the size of the proof.

In the reflective proof, the call to rtauto_sound hides the constructors thatwere
apparent in the manual proof. But, leveraging the constructive nature of Gallina’s
proofs, the reduction mechanism can cut through all of the abstraction and com-
pute a proof that is not much different than from the hand-coded proof above.

fun (P Q : Prop) (x : P ∧ Q) ⇒
conjP,Q match x with

| conj _ x1 ⇒ x1

end match x with

| conj x0 _ ⇒ x0

end

Thesimilarity to themanual proof is not surprising. Our soundness proof encodes
exactly how to construct this proof for any particular problem instance. Further,
since the soundness theorem isprovedby structural inductionon the reified syntax

32

it is not surprising that it is completely gone after reduction since the syntactic
representation contains no opaque terms that would block reduction.

While the proof is simple, it requires some care to achieve the right computa-
tional properties. In particular, it is important to keep inmind that someproofs are
universally quantified, which will block pattern matches, while others are built by
the proof of soundness and can be freely pattern-matched on. Writing the sound-
ness theorem in a continuation-passing style makes it possible to generate exactly
the hand-crafted proof that uses a single match on the proof of P∧Q. While the
proof terms do not match up exactly, they are provably equal.

2.3.2 The Drawbacks of Computational Reflection

While powerful and broadly applicable, computational reflection is not without
somedrawbacks. First, applying it requiresaprioriknowledgeof all facts that could
be used. This often results in building reflective procedures that requiremore facts
than they actually need to prove any particular problem instance. While perfectly
acceptable, this introduces false dependencies andmight prevent generalization to
situationswhere those falsedependencies donothold. For example,whenproving
P → Q → P, the proof of P is not necessary and, in amanually constructed proof,
it would be ignored. In the reflective proof, on the other hand, the proof of Qwould
be passed to the reflective soundness theoremmaking it appear to be necessary to
prove P. If the soundness proof of the reflective procedure is codedwith care, these
extraneous dependencies can be eliminated by completely reducing the proof as I
showed in the previous section.

Second, computational reflection relies, in a fundamental way, on computation
that can be reasoned about within the logic. In order to be efficient, this compu-
tation must be fast; however, the engineering effort necessary to make reduction
fast often compromises simplicity and thus increases the size of the trusted com-
puting base. In Coq, this trade-off manifests itself in the vm_compute [84] mecha-
nismwhich performs fast reduction by compilingGallina to a virtual machine and
running the code there. However, neither the virtual machine nor the compila-

33

tion process is formalized, but both lie in the trusted computing base. A simpler
implementation of reduction exists and is easier to trust but orders of magnitude
slower.

Third, proofs by computational reflectionoften, butnot always,mixproof search
with proof objects. In cases where reflective procedures explore a space of poten-
tial proofs this exploration can make checking a proof as expensive as finding it.
Techniques exist for easing this burdenwhich Idiscuss in the relatedworkofChap-
ter 6.

Finally, and related to the former point, the soundness proof (whichmight con-
tain the heuristic search) is embedded directly in the proof. In cases where propri-
etary heuristics and procedures must be kept secret, proofs produced using them
cannot be distributed in their efficient form. In dependent type theories, it is al-
ways possible to remove these generic lemmas fromadevelopment by inlining and
reducing them. While this manifests the large proof object that we sought to elim-
inate by using computational reflection, it can easily be done off-line.

The last two points are addressed by using computational reflection to imple-
ment reflective proof checkers that fill in the boring details of high-level proofs.
When designed this way, the high-level proof can be constructed by proprietary al-
gorithms, and only their output needs to be included in the final, published proof.
Since the high-level proof sketch exists explicitly in the proof it must be checked
for well-typedness, which can be a burden if the sketch is long.

2.4 RelatedWork

In this chapter, I discussed the core underpinnings of the remainder of the disser-
tation. The related work incorporates the entire rest of the design space for proof
assistants and automation techniques. I delay a comprehensive discussion of work
related to computational reflection until the end of Chapter 3.

Proof Assistants Coq is one of many proof assistants and represents a single
point in an incredibly large design space. A thorough evaluation of all the cur-

34

rent proof assistants⁵ and dependently typed programming languages would be
too much to include so I highlight some representative examples.

Agda [8] is perhaps themostly closely related proof assistant to Coq and, while
substantially younger, it has matured quite rapidly in comparison. While Coq
picks a single, conservative point in the design space, Agda is parameterized by
a range of choices enabling it to be used for exploring the ramifications of different
choices. Some of the features relevant to this dissertation include: size types [6],
which incorporate the guardedness check of structural recursion into the type sys-
temmaking recursionmoremodular and less syntactic; irrelevence [7], which can
be useful to erase values that are not needed for reduction; and universe poly-
morphism, which allows explicit quantification over universes. Agda’s support for
positivity polymorphism, is of particular interest to extensible computational re-
flection because it offers a method to build inductive data types using Swierstra’s
technique from “Data types a. la. carte” [144]. I return to this observation in
Chapter 3.

Adga’s approach to proving ismuchmore closely related to dependent type the-
ory. It is only relatively recently that any work [74, 149] has investigated automa-
tion techniques such as computational reflection in the context of Agda. Due to
the heavy use of dependent types in Agda, this work must address a harder repre-
sentation problem thanmy ownwork solves. A big difference between thework in
this dissertation and the work in Agda is the applications. My work has been used
to automate large proof procedures with good performance. Much of the work on
computational reflection in Agda suffers from a slower internal reduction mecha-
nism and proof developmentmethodology that stresses extremely fast type/proof
checking.

Recentwork inspired byhomotopy type theory has started an investigation into
theories with first-class definitional equality. The Andromeda proof assistant [27]
implements one proposal for this idea. The ability to capture both intensional

⁵Including Zombie [50], Elf [128], Twelf [129], F* [143], L∃∀N [100], Dafny [104], An-
dromeda [27], Coq [62], Agda [8], Epigram [114], HOL [88], Isabelle [123], Nuprl [9], and
PVS [126] just to name a few.

35

and extensional equality in the same system has significant potential for overcom-
ing some of the limitations of intensional type theory, though it also introduces
a variety of interesting questions and may make efficient reduction considerably
more difficult or impossible. Further, like extensional type theories, Andromeda’s
proofs are not decidable to check from terms alone.

In the wider world of dependent type theories, the Nuprl proof assistant [9]
implements an extensional type theory. The core of Nuprl lies on top of partial
equivalence relations, universes, intersections, numbers, computational approxi-
mation, and equality at a type [12]. As I discussed in the introduction, extensional
type theories also identify propositional anddefinitional equality. Thismakes type
checking of terms undecidable in general though theNuprl system has a consider-
able amount of automationbuilt specifically tomake theprocess of building proofs
reasonably efficient. This insulates the developer from the corner cases that in-
evitably arise in themore expressive logic. For example, β-reduction is only sound
in consistent contexts. Second, it is not as context-free as Gallina. For example,
the term FXmay be a well-typed Nuprl term while F alone is not well-typed.

There are also proof assistants not directly built on type theories. Isabelle [123]
is a generic proof assistant that can be applied to many logics. Its core insight is
the use of a meta-language for constructing proof objects in a library-like fashion.
For example, while Coq generates an explicit proof object, Isabelle’s common im-
plementations simply exposes an opaque type of “proofs” that are constructed via
library functions. Those functions check that the terms match up on the fly, e.g.
Isabelle would reject a construction like “x + True.” One of the primary benefits
of the library approach to a proof assistant is the ability to avoid re-implementing
the machinery for performing proofs. ML code can be written to interact directly
with the proof assistant kernel, which makes it easy to make use of computational
resources such as parallelism and other system programs to perform proof search.
The ability for these procedures to directly call Isabelle’s kernel allows them to re-
main sound even in the presence of these sophisticated heuristics. Further, the
fact that proofs are second-class in Isabelle means that the proof terms never need
to be stored, thus making the proof process more memory efficient. At the same

36

time, however, this design eliminates the opportunity for writing an independent
evaluator to check the proofs.

HOL [88], which stands for “higher-order logic,” is an implementation of the
proof rules for higher-order logic. It builds directly on topof eight rules for forming
proofs: assumption , reflexivity, β-conversion, substitution, abstraction and type
instantiation. β-reduction provides a way to do term simplification, for example
allowing a proof of ⊢1+1=2 to be reduced to a proof of ⊢2=2. The ability to
perform reduction within the logic is the essential component to making compu-
tational reflection possible. The fact that reduction steps aremade explicit partially
gets in the way here; however, reduction is actually quite fast in HOL since, like
Isabelle, HOL does not produce proof terms.

Stampoulis’s VeriML [139, 140] augments the logic to do a priori verification
of tactics. The critical questions that VeriML answers are how to support pattern
matching on terms and how to pre-check proof terms that automation produces.
Mywork onRtac inChapter 6 bears some similarity to Stampoulis’s work by defin-
ing a language of verified tactics within the logic. VeriML’s logic does not handle
the richness of dependent types, but it does support a higher-order logic similar to
HOL’s.

ACL2 [1] is probably the largest commercial success in program verification
with uses in a variety of industry projects. For example, Intel’s floating point unit
has been verified in ACL2 since the notorious floating point bug [93]. ACL2 is
built on the ideas of the Boyer-Moore verification infrastructure and is highly au-
tomated and customizable. The core logic is untyped and based on Lisp [141]. As
with Isabelle andHOL, ACL2 does not construct proof terms and, unlike Isabelle
andHOL, the trusted computing base is quite substantial both in terms of size and
complexity.

TheMilawa theoremprover [66] is like a foundational versionofACL2. Milawa
has a core theory similar to ACL2’s but then verifies each level of automation on
top of previous layers. This approach is similar in many respects to computational
reflection all the way down. From a trusted-computing-base point of view,Milawa
is also quite impressive. The implementation runs on top of a verified runtime

37

system [120], and the implementation is itself verified within HOL [121]. The
untyped nature of the logic greatly simplifies this verification.

Programming with Dependent Types Researchers have explored depen-
dent types in several contexts outside of proof assistants. ATS [153], and its prede-
cessor Dependent ML [154] (DML), incorporates dependent types into a semi-
functional programming language. ATS also supports linear types which allows, it
to perform imperative updates to functional data structures, which saves onmem-
ory and improves execution time.

Idris [44] grew out of the ideas in Agda and has been used to explored themore
programming-oriented features of dependent types. It is one of the few depen-
dently typed programming languages with a compiler [43]. To interact with the
outside world, Idris has championed an effect system which has a variety of com-
positional properties that interact well with dependent types.

One of the major shortcomings of full dependent type systems is the need for
strongly normalizing programs. TheTrellys [50] project addresses this in an inter-
esting way using a call-by-value semantics rather than Gallina’s very liberal reduc-
tion semantics (which is only valid because its terms are both strongly normaliz-
ing and side-effect free). To get around issues with non-termination, β-reduction
is explicit in proof terms using a syntactic form that is explicitly indexed by the
maximum number of steps to run the computations before giving up. While β-
reduction is witnessed explicitly in proof terms, casts using equalities are implicit,
and the type checker uses congruence closure to decide whether two terms are
equal [136].

38

3
Open Semantic Reflection

In Chapter 2 I fleshed out a tautology solver using standard techniques in compu-
tational reflection. The problem with this approach is that it relies on a fixed syn-
tactic representation that is closed to further extension. This limitation requires
that reflective procedures be written and provedwith the entire reified language in
mind. For example, enriching the propositional language with support for quan-
tifiers requires a dramatic overhaul to both the term representation and its deno-
tation function. Even less aggressive changes such as adding natural numbers and
equality have a substantial impact on the amount of code needed. In this latter
case, the code is related to multiple syntactic universes, one for propositions and
one for numbers. When these features are not strictly layered, the syntactic repre-
sentations become mutually inductive, which further complicates matters.

In this chapter I describe my solution to this problem. The core idea is to build
a universal representation that can compose domain-specific symbols. Since the

39

goal is to reason within type theory, I take the simply-typed lambda calculus as
this universal representation. This representation forms the foundation of Mir-
rorCore [108], a Coq library for open semantic reflection.

In the remainder of the chapter I focus on the core representation of Mirror-
Core, motivating the choices with small case studies showing the features in ac-
tion. The lambda-calculus core provides an extensible language of types and a
generic representation of binders suitable for interleaving many domain-specific
symbols (Section 3.1). These domain-specific symbols are included in the syntax
parametrically, allowing after-the-fact extension via environments (Section 3.2).
Next I revisit the representation technique generalizing it to handle second-class
type constructors, polymorphic functions, and dependent types (Section 3.3).
Using these techniques I develop automation for performing equational reasoning
about monadic computations. Finally, I discuss unification variables and the role
they play in building generic automation (Section 3.4). I conclude by surveying
work related to deep embeddings of languages and unification (Section 3.5).

3.1 The LambdaCore

The core of MirrorCore’s term representation is the simply typed lambda cal-
culus enriched with base types and base symbols.

(types) τ ::= τ1 → τ2 |T
(terms) e ::= e1 e2 | λτ.ex |#n | E

The first line gives the representation of types which contains arrow types (rep-
resented τ1 → τ2) and base types (represented with T). At the term level, ex-
pressions include function application, lambda abstraction, variable reference (no-
tated using#n), and base terms. The syntax encodes variables using de Bruijn in-
dices [67], numbers corresponding to the number of binders to skip before the
binding site. Figure 3.1 shows how these definitions map to Coq inductive data
types.

40

1 Inductive typ : Type := (* the syntax of types *)

2 | tyArr : typ → typ → typ | tyInj : N→ typ.
3

4 Variable ts : list Type. (* meanings for injected types *)

5

6 Fixpoint typD (t: typ) : Type := (* the denotation of types *)

7 match t with

8 | tyArr l r ⇒ typD l → typD r

9 | tyInj n ⇒ lookupenv ts n

10 end.
11

12 Inductive expr : Type :=
13 | App : expr → expr → expr

14 | Abs : typ → expr → expr

15 | Var : N→ expr

16 | Inj : N→ expr.
17

18 Variable fs : list { t: typ & typD t }. (* meanings for injected terms *)

19

20 Definition ExprT (tvs: list typ) (T: Type) : Type :=
21 hlist typD tvs → T.
22

23 (* the denotation of terms *)

24 Fixpoint exprD (tvs: list typ) (t: typ) (e: expr)
25 : option (ExprT tvs (typD t)) :=
26 match e with

27 | App f x ⇒ domT← typeof_expr tvs x ;
28 valF ← exprD tvs (tyArr domT t) f ;
29 valX ← exprD tvs domT x ;
30 Some (fun vs ⇒ (valF vs) (valX vs))
31 | Abs t’ e ⇒
32 match t with

33 | tyArr d r ⇒
34 cast ← type_cast ts d t’ ;
35 val ← exprD (t’ :: tvs) r e ;
36 Some (fun vs ⇒ fun x ⇒ val (Hcons (Rcast_val cast x) vs))
37 | _ ⇒ None

38 end

39 | Var v ⇒ (t,get) ← nth_error_get_hlist_nth tvs v ;
40 cast ← type_cast t’ t ;
41 Some (fun vs ⇒ Rcast_val cast (get vs))
42 | Inj i ⇒ val← funcAs i t ;
43 Some (fun _ ⇒ val)
44 end.

Figure 3.1: MirrorCore’s syntactic representation and denotation function.

41

I formalize themeaning of the syntactic objects using a pair of denotation func-
tions, one for types (typD) and the other for terms (exprD). Themeaning of types
is unsurprising given the syntax. In the usual style of denotational semantics, the
meaning of the arrow type is an arrow of the meaning of the arguments (line 8).
The injection uses the same environment representation as the prop-language to
give a meaning to injected terms. The denotation function for expressions is more
complex for three reasons: different return types, potential for ill-typed terms¹,
and open terms for denotating under binders.

First, there is no single type to return because the same type is used to repre-
sent terms of many different types. The denotation function captures this multi-
typedness with the τ argument. Using dependent types, typD computes the return
type of the function using the value of τ. For example, exprD will return a natu-
ral number if typD ts τ evaluates to N. But it will return a function from N to
N if given tyArr τ τ where τ denotes to N. The computation is what makes the
denotation above well-typed. The expression on the left has type “typD (tyArr
tyN tyN)” while the expression on the right has type “N→ N.”

Second, the syntax of terms does not guarantee that all terms are well typed.
This means that not all expressions have corresponding denotations. In the type
language we could fake this using False as a default value, but not all types are
inhabited, e.g. False . Thus, the denotation of terms returns an option where
None means the term was ill-typed at the given type. In the actual implementa-
tion, exprD is implemented using a mutual fixpoint where one function performs
simultaneous type checking. That implementation is extensionally equal to this
one (modulo the features that I will add in Section 3.3).

Finally, the fact that lambda introduces new binders means that the denotation
function must be able to compute a meaning for open terms. For example, com-
puting the denotation of Abs tyN e requires computing the denotation of e in a
context that contains a natural number, the argument to the function. Since the

¹The denotation function uses monad notation, which I describe in greater detail in Sec-
tion 3.3.1. For now, it is sufficient to think of x ← c ; k as let x := c in k where the let is
threading the potential for failure. If c or k fails then the entire expression fails.

42

types in the context affect the well-typedness of terms but the values in the con-
text do not, the types are passed to exprD outside of the option , and the values
are passed inside the option only if the term is well-typed. In addition to being
necessary to properly implement the abstraction case, this type is also more pre-
cise because it makes explicit the fact that the well-typedness of a term does not
depend on the values in the variable context. MirrorCore represents “terms in
context” using the ExprT type, which represents functions from the context values
(packed in a heterogeneous list, hlist) to the term type. Thus, taking the denota-
tion of a term representing a natural number in a context containing both a natural
number and a boolean would result in a value of type (N× bool)→ N if hlist
was implemented as a tuple.

To make things concrete, the proposition True ∧ 7 = 7 might be represented
as the following syntax:

(* environments *)

Let types : env Type := [Prop;N].
Let syms : env { t: typ & typD types t } :=

[(tyInj 0, True);
(tyInj 0 ⇛ tyInj 0 ⇛ tyInj 0,(∧));
(tyInj 1 ⇛ tyInj 1 ⇛ tyInj 0,(=N));
(tyInj 1,7)].

(* meta constructors *)

Let eAnd l r := App (App (Inj 1) l) r.
Let eTrue := Ref 0.
Let eEq l r := App (App (Inj 2) l) r.
Let e7 := Ref 3.
(* the term *)

eAnd eTrue (eEq e7 e7) (* True ∧ 7 = 7 *)

It is important to note that Coq’s definitional equality is essential in the typing of
environments. Without it, the term (tyInj 0; True) would be ill-typed since
the second component of the pair has type Prop while it requires a value of type
typD types (tyInj 0).

43

Universal Quantifiers with λ Using Abs and Var, MirrorCore can ex-
press many binding operations. The key is to use ideas from LF’s abstract binding
trees [86] to ascribe a meaning to a general function. For example, MirrorCore
expresses a universal quantifier over propositions as a symbol applied to a lambda
abstraction where the bound variable of the lambda is the variable introduced by
the quantifier². The following symbols achieves this:

Definition PForall (P: Prop → Prop) : Prop := ∀ x : Prop, P x.

Assuming that the denotation of ALL will be this function and the denotation of
AND is conjunction, the following syntax represents the∧-introduction rule.

∀ A : Prop,
∀ B : Prop,

A

→ B

→ A ∧ B.

App ALL (Abs tyProp (* A *)

(App ALL (Abs tyProp (* B *)

(App IMPL (Var 1)
(App IMPL (Var 0)

(App (App AND (Var 1) (Var 0))))))))

Applying the denotation function to the syntactic term on the right produces the
term on the left. All that remains is to fill the place holders ALL, IMPL, and ANDwith
the appropriate terms. The one drawback to this representation is that it requires
functional extensionality—which states (∀x, f x = g x)→ f = g—to prove some
theorems. While functional extensionality is not provable in Coq, it is one of the
more accepted axioms, and many dependent type theories admit it [10, 148].

3.1.1 Tautologies: A Strawman

Before I continue, it is useful to have a concrete example of a reflective procedure
using this syntax. Figure 3.2 shows how to translate rtauto from Chapter 2 to
operate on the extensible representation.

²In Section 3.3, I discuss how to generalize this definition to be polymorphic over the quan-
tified type.

44

Fixed Syntax

Fixpoint rtauto hs goal :=
match goal with

| eTrue ⇒ true

| eAnd p q ⇒
rtauto hs p && rtauto hs q

| _ ⇒ find_assumption hs goal

end.

Extensible Syntax

Fixpoint rtauto hs goal :=
match goal with

| Inj 0 ⇒ true

| App (App (Inj 1) p) q ⇒
rtauto hs p && rtauto hs q

| _ ⇒ find_assumption hs goal

end.

Figure 3.2: Converting rtauto into MirrorCore’s generic syntax using envi-
ronments requires knowing how the environment represents True and ∧.

The crux of the translating lies in translating the match which must know the
constructors of the data type. As we saw in the new syntax, these “constructors”
have been replaced by definitions. However, as long aswe know the representation
of the symbols, in this case the indices in the environment, it is not difficult to
translate rtauto to use MirrorCore’s syntax.

Verifying the above procedure requires reasoning semantically about the envi-
ronment, i.e. we must reason about the values contained in the symbol environ-
ment as more than opaque symbols. For example, to verify the Inj 0 case our
proofmustuse the fact thatexprD tvs (tyInj 0) (Inj 0) = Some True, which
itself requires that typD (tyInj 0)≡ Prop.

To see the issue with extensible semantic reasoning, consider the proof for the
new rtauto using the symbol environments from the example.

Theorem rtauto_sound : ∀ hyps goal,
rtauto hyps goal = true →
Forall (fun x ⇒ exprD{types,syms} (tyInj 0) x) hyps→
match exprD{types,syms} (tyInj 0) goal with (* [tyInj 0] means Prop *)

| None ⇒ True

| Some P ⇒ P

end.

Because the symbol environments are values and the indices are constants, veri-

45

fying this procedure is quite simple. To see why, focus on the “True” case. The
salient pieces are represented in Coq as:

Hgoal : exprD{types,syms} (tyInj 0) (Ref 0) = Some G

==
G

At first glance, we seem stuck; G is an opaque symbol, and all we know is that it
is the result of the denotation function. However, since syms is a constant, the
application of exprD to Ref 0 is definitionally equal to Some True, leaving the goal

Hgoal : Some True = Some G

===
G

which is easily provable using the injectivity of Some to prove G = True, and then
the proof of True is trivial.

Thisproofwas simple. Sincedefinitional equality is free inCoq, theproofneeded
no extra reasoning over the prover from Chapter 2. This is promising because it
shows that if we can automate the reasoning about the denotation function, then
reasoning about reflective procedures that use this universal representation will
not bemuchmore difficult than reasoning about the simple, non-extensible deno-
tation functions.

3.2 SemanticOpenness &Tautologies

The representation in Figure 3.1 achieves its extensibiltiy by quantifying over both
type and symbol environments. The rtauto_sound theorem, on the other hand,
does not have the same generality. It is intricately linked to the particular environ-
ments that I defined in the example. While the proof holds for any extension of
the environments, the soundness statement does notmake this explicit. To see the
problem, assume that I modify rtauto to return true if it sees an index not in the
function environment, e.g. 8. The theorem is still provable because the denotation

46

of Ref 8 under the environments is None and the theorem holds vacuously. How-
ever, extending the environment with a symbol at position 8, e.g. False , would
invalidate the proof.

The problem is that the statement of rtauto_sound is not sufficiently general.
We need to prove the above theorem for any environments that satisfy certain
properties. In this case, Prop at position 0 in the type table and True and ∧ at
positions 0 and 1 respectively in the symbol table. In the next two subsections I
demonstrate twoways to state andprove correctness theorems to support this kind
of extensibility

3.2.1 A Propositional Constraint Formulation

A natural way to represent constraints is with a partial environment. For example,
I could represent the constraints for True and∧with the following partial environ-
ment, for the moment ignoring the complexities of syntactic types.

{0 7→ True; 1 7→ ∧}

I can then define a “satisfies” relation to express when an environment e satisfies
a constraint C, written C |= e. Intuitively this is true when all mappings in the
constraint are consistent with the environment. That is

C |= ts ⇐⇒ ∀k s, (k 7→ s) ∈ C→ lookup k ts = s

Using these constraints and the satisfies relation I can start to phrase a more
general soundness theorem for any environment that satisfies the constraints. Ap-
plying the constraints to both types and functions yields the following soundness
statement.

rtauto_sound : ∀hs g, rtauto hs g = true→
∀ts fs,TC |= ts→ FC |= fs→

Forall Provable hs→ Provable g

47

Here Provable takes the denotation of an expression as a Prop. Making this defi-
nition formal, and proving it, is subtle in intensional type theory due to the envi-
ronment proofs. The issue can be seen in the definition of Provable.

Provable needs to use the denotation function to compute a Prop from a syn-
tactic expression. However, the denotation function only allows us to compute
values of type typD ts X for some syntactic type X. Using the following type con-
straint we can pick tyInj 0 to stand for Prop.

Let TC : C Type := { 0 7→ Prop ; 1 7→N }.

Using this information, however, is slightly more difficult. Naïvely, we would like
to write the following:

Let FC : C { t: typ & typD ?? t } :=
{ 0 7→ (tyInj 0, True)
; 1 7→ (tyInj 0⇛ tyInj 0⇛ tyInj 0, ∧) }.

But we need an environment satisfying TC to fill in for the ??. Generalizing FC to
be a function over such an environment provides a partial solution:

Let FC ts (pf: TC |= ts) : C { t: typ & typD ts t } :=
{ 0 7→ (tyInj 0; True)
; 1 7→ (tyInj 0⇛ tyInj 0⇛ tyInj 0, ∧) }

but this term still does not type check in intensional type theory.
To see the problem, focus on the constraint for True. The rule for type checking

the dependent pair requires that True (the second component) has type typD ts

(tyInj 0). Using conversion, this reduces to lookup ts 0, but this term is stuck
since ts is universally quantified. Using the constraints, we can prove that lookup
ts 0 = Prop, but to use this fact we must witness it in the term. With the casts,
the term becomes the following:

Definition cast {T} {c: C T} {g: env T} (pf: c |= g) (i: N)
(F: T → Type) (val: F (lookupC (default := ∅) c i))
: F (lookupenv g i) := . . . (* proof here *)

48

Let FC ts (pf: TC |= ts) : C { t: typ & typD ts t }:=
{ 0 7→ (tyInj 0, cast pf 0 (fun x ⇒ x) True)
; 1 7→ (tyInj 0⇛ tyInj 0⇛ tyInj 0,

cast pf 0 (fun x ⇒ x→ x → x) (∧)) }.

With these definitions we can write the soundness theorem using explicit casts.

Theorem rtauto_sound_constraints : ∀ hyps goal,
rtauto hyps goal = true →
∀ (ts: env Type) (pf_ts: TC |= ts)

(fs: env { t: typ & typD ts t }) (pf_fs: FC ts pf_ts |= fs)
let Provable e := match exprD (tyInj 0) e with

| None ⇒ False

| Some P ⇒ cast pf_ts 0 (fun T ⇒ T) P
end

in Forall Provable hyps → Provable goal.

Here Provable uses cast to convert a value from typD ts (tyInj 0) to Prop us-
ing the constraints. The proof of this theorem is the same as the proof of the pre-
vious, non-extensible, theorem except that the new proof must reason explicitly
about the casts.

Compsitionality Using thepropositional approach, it is easy to compose con-
straints, but composing theorems is slightly more complicated. The reason that
composing theorems is difficult is that the statement of soundness uses the con-
straints to perform the cast. In an intensional type theory such as Coq’s, this cast
can have computational content, i.e. it can do more than just return the value it
is given. Therefore, if the two specifications do not use the exact same proof to
perform the cast then they could be making statements about two different inter-
pretations of Prop, e.g. Prop and negated Prop. Fundamentally, the problem boils
down to proving the following goal.

match pf1 in _ = x return x with

| eq_refl ⇒ P

49

end ↔ match pf2 in _ = x return x with

| eq_refl ⇒ P

end

Here, pf1 and pf2 come from two different constraints so we do not know that
they are the same. As counter-intuitive as it may seem, this goal is not provable in
Coqwithout an axiom. In order to eliminate pf1, we need to abstract the goal with
respect to the syntactic type. Doing this removes thematch on pf1 but changes the
type of pf2 to Prop = Prop. Now, thewell-typedness of the goal depends crucially
on both sides of the equality that pf2 witnesses being Prop. The problem lies in a
lack of polymorphism.

Two solutions exist for this problem. First, we can add an axiom to Coq that
states that all proofs of equality (of the same type) are equal. Inmath this assertion
is captured by the following axiom.

∀T a b (pf1 : a = b)(pf2 : a = b), pf1 = pf2

This approach is not consistent withmodels of Gallina based on homotopy theory
where equality proofs correspond to paths and isomorphisms induce non-trivial
equalities between types [148].

While the axiom is dissatisfying under a homotopy type theory, another solu-
tion is to require a propositional equality between pf1 and pf2, i.e. pf1 = pf2. This
allows us to avoid the axiom essentially by requiring individual proofs in each in-
stancewherewewouldhaveused it. In practice all of thesewill be trivially provable
by reflexivity but it does limit someof the generality since it is nowharder to reason
about equalities between equalities of constraint proofs.

3.2.2 A Definitional Constraint Formulation

The propositional constraint formulation provides maximal flexibility surround-
ing the statement and manipulation of constraints. However, it can be difficult to
reason explicitly about the proofs. In addition, explicitly manifesting these proofs

50

can be cumbersome when applying a reflective soundness theorem.
We can avoid manifesting these proofs by phrasing them so that the provable

equality becomes a definitional one. While not essential for the function environ-
ment, achieving definitional equality at the type level provides a cleaner phrasing
of the soundness theorem with no need for explicit casts.

The key to stating the definitional equality in a type theory that does not have
first-class definitional equality is to use computation. This need for computation
requires that I be more concrete about the representations. For now, I represent
constraints and environments as lists where the position in the list is the key³. In
the more concrete representation, the typing context is the following.

Inductive Constraint (T: Type) : Type := Any | Exact (t: T).
Definition C (T: Type) := list (Constraint T).

Let TC : C Type := [Exact Prop; Exact N].

Here, Exact twill mean that the current position is definitionally equal to t, while
Any will place no restriction on the location.

Rather than requiring a proof, which would provide a propositional equality,
I use the applyC function (in Figure 3.3) to compute a derived environment that
manifestly satisfies the constraints. Thestructureof this definition is crucial. applyC
is defined by structural recursion on the constraints, and the syntactic shape of the
resulting list depends only on the constraints. This means that even when the en-
vironment is opaque, if the constraints are a constant then applyC will completely
reduce. For example:

applyC ∅
[
Exact Prop; Exact N

]
ts

≡ Prop :: applyC ∅
[
Exact N

]
(tl ts)

≡ Prop :: N :: applyC ∅
[]

(tl (tl ts))
≡ Prop :: N :: tl (tl ts)

³I will return to this point at the end of the section and discuss the necessary conditions for
this definitional constraint formulation.

51

Fixpoint applyC (d: T) (c: C T) (e: list T) {struct c} : list T :=
match c with

| [] ⇒ e

| c :: c’ ⇒ match c with

| Any ⇒ hd (default := d) e

| Exact v ⇒ v

end :: applyC c’ (tl e)
end.

Figure 3.3: The definition of applyC recurses over constraints and ensures that
the value of e does not affect the shape of the result.

Using applyC , the function constraints require neither explicit proofs nor ex-
plicit casts.

Let FC (ts: list Type) : C { t & typD (applyC ∅ TC ts) t } :=
[Exact (tyInj 0, True)
; Exact (tyInj 0 ⇛ tyInj 0 ⇛ tyInj 0, ∧)].

To see why the problem is solved, consider once again the True constraint. Type
checking needs to verify that True has type typD (applyC ∅ TC ts) (tyInj 0),
but this is definitionally equal to Prop.

typD
(
applyC ∅ TC ts

)
(tyInj 0)

≡ typD
(
Prop :: N :: tl (tl ts)

)
(tyInj 0)

≡ lookupenv
(
Prop :: N :: tl (tl ts)

)
0

≡ Prop

We can use the same technique to phrase an extensible version of the sound-
ness theorem (Figure 3.4). Unlike the propositional formulation this formulation
requires no propositional casts; computation alone makes the theorem statement
type-check.

Completeness The computational formulation is easier to reason about be-
cause all casts are by definitional equalities. However, is the computational for-
mulation less expressive than the propositional one? The answer is partially “no”

52

Theorem rtauto_sound : ∀ hyps goal,
rtauto hyps goal = true →
∀ (ts’: env Type), let ts := applyC TC ts’ in

∀ (fs’: env { t: typ & typD ts t }), let fs := applyC FC fs’ in

let Provable e := match exprD{ts,fs} (tyInj 0) e with
| None ⇒ False

| Some P ⇒ P

end

in Forall Provable hyps → Provable goal.

Figure 3.4: Using applyC allows us to phrase the soundness theorem exten-
sionally without requiring propositional casts.

and partially “yes.”
First, to address the “no.” Any self-consistent constraint can be converted into

a computational constraint such that every satisfying environment for the propo-
sitional constraint is also constructable via the computational formulation. This
fact is justified by the following, easily proven, theorem.

Theorem 3.2.1 Completeness of the Computational Formulation

∀d ts TC,TC |= ts→ applyC d (to_computationalTC) ts = ts

Here, TC is a propositional constraint that to_computational converts to a defini-
tional constraint where holes are filled by Any.

However, the completeness theoremdoes not quite cover the entirety of expres-
sivity. The computational formulation only avoids casts when the constraints are
values. For example, we might like to parameterize rtauto by the representation
of Prop, True, and∧⁴ using the code in Figure 3.5. However, defining FC requires
casts because TC is not a closed value since it was constructed using the universally
quantified id_prop . The propositional constraint formulation, on the other hand,
does allow for this kind of parameterization.

⁴The syntax x ?[=]y is ExtLib [3] syntax for the function that decides x = y or x ̸= y.

53

Variable id_prop : index.
Variable id_and id_true : index.

Fixpoint rtauto (hyps: list expr) (e: expr) : bool :=
match e with

| eRef n ⇒ if id_true ?[=] n then true else prove hyps e

| eApp (eApp (eRef n) a) b ⇒
if id_and ?[=] n then rtauto hyps a && rtauto hyps b

else prove hyps e

| _ ⇒ prove hyps e

end.

Hypothesis and_not_true : id_and ̸= id_true.
Let TC : C Type := insert id_prop Prop.
Let FC ts : C { τ: typ & typD (applyC TC ts) τ } := . . .

Figure 3.5: Definitional constraints, like definitional equality, are second class
in Coq, which prevents us from certain types of quantification such as the
quantification over indices shown here.

Composition A benefit of working with definitional equality is that the type
theory guarantees that if a definitional equality exists betweenany twoobjects then
it is unique. This means that we can computationally combine two constraints,
and the order of composition is irrelevant as long as the constraints are consistent.
Assuming the constraint composition is written ◦ and both C1 and C2 are values,
the following are true definitionally.

applyCC1(applyCC2 ts) ≡ applyC (C1 ◦ C2) ts ≡ applyCC2(applyCC1 ts)

Leveraging this property, we can combine two proofs with different, compatible
constraints that are values into a single proof by composition. We use the function
either to combine the computational parts of the provers P1 and P2 to produce
a prover that will solve the goal if either P1 or P2 would have solved it. Figure 3.6
highlights how this approach works works for types.

54

Let TC1 := [Exact Prop].
Let TC2 := [Any; Exact N].

Hypothesis P1_sound : ∀ ts, sound (applyC TC1 ts) P1.
Hypothesis P2_sound : ∀ ts, sound (applyC TC2 ts) P2.

Theorem P1_and_P2_sound : ∀ ts,
sound (applyC (TC1 ◦ TC2) ts) (either P1 P2).

Proof.
intro ts.
pose (P1_sound (applyC TC2 ts)).

(* : sound (applyC TC1 (applyC TC2 ts)) P1 *)

pose (P2_sound (applyC TC1 ts)).
(* : sound (applyC TC2 (applyC TC1 ts)) P2 *)

. . .

Figure 3.6: Definitional constraints provide a simple way to perform composi-
tion without the need for propositional casting.

Leveraging the definitional equalities above, all that remains to show is:

∀ts P1 P2, (sound ts P1)→ (sound ts P2)→ (sound ts (either P1 P2))

The difficult problem concerning proofs in the propositional formulation is com-
pletely gone.

Like the expressiveness of the definitional formulation, however, this type of
composition relies fundamentally on the constraints being values. This means
that compositionmust be done extra-logically, often byLtac procedures which can
build potentially ill-typed terms and ask the kernel to check them. While compo-
sition could fail, it is fairly easy to checkwhether two constraints are computation-
ally compatible by seeing if the following term is well-typed.

fun ts ⇒ eq_refl : applyC C1 (applyC C2 ts) = applyC C2 (applyC C1 ts)

This simple test makes it easy to detect and report errors about incompatible con-
texts.

55

The Requirements for Definitional Reduction The key to making def-
initional reduction work lies in the interaction between applyC and lookup . The
crucial aspect is the need for the structure of the container to be independent of
its contents. This separation of structure and values is a stronger property than
simply having a canonical representation. For example, the following alternative
implementation of applyC is provably equal to one showed at the beginning of the
section but does not have the same computational property.

Fixpoint applyC (d: T) (c: C T) (e: list T) : list T :=
match c with

| [] ⇒ e

| Any :: c’ ⇒ match e with

| [] ⇒ d :: applyC c’ []
| e :: es ⇒ e :: applyC c’ es

end

| Exact c :: c’ ⇒ match e with

| [] ⇒ c :: applyC c’ []
| e :: es ⇒ c :: applyC c’ es

end

end.

The problem with this definition is that it matches on e before constructing the
spine of the list. This match will block reduction when e is opaque. In the previ-
ous definition, e was only matched on to compute values under the spine of the
resulting list, and since the lookup function only matched on the spine of the list
it never gets stuck on a match in the constraints.

MirrorCore’s actual implementation uses positive maps for environments,
which achieves logarithmic time lookup while retaining the phase-split property
that makes computation simple.

56

Non-monadic
Definition add_or_error

(a b: option N) : option N :=
match a with

| None ⇒ None

| Some aV ⇒
match b with

| None ⇒ None

| Some bV ⇒ Some (aV + bV)
end

end.

Monadic
Definition add_or_error

(a b: option N) : option N :=
bind a (fun aV ⇒
bind b (fun bV ⇒
ret (aV + bV))).

Definition add_or_error

(a b: option N) : option N :=
aV ← a ;
bV ← b ;
ret (aV + bV).

Figure 3.7: Code that adds two option N’s using explicit matches (left) and
monad operations (right).

3.3 Meta-level Dependency&Monad Simplification

Purely providing extension through simple environments is not expressive enough
to capture all of the interesting domains that I will reason about in the remainder
of the dissertation. For example,monads, which Iwill discuss shortly, require both
type constructors and polymorphism. In this section I show how to abstract the
code in Figure 3.1 to support meta-level polymorphism, type functions, and type
dependency in a second-classwaywithout significantly complicating the language.
For now, I will explainwhat these termsmeanwith a brief introduction tomonads.

3.3.1 Reasoning About Monads

Fundamentallymonads are about abstraction, often abstracting side effects. Ignor-
ing their category-theoretic meaning, and thinking of them in a purely operational
sense, monads essentially abstract the sequencing operator, i.e. let x := . . . in

. . . in OCaml or ; in C. Doing this enables them to thread additional information
through a computation, for example a piece of state or the possibility of an excep-
tion.

57

A simple example is the option monad which I showed at work in Figure 3.1.
Figure 3.7 has amoreminimal example which adds two optional natural numbers.
Both columns perform the same computation, but the monadic implementation
abstracts the match , Some and None into themonadoperations bind and ret. In the
option monad, bind abstracts the threading of the option through the computa-
tion, allowing the function to be coded oblivious to the potential of None. The ret
for option simply injects the value using Some. The traditional monad notation is
shown in the listing below the explicit definition with bind and ret.

Formally, a monad is a type function (M : Type → Type) that supports two
operations:

ret : Π α: Type, α→ M α
bind : Π α β: Type, M α→ (α→ M β)→ M β

ret injects arbitrary values into themonad, andbind accumulates the “side-effects”
in the first command and provides the value, of type α, to the second command,
which may have additional side-effects.

To truly form amonad, ret and bindmust satisfy the threemonad laws. Eliding
the types for simplicity, these are:

right identity ∀x, bind x ret = x
left identity ∀f x, bind (ret x) f = f x

bind associativity ∀a b c, bind (bind a b)c = bind a (λx.bind (b x) c)

3.3.2 Generalizing the Syntax

What is missing from the environment representation is the ability to have addi-
tional structure within the type and function environments. For example, to ex-
press option in the environment encoding Iwould need to pick distinct indices for
option N and option bool in the type environment. Further, in the symbol envi-
ronment I would need different indices for different instantiations of polymorphic
functions such as Some and None.

The solution to this problem is to abstract the representation of types and sym-

58

bols. This allows clients to choose a representation that can capture additional
structure such as the polymorphismof Some and still useMirrorCore’s core syn-
tax and functions.

Figure 3.8 shows the parameterized code. The syntax also includes unification
variables (UVar)which Iwill discuss inmore detail in Section 3.4. In this represen-
tation, types and symbols are parameters (lines 1 and 2). Associated with these
abstract types are the operations that the denotation requires to integrate them
into the denotation (lines 10-12). RType_typ captures the requirements on types,
namely a denotation function (typD)with the same type as before, and a decidable
casting operation (type_cast) that checks for equality between syntactic types.

Merely a type language is not sufficient for the denotation function. To de-
note application and abstraction, the type language must include a representation
of function types. In Figure 3.1 this requirement manifests itself in the pattern
match in the Abs case and the use of tyArr in the App case. When we abstract the
type, we lose access to its constructors and pattern matching facility. Typ2_Fun

provides these operations. Figure 3.9 shows the definition for Typ2 (represent-
ing two-argument type constructors) as well as the related theorems for reasoning
about it. Three operations are necessary:

1. A “constructor” for building the syntactic type (typ2).

2. A propositional equality witnessing the computational behavior of the de-
notation function when applied to the constructor (typ2_cast).

3. A dependent eliminator that provides a way to determine if an arbitrary
syntactic type represents the underlying semantic type (typ2_match). For
polymorphic types such as functions this eliminator also extracts the con-
structor’s type arguments (e.g. the domain and co-domain of the function
type).

Two-argument type functions (such as function types) are just one particular way
to build types. Generalizing these yields a family of possible constraints for rep-
resenting types (such as N), single-argument type functions (such as monads),

59

1 Variable typ : Type. (* the syntax of types *)

2 Variable sym : Type. (* the syntax of injected terms *)

3

4 Inductive expr : Type := (* the core syntax *)

5 | App : expr → expr → expr

6 | Abs : typ → expr → expr

7 | Var : N→ expr

8 | Inj : sym → expr

9 | UVar : N→ expr. (* see Section 3.4 *)

10

11 Variable RType_typ : RType typ. (* type requirements *)

12 Variable Typ2_Fun : Typ2 RType_typ Fun. (* representation of arrows *)

13 Variable RSym_sym : RSym RType_typ sym. (* symbol requirements *)

14

15 Definition ExprT (tus tvs: list typ) (T: Type) : Type := (* open terms *)

16 hlist typD tus → hlist typD tvs → T.
17

18 Fixpoint exprD (tus tvs: list typ) (t: typ) (e: expr)
19 : option (ExprT tus tvs (typD t)) :=
20 match e with

21 | App f x ⇒
22 domT ← typeof_expr tus tvs x ;
23 valF ← exprD tus tvs (typ2 domT t) f ;
24 valX ← exprD tus tvs domT x ;
25 ret (fun us vs ⇒
26 (Rcast_val (typ2_cast domT t) (valF us vs)) (valX us vs))
27 | Abs t’ e ⇒
28 typ2_match (fun T ⇒ option (ExprT tus tvs T)) ts t

29 (fun d r ⇒
30 cast ← type_cast ts d t’ ;
31 val ← exprD tus (t’ :: tvs) r e ;
32 ret (fun us vs ⇒ fun x ⇒
33 val us (Hcons (Rcast_val cast x) vs)))
34 None

35 | Var v ⇒ (t,get) ← nth_error_get_hlist_nth tvs v ;
36 cast ← type_cast t’ t ;
37 ret (fun _ vs ⇒ Rcast_val cast (get vs))
38 | Inj i ⇒ val← funcAs s t ;
39 ret (fun _ _ ⇒ val)
40 | UVar u ⇒ (t,get) ← nth_error_get_hlist_nth tus u ;
41 cast ← type_cast t’ t ;
42 ret (fun us _ ⇒ Rcast_val cast (get us))
43 end.

Figure 3.8: MirrorCore’s core syntax and denotation function parameter-
ized by an implementation of types (typ) and symbols (sym).

60

two-argument type functions (such as arrows), etc.
The denotation function uses these operations in exactly the places that the

previous implementation (Figure 3.1) relied on patternmatching and definitional
equality. The denotation for abstractions and applications shows how exprD uses
Typ2 to build and use functions constructed by the syntax. The abstraction case
(lines 27-34) uses typ2_match to determine whether the requested syntactic type
is a function type. It then uses type_cast (provided by RType) to check that the
domain of the function type is convertible to the argument type annotated in the
syntax. If the type cast succeeds, the returned proof is used to cast the result of
the recursive call to the appropriate type. Having a simple, transparent proof for
this cast is essential because the denotation functionwill actually inspect the proof
to perform the cast. The App case is the converse. The denotation function de-
termines the type of the function and uses it to build the appropriate syntactic
type to use when computing the denotation of the function. The result then uses
typ2_cast to convert the result, whichhas type typ_arr domT t, to a function type.

3.3.3 Automating the Monad Laws

Now thatMirrorCore’s syntax can support arbitrary type and term algebras, it is
much easier to build automation formonads. First, I embed themonadic language
in MirrorCore by defining the appropriate algebra of types and symbols (Fig-
ure 3.10). In addition to the tyArr constructor, the type language also includes a
constructor for the monad type (tyM). The fact that m is a unary type constructor
is captured by the fact that the syntactic constructor tyM takes an argument, the re-
turn type of the monadic computation. All other types, e.g. numbers, strings, etc.,
are represented using the environment encoding that I discussed in Section 3.2.

At the term level, I represent the type arguments to polymorphic terms such as
bind and ret as arguments to the symbol’s constructor. For example, the type of
bind depends on two types, α and β, so the mBind constructor takes two arguments

61

(* The semantic meaning of the type *)

Variable F : Type → Type → Type.

Class Typ2 : Type :=
{ typ2 : typ → typ → typ

; typ2_cast : Π a b, typD (typ2 a b) = F (typD a) (typD b)
; typ2_match : Π (T: Type → Type) t,

(∀ a b, T (F (typD a) (typD b))) → T (typD t) → T (typD t) }.

Class Typ2Ok (TI : Typ2) : Type :=
{ (* typ2_match recognizes typ2 *)

typ2_match_iota

: ∀ T a b tr fa,
typ2_match T (typ2 a b) tr fa =
match eq_sym (typ2_cast a b) in _ = t return T t with

| eq_refl ⇒ tr a b

end

(* the domain and range are ‘‘smaller’’ than the arrow *)

; tyAcc_typ2L : Π a b, tyAcc a (typ2 a b)
; tyAcc_typ2R : Π a b, tyAcc a (typ2 b a)

(* typ2 is injective *)

; typ2_inj

: ∀ a b c d, (typ2 a b) = (typ2 c d) → a = c ∧ b = d

(* a type either is or is not an arrow *)

; typ2_match_case

: ∀ x, (∃ d r (pf: x = typ2 d r),
∀ T tr fa,

typ2_match T x tr fa =
Relim T pf

(match eq_sym (typ2_cast d r) in _ = t return T t with

| eq_refl ⇒ tr d r

end)) ∨
(∀ T tr fa, typ2_match T x tr fa = fa)

(* typ2_match respects the equivalence relation on types *)

; typ2_match_Proper

: ∀ T t t’ (pf: t’ = t) tr fa,
typ2_match T t tr fa =
Relim T (eq_sym pf) (typ2_match T t’ tr (Relim T pf fa)) }.

Figure 3.9: The extensional (constraint) representation of two-argument type
constructors. typD is the denotation function on types introduced by the defi-
nition of RType.

62

1 Variable m : Type → Type.
2 Variable Monad_m : Monad m.
3

4 Inductive typ : Type := (* the type algebra *)

5 | tyArr : typ → typ → typ (* l ⇛ r *)

6 | tyM : typ → typ

7 | tyInj : N→ typ.
8

9 Fixpoint mtypD (x: mtyp) {struct x} : Type :=
10 match x return Type with

11 | tyArr l r ⇒ typD l → typD r

12 | tyInj x ⇒ getType ts x

13 | tyM x ⇒ m (typD x)
14 end.
15

16 Inductive mfunc : Type := (* monad specific operations *)

17 | mBind : mtyp → mtyp → mfunc

18 | mReturn : mtyp → mfunc.
19

20 Definition typeof_mfunc (m: mfunc) : typ :=
21 match m with

22 | mBind a b ⇒ tyM a ⇛ (a⇛ tyM b) ⇛ tyM b

23 | mReturn a ⇒ a⇛ (tyM a)
24 end.
25

26 Definition mfuncD (f: mfunc) : match typeof_mfunc f with

27 | None ⇒ unit

28 | Some t ⇒ typD m ts t

29 end :=
30 match f as f return typD m (typeof_mfunc f) with

31 | mBind a b ⇒ bind

32 | mReturn a ⇒ ret

33 end.
34

35 (* join with environments for non-monad symbols *)

36 Definition func := mfunc + N.

Figure 3.10: Representing monads using MirrorCore’s support for arbitrary
type and term algebras.

63

1 Notation ”’BIND’ [a , b]” := (Inj (inr (mBind a b))).
2 Notation ”’RET’ [a]” := (Inj (inr (mReturn a))).
3 Notation ”a @ b” := (App a b).
4

5 Definition mexpr := expr typ func.
6

7 Fixpoint reduce_m (t: typ) (e: mexpr) {struct e} : mexpr :=
8 match e with

9 | BIND [_ , _] @ e @ RET [_] ⇒ reduce_m t e

10 | BIND [t’ , _] @ (RET [_] @ e) @ e’ ⇒
11 let e’ := reduce_arrow t’ (tyM t) e’ in

12 let e := match t’ with

13 | tyM z ⇒ reduce_m z e

14 | tyArr a b ⇒ reduce_arrow a b e

15 | _ ⇒ e

16 end in

17 red_app e’ e

18 | BIND [t’ , _] @ (BIND [t’’ , _] @ a @ b) @ c ⇒
19 let a := reduce_m t’’ a in

20 let b := reduce_arrow t’’ (tyM t’) b in

21 let c := reduce_arrow t’ (tyM t) c in

22 red_bind t’ t a (Abs t’’ (red_bind t’ t (red_app b (Var 0)) c))
23 | _ ⇒ e

24 end

25 with reduce_arrow (d r: typ) (e: mexpr) {struct e} : mexpr :=
26 match e with

27 | Abs t (App x (Var 0)) ⇒ (* η-reduction *)

28 match lower 0 1 x with

29 | None ⇒ e

30 | Some e ⇒ e

31 end

32 | Abs t e’ ⇒
33 match r with

34 | tyM m ⇒ Abs t (reduce_m m e’)
35 | _ ⇒ e

36 end

37 | _ ⇒ e

38 end.

Figure 3.11: A simple monad reducer built on top of MirrorCore. red_app

and red_bind are “smart” constructors that perform single-level reduction such
as reducing (λx.fx)y into fy.

64

(α β : typ). The mRet constructor is similar. In the denotation function, the bind
and ret functions come from themonad instance (defined as a section variable on
line 2) while the type arguments are computed from a and b. Again, I use an en-
vironment to represent all other symbols. It is worth noting that while we can use
type constructors such as sum to combine disjoint symbol languages, the same is
not true for types because the type algebra is recursive. The symbol representation
does not need to be recursive because MirrorCore’s expression representation
takes care of the recursive portions of the expression language.

Using the syntax, it is not too difficult to implement monad reduction in Coq
(see Figure 3.11). The algorithm relies on two mutually recursive functions that
simplify terms of different types.

• reduce_m simplifies syntactic expressions that have type “m t” using the
monad laws. The cases of the function can be read directly from the laws
with recursive calls being made to either reduce_m or reduce_arrow de-
pending on the type of the sub term.

• reduce_arrow simplifies syntactic functions that have type “d → m r” by
performing η-reduction (the first case) and reducing monadic expressions
that occur inside of λs (the second case).

In both cases, the fall-through branch could be extended to do additional process-
ing. For example, it could be extended to handle other monad functions (such as
join or fmap) or other monad structures such as monads with a zero or monads
with state.

Verifying reduce_m and reduce_arrow is similar to the verification of rtauto in
the previous section. It is also possible to generalize the implementation to work
over abstract type and symbol algebras, e.g. by requiring a Typ1 representing the
monad and classes (not shown) analogous to Typ0, Typ1, etc. for representing
symbols extensionally. This abstraction provides more opportunities to reuse the
automation.

65

Meta-level Dependency The same technique can be used to achieve meta-
level dependency of terms. For example, the following type and symbol algebras
allow arbitrary-length bit-vectors.

Inductive typ :=
| Arr (d r : typ)
| Bv (s : N)
| . . .

Inductive sym :=
| Plus (n : N) (* Bv n → Bv n → Bv n *)

| SExt (n m : N) (* Bv n → Bv m *)

| . . .

3.4 Unification Variables & Backward Reasoning

Thefinal syntactic form of MirrorCore expressions is unification variables. Un-
likeMirrorCore’s other syntactic forms, unification variables arenot part of type
theory. Rather, they act as place holders to assist the user or the automation in in-
crementally building terms.

MirrorCore’s representation of unification variables is similar to the envi-
ronment representation of variables. In fact, the only difference is that there are
no syntactic forms that introduce new unification variables. In the denotation
function, the value environment carries the unification variables representing the
placeholders for the term. This allows MirrorCore to reify an expression such
as ?1+?2 into “App (App PLUS (UVar 0)) (UVar 1)” using [?1;?2] as the envi-
ronment of unification variables.

Rather than using a substitution semantics for reasoning about instantiating a
unification variable, MirrorCore expresses instantiation using provable equal-
ities. In MirrorCore, these learned facts are stored in a table (called a substi-
tution) that maps unification variables to syntactic expressions. The denotation
of a substitution is a conjunction of equations between each unification variable
and the denotation of the expression that is corresponds to. For example, the de-
notation of a substitution mapping UVar 0 to 7 and UVar 1 to x+y would be the
following.

?1 = 7 ∧ ?2 = x+ y

66

Theorem eprover_sound : ∀ tus tvs goal s s’,
eprove goal sub = Some sub’ → (* the procedure returns success *)

WellFormed_subst sub → (* good initial substitutions *)

WellFormed_subst sub’ ∧ (* produce good final substitutions *)

∀ subD goalD,
(* if the initial goal and substitution are well-typed *)

exprD tus tvs goal = Some goalD →
substD tus tvs sub = Some subD →
∃ subD’, (* then the final substitution is well-typed *)

substD tus tvs s’ = Some subD’ ∧
∀ us vs,

subD’ us vs → (* if the final substitution is provable, then *)

goalD us vs (* the goal and *)

∧ subD us vs. (* initial substitution are provable *)

Figure 3.12: The soundness statement for a reflective procedure (eprove) with
the ability to instantiate unification variables.

Since the meaning of a substitution is a first-class value (computed by substD)
it is easy to integrate substitutions into soundness theorems. Figure 3.12 shows
a high-level soundness theorem for a function eprove that uses, and possibly ex-
tends, a substitution. The procedure eprove takes a goal and an initial substitution
and returns an optional final substitution. If eprove returns Some sub’ , eprove
succeeded in solving the goal but only if the denotation of the final substitution
(sub’) is provable. To ensure that the final substitution is compatible with the
initial one, the soundness theorem requires provability of the final substitution to
imply the provability of the initial substitution in addition to the goal. The prov-
ability of the initial substitution is essential when chaining provers together, but
the entry points for reflective procedures drop these in their specifications since
the denotation of an empty substitution is True.

3.4.1 Case Study: A Generic Backward Prover

Todemonstrate unification variables in action Iwill showhow to use them to build
an extensible prover similar to Ltac’s eauto tactic. This tactic takes a collection of
lemmas and repeatedly applies them until it finds a proof or fails to do so. While

67

the implementation and the heuristics are quite simple, the strategy works in a
surprising number of cases.

Building eauto requires using unification variables in several interesting ways.
Theprocedurewill have to introducenewunification variables, solve existing ones,
and soundly remove instantiated unification variables completely reflectively. Be-
forediving intoeachof these tasks, I discussMirrorCore’s representationof lem-
mas.

Representing Lemmas

Using raw expressions to represent lemmas can be quite inefficient since doing so
would require repeatedlyparsing the expression toextract thequantifiers, premises
and conclusion. Instead,MirrorCore uses the structured representation of lem-
mas shown in Figure 3.13.

A lemma is a record that contains a list of universally quantified variables (here
only their types), a list of premises (represented as exprs) and finally a conclu-
sion. For generality, the type of lemmas is parametric in the type of the conclusion
all that is required is a denotation function that produces a Prop. The backwards
prover picks the conclusion to be an expression and uses exprD for the denotation
function. This allows the conclusion of the lemma to match up exactly with the
goal that it is applying to. On the other hand, a rewriter would choose the conclu-
sion to be triple of a type and two expressions where the denotation is the equality
of the two expressions at the given type.

Thedenotation function for lemmas is expressed using the same two-stage form
as exprD . In particular, the option expresses whether the lemma is well-typed and
the value of the Some constructor will express the actual meaning. While global
lemmas never have any variables or unification variables, writing the denotation
function to permit them makes it easy to weaken the entire lemma pulling it into
the context where it will be applied.

While seemingly complex, open_lemmaD and closed_lemmaD have nice compu-
tational properties that make the meaning of the lemma exactly the type of the

68

Variable concl : Type. (* the type of conclusions *)

Record lemma : Type := (* lemmas are Coq records *)

{ foralls : list typ ; premises : list expr ; conclusion : concl }.

Variable Typ0_Prop : Typ0 Prop.
Variable conclD : Π (tus tvs: tenv typ), concl → option (ExprT tus tvs Prop).

Definition open_lemmaD (tus tvs: tenv typ) (lem: lemma)
: option (ExprT tus tvs Prop) :=

let vars := lem.(foralls) in
match mapT (fun e ⇒ exprD tus (vars ++ tvs) typ0 e) lem.(premises)

, conclD tus (vars ++ tvs) lem.(conclusion)
with

| Some prems , Some concl ⇒
Some (fun us vs ⇒
forallEach vars (fun vs’ : hlist (typD ts) vars ⇒

fold_right (fun P conc ⇒ P us (hlist_app vs’ vs) → conc)
(concl us (hlist_app vs’ vs)) prems

| _ , _ ⇒ None

end.

Definition closed_lemmaD (lem: lemma) : Prop :=
match open_lemmaD [] [] lem with

| None ⇒ False

| Some lD ⇒ lD Hnil Hnil

end.

Figure 3.13: MirrorCore’s generic representation of lemmas.

lemma itself. That is,

Definition lem_AI : lemma :=
{ foralls := [tyProp; tyProp]
; premises := [Var 0; Var 1]
; conclusion :=

App (App (Inj ∧) (Var 1)) (Var 0) }.

Lemma AI : ∀ P Q, P → Q → P ∧ Q. (* ≡ closed_lemmaD lem_AI *)

69

Applying a Lemma

The heart of the eauto prover is applying lemmas. While an efficient implementa-
tion would use a discrimination tree to speed up the process, the algorithm that I
present here does not. Since the procedure is implemented within Gallina, noth-
ing prevents us from building a more sophisticated implementation except for the
effort required to prove it sound.

The general procedure for applying a lemma has four steps. To be concrete, I
will explain how they apply the∧-introduction theorem to the following goal

y = x+ 3 ∧ Even x

IntroducingtheLemma First, theprocedurepulls theglobal lemma(lem_AI)
into the current context, i.e. under the x and y variables. Semantically this leads to
the following goal

(∀PQ, P→ Q→ P ∧ Q)→ y = x+ 3 ∧ Even x

Since environment weakening is free in MirrorCore’s representation, this step
is purely logical and introduces no computational overhead.

Next, new unification variables are introduced forP andQ and the lemma in the
context is instantiated with them. This results in the following goal

(?1→?2→?1∧?2)→ y = x+ 3 ∧ Even x

Here, weakening the goal with new unification variables is free but instantiating
the lemma requires real work.

Unification Once the lemma is in the context and has been specialized with
unification variables, the conclusion of the lemma (?1∧?2) is unifiedwith the cur-
rent goal using a reflective implementation of unification. Unification answers the
question: “What values for ?1 and ?2 ensure that ?1∧?2 equals y = x + 3 ∧

70

Even x?” In this case, unification produces the following instantiation:

?1 = (y = x+ 3) ∧ ?2 = Even x

If unification succeeds, then the lemma applies, and proving the premises is suf-
ficient to prove the goal. While this unification solved all of the newly introduced
unification variables, this is not always the case. For example, when applying a
transitivity lemma, the intermediate value is not mentioned in the conclusion and
will therefore only be solved when solving the premises.

The currentMirrorCore implementation of unification is first-order andonly
supports structurally identical terms. However, the specification permits much
richer unification algorithms since it is stated using propositional, rather than def-
initional, equality. For example, while Coq is unable to unify x+y with y+x for
opaque values of x and y,MirrorCore’s unification specification admits this type
of reasoning since the terms are provably equal. Due to the need to have the type
of the terms in order to express the provable equality, MirrorCore’s unification
algorithm is also type-aware, which allows it to unify modulo η-conversion, e.g.
unifying x with y for any x and y of type unit (the type inhabited by a single ele-
ment).

Strengthening After all thepremiseshavebeen solved, it is necessary to check
that all of the unification variables have been instantiated. Proof theoretically this
corresponds to checking that the proof that the procedure “constructed” (though
the procedure did not actually construct it) has no remaining holes.

Ensuring that there exists a term for each unification variable requires that in-
stantiations do not contain cycles. To see the issue, consider the following two
unifications:

?1 = 1+?2 ?2 =?1 + 1

While it appears that both ?1 and ?2 are instantiated, there is no term that satisfies
both constraints. The problem lies in the cyclic dependence between ?1 and ?2.
Since expressions are defined inductively, all expressionsmust be of finite size, and

71

given the two constraints no such expression exists (either syntactically or seman-
tically) since unfolding the constraints results in the following equation..

?1 = 1 + (1 + (...?1...+ 1) + 1)

In its phrasing, this property is orthogonal to the soundness of unification, but the
invariant must still be represented and tracked.

Toavoid complex reasoning about acyclicityMirrorCoreexpresses this prop-
erty using the WellFormed_subst predicate that I showed in the specification for
eprove . The following theorem expresses the meaning of well-formedness of sub-
stitutions

Theorem no_infinite_terms : ∀ sub,
WellFormed_subst sub →
∀ u e u’,

lookup u sub = Some e → lookup u’ sub ̸= None →
mentionsU u’ e = false.

where mentionsU u’ e = false states that the unification variable u’ does not
occur syntactically within e. Using this lemma allows the algorithm to conclude
that all variables are instantiated if the substitution has a mapping for each one.

Conclusion In the previous three subsections, I described the algorithm for
applying an arbitrary lemma. This is the core component of the reflective eauto

procedure. Around this core, MirrorCore’s backward prover includes support
for calling custom reflective procedures similar to Coq’s Hint Extern . Using the
reflective procedure is quite simple. Create a list of reified lemmas and pass them
to the procedure along with the goal to solve and voilà! The result is sound as long
as all of the lemmas are provable.

While not conceptually new (the algorithm is a simplification of the one imple-
mented in Coq and many other proof assistants) this is the first reflective proce-
dure that has made use of a fully internalized unification algorithm within inten-

72

sional type theory⁵. Ultimately, it demonstrates the degree of meta-reasoning that
is possible when given the ability to manipulate unification variables reflectively.

3.5 RelatedWork

In Chapter 2, I discussed a variety of work related to computational reflection in
general. That work is relevant to this chapter and the rest of the dissertation. In
this section I discuss work related to syntactic representations of languages and
unification.

3.5.1 Term Representation

Unlike most work in computational reflection which defines a very narrow syntax
for terms, MirrorCore chooses a term representation that closely resembles the
simply typed lambda calculus. Using this term representation, operators in the
more narrowly defined syntaxes become symbols that are embedded inside the
generic reprsentation [87]. This representation naturally allows for partial appli-
cation and higher-order terms.

MirrorCore’s representation is similar to the representationdiscussed inGar-
rilot et. al.’s work on representing simple types in type theory [80]. Their work
highlights some of the difficulties that I highlighted in the chapter, predominantly
in the phase distinction necessary for handling abstractions. The work does not
have a true implementation. Their paper remarks “if we locally switch off the type
checker;” however, the central insights are clear. MirrorCore’s representation
makes these ideas precisewhile retainingmuchof the simplicity. Theauthors high-
light the theoretical interest of the construction in terms of completeness of a syn-
tactic logic, which is closely related to the strength of a reflective procedure that
operates on the syntax.

⁵The original unification algorithm was implemented in MirrorShard [111] which used
it for rewriting.

73

λ → λω
Type Constructors

λ2

Po
ly
m

or
ph

ism

λP

λω

λPω

λP2 λPω

De
pe
nd
en
cy

Figure 3.14: Barendregt’s lambda cube. Moving to the right allows types to
depend on types, e.g. type functors like list. Moving up allows terms to depend
on types, e.g. polymorphic functions like λx.x. Moving into the page enables
types to depend on terms (dependent types), e.g. vector 3.

Lescuyer’s reflectiveSMTsolver [107] alsouses a representation similar toMir-
rorCore’s encoding of terms using environments. This representation is well-
suited for SMT-style reasoning about uninterpreted functions, but he does not
provide any way to reason semantically about these environments. A common
way to avoid this problem is to generalize the appropriate lemmas and reify them
with the problem. While this works for first-order data, it does not work well for
custom procedures because their soundness proofs are non-trivial. This solution
also introduces additional cost of reflecting lemmas and processing them on each
reflective invocation. The key insight of MirrorCore is the constraint formula-
tions that enable customprocedures and first-order data to be reused across reflec-
tive calls. Lescuyer’s representation also does not provide lambda abstraction or
unification variables.

WhileMirrorCore does not handle all of the complexities of dependent type
theory, it forms a sweet-spot that avoids much of the complexity while still being
useful. For comparison, recall thatHOL [88] and Isabelle [123] are popular proof
assistants withmany users andmany successes [98, 120, 121], and neither of these

74

systems contains dependent types at all.
MirrorCore’s choice of the simply-typed lambda calculus makes it simple to

embed butmeans that some features such as polymorphism and type constructors
are second-class. Barendregt’s lambda cube (Figure 3.14) demonstrates three di-
mensions of extension: polymorphism, type constructors, and dependent types.
The MirrorCore repository [108] contains toy implementations enriching the
core language to support (independently) polymorphic symbols and type con-
structors in a first-class way. The implementations retain the simple pieces of the
representation and are therefore likely to also have good computational proper-
ties. What makes these extensions feasible while retaining much of the simplicity
is that neither requires tightly interwoven contexts since the type context does not
depend on the term context. De Bruijin showed how this dependency can be ac-
complished using “telescopes” [48] but the encodings in Gallina become signifi-
cantly more complex.

ReflectingDependentTypes Whiledependent types arenotnecessary, they
are useful, and reflectively reasoning about them provides an impressive system
for automation. Several researchers have built formalizations of a dependent type
theory within itself [23, 53, 65, 115, 152]. Much of this work relies fundamentally
on more advanced features than Coq currently supports, for example, inductive-
inductive [11] definitions which allow simultaneously defining an inductive type
and its inductively defined index.

In 2007, Danielsson [65] formalized a core dependent type theory inside of
AgdaLite, a precursor to Adga [8]. Unlike MirrorCore, Danielsson’s work uses
strongly typed terms, essentially expressing the typing derivation as opposed to
the actual term. The formulation relies on induction-recursion and non-positive
inductive types, neither of which was fully formalized within AgdaLite, though
Dybjer and Setzer proved that they have a set-theoretic model [77]. Beyond this,
the formalization includes results about normalization by evaluation and witness
substitutions as opposed to functions that compute substitutions.

Two years later, Chapman developed another formalization of dependent type

75

theory [53] inside of Agda. Chapman’s work is significantly heavier than Daniels-
son’s. For example, the entire formalization is relational, never defining an actual
denotation function. This allows Chapman to avoid the inductive-recursive defini-
tions that lie at the heart of Danielsson’s work. While the lack of an interpretation
function may be considered a non-starter for computational reflection, Chapman
suggests that the Bove-Capretta method [39] can be used to derive (somewhat
mechanically) a functional implementation from a proof of strong normalization.
The intricacies of the encoding, however, are likely to be expensive in practice.

A year later, McBride revisited the problem using the meta-language’s (in his
case Agda’s) equality to handle the complexity of reduction and typing [115]. He
achieves this by avoiding a complete functional representation of types, instead
indexing terms by their types and leaving the type checking to Agda. This ap-
proach works well for McBride’s motivation of embedding domain specific lan-
guages within dependent type theory. It would be interesting to see how these
ideas could be adapted to MirrorCore. The core ideas are fairly similar to those
thatmakeMirrorCorepossible though the implementation relies heavily onde-
pendent types and advanced features not available in Coq.

Shulman also recently raised the question of self-representation in the context
of Homotopy Type Theory [135]. Shulman’s question is slightly closer to that of
MirrorCore because he desires a weakly typed representation of terms where
previous formalisms have opted for a completely dependent style. This has desir-
able properties from a computational point of view (since dependent types do not
have to be carried around). However, previous work gives a strong indication that
the complexity of the denotation function will rely in a fundamental way on deep
normalization arguments that are expensive in their own right.

Unlike the previous proposals, Shulman provides something of a negative re-
sult though also an open question as to whether it is truly possible. For him, a
mathematician and homotopy type theorist, the core question is in representing
the coherence conditions for higher types. In an ideal world, everything would
be defined up to the equivalence relation induced by the next universe, but such a
definition seems to be too extensional to work.

76

Barzilay’s work [25, 26] on computational reflection in Nuprl is a notable suc-
cess in full reflection of a dependently typed language used for practical purposes.
Significant pieces of theNuprl systemarebasedon the reflective automationdevel-
oped in that work. The key power that Barzilay is leveraging is the extensional na-
ture ofNuprl where computation is inherently untyped. In the extensional setting,
the complexities associatedwith casting that I discussed in Sections 3.2.1 and3.2.2
disappear. In addition, since computation is untyped the strong normalization
proof that all of the above formalisms work hard to build and maintain in the de-
notation function is kept separately in the typing derivation. This means that it
incurs no additional overhead during computation the way it would in intensional
theories.

Another recent success in self-representation isBrown’sworkon self-representation
in Girard’s System U [47]. While not dependent, System U does provide poly-
morphism and type functions that would be useful additions to MirrorCore’s
representation. Brown’s work builds on top of higher-order abstract syntax (pop-
ularized by Twelf [129]) and is focused on meta-programming.

3.5.2 Representing Constraints

New ideas in proof assistants have been proposed to find amiddle groundbetween
intensional and extensional equality. There are important reasons tohaveboth, but
the theory of a system involving both is not completely worked out yet in a type
theory as rich as Coq’s. Andromeda [27] is one attempt to unify the two based on
a proposal by Voevodsky [150]. The price paid for this generality is decidability of
type checking of terms.

3.5.3 Composable Syntax

Swierstra presented an alternative solution to the composable syntax problem in
his work on “Datatypes a. la. carte” [144]. His approach relies on describing in-
ductive data types as functors and using a special fixpoint inductive type to “tie
the knot.” Figure 3.15 shows the merging of two languages, one with plus and the

77

Inductive Eplus (E : Type) : Type := (* plus language *)

| Plus : E → E → Eplus E.
Inductive Econst (E : Type) : Type := (* minus language *)

| Const : N→ Eminus E.
Inductive Either (F G : Type → Type) (E : Type) : Type :=

(* disjunction *)

| Left : F E → Either F G E

| Right : G E → Either F G E.
Inductive Mu (F : Type → Type) : Type := (* fixpoint *)

| MuF : F (Mu F) → Mu F. (* not accepted by Coq *)

(* the combined language *)

Definition plus_and_const := Mu (Either Eplus Econst).
(* or *)

Definition const_or_plus := Mu (Either Econst Eplus).

Figure 3.15: Combining two languages using Swierstra’s technique from
“Datatypes a. la. carte.”

other with constants. Here, we define two type functors (Eplus and Econst) that
abstract over the type of expressions. We can then combine them into the com-
plete language using Either and take the fixpoint of the functor using Mu.

Coq rejects the above definition of Mu because in the MuF constructor Mu does
not occur strictly positively, a restriction related to domain theory that justifies
that the inductive type is well-behaved. While the general definition is rejected,
the idea works for particular choices of F. In fact, while the requirements on F are
not expressible in Coq, Agda does admit this type of definition [7] by allowing
quantification over strictly positive functions⁶.

Beyondbeing expressible in the current versionofCoq,MirrorCore’s univer-
sal representation has several additional benefits. First, note that Plus and Minus

are second-class. This means that they cannot be partially applied or passed to
functions. Prior to Coq 8.4pl4 this restriction prevented MirrorCore from rea-

⁶Since Agda does not have an impredicative universe, the requirement of strict positivity is
relaxed to simple positivity.

78

soning about partial function application, e.g. map (plus 1) ls. Using η for func-
tions enables representing this expression as map (fun x ⇒ plus 1 x) ls. Sec-
ond, note that the exact order of constructing the final type is essential. While
plus_and_const is isomorphic to const_or_plus , the two types have different
representations. This means that procedures or proofs written with one composi-
tion in mind must be rewritten for the other representation or the terms must be
translated. MirrorCore’s representation choice, on the other hand, provides a
canonical representation of terms that can be carved up using the techniques in
Sections 3.2.1 and 3.2.2.

Delaware [70–72] showed how to use Church encodings [130] to circumvent
the strict positivity limitation and encode Swierstra’s extensible representation in
Coq. While this approach still has the same problems for computational reflection
that Swierstra’s approachhas, the ideas in thiswork are usefulwhenwriting generic
functions over the syntax that exposes high-level structure.

3.5.4 Unification

Unification is a core procedure used in the checking of both standard program-
ming languages and proof assistants and has thus been a topic of research since
the 1970s. Some of the seminal work on higher-order unification was done by
Huet [91] while developing the foundations of proof assistants. In the higher-
order case, which Huet addresses, there is no principle unifier of two terms, so
completeness is impossible. MirrorCore’s unificationalgorithmavoids the com-
plexity of higher-order unification by requiring terms to match up exactly, i.e. it
does not do any reduction. MirrorCore’s interface for unification does allow
for higher-order unification as well as unification modulo theories [19]. This gen-
erality is due to the specification being defined using propositional, rather than
definitional, equality.

McBride [113] showed an elegant algorithm for expressing the acyclicity check
for first-order unification using dependent types. By making the acyclicity proof
manifest, he is able to use it to prove termination, thus providing a complete, first-

79

order unification algorithm. MirrorCore’s algorithm, on the other hand, explic-
itly avoids constructing this proof object, which my experiments have shown can
be costly when running within the proof assistant (see Chapter 4). The ability to
erase proofs during execution would enable a cleaner interface for substitutions
without sacrificing performance.

McBride’s algorithmhandles a “uniformprefix,” where all existential quantifiers
have the same context. Miller discusses the more general problem of unification
with amixed prefix [119]. Many of these techniques involve skolemization, which
tries to lift quantifiers and place restrictions on them, for example, converting ∀x :
N, ∃y : B, ...y... into ∃y : N → B,∀x : N....y x.... While not necessary for the
backwards prover presented in this chapter, MirrorCore does support mixed
prefixes though in an incomplete way.

Very recent work on computational reflection has also built a backwards proof
procedure in Agda [99]. While the authors remark that the implementation is
quite slow, it side-steps the complexity of defining it within the theory.

80

4
Engineering Reflective Automation

Theprincipalmotivation for computational reflection is oftenperformance. In this
chapter I discuss the engineering considerations that contributed to the design of
MirrorCore. In some cases this performance comes at the cost ofmore complex
proofs, and throughout the chapter I point to promising avenues of current and
future work that might ameliorate some of the pain points.

I begin with an overview of the relevant reduction mechanisms that Coq pro-
vides (Section4.1). Two features are important for computational reflection. First,
in somecases it is important to control reductionbyonly reducing certain symbols.
This feature plays a crucial role in constructing proof terms that interfacewith non-
reflective proofs. And second, some reduction mechanisms are annotated in the
proof term and can therefore be used during proof checking, while other mecha-
nisms are used by tactics but not included in the proof term, which can cause proof
checking and proof generation to have very different run-time properties.

81

Next I discuss empirical results related to the use of dependent types in com-
putation (Section 4.2). Coq’s rich type theorymakes it possible to express precise
types that blur the line between programming and proving. While this is not a
priori a bad thing—in fact strong types can simplify programming dramatically—
they can incur run-time overhead both by constant factors and asymptotically.

Achieving good performance with computational reflection also requires con-
structing good proof terms for invoking the reflective procedure. While tactics
usually construct proof terms in a relatively ad hocmanner, it is worthwhile tuning
both the proof terms and the scripts that generate them. In Section 4.3, I discuss
both of these challenges as they relate to the current version of Coq. The tech-
niques highlight the importance of low-overhead interfaces to the proof kernel
since both interpretive overhead and redundant computation can be devastating
to the goal of building fast proofs.

Finally, I describe some technical details related to reification, the process of
building a syntactic representation of a semantic term (Section 4.4). Reification is
often overlooked in formal presentations, but fast reification is essential to achiev-
ing good performance with computational reflection.

Nota Bene As Coq evolves the need for some of these choices may
lessen and theneed tomakeother choicesmay arise. All performance
evaluations in this chapter are based on Coq 8.4pl4, and all of the
suggestions are true for earlier 8.x versions of Coq as well.

4.1 Coq’s ReductionMechanisms

The workhorse of proof by reflection is reduction, and having efficient computa-
tion is essential tomaking computational reflection fast. While definitional equal-
ity is a single relation, there are several implementations of it in Coq. These imple-
mentations trade efficiency for customizability and are useful for different tasks.
In this section I discuss three of Coq’s implementations of reduction with an eye
towards how they affect computational reflection.

82

Virtual Machine Reduction The most efficient implementation of reduc-
tion currently available inCoq is virtualmachine (VM)reduction [84]¹. This strat-
egy compilesGallina code to a small virtualmachine implemented inC and runs it
there. All-in-all virtual machine reduction is often approximately 100x faster than
Coq’s next fastest reduction technique (which I will discuss shortly).

There are two draw-backs to virtual machine reduction. First, VM reduction
completely reduces terms. This works very well when computing on values, e.g.
when computing the result of the reflective procedure. However, when opaque
terms or quantified variables occur they block reduction. When this happens, re-
duction often builds a very large term that is expensive to represent. Second, VM
reduction fails on terms that mention unification variables. From an engineering
point of view, this is because VM reduction is implemented in the kernel, which
does not understand unification variables (since they are not part of the type the-
ory). This limitation re-enforces the need tomaintain a strong separation between
the semanticmeaning of terms in computational reflection and their syntactic rep-
resentation. However, the kernel implementation also has a large benefit: VM re-
ductions arenoted as such in theproof termso thekernel uses themwhenchecking
the final proof.

In many cases, though not all due to dependent types, both of these limitations
canbeovercomebyabstractingunificationvariables and terms thatwewish tohide
from reduction. Braibant’s evm plugin [45] provides useful tactics for performing
this abstraction and is discussed in more detail in [111].

Delimited Call-by-Value Next in the efficiency spectrum is delimited call-
by-value. Unlike VM reduction, delimited call-by-value is programmable by spec-
ifying particular reduction rules, e.g. β- (function call) or ι-reduction (match re-
duction). In addition, δ-reduction (replacing names with their definitions) is cus-
tomizable by either a black-list or a white-list of identifiers to reduce. This is useful

¹Coq 8.5 will also feature a reduction strategy that compiles terms to native code via
OCaml [37]. It is currently unclear if compilation will incur too much overhead to make na-
tive compilation effective for computational reflection.

83

when reducing a denotation function but not the semantic terms inside of it. Even
this customizability is sometimes insufficient. For example, when both the deno-
tation function and the term use the same function it is desireable to reduce only
certain instances of the function, which is not currently possible.

Unlike VM reductions, the customizations to call-by-value reduction are not
included in the final proof term, so the kernel falls back on lazy reduction (which
I discuss shortly) to perform the actual check. This can have a substantial impact
on the proof checking time compared to the time it takes to build the proof.

LazyUnification Thekernel’s core algorithm for determining if two terms are
definitionally equal performs lazy reduction of the terms until their head symbols
match and then continues unifying the arguments pointwise². In the common
case when terms match up exactly, or very closely, lazy unification behaves very
well. However, as more computation is needed the overhead of the lazy reduction
becomes significant.

In addition,whenchecking that two termsare equalCoqmust selectwhich term
to try to reduce to the other. For example, consider testing the following two terms
for equality:

id (fib 100) fib 100

If Coq chooses to reduce the former to the latter it only requires a small amount
of work to evaluate id. On the other hand, if Coq attempts to reduce the latter to
the former Coq will reduce the entire term before it attempts to reduce the other.
Emperically, reducing the second to the first takes 0.001 seconds while reducing
the later to the former takes almost 20 seconds.

²This is a significant simplification of the algorithm, but the performance characteristics are
similar.

84

Non-Dependent
Inductive expr : Type :=
| Const : N→ expr

| Var : N→ expr

| App : expr → expr → expr

| Abs : typ → expr → expr

Dependent
Inductive wtexpr

: list typ → typ → Type :=
| wtConst : Π ts,N→ wtexpr ts tyNat

| wtVar : Π ts t, member t ts → wtexpr ts t

| wtApp : Π ts d r, wtexpr ts (d ⇛ r)→
wtexpr ts d → wtexpr ts r

| wtAbs : Π ts d r, wtexpr (d :: ts) r →
wtexpr ts (d ⇛ r).

Figure 4.1: Two representations for lambda terms. The dependent representa-
tion guarantees that terms are well-typed.

4.2 Engineering Verifiable, Executable Code

Acentral question indeveloping codewithboth efficiency andverifiability inmind
is the representation of information. Tight integration of data and invariants often
makes it easier to verify code, while looser integration often allows for more effi-
cient computation. These invariants are necessary to prove soundness. The essen-
tial difference is where the information is required, constructed, and maintained.

For illustrative purposes consider the two representations of a simple λ-like lan-
guage similar toMirrorCore’s shown in Figure 4.1. On the left, the type conveys
minimal information about themeaning of the term. On the right, the wtexpr type
conveys the entire typing derivation including the variable context and the type of
the term. This means that any term of type wtexpr ts t is guaranteed to be well-
typed at type t in a context that contains ts variables. This makes the denotation
function for wtexpr total and avoids the need to interleave type inference and de-
notation since all of the typing information is embedded in the term. Indexing
the type of terms also makes it easy for functions to express the contexts of terms
that they accept and compute. Thismakes it harder tomake simplemistakes when
manipulating terms.

Figure 4.2 shows how the choice of representation affects the performance of
computation. Terms are constructed according to the following syntax to mini-

85

5 10 15 20
10−4

10−3

10−2

10−1

100

101

Term Depth

Ti
m

e(
se

c)

Reduction Time (call-by-value)

Non-dependent
Dependent

5 10 15 20
10−4

10−3

10−2

10−1

100

Term Depth

Ti
m

e(
se

c)

Reduction Time (VM reduction)

Non-dependent
Dependent

Figure 4.2: Performance characteristics under call-by-value and VM reduction
of the dependent and non-dependent term representations. Coq cannot repre-
sent the dependent term for depths larger than 16.

mize the amount of term reduction and maximize the amount of syntax.

e0 = 0 en+1 = (λx.en) en

The denotation function for the dependent syntax is a straightforward translation
of the denotation function in Chapter 3. The non-dependent denotation is the
subset of the denotation function that MirrorCore uses which performs simul-
taneous type checking using mutual induction. The dependent representation
stops early (at depth 16) when Coq can no longer construct the representation
in a reasonable amount of time (Coq takes almost 5minutes to construct the term
of depth 16 using VM reduction).

A quick look at the axes of the two graphs shows that VM reduction is about 10x
faster than Coq’s call-by-value reduction strategy on this problem. Unfortunately,
VM reduction is too aggressive to be used when reducing the denotation function
in computational reflection. Using it unfolds all of the symbols, building terms
that take too long to unify.

In both cases, the non-dependent representation is an order ofmagnitude faster
than the dependent representation. This may seem counter-intuitive because the
non-dependent codemust do a fair amount of error checking since the denotation

86

function is not total. However, the extra data associated with the constructors in
the dependent representaiton is quite substantial, and carrying around this infor-
mation is expensive.

Another property of the representation that is important to consider is the size
of terms since the terms will appear within the final proof. The additional indicies
makes the size of terms in the dependent representation grow significantly more
quickly than the size of terms in the non-dependent representation. This can be
mitigated to some extent by introducing local names for pieces of the term that
are repeated. For example, constructors can be partially applied to parameters to
avoid repeating the parameters throughout.

The larger worry, however, is the cost of type-checking the term. Even seem-
ingly small terms can take time to type check. For example, if wtexpr is extended
with symbol injection, any use of this constructor would require type checking the
symbol. This would require either large terms or reduction which the kernel will
perform using the lazy evaluation strategy.

Asymptotics & Dependency

Not all of the cost of dependent types is accurately captured by the size of the term
and the performance of the denotation function. By reducing the amount of in-
formation captured by the type, a single term can represent many terms, and con-
verting between them becomes a zero-cost operation.

The easiest way to see this is with a function that weakens the context of a term.
The type of the dependent weakening function is the following:

Definition wtweaken : Π ts ts’ t, wtexpr ts t → wtexpr (ts ++ ts’) t.

This function recurses over the term and rebuilds it using the new value for ts. The
cost of this is linear in the sizeof the term. In thenon-dependent representation, on
the other-hand, weakening is free because well-typed termsweaken to themselves.

Definition weaken : expr → expr := fun x ⇒ x.

87

The computation done by wtweaken is not completely lost however. To see
where it has gone, consider the soundness theorem that states that weakening an
expression does not change its meaning. Using the dependent representation the
soundness theorem is the following.

Theorem wtexprD_weaken : ∀ ts t (e : wtexpr ts t) ts’ vs vs’,
(exprD ts t e) vs =
(exprD (ts ++ ts’) t (wtweaken ts ts’ t e)) (vs ++ vs’) .

Using the non-dependent representation the soundness is a bitmore complicated:

Theorem exprD_weaken : ∀ ts t (e : expr) ts’ eD,
exprD ts t e = Some eD →
∃ eD’, exprD (ts ++ ts’) t e = Some eD’ ∧
∀ vs vs’, eD vs = eD’ (vs ++ vs’) .

Note that in the non-dependent version the theorem is forced to prove that if the
given term has a denotation in the stronger context then it also has a denotation
under the weaker context. This property is exactly what wtweaken is spending its
linear time to compute. Further, note that the non-dependent weakening lemma
requires an explicit proof that the term being weakened is well-typed (i.e. the fact
that the denotation returns Some). Changing exprD_weaken to directly state the
equality like wtexprD_weaken results in a theorem that is not true because weak-
ening an ill-typed term can produce a well-typed term, which will clearly have a
different denotation.

AFullyDependentRepresentation In addition to the types, terms can also
be indexed by their contextualized values. Doing this allows the weakening func-
tion capture the entirety of the weakening lemma.

Definition dweaken : Π ts ts’ t (val : hlist typD ts → typD t),
dexpr ts t val →
dexpr (ts ++ ts’) t (fun ctx ⇒ val (fst (split ctx))).

88

expr wtexpr dexpr

function O(1) O(n) O(n)
soundness O(n) O(n) O(1)

Figure 4.3: The distribution of work between the function and the soundness
theorem. dexpr does all of the work in computation, expr does all of the work
in soundness, and wtexpr does the well-typedness during the computation and
the semantic equivalence in the soundness theorem.

In this definition, split extracts the beginning of the extended context which it
passes to val.

While quite cumbersome toworkwith, the fully dependent representationdoes
complete the picture of computational asymptotics (Figure 4.3). Note that all of
the implementation choices do the same amount of work. What changes between
the implementations iswhere thework is done. With the non-dependent represen-
tation all of the work is done in the soundness proof, while in the fully dependent
representation all of the work is done in the function. The well-typed representa-
tion does half of the work in the function (the well-typedness part) and the other
half in the soundness proof (the denotation part).

Beyond the computation there is another crucial property to note here: the
soundness theorem relies on functional extensionality, whichmust be an axiom in
Coq. Since functional extensionality is only necessary when reasoning about the
contextualized value, it is not necessary when implementing weaken or wtweaken .
In the fully dependent representation, on the other hand, functional extensional-
ity is necessary for the weakening function itself. This means that reducing a call
to dweaken will get stuck on the axiom and not fully reduce. Here the division of
labor effectively hides the axiom from the computation.

Bi-directional Type Checking One improvement that would greatly im-
prove the term representation is bi-directional type checking [132]. Bi-directional
type checking more closely integrates terms with their types which allows some
pieces of them to be elided. For example, all of the parameters except for themem-

89

bership proof of wtVar are completely determined by its type. Making the type
checker aware of this dependency enables these redundant terms to be omitted
entirely rather than just hidden by Coq’s mechanism for implicit arguments.

The forthcoming Coq 8.5 will feature first-class records which will support a
restricted form of bi-directional typing for record projections. While useful this
feature is not sufficient, since it does not erase the values from the constructors.

4.2.1 Proofs, Compression & Computation

The representation in the previous section integrates the data and its properties.
This is computationally useful, but it makes the division of labor that I highlighted
at the end of the last section less obvious. An alternative is to split the property
from the data that it holds on. The following alternate definition captures the well-
typedness of terms using Coq’s dependent pair type.

Definition wtexpr ’ ts t : Type := { e : expr | WellTyped ts t e }.

If WellTyped is an inductive type, it is the same size as wtexpr , and there is extra
data (but no extra information) in the expr.

But there is a potential benefit to this formulation if the property is decidable.
Using computational reflection we can compress the large inductive proof into a
small proof of equality.

(is_well_typed ts t e = true) ⇐⇒ WellTyped ts t e

Substituting equals for equals in the definition of wtexpr ’ allows us to build an
equivalent type that is much smaller.

Definition wtexpr ’’ ts t : Type :=
{ e : expr | is_well_typed ts t e = true }.

Values of this type are essentially the same size as expr but also carry the additional
information that they arewell-typed, and therefore the denotation function can be
made total.

90

While more space-efficient to represent the value, computation on the value
demonstrates where thework has actually gone. In each case, rather than perform-
ing the error handling, the denotation must use the well-typedness proof to prove
that the sub-terms are well-typed before making the recursive calls. Thus we have
traded error handling formanipulating the proof term, which is oftenmore expen-
sive since the type of subterms cannot be easily extracted from the computational
proof term.

4.2.2 Reasoning About Simple Types

One place where proof objects are constructed and often ignored is in predicate
testing functions such as those that test for equality and inequality. For example,
consider the task of determining whether two natural numbers are equal. Coq’s
standard library provides two functions for this, one that returns a boolean and
the other that returns a sum type carrying proofs.

beq_nat : N→ N→ bool

eq_nat_dec : Π n m : N, {n = m} + {n ̸= m}

Thetypeofeq_nat_dec ismuchmore informative since it states exactlywhat “true”
and “false”mean. However, to satisfy the type the functionmust construct the cor-
responding proof. Figure 4.4 shows how this can affect performance. While the
times seem small, the frequency of comparing termsmakes this optimization valu-
able in practice. In the MirrorShard system that I present in the next chapter
moving from eq_dec to eq_bool resulted in a 40% reduction in time³.

Post-facto Reasoning While slower, the more informative type makes the
dependently typed function significantly easier to reason about. For example, a
non-dependent match on “eq_nat_dec a b” provides either a proof that “a = b”
or that “a ̸= b”. Matching on “beq_nat a b”, on the other hand, provides no use-
ful information. In fact, to get the result we need to appeal to another proof that

³At this point, MirrorShard did not use VM reduction.

91

1000 = 1000 1000 ̸= 1001

0.06

0.08

0.1

0.12

0.14

0.16

Ti
m

e(
s)

Performance of Checking Equality (VM reduction)

eq_bool eq_odec eq_dec

Figure 4.4: The performance cost of constructing proof terms with vm_compute .
Numbers correspond to the time it takes to run the function 1000 times.

connects beq_nat to the equality or inequality proofs.
Reasoning about less informative types after the fact canbe cumbersome. There

are specialized tactic patterns for learning information from case analysis. For ex-
ample, the SSreflect [81] tactic library uses the case tactic which generates a de-
pendent match on a datatype indexed by the term (such as beq_nat) rather than
matching on the term directly. While the idea is simple, it is still burdensome to
remember the names of theorems.

TheExtLib library [3] onwhichMirrorCore is built alleviates this burden of
remembering the extra name by usingCoq’s dependent type classes [137] to asso-
ciate soundness theorems with their functions. Traditional type classes carry ad-
ditional information about types, e.g. an equality decider. Dependent types enable
type classes to carry information about values. For example, a type class indexed
by a function can carry a proof about that function:

Class EqOk {T : Type} (f : T → T → bool) : Type :=
{ eq_ok : ∀ x y, f x y = true ↔ x = y }.

When proofs and automation reference the symbol eq_ok , Coq’s type class reso-

92

lution will attempt to find an appropriate instance. This approach is similar to the
use of type classes in the math classes project [138]. With this resolution under
the hood, ExtLib provides a tactic consider that finds the most useful informa-
tion to give when performing case analysis on a term. This technique has proven
quite useful. Using it, it is possible towrite general type classes that combine infor-
mation allowing tactics to learn useful information by considering complex terms
such as “eq_b a b && eq_b c d” to get either “a = b ∧ c = d” or “a ̸= b ∨ c

̸= d”.
Beyond performance, loosely coupling functions with their specifications can

enable greater reuse. For example, the same function can have several spefications
allowing it to be used in different contexts.

4.2.3 Conclusions

Performance evaluation showed that the dependent representationwas too expen-
sive without additional kernel functionality. This result is directly related to the
combination of the smaller representation and zero-cost weakening, which is a
common operation especially when using lemmas. While the size of the depen-
dent representation can be mitigated through certain techniques that I discussed
earlier, zero-cost weakening is an asymptotic improvement that is more difficult to
regain. Introducing aweakening constructor and lazily weakening terms is one po-
tential solution, but orchestrating this while avoiding repeating large amounts of
work seemsdifficult. Haskell-style lazy evaluation could be a saving grace here, but
the complexity that goes into efficient implementations of lazy evaluation seems
ill-suited for the kernel of a proof assistant.

4.3 Crafting Proof Terms for Computational Reflection

Even after all of the Gallina code is written and all of the proofs are done, there are
still important techniques for crafting the right proof term and efficiently commu-
nicating it toCoq. This topic is not usually discussed in the literature, but getting it
right can translate intominutes ormore saved when checking large developments.

93

4.3.1 Phrasing Soundness

Thekey to efficiently using computational reflection is the statementof the correct-
ness theorem. The general soundness theorem for reflective procedures comes in
two forms depending on whether the result of the reflective procedure is known
before hand or not.

Theorem known_result : ∀ hs g,
rtauto hs g = true →
∀ ps, Impls ps hs g.
(* Jhs1K→ Jhs2K→ .. → JgK *)

Theorem unknown_result : ∀ hs g g’,
rtauto_simplify hs g = Some g’ →
∀ ps, propD ps g’ →

Impls ps hs g.

Here, ps is the environment of symbols that the denotation functionwill use to fill
in terminal values and the Impls function sets up an iterated implication between
thedenotationof eachof the hypotheses (hs) and the goal (g). These two theorem
statements demonstrate two guidelines to followwhen building theorems that can
be efficiently used to invoke reflective procedures within proofs.

First, both theorems have a separate equation stating the reduction of the reflec-
tive procedure. This makes it possible to use VM reduction to perform the bulk of
the work and still be able to use the customizable call-by-value reduction to re-
duce only the denotation function on the final result if necessary. Note that the
term being reduced is a closed term with no opaque symbols that could interfere
with reduction.

Second, both theoremstatements avoid extraneousdata bypassingmultiple val-
ues as separate function arguments rather than building a tuple of proofs. When
conjunctions are necessary as premises to the theorem, convert them into implica-
tions using a definition such as Impls that produces a chain of implications. When
they are “returned” to the user, write the new obligation as an implication using
Impls so that the new premises can be introduced by the intros tactic without
requiring explicit matching in the remainder of the proof.

94

1 let hs := pRef 0 :: pRef 1 :: nil in

2 let g := pAnd (pRef 0) (pRef 1) in

3 @known_result

4 hs (* syntactic hypotheses *)

5 g (* syntactic goal *)

6 (* The computation proof with a vm_cast *)

7 (@eq_refl bool true <: rtauto hs g = true)
8 (P :: Q :: nil) (* values for [pRef 0] and [pRef 1] *)

Figure 4.5: The proof script for applying reflective procedures that have known
results.

4.3.2 Building the Proof Term

Beyond the phrasing of the soundness theorem, the precise structure of the final
proof term and how it is communicated to Coq are also important.

The proof term for applying the reflective procedure (Figure 4.5) is, not sur-
prisingly, closely related to the soundness theorem. Two pieces of this are impor-
tant. First, the proof uses let-declarations (lines 1 and 2) to avoid repeating terms.
More than space savings, this avoids re-typechecking the terms. Second, the proof
of the equality is stated explicitly using eq_refl , and an explicit VM type ascrip-
tion is used to asssert it also has a type that matches the premise of the soundness
theorem (notated <:). The term on the left has type true = true while the type
on the right states that it must have type rtauto hs g = true.

Known Result Proof Scripts

Figure 4.6 shows theLtac proof script used to build this proof efficiently. The first
step is to manipulate the goal to match the type of the above term. To do this,
we use Ltac’s generalize or revert tactic to move the premises below the line.
This results in the following goal which is convertible to the type of the proof term
above.

P → Q → P ∧ Q

95

generalize HQ ; generalize HP ; (* revert the hypotheses *)

set (ps := P :: Q :: nil) ; (* introduce names for common terms *)

set (hs := pRef 0 :: pRef 1 :: nil) ;
set (g := pAnd (pRef 0) (pRef 1)) ;
change (Impls ps hs g) ; (* change the goal *)

(* build the proof *)

set (pf := known_result hs g (@eq_refl bool true <: rtauto hs g = true));
exact pf. (* use the proof *)

Figure 4.6: The proof script used to apply the known_result soundness theo-
rem.

Next the script uses the set tactic to introduce names for the large pieces of the
proof that will be used multiple times. In the example, this is the environment for
the opaque terms and the syntactic representation of the hypotheses and goal.

Once the names are introduced, the script uses the change tactic to hint to Coq
that the goal matches exactly the conclusion of the goal. While this step is not
required since Coqwill perform this check automatically, the hint tells Coqwhich
way to reduce. In the above goal, “Impls ps hs g” simplifies to the implication,
while the implication does not simplify to Impls . Without this hint, Coq (version
8.4) will attempt to simplify “P → Q → P ∧ Q” into “Impls ps hs g” and only
try the other way once this fails.

Finally, the script uses the proof term to solve the goal. Naïvely it would use
exact to solve the goal, but in the 8.4 family of Coq this is not optimal due to extra
checks that are performed by exact . The solution is to use set to introduce the
proof and exact to use the introduced name to solve the goal. While the proof
term is slightly longer, building it is much faster.

Timing results vary considerably based on how much time the reflective pro-
cedure and denotation function take to compute, but each component that I de-
scribed above is important to the final proof. The peculiarities of what checks cer-
tain tactics perform should be better documented so that it is easier to determine
what tactics should be used. Amore “assembly-like” tactic language would be use-
ful for this purpose and possibly also for some of the more aggressive uses ofLtac

that currently suffer from performance problems [54, 73].

96

1 generalize HQ ; generalize HP ; (* revert the hypotheses *)

2 set (hs := pRef 0 :: pRef 1 :: nil) ; (* introduce names for common terms *)

3 set (g := pAnd (pRef 0) (pRef 1)) ;
4 set (ps := P :: Q :: nil) ;
5 let result := constr:(rtauto_simplify hs g) in

6 let resultV := eval vm_compute in result in (* call the procedure *)

7 match resultV with

8 | Some ?G’ ⇒
9 (* compress G’ if necessary before introducing it into the proof *)

10 set (g’ := G’) ;
11 let GD’ := eval cbv β ι ζ δ [. . .] in propD ps g’ in (* whitelist reduction

*)

12 cut (GD’) ;
13 [(* the goal to solve using the soundness theorem *)

14 change (propD ps g’ → Impls ps hs g) ;
15 generalize ps ;
16 cut (result = resultV) ;
17 [(* solve the goal with the soundness theorem *)

18 set (pf := @unknown_result hs g) ; exact pf

19 | (* insert a vm_cast but do not check it *)

20 vm_cast_no_check (@eq_refl _ resultV)]
21 | (* clean up the goal that is returned to the user *)

22 clear g’ hs g ps]
23 end.

Figure 4.7: The proof script used to apply the unknown_result soundness
theorem.

Computed Result Proof Scripts

When reflectiveprocedures return interesting information thatdescribes additional
proof obligations, additional work is necessary to build an efficient proof. The
proof term itself is essentially the same as above. The difference is that there is
now an additional hole that corresponds to the remainder of the proof. Since this
hole depends on the result of the reflective procedure, we need to reduce the pro-
cedure before constructing the proof. Figure 4.7 shows the daunting script that
applies the unknown_result soundness theorem.

Thebeginningof theproof script is quite similar to thepreviousproof script. For
extra efficiency the script can generalize the hypotheses only if the computation

97

will succeed, but this introduces no overall difficulty.
To continue, the script needs to reduce the reflective procedure. The script sets

up the call in line 4 and performs the reduction in line 5 using VM reduction.
The Ltac match on line 5 parses the result of the computation to extract the

pieces that need to be passed to the lemma. In this case, the reflective procedure is
only meant to succeed if it returns Some, so the None case is absent⁴. As before, the
script introduces names for potentially large terms (line 10). Note that if result
can be compressed, e.g. by replacing sub-terms with variables in the context, then
that should be done before the set statement.

Line 11 computes the resulting goal that will be returned to the user. Here we
cannot use VM reduction because it would over-reduce the term. All that we want
to reduce is the denotation function. To achieve this, the script uses a delimited
formof call-by-value reduction programmedwith awhitelist of symbols to reduce.
While it can be frustrating to construct the white-list, using cbv is often substan-
tially faster than using Coq’s simpl reduction strategy, which does extra checks on
terms to see if unfolding definitions is “useful.”

Once the result is known it can be cut (line 12), which produces two sub-goals,
the second of which will be returned to the user. As before, the script uses change
to introduce a cast hinting to the type checker the direction to perform the reduc-
tion in. In an ideal world, we would be able to hint the entire whitelist, but Coq’s
kernel does not currently support this kind of annotation.

At this point our problem looks exactly the way that it did before; however, we
want to avoid running the reflective computation again. This prevents us from di-
rectly applying the set-exact strategy that I showed previously. Instead the script
needs touse theundocumentedvm_cast_no_check tactic tobuild the castwithout
doing the computation. To use it, we further generalize the predicate list ps and
then cut the equality⁵. The goal for the first branch of the cut nowmatches exactly

⁴The semantics of Ltac means that this tactic will fail if the procedure returns None, which is
exactly the behavior that we want.

⁵An alternative approach is to lift the ps before the equality, which trades the generality of
the result for the ease of applying the theorem.

98

with the partially applied soundness theorem, and the script solves it using set-
exact (line 18). In the second branch, the script uses vm_cast_no_check which
acts like exact but introduces aVMtype ascriptionwithout checking it. For exam-
ple, if the goal isG then “vm_cast_no_check pf” produces the proof term “pf <:
G”. This is exactly the proof term that we want, and by using vm_cast_no_check

the script avoids computing the reflective procedure twice.

4.4 Reification: Building Syntax for Semantic Terms

Mostwork on computational reflection glosses over the problemof reifying terms.
While not particularly glamorous, the reification process can dramatically affect
verification time. It is possible to implement reificationof terms inLtac using tricks
for recursing under binders; however, the solution is not very elegant.

There are two issues with the semantics of Ltac that make it ill-suited for im-
plementing reification. First, Ltac is built for backtracking proof search, not term
manipulation. For example, a typo in a branch of the reification algorithm often
leads to exponential backtracking, which can be difficult to debug. This is com-
pounded by the fact that term-producing tactics cannot use idtac , Ltac’s version
of printf. To get around this latter limitation, term manipulating tactics are of-
ten written in continuation passing style, making them thatmuchmore difficult to
write.

The second issue deals with type checking terms. In the 8.4 releases, Ltac does
not support a way to manipulate terms without eagerly type-checking them. The
default of eagerly type checking terms works very well for the use case that Ltac

was envisioned for but it is too inefficient for reification. For example, consider
the twoLtac programs that build the natural number 1000.

constr:(1000) let x := constr:(O) in

let x := constr:(S x) in . . .

The term on the left invokes the type checker once on the term 1000, while the
term on the right invokes the type checker 1001 times, once on each of the terms

99

between 0 and 1000. While one would never write the program on the right, it is
exactly the type of behavior that the reification process has. We know that the full
termwill be type checked once when it is inserted into the proof script, so there is
no reason to type check it a second time. InCoq 8.5Ltac will feature a way to build
terms without type checking them immediately, which will solve this problem.

Coq 8.5 will also feature native support for more sophisticated plugins. This
support makes theMtac tactic language [155] which I will discuss in Section 6.4
usable with the standard Coq distribution. Mtac’s implementation allows it to
construct termswithout the overhead of checking themandwould allow for a con-
venient way to reify terms in a type-safe manner.

4.4.1 Plugin-based Reification

Whenperformance is crucial andother solutions comeup lacking, we can fall back
on writing Coq plugins. When reifying large terms it can be useful to write cus-
tom plugins to achieve good performance. For example, in performing reification
for a domain similar to MirrorCore,Ltac-based reification was 88x slower than
plugin-based reification for the same problems. The draw-back of custom plugins
is that they become a system-level dependency, and care must be taken to ensure
that they run on different platforms, e.g. Windows, Mac, and Linux, as well as dif-
ferent versions of OCaml. Further, as Coq evolves these plugins must be updated
to understand the internals of the Coq implementation (as opposed to the type
theory that it implements).

One solution to this problem is to try to write generic plugins that can solve
many reificationproblems. For example,Coq’s built-inQuoteplugin [62] attempts
to invert a Fixpoint definition using heuristics. While it does support environ-
ments, it does not understand two-level languages such as MirrorCore’s repre-
sentation. Agda’s AutoQuote library [149] provides a programmable version of
Quote where a table of patterns can be associated with terms and used to reify
general syntax. This approach avoids the need to use heuristics at the cost of being
a little more verbose.

100

Another approach is to reify the entire core syntax of the proof assistant and
then write Gallina functions that process it. TemplateCoq [109] is a Coq plugin
that builds a representation of Coq terms that is closest to the kernel’s own repre-
sentation. While TemplateCoq’s representation is not the reflected syntax, it can
be processed by Gallina functions into the appropriate syntax, though the cost of
this could be non-trivial.

MirrorCore’s ReificationPlugin To deal with the added complications of
nested denotations and dependent functions, MirrorCore includes a Coq plu-
gin for programmable reification similar in spirit to Agda’s AutoQuote plugin. The
type of customization that the plugin supports is best illustrated through an ex-
ample. Figure 4.8 shows the plugin in action on a syntax definition for natural
numbers with equality.

The core feature of the plugin is a reification function which is declared us-
ing Reify Declare Syntax . Reification functions are built from a collection of
declarative combinators. CApp, CAbs, and CVar handle the core primitives: appli-
cation, lambda abstraction, and variable reference. In each case their last argument
is the syntactic constructor that corresponds to the semantic object.

Terms, such as local variables, that are reified using the analog of pRef are han-
dled by tables declared using CTable and CTypedTable . The reification process
constructs these tables using positive maps and returns them so they can be used
to fill the environment maps in the proof.

The main customizability of the plugin is achieved through the use of actions
and patterns which are similar to the patterns in AutoQuote. Patterns provide
a simple, semi-declarative way to perform syntactic matching on terms. Pattern
branches are added to pattern tables using “Reify Pattern” which takes a pattern
and an “action” describing the term it should produce. Patterns are defined using
a Coq inductive data type which includes:

p ::= p1@@p2 | !!e | ?n | ?!n |RImpl p1 p2

101

These represent, respectively: function application, exactly the term e, a pattern
variable that binds the current term to the nth argument, a pattern variable that
binds only constants, andCoq implication. To avoid the cost of reduction, pattern
matching is purely syntactic.

Variables bound in patterns are processed by the action associated with the pat-
tern. Actions are Coq functions where the types of the arguments tell what to do
with the given values. For example, the id term (line 29) says that no further pro-
cessing is necessary and the term should be passed for the argument. function f

states that the term should be passed to the reification function f and the result
should be passed to the action. After the arguments are processed, the final term is
produced by substitution. No other normalization occurs, which is often impor-
tant to avoid large terms and the overhead of reduction.

Programmable reificationprocedures suchas this oneprovidegoodperformance
andarewell-suited toperformreification for generic syntactic representations such
asMirrorCore’s. Customizing themto support specialized symbol algebrasonly
requires adding patterns to capture the known symbols. Unknown terms will be
safely hidden in the opaque symbol environment. Further, while they are neces-
sary to use the reflective tactics, they are not, in theory, necessary to check the
proofs constructed using them.

102

1 (* Declare pattern tables for custom types and functions *)

2 Reify Declare Patterns ptrn_simple_typ := typ.
3 Reify Declare Patterns ptrn_simple := (expr typ func).
4

5 (* Declare a quoting function for types *)

6 Reify Declare Syntax reify_simple_typ :=
7 { (CPatterns ptrn_simple_typ) }.
8

9 (* Declare a table that will reify to an environment *)

10 Reify Declare Typed Table table_terms : BinNums . positive ⇒
reify_simple_typ.

11

12 (* Declare a quoting function for terms *)

13 Reify Declare Syntax reify_simple :=
14 { (@CFirst (expr typ func)
15 [(CPatterns ptrn_simple) (* patterns first *)

16 ;(CApp (@App typ func)) (* function application *)

17 ;(CAbs reify_simple_typ (@Abs typ func)) (* functions *)

18 ;(CVar (@Var typ func)) (* variables *)

19 ;(CTypedTable table_terms otherFunc)]) (* other terms *) }.
20

21 (* Add patterns to the pattern tables *)

22 Reify Pattern ptrn_simple_typ += (!! N) ⇒ tyNat. (* N becomes tyNat *)

23 Reify Pattern ptrn_simple_typ += (!! Prop) ⇒ tyProp.
24

25 (* call [reify_simple_type] to reify the bound arguments [0] and [1] *)

26 Reify Pattern ptrn_simple_typ += (@RImpl (?0) (?1)) ⇒
27 (fun (a b : function reify_simple_typ) ⇒ tyArr a b).
28 Reify Pattern ptrn_simple += (?! 0) ⇒ (* constants *)

29 (fun (n : id N)⇒ @Inj typ func (N n)).
30 Reify Pattern ptrn_simple += ((!! (@eq)) @@ ?0) ⇒
31 (* polymorphic equality: reify the type using [reify_simple_typ] *)

32 (fun (t : function reify_simple_typ) ⇒ Inj (typ:=typ) (Eq t)).
33

34 (* reify a term *)

35 Goal expr typ func.
36 reify ((fun x y ⇒ x) 1 3).
37 (* App (App (Abs tyNat (Abs tyNat (Var 1))) (Inj (N 1))) (Inj (N 3)) *)

Figure 4.8: Reification rules for a simple language with constant natural num-
bers and equality.

103

5
Case Study: ProgramVerification in

Bedrock

In the introduction I motived mechanized reasoning for large-scale program veri-
fication. In this chapter I use my techniques to build compositional reflective au-
tomation that verifies programs written in Bedrock [54], a Coq library for low-
level imperative program verification. Program verification is an interesting ap-
plication of computational reflection because it requires reasoning about several
layers of abstractions. First, it requires reasoning about the semantics of the pro-
gramming language in order to understand what the code is doing. Second, it
requires reasoning about program specifications including higher-order features
such as function pointers and assertions about the current state of the program.
Third, large programs introduce program-specific abstractions such as lists, finite
maps, thread queues, and memory allocators.

104

Building automation to solve any one of these problems is difficult but doable.
However, architecting these pieces so that they can be developed independently
requires building them in a compositional way. Handling program-specific ab-
stractions highlights the major difficulty. The predicates used to describe these
abstractions are known only by the program developer, who wants to be able to
use the automation predominantly as a client.

Bedrock includes a generic, assembly-like language that builds higher-level
abstractions through principled macros [55] that come equipped with their own
proof rules and automation. The latter is essential because Bedrock programs are
proved correct fromfirst principles. This choice unshackles the developer from the
constraints of a conservative type system at the cost of making him or her prove
the code safe. Clearly this approach is only feasible when such proofs can be done
with minimal overhead. In the rest of the chapter I demonstrate how I used the
ideas that I presented in Chapter 3 to achieve this¹.

The automation infrastructure that I describe in this chapter has been used to
verify thousands of lines of Bedrock code ranging from data structures [111], to
low-level OS-like services such as garbage collection [124] and a thread scheduler
and web server stack [57]. It has also been used to verify a compiler that compiles
a higher-level language into Bedrock [151].

I begin with an end-to-end example developing a small module in Bedrock
(Section 5.1). In this context, I outline the verification task and focus on the as-
pects that are well-suited to automation. In the next section, I concentrate on the
automation tasks that I solve using computational reflection: symbolic execution
(Section 5.2.1) and entailment checking (Section 5.2.2). Each task is solved by its
own reflective procedure that invokes both application- and framework-specific
automation. I conclude with a discussion of the performance characteristics of
the reflective procedures (Section 5.3) before surveying other program verifica-
tion tools (Section 5.4).

¹Historically speaking the Bedrock automation (called MirrorShard) was developed
prior to MirrorCore.

105

5.1 Bedrock by Example

The code in Figure 5.1 gives a representative example of typical Bedrock code².
The figure is broken down into two parts: on the left is the executable code, and on
the right is its verification. The code implements the standard binary search tree
insertion algorithm without balancing.

The Bedrock Example

Thecode on the left begins by declaring aBedrockmodule for binary search trees
that contains a single add function for imperatively inserting newelements into the
tree. The implementation is mostly standard; what is interesting is how Bedrock
integrates programming and verification (on the right).

Take the function signature for example. There are no high-level types for the
code, e.g. the two procedure arguments s and k are not declared to be a pointer
and an integer. Rather, all of the assertions about the arguments are made by the
procedure specification (lines 4-8) which is an assertion about the state of the sys-
tem when the procedure runs. This allows us to express deeper properties, e.g.
about the relationship between different values. In Bedrock, the function speci-
fication is written in separation logic [134]. It states that s is a pointer to the root
of a tree that represents themathematical set sM (expressed by the predicate “bst
sM s”). The post-condition (inside of “POST [] . . .”) states that if the procedure
returns, the same pointer s points to a mathematical set containing all of the ele-
ments that were in the initial set and also the new element k, expressed using “sM
∪ {V “k”}”. In this style, Bedrock specifications are similar to other Coq verifi-
cation systems [17, 58] where the imperative implementation is specified using a
functional implementation written as a Gallina function.

The∗ inBedrockassertions is the separating conjunction fromseparation logic.
The formula P ∗ Q states that the assertions P and Q are true about disjoint frag-

²This code was written by Adam Chlipala and published in [111].

106

Program
1Definition bstM : bmodule := { . . .
2(* Method implementation *)

3bfunction add(s, k)
4[SPEC(“s”, “k”) reserving 7
5Al sM,
6PRE[V] bst sM (V “s”) * mallocHeap
7POST[_] bst (sM ∪ {V “k”}) (V “s”)
8* mallocHeap]
9tmp := *s ;;
10[∀ s, ∀ t,
11PRE[V] V “sM” 7→ V “tmp” * bst’ sM t (V “tmp”)
12* mallocHeap

13POST[_] ∃ t’, ∃ p’, V “sM” 7→ p’ *
14bst’ (sM ∪ {V “k”}) t’ p’ * mallocHeap]
15While (tmp ̸= 0) {
16tmp := *(tmp + 4) ;;
17If (k = tmp) { (* Key matches! *)

18Return 0
19} else {
20s := *s ;;
21If (k < tmp) {
22(* Searching for a lower key *)

23Skip

24} else {
25(* Searching for a higher key *)

26s := s + 8
27};;
28tmp := *s
29}
30};;
31(* Found a spot for a new node.

32* Allocate and initialize it. *)

33(* Argument is two less than size to

allocate. *)

34tmp := Call “malloc”!“malloc”(1)
35[PRE[V, R] s

17→ ? * R 37→ ?
36POST[_] s 7→ R * (R 7→ $0, k, $0)];;
37
38*s := tmp ;;
39*tmp := 0 ;;
40tmp := tmp + 4;;
41*tmp := k;;
42tmp := tmp + 4;;
43*tmp := 0;;
44Return 0
45end . . . }.

Verification
(* “Spine” type to define the representation

* predicate recursively *)

Inductive tree :=
| Leaf : tree

| Node : tree → tree → tree.

(* Recursive rep. predicate for BSTs *)

Fixpoint bst’ (s : set) (t : tree) (p : W)
: HProp := (* details omitted *).

(* Main representation predicate, which wraps

* the above with a mutable pointer to its

* root *)

Definition bst (s : set) (p : W) := ⌈ freeable

p 2 ⌉
* Ex t, Ex r, Ex junk, p 7→ r *

(p +̂ $4) 7→ junk * bst’ s t r.

(* A standard tree refinement hint *)

Theorem nil_fwd : ∀ s t (p : W), p = 0 →
bst’ s t p =⇒⌈ s≃ empty ∧ t = Leaf ⌉.

Proof. destruct t; sepLemma . Qed.

(* . . .omitting a few other hints. . . *)

(* Extend the generic hints with hints about

* trees *)

Definition hints : HintPackage .
prepare (nil_fwd , bst_fwd , cons_fwd)

(nil_bwd , bst_bwd , . . .).
Defined .

(* Prove the implementation correct. *)

Theorem bstMOk : moduleOk bstM.
Proof.

vcgen; abstract (sep hints; auto).
Qed.

Figure 5.1: A Bedrock program for insertion into a binary search tree and
its verification.

107

code

spec

+ {P}c{Q} ∀, P ⊢ Q P∗ ⊢ Q∗ P ⊢ Q P

VC

Symbolic Evaluation

Higher-Order

Entailment Checking

Higher-Order
Non-Reflective (Ltac)

ReflectiveMirrorShard

Figure 5.2: The process of verifying a Bedrock program.

ments of the heap. The separation greatly simplifies reasoning about aliasing and
the independence of certain operators.

The implementation of add uses the loop (lines 15-30) to determine the correct
position to insert the new element. This property is captured by the loop invariant
(lines 10-14). The “pre-condition” of the loop expresses what is true at the begin-
ning of the loop, while the post-condition expresses the updated post-condition
of the function. The part of the tree that has already been visited has been moved
into the specification of the continuation, a feature that is available in Bedrock
because its verification is based on Hoare doubles and continuations. The code
after the loop allocates a new memory block by calling malloc! malloc (line 34)
and initializing the new memory contents accordingly.

5.1.1 Verifying Bedrock Programs

Figure 5.2 shows the five steps of verifying a Bedrock function. The verification
combines a custom reflective procedure and two reflective procedures built on top
of MirrorShard, the first-order predecessor to MirrorCore which contains
custom handling for separation logic [111].

First, the verifier breaks the function down into a set of verification conditions
(VCs) that collectively ensure that the function implements its specification. Each
path through the program generates (roughly) two verification conditions. The

108

first states that the code will not produce an error if run from a state satisfying the
pre-condition (theprogress condition). ThesecondVCstates that any terminating
execution starting from a state satisfying the pre-condition will finish in a state
satisfying the post-condition (the preservation condition). In Bedrock, a path
finishes when it performs an indirect or backwards jump.

After VC generation, the next step is to reason about the semantics of the code.
The structure of separation logic coupled with the fact that all verification condi-
tions are about straightline codemakes both the progress and preservation condi-
tions solvable by symbolically executing the code to compute a post-condition.

While progress is proven simply by symbolic execution, presevation addition-
ally needs to prove that the computed post-condition implies the stated one. In
these cases, at the end of symbolic execution the goal often has the following form.

{P ∗ [k⇝ Q]}goto k

Where the⇝ represents that k is a function pointer with pre-conditionQ. While
this goal is simple, resolving the appropriate continuation in a Bedrock specifi-
cation could require complex higher-order reasoning. To avoid the need to im-
plement and prove reflective procedures to automate domain-specific obligations
such as these, the automation uses proof-generating Ltac to convert proof obliga-
tions such as the one above into entailments between separation logic formulae.
For example, the automation would reduce the above obligation into P ⊢ Q.

Next, MirrorShard’s reflective entailment checker runs (usually) solving the
separation logic part of the entailment and returning any unsolved pure proposi-
tions or higher-order formulae to Ltac. Problem-specific Ltac automation solves
the non-separation logic obligations, e.g. about the elements in the set. And the
higher-order separation logic assertions are reduced to first-order entailments that
are passed back to the entailment checker.

IncludingLtac in the verification loopmakes it easy to adddomain-specific hints
and automation. However, as Iwill show inSection5.3, this designhas a significant
impact on performance.

109

5.2 Reflective Verification in Bedrock

Thereflective automation forBedrock is built on topof MirrorShard, the first-
order predecessor of MirrorCore. I will return to its differences in Section 5.3;
until then it is sufficient to think of it as MirrorCore.

Of thefiveverification steps, twoare implementedusing the compositional tech-
niques that I discussed inChapter 3. These are the procedures for symbolic execu-
tion and entailment checking, which are often the bottlenecks in program verifica-
tion. To be concrete, I follow the verification of a minimal verification condition
from the following Bedrock code snippet, which increments the first element of
a linked list.

bfunction (ls)
[SPEC(“ls”) reserving 0
Al ls, PRE[V] sll ls (V “ls”)

POST[_] sll (inc_first ls) (V “ls”)] {
IF (p ̸= 0) { ++*p }
Return 0

}

The preservation verification condition for the true branch of the conditional is
the following:

⊢
{
llist xs p

}
assume (p ̸= 0); ++*p

{
∃L, llist L p

}
Figure 5.3 shows the full process for solving this verification condition.

5.2.1 Symbolic Execution

Symbolic execution takes a pre-condition and a path through the code and com-
putes a post-condition. The core reasoning about the code is relatively straight-
forward. In the example, the first “instruction” in the path is an assertion that the
conditional p = 0 returned false . Combining this with Bedrock’s semantics, the

110

p̸=0;++*p
{

llist ?L p
}{

llist xs p
}

++*p
{

llist ?L p
}{

llist xs p
}
++*p

{
llist ?L p

}{
p 7→(x, nx) ∗ llist xs’ nx

}

skip
{

llist ?L p
}{

p 7→(x+1, nx) ∗ llist xs’ nx
}

skip
{
p 7→(?y, ?n) ∗ llist ?L′ ?n ∗ ⌊ ?L = ?y :: ?L′ ⌋

}{
p 7→(x+1, nx) ∗ llist xs’ nx

}

skip
{
p 7→(?y, ?n) ∗ llist ?L′ ?n

}{
p 7→(x+1, nx) ∗ llist xs’ nx

}
?L = ?y :: ?L′

Sy
m

bo
lic

Ex
ec

ut
io
n

En
ta
ilm

en
tC

he
ck

in
g

Pure
Theory
Provers

Refinement
Hints

Forward Refinement

Backward Refinement

Extension Point

Extension Point

?y=x+1, ?n=nx

?L′=xs′
?L=x+1 :: xs′

Cancellation

Figure 5.3: The high-level verification strategy applied to a simple program
that increments the first cell of a non-empty list.

111

symbolic evaluator is able to determine that the symbolic value p does not equal
zero, which it adds to its context of known facts. Learning this fact triggers the
symbolic executor to attempt to refine the pre-condition. This refinement utilizes
MirrorShard’s refinement hints.

Rewriting with Refinement Hints

Refinement hints are stylized Coq theorems that express predicated heap entail-
ments. These are represented reflectively using a specialization of MirrorCore’s
lemma syntax where the conclusion is a pair of separation logic assertions. The
lemma that applies in the example states that any linked list whose head pointer is
provably not null can be split into a first cell and a rest of the list.

∀xs p, p ̸=0→ llist xs p ⊢ ∃x xs′ np, p 7→ (x′, np) ∗ llist xs′ np

To use this theorem, MirrorShard’s reflective rewrite procedure attempts to
find a (separating) conjunct on the left-hand side of the entailment that unifies
with llist xs p. If amatch canbe foundand the side-conditions canbedischarged,
the algorithm joins the right-hand-side of the rewrite with the remainder of the
pre-condition. Newly introduced existential quantifiers are introduced into the
context and are appended to the environment of universal quantifiers. Append-
ing is slightly counter-intuitive when viewing variables as de Bruijn indices, but it
allows the refiner to avoid lifting all other variables in the goal and known facts,
which would be expensive. Instead the zero-cost weakening admitted by the non-
dependent representation means there is no global manipulation to do.

Pure Theory Solvers

Similar to the backward prover in Chapter 3, pure theory solvers discharge expr-
encoded propositional facts that arise from side conditions to rewriting lemmas,
e.g. the obligation that p ̸= 0 from the above rewriting theorem. MirrorShard
provides four provers that are built to discharge the sort of obligations that arise in

112

verification conditions about pointer-based code.

• A reflexivity prover, which proves statements of the form e = e for any e.

• An assumption prover, whichmaintains a list of known facts and attempts
to use them to solve the goal directly. It is not difficult to adapt this proce-
dure to perform unification rather than equality checking, but in practice it
has not yet been necessary.

• A linear arithmetic prover for equalities and inequalities on width-32
bitvectors. This prover makes inferences by combining hypotheses repre-
senting expressions of the form e1 = e2 + k for constants k. Understand-
ing these facts is crucial when reasoning about array- and structure-oriented
code.

• A prover oriented toward array bounds checks, which understands that
array writes preserve length.

MirrorShardalso supports composingprovers in a simpledisjunctive stylewhich
proves a proposition if either of the two provers can prove it. This composition
leverages the environment-based composition that I discussed in Section 3.2.2.
Other composition strategies are possible, for example a bounded recursive strat-
egy that allows procedures to call one another, or one that dispatches to certain
provers based on the structure of the goal, but the simple composition prover has
been sufficient for Bedrock’s current applications.

In the running example, the assumption prover discharges the side-condition
of the linked list refinement lemma using the fact that symbolic execution learned
from the code. Lifting the variables and pure facts into the context leaves the au-
tomation to verify the following:

p ̸= 0 ∧ xs = x :: xs′ ⊢ {p 7→ (x, n) ∗ llist xs′ n}++*p{∃L, llist L p}

113

Memory Evaluators

Thenext step is to interpret the read andwrite of *p. Separation logic enables an ef-
fective algorithm for reasoning about memory operations based onmemory evalu-
ators. Memory evaluators are custom reflective procedures that reason about reads
from and writes to heaps satisfying a separation logic assertion. This approach en-
ables the symbolic evaluator to interpretmemory operations in terms ofmany dif-
ferent data structure predicates without the need to expose individual points-to
assertions. In addition to the simple composition memory evaluator, which com-
bines two memory evaluators in a disjunctive fashion, MirrorShard includes
memory evaluators for 32-bit points-to, arrays (of both words and bytes), and lo-
cal variable stack frames. The latter two are very important for controlling the size
of separation logic formulae. Without them we would need to break arrays and
stack frames down to individual points-to assertions, which could result in very
large formulae.

In the example, thememory evaluator uses the provers to inspect the separation
logic formula anddetermines that the value read fromp is x (because a sub-formula
p 7→ (x,nx) appears in the pre-condition). The writer part of the memory evalua-
tor is then able update the memory cell contents directly with the expression x+1
that was constructed syntactically when interpreting the addition. This reasoning
further evolves the pre-condition into the following formula, which happens to be
the strongest.

⌊p ̸= 0⌋ ∗ p 7→ (x+ 1, nx) ∗ llist nx xs′

A Note About Completeness In principle, computational reflection allows
the developer to prove that the computed post-condition is the strongest. While
proving completeness would give a strong statement that the automation does the
most possible, the first-order nature of MirrorShard’s representationmeans not
only that there must be a proof, but that there must be a first-order proof. A proof
of completeness would require the completeness of the symbolic executor and all
of the extension points including memory evaluators, the pure provers, and the

114

unification algorithm. Since Bedrock is built to handle complex, user-defined
assertions completeness in general seems unattainable.

5.2.2 Entailment Checking via Cancellation

After Ltac automation runs to handle the higher-order reasoning, the next task is
to check whether the computed post-condition entails the stated post-condition.
Continuingwith the example, the higher-orderLtac will produce the following en-
tailment.

⌊p ̸= 0⌋ ∗ p 7→ (x+1, nx) ∗ llist xs nx ⊢ ∃L, llist L p

Note that this⊢ is different than theone above. In particular, it states an entailment
in separation logic, while the above stated a propositional entailment.

Since there is nothing left to do in the premise, MirrorShard next massages
the right-hand side by replacing existential quantifiers with new unification vari-
ables. This process results in the following formula.

⌊p ̸= 0⌋ ∗ p 7→ (x+1, nx) ∗ llist xs nx ⊢ llist ?L p

To solve this entailment, MirrorShard must reason about the llist predi-
cate, this time when it occurs in the conclusion. To do this, MirrorShard uses
another lemma to expand the definition of llist in the post-condition and expose
the points-to and the existential quantifiers³. After converting the new existentials
into unification variables, the resulting entailment is the following.

⌊p ̸= 0⌋∗p 7→ (x+1, nx)∗llist nx xs ⊢ p 7→ (?y, ?n)∗llist ?L′ ?n∗⌊?L =?y ::?L′⌋

From here, MirrorShard can perform the actual entailment checking using
the cancellativity property of the separating conjunction.

³It is no coincidence that the combination of these two lemmas states a bi-entailment which
is very close to the definition of the predicate itself.

115

Q ⊢ R
CancelP ∗ Q ⊢ P ∗ R

In a non-reflective procedure, the difficulty of entailment checking using cancel-
lation comes from permuting the conjuncts until the Cancel theorem can be ap-
plied. For example, if the conjunctswere reversedon the right-hand side, wewould
have to apply the commutativity of the separating conjunction to get the common
p 7→ (x+1, nx) at the front of the conjunction. This reasoning about permutation
is exactly the place where computational reflection shines. Permutation proofs are
large because Coq requires that the entire problem is re-stated for each step of the
permutation. For a moderately sized problem of about 8 conjuncts, this can result
in hundreds of conjuncts that must be checked. I will return to this with empirical
results in Section 5.3.2.

Cancellation Heuristics While the problem looks like a vanilla permuta-
tion problem, the existence of unification variables complicates things. To see the
problem, consider a simple entailment with unification variables:

p 7→ q ∗ q 7→ v ⊢?1 7→?2 ∗ p 7→?1

Thecancellation lemmaappliesdirectly to this goal, butusing it immediatelywould
leave us in the following unprovable state:

q 7→ v ⊢ p 7→ p

To avoid this predicament, the entailment checker sorts the right-hand-side con-
juncts lexicographically, placing unification variables at the end before beginning
cancellation. While woefully incomplete, this simple heuristic is amazingly useful
for the vast majority of Bedrock programs.

5.2.3 Computational Reflection and Custom Representations

In addition to small proof terms, another benefit of computational reflection is the
ability of select custom representations and algorithms that are better suited to

116

solving a particular problem. Custom representations showed up several times in
the previous section, e.g. the special representation of lemmas and the facts known
by pure provers. Continuing in this vein, MirrorShard also uses a custom rep-
resentation of separation logic assertions represented mathematically as follows.

(formulae) s ::= P e⃗ | s1 ∗ s2 | emp | ∃x : τ, sx | ⌊e⌋

In particular, note that the P e⃗ is the only place where new separation logic formu-
lae can be added, and since the arguments to P are expressions, this syntax cannot
be used to express additional separation logic connectives such as∧ or−∗.

In addition to this custom syntax, MirrorShard builds an evenmore special-
ized representation based on discrimination trees [40] to simplify the implemen-
tation of MirrorShard’s customprocedures. The specialized representation fac-
tors out the associativity and commutativity of separation logic formulas as well as
the pure facts. Concretely, the implementation is a pair containing a list of pure
facts and a finite multi-map associating each user-defined predicate to the list of
arguments the predicate is applied to. For example, the following separation logic
assertion would be represented as follows.

p 7→ q ∗ q 7→ r ∗ ⌊x = y⌋ ⇔ ([x = y], {‘7→’ 7→ [[p; q]; [q; r]]})

This representation is tailored to make two operations efficient:

1. Extracting “pure” facts, i.e. those facts that do not depend on the heap.
These facts express properties like the equality or inequality of two values
or the existence of an element within a mathematical set.

2. Extracting all of the separation logic assertions with a given head symbol.
Thismakes it easy to find all potentiallymatching conjuncts when searching
for a particular symbol, for example when rewriting by a lemma or when
performing cancellation.

117

File Program Invar. Tactics Other Overhead
LinkedList 42 26 27 31 2.0
Malloc 43 16 112 94 5.2
ListSet 50 31 23 46 2.0
TreeSet 108 40 25 45 1.0
Queue 53 22 80 93 3.7
Memoize 26 13 56 50 4.6

Figure 5.4: Case study verifications, with data on annotation burden, in lines
of code

5.3 Evaluation

In this section I evaluate the usefulness and performance of Bedrock’s reflective
automation, comparing it to the traditional Ltac-style verify-and-check approach
to mechanized verification. I begin with a brief analysis of the level of automation
that the reflective procedures achieve by discussing several medium-sized mod-
ules for data structures in detail and then some of the larger, more organically
constructed programs. Afterwards, I consider the performance characteristics that
MirrorShard’s reflective automation has, in particular comparing them toLtac-
based verification methodologies.

NotaBeneMirrorShard’s internal details are slightlydifferent than
MirrorCore’s. MirrorShard is first-order and uses n-ary func-
tion application. The latter makes a syntactic representation of func-
tion typesunnecessary. Also, extensibility inMirrorShard isbased
solely on the environment extensionmethod that I presented in Sec-
tion 3.2.

5.3.1 Usability, Expressivity & Automation

Figure 5.4 shows some code statistics from six data-structure case studies that have
been verified with MirrorShard. In order, the columns count the executable

118

part of the module being verified, the function specifications and invariants as-
serted in code, theLtac-tactic proof scripts (including commands to register hints),
all the remaining lines, and finally the ratio of verification lines to program lines.
The lines categorized under “Other” are almost all definitions of data structure rep-
resentation predicates and statements of theorems about them.

The case studies are: LinkedList, consisting of the classic functions is-empty,
length, reverse, and concatenate (the latter two performed in-place with muta-
tion); Malloc, a naïve memory allocator, based on an unsorted free list with no
coalescing, used by all the later case studies; ListSet andTreeSet, implementations
of a common finite set interface specified with mathematical sets, respectively us-
ing unsorted lists and binary search trees; Queue, a standard FIFOqueue specified
mathematically using bags; and Memoize, a higher-order function that memoizes
Bedrock code that implements a mathematical, effect-free, deterministic func-
tion.

The proof overhead is slightly lower than with the same case studies used in
the fully Ltac-based Bedrock [54]. This decrease arises mostly from Mirror-
Shard’s hint databases. Modulo loop invariants and function specifications the
programmer only needs to add new reflective hints when he or she develops new
representation predicates. Once he or she does this once, the automation is able
to apply them whenever necessary. In the originalLtac-version, annotations were
needed everywhere that lemmas were needed to refine abstract predicates.

Ultimately, MirrorShard’s ability to verify the same examples demonstrates
that it achieves a similar level of automation. Further, its ability to verify higher-
order code demonstrates its ability to integrate with Coq’s built-in support for
higher-order reasoning.

MirrorShard’s procedures have also beenused in a larger case study that built
a verified cooperative threading library and then verified a Web server running on
top of the library [57]. The thread library includes about 400 lines of implemen-
tation code and 3000 additional lines for its verification, while the Web server has
200 lines of implementation and 500 more for the proof, which establishes that
representation invariants are maintained for key data structures. Most of this ver-

119

VCGen SymEval Entailment Ltac

0
20
40
60
80

5.04 6.72
16.59

71.65

%
of

Ti
m

e

Percent (%) of time per phase

Figure 5.5: The amount of time spent in different pieces of automation. Ltac
still accounts for a significant amount of the total time.

ification overhead in the thread library is due to higher-order logic that Mirror-
Shard does not provide automation for.

5.3.2 Performance

Beyondexpressivepower, a crucial benchmark for verification tools is performance.
End-to-end performance is approximately the same as the previous, Ltac-based
Bedrock. On the surface, this result contradictsmuchof thework claiming signif-
icant performance improvements from computational reflection. However, there
are good reasons for this to be the case.

Figure 5.5 shows the amount of time spent in the various components of the
automation. Note that only about 23% of the total verification time is spent in-
sideMirrorShard’s two reflective procedures. More than 70%of the time is still
spent inLtac, mostly in higher-order reasoning. Two experiments better elaborate
the reasons for this. First, I discuss amicro-benchmark that demonstrates the scal-
ing potential of MirrorShard’s reflective automation. Second, and more im-
portantly, I discuss integration performance, i.e. the cost incurred by repeatedly
solving small problems with computational reflection rather than solving a single,
large problem. These results set up the challenges for the rest of the dissertation.

120

4 8 16 32 64

0

2

4

6

of Conjuncts

Ti
m

e(
se

c)

Performance of Reflective Cancellation

Ltac
MirrorShard

Figure 5.6: A microbenchmark comparing scaling characteristics of reflective
and non-reflective proofs for cancellation in separation logic.

Microbenchmarks

Microbenchmarks confirmthepotential for largeperformance improvementsover
Ltac-based solutions, especially in scaling andproof checking. Figure 5.6 shows the
time required for cancellation in bothLtac and MirrorShard’s reflection imple-
mentation.

While the reflective proofs are faster and have the best scaling properties, per-
formance numbers are comparable for small problems. This is due to the cost re-
quired to reify the goal and apply the more sophisticated reflection lemma. Since
many of Bedrock’s goals are well-abstracted and therefore have few conjuncts,
Bedrockdoesnotbenefit fromthe largeperformancewins that emergewithmore
conjuncts.

This benefit-only-in-the-limit behavior is not the case for all of the verification
tasks. Computational reflection yields a substantial performance benefit for the
rewriting phase that happens at the beginning of the cancellation algorithm. To

121

demonstrate the behavior, we use rewriting to unfold the linked lists predicate and
hoist existential quantifiers and pure facts in the precondition into the goal. For
example, for a list of length 2, the input problem is the following:

llist(x0 :: x1 :: [], p0) ⊢ emp

and the resulting goal is the following

p0 ̸= 0 p1 ̸= 0 p2 = 0
p0 7→ (x0, p1) ∗ p1 7→ (x1, p2) ⊢ emp

where the first line are premises above the line in Coq context and the second line
is the goal. By setting the right hand side to emp we avoid extraneous cancellation.

The key to solving these goals is the following two refinement lemmas, which
are applied in the forward direction.

llist([], p) ⊢ ⌈p = 0⌉
llist(x :: ℓ, p) ⊢ ⌈p ̸= 0⌉ ∗ ∃p′. p 7→ x, p′ ∗ llist(ℓ, p′)

Beyond rewriting using these lemmas, the automation must also lift the extisten-
tials and the pure facts ino the context. InLtac this actually improves performance
because it shrinks the size of the goal, which makes future reasoning faster.

Figure 5.7 shows the performance characteristics of both Ltac and Mirror-
Shard. Proving this family of theorems using Ltac automation is painfully slow
both to find a proof (Ltac) and to check it (Ltac Qed). The reflective implementa-
tion, on the other hand, sees near constant performance independent of the length
of the list. The key to MirrorShard’s significant performance win in this case is
the custom representation of separation logic formulas that lifts existential quan-
tifiers and pure facts to the top immediately and locally. TheLtac implementation,
on theother hand, relies on autorewrite , which is a global operation that is unable
to lift existentials into the context and unable to rewrite under binders meaning
that it must be run interleaved withLtacautomation to do both of these.

122

1 2 4 8 16 32 64

0.01

0.1

1

10

100

List length

Ti
m

e(
se

c)

Performance of Reflective Refinement

Ltac
Ltac Qed
MirrorShard
MirrorShard Qed

Figure 5.7: Reflective refinement is significantly more efficient than non-
reflecive refinement.

Integration Performance

The microbenchmarks show that the win from computational reflection comes
from solving large problems. While MirrorShard is used to solve some large
problems, it turns out that the verification process does not actually use reflection
to solve these large problems because the higher-order reasoning is not performed
reflectively. Thus, the large verification task is split up into many small tasks that
are solved independently.

To understand the repercussions of alternating computational reflection and
Ltac-based automation, consider the following path through the length function
for linked lists:

assume(*(Sp+4) ̸= 0); (* not at the end of the list *)

*(Sp+8) := *(Sp+8) + 1 ; (* increment the length counter *)

Rv := *(Sp+4) ; (* get the next pointer *)

*(Sp+4) := *Rv (* update “current” *)

The references from the stack pointer Sp are to local variables. Sp+8 is the location

123

0.5 1 1.5

SymEval+Ltac

SymEval+MirrorShard

Time (s)

Breakdown of Time by Phase

SymEval1
Autorewrite
SymEval2

Figure 5.8: Profiling of symbolic execution with reflective rewriting
(SymEval+MirrorShard) versus the same symbolic execution engine using
autorewrite (SymEval+Ltac).

of the length counter, and Sp+4 is the location of the “current” pointer. The first
line is the result of knowing that the conditional comparing current to null re-
turned false, implying that evaluation is not at the end of the list. This fact justifies
the memory dereference on the last line where the code reads the next pointer of
the current linked-list cell (**(Sp+4)).

Inorder to exploit this informationduring symbolic execution, Bedrock’s sym-
bolic evaluator uses the following refinement hint (which I showed during the ex-
ample in Section 5.2.1), provided in a hint database, to expose the 7→ predicate
which the memory evaluator knows how to interpret:

Lemma llist_cons_fwd : ∀ ls (p : W), p ̸= 0
→ llist ls p ⊢
∃ x ls’, ⌈ ls = x :: ls’ ⌉ * ∃ p’, p 7→ (x, p’) * llist ls’ p’.

Without this mechanism, the automation could achieve the same result by run-
ning an Ltac loop bouncing between our reflective symbolic execution and the
autorewrite tactic to perform this rewriting. In the above example, this loop
would call symbolic execution, which would get stuck on the final instruction,
falling back on autorewrite to expose the cons cell, enabling a second call to sym-
bolic evaluation to complete the task.

Figure 5.8 shows how the loop approach (SymEval+Ltac) compares to Mir-

124

rorShard’s fully reflective procedure (SymEval+MirrorShard). Using the lat-
ter, the entire symbolic execution takes 0.39 seconds, less than half the amount of
time (0.89 seconds) taken by autorewrite to perform just the rewriting. Overall
the reflective composition results in a 4.6x speedup over the hybrid reflective and
Ltac-based composition on this goal. On the entire linked list module this trans-
lates to a savings of 44s in verification time.

While MirrorShard’s reflective rewriter is not as powerful as autorewrite ,
it is customizable by adding new lemmas in the same way. Further, because it is
written inGallina rather thanhardcoded insideCoq,wecanextend itwithdomain-
specific knowledge. For example, unification can bemade to reason up to provable
equality rather than just definitional equality. For a domain such as separation
logic, this would enable unificationmodulo associativity and commutativity in the
style of Braibant’s AAC tactics [46].

WhileMirrorShard achieves this level of end-to-end reflective reasoning for
symbolic execution, its algorithm for solvinghigher-order entailments ismorepiece-
meal. During entailment checking, MirrorShard alternates between computa-
tional reflection, to solve first-order entailments, and Ltac-tactics to solve higher-
order constraints that canproduce additional entailments. Whilemost entailments
are relatively small, the phrasing of Bedrock’s logic and verification conditions
means that it is not uncommon for a single verification condition to require be-
tween three and eight calls to the entailment checker even though all calls com-
pletely solve their goals. Coupled with the results above, and considering that the
higher-order reasoning is more expensive than Ltac rewrites, it is not difficult to
see the performance bottleneck. MirrorCore addresses this problem by reify-
ing higher-order syntax and general binders. I show how this works in the case
study in Chapter 7.

5.4 RelatedWork

Chlipala’s original version of Bedrock [54] supported similar automation to the
work described in this chapter. The work in this chapter moves the automation

125

from the proof-generating style usingLtac to the reflective style which is the theme
of this dissertation. Bedrock has grown considerably since this automation was
developed, but the extensibility of the automation had enabled it to adapt tomuch
larger developments than the ones I presented in this chapter. Oe built a verified
mark-and-sweep garbage collector [124] in Bedrock. The implementation re-
quired reasoning about aliasing data structures in Bedrock’s separation logic, a
task which has been widely studied [38, 41, 42, 75, 95, 101, 110, 127] but mostly
avoided in large-scale verification. Bedrock also contains many core pieces of an
operating system and has been connected to the POSIXAPI via axiomatized invo-
cations of C functions that can be linked with Bedrock code. This work has been
used to build a web-server, and the performance of the code is surprisingly good
considering the lack of compiler optimizations.

Finally, Wang et al. [151] built a compiler for a higher-level language based on
abstract data types to Bedrock. The compiler is based on the idea of compil-
ing high-level languages to low-level languages, targeting a program logic for the
low-level language rather than directly targeting the language semantics. This en-
ables them to reusemuch of the automation that we developed in this setting. The
integration with Coq’s automation is essential in this setting because the verifica-
tion conditions that arise necessarily compose opaque code fragments produced
by recursing over an abstract syntax tree. While this feature is not supported by
MirrorShard’s representation, MirrorCore’s more extensible representation
can directly support this type of reasoning.

VerifiedVerificationProcedures Several projects [18, 35, 118]have stud-
ied translation of SMT-solver proof traces into forms that can be verified by a proof
assistant. Some of these projects are based on reflectively checking a proof trace
that is generated by an external tool rather than verifying the prover itself. Separate
proof generation and reflective proof checking has non-obvious trade-offs with
pure computational reflection. Verifying the prover removes the need for poten-
tially expensive proof generation and checking, but the proof-generating approach
is compatible with using efficient low-level languages and optimizing compilers to

126

implement the provers.
Lescuyer and Conchon [106] built a reflective SAT solver tactic for Coq, and

Nanevski et al. [122] and Oe et al. [125] have verified efficient low-level code for
a part of an SMT solver and a full SAT solver, respectively. None of this past work
supports sound, modular extension with new procedures nor do they support a
rich formula language that includes quantifiers and is extensible by user-defined
predicates with associated axioms.

Verified Separation Logic Automation A few past projects have proved
the correctness of non-extensible separation logic proof procedures. Marti andAf-
feldt [112] verified a simplification of Smallfoot [31] using Coq. Stewart et al. did
a Coq verification of a Smallfoot-style program verification tool, VeriSmall [15],
that relies on a verified heap theorem prover, VeriStar [142]. VeriStar implements
an entailment checking algorithm based on paramodulation. Adapting this algo-
rithm to to MirrorShard’s richer logic would avoid the need for some of the
heuristics, which would ultimately make for a more robust procedure.

None of this work has tackled the, often more difficult, entailments that arise
when proving functional correctness, as opposed tomemory safety. To solve these
more difficult verification conditions, MirrorShard’s reflective algorithms re-
turn obligations to the user that it (and the extensions) cannot solve. This ap-
proach enables the combined system to discharge interesting verification condi-
tions that are out of reach of fully integrated provers. This synergy with the proof
assistant is lost when the automation is run as stand-alone applications.

Other researchers have built non-reflective verification infrastructure on top of
proof assistants. Several proof assistant libraries provide support for separation
logicproofs, including the tactic libraries ofAppel [13] andMcCreight [117],Hol-
foot [147], Ynot [58], andCharge! [29]. Some of these libraries provide proof au-
tomation comparable to that of the standalone tools, though support for extensible
automation in all of them is limited.

All of these procedures, including MirrorShard’s, handle restricted forms of
separation logic formulae. For example,MirrorShard’s representation does not

127

support extension by additional separation logic operators such as separating im-
plication [134] or classical conjunction. Recent procedures [89, 102] have sought
to prove entailments in these fragments based on the idea of enriching the logical
language with an explicit way to name heaps. Integrating these ideas into the sep-
aration logic would require substantial effort to retro fit definitions in Mirror-
Shard. MirrorCore’s representation, on the other hand, would support the
extension in a fairly natural way, leaving only the difficulty of implementing the
procedures themselves.

Non-verified Verification Tools Many standalone tools do efficient, au-
tomated analysis of large low-level code bases for memory safety, using separation
logic, outside of the context of proof assistants. Examples include Smallfoot [31],
SpaceInvader [49], and SLAyer [32]. Xisa [52] and VeriFast [92] bear a special
relationship to MirrorShard, as they are extensible with new predicate defini-
tions in separation logic. Further, while both support new abstract predicates,
their verification engines are fixed, meaning that they cannot be adapted to rea-
son outside of the logics that they were built to address, without serious modifica-
tions or rewrites. MirrorShard, on the other hand, can easily be extended with
new domain-specific pure provers, and algorithms can be tweaked for particular
instances while retaining foundational proofs.

There are also several tools thatdonon-separation logic verificationmostlybased
on SMT solvers. Boogie [22] is a program verification framework built on top of
the Z3 SMT solver [68]. It supports a variety of tools and forms the foundation
for Dafny [104]. While Dafny is proof assistant-like, it is substantially more auto-
mated than most existing proof assistants. However, it lacks an underlying formal
semantics.

Significant progress has also been made on using Z3 in the verification of con-
current code. VCC [61] is a powerful tool that has been used to verify compo-
nents of Microsoft’s hypervisor, Hyper-V [103]. While much of this project has
been verified, VCC alone is not powerful enough to perform the full verification.
Gu et al. [85] showed that Coq’s logic is rich enough to verify a smaller, custom

128

hypervisor.
In practice, standalone tools often achieve significantly better performance than

their proof assistant counterparts. In theory, computational reflection should be
able to match the performance of these tools; however, the compilation and op-
timization infrastructure currently available for modern proof assistants does not
match that of industrial-strength compilers for low-level programming languages.
Theadvantageof building toolswithin aproof assistant, however, is that these tools
can fall back on the features of the proof assistant when their own features are in-
sufficient. The Why3 tool [36] takes a middle ground by offering the ability to
translate verification conditions into both Coq and SMT solvers such as Z3 [68],
Yices [76], and CVC3 [24]. Proofs done in Coq are guaranteed by its kernel, but
the verification condition generation and verification conditions that are solved by
un-verified solvers do not have the same foundational guarantees. However, using
SMT solvers often results in substantially faster proofs thanwhen verification con-
ditions do not require deep higher-order reasoning.

129

6
Rtac: A Reflective Tactic Language

Up to this point, I havedemonstratedhow todevelop compositional reflective pro-
cedures. However, developing these procedures can still be difficult and time con-
suming, especially for very application-specific problems. In this chapter I aim to
ease the development of reflective procedures by developing a small library of tac-
tics and tactic combinators that can be composed into higher-level automation.
MirrorCore’s tactic language,Rtac, aims to achieve four goals.

1. Easy interoperability with reflective procedures. Both calling reflective proce-
dures fromRtac and callingRtac from custom reflective procedures is im-
portant. Amajor limitationof reflective procedures is that they are unable to
call generate-and-check style automation techniques since the proof check-
ingprocess cannotbe internalized in the logic.Rtac is notmeant as adrop-in
replacement forLtac, though in some cases it could be used as one. Instead,
Rtac should be viewed as high-level glue for stitching together custom deci-

130

sion procedures such as the cancellation algorithm from Chapter 5 or writ-
ing automation to fill in the leaves of an otherwise reflective proof.

2. No overhead building proofs. Rtac maintains a strong separation between
computation terms and proofs. In domains such as program verification
where large proofs are constructed and then immediately abstracted by a
Qed, explicitly building the terms can be avoided entirely.

3. Be fully customizable within the logic. While Ltac can be customized and ex-
tended via Coq plugins, these plugins are not always easy to build and are a
system-level dependency. These tie your development to Coq rather than
Gallina and, while there are not many competing implementations of the
logic, plugin compatibility is not guaranteed between versions. Further,
this extension point is brittle to low-level implementation choices inside of
Coq, and might not work in the same way between two versions of Coq or
between different implementations of the type theory.

4. Easy to develop and verify simple reflective procedures. Using tactics should
be natural and require as little proof overhead as possible. Achieving this
goal means that soundness theorems of individual tactics should compose
naturally, and the details of the specific proof should be well encapsulated.

Rtac’s design is basedheavily onLtac’s [69]which I described inChapter 2. Sim-
ple Ltac tactics translate directly intoRtac with roughly the same semantics. Fig-
ure 6.1 shows a simple Ltac tactic for proving numbers even and a corresponding
Rtac tactic which achieves the same goal using only standardRtac tacticals. No-
tice that the tactic itself is a direct translation of the Ltac code, and the proof is
completely automated by the customLtac tactic rtac derive soundness , which
blindly applies the soundness theorems for the underlying tactics. The call to auto

proves the two applied lemmas sound using their semantic counterparts.
In the rest of the chapter I discuss thedefinition and compositional specification

of tactics (Section 6.1). Using the definition, I describe several simple tactics and

131

Ltac

Ltac tac_even :=
repeat first

[assumption

| apply even_0

| apply even_odd

| apply odd_even

].

Rtac

Def tac_even : rtac :=
REPEAT 10 (FIRST

[ASSUMPTION

; APPLY even_0_syn

; APPLY even_odd_syn

; APPLY odd_even_syn

]).

Rtac Proof
Theorem even_sound

: rtac_sound tac_even .
Proof.

rtac derive soundness ;
eauto using even_0 ,

even_odd , odd_even .
Qed.

Figure 6.1: Proving evenness in Ltac and Rtac.

tactic combinators (Section 6.2). In Section 6.3 I evaluate the performance ofRtac

reflective procedures compared to both Ltac and custom reflective procedures. I
conclude with a discussion of related work (Section 6.4).

6.1 Compositional Tactics

Before diving into the implementation, I begin with an overview of the two high-
level challenges thatRtac must overcome: local reasoning and incremental global
reasoning. To see these challenges consider proving the following proposition.

∃x : N, (∀y : N, y ≥ x) ∧ (∃z : N, z = x)

While the reflective tactics will not actually construct this proof, the soundness
proof of the tactics must demonstrate how to build the proof. With this inmind, it
makes sense to explain the tactics as if they were constructing the proof explicitly.

Local Reasoning Proving the above proposition first requires some local rea-
soning about the existential quantifier. A first logical step is to introduce a new
unification variable and use it to instantiate the existential. This reasoning step
produces the following proof skeleton.

(1)
?x : N ⊢ (∀y : N, y ≥?x) ∧ (∃z : N, z =?x)

∃-I⊢ ∃x : (∀y : N, y ≥ x) ∧ (∃z : N, z = x)

132

In the new goal (notated “(1)”), ?x is bound in the context (separated from the
goal by ⊢) as a unification variable notated by the ?.

Next, a tactic applies ∧-introduction, splitting the goal into two parallel sub-
goals.

(1)
?x : N ⊢ (∀y : N, y ≥?x)

(2)
?x : N ⊢ (∃z : N, z =?x)

∧-I
?x : N ⊢ (∀y : N, y ≥?x) ∧ (∃z : N, z =?x)

∃-I⊢ ∃x : (∀y : N, y ≥ x) ∧ (∃z : N, z = x)

Now things begin to become interesting. Note that filling in the (1) and (2) can be
donemostly independently; however, both proofs must agree on the instantiation
of ?x.

Focusing on (1) for amoment, introducing the universal quantifier updates the
proof tree but leaves (2) unchanged.

(1)
?x : N, y : N ⊢ y ≥?x

∀-I
?x : N ⊢ (∀y : N, y ≥?x)

(2)
?x : N ⊢ (∃z : N, z =?x)

∧-I
?x : N ⊢ (∀y : N, y ≥?x) ∧ (∃z : N, z =?x)

∃-I⊢ ∃x : (∀y : N, y ≥ x) ∧ (∃z : N, z = x)

Introducing the existential quantifier in (2) further evolves the proof tree resulting
in the following:

(1)
?x : N, y : N ⊢ y ≥?x

∀-I
?x : N ⊢ (∀y : N, y ≥?x)

(2)
?x : N, ?z : N ⊢?z =?x

∃-I
?x : N ⊢ (∃z : N, z =?x)

∧-I
?x : N ⊢ (∀y : N, y ≥?x) ∧ (∃z : N, z =?x)

∃-I⊢ ∃x : (∀y : N, y ≥ x) ∧ (∃z : N, z = x)

Global Reasoning Returning to (1), we can instantiate ?x with the value 0
and solve the goal. This leads to the following proof term.

133

≥-0y : N ⊢ y ≥ 0
∀-I⊢ (∀y : N, y ≥ 0)

(1)
?z : N ⊢?z = 0 ∃-I⊢ (∃z : N, z = 0)

∧-I⊢ (∀y : N, y ≥ 0) ∧ (∃z : N, z = 0)
∃-I=0⊢ ∃x : (∀y : N, y ≥ x) ∧ (∃z : N, z = x)

Notice that all occurrences of ?x have been replaced by 0. While the new proof
term is obviously valid, this transformation must be justified with a proof.

The key to ensuring that semantic proofs are robust to global effects is to en-
sure that tactics guarantee sufficiently general proofs. This insight corresponds to
the strengthened inductive hypothesis that is necessary to prove the soundness of
Rtac compositionally. Rtac achieves this generality semantically rather than syn-
tactically.

6.1.1 Tactics, Goals & Contexts

The core of the computational piece of Rtac is focused on maintaining the goal
state, and the core of Rtac’s soundness surrounds stitching together proof frag-
ments produced by individual tactics. This separation of concerns means that the
core ofRtac is parametric in the underlying representation of propositions. To use
Rtac with MirrorCore we can instantiate the expression type using Mirror-
Core expressions. This parameterization not only simplifies the proofs by hiding
irrelevant details behind universal quantifiers, but also makesRtac retargetable to
other representations of goals, e.g. MirrorShard’s separation logic entailments
or its first-order expression language. Figure 6.2 presents the core pieces ofRtac

mathematically.

Tactics AnRtac tactic is aCoq function that accepts a goal and the context that
it resides in (i.e. C) and produces a new goal and a possibly updated context that
entails the given one. Drawing a comparison with standardLtac-style verification,
the context represents the part of the goal above the line and the goal represents
the part below the line. I will discuss more about these shortly.

134

Goals G ::= ∀τ,G | ∃τ{= e}?,G | e→ G |G1 ∧ G2 | ⌊e⌋ |True
Context C ::= C∀τ | C∃τ{= e}? | C → e | ε

Tactics
rtac = C → e→ option

(
G × C

)
rtacK = C → G → option

(
G × C

)
Goal Denotation

J−KGtus,tvs : G → ExprT tus tvsPropJ∀τ, gKGtus,tvs = ∀x:τ, JgKGtus,tvs⊎[x]J∃τ, gKGtus,tvs = ∃x:τ, JgKGtus⊎[x],tvsJ∃τ = e, gKGtus,tvs = JgKGtus⊎[JeKtus,tvs],tvsJe→ gKGtus,tvs = JeKtus,tvs → JgKGtus,tvsJg1 ∧ g2KGtus,tvs = Jg1KGtus,tvs ∧ Jg2KGtus,tvsJ⌊e⌋KGtus,tvs = JeKtus,tvsJTrueKGtus,tvs = True

Context Denotation

J−KCtus,tvs− : Πc:C,ExprT (tus ⊎ cU) (tvs ⊎ cV)Prop
→ ExprT tus tvsPropJc∀τKCtus,tvs P = JcKCtus,tvs(λus vs. ∀x:τ, P us (vs ⊎ [x]))Jc∃τKCtus,tvs P = JcKCtus,tvs(λus vs. ∀x:τ, P (us ⊎ [x]) vs)Jc∃τ = eKCtus,tvs P = JcKCtus,tvs(λus vs. ∀x:τ, x = JeKτtus,tvs us vs→ P (us ⊎ [x]) vs)JεKCtus,tvs P = P

Figure 6.2: Rtac’s core definitions presented mathematically. Goals denote to
propositions and contexts denote to propositions with “holes.”

135

The option in the tactic signals the potential to fail. For example, if a tactic
attempts to apply a lemma that does not apply to the current goal, then the apply
tactic will fail. I will discuss failure in more detail in Section 6.3.2. For now it is
sufficient to assume that tactics always succeed, which is the interesting case for
verification.

Goals The goal data type (also called the goal tree) expresses the remaining
proof obligations, which are represented by es in the syntax. InLtac, these are flat-
tened into a list of obligations, but the need to correctly maintain a cactus of sub-
stitutions means that it is easier to represent this sharing inRtac using a represen-
tation of goals that mirrors the proof tree. It also means that tactic continuations
(tacK) canmanipulate entire sub-proofs, which is a useful feature that is necessary
to support goal minimization (see Section 6.3.3).

Goals are built from a subset of the core logical connectives in an intuitionis-
tic logic, e.g. True, ∧, ∀, ∃, and→ . Exposing this structure allows Rtac to rea-
son underneath hypotheses and binders introduced by the quantifiers. Existential
quantifiers can optionally carry expressions corresponding to their actual instan-
tiations. To reason semantically about goals,Rtac provides a denotation function
for goals (parameterized by the denotation of the underlying proposition syntax)
that maps them directly to contextualized propositions in the natural way.

To be concrete, consider the goal at different stages in the example proof ear-
lier. Initially, the entire goal is a single, opaque expression from Rtac’s point of
view (represented as ⌊e⌋). When the new unification variable is used to instanti-
ate the existential, some structure is revealed in the goal and the new goal becomes
“∃x : N, ⌊e′⌋” where e′ represents the conjunction under the existential. Since
Rtac knows about the existential, it can run tactics underneath it. This allows ∧-I
to expose the conjunction in the underlying goal resulting in “∃x : N, ⌊e′′⌋∧⌊e′′′⌋”.
Eventually the goal expands and tactics solve the left side, resulting in the goal
“∃x = 0 : N, (∀y : N,True) ∧ ⌊e′′′⌋ where the value of x has been instantiated
with 0.

136

Contexts Contexts formazipper-like structure [90] that encodes thepath from
the root of the goal (represented as ε) to the current goal. The denotation of a con-
text is a transformer of contextualized propositions where the proposition to fill
the hole can additionally mention the variables introduced by the context. This
is captured by the type of JcKCtus,tvs, which accepts a semantic value with variables
equal to those in the ambient environment (tus and tvs) as well as those that come
from the context (written cU and cV) and returns a semantic value with variables
that come only from the ambient environment. For example,

Jε∃τa∀τb → eKCtus,tvs : ExprT (tus ⊎ [τa]) (tvs ⊎ [τb])Prop
→ ExprT tus tvsProp

= λP.λus vs.∀a : JτaK, ∀b : JτbK, JeK(us⊎[a]),(vs⊎[b]) →
P (us ⊎ [a]) (vs ⊎ [b])

The most interesting part of contexts is the way that the denotation function
handles existential quantification. Recall that the key to incrementally construct-
ing proofs is the need to constructmaximally parametric proofswith respect to the
values of uninstantiated existential variables. To capture this property,Rtac uses a
universal quantifier as the denotation for existential quantifier. In this approach, the
existential quantifier is instantiated by adding a new equation stating an equality
between the unification variable and the term to instantiate it. This technique is
captured by the difference between the second and third equations in the context
denotation function in Figure 6.2.

Contexts as Logics WhileRtac is primarily interested in a single logic, con-
texts actually induce derived logics on top of the base logic, e.g. going under a
hypothesis induces another logic where the hypothesis becomes an axiom. Two
properties are important for proving facts in these derived logics. First, tautologies
can be embedded into contexts for free. Formally,

∀P,
(
∀us vs, P us vs

)
→ JcKCtus,tvsP

137

Note that P is a semantic object that is not necessarily representable syntactically.
This is related to the pure morphism of applicative functors [116].

In addition to embedding tautologies, contextual facts can also be combined
under the context. Formally, this combination is captured by the following proof
rule.

∀PQ, JcKCtus,tvs(λus vs.P us vs→ Qus vs
)
→ JcKCtus,tvs P→ JcKCtus,tvs Q

Again, P and Q are semantic objects, and the contextualized function (the first
unnamed argument) shows how tomanipulate a proof of P into a proof ofQ in the
context. This operation is related to the ap morphism of applicative functors and
to cut-elimination in logic.

In the remainder of the chapter I will abuse notation and use standard logical
notation for contextualized properties. For example, when P andQ are contextu-
alized propositions:

P→ Q ≡ λus vs.P us vs→ Qus vs

6.1.2 Local Reasoning

The most common type of reasoning thatRtac tactics perform is local, backwards
reasoning. The tactic inspects the goal (G) and computes a new goal (G’). The
soundness of this reasoning step is justified by an implication from the post-goal
to the pre-goal under the current context (c). Mathematically,

JcKCtus,tvs(G′ → G
)

It is important to note that this statement is stronger, i.e. it says more, than

JcKCtus,tvsG′ → JcKCtus,tvsG
The extra strength of this statement comes in the knowledge that the values intro-
duced by the context are the same values used to fill in bothG andG′.

138

Proving the implication inside the context gives it access to facts stored in the
context. For example, the following theorem allows using facts learned from hy-
potheses that occur in the context.

∀c h, h ∈ c→ JcKCtus,tvs JhKtus⊎cU,tvs⊎cV
Note that in addition to accessing the context, proving this theorem also relies on
weakening of expressions since new universal and existential quantifiers can be in-
troduced between the hypothesis and the goal.

In addition, all of the equations implied by the instantiation of unification vari-
ables are also implied by the context using similar reasoning. Formally,

∀c, JcKtus,tvs JsubstFor cKtus⊎cU,tvs⊎cV
where substFor extracts the substitution from the context, and the denotation
converts it to a conjunction of equations using the denotation function for con-
texts.

6.1.3 Global Reasoning

Global (or context) reasoning is slightly more complicated than local reasoning.
Global reasoning needs a way to convert any semantic proof under the old context
into a semantic proof in the new context. The following definition captures this.

Evolves c c′ ≜ ∀P, JcKCP→ Jc′KCP
Note that here P is the same in both places, but the context changed from c to c′.

Uncurrying the definition makes it clear that the the proof is purely about the
context. JcKCP is an arrow type with a co-domain of P, so we can rewrite it into
“JcKT → P” where JcKT is a telescope [48] that carries all of the values in the con-
text. Using this definition, Evolves becomes

∀P, (JcKT → P)→ (Jc′KT → P)

139

This is isomorphic to the following direct implication, which is the same as the
reverse implication that arose in the eprove soundness lemma in Section 3.4.1.

Jc′KT → JcKT
It is illustrative to see an actual proof of Evolves. Consider the evolution of

“∀x : N, ∃y : N,∀z : N” when y is instantiated with the value of x. Using the
definition of Evolves the obligation is the following (recall the meaning of the ex-
istential quantifier is a universal quantifier):

∀P, (∀x : N, ∀y : N, ∀z : N, P x y z)→
(∀x : N, ∀y : N, y = x→ ∀z : N, P x y z)

The proof takes the facts from the right-hand side and uses them to prove the
premises on the left. Even the proof term is simple.

fun P pf x y pfY z ⇒ pf x y z

Theequality between y and x is simply droppedbecause it is not necessary to prove
P.

NaturalProofsofEvolution While correct, thedefinitionofEvolves above
is not quite strong enough forRtac. The problem is a lack of parametricity which
rears its head whenRtac needs to escape from under a quantifier. The proof above
is exactly the one that we want, but in inconsistent contexts there is another, less
parametric proof. For illustrative purposes, take the above example but convert
the type of z fromN to ∅. Revisiting the obligation demonstrates the problem:

∀P, (∀x : N, ∀y : N, ∀z : ∅, P x y z)→ (∀x : N,∀y : N, y = x→ ∀z : ∅, P x y z)

Theabove proof still solves the goal, but there is another, less natural¹ proof of this
proposition that leverages the ∅ to avoid its obligation to prove P. The unnatural

¹In the category theoretic sense [87]

140

proof is the following:

fun P pf x y pfY z ⇒ elim∅ z

This proof is not strong enough to let us escape fromunder an inconsistent con-
text. To see why, suppose that anRtac begins reasoning in the above context and
offers the above proof as evidence that it preserved the context. After the tactic
returns,Rtac needs to escape from under the ∀z : ∅ by using the above proof to
build a proof of the following:

∀P, (∀x : N, ∀y : N, P x y)→ (∀x : N, ∀y : N, y = x→ P x y)

A simple manipulation of the natural proof above (dropping all occurrences of z)
makes it easy to build the natural proof of this obligation (though this is rightfully
not possible to do in Gallina).

fun P pf x y pfY ⇒ pf x y

But there is no such simple manipulation of the unnatural proof that has the same
property. Ultimately, each piece of the context introduces a new “level” of the
proof, and it is necessary to ensure that higher-level knowledge (facts that are in-
troduced by deeper quantifiers) cannot be used to justify lower facts. This pre-
vents, for example, proving (P → ⊤) ∧ P by using the negative proof of P on
the left of the conjunction to prove the positive occurrence of P to the right of the
conjunction.

One way to solve this problemwould be to abandonMirrorCore’s insistence
on semantic objects and require syntactic evolution of contexts. Bindings in sub-
stitution cannot change except for through further instantiation, and no existing
bindings can be removed. While this would work, it is somewhat restrictive. For
example, it prevents any form of semantic reasoning within the substitution’s de-
notation, for example replacing 0 + x with x.

141

Rtac takes a more semantic approach. The soundness of a tactic requires an ap-
propriate Evolves proof at every level of the context². Recalling the example that
suggested the problem, underRtac’s solution a tactic is obligated to prove both of
the following:

∀P, (∀x : N,∀y : N, ∀z : ∅, P x y z)→ (∀x : N,∀y : N, y=x→ ∀z : ∅, P x y z)
∀P, (∀x : N,∀y : N, P x y)→ (∀x : N,∀y : N, y=x→ P x y)

While thismay seemwasteful, sinceRtac is fully reflective all of this overhead takes
place when the tactic is proved, not when the tactic is run. Further, since this ap-
proach is purely semantic, it provides the full richness of the underlying proof lan-
guage rather than imposing arbitrary restrictions based on the underlying syntax.

These two types of reasoning form the semantic “assembly language” of tactics.
To be easy to use,Rtac contains a range of tactics that capture slightly higher-level
reasoning steps at the granularity of the coreLtac tactics.

6.2 Core Tactics

These core tactics can be categorized into two groups: tactics for proving which
manipulate goals (Section 6.2.1) and tactics for combining other tactics into au-
tomation procedures (Section 6.2.2).

6.2.1 Tactics for Proving

Proving tactics are meant to express finer granularity operations such as splitting
a conjunction or applying a lemma. Their small nature makes them good building
blocks for developing larger automation. For example, the backward reasoning
proof procedure described inChapter 3 is essentially repeated use ofRtac’s EAPPLY
tactic. This tactic implements the lemma application algorithm that I described in

²In actuality lower proofs can be used to build higher proofs when there are no changes to
the context between them. Therefore it is only necessary to witness proofs in places where the
context can change.

142

detail in Section 3.4.1.
Goal manipulation tactics are also easy to implement. Any function that pre-

serves the semanticmeaning of an expression can be converted into a sound tactic.
The entire tactic is a one-liner inRtac³:

Definition SIMPLIFY : rtac := fun c e ⇒ Some (GGoal (reduce e c), s).

This tactic can be used to rewrite by equalities, perform β-reduction, and instanti-
ating unification variables, just to name a few. Making these functions into tactics
using SIMPLIFY is simply a matter of proving the transformation from P to Q im-
plies that JPK↔ JQK (in fact, the proof can be weakened to JQK→ JPK).

Other tactics such as INTRO and EEXISTS are equally simple because they con-
vert syntactic expressions into their correspondingRtac representations. For ex-
ample, using the prop language from Chapter 2, the tactic for introducing a hy-
pothesis is trivial to write:

Definition INTRO_hyp : rtac :=
fun _ e ⇒ match e with

| pImpl P Q ⇒ Some (GHyp P (GGoal Q), s)
| _ ⇒ None

end.

Implications are exposed toRtac through the GHyp constructor, and the remainder
of the goal is included via GGoal . The soundness theorem essentially amounts to
the following trivial facts:

Soundness ∀c, JcKC((JPK→ JQK)→ (JPK→ JQK))
Context Soundness ∀c G, JcKCG→ JcKC(JeK→ G)

A Note About Parametricity SinceRtac is fully parametric in the underly-
ing term language, proving tactics must also be parametric in the operations that
they require on terms. For example, the generic EAPPLY tactic requires expres-

³The actual code has a few more variables but also has a similarly simple implementation.

143

sions to have a representation of unification variables and functions that manipu-
late them. MirrorCore provides default instantiations for many of these tactics
when the underlying language is MirrorCore’s extensible syntactic representa-
tion. Some tactics, such as introducing a quantifier or splitting a conjunction, re-
quire deeper semantic knowledge about the domain, for example the representa-
tion of conjunction. In these cases,Rtac exposes procedures that are parameter-
izedby functions that inspect the termand take careof theRtac termmanipulation.
For example, the generic INTRO tactic requires a function (open) that satisfies the
following specification in order to introduce hypotheses:

∀ tus tvs g g’, open g = Hyp h g’ → (* the function succeeded *)

∀ gD, propD tus tvs g = Some gD → (* initial goal means [gD] *)

∃ eD’ hD, propD tus tvs h = Some hD ∧ (* the hypothesis means [hD] *)

propD tus tvs g’ = Some g’ D ∧ (* the new goal denotation [g’D] *)

(* the implication holds in all contexts *)

∀ us vs, (hD us vs → g’ D us vs) → (gD us vs)

In English this specification says “if open e returns Hyp h g’ and e is a well-typed
proposition then both h and g’ are well-typed and (JhK→ Jg′K)→ JgK.”
6.2.2 Combinators for Proof Search

TheRtac programmingmodel is based around a similar backtracking search proce-
dure which is similar in many respects toLtac’s model. As I mentioned previously,
Rtac tactics can either succeed or fail. It is failure that triggers backtracking.

In addition to the core parameterized reasoning tactics,Rtac also provides a col-
lection of tactic combinators including: identity, failure, alternation, bounded re-
cursion, and sequencing. These are easy to implement inRtac.

IDTAC : rtac

FAIL : rtac

ALT : rtac → rtac → rtac

REC : (* fuel : *) N→ (rtac → rtac) → rtac → rtac

AFTER : rtac → rtac → rtac

144

Thesoundness of these tactics is derived directly from the soundness of their com-
ponents. Take ALT as an example. First it runs the first tactic, and if the first tactic
fails, then ALTwill run the second tactic. The soundness statement is the following:

Theorem ALT_sound

: ∀ t1 t2, rtac_sound t1→ rtac_sound t2→ rtac_sound (ALT t1 t2).
Proof. . . . Qed.

The proof follows immediately from the (very simple) implementation. In fact, in
general, the combinators are significantly easier to prove than the actual tactics.

Tactic Continuations

In almost all cases automation applies to an individual goal. However, there are
some cases when we want or need to process an entire goal tree. Implementing
the AFTER tactic combinator is one such instance. After the first tactic runs on a
local goal, it produces a goal tree, not just a single local goal. What is the correct
semantics for running the second tactic? A logical choice is to run the second tactic
on each leaf goal produced by first tactic. This choice corresponds directly toLtac’s
semicolon operator.

While this choice makes a good default, there are cases when we want to lever-
age more information to improve the proof search. Take applying the following
lemma for example:

lem : ∀ x y, Even x → Odd y → Odd (x + y).

If this lemmaapplies to thegoal, twogoals areproduced, one forEven and theother
for Odd. If we have separate automation for Even and Odd, we would like to set up
the automation so that it calls the tactic to prove evenness on the first goal and the
tactic to prove oddness on the second goal. In Ltac this pattern of combination is
supported by the “tac; [tac | tac]” construct.
Rtac tactic continuations provide a unifying way to describe the semantics of

both the standard chaining and the hybrid chaining feature above. Tactic contin-
uations have exactly the same type as tactics except that they accept goal trees in-

145

stead of single goals.

rtacK := C → G → option (G × C)

Using this definition Rtac provides ON_ALL , which applies a single tactic to each
goal in a goal tree. This behavior is the same as Ltac’s semi-colon operator. The
USE_EACH tactic continuation takes a list of tactics and runs one on each leaf goal
in the goal tree. AswithLtac, USE_EACH fails if the provided number of tactics is not
exactly equal to the number of leaf goals in the reflective procedure. This makes it
simple to, for example, fail if more than one subgoal remains using a script such as.

AFTER_K (tac_to_run) (USE_EACH [IDTAC])

Here, AFTER_K generalizes AFTER by taking a tactic continuation as its second ar-
gument. Using AFTER_K , AFTER has a simple implementation

Definition AFTER (tac1 tac2: rtac) : rtac :=
AFTER_K tac1 (ON_ALL tac2).

Beyond providing a compositional semantics for the various forms of chain-
ing, tactic continuations also provide access to the goal tree, which gives them the
ability to, e.g. clear hypotheses or instantiate unification variables. Tactic con-
tinuations are also key to implementing first-class goal minimization, which I will
discuss in Section 6.3.3.

6.3 Performance

Theprimary goal ofRtac is not blindingly fast tactics, thoughwith appropriate sup-
port accomplishing thismight be feasible. More importantly,Rtac is useful primar-
ily for two purposes. First, it makes building simple tactics relatively straightfor-
ward. Second, Rtac makes it easy to glue together more specialized automation.
For example, replacing some of Bedrock’s Ltac for higher-order reasoning with
Rtac could avoid the performance penalties of reflecting and reifying terms.

146

25 26 27 28 29 210
2−9

2−7

2−5

2−3

2−1

21

n

Ti
m

e(
se

c)

Time to Prove (Even n)

Ltac
Rtac
Rtac-Const
Custom

Figure 6.3: Comparison of Ltac, Rtac, and a custom decision procedure for
proving constants Even.

6.3.1 Evenness

InChapter 1 I demonstrated a very simple procedure for proving evenness of large
constants and compared it to proving the same property in Ltac. Rtac provides
another way to solve this goal which I showed in Figure 6.1. Figure 6.3 shows the
performance comparison for proving various numbers even inLtac,Rtac and using
the custom decision procedure.

First, notice the significant difference between Ltac and the custom decision
procedure. WhileLtac is quadratic in the size of the number, the custom decision
procedure is linear. The direct translation ofLtac toRtac has performance closer to
Ltac than the custom Gallina decision procedure. This poor scaling is due in part
to the large terms that appear during the computation. For example, in Mirror-
Core’s representatation, the size of 1024 contains more than 2048 constructors.
Constructing and representing the term is one thing, but computing on such large
terms can also be expensive. For example, the occurs check is linear in the size of

147

the term.
To avoid some of the overhead of reifying and computing on large terms, we

can leverage MirrorCore’s general term algebra to lazily reify constants in the
goal. To do this, we include a special representation of constants into the symbol
language and have its denotation simply be the value stored in its argument. To be
concrete, to apply this technique to the evenness problem, we would augment our
reflective constants as follows:

Inductive func :=
| ConstNat : N→ func

| Zero | Succ

| Even | Odd.

Definition funcD (f : func) :=
match f with

| ConstNat n ⇒ n

. . .

Using this approach, we reify 1024 into “Inj (ConstNat 1024)” rather than ex-
posing all of the individual applications. Since our procedures know that all terms
inside of ConstNat are constants, they can compute on the constants without wor-
rying about becoming stuck on opaque symbols. The automation can then use
custom “parametric” lemmas to implement the same proof searchmuchmore effi-
ciently. Theperformance of this custom representation is shown in theRtac-Const
line. Figure 6.4 shows the relevant code excerpts. The tactic uses the AT_GOAL tac-
tic combinator which is similar toLtac’s match goal with tactical and allows the
developer to inspect the goal and the context before picking the tactic to run. In
this case, I use AT_GOAL to determine the number to use to instantiate the paramet-
ric lemma. The tactic also uses the derived REPEAT tactical, which runs the tactic
at most fuel times and chains each with an implicit recursive call.

Supporting Variables

The above evenness experiment showsRtac in a poor light for two reasons. First,
the size of the problem is directly proportional to the size of the proof. We see this
in the results when we note that the reification process accounts for a substantial
piece of the overall verification time. Second, the problem domain is so simple

148

(* parametric lemma *)

Definition pEO_syn (n : N) : lemma :=
{ foralls := nil

; premises := App Odd_syn (Const n) :: nil
; conclusion := App Even_syn (Const (S n)) }.

Definition even_odd_tac_nrec (fuel : N) : rtac :=
REPEAT fuel (AT_GOAL (fun e ⇒

match e with

| App (Inj fEven) (Const 0) ⇒ APPLY pE0_syn

| App (Inj fEven) (Const (S n)) ⇒ APPLY (pEO_syn n)
| App (Inj fOdd) (Const (S n)) ⇒ APPLY (pOE_syn n)
| _ ⇒ FAIL

end)).

Figure 6.4: Parametric lemmas enable more efficient reflective procedures by
avoiding the need to reify large constants.

that it does not even require a syntactic representation. Thus any use of “standard”
reflection will incur a cost in building this representation. The second Rtac im-
plementation skirts this issue by reifying the entire constant into a single piece of
syntax, and the resulting procedure is substantially faster.

Making the problem just slightly more complicated, however, shows offRtac’s
generality. Introducingvariables requires that the entireGallinaprocedurebe rewrit-
ten, while theRtac procedure is easy to adapt sinceMirrorCore’s representation
already handles variables. To demonstrate the effect that adding variables has on
the reasoning, consider enriching the automation to be able to solve the following
problems:

Even x ⊢ Even (S (S x))
Odd x ⊢ Odd (S (S x))

Sincex in bothof these goals is opaque the customreflectiveprocedure is unable
to solve these. BecauseRtac is built on top of a reflected term syntax, it can solve
interestingproblems such as these. For example, thenaïveprocedure that I showed
in Figure 6.1 is able to solve both of these goals.

Evenwhenonly constants are involved it can be useful to exposed the additional

149

structure in the goal. For example, consider trying to prove the following

⊢ Even (pow 2 20)

Since everything is a constant the simple tactic should work. To use the reflective
procedure, however, the exponentiation must be completely reduced. In Coq 8.4,
this reduction leads to a stack overflow. We can avoid this problem by exploiting
extra structure in the goal, essentially hiding the large number behind the universal
quantifier in the following lemma:

⊢ ∀nm,Even n→ m > 0→ Even (pow nm)

A one-line change to anLtac script or anRtac definition enables the automation to
use this lemma to avoid producing the large term. Solving the goal after that simply
requires a small amount of additional automation for them > 0 obligation.

6.3.2 Backtracking Proof Search

In Chapter 3, I demonstratedMirrorCore’s unification variables by implement-
ing a backtracking proof search that combined lemmas and custom reflective pro-
cedures. That entire algorithm is easy to implement using the parameterizedRtac

in Figure 6.5. The soundness proof for this tactic is also easy to prove—though not
completely automatic since the try_lems tactic is constructed from an unknown
list of sound lemmas.

While not completely automatic, the ability to implement this procedurewithin
Gallina highlights the ability to define new abstractions such as hint databases di-
rectly within the logic. For example, we can easily modify the above tactic to per-
form a depth-bounded depth-first search, or, with a bit more work, a breadth-first
search. While the first can be coded inLtac using eauto 1; eauto 2; eauto 3, there
is no easy implementation of the latter.

In addition to other search strategies, it is also possible to perform offline pre-

150

Definition EAUTO_USING (fuel: N) (tac: rtac) (lems: list lemma)
: rtac :=

let try_lems rec :=
map (fun x ⇒ SOLVE (THEN (EAPPLY x) rec)) lems in

TRY (REC fuel (fun rec ⇒ FIRST (ASSUMPTION :: tac :: try_lems rec))).

Theorem EAUTO_USING_sound : ∀ tac lems,
rtac_sound tac → Forall Provable lems →
rtac_sound (EAUTO_USING fuel tac lems).

Proof. . . . Qed.

Figure 6.5: The implementation of eauto inRtac takes a reified “hint database”
(lems) and applies the lemmas using EAPPLY. Failure is handled by the back-
tracking semantics of FIRST.

processing of search strategies. For example, we can compile a collection of lem-
mas into adiscrimination tree [40] toperformsimultaneousunificationwithmany
lemmas.

6.3.3 The Importance of Minimizing Goals

Rtac’s task of maintaining the goal state can become expensive, especially as uni-
fication variables pile up. Part of this is due to the current implementation of the
occurs check, which is linear in the size of all of the terms in the unification table.
Coq’s own implementation is able tomake judicious useof side-effects and laziness
to avoid rescanning lists, but Gallina does not support this kind of programming.

To achieve good performance when applied to large problems, it is essential
to minimize goal representations in places where known unification variables are
likely to stack up. Take a naïve implementation of EAPPLY for example. The imple-
mentation introduces a new unification variable for each quantified variable and
unifies the lemma’s conclusion with the goal. In many cases, applying a lemma
will instantiate many of the newly introduced unification variables, and it is es-
sential that these variables be eliminated quickly to keep the substitution small.
Concretely, minimization would convert a goal such as “∃y = 3, (Odd y∧True)”

151

25 26 27 28 29 210

10−1

100

101

n

Ti
m

e(
se

c)

Effect of Goal Minimization (proving Even n)

With minimization
Without minimization

Figure 6.6: Minimizing goals is essential to achieve good asymptotic perfor-
mance when tactics generate many unification variables. The time represents
only computation time, not the time for reification.

into “Odd 3.”
Figure 6.6 shows how important goal minimization is in practice. In the line

without goal minimization, I have removed the internal minimization steps from
the evenness prover for constants described in Section 6.3.1. This change increases
the complexity from linear (with a coefficient of approximately 1

1000) to quadratic
(with a coefficient of almost 6).

6.4 RelatedWork

In this chapter I discussed the implementation of a fully-reflective,Ltac-like tactic
language. Tactic-based proving is a common approach in Coq and has facilitated
the development of impressive proof artifacts [54, 58, 85, 96, 105, 110]. Recent
work has even demonstrated howLtac can be used for tasks such as program syn-
thesis [73].

Despite its prevalence, the semantics ofLtac has historically been somewhat of

152

a mystery [21] in part due to implementation bugs obscuring some of the details.
Recentwork by Jedynak [94] has built an abstractmachine semantics forLtac. The
semantics includesLtac’s match goal, which allows tactics finer granularity access
to the hypotheses and the structure of the goal. Rtac supports this type of goal
inspection but reasoning about it has proven difficult. A promising approach to
solving this problemwould be a program logic for tactic verification. Thedifficulty
here lies in building a flexible enough logic to reason about back-tracking failures.

Recent work by Devriese and Piessens [74] developed some reflective tactics
for Agda [8]. The work aims to do strongly-typed meta-programming using com-
putational reflection. As an example, they develop an assumption tactic whose
type encodes its correctness property. Translated into Coq the specification is the
following:

Definition assumptionTactic : ∀ n T {Γ : Context n} (tyt : Γ ⊢ T : Type)
(tyΓ : ⊢ Γ) (asmpts : interpCtx tyΓ),

ifYes (inContext Γ T) (interpSet tyt tyΓ asmpts).

Here, inContext is the executable part of the tactic, and the body of the definition
is the proof of its correctness. As is usual in Agda developments, their work lever-
ages dependent types heavily, which can incur heavy execution costs, thoughAgda
contains some features to mitigate this [7]. The authors report no performance
numbers to hint at the overhead or larger case studies like the ones I discussed in
Section 6.3. Further, their work does not support many of the conveniences such
as unification variables and unification thatRtac inherits from MirrorCore and
are essential to building more sophisticated tactics such as APPLY while maintain-
ing compositionality.

Several lines of recent research have looked into alternative tactic languages for
Coq. Claret’swork [59] axiomatizes a “tacticmonad” thatprovides search-oriented
features that can be more efficiently implemented outside of Coq. This allows
leveraging imperative algorithms such as union-find [64] to efficiently perform
the proof searchwhile retaining soundness by translating traces of the proof search
back into Coq. To skirt the issue of needing to reason about the monadic compu-

153

tation, the computation produces explicit proof objects. The idea of producing a
trace could mitigate the problem of re-performing the proof search during proof
checking by threading through a trace of the “right” choices that would be pro-
duced by the initial reflective procedure.
Mtac [155] adapts some of the ideas in Claret’s work to build an alternative

tactic language that reuses Gallina. Mtac is built to run in Coq and provides the
developer with access to Coq’s unification algorithm via term matching. This is
useful because it completely avoids the need to build a syntactic representation of
the goal. Despite the fact thatMtac terms are written inGallina,Mtac’s evaluation
strategy constructs proofs at run time which are later checked by the Coq kernel.
This is essential due to the reliance on algorithms such as higher-order unification
that are outside of Coq’s trusted computing base. Further, the ability forMtac

terms to inspect values syntacticallymeans thatMtac computations donot respect
propositional equality, i.e. if tac is anMtac tactic then it is not necessarily the case
that

∀x y, x = y→ run tac x = run tac y

This property prevents us from using Gallina to reason post-facto aboutMtac tac-
tics since these tactics are not Gallina functions.

The ability to implement tactics in the proof assistant also opens up questions
about better, more programmable designs for tactic languages. Brady’s Idris [44]
language is built around a domain-specific tactic language (written in Haskell) for
elaborating Idris programs into a core type theory. This approach has proven quite
modular, enabling Idris to rapidly add features such as type classes and implicit
arguments with relatively little new code. Brady’s tactics are very low level, e.g.
create a new unification variable, focus on a unification variable, and construct a
term. Rtac could support tactics at this level of generality and use them to build
the higher-level features. This approach however may require some optimization
or partial evaluation to avoid performing fine-grained checks that are guaranteed
to succeed when used to build larger tactics.

154

6.4.1 Future Work

The primary limitation inRtac lies in the difficulty of expressing context manipu-
lation tactics. For example, splitting a conjunction which occurs in a hypothesis
into two premises is often useful, but in order to keep from doing it repeatedly, it
is desirable to clear the conjunction afterwards. InRtac’s current implementation
this sort of manipulation can only occur in tactic continuations.

155

7
Case Study: Embedded Logics for

Imperative Programs

Up until this point I have shown a multitude of relatively restricted examples of
building on top of MirrorCore predominantly for illustrative purposes. The
Bedrock case study was substantial but usedMirrorShardwhich was custom-
built for the application. In this chapter I demonstrate the expressivity and flexi-
bility of MirrorCore andRtac operating together. My application is once again
imperative program verification, this time for a simple imperative programming
language. Theproblemwill be simpler but the automationwill be easier to develop
and extend than with the custom procedures that I implemented for Bedrock.

Exercising the modularity and extensibility of MirrorCore, I build the for-
malism in this chapter using Bengtson’s Charge! logic library [29]. This library
provides axiomatic interfaces for logics and definitions for layering logics on top

156

of one another. Charge! was originally built to abstract the logics used to verify
Java programs [28] but it has also been applied to x86 machine code [30] and is
very similar to Appel’s logic [17] for verifying CompCert C [105] programs.

Charge! enables building custom logics that internalize the features of the pro-
gramming language, e.g. local variables or recursion. This feature makes it more
natural to read and write specifications because the logic contains simple ways to
talk about the constructs in the program. It also provides modularity by allowing
other users to embedorthogonal features into the logicwithout having to revisit all
of the old functionality. Appel’s work onC [16] shows how to use this extensibilty
to capture features ofmodern programming languages such as non-computational
recursive predicates.

Beyond the automation for the program logics is the need to reason about the
program. In Bedrock I built custom automation to perform symbolic evalua-
tion of programs. However, this approach relied crucially on a fixed programming
language. Bedrock macros were expanded by verification condition generation
before being passed to the symbolic evaluator. Bedrock uses a stylized form of
macro tomake this workwithout needing to duplicate all of the work, but it would
be nicer to have the symbolic evaluator understand macros from the offset. This
approach also avoids the need to generate many verification conditions that must
be individually reified, solved, and reflected.

The combination of all of these features stands as strong evidence for my the-
sis that compositional computation reflection is a powerful technique for quickly
building efficient, foundational automation. Core reflective building blocks such
as Rtac as well as extensible custom reasoning procedures are essential compo-
nents to realizing this vision. These pieces provide a gentle ramp for converting
inefficientLtac procedures intomore efficient reflective procedures by overcoming
the initial hurdle that requires all pieces of a reflective procedure to be reflective.
This allows gradual optimization of individual pieces, which enables evolving the
reasoning from a useful prototype to a performant verification framework.

I begin the chapter with a brief discussion of Charge!’s approach to specifying
logics using type classes [137] (Section 7.1). Next I demonstrate two techniques

157

for usingMirrorCore’s extensibility to represent type classes (Section7.2). Build-
ing on top of the type classes, I develop automation for a program logic for a sim-
ple language using Rtac (Section 7.3). I focus on the ease of translating an Ltac

prototype into anRtac tactic and, despite being as naïve as possible, end up with
two orders of magnitude performance improvement for a few hours of work. I
conclude the section by considering augmenting the automation to support addi-
tional features such as opaque code (Section 7.3.2) and memory (Section 7.3.3).
Stepping back I reflect, no pun intended, on some of the inconveniences in the
development and consider promising solutions. I conclude by discussing ongoing
collaborations that extend the case study presented in this chapter to work with
full-fledged programming languages (Section 7.4).

7.1 Describing Axiomatic Logics withCharge!

Thecore abstraction in theCharge! framework is an intuitionistic logic. Intuition-
istic logics provide the core logical operators as well as a notion of entailment (⊢)
which is often closely related to implication in the meta logic. These definitions
are expressed by the type class definition shown in Figure 7.1¹. The type index L is
the type of propositions in the logic, and the fields correspond to the logical oper-
ators. The ILogicLaws class expresses the laws that these operators adhere to. For
example, landR states the standard and-introduction rule (∧-I). When we reason
abstractly about a logic, these laws will be the only way tomanipulate the symbols.

Phrasing the interface for intuitionistic logics as a set of functions leaves the
type open to adding new symbols. For example, we can reason abstractly about
any step-indexed intuitionistic logic (L) by quantifying over L and over the corre-
sponding operators.

Variable L : Type.
Variables (ILogic_L : ILogic L) (Later_L : Later L).

¹Charge!’s ILogic interface also includes operators for ∀ and ∃.

158

Class ILogic (L: Type) :=
{ lentails : L → L → Prop (* entailment: “P ⊢ Q” *)

; ltrue : L (* truth: “TT” *)

; lfalse : L (* falsehood: “FF” *)

; land : L → L → L (* conjunction : “P ∧∧ Q” *)

; lor : L → L → L (* disjunction : “P ∨∨ Q” *)

; limpl : L → L → L (* implication : “P →→ Q” *) }.

Class ILogicLaws (L: Type) (LL: ILogic L) :=
{ Preorder_lentails <: Preorder lentails

; ltrueR : ∀ P, P ⊢ TT

; lfalseL : ∀ P, FF ⊢ P

; landR : ∀ P Q R, R ⊢ P → R ⊢ Q → R ⊢ P ∧∧ Q

; landL1 : ∀ P Q, P ∧∧ Q ⊢ P

; landL2 : ∀ P Q, P ∧∧ Q ⊢ Q

; lorR1 : ∀ P Q R, P ⊢ Q → P ⊢ Q ∨∨ R

; lorR2 : ∀ P Q R, P ⊢ R → P ⊢ Q ∨∨ R

; lorL : ∀ P Q R, P ⊢ R → Q ⊢ R → P ∨∨ Q ⊢ R

; landAdj : ∀ P Q C, C ⊢ (P →→ Q)→ C∧∧ P ⊢ Q

; limplAdj : ∀ P Q C, C ∧∧ P ⊢ Q→ C ⊢ (P →→ Q) }.

Figure 7.1: The Charge! interface for intuitionistic logics.

This style is convenient because it abstracts the underlying logic. For example, L
could also be a separation logic over a heap structure or contain other modalities.
In addition, the carrier L could be defined by a deep embedding, where the proof
rules of the logic arewritten as an inductive type; or as a shallowembedding, where
the type L is defined in terms of primitive Coq definitions and the proof rules are
theorems.

When we verify programs using Charge!’s logics there are a surprising number
of logics floating around. For example, standard Gallina propositions form a logic
but there are also custom logics for the programming language.

• Lifted logics can represent additional state information such as a local vari-
able store or a heap. They can be modeled as a function space where the
domain is the type of the extra information and the co-domain is any intu-

159

itionistic logic. Theentailment relation is the pointwise lifting of entailment
in the underlying logic.

• Step-indexed logics can represent time. These are interestingbecause step-
indexing provides a way to do induction which allows us to conveniently
reason about programs and logical assertions that may otherwise not be
well-founded. Here, the implication is a generalized weakening that sup-
ports arbitrarily decreasing the step index.

7.2 Reifying Type Classes

Type classes are not really anything special within Coq; in fact, adding them does
not change the trusted computing base at all. InCoq, type classes are just records².
What makes type classes special is the integration with elaboration (the process
of taking a Coq term as written by the user and building the core term that Coq
reasons about). The problem with reasoning about elaboration is that elaboration
is a partial operation. For example if we write the term 1 ⊢ 2, Coq will attempt to
find an instance of ILogic N, but one of these is unlikely to exist sinceN is not an
intuitionistic logic.

There are two solutions for representing type classes reflectively in Mirror-
Core. Both rely heavily on the ability to customize MirrorCore’s representa-
tion of symbols. The first follows the style of Haskell [145] and reifies the type
class resolution algorithm (Section 7.2.1). The second solution more closely fol-
lows Coq’s model of type classes [137] and reifies type classes and type class in-
stances as types and values respectively (Section 7.2.2).

160

1 (* Type class functions, τ is the logic’s type, e.g. Prop *)

2 Inductive ilogic_sym := ilsTrue (τ:typ) | ilsAnd (τ:typ) | . . .
3

4 (* The reified resolution algorithm *)

5 Variable getInstance : Π τ : typ, option (ILogic (typD τ)).
6

7 (* symbols are only well-typed if there is an instance *)

8 Definition typeof_ilogic_sym (s: ilogic_sym) : option typ :=
9 match s with

10 | ilsTrue τ⇒ _← getInstance τ ; ret τ
11 | ilsAnd τ⇒ _← getInstance τ ; ret (τ⇛ τ⇛ τ)
12 end.
13

14 (* The denotation uses dependent types to return the value

15 * only if the term is well-typed *)

16 Definition ilogic_symD (s: ilogic_sym)
17 : match typeof_ilogic_sym s with

18 | None ⇒ unit

19 | Some τ⇒ ILogic (typD τ)
20 end :=
21 match s with

22 | ilsTrue τ⇒ match getInstance τ with (* dependent types omitted *)

23 | Some l ⇒ @lTrue _ l (* use the returned instance *)

24 | None ⇒ tt

25 end

26 | . . .

Figure 7.2: Encoding second-class type classes in MirrorCore by reifying
type class resolution as a partial function. The use of the option monad in
typeof_ilogic_sym (lines 10-11) ensures that a type class symbol is well-typed
only if an appropriate type class instance exists.

7.2.1 Second-class Type Classes

We can represent type classes in a second-class way by reifying the type class res-
olution function. This allows the denotation function to invoke type class resolu-
tion and fail if an appropriate type class does not exist. Figure 7.2 demonstrates the
key aspects of this approach. The typeof symbols (ilogic_sym) includesparamet-

²In Coq 8.4 and earlier, records are themselves simply non-recursive inductive data types
with special syntax.

161

ric symbols for each type class function (line 2). The getInstance function is the
reified type class resolution function which returns an option with the appropri-
ate instance. Since type class functions only exist when a corresponding type class
instance exists, symbols are only well-typed if the type class resolution function
finds an appropriate instance.

What makes this encoding second-class is that there is no expression that rep-
resents a type class instance. This prevents this representation of type classes from
multiple instances of a type class at a single type. While the assumption of non-
overlapping instances is often true (and enforced in Haskell) it is not guaranteed
true in Gallina³. Accommodating overlapping instances requires a trick common
in Haskell programs where we introduce type aliases. However, care must still be
taken to keep the aliases straight, especially during reification. In practice, this kind
of type alias is generally not a problem sincewe are often reasoning opaquely about
the type class instances.

7.2.2 First-class Type Classes

To address the problem of overlapping instances, the first class approach splits in-
stances from their uses by introducing a new type constructor to the type algebra
and a new symbol for each instance. Figure 7.3 shows the core of the solution.
Here, the first argument to all of the type class functions is the appropriate type
class instance. This solution requires no additional error propagation or fancy de-
pendent types becauseMirrorCorehandles all of it through its denotation func-
tion.

There are twodownsides to thefirst-class representation. First it is slightly larger,
which affects both the proof term and the amount of computation needed to com-
pare terms. Second, the algebra of types is more difficult to extend with polymor-
phic symbols than the algebra of terms. A first-class treatment of polymorphism

³Coq provides canonical structures [82] as a more “principled” type class-like mechanism
that prevents overlapping instances; however, this property is not codified in the type system.

162

Inductive typ :=
| tyArr : typ → typ → typ

| tyILogic : typ → typ

| . . .

Inductive ilogic_sym :=
| ilsTrue : typ → ilogic_sym

| ilsAnd : typ → ilogic_sym

| ilsFun : typ → typ → ilogic_sym .

Definition typeof_ilogic_sym (s: ilogic_sym) : option typ :=
match s with

| ilsTrue τ⇒ Some (tyILogic τ⇛ τ)
| ilsAnd τ⇒ Some (tyILogic τ⇛ τ⇛ τ⇛ τ)
| ilsFun d c ⇒ Some (tyILogic c ⇛ tyILogic (d ⇛ c))
end.

Figure 7.3: Encoding first-class type classes in MirrorCore by introducing
a parameterized type for the class and symbols for the instances.

and type functions inMirrorCorewould likelymake this definitionmuch easier
to use in practice.

7.3 Case Study: Verifying Imperative Programs

Combining the logic automation withRtac makes it fairly easy to build a fully re-
flective program verifier for a simple language. I start with a brief overview of a
core imperative language and build a simple, non-reflective verification procedure
on top of its axiomatic semantics. Next, I show how this simple procedure can
be iteratively translated, in a mostly straightforward way, to an efficient reflective
procedure usingRtac (Section 7.3.1). I highlight howRtac retains the ease of ex-
tension that is inherent inLtac by showing how to extend the procedure to reason
about conditionals and opaque code. Finally, I discuss how more aggressive ex-
tensions such as separation logic assertions can be integrated into the system.

163

(commands) c ::= x := e | c1; c2 | if b then c else c
(arith expressions) e ::= x | n | e1 + e2

Core Commands

C-Assign{P}x := e{∃X, P[x⇝ X] ∧ x = e[x⇝ X]}

C-Skip{
P
}
skip

{
P
} {

P
}
c1
{
R
} {

R
}
c2
{
Q
}

C-Seq{
P
}
c1; c2

{
Q
}

Simple Extensions{
P ∧ ⌊e ̸= 0⌋

}
c1
{
Q
} {

P ∧ ⌊e = 0⌋
}
c2
{
Q
}

C-If{
P
}
if e then c1 else c2

{
Q
}

P ⊢ I
{
I ∧ ⌊e ̸= 0⌋

}
c
{
I
}

C-WhileI{
P
}
whileI e c

{
I ∧ ⌊e = 0⌋

}
P ⊢ Q

C-Assert{
P
}
assertQ

{
Q
}

Figure 7.4: Axiomatic semantics for a simple imperative programming language
with mutable local variables.

The Language The core of the language is aminimal imperative programming
language with integer values, mutable local variables, and sequential composition.
The first part of Figure 7.4 summarizes the language’s axiomatic semantics. By
convention I will use upper-case variables in math font to represent logical vari-
ables, e.g. variables introduced by an existential quantifier, and lower-case sans-
serif names, e.g. x or y, for program variables. In the formal presentation the logi-
cal connectives and applicative functor operations thread the store around. These
details can be hidden by a combination of Coq notation and coercions to make
the textual presentation quite readable.

Wecompute thepost-conditionbymethodically applying the axiomatic seman-

164

tics to the program. The Ltac code that implements this “algorithm” is trivial to
write.

repeat first [apply triple_exL ; apply ILogic . l∀R ; intro

| apply CAssign_seq

| apply CSkip_seq

| apply CAssign_tail

| apply CSkip_tail] ; (* solve postcondition *)

The first line introduces existentials in the pre-condition into the Coq context to
avoid thempiling up in the pre-condition. The derived lemmas, e.g. CAssign_seq ,
are simply for convenience to avoid needing to apply the rule of consequence.

7.3.1 Reflecting Verification

Unfortunately, the simple Ltac implementation of post-condition-based verifica-
tion has poor performance even for relatively small programs. The blue line in
Figure 7.5 shows the amount of time it takes to verify a program that increments n
variables for n ranging from 3 to 26. For example, the 2 point (if it existed) would
be verifying the following program.

{
a = 0 ∧ b = 1

}
a := a+ 1; b := b+ 1

{
a = 1 ∧ b = 2

}
To get better performance we can start incrementally translating the Ltac code

intoRtac. Converting the post-condition calculation portion of the verification re-
sults in the code in Figure 7.6. Both the syntax definition (which is just types and
symbols layered on top of MirrorCore) and its reification procedure are omit-
ted. At the beginning of the code each lemma is translated into MirrorCore
using the reification plugin with a bit of post-processing. These theorems are then
combined by the reflective postcondition tactic to produce the heart of the algo-
rithm. The looping portion of the algorithm is accomplished usingRtac’s REC com-
binator for building recursive tactics. Notice that a simplification step is run before
each recursive call to perform some reasoning using the McCarthy memory ax-

165

5 10 15 20 25

0.1

1

10

100

of variables

Ti
m

e(
se

c)

Verification Time (Increment each Variable)

Ltac
Rtac+Ltac
Rtac

Figure 7.5: Performance for each version of the program verifier. The dotted
red line is the amount of time the hybrid approach spends in Ltac.

ioms which essentially perform the substitution. Finally, the reflective procedure
is proved sound using the generic derive_rtac_soundness proof combined with
the lemmas that the tactic uses.

The red lines in Figure 7.5 show the effect of translating this portion of the al-
gorithm intoRtac. Note that the slope of the curve has dropped substantially, cor-
responding to an exponential speedup in the implementation. The dotted red line
shows the amount of time that we still spend inLtac processing, which is still sub-
stantial, suggesting that we can get more benefit frommakingmore of the verifica-
tion procedure reflective.

The last part of the problem is to discharge the final entailment. If wewerework-
ing directly in Prop then this task would be easy using Coq’s built-in tactics. Since
we are working in an embedded logic, however, Ltac tactics do not work imme-
diately for us. Tactics like intro need to be translated to applications of Charge!
lemmas. This algorithm is quite intricate, but it is justLtac, and therefore it can (al-
most) be translated toRtac. The only hiccup is thatRtac does not come packaged

166

re
ify

le
m

m
as

En
ta
ilm

en
tS

ol
ve

ru
sin

g
Ta

ut
o

Po
st
-c
on

di
tio

n
C
al
cu

la
tio

n
R

ta
c
so

un
dn

es
s

genericRtac soundness tactic lemma proofs

generic lemma reification

solve side condition

Core lemmas

Si
m

pl
ee

xt
en

sio
n

Definition CSeq_lem : lemma. reify_lemma CSeq. Defined .
(* . . . *)

Definition solve_entailment : rtac :=
let leaf := THENS

[SIMPLIFY

, EAPPLY go_lower_raw_lem , BETA_REDUCE , INTRO_All

, REPEAT 200
(THENS [APPLY pull_embed_hyp_lem , INTRO_Hyp])

, TRY (THENS [EAPPLY pull_embed_last_lem , INTRO_Hyp])
, TRY (EAPPLY prove_Prop_lem)
, TRY (THENS [EAPPLY eq_trans_hyp_lem , TRY EASSUMPTION])
, INSTANTIATE , TRY prove_eq_tac]

in THENS

[SIMPLIFY

, EAPPLY embed_ltrue_lem

, EAPPLY entails_exL_lem , BETA_REDUCE , INTRO_All

, tauto_tac leaf].

Definition strongest_post : rtac :=
REC 100 (fun rec ⇒

let cont := THEN SIMPLFIY rec in

FIRST

[EAPPLY_THEN CAssign_seq_lem cont

, EAPPLY_THEN CSkip_seq_lem cont

, EAPPLY CAssign_tail_lem

, EAPPLY CSkip_tail_lem

, EAPPLY_THEN CIf_seq_lem cont

, EAPPLY CIf_tail_lem

, EAPPLY_THEN_SIDE CAssert_seq_lem solve_entailment cont

, THEN (EAPPLY CAssert_tail_lem) solve_entailment

, THEN (EAPPLY CPremise_tail_lem) solve_entailment

]) IDTAC.

Theorem strongest_post_sound : rtac_sound strongest_post .
Proof. unfold strongest_post ; rtac derive soundness ; use_lemmas .
Qed.

Figure 7.6: Rtac implementations of strongest post-condition calculation for
the core imperative language.

167

with a pre-built substitution tactic. In the spirit of rapid prototyping I specialized
a lemma to perform exactly the type of reasoning that we need. Using the lemma
(and a little bit of reduction that we have to code reflectively) solves the remainder
of the verification condition and gives us our final speedup (Figure 7.5).

From Ltac prototype to naïveRtac implementation we have achieved roughly
a 100x speedup. Further, this translation relied on a very minimal set of tactics,
essentially only EAPPLY , INTRO , and reduction. It did use custom procedures for
doing some rewriting by equalities, but procedures like those tend to be extremely
easy to verify. Further, we could imagine using Charge!-specific automation to
handle more of the details of Charge!’s embedded logics.

7.3.2 Simple Extensions: Conditionals & Quantified Code

Despite the 100x speedup, this reflective solution is not optimal. However, we
arrived at this solution with a minimal amount of effort over theLtac-based verifi-
cation. In addition to being easy to write (and prove), augmenting theRtac-based
solution to handlemore features is similarly easy to do. For example, we can easily
support conditionals and assertions by adding them to the list of lemmas to use
when computing the post-condition (see Figure 7.6). The four-line change to the
tactic and the slight tweak to the proof script is all we need.

We can also use the specification logic to support quantified code fragments
similar to the support that Bedrock has for code-pointers. To do this, we need
to augment our post-condition calculus with a specification logic. In most Coq
developments we would take Gallina as the specification logic and re-use Coq’s
context. However, if we wish to add support for general recursive functions we
will need a step-indexed specification logic. Making the specification logic explicit
changes the post-condition calculation to have the following form:

G ⊢
{
P
}
c
{
Q
}

Updating the post-condition calculator to handle these rules is trivial; we just need
to add the specification logic entailment to the front of the rule. For example, the

168

updated rule for sequencing is the following:

G ⊢
{
P
}
c1
{
R
}

G ⊢
{
R
}
c2
{
Q
}

C-Seq
G ⊢

{
P
}
c1; c2

{
Q
}

Using a program specification on the left of the turnstile comes from the laws
about intuitionistic logics. However, it is useful to phrase a rule and add it to the
post-condition calculation. A simple rule would be the following:

G ⊢ ⌊P ⊢ P′⌋
{
P′
}
c
{
Q′} ⊢ {

Q′}c′{Q}
C-Premise{

P′
}
c
{
Q′} ⊢ {

P
}
c; c′

{
Q
}

Theuse of ⌊−⌋ embeds the assertion logic entailment (between P and P′) into the
specification logic, which allows specification logic facts to be used to prove the
assertion.

7.3.3 Adding Memory and Pointers

At the offset, enriching the language with memory and pointers seems pretty sim-
ple. Once again we have to enrich the program logic, this time the assertion logic,
to include heaps, but all of the previous rules continue to work. Unlike the store,
it makes sense to specify the heap structure using Charge!’s separation logic type
class.

Adding the Hoare triples for read and write is also completely straightforward.

P ⊢ e 7→ val ∗ True C-Read{
P
}

x← [e]
{
∃X, P[x⇝ X] ∧ ⌊x = val[x⇝ X]⌋

}
P ⊢ ∃z, e1 7→ z ∗ Q

C-Write{
P
}
[e1]← e2

{
e1 7→ e2 ∗ Q

}
What is not so easy is automating the side conditions that arise during these rules.
In the classic style, these entailments would be solved by an entailment checker
like the one coded for Bedrock. It takes a little bit of pre-processing to handle the
rich entailments that come from the several layers of logics. Even after this, Mir-
rorShard’s separation logic solver has had difficulty solving the premise of the

169

write rule since it involves two different quantifiers, the implicit universal quanti-
fier over Q and the explicit existential quantifier over z. The algorithm seems to
need a heuristic for a very particular form of higher-order unification. An alter-
native approach would be to use Bedrock-style memory evaluators as custom
entailment checkers.

7.4 Future Avenues andOngoing Applications

Experiences developing reflective automation for the simple language were posi-
tive overall. For the relatively minimal work it took to translate the tactic, we im-
proved performance of the verification by more than 100 fold on large problem
instances. In addition, unlike most reflective procedures, the reflective procedure
thatwewrotewas generic enough to support after-the-fact extensionwith new lan-
guage constructs (or macros) as well as reasoning about higher-order code.

Even further extension such as separation logic, however, requires a bit more
work. It took only a few hours to perform post-condition computation for a lim-
ited set of read instructions, but the current limitations of the reflective entailment
checker make it insufficient to handle the premise of the C-Write rule. It is fea-
sible to code Bedrock’s memory evaluators as custom procedures in Mirror-
Core, and doing somight take some of the pressure off of the entailment checker,
though an alternativewould be to improve the entailment checker enough to solve
these enriched entailments.Rtac does not include all of the bells and whistles that
Ltac features, which prevents it from achieving a direct transformation whenmore
complex Ltac tactics such as subst are used. Despite this, using only EAPPLY and
the tactic combinators can get the user quite far.

Beyondmore combinators it would be interesting to consider generalizingRtac

to support arbitrary Charge! logics. The implementation ofRtac makes it fairly
easy to achievebasic functionality by replacing Propwith any ILogic . In its current
incarnation however,Rtac cannot support embedded logics because the definition
of the soundness of anRtac tactic is indexed by the implementation of the logic,
in this case Prop. Supporting embedded assertions would require this quantifica-

170

tion to be local, essentially requiring the proofs of procedures to hold for any in-
tuitionistic logic. This universal quantifier complicates semantic reasoning about
the particular logic that a tactic is working within, especially sinceRtac does not
support communicating this information between tactics.

Another, related feature, that would have been useful in the development of
these tactics is the ability to maintain external information, e.g. a data structure
trackingequalities and inequalities for a congruence closure algorithm. Bedrock’s
pure provers make good use of this type of information, butRtac’s maintenance of
multiple goals makes it somewhat difficult to ensure that locally justified informa-
tion does not escape.

7.4.1 Ongoing Work

Muchof thework in this chapter arose frombuilding automation forCharge!’s Java
formalism [29]. Java has a variety of complexities that do not occur in Imp, for ex-
ample pointers and functions. Like Imp’s symbolic execution, symbolic execution
in Java is built directly usingRtac.

Beyond Java, Kennedy and Benton [30] have developed a program logic for
assembly using separation logic and a previous version of Charge!. Extending the
work in this chapter to support these logics is likely to provide good automation
for the system.

Appel and collaborators have also begun applyingMirrorCore to theVerified
Software Toolchain project [17]. VST’s logical rules are significantly more com-
plex than Java’s because they work on a typed language rather than working on an
untyped core. By reasoning on a typed language, however, the verification results
can be connected to Leroy’s CompCert [105] compiler, which can guarantee that
high-level properties are maintained all the way down to the machine code.

171

8
Conclusions

Many authors [34, 46, 107] have shown computational reflection to be an effi-
cient way to build both large- and small-scale automation. This automation en-
ables users to reasonmore effectively and efficiently at higher levels of abstraction,
which are chosenby themrather thanfixedby the proof assistant. This dissertation
focused on the following thesis:

Thesis Open computational reflection in intensional type theories
can lower the cost of writing trustworthy, scalable, and customizable
automation.

In the past five chapters I justified this thesis through the development of two
frameworks, MirrorCore (Chapter 3) and MirrorShard (Chapter 5), that
encapsulate techniques for building compositional reflective procedures. These
frameworks focus on the problemof composition by building extensible represen-

172

tations and phrasing the soundness of procedures in extensible ways. By support-
ing extension, these frameworks take care of much of the repetitive work of build-
ing reflective syntax and providing a denotation function. In addition to the syn-
tax, these frameworks provide useful support for term-manipulation that would
otherwise have to be coded for each new problem. Procedures such as lifting and
lowering are essential building blocks and are necessary when reasoning about
binders. Higher-level procedures such as unification and β-reduction are useful
when building higher-level tasks such as applying generic lemmas.

The core of extensibility in these frameworks comes from leveraging proofs and
reasoning about them in deep ways. Definitional environment constraints (Sec-
tion 3.2.2) sacrifice some compositionality for ease of use and are a good way to
achieve one-off customization, for examplewhen reasoning about a particular, iso-
lated abstraction. Propositional environment constraints (Section 3.2.1) aremore
expressive but can be difficult to work with in axiom-free ways. Finally, truly ex-
tensional formulations (Section 3.2.1) provide a way to abstract further, offering
the ability to simulate dependency in anotherwise non-dependent representation.

I have also applied my frameworks to a number of case studies, both large and
small. The largest leveraged MirrorShard, the first-order predecessor of Mir-
rorCore, to do program verification for the Bedrock structured programming
library. That automation has been used to verify thousands of lines of low-level
code in a higher-order program logic. I also presented some results applyingMir-
rorCore to the Charge! library for embedded logics. While the application is
currently much smaller than the Bedrock automation, Rtac has enabled us to
make progress much more rapidly than we were able to in Bedrock. This expe-
rience demonstratesRtac’s usefulness for rapid prototyping of reflective automa-
tion.

8.1 Avenues for FutureWork

This thesis is a strong step in the direction of verification at scalewithin intensional
type theory. Many avenues exist to extend the work described here.

173

Are there better features for modular computational reflection?
Delaware’s work on modular meta-theory [71, 72] suggests an encoding of exten-
sible syntax within Coq’s type theory, but it is unclear whether this approach read-
ily adapts to effective computational reflection. In particular, the approach uses
Church encodings of data, which tend to be both more difficult to reason about
and have a higher computational burden than natively defined datatypes. Enrich-
ingCoq’s type system to support compositional arguments for strict postivitymay
make this approach feasible. While a step in the right direction, fully leveraging this
approach requires better support for reasoning up to isomorphism, since changing
the order of composition will result in different, but isomorphic, representations.

MiniAgda [6] alreadycontains support for this typeofpolymorphism, and trans-
lating some of the ideas into Agda could prove beneficial, especially since the state
of automation in Agda is not as mature as Coq’s still quite ad hoc approach.

Can intensionaltypetheorybeeffectivelycompiled? Someof the sug-
gestions inChapter 4 are due specifically to the lack of a good optimizing compiler
for Gallina. The absence of side effects provides a number of opportunities for
standard compiler techniques. In addition, the existence of proofs makes it possi-
ble to perform more domain-specific optimization in a sound way. For example,
proving a contextual equality between two code fragments allows the compiler to
substitute one for the other perhaps eliminating intermediate data structures or
enabling some compile-time reduction.

Other languages, e.g. Idris [44], already have compilers [43] for dependent
type theory, but they are not verified, and the need to include such a complicated
piece ofmachinery in the trusted computing base should give pause. One could ar-
gue that the computationalmechanisms such asCoq’s vm_compute , which compu-
tational reflection leverages heavily, are already too complicated to be completely
trustworthy. A verified compiler would open up the possibility of a formally ver-
ified kernel within Coq itself, providing a methodology to justify that the core is
faithfully implementing the type theory, in a similar manner to the achievements
of Davis with the Milawa theorem prover [66].

174

Related to compilation is the technique of heterogeneous refinement [60]. This
technique enables the semi-automatic construction of refinement proofs between
two implementations of a data type. Current examples focus on erasing proof
terms, but this technique could also be applied to refining the implementation of
abstractions such asmonads to use the imperative state of the underlyingmachine.
Performing this kind of reasoning would require even better ways to reason equa-
tionally about code, and computational reflection may be a key enabling technol-
ogy to scale this up to large developments.

Canwe build reflection into themeta-theoryofour logic? InChap-
ter 4, I touched on the reification problem which converts semantic terms into
syntactic values. Given the similarity betweenMirrorCore’s representation and
Coq’s own, itwouldbe interesting to explore running reflective procedures directly
on Coq’s internal term representation. With appropriate support, this would pro-
vide a way to do incremental reification, only reifying as much structure as the re-
flective procedure needs. From a proof-theory point of view, the minimally useful
representation corresponds to the most general proof.

Even from a completely practical point of view ignoring the proof objects en-
tirely, this is interesting because the size of the term affects how much compu-
tation is needed. For example, to determining whether two syntactic objects are
equal requires a linear scan over the twoobjects. Thus, if the twoobjects are simply
environment references to the same location, the comparison will return true im-
mediately. On the other hand, if the terms are actually large (but equal) syntactic
terms, the cost of comparing them can be substantially higher.

Making this notion of incremental observation fit nicely into a computational
model is not immediately obvious. What is needed is a notion of continuity for
functions that forbids them from returning different answers if given more obser-
vations. Some operations, such as equality and less than, respect this property,
but it is not immediately clear how this generalizes to other functions. Higher-
inductive types [148] could be a potential solution to this problem since they can
be used to enforce a weaker notion of equivalence on data.

175

Can we effectively build automation on top of a richer representa-
tion? I discussed a variety of attempts to achieve self-representation within in-
tensional type theory [53, 65, 115]. Theseworks focus on self-representation from
a predominantly theoretical point of view. In this dissertation, I focused on the
practical aspects of using self-representation to build automation, but I applied
my techniques to a language with only simple types. While parameterizing the
representation allowed us to achieve second-class polymorphism and type func-
tors, making this support first-class would simplify using the system in two ways.
First, it would make the syntax more closely mirror the native syntax that it repre-
sents thus lowering the cognitive overhead of a new representation. And second,
it would enable reasoning about problems that use more features of the logic in a
natural way, e.g. verifying polymorphic programs.

8.2 Final Thoughts

Proof assistants provide a rigorous framework for integrating automation and hu-
man insight to solve problems that neither can achieve alone. To be truly useful,
automationmust be customizable, to enable us to easilywritemore, compositional
to allow us to combine it to solve more complex problems, and efficient to enable
it to scale. My techniques enable all of these features together and are a step to-
wards understanding how to develop truly programmable and foundational proof
assistants for intensional type theory. This ability to rapidly build trustworthy,
domain-specific automation has the potential to fundamentally change the man-
ner and rate of invention and discovery in the years to come.

176

References

[1] ACL2Version6.5. 2014. URL http://www.cs.utexas.edu/users/moore/

acl2/.

[2] java.com: Java + You, 2014. URL http://www.java.com/en/.

[3] Coq ExtLib. 2014. URL https://github.com/coq-ext-lib/

coq-ext-lib.

[4] .NET Downloads, Developer Resources & Case Studies | Microsoft .NET
Framework, 2014. URL http://www.microsoft.com/net.

[5] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-flow
integrity. In Proceedings of the 12th ACMConference on Computer and Com-
munications Security, pages 340–353. ACM, 2005.

[6] Andreas Abel. MiniAgda: Integrating sized and dependent types. arXiv
preprint arXiv:1012.4896, 2010.

[7] Andreas Abel. Irrelevance in type theory with a heterogeneous equal-
ity judgement. In Foundations of Software Science and Computational
Structures, volume 6604 of Lecture Notes in Computer Science, pages 57–
71. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-19804-5. doi:
10.1007/978-3-642-19805-2_5. URL http://dx.doi.org/10.1007/
978-3-642-19805-2_5.

[8] AgdaDevelopment Team. TheAgda proof assistant referencemanual, ver-
sion 2.4.2. 2014.

[9] Stuart F Allen, Mark Bickford, Robert L Constable, Richard Eaton,
Christoph Kreitz, Lori Lorigo, and Evan Moran. Innovations in compu-
tational type theory using Nuprl. Journal of Applied Logic, 4(4):428–469,
2006.

177

http://www.cs.utexas.edu/users/moore/acl2/
http://www.cs.utexas.edu/users/moore/acl2/
http://www.java.com/en/
https://github.com/coq-ext-lib/coq-ext-lib
https://github.com/coq-ext-lib/coq-ext-lib
http://www.microsoft.com/net
http://dx.doi.org/10.1007/978-3-642-19805-2_5
http://dx.doi.org/10.1007/978-3-642-19805-2_5

[10] ThorstenAltenkirch andConorMcBride. Towards observational type the-
ory. Manuscript, available online, 2006.

[11] Thorsten Altenkirch, Peter Morris, Fredrik Nordvall Forsberg, and Anton
Setzer. A categorical semantics for inductive-inductive definitions. In An-
drea Corradini, Bartek Klin, and Corina Cîrstea, editors, Algebra and Coal-
gebra in Computer Science, volume 6859 of Lecture Notes in Computer Sci-
ence, pages 70–84. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-
22943-5. doi: 10.1007/978-3-642-22944-2_6. URL http://dx.doi.

org/10.1007/978-3-642-22944-2_6.

[12] Abhishek Anand, Mark Bickford, Robert L. Constable, and Vincent Rahli.
A Type Theory with Partial Equivalence Relations as Types. 2014.

[13] AndrewW.Appel. Tactics for separation logic, 2006. Draftof January 2006.

[14] AndrewW.Appel. Verified software toolchain. InProc. ESOP, volume6602
of LNCS, pages 1–17. Springer-Verlag, 2011.

[15] Andrew W. Appel. Verismall: Verified Smallfoot shape analysis. In Proc.
CPP, 2011.

[16] Andrew W Appel, Paul-André Mellies, Christopher D Richards, and
Jérôme Vouillon. A very modal model of a modern, major, general type
system. ACM SIGPLANNotices, 42(1):109–122, 2007.

[17] A.W.Appel, R.Dockins, A.Hobor, L. Beringer, J. Dodds, X. Leroy, S. Blazy,
and G. Stewart. Program Logics for Certified Compilers. Cambridge Univer-
sity Press, 2014. ISBN9781107048010. URL http://books.google.com/

books?id=ABkmAwAAQBAJ.

[18] Michael Armand,Germain Faure, BenjaminGrégoire, Chantal Keller, Lau-
rent Théry, and Benjamin Werner. A Modular Integration of SAT/SMT
Solvers to Coq through Proof Witnesses. In Certified Programs and
Proofs, volume 7086 of Lecture Notes in Computer Science, pages 135–
150. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-25378-2. doi:
10.1007/978-3-642-25379-9_12. URL http://dx.doi.org/10.1007/
978-3-642-25379-9_12.

[19] FranzBaader andKlausUSchulz. Unification in the unionof disjoint equa-
tional theories: Combining decision procedures. Journal of Symbolic Com-
putation, 21(2):211–243, 1996.

178

http://dx.doi.org/10.1007/978-3-642-22944-2_6
http://dx.doi.org/10.1007/978-3-642-22944-2_6
http://books.google.com/books?id=ABkmAwAAQBAJ
http://books.google.com/books?id=ABkmAwAAQBAJ
http://dx.doi.org/10.1007/978-3-642-25379-9_12
http://dx.doi.org/10.1007/978-3-642-25379-9_12

[20] David F Bacon, Perry Cheng, and VT Rajan. A real-time garbage collector
with low overhead and consistent utilization. ACM SIGPLAN Notices, 38
(1):285–298, 2003.

[21] Bruno Baras. The dark side ofLtac. June 2009.

[22] Mike Barnett, Bor-Yuh Chang, Robert DeLine, Bart Jacobs, and K. Leino.
Boogie: A modular reusable verifier for object-oriented programs. In For-
mal Methods for Components and Objects, volume 4111 of Lecture Notes
in Computer Science, pages 364–387. Springer Berlin / Heidelberg, 2006.
ISBN 978-3-540-36749-9. doi: 10.1007/11804192_17. URL http:

//dx.doi.org/10.1007/11804192_17.

[23] Bruno Barras and Benjamin Werner. Coq in coq. Technical report, 1997.

[24] Clark Barrett and Cesare Tinelli. CVC3. In Proc. CAV, volume 4590 of
LNCS, pages 298–302. Springer Berlin / Heidelberg, 2007. ISBN 978-3-
540-73367-6. doi: 10.1007/978-3-540-73368-3_34. URL http://dx.

doi.org/10.1007/978-3-540-73368-3_34.

[25] Eli Barzilay. Implementing Reflection in Nuprl. PhD thesis, Cornell Univer-
sity, Ithaca, NY, USA, 2005. AAI3195788.

[26] Eli Barzilay, Stuart Allen, and Robert Constable. Practical reflection in
nuprl. In Short paper presented at 18th Annual IEEE Symposium on Logic
in Computer Science, June, pages 22–25, 2003.

[27] Andrej Bauer. Andromeda, 2014. URL https://github.com/

andrejbauer/andromeda.

[28] Jesper Bengtson, Jonas Braband Jensen, Filip Sieczkowski, and Lars
Birkedal. Verifying object-oriented programswith higher-order separation
logic in coq. InMarko van Eekelen, HermanGeuvers, Julien Schmaltz, and
FreekWiedijk, editors, InteractiveTheorem Proving, volume 6898 of Lecture
Notes in Computer Science, pages 22–38. Springer Berlin Heidelberg, 2011.
ISBN 978-3-642-22862-9. doi: 10.1007/978-3-642-22863-6_5. URL
http://dx.doi.org/10.1007/978-3-642-22863-6_5.

[29] Jesper Bengtson, Jonas Braband Jensen, and Lars Birkedal. Charge! – a
framework for higher-order separation logic in Coq. In Interactive The-
orem Proving, pages 315–331, 2012. ISBN 978-3-642-32346-1. doi:

179

http://dx.doi.org/10.1007/11804192_17
http://dx.doi.org/10.1007/11804192_17
http://dx.doi.org/10.1007/978-3-540-73368-3_34
http://dx.doi.org/10.1007/978-3-540-73368-3_34
https://github.com/andrejbauer/andromeda
https://github.com/andrejbauer/andromeda
http://dx.doi.org/10.1007/978-3-642-22863-6_5

10.1007/978-3-642-32347-8_21. URL http://dx.doi.org/10.1007/
978-3-642-32347-8_21.

[30] Nick Benton, Jonas B. Jensen, andAndrewKennedy. High-level separation
logic for low-level code. In Proc. POPL, pages 301–314. ACM, 2013.

[31] Josh Berdine, CristianoCalcagno, and PeterW.O’Hearn. Smallfoot: Mod-
ular automatic assertion checking with separation logic. In Proc. FMCO,
FMCO’05, pages 115–137, Berlin, Heidelberg, 2006. Springer-Verlag.
ISBN 3-540-36749-7, 978-3-540-36749-9. doi: 10.1007/11804192_6.
URL http://dx.doi.org/10.1007/11804192_6.

[32] Josh Berdine, Byron Cook, and Samin Ishtiaq. SLAyer: Memory safety for
systems-level code. In Proc. CAV, 2011.

[33] Yves Bertot and Pierre Casteran. Coq’Art: The Calculus of Inductive Con-
structions. 2004. ISBN 3-540-20854-2.

[34] Frederic Besson. Fast reflexive arithmetic tactics the linear case and be-
yond. In Types for Proofs and Programs, volume 4502 of Lecture Notes in
Computer Science, pages 48–62. Springer Berlin Heidelberg, 2007. ISBN
978-3-540-74463-4. doi: 10.1007/978-3-540-74464-1_4. URL http:

//dx.doi.org/10.1007/978-3-540-74464-1_4.

[35] Frédéric Besson, Pierre-EmmanuelCornilleau, andDavid Pichardie. Mod-
ular SMT proofs for fast reflexive checking inside Coq. In Certified Pro-
grams and Proofs, pages 151–166. Springer Berlin Heidelberg, 2011. ISBN
978-3-642-25378-2. doi: 10.1007/978-3-642-25379-9_13. URL http:

//dx.doi.org/10.1007/978-3-642-25379-9_13.

[36] Francois Bobot, Jean-Christophe Filliatre, Claude Marche, and Andrei
Paskevich. Why3: Shepherd your herd of provers. In BOOGIE’11, 2011.

[37] Mathieu Boespflug, Maxime Dénès, and Benjamin Grégoire. Full reduc-
tion at full throttle. Lecture notes in computer science, 2011. doi: 10.1007/
978-3-642-25379-9_26. URL https://hal.inria.fr/hal-00650940.

[38] Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew Parkin-
son. Permission accounting in separation logic. In Proceedings of the 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’05, pages 259–270,NewYork, NY,USA, 2005. ACM. ISBN

180

http://dx.doi.org/10.1007/978-3-642-32347-8_21
http://dx.doi.org/10.1007/978-3-642-32347-8_21
http://dx.doi.org/10.1007/11804192_6
http://dx.doi.org/10.1007/978-3-540-74464-1_4
http://dx.doi.org/10.1007/978-3-540-74464-1_4
http://dx.doi.org/10.1007/978-3-642-25379-9_13
http://dx.doi.org/10.1007/978-3-642-25379-9_13
https://hal.inria.fr/hal-00650940

1-58113-830-X. doi: 10.1145/1040305.1040327. URL http://doi.acm.

org/10.1145/1040305.1040327.

[39] Ana Bove and Venanzio Capretta. Nested general recursion and partiality
in type theory. In Richard J. Boulton and Paul B. Jackson, editors,Theorem
Proving in Higher Order Logics, volume 2152 of Lecture Notes in Computer
Science, pages 121–125. Springer Berlin Heidelberg, 2001. ISBN 978-3-
540-42525-0. doi: 10.1007/3-540-44755-5_10. URL http://dx.doi.

org/10.1007/3-540-44755-5_10.

[40] Bob Boyer. Rewrite rule compilation. Technical Report AI-194-86-P,
Micro-electronics and Computer Technology Corporation (MCC), June
1986.

[41] John Boyland. Checking interference with fractional permissions. In
Static Analysis, volume 2694 of Lecture Notes in Computer Science, pages
1075–1075. Springer Berlin / Heidelberg, 2003. ISBN 978-3-540-40325-
8. doi: 10.1007/3-540-44898-5_4. URL http://dx.doi.org/10.1007/
3-540-44898-5_4.

[42] John Tang Boyland. Semantics of fractional permissions with nesting.
ACM Trans. Program. Lang. Syst., 32:22:1–22:33, August 2010. ISSN
0164-0925. doi: http://doi.acm.org/10.1145/1749608.1749611. URL
http://doi.acm.org/10.1145/1749608.1749611.

[43] Edwin Brady. Epic—a library for generating compilers. In Ricardo Peña
and Rex Page, editors, Trends in Functional Programming, volume 7193 of
LectureNotes inComputer Science, pages33–48. SpringerBerlinHeidelberg,
2012. ISBN 978-3-642-32036-1. doi: 10.1007/978-3-642-32037-8_3.
URL http://dx.doi.org/10.1007/978-3-642-32037-8_3.

[44] Edwin Brady. Idris, a general-purpose dependently typed program-
ming language: Design and implementation. Journal of Functional Pro-
gramming, 23:552–593, 9 2013. ISSN 1469-7653. doi: 10.1017/
S095679681300018X. URL http://journals.cambridge.org/article_

S095679681300018X.

[45] Thomas Braibant. evm_compute. 2013. URL https://github.com/

braibant/evm_compute.

181

http://doi.acm.org/10.1145/1040305.1040327
http://doi.acm.org/10.1145/1040305.1040327
http://dx.doi.org/10.1007/3-540-44755-5_10
http://dx.doi.org/10.1007/3-540-44755-5_10
http://dx.doi.org/10.1007/3-540-44898-5_4
http://dx.doi.org/10.1007/3-540-44898-5_4
http://doi.acm.org/10.1145/1749608.1749611
http://dx.doi.org/10.1007/978-3-642-32037-8_3
http://journals.cambridge.org/article_S095679681300018X
http://journals.cambridge.org/article_S095679681300018X
https://github.com/braibant/evm_compute
https://github.com/braibant/evm_compute

[46] Thomas Braibant and Damien Pous. Tactics for Reasoning Modulo AC in
Coq. In Certified Proofs and Programs, pages 167–182, 2011.

[47] Matt Brown and Jens Palsberg. Self-Representation in Girard’s System U.
In Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’15, pages 471–484,NewYork,
NY,USA, 2015. ACM. ISBN978-1-4503-3300-9. doi: 10.1145/2676726.
2676988. URL http://doi.acm.org/10.1145/2676726.2676988.

[48] N. G. De Bruijn. Telescopic mappings in typed lambda calculus. Informa-
tion and Computation, 91:189–204, 1991.

[49] Cristiano Calcagno, Dino Distefano, Peter O’Hearn, and Hongseok Yang.
Compositional shape analysis by means of bi-abduction. In Proc. POPL,
pages 289–300. ACM, 2009.

[50] Chris Casinghino, Vilhelm Sjöberg, and Stephanie Weirich. Combin-
ing proofs and programs in a dependently typed language. In Proceed-
ings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’14, pages 33–45, New York, NY, USA, 2014.
ACM. ISBN 978-1-4503-2544-8. doi: 10.1145/2535838.2535883. URL
http://doi.acm.org/10.1145/2535838.2535883.

[51] Miguel Castro, Manuel Costa, Jean-Philippe Martin, Marcus Peinado,
Periklis Akritidis, Austin Donnelly, Paul Barham, and Richard Black. Fast
byte-granularity software fault isolation. InProceedings of theACMSIGOPS
22nd Symposium onOperating Systems Principles, pages 45–58. ACM, 2009.

[52] Bor-YuhEvanChang andXavier Rival. Relational inductive shape analysis.
In Proc. POPL, pages 247–260. ACM, 2008.

[53] James Chapman. Type theory should eat itself. Electronic NotesTheoretical
Computer Science, 228:21–36, January 2009. ISSN 1571-0661. doi: 10.
1016/j.entcs.2008.12.114. URL http://dx.doi.org/10.1016/j.entcs.
2008.12.114.

[54] Adam Chlipala. Mostly-automated verification of low-level programs in
computational separation logic. InProceedings of the 32NdACMSIGPLAN
Conference on Programming LanguageDesign and Implementation, PLDI ’11,
pages234–245,NewYork,NY,USA,2011.ACM. ISBN978-1-4503-0663-
8. doi: 10.1145/1993498.1993526. URL http://doi.acm.org/10.1145/
1993498.1993526.

182

http://doi.acm.org/10.1145/2676726.2676988
http://doi.acm.org/10.1145/2535838.2535883
http://dx.doi.org/10.1016/j.entcs.2008.12.114
http://dx.doi.org/10.1016/j.entcs.2008.12.114
http://doi.acm.org/10.1145/1993498.1993526
http://doi.acm.org/10.1145/1993498.1993526

[55] Adam Chlipala. The Bedrock Structured Programming System: Combin-
ing Generative Metaprogramming and Hoare Logic in an Extensible Pro-
gram Verifier. In Proceedings of the 18th ACM SIGPLAN International Con-
ference on Functional Programming, ICFP ’13, pages 391–402, New York,
NY,USA, 2013. ACM. ISBN978-1-4503-2326-0. doi: 10.1145/2500365.
2500592. URL http://doi.acm.org/10.1145/2500365.2500592.

[56] Adam Chlipala. Certified Programming with Dependent Types. MIT Press,
December 2013. ISBN 9780262026659.

[57] Adam Chlipala. From network interface to multithreaded web applica-
tions: A case study in modular program verification. In Proceedings of
the 42NdAnnual ACMSIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’15, pages 609–622, New York, NY, USA,
2015. ACM. ISBN 978-1-4503-3300-9. doi: 10.1145/2676726.2677003.
URL http://doi.acm.org/10.1145/2676726.2677003.

[58] Adam Chlipala, Gregory Malecha, Greg Morrisett, Avraham Shinnar, and
Ryan Wisnesky. Effective Interactive Proofs for Higher-order Imperative
Programs. In Proceedings of the 14th ACM SIGPLAN International Confer-
ence on Functional Programming, ICFP ’09, pages 79–90, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-332-7. doi: 10.1145/1596550.
1596565. URL http://doi.acm.org/10.1145/1596550.1596565.

[59] Guillaume Claret, Lourdes Del Carmen Gonzalez Huesca, Yann Régis-
Gianas, and Beta Ziliani. Lightweight proof by reflection using a poste-
riori simulation of effectful computation. In Interactive Theorem Proving,
Rennes, France, July 2013. URL http://hal.inria.fr/hal-00870110.

[60] Cyril Cohen,MaximeDénès, and AndersMörtberg. Refinements for free!
InCertified Proofs and Progams, 2013. URL http://www.maximedenes.fr/

download/refinements.pdf.

[61] Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach,
Michał Moskal, Thomas Santen, Wolfram Schulte, and Stephan Tobies.
VCC: A practical system for verifying concurrent C. In Proc. TPHOLs,
2009.

[62] Coq Development Team. The Coq proof assistant reference manual, ver-
sion 8.4. 2012. URL http://coq.inria.fr/distrib/V8.4/refman/.

183

http://doi.acm.org/10.1145/2500365.2500592
http://doi.acm.org/10.1145/2676726.2677003
http://doi.acm.org/10.1145/1596550.1596565
http://hal.inria.fr/hal-00870110
http://www.maximedenes.fr/download/refinements.pdf
http://www.maximedenes.fr/download/refinements.pdf
http://coq.inria.fr/distrib/V8.4/refman/

[63] Thierry Coquand, Jean Gallier, and Le Chesnay Cedex. A proof of strong
normalization for the theory of constructions using a kripke-like interpre-
tation. In In Workshop on Logical Frameworks–Preliminary Proceedings,
1990.

[64] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction To
Algorithms. MIT Press, 2001. ISBN 9780262032933. URL https:

//books.google.com/books?id=NLngYyWFl_YC.

[65] Nils Anders Danielsson. A formalisation of a dependently typed lan-
guage as an inductive-recursive family. In Types for Proofs and Pro-
grams, volume 4502 of Lecture Notes in Computer Science, pages 93–109.
Springer Berlin Heidelberg, 2007. ISBN 978-3-540-74463-4. doi:
10.1007/978-3-540-74464-1_7. URL http://dx.doi.org/10.1007/
978-3-540-74464-1_7.

[66] Jared Curran Davis. A self-verifying theorem prover. PhD thesis, University
of Texas at Austin, December 2009.

[67] Nicolas G. de Bruijn. Lambda-calculus notation with nameless dummies:
a tool for automatic formal manipulation with application to the Church-
Rosser theorem. Indag. Math., 34(5):381–392, 1972.

[68] Leonardo de Moura and Nikolaj Bjørner. Z3: An Efficient SMT
Solver. In Tools and Algorithms for the Construction and Analysis of Sys-
tems, volume 4963 of Lecture Notes in Computer Science, pages 337–340.
Springer Berlin / Heidelberg, 2008. ISBN 978-3-540-78799-0. doi:
10.1007/978-3-540-78800-3_24. URL http://dx.doi.org/10.1007/
978-3-540-78800-3_24.

[69] DavidDelahaye. A tactic language for the system coq. InLogic for Program-
ming and Automated Reasoning, pages 85–95. Springer, 2000.

[70] Benjamin Delaware. Feature Modularity in Mechanized Reasoning. PhD
thesis, The University of Texas at Austin, December 2013.

[71] Benjamin Delaware, Bruno C. d. S. Oliveira, and Tom Schrijvers. Meta-
theory à la Carte. In Proceedings of the 40th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’13,
pages207–218,NewYork,NY,USA,2013.ACM. ISBN978-1-4503-1832-
7. doi: 10.1145/2429069.2429094. URL http://doi.acm.org/10.1145/
2429069.2429094.

184

https://books.google.com/books?id=NLngYyWFl_YC
https://books.google.com/books?id=NLngYyWFl_YC
http://dx.doi.org/10.1007/978-3-540-74464-1_7
http://dx.doi.org/10.1007/978-3-540-74464-1_7
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://doi.acm.org/10.1145/2429069.2429094
http://doi.acm.org/10.1145/2429069.2429094

[72] Benjamin Delaware, Steven Keuchel, Tom Schrijvers, and Bruno C.d.S.
Oliveira. Modular monadic meta-theory. In Proceedings of the 18th ACM
SIGPLAN International Conference on Functional Programming, ICFP ’13,
pages319–330,NewYork,NY,USA,2013.ACM. ISBN978-1-4503-2326-
0. doi: 10.1145/2500365.2500587. URL http://doi.acm.org/10.1145/
2500365.2500587.

[73] Benjamin Delaware, Clément Pit-Claudel, Jason Gross, and Adam Chli-
pala. Fiat: Deductive Synthesis of AbstractDataTypes in a ProofAssistant.
In Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’15, pages 689–700,NewYork,
NY,USA, 2015. ACM. ISBN978-1-4503-3300-9. doi: 10.1145/2676726.
2677006. URL http://doi.acm.org/10.1145/2676726.2677006.

[74] Dominique Devriese and Frank Piessens. Typed syntactic meta-
programming. InProceedings of the 18thACMSIGPLAN International Con-
ference on Functional Programming, ICFP ’13, pages 73–86, New York, NY,
USA, 2013. ACM. ISBN 978-1-4503-2326-0. doi: 10.1145/2500365.
2500575. URL http://doi.acm.org/10.1145/2500365.2500575.

[75] Robert Dockins, Aquinas Hobor, and Andrew W. Appel. A fresh look at
separation algebras and share accounting. In The 7th Asian Symposium
on Programming Languages and Systems, pages 161–177. Springer ENTCS,
2009. URL http://msl.cs.princeton.edu/fresh-sa.pdf.

[76] BrunoDutertre andLeonardoDeMoura.TheYicesSMTSolver. Technical
report, SRI International, 2006.

[77] Peter Dybjer. A general formulation of simultaneous inductive-recursive
definitions in type theory. Journal of Symbolic Logic, 65:2000, 1998.

[78] Maxime Dénès, Catalin Hritcu, Leonidas Lampropoulos, Zoe
Paraskevopoulou, and Benjamin C Pierce. QuickChick: Property-
Based Testing for Coq. July 2014.

[79] Ulfar Erlingsson, Martín Abadi, Michael Vrable, Mihai Budiu, and
George C Necula. XFI: Software guards for system address spaces. In Pro-
ceedings of the 7th symposium on Operating Systems Design and Implementa-
tion, pages 75–88. USENIX Association, 2006.

185

http://doi.acm.org/10.1145/2500365.2500587
http://doi.acm.org/10.1145/2500365.2500587
http://doi.acm.org/10.1145/2676726.2677006
http://doi.acm.org/10.1145/2500365.2500575
http://msl.cs.princeton.edu/fresh-sa.pdf

[80] François Garillot and Benjamin Werner. Simple types in type theory:
Deep and shallow encodings. In Theorem Proving in Higher Order Log-
ics, volume 4732 of Lecture Notes in Computer Science, pages 368–382.
Springer Berlin Heidelberg, 2007. ISBN 978-3-540-74590-7. doi:
10.1007/978-3-540-74591-4_27. URL http://dx.doi.org/10.1007/
978-3-540-74591-4_27.

[81] Georges Gonthier, Assia Mahboubi, and Enrico Tassi. A Small Scale Re-
flection Extension for the Coq system. Rapport de recherche RR-6455,
INRIA, 2008. URL http://hal.inria.fr/inria-00258384.

[82] Georges Gonthier, Beta Ziliani, Aleksandar Nanevski, and Derek Dreyer.
How to make ad hoc proof automation less ad hoc. In Proceedings of the
16th ACM SIGPLAN International Conference on Functional Programming,
ICFP ’11, pages 163–175, New York, NY, USA, 2011. ACM. ISBN 978-
1-4503-0865-6. doi: 10.1145/2034773.2034798. URL http://doi.acm.

org/10.1145/2034773.2034798.

[83] Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril
Cohen, François Garillot, Stéphane Le Roux, Assia Mahboubi, Russell
O’Connor, SidiOuldBiha, IoanaPasca, LaurenceRideau, Alexey Solovyev,
Enrico Tassi, and Laurent Théry. A Machine-Checked Proof of the Odd
Order Theorem. In ITP 2013, 4th Conference on Interactive Theorem
Proving, volume 7998 of LNCS, pages 163–179, Rennes, France, 2013.
Springer. doi: 10.1007/978-3-642-39634-2_14. URL http://hal.

inria.fr/hal-00816699.

[84] Benjamin Grégoire and Xavier Leroy. A compiled implementation of
strong reduction. In Proceedings of the Seventh ACM SIGPLAN Interna-
tional Conference on Functional Programming, ICFP ’02, pages 235–246,
New York, NY, USA, 2002. ACM. ISBN 1-58113-487-8. doi: 10.1145/
581478.581501. URL http://doi.acm.org/10.1145/581478.581501.

[85] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiong-
nan (Newman) Wu, Shu-Chun Weng, Haozhong Zhang, and Yu Guo.
Deep specifications and certified abstraction layers. In Proceedings of the
42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’15, pages 595–608, New York, NY, USA,
2015. ACM. ISBN 978-1-4503-3300-9. doi: 10.1145/2676726.2676975.
URL http://doi.acm.org/10.1145/2676726.2676975.

186

http://dx.doi.org/10.1007/978-3-540-74591-4_27
http://dx.doi.org/10.1007/978-3-540-74591-4_27
http://hal.inria.fr/inria-00258384
http://doi.acm.org/10.1145/2034773.2034798
http://doi.acm.org/10.1145/2034773.2034798
http://hal.inria.fr/hal-00816699
http://hal.inria.fr/hal-00816699
http://doi.acm.org/10.1145/581478.581501
http://doi.acm.org/10.1145/2676726.2676975

[86] R. Harper. Practical Foundations for Programming Languages. Practical
Foundations for Programming Languages. Cambridge University Press,
2012. ISBN 9781107029576. URL https://books.google.com/books?

id=YhZ2yMHwLm0C.

[87] Claudio Hermida, Uday S. Reddy, and Edmund P. Robinson. Logical re-
lations and parametricity - a reynolds programme for category theory and
programming languages. ElectronicNotesTheoretical Computer Science, 303:
149–180, March 2014. ISSN 1571-0661. doi: 10.1016/j.entcs.2014.02.
008. URL http://dx.doi.org/10.1016/j.entcs.2014.02.008.

[88] HOL4 Development Team. HOL4. 2014. URL http://hol.

sourceforge.net/.

[89] Zhé Hóu, Ranald Clouston, Rajeev Goré, and Alwen Tiu. Proof search
for propositional abstract separation logics via labelled sequents. In Pro-
ceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’14, pages 465–476, New York, NY, USA,
2014. ACM. ISBN 978-1-4503-2544-8. doi: 10.1145/2535838.2535864.
URL http://doi.acm.org/10.1145/2535838.2535864.

[90] Gérard Huet. The zipper. Journal of Functional Programming, 7(05):549–
554, 1997.

[91] Gérard Huet and Bernard Lang. Proving and applying program trans-
formations expressed with second-order patterns. Acta Informatica, 11
(1):31–55, 1978. ISSN 0001-5903. doi: 10.1007/BF00264598. URL
http://dx.doi.org/10.1007/BF00264598.

[92] Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Pen-
ninckx, and Frank Piessens. Verifast: A powerful, sound, predictable, fast
verifier for c and java. In Proceedings of theThird International Conference on
NASA Formal Methods, NFM’11, pages 41–55, Berlin, Heidelberg, 2011.
Springer-Verlag. ISBN 978-3-642-20397-8. URL http://dl.acm.org/

citation.cfm?id=1986308.1986314.

[93] Mark Janeba.ThePentiumProblem. 2011. URL http://www.willamette.

edu/~mjaneba/pentprob.html.

[94] Wojciech Jedynak. Operational Semantics of Ltac. Master’s thesis, Uniw-
ersytet Wrocławski, the Netherlands, 2013.

187

https://books.google.com/books?id=YhZ2yMHwLm0C
https://books.google.com/books?id=YhZ2yMHwLm0C
http://dx.doi.org/10.1016/j.entcs.2014.02.008
http://hol.sourceforge.net/
http://hol.sourceforge.net/
http://doi.acm.org/10.1145/2535838.2535864
http://dx.doi.org/10.1007/BF00264598
http://dl.acm.org/citation.cfm?id=1986308.1986314
http://dl.acm.org/citation.cfm?id=1986308.1986314
http://www.willamette.edu/~mjaneba/pentprob.html
http://www.willamette.edu/~mjaneba/pentprob.html

[95] Jonas Braband Jensen and Lars Birkedal. Fictional separation logic. In
Programming Languages and Systems, volume 7211 of Lecture Notes in Com-
puter Science, pages 377–396. Springer Berlin Heidelberg, 2012. ISBN
978-3-642-28868-5. doi: 10.1007/978-3-642-28869-2_19. URL http:

//dx.doi.org/10.1007/978-3-642-28869-2_19.

[96] Jacques-Henri Jourdan, VincentLaporte, SandrineBlazy, XavierLeroy, and
David Pichardie. A Formally-Verified C Static Analyzer. In Proceedings
of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’15, pages 247–259, New York, NY, USA,
2015. ACM. ISBN 978-1-4503-3300-9. doi: 10.1145/2676726.2676966.
URL http://doi.acm.org/10.1145/2676726.2676966.

[97] Andrew Kennedy, Nick Benton, Jonas B. Jensen, and Pierre-Evariste Da-
gand. Coq: The world’s best macro assembler? In Proceedings of the 15th
Symposium onPrinciples and Practice ofDeclarative Programming, PPDP ’13,
pages 13–24, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2154-
9. doi: 10.1145/2505879.2505897. URL http://doi.acm.org/10.1145/
2505879.2505897.

[98] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolan-
ski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood.
seL4: Formal verification of an OS kernel. In Proc. SOSP, pages 207–220.
ACM, 2009.

[99] Pepijn Kokke and Wouter Swierstra. Auto in Agda. Under submission.
URL https://github.com/pepijnkokke/AutoInAgda.

[100] Soonho Kong and Leonardo de Moura. L∃∀N Theorem Prover. URL
http://leanprover.net/.

[101] Neel R Krishnaswami, Lars Birkedal, and Jonathan Aldrich. Verifying
event-driven programs using ramified frame properties. In Proceedings of
the 5th ACM SIGPLAN Workshop on Types in Language Design and Imple-
mentation, pages 63–76. ACM, 2010.

[102] Wonyeol Lee and Sungwoo Park. A proof system for separation logic with
magic wand. In Proceedings of the 41st ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL ’14, pages 477–490,
New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2544-8. doi: 10.

188

http://dx.doi.org/10.1007/978-3-642-28869-2_19
http://dx.doi.org/10.1007/978-3-642-28869-2_19
http://doi.acm.org/10.1145/2676726.2676966
http://doi.acm.org/10.1145/2505879.2505897
http://doi.acm.org/10.1145/2505879.2505897
https://github.com/pepijnkokke/AutoInAgda
http://leanprover.net/

1145/2535838.2535871. URLhttp://doi.acm.org/10.1145/2535838.
2535871.

[103] Dirk Leinenbach and Thomas Santen. Verifying the Microsoft Hyper-V
Hypervisor with VCC. In FM 2009: Formal Methods, volume 5850 of
LNCS, pages 806–809. Springer Berlin / Heidelberg, 2009. ISBN 978-
3-642-05088-6. doi: 10.1007/978-3-642-05089-3_51. URL http://dx.

doi.org/10.1007/978-3-642-05089-3_51.

[104] K. Rustan M. Leino. Dafny: an automatic program verifier for functional
correctness. In Proceedings of the 16th International Conference on Logic
for Programming, Artificial Intelligence, andReasoning, LPAR’10, pages 348–
370, Berlin, Heidelberg, 2010. Springer-Verlag. ISBN3-642-17510-4, 978-
3-642-17510-7. URL http://dl.acm.org/citation.cfm?id=1939141.
1939161.

[105] Xavier Leroy. Formal certification of a compiler back-end, or: program-
ming a compiler with a proof assistant. In 33rd ACM symposium on Prin-
ciples of Programming Languages, pages 42–54. ACM Press, 2006. URL
http://gallium.inria.fr/~xleroy/publi/compiler-certif.pdf.

[106] S. Lescuyer andS.Conchon. ImprovingCoqpropositional reasoning using
a lazy CNF conversion scheme. In Proc. FroCos, 2009.

[107] Stéphane Lescuyer. Formalisation et développement d’une tactique réflexive
pour la démonstration automatique en Coq. Thèse de doctorat, Université
Paris-Sud, January 2011.

[108] Gregory Malecha. MirrorCore. The MirrorCore repository. URL
https://github.com/gmalecha/mirror-core.

[109] Gregory Malecha. TemplateCoq. 2014. URL https://github.com/

gmalecha/template-coq.

[110] Gregory Malecha, Greg Morrisett, Avraham Shinnar, and Ryan Wisnesky.
Toward a verified relational database management system. In Proceedings
of the 37th annual ACMSIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, POPL ’10, pages 237–248,NewYork,NY,USA, 2010.
ACM. ISBN 978-1-60558-479-9. doi: http://doi.acm.org.ezp-prod1.
hul.harvard.edu/10.1145/1706299.1706329. URLhttp://doi.acm.org.

ezp-prod1.hul.harvard.edu/10.1145/1706299.1706329.

189

http://doi.acm.org/10.1145/2535838.2535871
http://doi.acm.org/10.1145/2535838.2535871
http://dx.doi.org/10.1007/978-3-642-05089-3_51
http://dx.doi.org/10.1007/978-3-642-05089-3_51
http://dl.acm.org/citation.cfm?id=1939141.1939161
http://dl.acm.org/citation.cfm?id=1939141.1939161
http://gallium.inria.fr/~xleroy/publi/compiler-certif.pdf
https://github.com/gmalecha/mirror-core
https://github.com/gmalecha/template-coq
https://github.com/gmalecha/template-coq
http://doi.acm.org.ezp-prod1.hul.harvard.edu/10.1145/1706299.1706329
http://doi.acm.org.ezp-prod1.hul.harvard.edu/10.1145/1706299.1706329

[111] Gregory Malecha, Adam Chlipala, and Thomas Braibant. Compositional
computational reflection. In InteractiveTheorem Proving, 2014.

[112] Nicolas Marti and Reynald Affeldt. A certified verifier for a fragment of
separation logic. Computer Software, 25(3):135–147, 2008.

[113] Conor McBride. First-order unification by structural recursion. Journal of
Functional Programming, 13:1061–1075, 11 2003. ISSN 1469-7653. doi:
10.1017/S0956796803004957. URL http://journals.cambridge.org/

article_S0956796803004957.

[114] Conor McBride. Epigram: Practical programming with dependent types.
In Advanced Functional Programming, pages 130–170. Springer, 2005.

[115] Conor McBride. Outrageous but meaningful coincidences: Dependent
type-safe syntax and evaluation. In Proceedings of the 6th ACM SIGPLAN
Workshop on Generic Programming, WGP ’10, pages 1–12, New York, NY,
USA, 2010. ACM. ISBN 978-1-4503-0251-7. doi: 10.1145/1863495.
1863497. URL http://doi.acm.org/10.1145/1863495.1863497.

[116] Conor Mcbride and Ross Paterson. Applicative programming with ef-
fects. J. Funct. Program., 18(1):1–13, January 2008. ISSN 0956-7968.
doi: 10.1017/S0956796807006326. URL http://dx.doi.org/10.1017/
S0956796807006326.

[117] AndrewMcCreight. Practical tactics for separation logic. InProc. TPHOLs,
2009.

[118] S.McLaughlin, C. Barrett, andY.Ge. Cooperating theoremprovers: A case
study combining HOL-Light and CVC Lite. In Proc. PDPAR, 2005.

[119] Dale Miller. Unification under a mixed prefix. Journal of Symbolic
Computation, 14(4):321–358, October 1992. ISSN 0747-7171. doi:
10.1016/0747-7171(92)90011-R. URL http://dx.doi.org/10.1016/
0747-7171(92)90011-R.

[120] Magnus O Myreen and Jared Davis. A verified runtime for a verified theo-
rem prover. In InteractiveTheorem Proving, pages 265–280. Springer, 2011.

[121] Magnus O Myreen and Jared Davis. The reflective Milawa theorem prover
is sound. 2012.

190

http://journals.cambridge.org/article_S0956796803004957
http://journals.cambridge.org/article_S0956796803004957
http://doi.acm.org/10.1145/1863495.1863497
http://dx.doi.org/10.1017/S0956796807006326
http://dx.doi.org/10.1017/S0956796807006326
http://dx.doi.org/10.1016/0747-7171(92)90011-R
http://dx.doi.org/10.1016/0747-7171(92)90011-R

[122] Aleksandar Nanevski, Viktor Vafeiadis, and Josh Berdine. Structuring the
verification of heap-manipulating programs. In Proc. POPL, 2010.

[123] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL
— A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS.
Springer, 2002.

[124] Duckki Oe and Adam Chlipala. A verified garbage colletor for bedrock.
2013.

[125] Duckki Oe, Aaron Stump, Corey Oliver, and Kevin Clancy. Versat: A Ver-
ified Modern SAT Solver. In Proc. VMCAI, 2012.

[126] S. Owre, J. M. Rushby, , and N. Shankar. PVS: A prototype verification
system. In Deepak Kapur, editor, 11th International Conference on Auto-
mated Deduction (CADE), volume 607 of Lecture Notes in Artificial Intel-
ligence, pages 748–752, Saratoga, NY, jun 1992. Springer-Verlag. URL
http://www.csl.sri.com/papers/cade92-pvs/.

[127] Matthew Parkinson. The next 700 separation logics. In Verified Software:
Theories, Tools, Experiments, volume 6217 of Lecture Notes in Computer Sci-
ence, pages 169–182. SpringerBerlin /Heidelberg, 2010. ISBN978-3-642-
15056-2. URL http://dx.doi.org/10.1007/978-3-642-15057-9_12.

[128] Frank Pfenning. Elf: Ameta-language for deductive systems. InAutomated
Deduction—CADE-12, pages 811–815. Springer, 1994.

[129] Frank Pfenning and Carsten Schürmann. System description: Twelf—a
meta-logical framework for deductive systems. In Automated Deduction—
CADE-16, pages 202–206. Springer, 1999.

[130] B.C. Pierce. Types and Programming Languages. MIT Press, 2002.
ISBN 9780262162098. URL http://books.google.com/books?id=

ti6zoAC9Ph8C.

[131] B.C. Pierce. Advanced topics in types and programming languages. MITPress,
pub-MIT:adr, 2005. ISBN 0-262-16228-8.

[132] BenjaminC.Pierce andDavidN.Turner. Local type inference. ACMTrans.
Program. Lang. Syst., 22(1):1–44, January 2000. ISSN 0164-0925. doi:
10.1145/345099.345100. URL http://doi.acm.org/10.1145/345099.
345100.

191

http://www.csl.sri.com/papers/cade92-pvs/
http://dx.doi.org/10.1007/978-3-642-15057-9_12
http://books.google.com/books?id=ti6zoAC9Ph8C
http://books.google.com/books?id=ti6zoAC9Ph8C
http://doi.acm.org/10.1145/345099.345100
http://doi.acm.org/10.1145/345099.345100

[133] Benjamin C. Pierce, Chris Casinghino, Marco Gaboardi, Michael Green-
berg, Catalin Hriţcu, Vilhelm Sjoberg, and Brent Yorgey. Software Foun-
dations. Electronic textbook, 2014. URL http://www.cis.upenn.edu/

~bcpierce/sf.

[134] J.C. Reynolds. Separation logic: a logic for sharedmutable data structures.
In Logic in Computer Science, 2002. Proceedings. 17th Annual IEEE Sympo-
sium on, pages 55 – 74, 2002. doi: 10.1109/LICS.2002.1029817.

[135] Mike Shulman. Homotopy type theory should eat itself (but so far, it’s
too big to swallow),March 2014. URL http://homotopytypetheory.org/

2014/03/03/hott-should-eat-itself/.

[136] Vilhelm Sjöberg and Stephanie Weirich. Programming up to congruence.
Submitted for publication, 2014.

[137] Matthieu Sozeau and Nicolas Oury. First-class type classes. In Proceed-
ings of the 21st International Conference onTheorem Proving in Higher Order
Logics, TPHOLs ’08, pages 278–293, Berlin, Heidelberg, 2008. Springer-
Verlag. ISBN 978-3-540-71065-3. doi: 10.1007/978-3-540-71067-7_23.
URL http://dx.doi.org/10.1007/978-3-540-71067-7_23.

[138] Bas Spitters and Eelis Van der Weegen. Type classes for mathematics in
type theory.Mathematical Structures inComputer Science, 21(04):795–825,
2011.

[139] AntoniosMStampoulis. VeriML:ADependently-Typed, User-Extensible and
Language-Centric Approach to Proof Assistants. PhD thesis, Yale University,
New Haven, CT, 2013.

[140] Antonis Stampoulis and Zhong Shao. VeriML: typed computation of log-
ical terms inside a language with effects. In Proc. ICFP, pages 333–344.
ACM, 2010.

[141] GuyL. Steele, Jr. andRichardP.Gabriel. Theevolutionof lisp. InTheSecond
ACM SIGPLAN Conference on History of Programming Languages, HOPL-
II, pages 231–270, New York, NY, USA, 1993. ACM. ISBN 0-89791-570-
4. doi: 10.1145/154766.155373. URL http://doi.acm.org/10.1145/
154766.155373.

[142] Gordon Stewart, Lennart Beringer, and Andrew W. Appel. Verified heap
theorem prover by paramodulation. In Proc. ICFP, 2012.

192

http://www.cis.upenn.edu/~bcpierce/sf
http://www.cis.upenn.edu/~bcpierce/sf
http://homotopytypetheory.org/2014/03/03/hott-should-eat-itself/
http://homotopytypetheory.org/2014/03/03/hott-should-eat-itself/
http://dx.doi.org/10.1007/978-3-540-71067-7_23
http://doi.acm.org/10.1145/154766.155373
http://doi.acm.org/10.1145/154766.155373

[143] Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan
Bhargavan, and Jean Yang. Secure distributed programming with value-
dependent types. In Proceeding of the 16th ACM SIGPLAN Interna-
tional Conference on Functional Programming, ICFP 2011, pages 266–278,
September 2011.

[144] Wouter Swierstra. Data types à la carte. Journal of Functional Pro-
gramming, 18:423–436, 7 2008. ISSN 1469-7653. doi: 10.1017/
S0956796808006758. URL http://journals.cambridge.org/article_

S0956796808006758.

[145] TheHaskell Development Team. Haskell – haskell wiki. 2014. URL http:

//www.haskell.org.

[146] TheOCamlDevelopment Team. Ocaml. 2014. URL http://ocaml.org/.

[147] T. Tuerk. A formalisation of Smallfoot in HOL. In Proc. TPHOLs, 2009.

[148] The Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations of Mathematics. http://homotopytypetheory.org/book, In-
stitute for Advanced Study, 2013.

[149] Paul van der Walt and Wouter Swierstra. Engineering proof by reflection
in agda. In Implementation and Application of Functional Languages, Lecture
Notes in Computer Science, pages 157–173. Springer Berlin Heidelberg,
2013. ISBN 978-3-642-41581-4. doi: 10.1007/978-3-642-41582-1_10.
URL http://dx.doi.org/10.1007/978-3-642-41582-1_10.

[150] Vladimir Voevodsky. A simple type system with two identity types. Feb
2013. URL https://uf-ias-2012.wikispaces.com/file/view/HTS.
pdf/410120566/HTS.pdf.

[151] Peng Wang, Santiago Cuellar, and Adam Chlipala. Compiler verification
meets cross-language linking via data abstraction. InProceedings of the 2014
ACMInternational Conference onObjectOriented Programming Systems Lan-
guages & Applications, OOPSLA ’14, pages 675–690, New York, NY, USA,
2014. ACM. ISBN 978-1-4503-2585-1. doi: 10.1145/2660193.2660201.
URL http://doi.acm.org/10.1145/2660193.2660201.

[152] Benjamin Werner. Sets in types, types in sets. In Proceedings of TACS’97,
pages 530–546. Springer-Verlag, 1997.

193

http://journals.cambridge.org/article_S0956796808006758
http://journals.cambridge.org/article_S0956796808006758
http://www.haskell.org
http://www.haskell.org
http://ocaml.org/
http://homotopytypetheory.org/book
http://dx.doi.org/10.1007/978-3-642-41582-1_10
https://uf-ias-2012.wikispaces.com/file/view/HTS.pdf/410120566/HTS.pdf
https://uf-ias-2012.wikispaces.com/file/view/HTS.pdf/410120566/HTS.pdf
http://doi.acm.org/10.1145/2660193.2660201

[153] Hongwei Xi. Applied type system. In Stefano Berardi, Mario
Coppo, and Ferruccio Damiani, editors, Types for Proofs and Programs,
volume 3085 of Lecture Notes in Computer Science, pages 394–408.
Springer Berlin Heidelberg, 2004. ISBN 978-3-540-22164-7. doi:
10.1007/978-3-540-24849-1_25. URL http://dx.doi.org/10.1007/
978-3-540-24849-1_25.

[154] Hongwei Xi and Frank Pfenning. Dependent types in practical program-
ming. In Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 214–227. ACM, 1999.

[155] Beta Ziliani, Derek Dreyer, Neelakantan R. Krishnaswami, Aleksandar
Nanevski, and Viktor Vafeiadis. Mtac: A monad for typed tactic program-
ming in coq. In Proceedings of the 18th ACM SIGPLAN International Con-
ference on Functional Programming, ICFP ’13, pages 87–100,NewYork, NY,
USA, 2013. ACM. ISBN 978-1-4503-2326-0. doi: 10.1145/2500365.
2500579. URL http://doi.acm.org/10.1145/2500365.2500579.

194

http://dx.doi.org/10.1007/978-3-540-24849-1_25
http://dx.doi.org/10.1007/978-3-540-24849-1_25
http://doi.acm.org/10.1145/2500365.2500579

Colophon

This thesis was typeset using
LATEX, originally developed by Leslie
Lamport and based on Donald Knuth’s

TEX. The body text is set in 11 point Arno
Pro, designed by Robert Slimbach in the
style of book types from the Aldine Press in
Venice, and issued by Adobe in 2007. A
template, which can be used to format a PhD
thesis with this look and feel, has been
released under the permissive mit (x11)
license, and can be found online at
github.com/suchow/ or from the author at
suchow@post.harvard.edu.

195

https://github.com/suchow/
mailto:suchow@fas.harvard.edu

	Introduction
	Formal Logic
	Intuitionistic Type Theory as a Logic
	Automation
	Overview of the Dissertation

	Background
	Gallina: Coq's Logic
	Constructing Proofs with Ltac
	Proof by Computational Reflection
	Related Work

	Open Semantic Reflection
	The Lambda Core
	Semantic Openness & Tautologies
	Meta-level Dependency & Monad Simplification
	Unification Variables & Backward Reasoning
	Related Work

	Engineering Reflective Automation
	Coq's Reduction Mechanisms
	Engineering Verifiable, Executable Code
	Crafting Proof Terms for Computational Reflection
	Reification: Building Syntax for Semantic Terms

	Case Study: Program Verification in Bedrock
	Bedrock by Example
	Reflective Verification in Bedrock
	Evaluation
	Related Work

	Rtac: A Reflective Tactic Language
	Compositional Tactics
	Core Tactics
	Performance
	Related Work

	Case Study: Embedded Logics for Imperative Programs
	Describing Axiomatic Logics with Charge!
	Reifying Type Classes
	Case Study: Verifying Imperative Programs
	Future Avenues and Ongoing Applications

	Conclusions
	Avenues for Future Work
	Final Thoughts

	References

