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Abstract
Formal verification is increasingly valuable as our world comes to rely more on soft-
ware for critical infrastructure. A significant and understudied cost of developing
mechanized proofs, especially at scale, is the computer performance of proof gen-
eration. This dissertation aims to be a partial guide to identifying and resolving
performance bottlenecks in dependently typed tactic-driven proof assistants like Coq.

We present a survey of the landscape of performance issues in Coq, with micro- and
macro-benchmarks. We describe various metrics that allow prediction of performance,
such as term size, goal size, and number of binders, and note the occasional surprising
lack of a bottleneck for some factors, such as total proof term size. To our knowledge
such a roadmap to performance bottlenecks is a new contribution of this dissertation.

The central new technical contribution presented by this dissertation is a reflective
framework for partial evaluation and rewriting, already used to compile a code gen-
erator for field-arithmetic cryptographic primitives which generates code currently
used in Google Chrome. We believe this prototype is the first scalably performant
realization of an approach for code specialization which does not require adding to the
trusted code base. Our extensible engine, which combines the traditional concepts of
tailored term reduction and automatic rewriting from hint databases with on-the-fly
generation of inductive codes for constants, is also of interest to replace these ingre-
dients in proof assistants’ proof checkers and tactic engines. Additionally, we use
the development of this framework itself as a case study for the various performance
issues that can arise when designing large proof libraries. We also present a novel
method of simple and fast reification, developed and published during this PhD.

Finally, we present additional lessons drawn from the case studies of a category-theory
library, a proof-producing parser generator, and cryptographic code generation.

Thesis Supervisor: Adam Chlipala
Title: Associate Professor of Electrical Engineering and Computer Science
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Dedicated to future users and developers of proof
assistants.

Dedicated also to my mom, for her perpetual support and
nurturing throughout my life.
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Testing shows the presence, not the absence of bugs.

— Edsger Wybe Dijkstra, 1969 [BR70]

If you blindly optimize without profiling, you will likely waste your time
on the 99% of code that isn’t actually a performance bottleneck and miss
the 1% that is.

— Charles E. Leiserson [Lei20]
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Chapter 1

Background

1.1 Opportunity

In critical software systems, like the implementations of cryptography supporting the
internet, there are opposing pressures to innovate and to let things be as they are.
Innovation can help create more performant systems with higher security. But, if the
new code has any bugs at all, it could leave the system vulnerable to attacks costing
billions of dollars.

Attackers have financial incentive to find any bugs and exploit them, so guaranteeing
a complete lack of bugs is essential. Testing, which is the de facto standard for finding
bugs, is both expensive and does not guarantee a lack of bugs. For example, some
bugs in cryptographic code only occur in as few as 19 out of 2255 cases [Lan14]. If we
aim to catch such a bug using continuous random testing in a “modest” twenty years,
then we would need over a thousand times as many computers as there are atoms
in the solar system! This is not an accident. If computers become fast enough to
complete this testing in reasonable time, then attackers can use the faster computers
to get past the current level of cryptographic protection even if there are no bugs in the
code. As a result, however fast computers get, ensuring security will require scaling
up the size of the mathematical problem proportionally, and testing will continue to
be inadequate at finding all bugs. So, in critical software systems, implementing new,
innovative algorithms is a slow and risky process.

An appealing solution to this problem is to prove critical software correct. We do
this by specifying in formal mathematics the intended behavior of the software and
showing a correspondence between our math and the code. Ideally, the specification
is relatively simple and easier to trust than the thousands of lines of code. Once
we show a correspondence between our math and any new piece of code, we can
confidently deploy the software in the world. This is known as verification.
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While proofs of algorithms tend to be done with pen and paper (consider the ubiq-
uitous proofs that various sorting algorithms are correct found in introductory algo-
rithms classes), writing proofs of actual code is much harder. Proofs of code correct-
ness tend to be filled with tedious case analysis and only sparse mathematical insights,
and attempts to create and check these proofs by hand are subject to the same issues
of human fallibility as writing the code in the first place. To avoid the problems from
human fallibility, we use proof-checking programs; to cope with tediousness, we use
proof assistants which are proof-checking programs that can also help us write the
proof itself. Such programs are called proof assistants; they assist users in writing
code which, when run, generates a proof that can be checked by the proof checker.

But now we are back where we started, with proof-checking programs as our criti-
cal software, and the question of how they could possibly give us the confidence to
deploy new software in the world.1 In order to trust proof-checking programs, we
want them to be general enough that possible bugs in the proof-checking program
are unlikely to line up with mistakes that we make in any individual proof (c.f. Sub-
section 1.3.1). Such programs which are general enough to check the statements and
proofs of arbitrary mathematical theorems are called foundational tools. We also
want proof-checking programs to be small so that we have a hope of verifying them
by hand (c.f. Subsection 1.3.2).

Proof-checking programs have had many successes, in both software verification and
traditional mathematics proof formalization. Examples abound, from compilers [Ler09]
to microkernels [Kle+09] to web servers [Chl15] to cryptography code [Erb+19], from
the Four-Color Theorem [Gon08] to the Odd-Order Theorem [Gon+13a] to Homotopy
Type Theory [Uni13].

However, in almost all examples of software verification successes, there is an enor-
mous overhead in the lines of proof written over the lines of code being verified. The
proofs are so long and arduous to write that it typically requires multiple PhDs worth
of work to verify one piece of software—see Figure 1-1 for some examples.

In order to utilize verification in the innovation pipeline, we need verification to
provide fast feedback about the correctness of code. If we have to write each proof,
this is not feasible. One proposal is to automate proof generation so we no longer
need to replicate proof-writing effort for iterations of code with the same (or similar)
mathematical specification. In this manner, we can decrease the marginal overhead
of manual proof writing, by reusing proofs on several variations and optimizations of
an algorithm, and deploy new code in the world with confidence.

1We cannot solve this problem with programs to check our proof-checking programs, under pain
of infinite regress, Gödelian paradoxes [Raa20], and invisible untrustworthiness [Tho84]. However,
the mathematically inclined reader might be interested to note that adding one more layer of meta
does in fact help, and there are projects underway to verify proof checkers [AR14; Soz+19; Ana+17].
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Figure 1-1: Overhead of lines of code of verification over lines of code being verified
for some successful projects in microkernels and operating systems (seL4, CertiKOS)
and compilers (CompCert). Note the log-scaling.

1.2 Our Work
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Figure 1-2: Example of superlinear perfor-
mance scaling

In the quest to enable automated proof
generation, the author encountered sev-
eral performance bottlenecks in proof
checking across projects. We draw par-
ticularly from the project in generation
of verified low-level cryptographic code
in Fiat Cryptography [Erb+19], with
auxiliary case studies in category the-
ory [GCS14] and parsers [Gro15a]. Un-
like many other performance domains,
the time it takes to check proofs as we
scale the size of the input is almost
always superlinear—quadratic at best,
commonly cubic or exponential, occa-
sionally even worse. Empirically, this
might look like a proof script that checks in tens of seconds on the smallest of toy
examples; takes about a minute on the smallest real-world example, which might be
twice the size of the toy example; takes twenty hours to generate and check the proof
of an example only twice that size; and, on a (perhaps not-quite-realistic) example
twice the size of the twenty-hour example, the script might not finish within a year,
or even a thousand years—see Section 2.2 for more details, which we preview here in
Figure 1-2. In just three doublings of input size, we might go from tens of seconds to
thousands of years. Moreover, in proof assistants, this is not an isolated experience.
This sort of performance behavior is common across projects.

While compiler performance—both the time it takes to compile code and the time
it takes to run the generated code—has long been an active field of study [KV17;
GBE07; Myt+09], to our knowledge there is no existing body of work systematically
investigating the performance of proof assistants, nor even any work primarily fo-
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cused on the problem of proof-assistant performance. We distinguish the question of
interactive-proof-assistant performance from that of performance of fully automated
reasoning tools such as SAT and SMT solvers, on which there has been a great deal
of research [Bou94]. As we discuss in Subsection 1.2.1, interactive proof assistants
utilize human creativity to handle a greater breadth and depth of problems than fully
automated tools, which succeed only on more restricted domains.

This dissertation argues that the problem of compile-time performance or proof-
checking performance is both nontrivial and significantly different from the problem of
performance of typical programs. While many papers mention performance, obliquely
or otherwise, and some are even driven by performance concerns of a particular al-
gorithm or part of the system, [Gon08, p. 1382; Bou94; GM05; Bra20; Ben89; Pie90;
CPG17; PCG18; GL02; Nog02; Bra20], we have not found any that investigate the
performance problems that arise asymptotically when proof assistants are used to
verify programs at large scale.

We present in Part II a research prototype of a tool and methodology for achieving
acceptable performance at scale in the domain of term transformation and rewriting.
We present in Part III design principles to avoid the performance bottlenecks we en-
countered and insights about the proof assistants that these performance bottlenecks
reveal.

We argue that for proof assistants to scale to industrial uses, we must get the basics
of asymptotic performance of proof checking right. Through work in this domain, we
hope to utilize verification in the software innovation pipeline.

1.2.1 What Are Proof Assistants?
Before diving into the details of performance bottlenecks and solutions, we review the
history of formal verification and proof assistants to bring the reader up to speed on
the context of our work and investigation.

While we intend to cover a wide swath of the history and development in this sub-
section, more detailed descriptions can be found in the literature [Rin+20; Geu09;
HUW14; HP03; Dar19; Dav01; MR05; Kam02; Moo19; MW13; Gor00; PNW19;
Pfe02; Con+86, Related Work]. Ringer et al. [Rin+20, ch. 4] has a particularly clear
presentation which was invaluable in assembling this section.

Formal verification can be traced back to the early 1950s [Dar19]. The first formally
verified proof, in some sense, achieved in 1954, was of the theorem that the sum of two
even numbers is even [Dav01]. The “proof” was an implementation in a vacuum-tube
computer of the algorithm of Presburger [Pre29], which could decide, for any first-
order formula of natural number arithmetic, whether the formula represented a true
theorem or a false one; by implementing this algorithm and verifying that it returns
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“true” on a formula such as ∀𝑎 𝑏 𝑥 𝑦, ∃𝑧, 𝑎 = 𝑥 + 𝑥 → 𝑏 = 𝑦 + 𝑦 → 𝑎 + 𝑏 = 𝑧 + 𝑧,
the machine can be said to prove that this formula is true.

While complete decision procedures exist for arithmetic, propositional logic (the frag-
ment of logic without quantifiers, i.e., consisting only of →, ∧, ∨, ¬, and ↔), and
elementary geometry, there is no complete decision procedure for first-order logic,
which allows predicates, as well as universal and existential quantification over ob-
jects [Dav01]. In fact, first-order logic is sufficiently expressive to encode the halting
problem [Chu36; Tur37]. The problem gets worse in higher-order logic, where we can
encode systems that reason about themselves, such as Peano arithmetic, and Gödel’s
incompleteness theorem proves that there must be some statements which are neither
provably true nor provably false. In fact, we cannot even decide which statements are
undecidable [Mak11]!

This incompleteness, however, does not sink the project of automated proof search.
Consider, for example, the very simple program that merely lists out all possible
proofs in a given logical system, halting only when it has found either a proof or a
disproof of a given statement. While this procedure will run forever on statements
which are neither provably true nor provably false, it will in fact be able to output
proofs for all provable statements. This procedure, however, is uselessly slow.

More efficient procedures for proof search exist. Early systems such as the Stanford
Pascal Verifier [Luc+79] and Stanford Resolution Prover were based on what is now
known as Robinson’s resolution rule [Rob65], which, when coupled with syntactic
unification, resulted in tolerable performance on sufficiently simple problems [Dav01;
Dar19]. A particularly clear description of the resolution method can be found in
Shankar [Sha94, pp. 17–18]. In the 1960s, all 400-or-so theorems of Whitehead
and Russell’s Principia Mathematica were automatically proven by the same pro-
gram [Dav01, p. 9]. However, as the author himself notes, this was only feasible
because all of the theorems could be expressed in a way where all universal quanti-
fiers came first, followed by all existential quantifiers, followed by a formula without
any quantifiers.

In the early 1970s, Boyer and Moore began work on theorem provers which could
work with higher-order principles such as mathematical induction [MW13, p. 6].
This work resulted in a family of theorem provers, collectively known as the Boyer–
Moore theorem provers, which includes the first seriously successful automated theo-
rem provers [MW13, p. 8; Dar19]. They developed the Edinburgh Pure LISP Theorem
Prover, Thm, and later Nqthm [MW13, p. 8; Boy07; Wik20c], the last of which came
to be known as the Boyer–Moore theorem prover. Nqthm has been used to formalize
and verify Gödel’s first incompleteness theorem in 1986 [Sha94; Moo19, p. 29], to
verify the implementation of an assembler and linker [Moo07] as well as a number of
FORTRAN programs, and to formally prove the invertibility of RSA encryption, the
undecidability of the halting problem, Gauss’ law of quadratic reciprocity [Moo19,
pp. 28–29]. Nqthm later evolved into ACL2 [Moo19; KM20a; KM20b], which has been
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used, among other things, to verify a Motorola digital signal processor, the floating-
point arithmetic unit in AMD chips, and some x86 machine code programs [Moo19,
p. 2].

In 1967, at around the same time that Robinson published his resolution principle,
N. G. de Bruijn developed the Automath system [Kam02; Bru94; Bru70; Wik20b].
Unlike the Boyer–Moore theorem provers, Automath checked the validity of sequences
of human-generated proof steps and hence was more of a proof checker or proof
assistant than an automated theorem prover [Rin+20]. Automath is notable for
being the first system to represent both theorems and proofs in the same formal
system, reducing the problem of proof checking to that of type checking [Rin+20] by
exploiting what came to be known as the Curry–Howard correspondence [Kam02];
we will discuss this more in Subsection 1.3.1. The legacy of Automath also includes
de Bruijn indices, a method for encoding function arguments which we describe in
Section 3.1.3; dependent types, which we explain in Subsection 1.3.1; and the de
Bruijn principle—stating that proof checkers should be as small and as simple as
possible—which we discuss in Subsection 1.3.2 [Rin+20; Kam02]. We are deferring
the explanation of these important concepts for the time being because, unlike the
methods of theorem proving described above, these methods are at the heart of Coq,
the primary theorem prover used in this thesis, as well as proof assistants like it. One
notable accomplishment in the Automath system was the translation and checking of
the entirety of Edmund Landau’s Foundations of Analysis in the early 1970s [Kam02].

Almost at the same time as Boyer and Moore were working on their theorem provers
in Edinburgh, Scotland, Milner developed the LCF theorem prover at Stanford in
1972 [Gor00, p. 1]. Written as an interactive proof checker based on Dana Scott’s
1969 logic for computable functions (which LCF abbreviates), LCF was designed
to allow users to interactively reason about functional programs [Gor00, p. 1]. In
1973, Milner moved to Edinburgh and designed Edinburgh LCF, the successor to
Stanford LCF. This new version of LCF was designed to work around two deficiencies
of its predecessor: theorem proving was limited by available memory for storing
proof objects, and the fixed set of functions for building proofs could not be easily
extended. The first of these was solved by what is now called “the LCF approach”: by
representing proofs with an abstract thm type, whose API only permitted valid rules
of inference, proofs did not have to be carried around in memory [Gor00, pp. 1–2;
Har01]. In order to support abstract data types, Milner et al. invented the language
ML (short for “Meta Language”) [Gor00, p. 2], the precursor to Caml and later
OCaml. The second issue—ease of extensibility—was also addressed by the design of
ML [Gor00, p. 2]. By combining an abstract, opaque, trusted API for building terms
with a functional programming language, users were granted the ability to combine
the basic proof steps into “tactics”. Tactics were functions that took in a goal, that
is, a formula to be proven, and returned a list of remaining subgoals, together with
a function that would take in proofs of those subgoals and turn them into a proof
of the overall theorem. An example: a tactic for proving conjunctions might, upon
being asked to prove 𝐴 ∧ 𝐵, return the two-element list of subgoals [𝐴,𝐵] together
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with a function that, when given a proof of 𝐴 and a proof of 𝐵 (i.e., when given two
thm objects, the first of which proves 𝐴 and the second of which proves 𝐵), combines
them with a primitive conjunction rule to produce a proof object justifying 𝐴∧𝐵.

In the mid 1980s, Coq [Coq20], the proof assistant which we focus most on in this
dissertation, was born from an integration of features and ideas from a number of
the proof assistants we’ve discussed in this subsection. Notably, it was based on
the Calculus of Constructions (CoC), a synthesis of Martin-Löf’s type theory [Mar75;
Mar82] with dependent types and polymorphism, which grew out of Dana Scott’s logic
of computable functions [Sco93] together with de Bruijn’s work on Automath [HP03].
In the late 1980s, some problems were found with the way datatypes were encoded
using functions, which lead to the introduction of inductive types and an extension of
CoC called the Calculus of Inductive Constructions (CIC) [HP03]. Huet and Paulin-
Mohring [HP03] contains an illuminating and comprehensive discussion of how the
threads of Coq’s development arose in tandem with the history discussed in the pre-
ceding paragraphs, and we highly recommend this read for those interested in Coq’s
history.

Major accomplishments of verification in Coq include the fully verified optimizing C
compiler CompCert [Ler09], the proof of the Four Color Theorem [Gon08], and the
complete formalization of the Odd Order Theorem, also known as the Feit–Thompson
Theorem [Gon+13a]. This last development was the result of about six years of work
formalizing a proof that every finite group of odd order is solvable; the original proof,
published in the early 1960s, is about 225 pages long.

We now briefly mention a number of other proof assistants, calling out some par-
ticularly significant accomplishments of verification. Undoubtedly we will miss some
proof assistants and accomplishments, for which we refer the reader to the rich exist-
ing literature, some of which is cited in the first paragraph of this subsection, as well
as scattered among other papers which describe a variety of proof assistants [Wie09].

Inspired by Automath, the Mizar [Har96a; Rud92; MR05] proof checker was designed
to assist mathematicians in preparing mathematical papers [Rud92]. The Mizar
Mathematical Library already had 55 thousand formally verified lemmas in 2009 and
was at the time (and might still be) the largest library of formal mathematics [Wie09].
LCF [Gor00; GMW79; Gor+78] spawned a number of other closely related proof
assistants, such as HOL [Bar00; Gor00], Isabelle/HOL [PNW19; Wen02; NPW02;
Pau94], HOL4 [SN08], and HOL Light [Har96c]. Among other accomplishments, a
complete OS microkernel, seL4, was fully verified in Isabelle/HOL by 2009 [Kle+09].
In 2014, a complete proof of the Kepler conjecture on optimal packing of spheres
was formalized in a combination of Isabelle and HOL Light [Hal06; Hal+14]. The
functional programming language CakeML includes a self-bootstrapping optimizing
compiler which is fully verified in HOL [Kum+14]. The Nqthm Boyer–Moore
theorem prover eventually evolved into ACL2 [KM20b; KM20a]. Other proof assis-
tants include LF [Pfe91; HHP93; Pfe02], Twelf [PS99], Matita [Asp+07; Asp+11],
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PVS [Sha96; ORS92], LEGO [Pol94], and NuPRL [Con+86].

1.3 Basic Design Choices
Although the design space of proof assistants is quite large, as we’ve touched on in
Subsection 1.2.1, there are only two main design decisions which we want to assume
for the investigations of this thesis. The first is the use of dependent type theory as a
basis for formal proofs, as is done in Automath [Wik20b; Bru70; Bru94], Coq [Coq20],
Agda [Nor09], Idris [Bra13], Lean [Mou+15], NuPRL [Con+86], Matita [Asp+11], and
others, rather than on some other logic, as is done in LCF [Gor00; GMW79; Gor+78],
Isabelle/HOL [PNW19; Wen02; NPW02; Pau94], HOL4 [SN08], HOL Light [Har96c],
LF [Pfe91; HHP93], and Twelf [PS99], among others. The second is the de Bruijn
criterion, mandating independent checking of proofs by a small trusted kernel [BW05].
We have found that many of the performance bottlenecks are fundamentally a result
of one or the other of these two design decisions. Readers are advised to consult
Ringer et al. [Rin+20, ch. 4] for a more thorough mapping of the design axes.

In this section, we will explain these two design choices in detail; by the end of this
section, the reader should understand what each design choice entails and, we hope,
why these are reasonable choices to make.

1.3.1 Dependent Types: What? Why? How?
There are, broadly, three schools of thought on what is a proof. Geuvers [Geu09]
describe two roles that a proof plays:

(i) A proof convinces the reader that the statement is correct.

(ii) A proof explains why the statement is correct.

A third conception of proof is that a proof is itself a mathematical object or construc-
tion which corresponds to the content of a particular theorem [Bau13]. This third
conception dates back to the school of intuitionism of Brouwer in the early 1900s and
of constructive mathematics of Bishop in the 1960s; see Constable et al. [Con+86,
Related Works] for a tracing of the history from Brouwer to Martin-Löf, whose type
theory is at the heart of Coq and similar proof assistants.

This third conception of proof admits formal frameworks where proof and computa-
tion are unified as the same activity. As we’ll see shortly, this allows for drastically
smaller proofs.
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The foundation of unifying computation and proving is, in some sense, the Curry–
Howard–de Bruijn correspondence, more commonly known as the Curry–Howard cor-
respondence or the Curry–Howard isomorphism. This correspondence establishes the
relationship between types and propositions, between proofs and computational ob-
jects.

The reader may be familiar with types from programming languages such as C/C++,
Java, and Python, all of which have types for strings, integers, and lists, among others.
A type denotes a particular collection of objects, called its members, inhabitants, or
terms. For example, 0 is a term of type int, "abc" is a term of type string, and
true and false are terms of type bool. Types define how terms can be built and
how they can be used. New natural numbers, for example, can be built only as zero
or as the successor of another natural number; these two ways of building natural
numbers are called the type’s constructors. Similarly, the only ways to get a new
Boolean are by giving either true or false; these are the two constructors of the
type bool. Note that there are other ways to get a Boolean, such as by calling a
function that returns Booleans, or by having been given a Boolean as a function
argument. The constructors define the only Booleans that exist at the end of the
day, after all computation has been run. This uniqueness is formally encoded by the
eliminator of a type, which describes how to use it. The eliminator on bool is the if
statement; to use a Boolean, one must say what to do if it is true and what to do if
it is false. Some eliminators encode recursion: to use a natural number, one must
say what to do if it is zero and also one must say what to do if it is a successor. In
the case where the given number is the successor of 𝑛, however, one is allowed to call
the function recursively on 𝑛. For example, we might define the factorial function as

fact m =
case m of
zero -> succ zero
succ n -> m * fact n

Eliminators in programming correspond to induction and case analysis in mathemat-
ics. To prove a property of all natural numbers, one must prove it of zero, and also
prove that if it holds for any number 𝑛, then it holds for the successor of 𝑛. Here
we see the first glimmer of the the Curry–Howard isomorphism, which identifies each
type with the set of terms of that type, identifies each proposition with the set of
proofs of that proposition, and thereby identifies terms with proofs.

Table 1.1 shows the correspondence between programs and proofs. We have already
seen how recursion lines up with induction in the case of natural numbers; let us look
now at how some of the other proof rules correspond.

To prove a conjunction 𝐴∧𝐵, one must prove 𝐴 and also prove 𝐵; if one has a proof
of the conjunction 𝐴 ∧ 𝐵, one may assume both 𝐴 and 𝐵 have been proven. This
lines up exactly with the type of pairs: to inhabit the type of pairs 𝐴×𝐵, one must
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computation set theory logic
type set proposition

term / program element of a set proof
eliminator / recursion case analysis / induction

type of pairs Cartesian product (×) conjunction (∧)
sum type (+) disjoint union (⊔) disjunction (∨)
function type set of functions implication (→)

unit type singleton set trivial truth
empty type empty set (∅) falsehood

dependent function type (Π) universal quantification (∀)
dependent pair type (Σ) existential quantification (∃)

Table 1.1: The Curry–Howard Correspondence

give an object of type 𝐴 paired with an object of type 𝐵; given an object of the pair
type 𝐴×𝐵, one can project out the components of types 𝐴 and 𝐵.

To prove the implication 𝐴 → 𝐵, one must prove 𝐵 under the assumption that 𝐴
holds, i.e., that a proof of 𝐴 has been given. The rule of modus ponens describes how
to use a proof of 𝐴 → 𝐵: if also a proof of 𝐴 is given, then 𝐵 may be concluded. These
correspond exactly to the construction and application of functions in programming
languages: to define a function of type 𝐴 → 𝐵, the programmer gets an argument of
type 𝐴 and must return a value of type 𝐵. To use a function of type 𝐴 → 𝐵, the
programmer must apply the function to an argument of type 𝐴; this is also known as
calling the function.

Here we begin to see how type checking and proof checking can be seen as the same
task. The process of type checking a program consists of ensuring that every variable
is given a type, that every expression assigned to a variable has the type of that
variable, that every argument to a function has the correct type, etc. If we write the
Boolean negation function which sends true to false and false to true by case
analysis (i.e., by an if statement), the type checker will reject our program if we try
to apply it to, say, an argument of type string such as "foo". Similarly, if we try to
use modus ponens to combine a proof that 𝑥 = 1 → 2𝑥 = 2 with a proof that 𝑥 = 2
to obtain a proof that 2𝑥 = 2, the proof checker should complain that 𝑥 = 1 and
𝑥 = 2 are not the same type.

While the correspondence of the unit type to tautologies is relatively trivial, the corre-
spondence of the empty type to falsehood encodes nontrivial principles. By encoding
falsehood as the empty type, the principle of explosion—that from a contradiction,
everything follows—can be encoded as case analysis on the empty type.

The last two rows of Table 1.1 are especially interesting cases which we will now cover.
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Some programming languages allow functions to return values whose types depend on
the values of the functions’ arguments. In these languages, the types of arguments are
generally also allowed to depend on the values of previous arguments. Such languages
are said to support dependent types. For example, we might have a function that
takes in a Boolean and returns a string if the Boolean is true but an integer if the
Boolean is false. More interestingly, we might have a function that takes in two
Booleans and additionally takes in a third argument which is of type unit whenever
the two Booleans are either both true or both false but is of type empty when
they are not equal. This third argument serves as a kind of proof that the first two
arguments are equal. By checking that the third argument is well-typed, that is,
that the single inhabitant of the unit type is passed only when in fact the first two
arguments are equal, the type checker is in fact doing proof checking. While compilers
of languages like C++, which supports dependent types via templates, can be made
to do rudimentary proof checking in this way, proof assistants such as Coq are built
around such dependently typed proof checking.

The last two lines of Table 1.1 can now be understood.

A dependent function type is just one whose return value depends on its arguments.
For example, we may write the nondependently typed function type

bool → bool → unit → unit

which takes in three arguments of types bool, bool, and unit and returns a value of
type unit. Note that we write this function in curried style, with → associating to the
right (i.e., 𝐴 → 𝐵 → 𝐶 is 𝐴 → (𝐵 → 𝐶)), where a function takes in one argument
at a time and returns a function awaiting the next argument. This function is not
very interesting, since it can only return the single element of type unit.

However, if we define 𝐸(𝑏1, 𝑏2) to be the type if b1 then (if b2 then unit else
empty) else (if b2 then empty else unit), i.e., the type which is unit when
both are true or both are false and is empty otherwise, then we may write the
dependent type

(𝑏1 ∶ bool) → (𝑏2 ∶ bool) → 𝐸(𝑏1, 𝑏2) → 𝐸(𝑏2, 𝑏1)

Alternate notations include

Π𝑏1∶boolΠ𝑏2∶bool𝐸(𝑏1, 𝑏2) → 𝐸(𝑏2, 𝑏1)

and
∀(𝑏1 ∶ bool)(𝑏2 ∶ bool), 𝐸(𝑏1, 𝑏2) → 𝐸(𝑏2, 𝑏1).

A function of this type witnesses a proof that equality of Booleans is symmetric.

Similarly, dependent pair types witness existentially quantified proofs. Suppose we
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have a type 𝑇 (𝑛) which encodes the statement “𝑛 is prime and even”. To prove
∃𝑛, 𝑇 (𝑛), we must provide an explicit 𝑛 together with a proof that it satisfies 𝑇. This
is exactly what a dependent pair is: Σ𝑛𝑇 (𝑛) is the type of consisting of a pair of a
number 𝑛 paired with a proof that that particular 𝑛 satisfies 𝑇.

As we mentioned above, one feature of basing a proof assistant on dependent type
theory is that computation can be done at the type level, without leaving a trace
in the proof term. Many proofs require intermediate arguments based solely on the
computation of functions. For example, a proof in number theory or cryptography
might depend on the fact that a particularly large number, raised to some large
power, is congruent to 1 modulo some prime. As argued by Stampoulis [Sta13], if
we are required to record all intermediate computation steps in the proof term, they
can become prohibitively large. The Poincaré principle asserts that such arguments
should not need to be recorded in formal proofs but should instead be automatically
verified by appeal to computation [BG01, p. 1167]. The ability to appeal to compu-
tation without blowing up the size of the proof term is quite important for so-called
reflective (or reflexive) methods of proof, described in great detail in Chapter 3.

Readers interested in a more comprehensive explanation of dependent type theory are
advised to consult Chapter 1 (Type theory) and Appendix A (Formal type theory) of
Univalent Foundations Program [Uni13]. Readers interested in perspectives on how
dependent types may be disadvantageous are invited to consult literature such as
Lamport and Paulson [LP99] and Paulson [Pau18].

1.3.2 The de Bruijn Criterion
A Mathematical Assistant satisfying the possibility of independent check-
ing by a small program is said to satisfy the de Bruijn criterion.

— Henk Barendregt [BW05]

As described in the beginning of this chapter, the purpose of proving our software
correct is that we want to be able to trust that it has no bugs. Having a proof checker
reduces the problem of software correctness to the problem of the correctness of the
specification, together with the correctness of the proof checker. If the proof checker
is complicated and impenetrable, it might be quite reasonable not to trust it.

Proof assistants satisfying the de Bruijn criterion are, in general, more easily trustable
than those which violate it. The ability to check proofs with a small program, divorced
from any heuristic programs and search procedures which generate the proof, allows
trust in the proof to be reduced to trust in that small program. Sufficiently small
and well-written programs can more easily be inspected and verified.

The proof assistant Coq, which is the primary proof assistant we consider in this
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dissertation, is a decent example of satisfying the de Bruijn criterion. There is a
large untrusted codebase which includes the proof scripting language ℒtac, used for
generating proofs and doing type inference. There’s a much smaller kernel which
checks the proofs, and Coq is even shipped with a separate checker program, coqchk,
for checking proof objects saved to disk. Moreover, in the past year, a checker for
Coq’s proof objects has been implemented in Coq itself and formally verified with
respect to the type theory underlying Coq [Soz+19].

Note that the LCF approach to theorem proving, where proofs have an abstract type
and type safety of the tactics guarantees validity of the proof object, forms a sort-of
complementary approach to trust.

1.4 Look Ahead: Layout and Contributions of the
Thesis

In the remainder of Part I, we will finish laying out the landscape of performance
bottlenecks we encountered in dependently typed proof assistants; Chapter 2 (The
Performance Landscape in Type-Theoretic Proof Assistants) gives a more in-depth
investigation into what makes performance optimization in dependent type theory
hard, different, and unique, followed by describing major axes of superlinear perfor-
mance bottlenecks in Section 2.6 (The Four Axes of the Landscape).

Part II (Program Transformation and Rewriting) is devoted, in some sense, to per-
formance bottlenecks that arise from the de Bruijn criterion of Subsection 1.3.2. We
investigate one particular method for avoiding these performance bottlenecks. We
introduce this method, variously called proof by reflection or reflective automation,
in Chapter 3 (Reflective Program Transformation), with a special emphasis on a
particularly common use case—transformation of syntax trees. Chapter 4 (A Frame-
work for Building Verified Partial Evaluators) describes our original contribution of a
framework for leveraging reflection to perform rewriting and program transformation
at scale, driven by our need to synthesize efficient, proven-correct, low-level crypto-
graphic primitives [Erb+19]. Where Chapter 4 addresses the performance challenges
of verified or proof-producing program transformation, Chapter 5 (Engineering Chal-
lenges in the Rewriter) is a deep-dive into the performance challenges of engineering
the tool itself and serves as a sort-of microcosm of the performance bottlenecks previ-
ously discussed and the solutions we’ve proposed to them. Unlike the other chapters
of this dissertation, Chapter 5 at times assumes a great deal of familiarity with the
details of the Coq proof assistant. Finally, Chapter 6 (Reification by Parametricity)
presents a way to efficiently, elegantly, and easily perform reification, the first step of
proof by reflection, which is often a bottleneck in its own right. We discovered—or
invented—this trick in the course of working on our library for synthesis of low-level
cryptographic primitives [Erb+19; GEC18].
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Part III (API Design) is devoted, by and large, to the performance bottlenecks that
arise from the use of dependent types as the basis of a proof assistant as introduced
in Subsection 1.3.1; in Chapter 7 (Abstraction), we discuss lessons on engineering
libraries at scale drawn from our case study in formalizing category theory and aug-
mented by our other experience. Many of the lessons presented here are generaliza-
tions of examples described in Chapter 5 (Engineering Challenges in the Rewriter).
The category-theory library formalized as part of this doctoral work, available at
HoTT Library Authors [HoT20], is described briefly in this chapter; a more thorough
description can be found in the paper we published on our experience formalizing this
library [GCS14].

Part IV (Conclusion) is in some sense the mirror image of Part I: Where Chapter 2
is a broad look at what is currently lacking and where performance bottlenecks arise,
Chapter 8 (A Retrospective on Performance Improvements) takes a historical per-
spective on what advancements have already been made in the performance of proof
assistants and Coq in particular. Finally, while the present chapter which we are
now concluding has looked back on the present state and history of formal verifica-
tion, Chapter 9 (Concluding Remarks) looks forward to what we believe are the most
important next steps in the perhaps-nascent field of proof-assistant performance at
scale.
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Chapter 2

The Performance Landscape in
Type-Theoretic Proof Assistants

2.1 Introduction

As alluded to in Section 1.1, when writing nonautomated proofs to verify code in
a proof assistant, the number of lines of proof we need to write scales with the
number of lines of code being verified, typically resulting to a 10× to 100× overhead.
In this strategy, proof generation and proof checking times are reasonable, often
scaling linearly with the number of lines of proof. Automating the generation of
proofs resolves the issue of overhead of proof-writing time. Automation significantly
decreases the marginal cost of proving theorems about new code that is similar enough
to code already verified. However, it introduces massive nonlinear overhead in the
time it takes for the computer to generate and check the proof.

The main contribution of this thesis, presented in Chapter 4, is a tool that solves this
problem of unacceptable overhead in proof-generation and proof-checking for the Fiat
Cryptography project [Erb+19] and which we believe is broadly applicable to other
domains.

In building this work, the author developed a deep understanding of the performance
bottlenecks faced and addressed. This chapter lays out the groundwork for under-
standing these performance bottlenecks, where they come from, and how our solution
addressed the relevant performance issues. We describe what we have seen of the
landscape of performance issues in proof assistants and provide a map for navigation.
Our hope is that readers will be able to apply our map to performance bottlenecks
they encounter in dependently typed tactic-driven proof assistants like Coq.
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2.2 Exponential Domain
We sketch out the main differences between performance issues we’ve encountered in
dependently typed proof assistants and performance issues in other languages. Some
of these differences are showcased through a palette of real performance issues that
have arisen in Coq.

The widespread commonsense in performance engineering is that good performance
optimization happens in a particular order: there is no use micro-optimizing code
when implementing an algorithm with unacceptable performance characteristics; imag-
ine trying to optimize the pseudorandom number generator used in bogosort [GHR07],
for example.1 Similarly, there is no use trying to find or create a better algorithm if
the problem being solved is more complicated than it needs to be; consider, for exam-
ple, the difference between ray tracers and physics simulators. Ray tracers determine
what objects can be seen from a given point by drawing lines from the viewpoint
to the objects and seeing if they pass through any other objects “in front of” them.
Alternatively, it is possible to provide a source of light waves and simulate the phys-
ical interaction of light with the various objects, to determine what images remain
when the light arrives at a particular point. There’s no use trying to find an efficient
algorithm for simulating quantum electrodynamics, though, if all that is needed is to
answer “which parts of which objects need to be drawn on the screen?”

One essential ingredient for this division of concerns—between specifying the problem,
picking an efficient algorithm, and optimizing the implementation of the algorithm—
is knowledge of what a typical set of inputs looks like and what the scope looks
like. When sorting a list, we know that the length of the list and the initial ordering
matter; for sorting algorithms that work for sorting lists with any type of elements,
it generally doesn’t matter, though, whether we’re sorting a list of integers or colors
or names. Furthermore, randomized datasets tend to be reasonably representative
for list ordering, though we may also care about some special cases, such as already-
sorted lists, nearly sorted lists, and lists in reverse-sorted order. We can say that
sorting is always possible in 𝒪(𝑛 log𝑛) time, and that’s a pretty good starting point.

In Coq, and other dependently typed proof assistants, this ingredient is missing. The
domain is much larger: in theory, we want to be able to check any proof anyone might
write. Furthermore, in dependently typed proof assistants, the worst-case behavior
is effectively unbounded, because any provably terminating computation can be run
at typechecking time.

In fact, this issue already arises for compilers of mainstream programming languages.
The C++ language, for example, has constexpr constructions that allow running
arbitrary computation at compile time, and it’s well-known that C++ templates can

1Bogosort, whose name is a portmanteau of the words bogus and sort [Ray03], sorts a list by
randomly permuting the list over and over until it is sorted.
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incur a large compile-time performance overhead. However, we claim that, in most
languages, even as programs scale, these performance issues are the exception rather
than the rule. Most code written in C or C++ does not hit unbounded compile-time
performance bottlenecks. Generally, for code that compiles in a reasonable amount
of time, as the codebase size is scaled up, compile time will creep up linearly.
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Figure 2-1: Synthesizing Subtraction

In Coq, however, the scaling story is
very different. Compile time scales su-
perlinearly with example size. Fre-
quently, users will cobble together code
that works to prove a toy version of some
theorem or to verify a toy version of
some program. By virtue of the fact
that humans are impatient, the code will
execute in reasonable time, perhaps a
couple seconds, on the toy version. The
user will then apply the same proof tech-
nique on a slightly larger example, and
the proof-checking time will often be
pretty similar. After scaling the exam-
ple a bit more, the proof-checking time
will be noticeably slow—maybe it now
takes a couple of minutes. Suddenly,
though, scaling the example just a tiny
bit more will result in the compiler not
finishing even if we let it run for a day
or more. This is what working in an ex-
ponential performance domain is like.

To put numbers on this, let us con-
sider an example from Fiat Cryptogra-
phy which involved generating C code to do arithmetic on very large numbers. The
code generation was parameterized on the number of machine words needed to rep-
resent a single big integer. Our smallest toy example used two machine words; our
largest example used 17. The smallest toy example took about 14 seconds. Based on
the the compile-time performance of about a hundred examples, we expect the largest
example would have taken over four thousand millennia! See Figure 2-1. (Our pri-
mary nontoy test example used four machine words and took just under a minute;
the biggest realistic example we were targeting was twice that size, at eight machine
words, and took about 20 hours.)
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2.3 Motivating the Performance Map

In most performance domains, solutions to performance bottlenecks are generally
either hyper specialized to the code being optimized or the domain of the algorithm,
or else they are so general as to be applicable to all performance engineering. For
example, solving a performance issue might involving caching the result of a particular
computation; caching is a very general solution, while the particular computation
being run is hyper specialized. Once factored like this, there is generally no remaining
insight to be had about the particular performance bottleneck encountered. In our
experience with proof assistants, most performance bottlenecks are far from the code
being written and the domain being investigated and are yet also far from general
performance engineering.

The example above is an instance of a performance bottleneck which is neither specific
the domain (in our case, cryptographic code generation) nor general enough to apply
to performance engineering outside of proof assistants.

Where is the bottleneck? Maybe, one might ask, were we generating unreasonable
amounts of code? Each example using 𝑛 machine words generated 3𝑛 lines of code.
How can exponential performance result from linear code?

Our method involved two steps: first generate the code, then check that the generated
code matches with what comes out of the verified code generator. This may seem a
bit silly, but it is actually somewhat common; in a theorem that says “any code that
comes out of this code generator satisfies this property”, we need a proof that the
code we feed into the theorem actually came out of the specified code generator, and
the easiest way to prove this is, roughly, to tell the proof assistant to just check that
fact for you. (It’s possible to be more careful and not do the work twice, but this
often makes the code a bit harder to read and understand and is oftentimes pointless;
premature optimization is the root of all evil, as they say.) Furthermore, because
we often don’t want to fully compute results when checking that two expressions are
equal—just imagine having to compute the factorial of 1000 just to check that 1000!
is equal to itself—the default method for checking that the code came out of the code
generator is different from the method we used to compute the code in the first place.

It turns out that the actual code generation took less than 0.002% of the total time
on the largest examples we tested (just 14 seconds out of about 211 hours). The rest
of the time was spent checking that the generated code in fact matched what comes
out of the verified code generator.
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2.4 Performance Engineering in Proof Assistants
Is Hard

The fix to the example is itself quite simple, being only 21 characters long.2 However,
tracking down this solution was quite involved, requiring the following pieces:

1. A good profiling tool for proof scripts (see Subsection 8.1.3). This is a stan-
dard component of a performance engineer’s toolkit, but when I started my
PhD, there was no adequate profiling infrastructure for Coq. While such a tool
is essential for performance engineering in all domains, what’s unusual about
dependently typed proof assistants, I claim, is that essentially every codebase
that needs to scale runs into performance issues, and furthermore these issues
are frequently total blockers for development because so many of them are ex-
ponential in nature.

2. Understanding the details of how Coq works under-the-hood. Conversion, the
ability to check if two types or terms are the same, is one of the core components
of any dependently typed proof assistant. Understanding the details of how
conversion works is generally not something users of a proof assistant want
to worry about; it’s like asking C programmers to keep in mind the size of
gcc’s maximum nesting level for #include’d files3 when writing basic programs.
It’s certainly something that advanced users need to be aware of, but it’s not
something that comes up frequently.

3. Being able to run the proof assistant in your head. When I looked at the
conversion problem, I knew immediately what the most likely cause of the
performance issue was, but this is because I’ve managed to internalize most of
how Coq runs in my head.
This might seem reasonable at a glance; one expects to have to understand
the system being optimized in order to optimize it. However, the knowledge
required here is hard-won and not easily accessible. While I’ve managed to
learn the details of what Coq is doing—including performance characteristics—
basically without having to read the source code at all, the relevant perfor-
mance characteristics are not documented anywhere and are not even easily
interpretable from the source code of Coq. This is akin to, say, being able to
learn how gcc represents various bits of C code, what transformations it does in
what order, and what performance characteristics these transformations have,
just from using gcc to compile C code and reading the error messages it gives
you. These are details that should not need to be exposed to the user, but
because dependent type theory is so complicated—complicated enough that
it’s generally assumed that users will get line-by-line interactive feedback from
the compiler while developing—the numerous design decisions and seemingly

2Strategy 1 [Let In]. for those who are curious.
3It’s 200, for those who are curious [Fre17].
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reasonable defaults and heuristics lead to subtle performance issues. Note, fur-
thermore, that this performance issue is essentially about the algorithm used
to implement conversion and is not even sensible when only talking about only
the spec of what it means for two terms to be convertible.
Furthermore, note that the requirement of being able to run the typechecker in
one’s head is essentially the statement that the entire implementation is part
of the specification.4

4. Knowing how to tweak the built-in defaults for parts of the system which most
users expect to be able to treat as black-boxes.

Note that even after this fix, the performance is still exponential! However, the
performance is good enough that we deemed it not currently worth digging into the
profile to understand the remaining bottlenecks. See Figure 2-2.
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Figure 2-2: Timing of synthesizing subtraction after fixing the bottleneck

2.5 Fixing Performance Bottlenecks in the Proof
Assistant Itself Is Also Hard

In many domains, the performance challenges have been studied and understood,
resulting in useful decompositions of the problem into subtasks that can be opti-
mized independently. It’s rarely the case that disparate parts of a codebase must be
simultaneously optimized to see any performance improvement at all.

We have not found any such study of performance challenges in proof assistants. It
seems to us that there are many disparate parts of any proof assistant satisfying the de
Bruijn criterion which are deeply coupled and which cannot be performance-optimized
independently. There are many seemingly reasonable implementation choices that

4Thanks to Andres Erbsen for pointing this out to me.
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can be made for the kernel—the trusted proof checker—which make performance-
optimizing the proof engine, which generates the proof, next to impossible. Worse,
if performance optimization is done incrementally, to avoid needless premature opti-
mization, then it can be the case that performance-optimizing the kernel has effec-
tively no visible impact; the most efficient proof-engine design for the slower kernel
might be inefficient in ways that prevent optimizations in the kernel from showing
up in actual use cases, because simple proof-engine implementations tend to avoid
the performance bottlenecks of the kernel while simultaneously shadowing them with
bottlenecks with similar performance characteristics.

2.6 The Four Axes of the Landscape
We’ve now seen what superlinear scaling in dependently typed proof assistants looks
like. We’ve covered general arguments for why proof assistants might have such scal-
ing and what we believe broadly underpins the challenges of performance engineering
in and on proof assistants.

The rest of this chapter is devoted to mapping out the landscape of performance
bottlenecks we’ve encountered in a way that we hope will illuminate structure in the
performance bottlenecks which are neither specific to the domain of the proof being
checked nor general to all performance engineering. We present a map of performance
bottlenecks comprising four axes. These axes are by no means exhaustive, but, in our
experience, most interesting performance bottlenecks scale as a superlinear factor of
one or more of these axes.

2.6.1 The Size of the Type
We start with one of the simplest axes.

Suppose we want to prove a conjunction of 𝑛 propositions, say, True∧True∧⋯∧True.
For such a simple theorem, we want the size of the proof, and the time and memory
complexity of checking it, to be linear in 𝑛.

Recall from Subsection 1.3.2 that we want a separation between the small trusted part
of the proof assistant and the larger untrusted part. The untrusted part generates
certificates, which in dependently typed proof assistants are called terms, which the
trusted part, the kernel, checks.

The obvious certificate to prove a conjunction 𝐴∧𝐵 is to hold a certificate 𝑎 proving
𝐴 and a certificate 𝑏 proving 𝐵. In Coq, this certificate is called conj and it takes
four parameters: 𝐴, 𝐵, 𝑎 ∶ 𝐴, and 𝑏 ∶ 𝐵. Perhaps the reader can already spot the
problem.

37



0 500 1,000 1,500
0

2

4

𝑛

tim
e

(s
)

repeat constructor
1.61 ⋅ 10−6𝑛2 − 9.59 ⋅ 10−6𝑛+2.39 ⋅ 10−3

(a) Timing of repeat constructor

0 500 1,000 1,500
0

1

2

3

𝑛

tim
e

(s
)

typecheck
8.49 ⋅ 10−7𝑛2 + 1.24 ⋅ 10−5𝑛−6.94 ⋅ 10−4

build
3.54 ⋅ 10−5𝑛−4.65 ⋅ 10−4

(b) Timing of manually building and type-
checking a certificate using Ltac2

Figure 2-3: Proving a conjunction of 𝑛 Trues

To prove a conjunction of 𝑛 propositions, we end up repeating the type 𝑛 times in
the certificate, resulting in a term that is quadratic in the size of the type. We see in
Figure 2-3a the time it takes to do this in Coq’s tactic mode via repeat constructor.
If we are careful to construct the certificate manually without duplicating work, we
see that it takes linear time for Coq to build the certificate and quadratic time for
Coq to check the certificate; see Figure 2-3b.

Note that for small and even medium-sized examples, it’s pretty reasonable to do
duplicative work. It’s only when we reach very large examples that we start hitting
nonlinear behavior.

There are two obvious solutions for this problem:

1. We can drop the type parameters from the conj certificates.

2. We can implement some sort of sharing, where common subterms of the type
only exist once in the representation.

Dropping Type Parameters: Nominal vs. Structural Typing

The first option requires that the proof assistant implement structural typing rather
than nominal typing [Pie02, 19.3 Nominal and Structural Type Systems]. Note that
it doesn’t actually require structural; we can do it with nominal typing if we enforce
everywhere that we can only compare terms who are known to be the same type, be-
cause not having structural typing results in having a single kernel term with multiple
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nonunifiable types. Morally, the reason for this is that if we have an inductive record
type whose fields do not constrain the parameters of the inductive type family, then
we need to consider different instantiations of the same inductive type family to be
convertible. That is, if we have a phantom record such as

Record Phantom (A : Type) := phantom {}.

and our implementation does not include A as an argument to phantom, then we
must consider phantom to be both of type Phantom nat and Phantom bool, even
though nat and bool are not the same. I have requested this feature in Coq issue
#5293. Note, however, that sometimes it is important for such phantom types to be
considered distinct when doing type-level programming.

Sharing

The alternative to eliminating the duplicative arguments is to ensure that the dupli-
cation is at-most constant sized. There are two ways to do this: either the user can
explicitly share subterms so that the size of the term is in fact linear in the size of
the goal, or the proof assistant can ensure maximal sharing of subterms.

There are two ways for the user to share subterms: using let binders and using
function abstraction. For example, rather than writing

@conj True (and True (and True True))
I
(@conj True (and True True) I (@conj True True I I))

and having roughly 𝑛2 occurrences5 of True when we are trying to prove a conjunction
of 𝑛 Trues, the user can instead write

let T0 : Prop := True in
let v0 : T0 := I in
let T1 : Prop := and True T0 in
let v1 : T1 := @conj True T0 I v0 in
let T2 : Prop := and True T1 in
let v2 : T2 := @conj True T1 I v0 in
@conj True T2 I v2

which has only 𝑛 occurrences of True. Alternatively, the user can write

(𝜆 (T0 : Prop) (v0 : T0),
(𝜆 (T1 : Prop) (v1 : T1),

5The exact count is 𝑛(𝑛 + 1)/2 − 1.
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Figure 2-4: Timing of manually building and typechecking a certificate to prove a
conjunction of 𝑛 Trues using Ltac2

(𝜆 (T2 : Prop) (v2 : T2), @conj True T2 I v2)
(and True T1) (@conj True T1 I v1))

(and True T0) (@conj True T0 I v0))
True I

Unfortunately, both of these incur quadratic typechecking cost, even though the size
of the term is linear. See Figure 2-4.

Recall that the typing rules for 𝜆 and let are as follows:

Γ, 𝑥 ∶ 𝐴 ⊢ 𝑓 ∶ 𝐵
Γ ⊢ (𝜆(𝑥 ∶ 𝐴), 𝑓) ∶ ∀𝑥 ∶ 𝐴,𝐵

Γ ⊢ 𝑓 ∶ ∀𝑥 ∶ 𝐴,𝐵 Γ ⊢ 𝑎 ∶ 𝐴
Γ ⊢ 𝑓(𝑎) ∶ 𝐵[𝑎/𝑥]

Γ ⊢ 𝑎 ∶ 𝐴 Γ, 𝑥 ∶ 𝐴 ≔ 𝑎 ⊢ 𝑓 ∶ 𝐵
Γ ⊢ (let 𝑥 ∶ 𝐴 ≔ 𝑎 in 𝑓) ∶ 𝐵[𝑎/𝑥]

Let us consider the inferred types for the intermediate terms when typechecking the
let expression:

• We infer the type and True T2 for the expression
@conj True T2 I v2
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• We perform the no-op substitution of v2 into that type to type the expression

let v2 : T2 := @conj True T1 I v0 in
@conj True T2 I v2

• We substitute T2 := and True T1 into this type to get the type and True
(and True T1) for the expression

let T2 : Prop := and True T1 in
let v2 : T2 := @conj True T1 I v0 in
@conj True T2 I v2

• We perform the no-op substitution of v1 into this type to get the type for the
expression

let v1 : T1 := @conj True T0 I v0 in
let T2 : Prop := and True T1 in
let v2 : T2 := @conj True T1 I v0 in
@conj True T2 I v2

• We substitute T1 := and True T0 into this type to get the type and True
(and True (and True T0)) for the expression

let T1 : Prop := and True T0 in
let v1 : T1 := @conj True T0 I v0 in
let T2 : Prop := and True T1 in
let v2 : T2 := @conj True T1 I v0 in
@conj True T2 I v2

• We perform the no-op substitution of v0 into this type to get the type for the
expression

let v0 : T0 := I in
let T1 : Prop := and True T0 in
let v1 : T1 := @conj True T0 I v0 in
let T2 : Prop := and True T1 in
let v2 : T2 := @conj True T1 I v0 in
@conj True T2 I v2

• Finally, we substitute T0 := True into this type to get the type and True (and
True (and True True)) for the expression

let T0 : Prop := True in
let v0 : T0 := I in
let T1 : Prop := and True T0 in
let v1 : T1 := @conj True T0 I v0 in
let T2 : Prop := and True T1 in
let v2 : T2 := @conj True T1 I v0 in
@conj True T2 I v2
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Note that we have performed linearly many substitutions into linearly sized types, so
unless substitution is constant-time in size of the term into which we’re substituting,
we incur quadratic overhead here. The story for function abstraction is similar.

We again have two choices to fix this: either we can change the typechecking rules
(which work just fine for small-to-medium-sized terms), or we can adjust typechecking
to deal with some sort of pending substitution data, so that we only do substitution
once.

The proof assistant can also try to heuristically share subterms for us. Many proof
assistants do some version of this, called hash consing.

However, hash consing looses a lot of its benefit if terms are not maximally shared
(and they almost never are), and it can lead to very unpredictable performance when
transformations unexpectedly cause a loss of sharing. Furthermore, it’s an open
problem how to efficiently persist full hash consing to disk in a way that allows for
diamond dependencies.

2.6.2 The Size of the Term
Recall that Coq (and dependently typed proof assistants in general) have terms which
serve as both programs and proofs. The essential function of a proof checker is to
verify that a given term has a given type. We obviously cannot type-check a term in
better than linear time in the size of the representation of the term.

Recall that we cannot place any hard bounds on complexity of typechecking a term,
as terms as simple as @eq_refl bool true proving that the Boolean true is equal
to itself can also be typechecked as proofs of arbitrarily complex decision procedures
returning success. For example, suppose the function f TM n takes as arguments a
description of a Turing machine TM and a number of steps n and outputs false unless
TM halts within n, in which case it instead outputs true. Then for any concrete number
n and any concrete description of a Turing machine TM which does in fact halt within
n steps, the term @eq_refl bool true can be typechecked as a proof of f TM n =
true because f TM n computes to true.

We might reasonably hope that typechecking problems which require no interesting
computation can be completed in time linear in the size of the term and its type.

However, some seemingly reasonable decisions can result in typechecking taking quadratic
time in the size of the term, as we saw in Section 2.6.1.

Even worse, typechecking can easily be unboundedly large in the size of the term
when the typechecker chooses the wrong constants to unfold, even when very little
work ought to be done.
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Consider the problem of typechecking @eq_refl nat (fact 100) : @id nat (fact
100) = fact 100, where fact is the factorial function on natural numbers and id
is the polymorphic identity function. If the typechecker either decides to unfold id
before unfolding fact, or if it performs a breadth-first search, then we get speedy
performance. However, if the typechecker instead unfolds id last, then we end up
computing the normal form of 100!, which takes a long time and a lot of memory.
See Figure 2-5.
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Figure 2-5: Timing of typechecking
@eq_refl nat (fact n) : @id nat
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Note that it is by no means obvious
that the typechecker can meaningfully
do anything about this. Breadth-first
search is significantly more complicated
than depth-first, is harder to write good
heuristics for, can incur enormous space
overheads, and can be massively slower
in cases where there are many options
and the standard heuristics for depth-
first unfolding in conversion-checking
are sufficient. Furthermore, the more
heuristics there are to tune conversion-
checking, the more “magic” the algo-
rithm seems, and the harder it is to de-
bug when the performance is inadequate.

As described in Section 2.2, in Fiat Cryptography, we got exponential slowdown due
to this issue, with an estimated overhead of over four thousand millennia of extra
typechecking time in the worst examples we were trying to handle.

2.6.3 The Number of Binders
This is a particular subcase of the above sections that we call out explicitly. Often
there will be some operation (for example, substitution, lifting, context creation) that
needs to happen every time there is a binder and which, when done naïvely, is linear
in the size of the term or the size of the context. As a result, naïve implementations
will often incur quadratic—or worse—overhead in the number of binders.

Similarly, if there is any operation that is even linear rather than constant in the
number of binders in the context, then any user operation in proof mode which must
be done, say, for each hypothesis will incur an overall quadratic-or-worse performance
penalty.

The claim of this subsection is not that any particular application is inherently con-
strained by a performance bottleneck in the number of binders, but instead that
it’s very, very easy to end up with quadratic-or-worse performance in the number of
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binders, and hence that this forms a meaningful cluster for performance bottlenecks
in practice.

I will attempt to demonstrate this point with a palette of actual historical performance
issues in Coq—some of which persist to this day—where the relevant axis was “number
of binders.” None of these performance issues are insurmountable, but all of them are
either a result of seemingly reasonable decisions, have subtle interplay with seemingly
disparate parts of the system, or else are to this day still mysterious despite the work
of developers to investigate them.

0 1,000 2,000 3,000 4,000

5 ⋅ 10−2

0.1

0.15

𝑛

time (s) vs. # binders

1000 name resolutions
3.74 ⋅ 10−5𝑛 + 1.03 ⋅ 10−2

Figure 2-6: Timing of internalizing a name
1000 times under 𝑛 binders

Name Resolution

One key component of interactive proof
assistants is figuring out which constant
is referred to by a given name. It may
be tempting to keep the context in an
array or linked list. However, if looking
up which constant or variable is referred
to by a name is 𝒪(𝑛), then internalizing
a term with 𝑛 typed binders is going to
be 𝒪(𝑛2), because we need to do name
lookups for each binder. See Coq bug
#9582; note that Coq 8.10 and later do
not show this superlinear behavior due
to Coq PR #9586, and hence our plots
in this section use Coq 8.9.1.
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Figure 2-7: Timing of internalizing a func-
tion with 𝑛 differently named arguments

See Figure 2-6 for the timing of name
resolution in Coq as a function of how
many binders are in the context. In par-
ticular, this plot measures the time it
takes to resolve the name I a thousand
times in a context with a given number
of binders.6 See Figure 2-7 for the effect
on internalizing a lambda with 𝑛 argu-
ments.

Capture-Avoiding Substitution

If the user is presented with a proof-
engine interface where all context vari-

6This is done by measuring the time it takes to execute do 1000 (let v := uconstr:(I) in
idtac).
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ables are named, then in general the proof engine must implement capture-avoiding
substitution. For example, if the user wants to operate inside the hole in (𝜆 x, let
y := x in 𝜆 x, _), then the user needs to be able to talk about the body of y,
which is not the same as the innermost x. However, if the 𝛼-renaming is even just
linear in the existing context, then creating a new hole under 𝑛 binders will take
𝒪(𝑛2) time in the worst case, as we may have to do 𝑛 renamings, each of which take
time 𝒪(𝑛). See Coq bug #9582, perhaps also Coq bug #8245 and Coq bug #8237
and Coq bug #8231.

This might be the cause of the difference in Figure 2-8b between having different
names (which do not need to be renamed) and having either no name (requiring
name generation) or having all binders with the same name (requiring renaming in
evar substitutions).

Quadratic Creation of Substitutions for Existential Variables

Recall that when we separate the trusted kernel from the untrusted proof engine, we
want to be able to represent not-yet-finished terms in the proof engine. The standard
way to do this is to enrich the type of terms with an “existential variable” node,
which stands for a term which will be filled later. Such an existential variable, or
evar, typically exists in a particular context. That is, when filling an evar, some
hypotheses are accessible while others are not.

Sometimes, reduction results in changing the context in which an evar exists. For
example, if we want to 𝛽-reduce (𝜆 x, ?e1) (S y), then the result is the evar ?e1
with S y substituted for x.

There are a number of ways to represent substitution, and the choices are entangled
with the choices of term representation.

Note that most substitutions are either identity or lifting substitutions.

One popular representation is the locally nameless representation [Cha12; Ler07],
which we discuss more in Section 3.1.3. However, if we use a locally nameless term
representation, then finding a compact representation for identity and lifting substi-
tutions is quite tricky. If the substitution representation takes 𝒪(𝑛) time to create
in a context of size 𝑛, then having a 𝜆 with 𝑛 arguments whose types are not known
takes 𝒪(𝑛2) time, because we end up creating identity substitutions for 𝑛 holes, with
linear-sized contexts.

Note that fully nameless, i.e. de Bruijn, term representations do not suffer from this
issue.

See Coq bug #8237 and Coq PR #11896 for a mitigation of some (but not all) issues.
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Figure 2-8: Performance Benchmarks for Substitution

See also Figure 2-8a and Figure 2-8b.

Quadratic Substitution in Function Application
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Figure 2-9: Timing of typechecking a
function applied to 𝑛 arguments

Consider the case of typechecking a nonde-
pendent function applied to 𝑛 arguments. If
substitution is performed eagerly, following
directly the rules of the type theory, then
typechecking is quadratic. This is because
the type of the function is 𝒪(𝑛), and doing
substitution 𝑛 times on a term of size 𝒪(𝑛)
is quadratic.

If the term representation contains 𝑛-ary ap-
plication nodes, it’s possible to resolve this
performance bottleneck by delaying the sub-
stitutions. If only unary application nodes
exist, it’s much harder to solve.

Note that this is important, for example, in attempts to avoid the problem of quadrat-
ically sized certificates by making a 𝑛-ary conjunction constructor which is param-
eterized on a list of the conjuncts. Such a function could then be applied to the 𝑛
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proofs of the conjuncts.

We’ve reported these issues in Coq in Coq bug #8232 and Coq bug #12118, and a
partial solution has been merged in Coq PR #8255.

See Figure 2-9 for timing details on a microbenchmark of this bottleneck, where we
use Ltac2 to build an application of a function to 𝑛 arguments of type unit. Ltac2 is
a relatively recent successor to the ℒtac tactic language, which allows more low-level
operations that provide more fine-grained control over what the proof assistant is
actually doing.

Quadratic Normalization by Evaluation
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Figure 2-10: Timing of running cbv and
lazy reduction on interpreting a PHOAS
expression as a function of the number of
binders

Normalization by evaluation (NbE) is a
nifty way to implement reduction where
function abstraction in the object lan-
guage is represented by function ab-
straction in the metalanguage. We dis-
cuss the details of how to implement
NbE in Subsection 4.3.2. Coq uses NbE
to implement two of its reduction ma-
chines (lazy and cbv).

The details of implementing NbE de-
pend on the term representation used.
If a fancy term encoding like PHOAS,
which we explain in Section 3.1.3, is
used, then it’s not hard to implement
a good NbE algorithm. However, such
fancy term representations incur unpre-
dictable and hard-to-deal-with perfor-
mance costs. Most languages do not
do any reduction on thunks until they
are called with arguments, which means
that forcing early reduction of a PHOAS-like term representation requires round-
tripping though another term representation, which can be costly on large terms if
there is not much to reduce. On the other hand, other term representations need to
implement either capture-avoiding substitution (for named representations) or index
lifting (for de Bruijn and locally nameless representations).

The sort-of obvious way to implement this transformation is to write a function that
takes a term and a binder and either renames the binder for capture-avoiding sub-
stitution or else lifts the indices of the term. The problem with this implementation
is that if we call it every time we move a term under a binder, then moving a term
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under 𝑛 binders traverses the term 𝑛 times. If the term size is also proportional to
𝑛, then the result is quadratic blowup in the number of binders.

See Coq bug #11151 for an occurrence of this performance issue in the wild in Coq.
See also Figure 2-10.

Quadratic Closure Compilation

It’s important to be able to perform reduction of terms in an optimized way. When
doing optimized reduction in an imperative language, we need to represent closures—
abstraction nodes—in some way. Often this involves associating to each closure both
some information about or code implementing the body of the function, as well as
the values of all of the free variables of that closure [SA00]. In order to have efficient
lookup, we need to know the memory location storing the value of any given variable
statically at closure-compilation time. The standard way of doing this is to allocate
an array of values for each closure. If variables are represented with de Bruijn indices,
for example, it’s then a very easy array lookup to get the value of any variable. Note
that this allocation is linear in the number of free variables of a term. If we have many
nested binders and use all of them underneath all the binders, then every abstraction
node has as many free variables as there are total binders, and hence we get quadratic
overhead.

See Coq bug #11151 and Coq bug #11964 and OCaml bug #7826 for an occurrence
of this issue in the wild. Note that this issue rarely shows up in hand-written code,
only in generated code, so developers of compilers such as ocamlc and gcc might
be uninterested in optimizing this case. However, it’s quite essential when doing
metaprogramming involving large generated terms. It’s especially essential if we
want to chain together reflective automation passes that operate on different input
languages and therefore require denotation and reification between the passes. In
such cases, unless our encoding language uses named or de Bruijn variable encoding,
there’s no way to avoid large numbers of nested binders at compilation time while
preserving code sharing. Hence if we’re trying to reuse the work of existing compilers
to bootstrap good performance of reduction (as is the case for the native compiler in
Coq), we have trouble with cases such as this one.

See also Figure 2-11a and Figure 2-11b.

2.6.4 The Number of Nested Abstraction Barriers
This axis is the most theoretical of the axes. An abstraction barrier is an interface
for making use of code, definitions, and theorems. For example, we might define
nonnegative integers using a binary representation and present the interface of zero,
successor, and the standard induction principle, along with an equational theory for
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Figure 2-11: Timing of running reduction on interpreting a PHOAS expression as a
function of the number of binders

how induction behaves on zero and successor. We might use lists and nonnegative
integers to implement a hash-set datatype for storing sets of hashable values and
present the hash-set with methods for empty, add, remove, membership-testing, and
some sort of fold. Each of these is an abstraction barrier.

There are three primary ways that nested abstraction barriers can lead to performance
bottlenecks: one involving conversion missteps and two involving exponential blow-up
in the size of types.

Conversion Troubles

If abstraction barriers are not perfectly opaque—that is, if the typechecker ever has
to unfold the definitions making up the API in order to typecheck a term—then
every additional abstraction barrier provides another opportunity for the typechecker
to pick the wrong constant to unfold first. In some typecheckers, such as Coq, it’s
possible to provide hints to the typechecker to inform it which constants to unfold
when. In such a system, it’s possible to carefully craft conversion hints so that
abstraction barriers are always unfolded in the right order. Alternatively, it might be
possible to carefully craft a system which picks the right order of unfolding by using
a dependency analysis.

However, most users don’t bother to set up hints like this, and dependency analysis
isn’t sufficient to determine which abstraction barrier is “higher up” when there are
many parts of it, only some of which are mentioned in any given part of the next
abstraction barrier. The reason users don’t set up hints like this is that usually it’s
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not necessary. There’s often minimal overhead, and things just work, even when
the wrong path is picked—until the number of abstraction barriers or the size of the
underlying term gets large enough. Then we get noticeable exponential blowup and
our development no longer terminates in reasonable time. Furthermore, it’s hard to
know which part of conversion is incurring exponential blowup, and thus one has to
basically get all of the conversion hints right, simultaneously, without any feedback,
to see any performance improvement.

Type-Size Blowup: Abstraction Barrier Mismatch

When abstraction barriers are leaky or misaligned, there’s a cost that accumulates
in the size of the types of theorems. Consider, for example, the two different ways
of using tuples: (1) we can use the projections fst and snd; or (2) we can use
the eliminator pair_rect : ∀ A B (P : A × B → Type), (∀ a b, P (a, b))
→ ∀ x, P x. The first gets us access to one element of the tuple at a time, while
the second has us using all elements of the tuple simultaneously.

Suppose now there is one API defined in terms of fst and snd and another API
defined in terms of pair_rect. To make these APIs interoperate, we need to convert
explicitly from one representation to another. Furthermore, every theorem about the
composition of these APIs needs to include the interoperation in talking about how
they relate.

If such API mismatches are nested, or if this code-size blowup interacts with conver-
sion missteps, then the performance issues compound.

Let us consider things a bit more generally.

Structure and Interpretation of Computer Programs defines abstraction as naming and
manipulating compound elements as units [SSA96, p. 6]. An abstraction barrier is a
collection of definitions and theorems about those definitions that together provide
an interface for such a compound element. For example, we might define an interface
for sorting a list, together with a proof that sorting any list results in a sorted list. Or
we might define an interface for key-value maps (perhaps implemented as association
lists, or hash-maps, or binary search trees, or in some other way).

Piercing an abstraction barrier is the act of manipulating the compound element by
its components, rather than through the interface. For example, suppose we have
implemented key-value maps as association lists, representing the map as a list of
key-value pairs, and provided some interface. Any function which, for example, asks
for the first element of the association list has pierced the abstraction barrier of our
interface.

We might say that an abstraction barrier is leaky if we ever need to pierce it, or perhaps
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if our program does in fact pierce the abstraction barrier, even if the piercing is
needless. (Which definition we choose is not of great significance for this dissertation.)

In proof assistants like Coq, using unfold, simpl, or cbn can often indicate a leaky
abstraction barrier, where in order to prove a property we unfold the interface we
are given to see how it is implemented. This is all well and good when we are in
the process of defining the abstraction barrier—unfolding the definition of sorting a
list, for example, to prove that sorting the list gives back a list with all the same
elements—but can be problematic when used more pervasively.

Let us look at an example from a category-theory library we implemented in Coq [GCS14],
which we introduce in Section 7.3. Category theory generalizes functions and product
types, and the example we present here is a category-theoretic version of the isomor-
phism between functions of type 𝐶1×𝐶2 → 𝐷, which take a pair of elements 𝑐1 ∈ 𝐶1
and 𝑐2 ∈ 𝐶2 and return an element of 𝐷, and functions of type 𝐶1 → (𝐶2 → 𝐷)
which take a single argument 𝑐1 ∈ 𝐶1 and return a function from 𝐶2 to 𝐷. We write
this isomorphism as

(𝐶1 ×𝐶2 → 𝐷) ≅ (𝐶1 → (𝐶2 → 𝐷))

In computer science, this is known as (un)currying. The abstractions used in formal-
izing this example are as follows

• A category 𝒞 is a collection of objects and composable arrows (called mor-
phisms) between those objects, subject to some algebraic laws. The class of ob-
jects is generally denoted Ob𝒞, and the class of morphisms between 𝑥, 𝑦 ∈ Ob𝒞
is generally denoted Hom𝒞(𝑥, 𝑦). Categories are a sort of generalization of sets
or types.

• The product category 𝒞 ×𝒟 generalizes the Cartesian product of sets.

• An isomorphism between objects 𝑥 and 𝑦 in a category 𝒞, written 𝑥 ≅ 𝑦, is a
pair of morphisms from 𝑥 to 𝑦 and from 𝑦 to 𝑥 such that the composition in
either direction is the identity morphism.

• A functor is an arrow between categories, mapping objects to objects and mor-
phisms to morphisms, subject to some algebraic laws. The action of a functor
𝐹 on an object 𝑥 is often denoted 𝐹(𝑥). As the action of 𝐹 on a morphism 𝑚
is often also denoted 𝐹(𝑚), we will use 𝐹0 to denote the action on objects and
𝐹1 to denote the action on morphisms when it might otherwise be unclear.

• A natural transformation is an arrow between functors 𝐹 and 𝐺 consisting of
a way of mapping from the on-object-action of 𝐹 to the on-object-action of 𝐺,
satisfying some algebraic laws.
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• A category of functors 𝒞 → 𝒟 is the category whose objects are functors from
𝒞 to 𝒟 and whose morphisms are natural transformations. This category gen-
eralizes the notion of function types or of sets of functions.

• The category of categories, generally denoted Cat, is a category whose objects
are themselves categories and whose morphisms are functors. Much like the
set of all sets or the type of all types, the categories in Cat are subject to size
restrictions discussed further in Section 8.2.1.

Although we eventually go into a bit more of the detail of these definitions throughout
Section 8.2.1, we advise the interested reader to consult the rich existing literature
on category theory, including for example Awodey [Awo] and Mac Lane [Mac]. These
are by no means required reading, though; most of this dissertation is unrelated to
category theory, and we have aimed to make even the parts related to category theory
relatively accessible to readers with no category-theoretic background.

There are only seven components of the isomorphism (𝒞1×𝒞2 → 𝒟) ≅ (𝒞1 → (𝒞2 →
𝒟)) which are not proofs of algebraic laws. Their definition, spelled out in Figure 2-12
and given in Gallina Coq code (with suitable notations) in Figure 2-13, is relatively
trivial.

Typechecking the code that defines these components, however, takes nearly two sec-
onds! This is more than 200× slower than it needs to be. The essential structure
needed to define these components can be defined without any of the categorical indi-
rection, taking 𝒞1, 𝒞2, and 𝒟 to be types and taking morphisms in these “categories”
to be proofs of equality between morphism sources and targets. Defining the struc-
ture of the seven components in this way nets us a 200× speedup!7 We attribute the
overhead of the categorical definition to the large types generated and the nontrivial
conversion problems which require unfolding various definitions, i.e., piercing various
abstraction barriers.

While two seconds is long, there is an even more serious issue that arises when at-
tempting to prove the algebraic laws. The types here are already a bit long: The goal
that going from (𝐶1 ×𝐶2 → 𝐷) to (𝐶1 → (𝐶2 → 𝐷)) and back again is the identity
is only about 24 lines after 𝛽 reduction (when Set Printing All is on, there are
about 3 300 words).

However, if we pierce the abstraction barrier of functor composition, the goal blows
up to about 254 lines (about 18 000 words with Set Printing All)! This blow-
up is due to the fact that the opaque proofs that functor composition is functorial
take the entirety of the functors being composed as arguments. Hence unfolding the
composition of two functors duplicates those functors many times over. If we must
compose more than two functors, we get even more blow-up.

7See Appendix A.1.1 for the code used to make this timing measurement.
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To define currying, going from (𝒞1 × 𝒞2 → 𝒟) to (𝒞1 → (𝒞2 → 𝒟)):

1. Each functor 𝐹 ∶ 𝒞1 × 𝒞2 → 𝒟 gets mapped to a functor which takes in an
object 𝑐1 ∈ Ob𝒞1

and returns a functor which takes in an object 𝑐2 ∈ Ob𝒞2
and

returns the object 𝐹((𝑐1, 𝑐2)) ∈ Ob𝒟.

2. The action of the returned functor on morphisms in 𝒞2 is to first lift this mor-
phism from 𝒞2 to 𝒞1 × 𝒞2 by pairing with the identity morphism on 𝑐1, and
then to return the image of this morphism under 𝐹.

3. The action of the outer functor on morphisms 𝑚1 ∈ Hom𝒞1
is to return the

natural transformation which, for each object 𝑐2 ∈ Ob𝒞2
first pairs the mor-

phism 𝑚1 with the identity on 𝑐2 and then returns the image of this morphism
in 𝒞1 × 𝒞2 under 𝐹.

4. Each natural transformation 𝑇 ∈ Hom𝒞1×𝒞2→𝒟 gets mapped to the natural
transformation in 𝒞1 → (𝒞2 → 𝒟) which, after binding 𝑐1 and 𝑐2, returns the
morphism in 𝒟 given by the action of 𝑇 on (𝑐1, 𝑐2).

To define uncurrying, going from (𝒞1 → (𝒞2 → 𝒟)) to (𝒞1 × 𝒞2 → 𝒟):

5. Each functor 𝐹 ∶ 𝒞1 → (𝒞2 → 𝒟) gets mapped to the functor which takes in
an object (𝑐1, 𝑐2) ∈ Ob𝒞1×𝒞2

and returns (𝐹(𝑐1))(𝑐2).

6. The action of this functor on morphisms (𝑚1,𝑚2) ∈ Hom𝒞1×𝒞2
is to compose

𝐹(𝑚1) applied to a suitable object of 𝒞2 with 𝐹 applied to a suitable object of
𝑐1 and then applied to 𝑚2.

7. Each natural transformation 𝑇 ∈ Hom𝒞1→(𝒞2→𝒟) gets mapped to the natural
transformation which maps each object (𝑐1, 𝑐2) ∈ Ob𝒞1×𝒞2

to the morphism
(𝑇 (𝑐1))(𝑐2) in Hom𝒟.

While this is a mouthful, there is no insight in any of these definitions; for each
component, there is exactly one choice that can be made which has the correct type.

Figure 2-12: The interesting components of (𝒞1 × 𝒞2 → 𝒟) ≅ (𝒞1 → (𝒞2 → 𝒟)).
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(** [(C1 × C2 → D) ≅ (C1 → (C2 → D))] *)
(** We denote functors by pairs of maps on objects ([𝜆o]) and

morphisms ([𝜆m ]), and natural transformations as a single map
([𝜆t]) *)

Time Program Definition curry_iso (C1 C2 D : Category)
: (C1 * C2 -> D) ≅ (C1 -> (C2 -> D)) :>>> Cat
:= {| fwd

:= 𝜆o F, 𝜆o c1, 𝜆o c2, F 0 (c1, c2)
; 𝜆m m , F 1 (identity c1, m)

; 𝜆m m1, 𝜆t c2, F 1 (m1, identity c2)
; 𝜆m T, 𝜆t c1, 𝜆t c2, T (c1, c2);

bwd
:= 𝜆o F, 𝜆o '(c1, c2), (F 0 c1)0 c2

; 𝜆m '(m1, m2), (F 1 m1) _ ∘ (F 0 _)1 m2
; 𝜆m T, 𝜆t '(c1, c2), (T c1) c2 |}.

(* Finished transaction in 1.958 secs (1.958u,0.s) (successful) *)
Figure 2-13: The interesting components of (𝒞1 × 𝒞2 → 𝒟) ≅ (𝒞1 → (𝒞2 → 𝒟)),
in Coq. The surrounding definitions and notations required for this example to type-
check are given in Appendix A.1.

Piercing this barrier also shows up in proof-checking time. If we first decompose the
goal into the separate equalities we wish to prove and only then unfold the abstraction
barrier (thereby side-stepping the issue of passing large arguments to opaque proofs),
it takes less than a tenth of a second to prove each of the two algebraic laws of the
isomorphism. However, if we instead unfold the definitions first and then decompose
the goal into separate goals, it takes about 5× longer to check the proof.

Readers interested in the full compiling code for this example can refer to Ap-
pendix A.1.

Type Size Blowup: Packed vs. Unpacked Records

When designing APIs, especially of mathematical objects, one of the biggest choices
is whether to pack the records or whether to pass arguments in as fields. That is,
when defining a monoid, for example, there are five ways to go about specifying it:

1. (packed) A monoid consists of a type 𝐴, a binary operation ⋅ ∶ 𝐴 → 𝐴 → 𝐴,
an identity element 𝑒, a proof that 𝑒 is a left and right identity 𝑒 ⋅ 𝑎 = 𝑎 ⋅ 𝑒 = 𝑎
for all 𝑎, and a proof of associativity that (𝑎 ⋅ 𝑏) ⋅ 𝑐 = 𝑎 ⋅ (𝑏 ⋅ 𝑐).

2. A monoid on a carrier type 𝐴 consists of a binary operation ⋅ ∶ 𝐴 → 𝐴 → 𝐴,
an identity element 𝑒, a proof that 𝑒 is a left and right identity, and a proof of
associativity.
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3. A monoid on a carrier type 𝐴 under the binary operation ⋅ ∶ 𝐴 → 𝐴 → 𝐴
consists of an identity element 𝑒, a proof that 𝑒 is a left and right identity, and
a proof of associativity.

4. (mostly unpacked) A monoid on a carrier type 𝐴 under the binary operation
⋅ ∶ 𝐴 → 𝐴 → 𝐴 with identity element 𝑒 consists of a proof that 𝑒 is a left
and right identity and a proof of associativity. Note that MathClasses [KSW;
SW11; SW10] uses this strategy, as discussed in Garillot et al. [Gar+09b].

5. (fully unpacked) A monoid on a carrier type 𝐴 under the binary operation
⋅ ∶ 𝐴 → 𝐴 → 𝐴 with identity element 𝑒 using a proof 𝑝 that 𝑒 is a left and
right identity and a proof of 𝑞 of associativity consists of an element of the
one-element unit type.

If we go with anything but the fully packed design, then we incur exponential overhead
as we go up abstraction layers, as follows. A monoid homomorphism from a monoid
𝐴 to a monoid 𝐵 consists of a function between the carrier types and proofs that
this function respects composition and identity. If we use an unpacked definition of
monoid with 𝑛 type parameters, then a similar definition of a monoid homomorphism
involves at least 2𝑛 + 2 type parameters. In higher category theory, it’s common to
talk about morphisms between morphisms, and every additional layer here doubles
the number of type arguments, and this can quickly lead to very large terms, resulting
is major performance bottlenecks. Note that number of type parameters determines
the constant factor out front of the exponential growth in the number of layers of
mathematical constructions.

How much is this overhead concretely? When developing a category-theory library [GCS14],
described in more detail in Section 7.3, we sped up overall compilation time by ap-
proximately a factor of two, from around 16 minutes to around 8 minutes, by changing
one of the two parameters to a field in the definition of a category.8

2.7 Conclusion of This Chapter
We hope the reader now has a sense of the landscape of superlinear performance
bottlenecks we’ve seen in dependently typed proof assistants. In the chapters to
come, we invite the reader to keep in the back of their mind the four axes we’ve laid
out as scaling factors in most performance bottlenecks we’ve encountered—the size
of the type, the size of the term, the number of binders, and the number of nested
abstraction barriers.

8See commit 209231a of JasonGross/catdb on GitHub for details.
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Chapter 3

Reflective Program Transformation

3.1 Introduction
Proof by reflection [Bou97] is an established method for employing verified proof
procedures, within larger proofs [MCB14; Mal+13; Mal17; GMT16]. There are a
number of benefits to using verified functional programs written in the proof assis-
tant’s logic, instead of tactic scripts. We can often prove that procedures always
terminate without attempting fallacious proof steps, and perhaps we can even prove
that a procedure gives logically complete answers, for instance telling us definitively
whether a proposition is true or false. In contrast, tactic-based procedures may en-
counter runtime errors or loop forever. As a consequence, if we want to keep the
trusted codebase small, as discussed in Subsection 1.3.2, these tactic procedures must
output proof terms, justifying their decisions, and these terms can grow large, making
for slower proving and requiring transmission of large proof terms to be checked slowly
by others. A verified procedure need not generate a certificate for each invocation.

3.1.1 Proof-Script Primer
Basic Coq proofs are often written as lists of steps such as induction on some struc-
ture, rewrite using a known equivalence, or unfold of a definition. As mentioned
in Section 1.1, proofs can very quickly become long and tedious, both to write and
to read, and hence Coq provides ℒtac, a scripting language for proofs, which we first
mentioned in Subsection 1.3.2. As theorems and proofs grow in complexity, users
frequently run into performance and maintainability issues with ℒtac, some of which
we’ve seen in Chapter 2. Consider the case where we want to prove that a large
algebraic expression, involving many let … in … expressions, is even:

Inductive is_even : nat → Prop :=
| even_O : is_even O
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| even_SS : forall x, is_even x → is_even (S (S x)).

Goal is_even (let x := 100 * 100 * 100 * 100 in
let y := x * x * x * x in
y * y * y * y).

Coq stack-overflows if we try to reduce this goal. As a workaround, we might write
a lemma that talks about evenness of let … in …, plus one about evenness of mul-
tiplication, and we might then write a tactic that composes such lemmas.

Even on smaller terms, though, proof size can quickly become an issue. If we give
a naïve proof that 7000 is even, the proof term will contain all of the even numbers
between 0 and 7000, giving a proof-term-size blow-up at least quadratic in size (re-
calling that natural numbers are represented in unary; the challenges remain for more
efficient base encodings). Clever readers will notice that Coq could share subterms
in the proof tree, recovering a term that is linear in the size of the goal. However,
such sharing would have to be preserved very carefully, to prevent size blow-up from
unexpected loss of sharing, and today’s Coq version does not do that sharing. Even if
it did, tactics that rely on assumptions about Coq’s sharing strategy become harder
to debug, rather than easier.

3.1.2 Reflective-Automation Primer
Enter reflective automation, which simultaneously solves both the problem of per-
formance and the problem of debuggability. Proof terms, in a sense, are traces of a
proof script. They provide Coq’s kernel with a term that it can check to verify that
no illegal steps were taken. Listing every step results in large traces.

Fixpoint check_is_even (n : nat) : bool
:= match n with

| 0 => true
| 1 => false
| S (S n) => check_is_even n
end.

Figure 3-1: Evenness Checking

The idea of reflective automation
is that, if we can get a formal en-
coding of our goal, plus an algo-
rithm to check the property we care
about, then we can do much better
than storing the entire trace of the
program. We can prove that our
checker is correct once and for all,
removing the need to trace its steps.

A simple evenness checker can just operate on the unary encoding of natural numbers
(Figure 3-1). We can use its correctness theorem to prove goals much more quickly:

Theorem soundness : forall n, check_is_even n = true → is_even n.

Goal is_even 2000.

58



Time repeat (apply even_SS || apply even_O). (* 1.8 s *)
Undo.
Time apply soundness; vm_compute; reflexivity. (* 0.004 s *)

The tactic vm_compute tells Coq to use its virtual machine for reduction, to compute
the value of check_is_even 2000, after which reflexivity proves that true =
true. Note how much faster this method is. In fact, even the asymptotic complexity
is better; this new algorithm is linear rather than quadratic in n.

However, even this procedure takes a bit over three minutes to prove the goal is_even
(10 * 10 * 10 * 10 * 10 * 10 * 10 * 10 * 10). To do better, we need a formal
representation of terms or expressions.

3.1.3 Reflective-Syntax Primer
Sometimes, to achieve faster proofs, we must be able to tell, for example, whether we
got a term by multiplication or by addition, and not merely whether its normal form
is 0 or a successor.1

A reflective automation procedure generally has two steps. The first step is to reify
the goal into some abstract syntactic representation, which we call the term language
or an expression language. The second step is to run the algorithm on the reified
syntax.

Inductive expr :=
| NatO : expr
| NatS (x : expr) : expr
| NatMul (x y : expr) : expr.

Figure 3-2: Simple Expressions

What should our expression language include?
At a bare minimum, we must have multiplica-
tion nodes, and we must have nat literals. If
we encode S and O separately, a decision that
will become important later in Section 6.2, we
get the inductive type of Figure 3-2.

Before diving into methods of reification, let us write the evenness checker.

Fixpoint check_is_even_expr (t : expr) : bool
:= match t with

| NatO => true
| NatS x => negb (check_is_even_expr x)
| NatMul x y => orb (check_is_even_expr x) (check_is_even_expr y)
end.

Before we can state the soundness theorem (whenever this checker returns true, the
1Sometimes this distinction is necessary for generating a proof at all, as is the case in nsatz and

romega; there is no way to prove that addition is commutative if you cannot identify what numbers
you were adding in the first place.
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represented number is even), we must write the function that tells us what number
our expression represents, called denotation or interpretation:

Fixpoint denote (t : expr) : nat
:= match t with

| NatO => O
| NatS x => S (denote x)
| NatMul x y => denote x * denote y
end.

Theorem check_is_even_expr_sound (e : expr)
: check_is_even_expr e = true → is_even (denote e).

Given a tactic Reify to produce a reified term from a nat, we can time the execution
of check_is_even_expr in Coq’s VM. It is instant on the last example.

Before we proceed to reification, we will introduce one more complexity. If we want to
support our initial example with let … in … efficiently, we must also have let expres-
sions. Our current procedure that inlines let expressions takes 19 seconds, for exam-
ple, on let x0 := 10 * 10 in let x1 := x0 * x0 in … let x24 := x23 * x23
in x24. The choices of representation of binders, which are essential to encoding let
expressions, include higher-order abstract syntax (HOAS) [PE88], parametric higher-
order abstract syntax (PHOAS) [Chl08] which is also known as weak HOAS [CS13],
de Bruijn indices [Bru72], nominal representations [Pit03], locally nameless represen-
tations [Cha12; Ler07], named representations, and nested abstract syntax [HM12;
BP99]. A survey of a number of options for binding can be found in [Ayd+08].

Although we will eventually choose the PHOAS representation for the tools presented
in Chapters 4 and 6, we will also briefly survey some of the options for encoding
binders, with an eye towards performance implications.

PHOAS

The PHOAS representation [Chl08; CS13] is particularly convenient. In PHOAS,
expression binders are represented by binders in Gallina, the functional language of
Coq, and the expression language is parameterized over the type of the binder. Let
us define a constant and notation for let expressions as definitions (a common choice
in real Coq developments, to block Coq’s default behavior of inlining let binders
silently; the same choice will also turn out to be useful for reification later). We thus
have:

Inductive expr {var : Type} :=
| NatO : expr
| NatS : expr → expr
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| NatMul : expr → expr → expr
| Var : var → expr
| LetIn : expr → (var → expr) → expr.
Notation "'elet' x := v 'in' f" := (LetIn v (fun x => f))

(x ident, at level 200).

Definition Let_In {A B} (v : A) (f : A → B) := let x := v in f x.
Notation "'dlet' x := v 'in' f" := (Let_In v (fun x => f))

(x ident, at level 200).

Conventionally, syntax trees are parametric over the value of the var parameter,
which we may instantiate in various ways to allow variable nodes to hold various
kinds of information, and we might define a type for these parametric syntax trees:

Definition Expr := ∀ var, @expr var.

Note, importantly, that check_is_even_expr and denote will take exprs with dif-
ferent instantiations of the var parameters, as seen in Figure 3-3. This is necessary
so that we can store the information about whether or not a particular let-bound
expression is even (or what its denotation is) in the variable node itself. However, this
means that we cannot reuse the same expression as arguments to both functions to
formulate the soundness condition. Instead, we must introduce a notion of relatedness
of expressions with different instantiations of the var parameter.

Fixpoint denote (t : @expr nat) : nat
:= match t with

| NatO => O
| NatS x => S (denote x)
| NatMul x y => denote x * denote y
| Var v => v
| LetIn v f => dlet x := denote v in denote (f x)
end.

Fixpoint check_is_even_expr (t : @expr bool) : bool
:= match t with

| NatO => true
| NatS x => negb (check_is_even_expr x)
| NatMul x y => orb (check_is_even_expr x) (check_is_even_expr y)
| Var v_even => v_even
| LetIn v f => let v_even := check_is_even_expr v in

check_is_even_expr (f v_even)
end.

Figure 3-3: Two definitions using two different instantiations of the PHOAS var
parameter.
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Inductive related {var1 var2 : Type}
: list (var1 * var2) → @expr var1 → @expr var2 → Prop :=

| RelatedNatO {Γ}
: related Γ NatO NatO

| RelatedNatS {Γ e1 e2}
: related Γ e1 e2 → related Γ (NatS e1) (NatS e2)

| RelatedNatMul {Γ x1 x2 y1 y2}
: related Γ x1 x2 → related Γ y1 y2

→ related Γ (NatMul x1 y1) (NatMul x2 y2)
| RelatedVar {Γ v1 v2}
: (v1, v2) ∈ Γ → related Γ (Var v1) (Var v2)

| RelatedLetIn {Γ e1 e2 f1 f2}
: related Γ e1 e2

→ (∀ v1 v2, related ((v1, v2) :: Γ) (f1 v1) (f2 v2))
→ related Γ (LetIn e1 f1) (LetIn e2 f2).

Figure 3-4: A PHOAS relatedness predicate

A PHOAS relatedness predicate has one constructor for each constructor of expr,
essentially encoding that the two expressions have the same structure. For the Var
case, we defer to membership in a list of “related” variables, which we extend each
time we go underneath a binder. See Figure 3-4 for such an inductive predicate.

We require that all instantiations give related ASTs (in the empty context), whence
we call the parametric AST well-formed:

Definition Wf (e : Expr) := ∀ var1 var2, related [] (e var1) (e var2)

We could then prove a modified form of our soundness theorem:

Theorem check_is_even_expr_sound (e : Expr) (H : Wf e)
: check_is_even_expr (e bool) = true → is_even (denote (e nat)).

To complete the picture, we would need a tactic Reify which took in a term of type
nat and gave back a term of type forall var, @expr var, plus a tactic prove_wf
which solved a goal of the form Wf e by repeated application of constructors. Given
these, we could solve an evenness goal by writing2

2Note that for the refine to be fast, we must issue something like Strategy -10 [denote] to
tell Coq to unfold denote before Let_In. Alternatively, we may issue something like Strategy 10
[Let_In] to tell Coq to unfold Let_In only after unfolding any constant with no Strategy decla-
ration. This invocation may look familiar to those readers who read the footnotes in Section 2.2
(Exponential Domain), as in fact this is the issue at the root cause of the exponential performance
blowup which resulted in numbers like “over 4 000 millennia” in an earlier version of Fiat Cryptog-
raphy.
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match goal with
| [ |- is_even ?v ]

=> let e := Reify v in
refine (check_is_even_expr_sound e _ _);
[ prove_wf | vm_compute; reflexivity ]

end.

Multiple Types

One important point, not yet mentioned, is that sometimes we want our reflective
language to handle multiple types of terms. For example, we might want to enrich
our language of expressions with lists. Since expressions like “take the successor of
this list” don’t make sense, the natural choice is to index the inductive over codes for
types.

We might write:

Inductive type := Nat | List (_ : type).
Inductive expr {var : type → Type} : type → Type :=
| NatO : expr Nat
| NatS : expr Nat → expr Nat
| NatMul : expr Nat → expr Nat → expr Nat
| Var {t} : var t → expr t
| LetIn {t1 t2} : expr t1 → (var t1 → expr t2) → expr t2
| Nil {t} : expr (List t)
| Cons {t} : expr t → expr (List t) → expr (List t)
| Length {t} : expr (List t) → expr Nat.

We would then have to adjust the definitions of the other functions accordingly. The
type signatures of these functions might become

Fixpoint denote_type (t : type) : Type
:= match t with

| Nat => nat
| List t => list (denote_type t)
end.

Fixpoint even_data_of_type (t : type) : Type
:= match t with

| Nat => bool (* is the nat even or not? *)
| List t => list (even_data_of_type t)
end.

Fixpoint denote {t} (e : @expr denote_type t) : denote_type t.
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Fixpoint check_is_even_expr {t} (e : @expr even_data_of_type t)
: even_data_of_type t.

Inductive related {var1 var2 : type → Type}
: list { t : type & var1 t * var2 t}

→ ∀ {t}, @expr var1 t → @expr var2 t → Prop.

Definition Expr (t : type) := ∀ var, @expr var t.

Definition Wf {t} (e : Expr t)
:= ∀ var1 var2, related [] (e var1) (e var2).

See Chlipala [Chl08] for a fuller treatment.

de Bruijn Indices

The idea behind de Bruijn indices is that variables are encoded by numbers which
count up starting from the nearest enclosing binder. We might write

Inductive expr :=
| NatO : expr
| NatS : expr → expr
| NatMul : expr → expr → expr
| Var : nat → expr
| LetIn : expr → expr → expr.

Fixpoint denote (default : nat) (Γ : list nat) (t : @expr nat) : nat
:= match t with

| NatO => O
| NatS x => S (denote default Γ x)
| NatMul x y => denote default Γ x * denote default Γ y
| Var idx => nth_default default Γ idx
| LetIn v f => dlet x := denote default Γ v in

denote default (x :: Γ) f
end.

If we wanted a more efficient representation, we could choose better data structures
for the context Γ and variable indices than linked lists and unary-encoded natu-
ral numbers. One particularly convenient choice, in Coq, would be using the effi-
cient PositiveMap.t data structure which encodes a finite map of binary-encoded
positives to any type.

One unfortunate result is that the natural denotation function is no longer total. Here
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we have chosen to give a denotation function which returns a default element when
a variable reference is too large, but we could instead choose to return an option
nat. In general, however, returning an optional result significantly complicates the
denotation function when binders are involved, because the types A → option B
and option (A → B) are not isomorphic. On the other hand, requiring a default
denotation prevents syntax trees from being able to represent possibly empty types.

This causes further problems when dealing with an AST type which can represent
terms of multiple types. In that case, we might annotate each variable node with
a type code, mandate decidable equality of type codes, and then during denotation,
we’d check the type of the variable node with the type of the corresponding variable
in the context.

Nested Abstract Syntax

If we want a variant of de Bruijn indices which guarantees well-typed syntax trees,
we can use nested abstract syntax [HM12; BP99]. On monotyped ASTs, this looks
like encoding the size of the context in the type of the expressions. For example, we
could use option types [HM12]:

Notation "^ V" := (option V).
Inductive expr : Type → Type :=
| NatO {V} : expr V
| NatS {V} : expr V → expr V
| NatMul {V} : expr V → expr V → expr V
| Var {V} : V → expr V
| LetIn {V} : expr V → expr (^V) → expr V.

This may seem a bit strange to those accustomed to encodings of terms in proof
assistants, but it generalizes to a quite familiar intrinsic encoding of dependent type
theory using types, contexts, and terms [Ben+12]. Namely, when the expressions are
multityped, we end up with something like

Inductive context :=
| emp : context
| push : type → context → context.

Inductive var : context → type → Type :=
| Var0 {t Γ} : var (push t Γ) t
| VarS {t t' Γ} : var Γ t → var (push t' Γ) t.

Inductive expr : context → type → Type :=
| NatO {Γ} : expr Γ Nat
| NatS {Γ} : expr Γ Nat → expr Γ Nat
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| NatMul {Γ} : expr Γ Nat → expr Γ Nat → expr Γ Nat
| Var {t Γ} : var Γ t → expr Γ t
| LetIn {Γ t1 t2} : expr Γ t1 → expr (push t1 Γ) t2 → expr Γ t2.

Note that this generalizes nicely to codes for dependent types if the proof assistant
supports induction-induction.

Although this representation enjoys both decidable equality of binders (like de Bruijn
indices), as well as being well-typed-by-construction (like PHOAS), it’s unfortunately
unfit for coding algorithms that need to scale without massive assistance from the
proof assistant. In particular, the naïve encoding of this inductive datatype incurs a
quadratic overhead in representing terms involving binders, because each node stores
the entire context. It is possible in theory to avoid this blowup by dropping the indices
of the inductive type from the runtime representation [BMM03]. One way to simulate
this in Coq would be to put context in Prop and then extract the code to OCaml,
which erases the Props. Alternatively, if Coq is extended with support for dropping
irrelevant subterms [Gil+19] from the term representation, then this speedup could
be accomplished even inside Coq.

Nominal

Nominal representations [Pit03] use names rather than indices for binders. These
representations have the benefit of being more human-readable but require reason-
ing about freshness of names and capture-avoiding substitution. Additionally, if the
representation of names is not sufficiently compact, the overhead of storing names at
every binder node can become significant.

Locally Nameless

We mention the locally nameless representation [Cha12; Ler07] because it is the term
representation used by Coq itself. This representation uses de Bruijn indices for
locally-bound variables and names for variables which are not bound in the current
term.

Much like nominal representations, locally nameless representations also incur the
overhead of generating and storing names. Naïve algorithms for generating fresh
names, such as the algorithm used in Coq, can easily incur overhead that’s linear
in the size of the context. Generating 𝑛 fresh names then incurs Θ(𝑛2) overhead.
Additionally, using a locally nameless representation requires that evar substitutions
be named. See also Section 4.5.1.
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3.1.4 Performance of Proving Reflective Well-Formedness of
PHOAS

We saw in Section 3.1.3 that in order to prove the soundness theorem, we needed a
way to relate two PHOASTs (parametric higher-order abstract syntax trees), which
generalized to a notion of well-formedness for the Expr type.

Unfortunately, the proof that two exprs are related is quadratic in the size of the
expression, for much the same reason that proving conjunctions in Subsection 2.6.1
resulted in a proof term which was quadratic in the number of conjuncts. We present
two ways to encode linearly sized proofs of well-formedness in PHOAS.

Iterating Reflection

The first method of encoding linearly sized proofs of related is itself a good study
in how using proof by reflection can compress proof terms. Rather than constructing
the inductive related proof, we can instead write a fixed point:

Fixpoint is_related {var1 var2 : Type} (Γ : list (var1 * var2))
(e1 : @expr var1) (e2 : @expr var2) : Prop :=

match e1, e2 with
| NatO, NatO => True
| NatS e1, NatS e2 => is_related Γ e1 e2
| NatMul x1 y1, NatMul x2 y2
=> is_related Γ x1 x2 /\ is_related Γ y1 y2

| Var v1, Var v2 => List.In (v1, v2) Γ
| LetIn e1 f1, LetIn e2 f2
=> is_related Γ e1 e2

/\ ∀ v1 v2, is_related ((v1, v2) :: Γ) (f1 v1) (f2 v2)
| _, _ => False
end.

This unfortunately isn’t quite linear in the size of the syntax tree, though it is sig-
nificantly smaller. One way to achieve even more compact proof terms is to pick a
more optimized representation for list membership and to convert the proposition to
be an eliminator.3 This consists of replacing 𝐴 ∧ 𝐵 with ∀𝑃 , (𝐴 → 𝐵 → 𝑃) → 𝑃,
and similar.

Fixpoint is_related_elim {var1 var2 : Type} (Γ : list (var1 * var2))

3The size of the proof term will still have an extra logarithmic factor in the size of the syntax
tree due to representing variable indices in binary. Moreover, the size of the proof term will still be
quadratic due to the fact that functions store the types of their binders. However, this representation
allows proof terms that are significantly faster to construct in Coq’s proof engine for reasons that
are not entirely clear to us.
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(e1 : @expr var1) (e2 : @expr var2) : Prop :=
match e1, e2 with
| NatO, NatO => True
| NatS e1, NatS e2 => is_related_elim Γ e1 e2
| NatMul x1 y1, NatMul x2 y2 => forall P : Prop,

(is_related_elim Γ x1 x2 → is_related_elim Γ y1 y2 → P) → P
| Var v1, Var v2 => forall (P : Prop),

(forall n, List.nth_error Γ (N.to_nat n) = Some (v1, v2) → P) → P
| LetIn e1 f1, LetIn e2 f2 => forall P : Prop,

(is_related_elim Γ e1 e2
→ (forall v1 v2, is_related_elim ((v1, v2) :: Γ) (f1 v1) (f2 v2))
→ P)

→ P
| _, _ => False
end.

We can now prove is_related_elim Γ e1 e2 → is_related Γ e1 e2.

Note that making use of the fixpoint is significantly more inconvenient than making
use of the inductive; the proof of check_is_even_expr_sound, for example, proceeds
most naturally by induction on the relatedness hypothesis. We could instead induct
on one of the ASTs and destruct the other one, but this becomes quite hairy when
the ASTs are indexed over their types.

Via de Bruijn

An alternative, ultimately superior, method of constructing compact proofs of re-
latedness involves a translation to a de Bruijn representation. Although producing
well-formedness proofs automatically using a verified-as-well-formed translator from
de Bruijn was present already in early PHOAS papers [Chl10], we believe the trick
of round-tripping through a de Bruijn representation is new. Additionally, there are
a number of considerations that are important for achieving adequate performance
which we believe are not explained elsewhere in the literature, which we discuss at
the end of this subsubsection.

We can define a Boolean predicate on de Bruijn syntax representing well-formedness.

Fixpoint is_closed_under (max_idx : nat) (e : expr) : bool :=
match expr with
| NatO => true
| NatS e => is_closed_under max_idx e
| NatMul x y

=> is_closed_under max_idx x && is_closed_under max_idx y
| Var n => n <? max_idx
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| LetIn v f
=> is_closed_under max_idx v && is_closed_under (S max_idx) f

end.
Definition is_closed := is_closed_under 0.

Note that this check generalizes quite nicely to expressions indexed over their types—
so long as type codes have decidable equality—where we can pass around a list (or
more efficient map structure) of types for each variable and just check that the types
are equal.

Now we can prove that whenever a de Bruijn expr is closed, any two PHOAS exprs
created from that AST will be related in the empty context. Therefore, if the
PHOAS expr we start off with is the result of converting some de Bruijn expr to
PHOAS, we can easily prove that it’s well-formed simply by running vm_compute on
the is_closed procedure. How might we get such a de Bruijn expr? The easiest way
is to write a converter from PHOAS to de Bruijn.

Hence we can prove the theorem ∀ e, is closed (PHOAS to deBruijn e) = true
∧ e = deBruijn to PHOAS (PHOAS to deBruijn e) → Wf e. The hypothesis of
this theorem is quite easy to check; we simply run vm_compute and then instantiate
it with the proof term conj (eq_refl true) (eq_refl e), which is linear in the
size of e.

Note that, unlike the initial term representation of Chlipala [Chl10], we cannot have
a closed-by-construction de Bruijn representation if we want linear asymptotics. If we
index each node over the size of the context—or, worse, the list of types of variables
in the context—then the term representation incurs quadratic overhead in the size of
the context.

3.2 Reification
The one part of proof by reflection that we’ve neglected up to this point is reification.
There are many ways of performing reification; in Chapter 6, we discuss 19 different
ways of implementing reification, using 6 different metaprogramming facilities in the
Coq ecosystem: ℒtac, Ltac2, Mtac2 [Gon+13b; Kai+18], type classes [SO08], canon-
ical structures [GMT16], and reification-specific OCaml plugins (quote [Coq17b]4,
template-coq [Ana+18], ours). Figure 3-5 displays the simplest case: an ℒtac script
to reify a tree of function applications and constants. Unfortunately, all methods
we surveyed become drastically more complicated or slower (and usually both) when
adapted to reify terms with variable bindings such as let-in or 𝜆 nodes.

4Note that this plugin was removed in Coq 8.10 [Dén18], and so our plots no longer include this
plugin.
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Ltac f v term := (* reify var term *)
lazymatch term with
| O => constr:(@NatO v)
| S ?x => let X := f v x in constr:(@NatS v X)
| ?x*?y => let X := f v x in let Y := f v y in constr:(@NatMul v X Y)
end.

Figure 3-5: Reification Without Binders in ℒtac

We have made detailed walkthroughs and source code of these implementations avail-
able5 in hope that they will be useful for others considering implementing reification
using one of these metaprogramming mechanisms, instructive as nontrivial examples
of multiple metaprogramming facilities, or helpful as a case study in Coq performance
engineering. However, we do not recommend reading these out of general interest:
most of the complexity in the described implementations strikes us as needless, with
significant aspects of the design being driven by surprising behaviors, misfeatures,
bugs, and performance bottlenecks of the underlying machinery as opposed to the
task of reification.

There are a couple of complications that arise when reifying binders, which broadly
fall into two categories. One category is the metaprogramming language’s treatment
of binders. In ℒtac, for example, the body of a function is not a well-typed term,
because the variable binder refers to a nonexistent name; getting the name to actu-
ally refer to something, so that we can inspect the term, is responsible for a great
deal of the complexity in reification code in ℒtac. The other category is any mis-
match between the representation of binders in the metaprogramming language and
the representation of binders in the reified syntax. If the metaprogramming language
represents variables as de Bruijn indices, and we are reifying to a de Bruijn represen-
tation, then we can reuse the indices. If the metaprogramming language represents
variables as names, and we are reifying to a named representation, then we can reuse
the names. If the representations mismatch, then we need to do extra work to align
the representations, such as keeping some sort of finite map structure from binders
in the metalanguage to binders in the AST.

3.3 What’s Next?
Having introduced and explained proof by reflection and reflective automation, we
can now introduce the main contribution of this thesis. In the next chapter we’ll
present the reflective framework we developed for achieving adequate performance in
the Fiat Cryptography project.

5https://github.com/mit-plv/reification-by-parametricity
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Chapter 4

A Framework for Building Verified
Partial Evaluators

4.1 Introduction
In this chapter, we present an approach to verified partial evaluation in proof assis-
tants, which requires no changes to proof checkers. To make the relevance concrete,
we use the example of Fiat Cryptography [Erb+19], a Coq library that generates
code for big-integer modular arithmetic at the heart of elliptic-curve-cryptography
algorithms. This domain-specific compiler has been adopted, for instance, in the
Chrome Web browser, such that about half of all HTTPS connections from browsers
are now initiated using code generated (with proof) by Fiat Cryptography. How-
ever, Fiat Cryptography was only used successfully to build C code for the two most
widely used curves (P-256 and Curve25519). Our original method of partial evalua-
tion timed out trying to compile code for the third most widely used curve (P-384).
Additionally, to achieve acceptable reduction performance, the library code had to
be written manually in continuation-passing style. We will demonstrate a new Coq
library that corrects both weaknesses, while maintaining the generality afforded by
allowing rewrite rules to be mixed with partial evaluation.

4.1.1 A Motivating Example
We are interested in partial-evaluation examples that mix higher-order functions, in-
ductive datatypes, and arithmetic simplification. For instance, consider the following
Coq code.

Definition prefixSums (ls : list nat) : list nat :=
let ls' := combine ls (seq 0 (length ls)) in
let ls'' := map (𝜆 p, fst p * snd p) ls' in
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let '(_, ls''') := fold_left (𝜆 '(acc, ls''') n,
let acc' := acc + n in (acc', acc' :: ls''')) ls'' (0, []) in

ls'''.

This function first computes list ls' that pairs each element of input list ls with its
position, so, for instance, list [𝑎; 𝑏; 𝑐] becomes [(𝑎, 0); (𝑏, 1); (𝑐, 2)]. Then we map over
the list of pairs, multiplying the components at each position. Finally, we traverse
that list, building up a list of all prefix sums.

We would like to specialize this function to particular list lengths. That is, we know
in advance how many list elements we will pass in, but we do not know the values
of those elements. For a given length, we can construct a schematic list with one
free variable per element. For example, to specialize to length four, we can apply the
function to list [a; b; c; d], and we expect this output:

let acc := b + c * 2 in
let acc' := acc + d * 3 in
[acc'; acc; b; 0]

Notice how subterm sharing via lets is important. As list length grows, we avoid
quadratic blowup in term size through sharing. Also notice how we simplified the
first two multiplications with 𝑎 ⋅ 0 = 0 and 𝑏 ⋅ 1 = 𝑏 (each of which requires explicit
proof in Coq), using other arithmetic identities to avoid introducing new variables for
the first two prefix sums of ls'', as they are themselves constants or variables, after
simplification.

To set up our partial evaluator, we prove the algebraic laws that it should use for
simplification, starting with basic arithmetic identities.

Lemma zero_plus : ∀ n, 0 + n = n. Lemma times_zero : ∀ n, n * 0 = 0.
Lemma plus_zero : ∀ n, n + 0 = n. Lemma times_one : ∀ n, n * 1 = n.

Next, we prove a law for each list-related function, connecting it to the primitive-
recursion combinator for some inductive type (natural numbers or lists, as appropri-
ate). We use a special apostrophe marker to indicate a quantified variable that may
only match with compile-time constants. We also use a further marker ident.eagerly
to ask the reducer to simplify a case of primitive recursion by complete traversal of
the designated argument’s constructor tree.

Lemma eval_map A B (f : A -> B) l
: map f l = ident.eagerly list_rect _ _ [] (𝜆 x _ l', f x :: l') l.
Lemma eval_fold_left A B (f : A -> B -> A) l a
: fold_left f l a

= ident.eagerly list_rect _ _ (𝜆 a, a) (𝜆 x _ r a, r (f a x)) l a.
Lemma eval_combine A B (la : list A) (lb : list B)
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: combine la lb =
list_rect _
(𝜆 _, [])
(𝜆 x _ r lb, list_case (𝜆 _, _)
[] (𝜆 y ys, (x,y)::r ys) lb) la lb.

Lemma eval_length A (ls : list A)
: length ls = list_rect _ 0 (𝜆 _ _ n, S n) ls.

With all the lemmas available, we can package them up into a rewriter, which triggers
generation of a specialized rewrite procedure and its soundness proof. Our Coq plugin
introduces a new command Make for building rewriters

Make rewriter := Rewriter For (zero_plus, plus_zero, times_zero, times_one,
eval_map, eval_fold_left, do_again eval_length, do_again eval_combine,
eval_rect nat, eval_rect list, eval_rect prod)
(with delta) (with extra idents (seq)).

Most inputs to Rewriter For list quantified equalities to use for left-to-right rewrit-
ing. However, we also use options do_again, to request that some rules trigger an
extra bottom-up pass after being used for rewriting; eval_rect, to queue up eager
evaluation of a call to a primitive-recursion combinator on a known recursive argu-
ment; with delta, to request evaluation of all monomorphic operations on concrete
inputs; and with extra idents, to inform the engine of further permitted identifiers
that do not appear directly in any of the rewrite rules.

Our plugin also provides new tactics like Rewrite_rhs_for, which applies a rewriter
to the right-hand side of an equality goal. That last tactic is just what we need to
synthesize a specialized prefixSums for list length four, along with a proof of its
equivalence to the original function.

Definition prefixSums4 :
{ f : nat → nat → nat → nat → list nat
| ∀ a b c d, f a b c d = prefixSums [a; b; c; d] }
:= ltac:(eexists; Rewrite_rhs_for rewriter; reflexivity).

4.1.2 Concerns of Trusted-Code-Base Size
Crafting a reduction strategy is challenging enough in a standalone tool. A large part
of the difficulty in a proof assistant is reducing in a way that leaves a proof trail that
can be checked efficiently by a small kernel. Most proof assistants present user-friendly
surface tactic languages that generate proof traces in terms of more-elementary tactic
steps. The trusted proof checker only needs to know about the elementary steps, and
there is pressure to be sure that these steps are indeed elementary, not requiring
excessive amounts of kernel code. However, hardcoding a new reduction strategy
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in the kernel can bring dramatic performance improvements. Generating thousands
of lines of code with partial evaluation would be intractable if we were outputting
sequences of primitive rewrite steps justifying every little term manipulation, so we
must take advantage of the time-honored feature of type-theoretic proof assistants
that reductions included in the definitional equality need not be requested explicitly.
We discuss the performance issues in more detail in Performance Bottlenecks of Proof-
Producing Rewriting in Section 4.5.1.

Which kernel-level reductions does Coq support today? Currently, the trusted code
base knows about four different kinds of reduction: left-to-right conversion, right-to-
left conversion, a virtual machine (VM) written in C based on the OCaml compiler,
and a compiler to native code. Furthermore, the first two are parameterized on an
arbitrary user-specified ordering of which constants to unfold when, in addition to
internal heuristics about what to do when the user has not specified an unfolding order
for given constants. Recently, native support for 63-bit integers [DG18] and IEEE
754-2008 binary64 floats [MBR19] have been added to the VM and native machines.
A recent pull request proposes adding support for native arrays [Dén20b].

To summarize, there has been quite a lot of “complexity creep” in the Coq trusted
base, to support efficient reduction, and yet realistic partial evaluation has still been
rather challenging. Even the additional three reduction mechanisms outside Coq’s
kernel (cbn, simpl, cbv) are not at first glance sufficient for verified partial evaluation.

4.1.3 Our Solution
Aehlig, Haftmann, and Nipkow [AHN08] presented a very relevant solution to a re-
lated problem, using normalization by evaluation (NbE) [BS91] to bootstrap reduction
of open terms on top of full reduction, as built into a proof assistant. However, it was
simultaneously true that they expanded the proof-assistant trusted code base in ways
specific to their technique, and that they did not report any experiments actually
using the tool for partial evaluation (just traditional full reduction), potentially hid-
ing performance-scaling challenges or other practical issues. We have adapted their
approach in a new Coq library embodying the first partial-evaluation approach
to satisfy the following criteria.

• It integrates with a general-purpose, foundational proof assistant, without
growing the trusted base.

• For a wide variety of initial functional programs, it provides fast partial evalu-
ation with reasonable memory use.

• It allows reduction that mixes rules of the definitional equality with equalities
proven explicitly as theorems.
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• It preserves sharing of common subterms.

• It also allows extraction of standalone partial evaluators.

Our contributions include answers to a number of challenges that arise in scaling
NbE-based partial evaluation in a proof assistant. First, we rework the approach
of Aehlig, Haftmann, and Nipkow [AHN08] to function without extending a proof
assistant’s trusted code base, which, among other challenges, requires us to prove
termination of reduction and encode pattern matching explicitly (leading us to adopt
the performance-tuned approach of Maranget [Mar08]).

Second, using partial evaluation to generate residual terms thousands of lines long
raises new scaling challenges:

• Output terms may contain so many nested variable binders that we expect it to
be performance-prohibitive to perform bookkeeping operations on first-order-
encoded terms (e.g., with de Bruijn indices, as is done in ℛtac by Malecha and
Bengtson [MB16]). For instance, while the reported performance experiments
of Aehlig, Haftmann, and Nipkow [AHN08] generate only closed terms with no
binders, Fiat Cryptography may generate a single routine (e.g., multiplication
for curve P-384) with nearly a thousand nested binders.

• Naïve representation of terms without proper sharing of common subterms can
lead to fatal term-size blow-up. Fiat Cryptography’s arithmetic routines rely
on significant sharing of this kind.

• Unconditional rewrite rules are in general insufficient, and we need rules with
side conditions. For instance, in Fiat Cryptography, some rules for simplify-
ing modular arithmetic depend on proofs that operations in subterms do not
overflow.

• However, it is also not reasonable to expect a general engine to discharge all
side conditions on the spot. We need integration with abstract interpretation
that can analyze whole programs to support reduction.

Briefly, our respective solutions to these problems are the parametric higher-order ab-
stract syntax (PHOAS) [Chl08] term encoding, a let-lifting transformation threaded
throughout reduction, extension of rewrite rules with executable Boolean side con-
ditions, and a design pattern that uses decorator function calls to include analysis
results in a program.

Finally, we carry out the first large-scale performance-scaling evaluation of partial
evaluation in a proof assistant, covering all elliptic curves from the published Fiat
Cryptography experiments, along with microbenchmarks.
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This chapter proceeds through explanations of the trust stories behind our approach
and earlier ones (Section 4.2), the core structure of our engine (Section 4.3), the
additional scaling challenges we faced (Section 4.4), performance experiments (Sec-
tion 4.5), and related work (Section 4.6) and conclusions. Our implementation is
available on GitHub at https://github.com/mit-plv/rewriter.1

4.2 Trust, Reduction, and Rewriting
Since much of the narrative behind our design process depends on trade-offs between
performance and trustworthiness, we start by reviewing the general situation in proof
assistants.

Across a variety of proof assistants, simplification of functional programs is a workhorse
operation. Proof assistants like Coq that are based on type theory typically build
in definitional equality relations, identifying terms up to reductions like 𝛽-reduction
and unfolding of named identifiers. What looks like a single “obvious” step in an
on-paper equational proof may require many of these reductions, so it is handy to
have built-in support for checking a claimed reduction. Figure 4-1a diagrams how
such steps work in a system like Coq, where the system implementation is divided
between a trusted kernel, for checking proof terms in a minimal language, and ad-
ditional untrusted support, like a tactic engine evaluating a language of higher-level
proof steps, in the process generating proof terms out of simpler building blocks. It
is standard to include a primitive proof step that validates any reduction compatible
with the definitional equality, as the latter is decidable. The figure shows a tactic
that simplifies a goal using that facility.

In proof goals containing free variables, executing subterms can get stuck before
reaching normal forms. However, we can often achieve further simplification by using
equational rules that we prove explicitly, rather than just relying on the rules built into
the definitional equality and its decidable equivalence checker. Coq’s autorewrite
tactic, as diagrammed in Figure 4-1b, is a good example: it takes in a database of
quantified equalities and applies them repeatedly to rewrite in a goal. It is important
that Coq’s kernel does not trust the autorewrite tactic. Instead, the tactic must
output a proof term that, in some sense, is the moral equivalent of a line-by-line
equational proof. It can be challenging to keep these proof terms small enough, as
naïve rewrite-by-rewrite versions repeatedly copy large parts of proof goals, justify-
ing a rewrite like 𝐶[𝑒1] = 𝐶[𝑒2] for some context 𝐶 given a proof of 𝑒1 = 𝑒2, with
the full value of 𝐶 replicated in the proof term for that single rewrite. Overcom-
ing these challenges while retaining decidability of proof checking is tricky, since we
may use autorewrite with rule sets that do not always lead to terminating reduc-
tion. Coq includes more experimental alternatives like rewrite strat, which use
bottom-up construction of multi-rewrite proofs, with sharing of common contexts.

1The version described in this dissertation is available under the tag v0.0.1.
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Figure 4-1: Different approaches to reduction and rewriting

Still, as Section 4.5 will show, these methods that generate substantial proof terms
are at significant performance disadvantages. We also experimented with the cor-
responding tactics in the Lean proof assistant, with similarly disappointing results
(Subsection 4.5.3).

Now we summarize how Aehlig, Haftmann, and Nipkow [AHN08] provide flexible and
fast interleaving of standard 𝜆-calculus reduction and use of proved equalities (the
next section will go into more detail). Figure 4-1c demonstrates a workflow based
on a deep embedding of a core ML-like language. That is, within the logic of the
proof assistant (Isabelle/HOL, in their case), a type of syntax trees for ML programs
is defined, with an associated operational semantics. The basic strategy is, for a
particular set of rewrite rules and a particular term to simplify, to generate a (deeply
embedded) ML program that, if it terminates, produces a syntax tree for the simplified
term. Their tactic uses reification to create ML versions of rule sets and terms.
They also wrote a reduction function in ML and proved it sound once and for all,
against the ML operational semantics. Combining that proof with proofs generated
by reification, we conclude that an application of the reduction function to the reified
rules and term is indeed an ML term that generates correct answers. The tactic then
“throws the ML term over the wall,” using a general code-generation framework for
Isabelle/HOL [HN07]. Trusted code compiles the ML code into the concrete syntax
of a mainstream ML language, Standard ML in their case, and compiles it with an
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off-the-shelf compiler. The output of that compiled program is then passed back over
to the tactic, in terms of an axiomatic assertion that the ML semantics really yields
that answer.

As Aehlig, Haftmann, and Nipkow [AHN08] argue, their use of external compilation
and evaluation of ML code adds no real complexity on top of that required by the proof
assistant – after all, the proof assistant itself must be compiled and executed somehow.
However, the perceived increase of trusted code base is not spurious: it is one thing to
trust that the toolchain and execution environment used by the proof assistant and
the partial evaluator are well-behaved, and another to rely on two descriptions of ML
(one deeply embedded in the proof assistant and another implied by the compiler) to
agree on every detail of the semantics. Furthermore, there still is new trusted code
to translate from the deeply embedded ML subset into the concrete syntax of the
full-scale ML language. The vast majority of proof-assistant developments today rely
on no such embeddings with associated mechanized semantics, so need we really add
one to a proof-checking kernel to support efficient partial evaluation?

Our answer, diagrammed in Figure 4-1d, shows a different way. We still reify terms
and rules into a deeply embedded language. However, the reduction engine is imple-
mented directly in the logic, rather than as a deeply embedded syntax tree of an ML
program. As a result, the kernel’s own reduction engine is prepared to execute our re-
duction engine for us – using an operation that would be included in a type-theoretic
proof assistant in any case, with no special support for a language deep embedding.
We also stage the process for performance reasons. First, the Make command creates
a rewriter out of a list of rewrite rules, by specializing a generic partial-evaluation
engine, which has a generic proof that applies to any set of proved rewrite rules. We
perform partial evaluation on the specialized partial evaluator, using Coq’s normal
reduction mechanisms, under the theory that we can afford to pay performance costs
at this stage because we only need to create new rewriters relatively infrequently.
Then individual rewritings involve reifying terms, asking the kernel to execute the
specialized evaluator on them, and simplifying an application of an interpretation
function to the result (this last step must be done using Coq’s normal reduction, and
it is the bottleneck for outputs with enormous numbers of nested binders as discussed
in section 4.5.1).

We would like to emphasize that, while we prototyped our implementation in Coq in
particular, the trade-off space that we navigate seems fundamental, so that it should
be the case both that our approach can be adapted to other proof assistants and that
this case study may inform proof-assistant design. The general game here is to stock
the trusted proof-checking kernel with as few primitive rules as we can get away with,
while still providing enough flexibility and performance. Every proof assistant we are
aware of has a small functional language at its core, and we argue that is quite natural
to include a primitive for efficient full reduction of programs. Our empirical result
is that such a primitive can form the basis for bootstrapping other kinds of efficient
reduction, perhaps suggesting that a future Coq version could fruitfully shrink its
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kernel by eliminating other built-in reduction strategies.

4.2.1 Our Approach in Nine Steps
Here is a bit more detail on the steps that go into applying our Coq plugin, many
of which we expand on in the following sections. In order to build a precomputed
rewriter with the Make command, the following actions are performed:

1. The given lemma statements are scraped for which named functions and types
the rewriter package will support.

2. Inductive types enumerating all available primitive types and functions are emit-
ted.

3. Tactics generate all of the necessary definitions and prove all of the neces-
sary lemmas for dealing with this particular set of inductive codes. Definitions
include operations like Boolean equality on type codes and lemmas like “all
representable primitive types have decidable equality.”

4. The statements of rewrite rules are reified and soundness and syntactic-well-
formedness lemmas are proven about each of them. Each instance of the former
involves wrapping the user-provided proof with the right adapter to apply to
the reified version.

5. The definitions needed to perform reification and rewriting and the lemmas
needed to prove correctness are assembled into a single package that can be
passed by name to the rewriting tactic.

When we want to rewrite with a rewriter package in a goal, the following steps are
performed:

1. We rearrange the goal into a single logical formula: all free-variable quantifi-
cation in the proof context is replaced by changing the equality goal into an
equality between two functions (taking the free variables as inputs).

2. We reify the side of the goal we want to simplify, using the inductive codes in
the specified package. That side of the goal is then replaced with a call to a
denotation function on the reified version.

3. We use a theorem stating that rewriting preserves denotations of well-formed
terms to replace the denotation subterm with the denotation of the rewriter ap-
plied to the same reified term. We use Coq’s built-in full reduction (vm compute)
to reduce the application of the rewriter to the reified term.
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4. Finally, we run cbv (a standard call-by-value reducer) to simplify away the
invocation of the denotation function on the concrete syntax tree from rewriting.

4.3 The Structure of a Rewriter
We now simultaneously review the approach of Aehlig, Haftmann, and Nipkow [AHN08]
and introduce some notable differences in our own approach, noting similarities to
the reflective rewriter of Malecha and Bengtson [MB16] where applicable.

First, let us describe the language of terms we support rewriting in. Note that, while
we support rewriting in full-scale Coq proofs, where the metalanguage is dependently
typed, the object language of our rewriter is nearly simply typed, with limited sup-
port for calling polymorphic functions. However, we still support identifiers whose
definitions use dependent types, since our reducer does not need to look into defini-
tions.

𝑒 ∶∶= App 𝑒1 𝑒2 ∣ Let 𝑣 ≔ 𝑒1 In 𝑒2 ∣ Abs (𝜆𝑣. 𝑒) ∣ Var 𝑣 ∣ Ident 𝑖

The Ident case is for identifiers, which are described by an enumeration specific to
a use of our library. For example, the identifiers might be codes for +, ⋅, and literal
constants. We write J𝑒K for a standard denotational semantics.

4.3.1 Pattern-Matching Compilation and Evaluation
Aehlig, Haftmann, and Nipkow [AHN08] feed a specific set of user-provided rewrite
rules to their engine by generating code for an ML function, which takes in deeply
embedded term syntax (actually doubly deeply embedded, within the syntax of the
deeply embedded ML!) and uses ML pattern matching to decide which rule to apply
at the top level. Thus, they delegate efficient implementation of pattern matching to
the underlying ML implementation. As we instead build our rewriter in Coq’s logic,
we have no such option to defer to ML. Indeed, Coq’s logic only includes primitive
pattern-matching constructs to match one constructor at a time.

We could follow a naïve strategy of repeatedly matching each subterm against a
pattern for every rewrite rule, as in the rewriter of Malecha and Bengtson [MB16], but
in that case we do a lot of duplicate work when rewrite rules use overlapping function
symbols. Instead, we adopted the approach of Maranget [Mar08], who describes
compilation of pattern matches in OCaml to decision trees that eliminate needless
repeated work (for example, decomposing an expression into 𝑥+𝑦+𝑧 only once even
if two different rules match on that pattern). We have not yet implemented any of
the optimizations described therein for finding minimal decision trees.
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There are three steps to turn a set of rewrite rules into a functional program that
takes in an expression and reduces according to the rules. The first step is pattern-
matching compilation: we must compile the left-hand sides of the rewrite rules to
a decision tree that describes how and in what order to decompose the expression,
as well as describing which rewrite rules to try at which steps of decomposition.
Because the decision tree is merely a decomposition hint, we require no proofs about
it to ensure soundness of our rewriter. The second step is decision-tree evaluation,
during which we decompose the expression as per the decision tree, selecting which
rewrite rules to attempt. The only correctness lemma needed for this stage is that
any result it returns is equivalent to picking some rewrite rule and rewriting with
it. The third and final step is to actually rewrite with the chosen rule. Here the
correctness condition is that we must not change the semantics of the expression.
Said another way, any rewrite-rule replacement expression must match the semantics
of the rewrite-rule pattern.

While pattern matching begins with comparing one pattern against one expression,
Maranget’s approach works with intermediate goals that check multiple patterns
against multiple expressions. A decision tree describes how to match a vector (or
list) of patterns against a vector of expressions. It is built from these constructors:

• TryLeaf k onfailure: Try the 𝑘th rewrite rule; if it fails, keep going with
onfailure.

• Failure: Abort; nothing left to try.

• Switch icases app case default: With the first element of the vector, match
on its kind; if it is an identifier matching something in icases, which is a list
of pairs of identifiers and decision trees, remove the first element of the vector
and run that decision tree; if it is an application and app case is not None, try
the app case decision tree, replacing the first element of each vector with the
two elements of the function and the argument it is applied to; otherwise, do
not modify the vectors and use the default decision tree.

• Swap i cont: Swap the first element of the vector with the 𝑖th element (0-
indexed) and keep going with cont.

Consider the encoding of two simple example rewrite rules, where we follow Coq’s
ℒtac language in prefacing pattern variables with question marks.

?𝑛 + 0 → 𝑛 fstℤ,ℤ(?𝑥, ?𝑦) → 𝑥

We embed them in an AST type for patterns, which largely follows our ASTs for
expressions.

0. App (App (Ident +) Wildcard) (Ident (Literal 0))
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1. App (Ident fst) (App (App (Ident pair) Wildcard) Wildcard)

The decision tree produced is

App
�� App

//

fst 11

+
// Swap 0↔1 // Literal 0 // TryLeaf 0

App
//

App
//

pair
// TryLeaf 1

where every nonswap node implicitly has a “default” case arrow to Failure and
circles represent Switch nodes.

We implement, in Coq’s logic, an evaluator for these trees against terms. Note that
we use Coq’s normal partial evaluation to turn our general decision-tree evaluator into
a specialized matcher to get reasonable efficiency. Although this partial evaluation
of our partial evaluator is subject to the same performance challenges we highlighted
in the introduction, it only has to be done once for each set of rewrite rules, and
we are targeting cases where the time of per-goal reduction dominates this time of
meta-compilation.

For our running example of two rules, specializing gives us this match expression.

match e with
| App f y => match f with

| Ident fst => match y with
| App (App (Ident pair) x) y => x | _ => e end

| App (Ident +) x => match y with
| Ident (Literal 0) => x | _ => e end | _ => e end | _ => e end.

4.3.2 Adding Higher-Order Features
Fast rewriting at the top level of a term is the key ingredient for supporting customized
algebraic simplification. However, not only do we want to rewrite throughout the
structure of a term, but we also want to integrate with simplification of higher-order
terms, in a way where we can prove to Coq that our syntax-simplification function
always terminates. Normalization by evaluation (NbE) [BS91] is an elegant technique
for adding the latter aspect, in a way where we avoid needing to implement our own
𝜆-term reducer or prove it terminating.

To orient expectations: we would like to enable the following reduction

(𝜆𝑓 𝑥 𝑦. 𝑓 𝑥 𝑦) (+) 𝑧 0 𝑧
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using the rewrite rule

?𝑛 + 0 → 𝑛

Aehlig, Haftmann, and Nipkow [AHN08] also use NbE, and we begin by reviewing
its most classic variant, for performing full 𝛽-reduction in a simply typed term in a
guaranteed-terminating way. The simply typed 𝜆-calculus syntax we use is:

𝑡 ∶∶= 𝑡 → 𝑡 | 𝑏 𝑒 ∶∶= 𝜆𝑣. 𝑒 | 𝑒 𝑒 | 𝑣 | 𝑐

with 𝑣 for variables, 𝑐 for constants, and 𝑏 for base types.

We can now define normalization by evaluation. First, we choose a “semantic” repre-
sentation for each syntactic type, which serves as the result type of an intermediate
interpreter.

NbE𝑡(𝑡1 → 𝑡2) ≔ NbE𝑡(𝑡1) → NbE𝑡(𝑡2)
NbE𝑡(𝑏) ≔ expr(𝑏)

Function types are handled as in a simple denotational semantics, while base types
receive the perhaps-counterintuitive treatment that the result of “executing” one is a
syntactic expression of the same type. We write expr(𝑏) for the metalanguage type
of object-language syntax trees of type 𝑏, relying on a type family expr.

Now the core of NbE, shown in Figure 4-2, is a pair of dual functions reify and reflect,
for converting back and forth between syntax and semantics of the object language,
defined by primitive recursion on type syntax. We split out analysis of term syntax
in a separate function reduce, defined by primitive recursion on term syntax, when
usually this functionality would be mixed in with reflect. The reason for this choice
will become clear when we extend NbE to handle our full problem domain.

We write 𝑣 for object-language variables and 𝑥 for metalanguage (Coq) variables, and
we overload 𝜆 notation using the metavariable kind to signal whether we are building
a host 𝜆 or a 𝜆 syntax tree for the embedded language. The crucial first clause for
reduce replaces object-language variable 𝑣 with fresh metalanguage variable 𝑥, and
then we are somehow tracking that all free variables in an argument to reduce must
have been replaced with metalanguage variables by the time we reach them. We reveal
in Subsection 4.4.1 the encoding decisions that make all the above legitimate, but first
let us see how to integrate use of the rewriting operation from the previous section.
To fuse NbE with rewriting, we only modify the constant case of reduce. First, we
bind our specialized decision-tree engine under the name rewrite-head. Recall that
this function only tries to apply rewrite rules at the top level of its input.

In the constant case, we still reflect the constant, but underneath the binders intro-
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reify𝑡 ∶ NbE𝑡(𝑡) → expr(𝑡)
reify𝑡1→𝑡2

(𝑓) ≔ 𝜆𝑣. reify𝑡2
(𝑓(reflect𝑡1(𝑣)))

reify𝑏(𝑓) ≔ 𝑓

reflect𝑡 ∶ expr(𝑡) → NbE𝑡(𝑡)
reflect𝑡1→𝑡2(𝑒) ≔ 𝜆𝑥. reflect𝑡2(𝑒(reify𝑡1

(𝑥))
reflect𝑏(𝑒) ≔ 𝑒

reduce ∶ expr(𝑡) → NbE𝑡(𝑡)
reduce(𝜆𝑣. 𝑒) ≔ 𝜆𝑥. reduce([𝑥/𝑣]𝑒)
reduce(𝑒1 𝑒2) ≔ (reduce(𝑒1)) (reduce(𝑒2))

reduce(𝑥) ≔ 𝑥
reduce(𝑐) ≔ reflect(𝑐)

NbE ∶ expr(𝑡) → expr(𝑡)
NbE(𝑒) ≔ reify(reduce(𝑒))

Figure 4-2: Implementation of normalization by evaluation

duced by full 𝜂-expansion, we perform one instance of rewriting. In other words, we
change this one function-definition clause:

reflect𝑏(𝑒) ≔ rewrite-head(𝑒)

It is important to note that a constant of function type will be 𝜂-expanded only once
for each syntactic occurrence in the starting term, though the expanded function is
effectively a thunk, waiting to perform rewriting again each time it is called. From
first principles, it is not clear why such a strategy terminates on all possible input
terms, though we work up to convincing Coq of that fact.

The details so far are essentially the same as in the approach of Aehlig, Haftmann, and
Nipkow [AHN08]. Recall that their rewriter was implemented in a deeply embedded
ML, while ours is implemented in Coq’s logic, which enforces termination of all func-
tions. Aehlig et al. did not prove termination, which indeed does not hold for their
rewriter in general, which works with untyped terms, not to mention the possibility of
rule-specific ML functions that diverge themselves. In contrast, we need to convince
Coq up-front that our interleaved 𝜆-term normalization and algebraic simplification
always terminate. Additionally, we need to prove that our rewriter preserves denota-
tions of terms, which can easily devolve into tedious binder bookkeeping, depending
on encoding.
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The next section introduces the techniques we use to avoid explicit termination proof
or binder bookkeeping, in the context of a more general analysis of scaling challenges.

4.4 Scaling Challenges
Aehlig, Haftmann, and Nipkow [AHN08] only evaluated their implementation against
closed programs. What happens when we try to apply the approach to partial-
evaluation problems that should generate thousands of lines of low-level code?

4.4.1 Variable Environments Will Be Large
We should think carefully about representation of ASTs, since many primitive oper-
ations on variables will run in the course of a single partial evaluation. For instance,
Aehlig, Haftmann, and Nipkow [AHN08] reported a significant performance improve-
ment changing variable nodes from using strings to using de Bruijn indices [Bru72].
However, de Bruijn indices and other first-order representations remain painful to
work with. We often need to fix up indices in a term being substituted in a new
context. Even looking up a variable in an environment tends to incur linear time
overhead, thanks to traversal of a list. Perhaps we can do better with some kind of
balanced-tree data structure, but there is a fundamental performance gap versus the
arrays that can be used in imperative implementations. Unfortunately, it is difficult
to integrate arrays soundly in a logic. Also, even ignoring performance overheads,
tedious binder bookkeeping complicates proofs.

Our strategy is to use a variable encoding that pushes all first-order bookkeeping off
on Coq’s kernel, which is itself performance-tuned with some crucial pieces of im-
perative code. Parametric higher-order abstract syntax (PHOAS) [Chl08], which we
introduced and described in Section 3.1.3, is a dependently typed encoding of syntax
where binders are managed by the enclosing type system. It allows for relatively easy
implementation and proof for NbE, so we adopted it for our framework.

Here is the actual inductive definition of term syntax for our object language, PHOAS-
style. The characteristic oddity is that the core syntax type expr is parameterized on
a dependent type family for representing variables. However, the final representation
type Expr uses first-class polymorphism over choices of variable type, bootstrapping
on the metalanguage’s parametricity to ensure that a syntax tree is agnostic to vari-
able type.

Inductive type := arrow (s d : type) | base (b : base_type).
Infix "→" := arrow.

Inductive expr (var : type -> Type) : type -> Type :=

85



| Var {t} (v : var t) : expr var t
| Abs {s d} (f : var s -> expr var d) : expr var (s → d)
| App {s d} (f : expr var (s → d)) (x : expr var s) : expr var d
| Const {t} (c : const t) : expr var t

Definition Expr (t : type) : Type := forall var, expr var t.

A good example of encoding adequacy is assigning a simple denotational semantics.
First, a simple recursive function assigns meanings to types.

Fixpoint denoteT (t : type) : Type
:= match t with

| arrow s d => denoteT s -> denoteT d
| base b => denote_base_type b
end.

Next we see the convenience of being able to use an expression by choosing how it
should represent variables. Specifically, it is natural to choose the type-denotation
function itself as the variable representation. Especially note how this choice makes
rigorous the convention we followed in the prior section (e.g., in the suspicious function-
abstraction clause of function reduce), where a recursive function enforces that values
have always been substituted for variables early enough.

Fixpoint denoteE {t} (e : expr denoteT t) : denoteT t
:= match e with

| Var v => v
| Abs f => 𝜆 x, denoteE (f x)
| App f x => (denoteE f) (denoteE x)
| Ident c => denoteI c
end.

Definition DenoteE {t} (E : Expr t) : denoteT t
:= denoteE (E denoteT).

It is now easy to follow the same script in making our rewriting-enabled NbE fully
formal. Note especially the first clause of reduce, where we avoid variable substitution
precisely because we have chosen to represent variables with normalized semantic
values. The subtlety there is that base-type semantic values are themselves expression
syntax trees, which depend on a nested choice of variable representation, which we
retain as a parameter throughout these recursive functions. The final definition 𝜆-
quantifies over that choice.

Fixpoint nbeT var (t : type) : Type
:= match t with

| arrow s d => nbeT var s -> nbeT var d
| base b => expr var b
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end.

Fixpoint reify {var t} : nbeT var t -> expr var t
:= match t with

| arrow s d => 𝜆 f, Abs (𝜆 x, reify (f (reflect (Var x))))
| base b => 𝜆 e, e
end

with reflect {var t} : expr var t -> nbeT var t
:= match t with

| arrow s d => 𝜆 e, 𝜆 x, reflect (App e (reify x))
| base b => rewrite_head
end.

Fixpoint reduce {var t}
(e : expr (nbeT var) t) : nbeT var t
:= match e with

| Abs e => 𝜆 x, reduce (e (Var x))
| App e1 e2 => (reduce e1) (reduce e2)
| Var x => x
| Ident c => reflect (Ident c)
end.

Definition Rewrite {t} (E : Expr t) : Expr t
:= 𝜆 var, reify (reduce (E (nbeT var t))).

One subtlety hidden above in implicit arguments is in the final clause of reduce,
where the two applications of the Ident constructor use different variable representa-
tions. With all those details hashed out, we can prove a pleasingly simple correctness
theorem, with a lemma for each main definition, with inductive structure mirroring
recursive structure of the definition, also appealing to correctness of last section’s
pattern-compilation operations.

∀𝑡,𝐸 ∶ Expr t. JRewrite(𝐸)K = J𝐸K

Even before getting to the correctness theorem, we needed to convince Coq that the
function terminates. While for Aehlig, Haftmann, and Nipkow [AHN08], a termina-
tion proof would have been a whole separate enterprise, it turns out that PHOAS and
NbE line up so well that Coq accepts the above code with no additional termination
proof. As a result, the Coq kernel is ready to run our Rewrite procedure during
checking.

To understand how we now apply the soundness theorem in a tactic, it is important
to note how the Coq kernel builds in reduction strategies. These strategies have, to an
extent, been tuned to work well to show equivalence between a simple denotational-
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semantics application and the semantic value it produces. In contrast, it is rather
difficult to code up one reduction strategy that works well for all partial-evaluation
tasks. Therefore, we should restrict ourselves to (1) running full reduction in the
style of functional-language interpreters and (2) running normal reduction on “known-
good” goals like correctness of evaluation of a denotational semantics on a concrete
input.

Operationally, then, we apply our tactic in a goal containing a term 𝑒 that we want to
partially evaluate. In standard proof-by-reflection style, we reify 𝑒 into some 𝐸 where
J𝐸K = 𝑒, replacing 𝑒 accordingly, asking Coq’s kernel to validate the equivalence via
standard reduction. Now we use the Rewrite correctness theorem to replace J𝐸K
with JRewrite(𝐸)K. Next we may ask the Coq kernel to simplify Rewrite(𝐸) by full
reduction via compilation to native code, since we carefully designed Rewrite(𝐸) and
its dependencies to produce closed syntax trees, so that reduction will not get stuck
pattern-matching on free variables. Finally, where 𝐸′ is the result of that reduction,
we simplify J𝐸′K with standard reduction, producing a normal-looking Coq term.

4.4.2 Subterm Sharing Is Crucial

For some large-scale partial-evaluation problems, it is important to represent output
programs with sharing of common subterms. Redundantly inlining shared subterms
can lead to exponential increase in space requirements. Consider the Fiat Cryptog-
raphy [Erb+19] example of generating a 64-bit implementation of field arithmetic for
the P-256 elliptic curve. The library has been converted manually to continuation-
passing style, allowing proper generation of let binders, whose variables are often
mentioned multiple times. We ran their code generator (actually just a subset of its
functionality, but optimized by us a bit further, as explained in Subsection 4.5.2) on
the P-256 example and found it took about 15 seconds to finish. Then we modified
reduction to inline let binders instead of preserving them, at which point the reduc-
tion job terminated with an out-of-memory error, on a machine with 64 GB of RAM.
(The successful run uses under 2 GB.)

We see a tension here between performance and niceness of library implementation.
In our original implementation of Fiat Cryptography, we found it necessary to CPS-
convert our code to coax Coq into adequate reduction performance. Then all of our
correctness theorems were complicated by reasoning about continuations. It feels like
a slippery slope on the path to implementing a domain-specific compiler, rather than
taking advantage of the pleasing simplicity of partial evaluation on natural functional
programs. Our reduction engine takes shared-subterm preservation seriously while
applying to libraries in direct style.

Our approach is let-lifting: we lift lets to top level, so that applications of functions
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to lets are available for rewriting. For example, we can perform the rewriting

map (𝜆𝑥. 𝑦 + 𝑥) (let 𝑧 ∶= 𝑒 in [0; 1; 2; 𝑧; 𝑧 + 1])
 let 𝑧 ∶= 𝑒 in [𝑦; 𝑦 + 1; 𝑦 + 2; 𝑦 + 𝑧; 𝑦 + (𝑧 + 1)]

using the rules

map ?𝑓 [] → [] map ?𝑓 (?𝑥 ∶∶ ?𝑥𝑠) → 𝑓 𝑥 ∶∶ map 𝑓 𝑥𝑠 ?𝑛 + 0 → 𝑛

Our approach is to define a telescope-style type family called UnderLets:

Inductive UnderLets {var} (T : Type) :=
| Base (v : T)
| UnderLet {A}(e : @expr var A)(f : var A -> UnderLets T).

A value of type UnderLets T is a series of let binders (where each expression e may
mention earlier-bound variables) ending in a value of type T. It is easy to build various
“smart constructors” working with this type, for instance to construct a function
application by lifting the lets of both function and argument to a common top level.

Such constructors are used to implement an NbE strategy that outputs UnderLets
telescopes. Recall that the NbE type interpretation mapped base types to expression
syntax trees. We now parameterize that type interpretation by a Boolean declaring
whether we want to introduce telescopes.

Fixpoint nbeT' {var} (with_lets : bool) (t : type) :=
match t with
| base t
=> if with_lets then @UnderLets var (@expr var t) else @expr var t

| arrow s d => nbeT' false s -> nbeT' true d
end.

Definition nbeT := nbeT' false.
Definition nbeT_with_lets := nbeT' true.

There are cases where naïve preservation of let binders blocks later rewrites from
triggering and leads to suboptimal performance, so we include some heuristics. For
instance, when the expression being bound is a constant, we always inline. When the
expression being bound is a series of list “cons” operations, we introduce a name for
each individual list element, since such a list might be traversed multiple times in
different ways.
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4.4.3 Rules Need Side Conditions
Many useful algebraic simplifications require side conditions. One simple case is
supporting nonlinear patterns, where a pattern variable appears multiple times. We
can encode nonlinearity on top of linear patterns via side conditions.

?𝑛1 + ?𝑚− ?𝑛2 → 𝑚 if 𝑛1 = 𝑛2

The trouble is how to support predictable solving of side conditions during partial
evaluation, where we may be rewriting in open terms. We decided to sidestep this
problem by allowing side conditions only as executable Boolean functions, to be ap-
plied only to variables that are confirmed as compile-time constants, unlike Malecha
and Bengtson [MB16] who support general unification variables. We added a variant
of pattern variable that only matches constants. Semantically, this variable style has
no additional meaning, and in fact we implement it as a special identity function that
should be called in the right places within Coq lemma statements. Rather, use of
this identity function triggers the right behavior in our tactic code that reifies lemma
statements. We introduce a notation where a prefixed apostrophe signals a call to
the “constants only” function.

Our reification inspects the hypotheses of lemma statements, using type classes to
find decidable realizations of the predicates that are used, synthesizing one Boolean
expression of our deeply embedded term language, standing for a decision procedure
for the hypotheses. The Make command fails if any such expression contains pat-
tern variables not marked as constants. Therefore, matching of rules can safely run
side conditions, knowing that Coq’s full-reduction engine can determine their truth
efficiently.

4.4.4 Side Conditions Need Abstract Interpretation
With our limitation that side conditions are decided by executable Boolean proce-
dures, we cannot yet handle directly some of the rewrites needed for realistic partial
evaluation. For instance, Fiat Cryptography reduces high-level functional to low-level
code that only uses integer types available on the target hardware. The starting li-
brary code works with arbitrary-precision integers, while the generated low-level code
should be careful to avoid unintended integer overflow. As a result, the setup may
be too naïve for our running example rule ?𝑛 + 0 → 𝑛. When we get to reducing
fixed-precision-integer terms, we must be legalistic:

add with carry64(?𝑛, 0) → (0, 𝑛) if 0 ≤ 𝑛 < 264

We developed a design pattern to handle this kind of rule.
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First, we introduce a family of functions clip𝑙,𝑢, each of which forces its integer argu-
ment to respect lower bound 𝑙 and upper bound 𝑢. Partial evaluation is proved with
respect to unknown realizations of these functions, only requiring that clip𝑙,𝑢(𝑛) = 𝑛
when 𝑙 ≤ 𝑛 < 𝑢. Now, before we begin partial evaluation, we can run a verified
abstract interpreter to find conservative bounds for each program variable. When
bounds 𝑙 and 𝑢 are found for variable 𝑥, it is sound to replace 𝑥 with clip𝑙,𝑢(𝑥).
Therefore, at the end of this phase, we assume all variable occurrences have been
rewritten in this manner to record their proved bounds.

Second, we proceed with our example rule refactored:

add with carry64(clip'?𝑙,'?𝑢(?𝑛), 0) → (0, clip𝑙,𝑢(𝑛)) if 𝑢 < 264

If the abstract interpreter did its job, then all lower and upper bounds are constants,
and we can execute side conditions straightforwardly during pattern matching.

4.4.5 Limitations and Preprocessing
We now note some details of the rewriting framework that were previously glossed
over, which are useful for using the code or implementing something similar, but
which do not add fundamental capabilities to the approach. Although the rewriting
framework does not support dependently typed constants, we can automatically pre-
process uses of eliminators like nat_rect and list_rect into nondependent versions.
The tactic that does this preprocessing is extensible via ℒtac’s reassignment feature.
Since pattern-matching compilation mixed with NbE requires knowing how many
arguments a constant can be applied to, internally we must use a version of the re-
cursion principle whose type arguments do not contain arrows; current preprocessing
can handle recursion principles with either no arrows or one arrow in the motive.

Recall from Subsection 4.1.1 that eval_rect is a definition provided by our frame-
work for eagerly evaluating recursion associated with certain types. It functions by
triggering typeclass resolution for the lemmas reducing the recursion principle associ-
ated to the given type. We provide instances for nat, prod, list, option, and bool.
Users may add more instances if they desire.

Recall again from Subsection 4.1.1 that we use ident.eagerly to ask the reducer to
simplify a case of primitive recursion by complete traversal of the designated argu-
ment’s constructor tree. Our current version only allows a limited, hard-coded set of
eliminators with ident.eagerly (nat rect on return types with either zero or one ar-
rows, list rect on return types with either zero or one arrows, and List.nth default),
but nothing in principle prevents automatic generation of the necessary code.

Note that Let_In is the constant we use for writing let ⋯ in ⋯ expressions that
do not reduce under 𝜁 (Coq’s reduction rule for let-inlining). Throughout most of
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this chapter, anywhere that let ⋯ in ⋯ appears, we have actually used Let_In in
the code. It would alternatively be possible to extend the reification preprocessor to
automatically convert let ⋯ in ⋯ to Let_In, but this strategy may cause problems
when converting the interpretation of the reified term with the prereified term, as
Coq’s conversion does not allow fine-tuning of when to inline or unfold lets.

4.5 Evaluation
Our implementation, available on GitHub at https://github.com/mit-plv/rewriter
with a roadmap in Appendix B.3, includes a mix of Coq code for the proved core of
rewriting, tactic code for setting up proper use of that core, and OCaml plugin code
for the manipulations beyond the current capabilities of the tactic language. We re-
port here on experiments to isolate performance benefits for rewriting under binders
and reducing higher-order structure.

4.5.1 Microbenchmarks
We start with microbenchmarks focusing attention on particular aspects of reduction
and rewriting, with Appendix B.2 going into more detail.

Rewriting Without Binders

iter𝑚(𝑣) = 𝑣 + 0 + 0 + ⋯+ 0⏟⏟⏟⏟⏟⏟⏟
𝑚

tree0,𝑚(𝑣) = iter𝑚(𝑣 + 𝑣)
tree𝑛+1,𝑚(𝑣) = iter𝑚(tree𝑛,𝑚(𝑣) + tree𝑛,𝑚(𝑣))

Figure 4-3: Expressions computing initial
code

Consider the code defined by the ex-
pression tree𝑛,𝑚(𝑣) in Figure 4-3. We
want to remove all of the+0s. There are
Θ(𝑚 ⋅ 2𝑛) such rewriting locations. We
can start from this expression directly,
in which case reification alone takes as
much time as Coq’s rewrite. As the
reification method was not especially optimized, and there exist fast reification meth-
ods [GEC18], we instead start from a call to a recursive function that generates such
an expression.

Figure 4-4a on the facing page shows the results for 𝑛 = 3 as we scale 𝑚. The
comparison points are Coq’s rewrite!, setoid rewrite, and rewrite strat. The
first two perform one rewrite at a time, taking minimal advantage of commonalities
across them and thus generating quite large, redundant proof terms. The third makes
top-down or bottom-up passes with combined generation of proof terms. For our own
approach, we list both the total time and the time taken for core execution of a
verified rewrite engine, without counting reification (converting goals to ASTs) or its
inverse (interpreting results back to normal-looking goals).
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Figure 4-4: Timing of different partial-evaluation implementations
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The comparison here is very favorable for our approach so long as 𝑚 > 2. The
competing tactics spike upward toward timeouts at just around a thousand rewrite
locations, while our engine is still under two seconds for examples with tens of thou-
sands of rewrite locations. When 𝑚 < 2, Coq’s rewrite! tactic does a little bit
better than our engine, corresponding roughly to the overhead incurred by our term
representation (which, for example, stores the types at every application node) when
most of the term is in fact unchanged by rewriting. See Appendix B.1.1 for more
detailed plots.

Rewriting Under Binders

let 𝑣1 ∶= 𝑣0 + 𝑣0 + 0 in
⋮
let 𝑣𝑛 ∶= 𝑣𝑛−1 + 𝑣𝑛−1 + 0 in
𝑣𝑛 + 𝑣𝑛 + 0

Figure 4-5: Initial code

Consider now the code in Figure 4-5, which is a ver-
sion of the code above where redundant expressions
are shared via let bindings.

Figure 4-4b on the previous page shows the results.
The comparison here is again very favorable for our
approach. The competing tactics spike upward toward timeouts at just a few hundred
generated binders, while our engine is only taking about 10 seconds for examples with
5,000 nested binders.

Performance Bottlenecks of Proof-Producing Rewriting

Although we have made our comparison against the built-in tactics setoid_rewrite
and rewrite_strat, by analyzing the performance in detail, we can argue that these
performance bottlenecks are likely to hold for any proof assistant designed like Coq.
Detailed debugging reveals five performance bottlenecks in the existing rewriting tac-
tics. (This section goes into detail that readers not interested in proof-assistant
minutiae may want to skip, turning ahead to Binders and Recursive Functions on
page 97.)

Bad performance scaling in sizes of existential-variable contexts We found
that even when there are no occurrences fully matching the rule, setoid_rewrite
can still be cubic in the number of binders (or, more accurately, quadratic in the
number of binders with an additional multiplicative linear factor of the number of
head-symbol matches). Rewriting without any successful matches takes nearly as
much time as setoid_rewrite in this microbenchmark; by the time we are looking
at goals with 400 binders, the difference is less than 5%.

We posit that this overhead comes from setoid_rewrite looking for head-symbol
matches and then creating evars (existential variables) to instantiate the arguments of
the lemmas for each head-symbol-match location; hence even if there are no matches
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of the rule as a whole, there may still be head-symbol matches. Since Coq uses a
locally nameless representation [Ayd+08] for its terms, evar contexts are necessarily
represented as named contexts. Representing a substitution between named contexts
takes linear space, even when the substitution is trivial, and hence each evar incurs
overhead linear in the number of binders above it. Furthermore, fresh-name genera-
tion in Coq is quadratic in the size of the context, and since evar-context creation uses
fresh-name generation, the additional multiplicative factor likely comes from fresh-
name generation. (Note, though, that this pattern suggests that the true performance
is quartic rather than merely cubic. However, doing a linear regression on a log-log of
the data suggests that the performance is genuinely cubic rather than quartic.) See
Coq issue #12524 for more details.

Note that this overhead is inherent to the use of a locally nameless term represen-
tation. To fix it, Coq would likely have to represent identity evar contexts using a
compact representation, which is only naturally available for de Bruijn representa-
tions. Any rewriting system that uses unification variables with a locally nameless
(or named) context will incur at least quadratic overhead on this benchmark.

Note that rewrite_strat uses exactly the same rewriting engine as setoid_rewrite,
just with a different strategy. We found that setoid_rewrite and rewrite_strat
have identical performance when there are no matches and generate identical proof
terms when there are matches. Hence we can conclude that the difference in perfor-
mance between rewrite_strat and setoid_rewrite is entirely due to an increased
number of failed rewrite attempts.

Proof-term size Setting aside the performance bottleneck in constructing the
matches in the first place, we can ask the question: how much cost is associated
to the proof terms? One way to ask this question in Coq is to see how long it takes to
run Qed. While Qed time is asymptotically better, it is still quadratic in the number
of binders. This outcome is unsurprising, because the proof-term size is quadratic in
the number of binders. On this microbenchmark, we found that Qed time hits one
second at about 250 binders, and using the best-fit quadratic line suggests that it
would hit 10 seconds at about 800 binders and 100 seconds at about 2 500 binders.
While this may be reasonable for the microbenchmarks, which only contain as many
rewrite occurrences as there are binders, it would become unwieldy to try to build and
typecheck such a proof with a rule for every primitive reduction step, which would be
required if we want to avoid manually CPS-converting the code in Fiat Cryptography.

The quadratic factor in the proof term comes because we repeat subterms of the goal
linearly in the number of rewrites. For example, if we want to rewrite f (f x) into
g (g x) by the equation ∀ x, f x = g x, then we will first rewrite f x into g x,
and then rewrite f (g x) into g (g x). Note that g x occurs three times (and will
continue to occur in every subsequent step).
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Poor subterm sharing How easy is it to share subterms and create a linearly
sized proof? While it is relatively straightforward to share subterms using let binders
when the rewrite locations are not under any binders, it is not at all obvious how to
share subterms when the terms occur under different binders. Hence any rewriting
algorithm that does not find a way to share subterms across different contexts will
incur a quadratic factor in proof-building and proof-checking time, and we expect
this factor will be significant enough to make applications to projects as large as Fiat
Crypto infeasible.

Overhead from the let typing rule Suppose we had a proof-producing rewriting
algorithm that shared subterms even under binders. Would it be enough? It turns
out that even when the proof size is linear in the number of binders, the cost to
typecheck it in Coq is still quadratic! The reason is that when checking that f : T in
a context x := v, to check that let x := v in f has type T (assuming that x does
not occur in T), Coq will substitute v for x in T. So if a proof term has 𝑛 let binders
(e.g., used for sharing subterms), Coq will perform 𝑛 substitutions on the type of the
proof term, even if none of the let binders are used. If the number of let binders
is linear in the size of the type, there is quadratic overhead in proof-checking time,
even when the proof-term size is linear.

We performed a microbenchmark on a rewriting goal with no binders (because there
is an obvious algorithm for sharing subterms in that case) and found that the proof-
checking time reached about one second at about 2 000 binders and reached 10 sec-
onds at about 7 000 binders. While these results might seem good enough for Fiat
Cryptography, we expect that there are hundreds of thousands of primitive reduc-
tion/rewriting steps even when there are only a few hundred binders in the output
term, and we would need let binders for each of them. Furthermore, we expect that
getting such an algorithm correct would be quite tricky.

Fixing this quadratic bottleneck would, as far as we can tell, require deep changes
in how Coq is implemented; it would either require reworking all of Coq to operate
on some efficient representation of delayed substitutions paired with unsubstituted
terms, or else it would require changing the typing rules of the type theory itself to
remove this substitution from the typing rule for let. Note that there is a similar
issue that crops up for function application and abstraction.

Inherent advantages of reflection Finally, even if this quadratic bottleneck were
fixed, Aehlig, Haftmann, and Nipkow [AHN08] reported a 10×–100× speed-up over
the simp tactic in Isabelle, which performs all of the intermediate rewriting steps
via the kernel API. Their results suggest that even if all of the superlinear bottle-
necks were fixed—no small undertaking—rewriting and partial evaluation via reflec-
tion might still be orders of magnitude faster than any proof-term-generating tactic.
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Binders and Recursive Functions

map dbl(ℓ) ≔
⎧{
⎨{⎩

[] if ℓ = []
let 𝑦 ∶= ℎ + ℎ in if ℓ = ℎ ∶∶ 𝑡
𝑦 ∶∶ map dbl(𝑡)

make(𝑛,𝑚, 𝑣) ≔
⎧{
⎨{⎩

[𝑣,… , 𝑣⏟
𝑛

] if 𝑚 = 0

map dbl(make(𝑛,𝑚 − 1, 𝑣)) if 𝑚 > 0
example𝑛,𝑚 ≔ ∀𝑣, make(𝑛,𝑚, 𝑣) = []

Figure 4-6: Initial code for binders and recursive func-
tions

The next experiment uses
the code in Figure 4-6. Note
that the let ⋯ in ⋯ bind-
ing blocks further reduction
of map dbl when we iterate
it 𝑚 times in make, and so
we need to take care to pre-
serve sharing when reducing
here.

Figure 4-4c on page 93 com-
pares performance between our approach, repeat setoid rewrite, and two variants
of rewrite strat. Additionally, we consider another option, which was adopted
by Fiat Cryptography at a larger scale: rewrite our functions to improve reduction
behavior. Specifically, both functions are rewritten in continuation-passing style,
which makes them harder to read and reason about but allows standard VM-based
reduction to achieve good performance. The figure shows that rewrite strat vari-
ants are essentially unusable for this example, with setoid rewrite performing only
marginally better, while our approach applied to the original, more readable defini-
tions loses ground steadily to VM-based reduction on CPS’d code. On the largest
terms (𝑛 ⋅ 𝑚 > 20, 000), the gap is 6s vs. 0.1s of compilation time, which should
often be acceptable in return for simplified coding and proofs, plus the ability to mix
proved rewrite rules with built-in reductions. Note that about 99% of the difference
between the full time of our method and just the rewriting is spent in the final cbv
at the end, used to denote our output term from reified syntax. We blame this per-
formance on the unfortunate fact that reduction in Coq is quadratic in the number
of nested binders present; see Coq bug #11151. See Appendix B.2.3 for more on this
microbenchmark.

Full Reduction

The final experiment involves full reduction in computing the Sieve of Eratosthenes,
taking inspiration on benchmark choice from Aehlig, Haftmann, and Nipkow [AHN08].
We find in Figure 4-7 that we are slower than vm compute, native_compute, and
cbv, but faster than lazy, and of course much faster than simpl and cbn, which are
quite slow.

4.5.2 Macrobenchmark: Fiat Cryptography
Finally, we consider an experiment (described in more detail in Appendix B.1.2) repli-
cating the generation of performance-competitive finite-field-arithmetic code for all
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Figure 4-7: Full evaluation, Sieve of Eratosthenes

popular elliptic curves by Erbsen et al. [Erb+19]. In all cases, we generate essentially
the same code as we did at the time of publishing that paper, so we only measure
performance of the code-generation process. We stage partial evaluation with three
different reduction engines (i.e., three Make invocations), respectively applying 85,
56, and 44 rewrite rules (with only 2 rules shared across engines), taking total time
of about 5 minutes to generate all three engines. These engines support 95 distinct
function symbols.

Figure 4-4d on page 93 graphs running time of three different partial-evaluation meth-
ods for Fiat Cryptography, as the prime modulus of arithmetic scales up. Times are
normalized to the performance of the original method, which relied entirely on stan-
dard Coq reduction. Actually, in the course of running this experiment, we found
a way to improve the old approach for a fairer comparison. It had relied on Coq’s
configurable cbv tactic to perform reduction with selected rules of the definitional
equality, which we had applied to blacklist identifiers that should be left for compile-
time execution. By instead hiding those identifiers behind opaque module-signature
ascription, we were able to run Coq’s more-optimized virtual-machine-based reducer.

As the figure shows, our approach running partial evaluation inside Coq’s kernel
begins with about a 10× performance disadvantage vs. the original method. With log
scale on both axes, we see that this disadvantage narrows to become nearly negligible
for the largest primes, of around 500 bits. (We used the same set of prime moduli
as in the experiments run by Erbsen et al. [Erb+19], which were chosen based on
searching the archives of an elliptic-curves mailing list for all prime numbers.) It
makes sense that execution inside Coq leaves our new approach at a disadvantage,
as we are essentially running an interpreter (our normalizer) within an interpreter
(Coq’s kernel), while the old approach ran just the latter directly. Also recall that the
old approach required rewriting Fiat Cryptography’s library of arithmetic functions
in continuation-passing style, enduring this complexity in library correctness proofs,
while our new approach applies to a direct-style library. Finally, the old approach
included a custom reflection-based arithmetic simplifier for term syntax, run after
traditional reduction, whereas now we are able to apply a generic engine that combines
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both, without requiring more than proving traditional rewrite rules.

The figure also confirms clear performance advantage of running reduction in code
extracted to OCaml, which is possible because our plugin produces verified code in
Coq’s functional language. By the time we reach middle-of-the-pack prime size around
300 bits, the extracted version is running about 10× as quickly as the baseline.

4.5.3 Experience vs. Lean and setoid rewrite

Although all of our toy examples work with setoid rewrite or rewrite strat (until
the terms get too big), even the smallest of examples in Fiat Cryptography fell over
using these tactics.

When attempting to use setoid rewrite for partial evaluation and rewriting on
unsaturated Solinas with 1 limb on small primes (such as 261 − 1), we were able to
get setoid rewrite to finish after about 100 seconds. Trying to synthesize code for
two limbs on slightly larger primes (such as 2107 − 1, which needs two limbs on a
64-bit machine) took about 10 minutes; three limbs took just under 3.5 hours, and
four limbs failed to synthesize with an out-of-memory error after using over 60 GB of
RAM. The widely used primes tend to have around five to ten limbs. See Coq bug
#13576 for more details and for updates.

The rewrite strat tactic, which does not require duplicating the entire goal at each
rewriting step, fared a bit better. Small primes with 1 limb took about 90 seconds,
but further performance tuning of the typeclass instances dropped this time down
to 11 seconds. The bugs in rewrite strat made finding the right magic invocation
quite painful, nonetheless; the invocation we settled on involved sixteen consecutive
calls to rewrite strat with varying arguments and strategies. Two limbs took about
90 seconds, three limbs took a bit under 10 minutes, and four limbs took about 70
minutes and about 17 GB of RAM. Extrapolating out the exponential asymptotics
of the fastest-growing subcall to rewrite strat indicates that 5 limbs would take
11–12 hours, 6 limbs would take 10–11 days, 7 limbs would take 31–32 weeks, 8 limbs
would take 13–14 years, 9 limbs would take 2–3 centuries, 10 limbs would take 6–7
millennia, and 15 limbs would take 2–3 times the age of the universe, and 17 limbs,
the largest example we might find at present in the real world, would take over 1000×
the age of the universe! See Coq bug #13708 for more details and updates.

This experiments using setoid_rewrite and rewrite_strat can be found at https:
//github.com/coq-community/coq-performance-tests/blob/v1.0.1/src/fiat_
crypto_via_setoid_rewrite_standalone.v.

We also tried Lean, in the hopes that rewriting in Lean, specifically optimized for
performance, would be up to the challenge. Although Lean performed about 30%
better than Coq’s setoid rewrite on the 1-limb example, taking a bit under a
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minute, it did not complete on the two-limb example even after four hours (after
which we stopped trying), and a five-limb example was still going after 40 hours.

Our experiments with running rewrite in Lean on the Fiat Cryptography code can be
found on the lean branch of the Fiat Cryptography repository at https://github.
com/mit-plv/fiat-crypto/tree/lean/fiat-crypto-lean. We used Lean version
3.4.2, commit cbd2b6686ddb, Release. Run make in fiat-crypto-lean to run the
one-limb example; change open ex to open ex2 to try the two-limb example, or to
open ex5 to try the five-limb example.

4.6 Related Work
We have already discussed the work of Aehlig, Haftmann, and Nipkow [AHN08],
which introduced the basic structure that our engine shares, but which required a
substantially larger trusted code base, did not tackle certain challenges in scaling to
large partial-evaluation problems, and did not report any performance experiments
in partial evaluation.

We have also mentioned ℛtac [MB16], which implements an experimental reflective
version of rewrite strat supporting arbitrary setoid relations, unification variables,
and arbitrary semidecidable side conditions solvable by other reflective tactics, using
de Bruijn indexing to manage binders. We were unfortunately unable to get the
rewriter to work with Coq 8.10 and were also not able to determine from the paper
how to repurpose the rewriter to handle our benchmarks.

Our implementation builds on fast full reduction in Coq’s kernel, via a virtual ma-
chine [GL02] or compilation to native code [BDG11]. Especially the latter is similar
in adopting an NbE style for full reduction, simplifying even under 𝜆s, on top of a
more traditional implementation of OCaml that never executes preemptively under
𝜆s. Neither approach unifies support for rewriting with proved rules, and partial
evaluation only applies in very limited cases, where functions that should not be eval-
uated at compile time must have properly opaque definitions that the evaluator will
not consult. Neither implementation involved a machine-checked proof suitable to
bootstrap on top of reduction support in a kernel providing simpler reduction.

A variety of forms of pragmatic partial evaluation have been demonstrated, with
Lightweight Modular Staging [RO10] in Scala as one of the best-known current ex-
amples. A kind of type-based overloading for staging annotations is used to smooth
the rough edges in writing code that manipulates syntax trees. The LMS-Verify
system [AR17] can be used for formal verification of generated code after-the-fact.
Typically LMS-Verify has been used with relatively shallow properties (though po-
tentially applied to larger and more sophisticated code bases than we tackle), not
scaling to the kinds of functional-correctness properties that concern us here, justify-

100

https://github.com/mit-plv/fiat-crypto/tree/lean/fiat-crypto-lean
https://github.com/mit-plv/fiat-crypto/tree/lean/fiat-crypto-lean


ing investment in verified partial evaluators.

4.7 Future Work
There are a number of natural extensions to our engine. For instance, we do not yet
allow pattern variables marked as “constants only” to apply to container datatypes;
we limit the mixing of higher-order and polymorphic types, as well as limiting use
of first-class polymorphism; we do not support rewriting with equalities of nonfully-
applied functions; we only support decidable predicates as rule side conditions, and
the predicates may only mention pattern variables restricted to matching constants;
we have hardcoded support for a small set of container types and their eliminators;
we support rewriting with equality and no other relations (e.g., subset inclusion);
and we require decidable equality for all types mentioned in rules. It may be helpful
to design an engine that lifts some or all of these limitations, building on the basic
structure that we present here.
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Chapter 5

Engineering Challenges in the
Rewriter

[P]remature optimization is the root of all evil

— Donald E. Knuth [Knu74a, p. 671]

Chapter 4 discussed in detail our framework for building verified partial evaluators,
going into the context, motivation, and techniques used to put the framework to-
gether. However, there was a great deal of engineering effort that went into building
this tool which we glossed over. Much of the engineering effort was mundane, and we
elide the details entirely. However, we believe some of the engineering effort serves as
a good case study for the difficulties of building proof-based systems at scale. This
chapter is about exposing the details relevant to understanding how the bottlenecks
and principles identified elsewhere in this dissertation played out in designing and
implementing this tool. Note that many of the examples and descriptions in this
chapter are highly technical, and we expect the discussion will only be of interest
to the motivated reader, familiar with Coq, who wants to see more concrete nontoy
examples of the bottlenecks and principles we’ve been describing; other readers are
encouraged to skip this chapter.

While the core rewriting engine of the framework is about 1 300 lines of code, and
early simplified versions of the core engine were only about 150 lines of code1, the
correctness proofs take nearly another 8 000 lines of code! As such, this tool, developed

1See https://github.com/JasonGross/fiat-crypto/blob/3b3e926e/src/Experiments/
RewriteRulesSimpleNat.v for the file src/Experiments/RewriteRulesSimpleNat.v from
the branch experiments-small-rewrite-rule-compilation on JasonGross/fiat-crypto on
GitHub.
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to solve performance scaling issues in verified syntax transformation, itself serves as
a good case study of some of the bottlenecks that arise when scaling proof-based
engineering projects.

Our discussion in this section is organized by the conceptual structure of the nor-
malization and pattern-matching-compilation engine; we hope that organizing the
discussion in this way will make the examples more understandable, motivated, and
incremental. We note, however, that many of the challenges fall into the same broad
categories that are identified elsewhere in this dissertation: issues arising from the
power and (mis)use of dependent types, as introduced in Subsection 1.3.1 (Dependent
Types: What? Why? How?); and issues arising from API mismatches, as described
in Chapter 7 (Abstraction).

5.1 Prereduction
The two biggest underlying causes of engineering challenges are expression–API mis-
match, which we’ll discuss in Section 5.2 (NbE vs. Pattern-Matching Compilation:
Mismatched Expression APIs and Leaky Abstraction Barriers), and our desire to
reduce away known computations in the rewriting engine once and for all when com-
piling rewriting rules, rather than again and again every time we perform a rewrite.
In practice, performing this early reduction nets us an approximately 2× speed-up.
We’ll now discuss this early reduction and what goes into making it work.

5.1.1 What Does This Reduction Consist Of?
Recall from Subsection 4.3.1 that the core of our rewriting engine consists of three
steps:

1. The first step is pattern-matching compilation: we must compile the left-hand
sides of the rewrite rules to a decision tree that describes how and in what order
to decompose the expression, as well as describing which rewrite rules to try at
which steps of decomposition.

2. The second step is decision-tree evaluation, during which we decompose the
expression as per the decision tree, selecting which rewrite rules to attempt.

3. The third and final step is to actually rewrite with the chosen rule.

The first step is performed once and for all; it depends only on the rewrite rules and
not on the expression we are rewriting in. The second and third steps do, in fact,
depend on the expression being rewritten, and it is in these steps that we seek to
eliminate needless work early.
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The key insight, which allows us to perform this precompilation at all, is that most of
the decisions we seek to eliminate depend only on the head identifier of any applica-
tion.2 We thus augment the reduce(𝑐) constant case of Figure 4-2 in Subsection 4.3.2
by first 𝜂-expanding the identifier, before proceeding to 𝜂-expand the identifier appli-
cation and perform rewriting with rewrite-head once we have an 𝜂-long form.

Now that we know what the reduction consists of, we can discuss what goes into
making the reduction possible and the engineering challenges that arise.

5.1.2 CPS
Due to the pervasive use of Gallina match statements on terms which are not known
during this compilation phase, we need to write essentially all of the decision-tree-
evaluation code in continuation-passing style. This causes a moderate amount of
proof-engineer overhead, distributed over the entire rewriter.

The way that CPS permits reduction under blocked match statements is essentially
the same as the way it permits reduction of functions in the presence of unreduced let
binders in Subsection 4.4.2 (Subterm Sharing Is Crucial). Consider the expression

option_map List.length (option_map (𝜆 x. List.repeat x 5) y)

where option_map : (A → B) → option A → option B maps a function over an
option, and List.repeat x n creates a list consisting of n copies of x. If we fully
reduce this term, we get the Gallina term

match
match y with
| Some x => Some [x; x; x; x; x]
| None => None
end

with
| Some x =>

Some
((fix Ffix (x0 : list _) : nat :=

match x0 with
| [] => 0
| _ :: x2 => S (Ffix x2)
end) x)

2In order to make this simplification, we need to restrict the rewrite rules we support a little bit.
In particular, we only support rewrite rules operating on 𝜂-long applications of concrete identifiers
to arguments. This means that we cannot support identifiers with variable arrow structure (e.g.,
a variadic curry function) nor do we support rewriting expressions like List.map f to List.map
g—we only support rewriting List.map f xs to List.map g ys.
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| None => None
end

Consider now a CPS’d version of option_map:

Definition option_map_cps {A B} (f : A → B) (x : option A)
: ∀ {T}, (option B → T) → T

:= 𝜆 T cont.
match x with
| Some x => cont (Some (f x))
| None => cont None
end.

Then we could write the somewhat more confusing term

option_map_cps (𝜆 x. List.repeat x 5) y (option_map List.length)

whence reduction gives us

match y with
| Some _ => Some 5
| None => None
end

So we see that rewriting terms in continuation-passing style allows reduction to pro-
ceed without getting blocked on unknown terms.

Note that if we wanted to pass this list length into a further continuation, we’d need
to instead write a term like

𝜆 cont.
option_map_cps (𝜆 x. List.repeat x 5) y

(𝜆 ls. option_map_cps List.length ls cont)

which reduces to

𝜆 cont. match y with
| Some _ => cont (Some 5)
| None => cont None
end
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5.1.3 Type Codes
The pattern-matching-compilation algorithm of Aehlig, Haftmann, and Nipkow [AHN08]
does not deal with types. In general, unification of types is somewhat more compli-
cated than unification of terms, because types are used as indices in terms whereas
nothing gets indexed over the terms. We have two options, here:

1. We can treat terms and types as independent and untyped, simply collecting
a map of unification variables to types, checking nonlinear occurrences (such
as the types in @fst ?A ?B (@pair ?A ?B ?x ?y)) for equality, and run a
typechecking pass afterwards to reconstruct well-typedness. In this case, we
would consider the rewriting to have failed if the replacement is not well-typed.

2. We can perform matching on types first, taking care to preserve typing informa-
tion, and then perform matching on terms afterwards, taking care to preserve
typing information.

The obvious trade-off between these options is that the former option requires doing
more work at runtime, because we end up doing needless comparisons that we could
know in advance will always turn out a particular way. Importantly, note that Coq’s
reduction will not be able to reduce away these runtime comparisons; reduction alone
is not enough to deduce that a Boolean equality function defined by recursion will
return true when passed identical arguments, if the arguments are not also concrete
terms.

Following standard practice in dependently typed languages, we chose the second
option. We now believe that this was a mistake, as it’s fiendishly hard to deconstruct
the expressions in a way that preserves enough typing information to completely avoid
the need to compare type codes for equality and cast across proofs. For example, to
preserve typing information when matching for @fst ?A ?B (@pair ?A ?B ?x ?y),
we would have to end up with the following match statement. Note that the reader is
not expected to understand this statement, and the author was only able to construct
it with some help from Coq’s typechecker.

| App f v =>
let f :=
match f in expr t return option (ident t) with
| Ident idc => Some idc
| _ => None
end in

match f with
| Some maybe_fst =>

match v in expr s return ident (s -> _) -> _ with
| App f y =>

107



match f in expr _s
return
match _s with arrow b _ => expr b | _ => unit end
-> match _s with arrow _ ab => ident (ab -> _) | _ => unit end
-> _

with
| App f x =>

let f :=
match f in expr t return option (ident t) with
| Ident idc => Some idc
| _ => None
end in

match f with
| Some maybe_pair =>

match maybe_pair in ident t
return
match t with arrow a _ => expr a | _ => unit end
-> match t with arrow a (arrow b _) => expr b | _ => unit end
-> match t with arrow a (arrow b ab) => ident (ab -> _) | _ => unit end
-> _

with
| @pair a b =>

fun (x : expr a) (y : expr b) (maybe_fst : ident _) =>
let is_fst := match maybe_fst with fst => true | _ => false end in
if is_fst
then … (* now we can finally do something with a, b, x, and y *)
else …

| _ => …
end x

| None => …
end

| _ => …
end y

| _ => …
end maybe_fst

| None => …
end

This is quite the mouthful.

Furthermore, there are two additional complications. First, this sort of match expres-
sion must be generated automatically. Since pattern-matching evaluation happens on
lists of expressions, we’d need to know exactly what each match reveals about the
types of all other expressions in the list. Additionally, in order to allow reduction to
happen where it should, we need to make sure to match the head identifier first, with-
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out convoying it across matches on unknown variables. Note that in the code above,
we did not follow this requirement, as it would complicate the return clauses even
more (presuming we wanted to propagate typing information as we’d have to in the
general case rather than cutting corners). The convoy pattern, for those unfamiliar
with it, is explained in detail in Chapter 8 (“More Dependent Types”) of Certified
Programming with Dependent Types [Chl13].

Second, trying to prove anything about functions written like this is an enormous pain.
Because of the intricate dependencies in typing information involved in the convoy
pattern, Coq’s destruct tactic is useless. The dependent destruction tactic is
sometimes able to handle such goals, but even when it can, it often introduces a
dependency on the axiom JMeq_eq, which is equivalent to assuming uniqueness of
identity proofs (UIP), that all proofs of equality are equal—note that this contradicts,
for example, the popular univalence axiom of homotopy type theory [Uni13]. In order
to prove anything about such functions without assuming UIP, the proof effectively
needs to replicate the complicated return clauses of the function definition. However,
since they are not to be replicated exactly but merely be generated from the same
insights, such proof terms often have to be written almost entirely by hand. These
proofs are furthermore quite hard to maintain, as even small changes in the structure
of the function often require intricate changes in the proof script.

Due to a lack of foresight and an unfortunate reluctance to take the design back to
the drawing board after we already had working code, we ended up mixing these two
approaches, getting, not quite the worst of both worlds, but definitely a significant
fraction of the pain of both worlds: We must deal with both the pain of indexing our
term unification information over our type unification information, and we must still
insert typecasts in places where we have lost the information that the types will line
up.

5.1.4 How Do We Know What We Can Unfold?
Coq’s built-in reduction is somewhat limited, especially when we want it to have
reasonable performance. This is, after all, a large part of the problem this tool is
intended to solve.

In practice, we make use of three reduction passes; that we cannot interleave them is
a limitation of the built-in reduction:

1. First, we unfold everything except for a specific list of constants; these con-
stants are the ones that contain computations on information not fully known
at preevaluation time.

2. Next, we unfold all instances of a particular set of constants; these constants
are the ones that we make sure to only use when we know that inlining them
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won’t incur extra overhead.

3. Finally, we use cbn to simplify a small set of constants in only the locations
that these constants are applied to constructors.

Ideally, we’d either be able to do the entire simplification in the third step, or we’d be
able to avoid the third step entirely. Unfortunately, Coq’s reduction is not fast enough
to do the former, and the latter requires a significant amount of effort. In particular,
the strategy that we’d need to follow is to have two versions of every function which
sometimes computes on known data and sometimes computes on unknown data, and
we’d need to track in all locations which data is known and which data is unknown.

We already track known and unknown data to some extent (see, for example, the
known argument to the rIdent constructor discussed below). Additionally, we have
two versions of a couple of functions, such as the bind function of the option monad,
where we decide which to use based on, e.g., whether or not the option value that
we’re binding will definitely be known at prereduction time.

Note that tracking this sort of information is nontrivial, as there’s no help from the
typechecker.

We’ll come back to this in Subsection 5.4.1.

5.2 NbE vs. Pattern-Matching Compilation: Mis-
matched Expression APIs and Leaky Abstrac-
tion Barriers

We introduced normalization by evaluation (NbE) [BS91] in Subsection 4.1.3 and
expanded on it in Subsection 4.3.2 as a way to support higher-order reduction of
𝜆-terms. The termination argument for NbE proceeds by recursion on the type of the
term we’re reducing. In particular, the most natural way to define these functions in
a proof assistant is to proceed by structural recursion on the type of the term being
reduced. This feature suggests that using intrinsically-typed syntax is more natural
for NbE, and we saw in Section 3.1.3 that denotation functions are also simpler on
syntax that is well-typed by construction.

However, the pattern-matching-compilation algorithm of Maranget [Mar08] inher-
ently operates on untyped syntax. We thus have four options:

(1) use intrinsically well-typed syntax everywhere, paying the cost in the pattern-
matching compilation and evaluation algorithm;
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(2) use untyped syntax in both NbE and rewriting, paying the associated costs in
NbE, denotation, and in our proofs;

(3) use intrinsically well-typed syntax in most passes and untyped syntax for pattern-
matching compilation;

(4) invent a pattern-matching compilation algorithm that is well-suited to type-
indexed syntax.

We ultimately chose option (3). I was not clever enough to follow through on option
(4), and while options (1) and (2) are both interesting, option (3) seemed to follow
the well-established convention of using whichever datatype is best-suited to the task
at hand. As we’ll shortly see, all of these options come with significant costs, and (3)
is not as obviously a good choice as it might seem at first glance.

5.2.1 Pattern-Matching Evaluation on Type-Indexed Terms
While the cost of performing pattern-matching compilation on type-indexed terms
is noticeable, it’s relatively insignificant compared to the cost of evaluating decision
trees directly on type-indexed terms. In particular, pattern-matching compilation
effectively throws away the type information whenever it encounters it; whether we
do this early or late does not matter much, and we only perform this compilation
once for any given set of rewrite rules.

By contrast, evaluation of the decision tree needs to produce term ASTs that are used
in rewriting, and hence we need to preserve type information in the input. Recall from
Subsection 4.3.1 that decision-tree evaluation operates on lists of terms. Here already
we hit our first snag: if we want to operate on well-typed terms, we must index our
lists over a list of types. This is not so bad, but recall also from Subsection 4.3.1 that
decision trees contain four constructors:

• TryLeaf k onfailure: Try the 𝑘th rewrite rule; if it fails, keep going with
onfailure.

• Failure: Abort; nothing left to try.

• Switch icases app case default: With the first element of the vector, match
on its kind; if it is an identifier matching something in icases, which is a list
of pairs of identifiers and decision trees, remove the first element of the vector
and run that decision tree; if it is an application and app case is not None, try
the app case decision tree, replacing the first element of each vector with the
two elements of the function and the argument it is applied to; otherwise, do
not modify the vectors and use the default decision tree.
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• Swap i cont: Swap the first element of the vector with the 𝑖th element (0-
indexed) and keep going with cont.

The first two constructors are not very interesting, as far as overhead goes, but the
third and fourth constructors mandate quite involved adaptations for operating on
well-typed terms.

Note that the type of eval_decision_tree would be something like ∀ {T : Type}
(d : decision_tree) (ts : list type) (es : exprlist ts) (K : ℕ → exprlist
ts → option T), option T where the ℕ argument to the continuation describes
which rewrite rule to invoke. Note that we are using continuation-passing style here
to achieve adequate reduction behavior inside Coq. Note that this is the same reason
we introduced in Section 4.1, except one metalevel up.

We cover the Swap case first, because it is simpler. To perform a Swap, we must
exchange two elements of the type-indexed list. Hence we need both to swap the
elements of the list of types and then to have a separate, dependently typed swap
function for the vector of expressions. Moreover, since we need to undo the swapping
inside the continuation, we must have a separate unswap function on expression vec-
tors which goes from a swapped type list to the original one. We could instead elide
the swap node, but then we could no longer use matching, hd, and tl to operate on
the expressions and would instead need special operations to do surgery in the middle
of the list, in a way that preserves type indexing.

To perform a Switch, we must break apart the first element of our type-indexed list,
determining whether it is an application, and identifier, or other. Note that even with
dependent types, we cannot avoid needing a failure case for when the type-indexed
list is empty, even though such a case should never occur because good decision trees
will never have a Switch node after consuming the entire vector of expressions. This
failure case cannot be avoided because there is no type-level relation between the
expression vector and the decision tree. This mismatch—the need to include failure
cases that one might expect to be eliminated by dependent typing information—is a
sign that the amount of dependency in the types is wrong. It may be too little, whence
the developer should see if there is a way to incorporate the lack of error into the
typing information (which in this case would require indexing the type of the decision
tree over the length of the vector3). It may alternatively be too much dependent
typing, and the developer might be well-served by removing more dependency from

3Note that choosing to index the decision tree over the length of the vector severely complicates
our ability to avoid separate swap and unswap functions by indexing into the middle of the vector.
We’d need to use some sort of finite type to ensure the indices are not too large, and we’d need
to be very careful to write dependently typed middle-of-the-vector surgery operations which are
judgmentally invertible on the effects that they have on the length of the vector. Here we see an
example of how dependent types introduce coupling between seemingly unrelated design decisions,
which is a large part of why abstraction barriers are so essential, as we’ll discuss in Section 7.2
(When and How To Use Dependent Types Painlessly).
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the types and letting more things fall into the error case.

After breaking apart the first element, we must convoy the continuation across the
match statement so that we can pass an expression vector of the correct type to the
continuation K. In code, this branch might look something like

…
| Switch icases app_case default

=> match es in exprlist ts
return (exprlist ts → option T) → option T

with
| [] => 𝜆 _, None
| e :: es
=> match e in expr t

return (exprlist (t :: ts) → option T) → option T
with
| App s d f x => 𝜆 K,

let K' : exprlist ((s → d) :: s :: ts)
(* new continuation to pass on recursively *)

:= 𝜆 es', K (App (hd es') (hd (tl es')) :: tl (tl es')) in
… (* do something with app_case *)

| Ident t idc => 𝜆 K,
let K' : exprlist ts

(* new continuation to pass on recursively *)
:= 𝜆 es', K (Ident idc :: es') in

… (* do something with icases *)
| _ => 𝜆 K, … (* do something with default *)
end

end K
…

Note that hd and tl must be type-indexed, and we cannot simply match on es' in
the App case; there is no way to preserve the connection between the types of the first
two elements of es' inside such a match statement.

This may not look too bad, but it gets worse. Since the match on e will not be known
until we are actually doing the rewriting on a concrete expression, and the contin-
uation is convoyed across this match, there is no way to evaluate the continuation
during compilation of rewrite rules. If we don’t want to evaluate the continuation
early, we’d have to be very careful not to duplicate it across all of the decision-tree
evaluation cases, as we might otherwise incur a superlinear runtime factor in the
number of rewrite rules. As noted in Section 5.1, our early reduction nets us a 2×
speedup in runtime of rewriting and is therefore relatively important to be able to
do.
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Here we see something interesting, which does not appear to be as much of a concern
in other programming languages: the representation of our data forces our hand about
how much efficiency can be gained from precomputation, even when the representation
choices are relatively minor.

5.2.2 Untyped Syntax in NbE
There is no good way around the fact that NbE requires typing information to argue
termination. Since NbE will be called on subterms of the overall term, even if we
use syntax that is not guaranteed to be type-correct, we must still store the type
information in the nodes of the AST.

Furthermore, as we say in Section 3.1.3 (de Bruijn Indices), converting from untyped
syntax to intrinsically typed syntax, as well as writing a denotation function, requires
either that all types be nonempty or that we carry around a proof of well-typedness to
use during recursion. As discussed in Chapter 7 and specifically in Section 7.2 (When
and How To Use Dependent Types Painlessly), needing to mix proofs with programs
is often a big warning flag, unless the mixing can be hidden behind a well-designed
API. However, if we are going to be hiding the syntax behind an API of being well-
typed, it seems like we might as well just use intrinsically well-typed syntax, which
naturally inhabits that API. Furthermore, unlike in many cases where the API is best
treated as opaque everywhere, here the API mixing proofs and programs needs to
have adequate behavior under reduction and ought to have good behavior even under
partial reduction. This severely complicates the task of building a good abstraction
barrier, as we not only need to ensure that the abstraction barrier does not need to
be broken in the course of term-building and typechecking, but we must also ensure
that the abstraction barrier can be broken in a principled way via reduction without
introducing significant overhead.

5.2.3 Mixing Typed and Untyped Syntax
The third option is to use whichever datatype is most naturally suited for each pass
and to convert between them as necessary. This is the option that we ultimately
chose, and the one, we believe, that would be most natural to choose to engineers
and developers coming from nondependently typed languages.

There are a number of considerations that arose when fleshing out this design and a
number of engineering pain points that we encountered. The theme to all of these,
as we will revisit in Chapter 7, is that imperfectly opaque abstraction barriers cause
headaches in a nonlocal manner.

We got lucky, in some sense, that the rewriting pass always has a well-typed default
option: do no rewriting. Hence we do not need to worry about carrying around
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proofs of well-typedness, and this avoids some of the biggest issues described in Sub-
section 5.2.2 (Untyped Syntax in NbE).

The biggest constraint driving our design decisions is that we need conversion between
the two representations to be 𝒪(1); if we need to walk the entire syntax tree to convert
between typed and untyped representations at every rewriting location, we’ll incur
quadratic overhead in the size of the term being rewritten. We can actually relax
this constraint a little bit: by designing the untyped representation to be completely
evaluated away during the compilation of rewrite rules, we can allow conversion from
the untyped syntax to the typed syntax to walk any part of the term that already
needed to be revealed for rewriting, giving us amortized constant time rather than
truly constant time. As such, we need to be able to embed well-typed syntax directly
into the nontype-indexed representation at cost 𝒪(1).

As the entire purpose of the untyped syntax is to (a) allow us to perform matching on
the AST to determine which rewrite rule to use, and furthermore (b) allow us to reuse
the decomposition work so as to avoid needing to decompose the term multiple times,
we need an inductive type which can embed PHOAS expressions and has separate
nodes for the structure that we need, namely application and identifiers:

Inductive rawexpr : Type :=
| rIdent (known : bool) {t} (idc : ident t) {t'} (alt : expr t')
| rApp (f x : rawexpr) {t} (alt : expr t)
| rExpr {t} (e : expr t)
| rValue {t} (e : NbEt t).

There are three perhaps-unexpected things to note about this inductive type, which
we will discuss in later subsections:

1. The constructor rValue holds an NbE value of the type NbEt introduced in
Subsection 4.3.2. We will discuss this in Section 5.7 (Delayed Rewriting in
Variable Nodes).

2. The constructors rIdent and rExpr hold “alternate” PHOAS expressions. We
will discuss this in Subsection 5.4.2 (Revealing “Enough” Structure).

3. The constructor rIdent has an extra Boolean known. We will discuss this in
Section 5.4.1 (The known argument).

With this inductive type in hand, it’s easy to see how rExpr allows us 𝒪(1) embedding
of intrinsically typed exprs into untyped rawexprs.

While it’s likely that sufficiently good abstraction barriers around this datatype would
allow us to use it with relative ease, we did not succeed in designing good enough
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abstraction barriers. The bright side of this failure is that we now have a number of
examples for this dissertation of ways in which inadequate abstraction barriers cause
overhead in terms of both the intricacy of definitions and theorems and the size of
their statements and proofs as well as, to a lesser extent, the running time of proof
generation.

We will discuss the many issues that arise from leaks in this abstraction barrier in
the upcoming subsections.

5.2.4 Pattern-Matching Compilation Made for Intrinsically
Typed Syntax

The cost of this fourth option is the cleverness required to come up with a version of
the pattern-matching compilation which, rather than being hindered by types in its
syntax, instead puts them to good use. Lacking this cleverness, we were unable to
pay the requisite cost and hence have not much to say in this section.

5.3 Patterns with Type Variables – The Three Kinds
of Identifiers

We have one final bit of infrastructure to explain and motivate before we have enough
of the structure sketched out to give all of the rest of the engineering challenges:
representing the identifiers. Recall from Subsection 4.2.1 (Our Approach in Nine
Steps) that we automatically emit an inductive type describing all available primitive
functions.

When deciding how to represent identifiers, there are roughly three options we have
to choose from:

1. We could use an untyped representation of identifiers, such as Coq strings (as
in Anand et al. [Ana+18], for example) or integers indexing into some finite
map.

2. We could index the expression type over a finite map of valid identifiers and
use dependent typing to ensure that we only have well-typed identifiers.

3. We could have a fixed set of valid identifiers, using types to ensure that we have
only valid expressions.

The first option results in expressions that are not always well-typed. As discussed
in Chapter 7 and seen in the preceding sections, having leaky abstraction barriers is
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often worse than having none at all, and we expect that having partially well-typed
expressions would be no exception.

The second option is probably the way to go if we want truly extensible identifier sets.
There are two issues. First, this adds a linear overhead in the number of identifiers—
or more precisely, in the total size of the types of the identifiers—because every
AST node will store a copy of the entire finite map. Second, because our expression
syntax is simply typed, polymorphic identifiers pose a problem. To support identifiers
like fst and snd, which have types ∀ A B, A * B → A and ∀ A B, A * B → B
respectively, we must either replicate the identifiers with all of the ways they might
be applied, or else we must add support in our language for dependent types or for
explicit type polymorphism.

Instead, we chose to go with the third option, which we believe is the simplest. The
inductive type of identifiers is indexed over the type of the identifier, and type poly-
morphism is expressed via metalevel arguments to the constructor. So, for example,
the identifier code for fst takes two type-code arguments A and B and has type ident
(A * B → A). Hence all fully applied identifier codes have simple types (such as A
* B → A), and our inductive type still supports polymorphic constants. An addi-
tional benefit of this approach is that unification of identifiers is just pattern matching
in Gallina, and hence we can rely on the pattern-matching-compilation schemes of
Coq’s fast reduction machines, or the OCaml compiler itself, to further speed up our
rewriting.

Aside: Why Use Pattern-Matching Compilation At All? Given the fact
that, after prereduction, there is no trace of the decision tree remaining, one might
ask why we use pattern-matching compilation at all, rather than just leaving it to
the pattern-matching compiler of Coq or OCaml to be performant. We have three
answers to this question.

The first, perhaps most honest answer is that it is a historical accident; we prema-
turely optimized this part of the rewriting engine when writing it.

The second answer is that pattern-matching compilation is a good abstraction barrier
for factoring out the work of revealing enough structure from the work of unifying
a pattern with an expression. Said another way, even though we reduce away the
decision tree and its evaluation, there is basically no wasted work; removing pattern-
matching compilation while preserving all the benefits would effectively just be inlin-
ing all of the functions, and there would be no dead code revealed by this inlining.

The third and final answer is that it allows us to easily prune useless work. The
pattern-matching-compilation algorithm naturally prunes away patterns that can be
known to not work, given the structure that we’ve revealed. By contrast, if we just

117



record what information we’ve already revealed as we’re performing pattern unifica-
tion, it’s quite tricky to avoid decomposition which can be known to be useless based
on only the structure that’s been revealed already.

Consider, for example, rewriting with two rules whose left-hand sides are 𝑥+ (𝑦 + 1)
and (𝑎 + 𝑏) + (𝑐 ∗ 2). When revealing structure for the first rewrite rule, the engine
will first decompose the (unknown) expression into the application of the + identifier
to two arguments, and then decompose the second argument into the application
of the + identifier to two arguments, and then finally decompose the second inner
argument into a literal identifier to check if it is the literal 1. If the decomposition
succeeds, but the literal is not 1 (or if the second inner argument is not a literal at
all), then rewriting will fall back to the second rewrite rule. If we are doing structure
decomposition in the naïve way, we will then decompose the outer first argument
(bound to 𝑥 in the first rewrite rule) into the application of the identifier + to two
arguments. We will then attempt to decompose the second outer argument into the
application of the identifier ∗ to two arguments. Since there is no way an identifier
can be both + and ∗, this decomposition will fail. However, we could have avoided
doing the work of decomposing 𝑥 into 𝑎 + 𝑏 by realizing that the second rewrite rule
is incompatible with the first; this is exactly what pattern-matching compilation and
decision-tree evaluation does.

Pattern Matching For Rewriting We now arrive at the question of how to do
pattern matching for rewriting with identifiers. We want to be able to support type
variables, for example to rewrite @fst ?A ?B (@pair ?A ?B ?x ?y) to x. While it
would arguably be more elegant to treat term and type variables identically, doing
this would require a language supporting dependent types, and we are not aware of
any extension of PHOAS to dependent types. Extensions of HOAS to dependent
types are known [McB10], but the obvious modifications of such syntax that in the
simply typed case turn HOAS into PHOAS result in infinite self-referential types in
the dependently typed case.

As such, insofar as we are using intrinsically well-typed syntax at all, we need to
treat type variables separately from term variables. We need three different sorts of
identifiers:

• identifiers whose types contain no type variables, for use in external-facing
expressions and the denotation function,

• identifiers whose types are permitted to contain type variables, for use in pat-
terns, and

• identifiers with no type information, for use in pattern-matching compilation.

The first two are relatively self-explanatory. The third of these is required because
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pattern-matching compilation proceeds in an untyped way; there’s no obvious place
to keep the typing information associated to identifiers in the decision tree, which
must be computed before we do any unification, type variables or otherwise.

We could, in theory, use a single inductive type of type codes for all three of these.
We could parameterize the inductive of type codes over the set of free type variables
(or even just over a Boolean declaring whether or not type variables are allowed) and
conventionally use the type code for unit in all type-code arguments when building
decision trees.

This sort of reuse, however, is likely to introduce more problems than it solves.

The identifier codes used in pattern-matching compilation must be untyped, to match
the decision we made for expressions in Section 5.2. Having them conventionally
be typed pattern codes instantiated with unit types is, in some sense, just more
opportunity to mess up and try to inspect the types when we really shouldn’t. There
is a clear abstraction barrier here, of having these identifier codes not carry types,
and we might as well take advantage of that and codify the abstraction barrier in our
code.

The question of type variables is more nuanced. If we are only tracking whether or
not a type is allowed to have type variables, then we might as well use two different
inductive types; there is not much benefit to indexing the type codes over a Boolean
rather than having two copies of the inductive, for there’s not much that can be done
generically in whether or not type variables are allowed. Note also that we must track
at least this much information, for identifiers in expressions passed to the denotation
function must not have uninstantiated type variables, and identifiers in patterns must
be permitted to have uninstantiated type variables.

However, there is some potential benefit to indexing over the set of uninstantiated type
variables. This might allow us to write type signatures for functions that guarantee
some invariants, possibly allowing for easier proofs. However, it’s not clear to us
where this would actually be useful; most functions already care only about whether
or not we permit type variables at all. Our current code in fact performs a poor
approximation of this strategy in some places: we index over the entire pattern where
indexing over the free variables of the pattern would suffice.

This unneeded indexing enormously complicates the code and theorems and is yet
another example of how poorly designed abstraction barriers incur outsized overhead.
Rewrite-rule replacements are expressed as dependently typed towers indexed first
over the type variables of a pattern and then again over the term variables. This
design is a historical artifact, from when we expected to be writing rewrite rule ASTs
by hand rather than reifying them from Gallina and found the curried towers more
convenient to write. This design, however, is absolutely a mistake, especially given
the concession we make in Subsection 5.1.3 (Type Codes) to not track enough typing
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information to avoid all typechecking.

While indexing over only the set of permitted type variables would simplify proofs
significantly, we’d benefit even more by indexing only over whether or not we permit
type variables at all. None of our proofs are made simpler by tracking the set of
permitted type variables rather than just whether or not that set is empty.

5.4 Preevaluation Revisited
Having built up enough infrastructure to give a bit more in the way of code examples,
we now return to the engineering challenges posed by reducing early, first investigated
in Section 5.1

5.4.1 How Do We Know What We Can Unfold?
We can now revisit Subsection 5.1.4 in a bit more detail.

The known argument We noted in Subsection 5.2.3 the known argument of the
rIdent constructor of rawexpr. This argument is used to track what sorts of opera-
tions can be unfolded early. In particular, if a given identifier has no type arguments
(for example, the identifier coding for addition on ℤs), and we have already matched
against it, then when performing further matches to unify with other patterns, we
can directly match it against pattern identifiers. By contrast, if the identifier has not
yet been matched against, or if it has unknown type arguments, we cannot guarantee
that matches will reduce. Tracking this information adds a not-insignificant amount
of nuance and intricacy to the code.

Consider the following two cases, where we will make use of both true and false for
the known argument.

First, let us consider the simpler case of looking for examples where known will be
false. As a toy example, suppose we are rewriting with the rule @List.map A B f
(x::xs) = f x :: List.map f xs and the rule @List.map (option A) (option
B) (option_map f) (List.map (@Some A) xs) = @List.map A (option B) (fun
x => Some (f x)) xs. When decomposing structure for the first rewrite rule, we will
match on the head identifier to see if it is List.map. Supposing that the final argu-
ment is not a cons cell, we will fall back to the second rewrite rule. While we know
that the first identifier is a List.map, we do not know its type arguments. Therefore,
when we want to try to substitute with the second rewrite rule, we must match on
the type structure of the first type argument to List.map to see if it is an option,
and, if so, extract the underlying type to put into unification data. However, this
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decomposition will block on the type arguments to List.map, so we don’t want to
unfold it fully during early reduction. Note that the first rewrite rule is not really
necessary in this example; the essential point is that we don’t want to be unfolding
complicated recursive matches on the type structure that are not going to reduce.4

There are two cases where we want to reduce the match on an identifier. One of them
is when the identifier is known from the initial 𝜂-expansion of identifiers discussed
in Subsection 5.1.1 (note that this is distinct from the 𝜂-expansion of identifier ap-
plications), and the identifier has no type arguments.5 The other case is when we
have tested an identifier against a pattern identifier, and it has no type arguments.
In this case, when we eventually get around to collecting unification data for this
identifier, we know that we can reduce away the check on this identifier. Whether or
not the overhead is worth it in this second case is unclear; the design of this part of
the rewriting engine suffers from the lack of a unified picture about what, exactly, is
worth reducing, and what is not.

Gratuitous Dependent Types: How much do we actually want to unfold?
When computing the replacement of a given expression, how much do we want to
unfold? Here we encounter a case of premature optimization being the root of, if not
evil, at least headaches. The simplest path to take here would be to have unification
output a map of type-variable indices to types and a map of expression-variable indices
to expressions of unknown types. We could then have a function, not to be unfolded
early, which substitutes the expressions into some untyped representation of terms
and then performs a typechecking pass to convert back to a well-typed expression.

Instead, we decided to reduce as much as we possibly could. Following the common
practice of eager students looking to use dependent types, we defined a dependently
typed data structure indexed over the pattern type which holds the mapping of each
pattern type variable to a corresponding type. While this mapping cannot be fully
computed at rewrite-rule-compilation time—we may not know enough type structure
in the rawexpr—we can reduce effectively all of the lookups by turning them into
matches on this mapping which can be reduced. This, unfortunately, complicates our
proofs significantly while likely not providing any measurable speedup, serving only
as yet another example of the overhead induced by needless dependency at the type
level.

4In the current codebase, removing the first rewrite rule would, unfortunately, result in unfolding
of the matching on the type structure, due to an oversight in how we compute the known argument.
See the next footnote for more details.

5In our current implementation we don’t actually check that the identifier has no type arguments
in this case. This is an oversight, and the correct design would be able to distinguish between “this
identifier is known and it has no type arguments”, “this identifier is known but it has unknown type
arguments”, and “this identifier is completely unknown”. Failure to distinguish these cases does not
seem to cause too much trouble, because the way the code is structured luckily ensures that we only
match on the type arguments once, and because everything is CPS’d, this matching does not block
further reduction.

121



5.4.2 Revealing “Enough” Structure
We noted in Subsection 5.2.3 that the constructors rIdent and rExpr hold “alternate”
PHOAS expressions. We now discuss the reason for this.

Consider the example where we have two rewrite rules: that (𝑥+𝑦)+1 = 𝑥+(𝑦+1)
and that 𝑥 + 0 = 𝑥. If we have the expression (𝑎 + 𝑏) + 0, we would first try to
match this against (𝑥 + 𝑦) + 1. If we didn’t store the expression 𝑎 + 𝑏 as a PHOAS
expression and had it only as a rawexpr, then we’d have to retypecheck it, inserting
casts as necessary, in order to get a PHOAS expression to return from unification of
𝑎 + 𝑏 with 𝑥 in 𝑥 + 0.

Instead of incurring this overhead, we store the undecomposed PHOAS expression in
the rawexpr, allowing us to reuse it when no more decomposition is needed. This
does, however, complicate proofs: we need to talk about matching the revealed and
unrevealed structure, sometimes just on the type level, and other times on both the
term level and the type level.

5.5 Monads: Missing Abstraction Barriers at the
Type Level

We introduce in Subsection 4.4.2 the UnderLets monad for let lifting, which we
inline into the definition of the NbEt value type. We use two other monads in the
rewriting engine: the option monad, to encode possible failure of rewrite-rule side
conditions and substitutions, and the CPS monad discussed in Subsection 5.1.2.

Although we introduce a bit of syntactic sugar for monadic binds in an ad-hoc way,
we do not fully commit to a monadic abstraction barrier in our code. This lack of
principle incurs overhead when we have to deal with mismatched monads in different
functions, especially when we haven’t ordered the monadic applications in a principled
way.

The simplest example of this overhead is in our mixing of the option and CPS monads
in eval_decision_tree. The type of eval_decision_tree is ∀ {T : Type} (es :
list rawexpr) (d : decision_tree) (K : ℕ → list rawexpr → option T),
option T. Recall that the function of eval_decision_tree is to reveal structure on
the list of expressions es by evaluating the decision tree d, calling K to perform
rewriting with a given rewrite rule (referred to by index) whenever it hits a leaf node,
and continuing on when K fails with None. What is the correctness condition for
eval_decision_tree?

We need two correctness conditions. One of them is that, if eval_decision_tree
succeeds at all, it is equivalent to calling K on some index with some list of expres-
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sions which is appropriately equivalent to es. (See Subsection 5.7.1 for discussion of
what, exactly, “equivalent” means in this case.) This is the interpretation correctness
condition.

The other correctness condition is significantly more subtle and corresponds to the
property that the rewriter must map related PHOAS expressions to related PHOAS
expressions. This one is a monster. We present the code before explaining it to show
just how much of a mouthful it is.

Lemma wf_eval_decision_tree {T1 T2} G d
: ∀ (P : option T1 → option T2 → Prop)

(HPNone : P None None)
(ctx1 : list (@rawexpr var1))
(ctx2 : list (@rawexpr var2))
(ctxe : list { t : type & @expr var1 t * @expr var2 t }%type)
(Hctx1 : length ctx1 = length ctxe)
(Hctx2 : length ctx2 = length ctxe)
(Hwf : ∀ t re1 e1 re2 e2,

List.In ((re1, re2), existT _ t (e1, e2))
(List.combine (List.combine ctx1 ctx2) ctxe)

→ @wf_rawexpr G t re1 e1 re2 e2)
cont1 cont2
(Hcont : ∀ n ls1 ls2,

length ls1 = length ctxe
→ length ls2 = length ctxe
→ (forall t re1 e1 re2 e2,

List.In ((re1, re2), existT _ t (e1, e2))
(List.combine (List.combine ls1 ls2) ctxe)

→ @wf_rawexpr G t re1 e1 re2 e2)
→ (cont1 n ls1 = None ↔ cont2 n ls2 = None)

∧ P (cont1 n ls1) (cont2 n ls2)),
P (@eval_decision_tree var1 T1 ctx1 d cont1)

(@eval_decision_tree var2 T2 ctx2 d cont2).

This is one particular way to express the following meaning: Suppose that we have two
calls to eval_decision_tree with different PHOAS var types, different return types
T1 and T2, different continuations cont1 and cont1, different untyped expression lists
ctx1 and ctx2, and the same decision tree. Suppose further that we have two lists
of PHOAS expressions and a relation relating elements of T1 to elements of T2. Let
us assume the following properties of the expression lists and the continuations: The
two lists of untyped rawexprs (ctx1 and ctx2) match with each other and the two
lists of typed expressions, and all of the types line up. The two continuations, when
fed identical indices and fed lists of rawexprs which match with the given lists of
typed expressions, either both succeed with related outputs or both fail. Then we
can conclude that the calls to eval_decision_tree either both succeed with related
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outputs or both fail. Note, importantly, that we connect the lists of rawexprs fed to
the continuations with the lists of rawexprs fed to eval_decision_tree only via the
lists of typed expressions.

Why do we need such complication here? The eval_decision_tree function makes
no guarantee about how much of the expression it reveals, but we must capture the
fact that related PHOAS inputs result in the same amount of revealing, however much
revealing that is. We do, however, also guarantee that the revealed expressions are
both related to each other as well as to the original expressions, modulo the amount
of revealing. Finally, the continuations that we use assume that enough structure is
revealed and hence are not guaranteed to be independent of the level of revealing.

There are a couple of ways that this correctness condition might be simplified, all of
which essentially amount to better enforcement of abstraction barriers.

The function that rewrites with a particular rule relies on the invariant that the
function eval_decision_tree reveals enough structure. This breaks the abstrac-
tion barrier that rewriting with a particular rule is only supposed to care about the
expression structure. If we enforced this abstraction barrier, we’d no longer need
to talk about whether or not two rawexprs had the same level of revealed structure,
which would vastly simplify the definition wf_rawexpr (discussed more in the upcom-
ing Subsection 5.7.2). Furthermore, we could potentially remove the lists of typed
expressions, mandating only that the lists of rawexprs be related to each other.

Finally, we could split apart the behavior of the continuation from the behavior of
eval_decision_tree. Since the behavior of the continuations could be assumed
to not depend on the amount of revealed structure, we could prove that invoking
eval_decision_tree on any such “good” continuation returned a result equal to in-
voking the continuation on the same list of rawexprs, rather than merely one equiva-
lent to it modulo the amount of revealing. This would bypass the need for this lemma
entirely, allowing us to merely strengthen the previous lemma used for interpretation
correctness.

So here we see that a minor leak in an abstraction barrier (allowing the behavior of
rewriting to depend on how much structure has been revealed) can vastly complicate
correctness proofs, even forcing us to break other abstraction barriers by inlining the
behavior of various monads.
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5.6 Rewriting Again in the Output of a Rewrite
Rule

We now come to the feature of the rewriter that took the most time and effort to deal
with in our proofs and theorem statements: allowing some rules to be designated as
subject to a second bottomup rewriting pass in their output. This feature is important
for allowing users to express one operation (for example, List.flat_map) in terms of
other operations (for example, list_rect) which are themselves subject to reduction.

The technical challenge, here, is that the PHOAS var type of the input of normal-
ization by evaluation is not the same as the var type of the output. Hence the
rewrite-rule replacement phase of rules marked for subsequent rewriting passes must
change the var type when they do replacement. This can be done, roughly, by wrap-
ping arguments passed in to the replacement rule in an extra layer of Var nodes.

However, this incurs severe cost in phrasing and proving the correctness condition of
the rewriter. While most of the nitty-gritty details are beyond the scope even of
this chapter, we will look at one particular implication of supporting this feature in
Subsection 5.7.2 (Which Equivalence Relation?).

5.7 Delayed Rewriting in Variable Nodes
We saw in Subsection 5.2.3 that the rawexpr inductive has separate constructors for
PHOAS expressions and for NbEt values. The reason for this distinction lies at the
heart of fusing normalization by evaluation and pattern-matching compilation.

Consider rewriting in the expression List.map (𝜆 x. y + x) [0; 1] with the rules
x + 0 = x, and List.map f [x ; … ; y] = [f x ; … ; f y]. We want to get
out the list [y; y + 1] and not [y + 0; y + 1]. In the bottomup approach, we
first perform rewriting on the arguments to List.map before applying rewriting to
List.map itself. Although it would seem that no rewrite rule applies to either argu-
ment, in fact what happens is that (𝜆 x. y + x) becomes an NbEt thunk which is
waiting for the structure of x before deciding whether or not rewriting applies. Hence
when doing decision-tree evaluation, it’s important to keep this thunk waiting, rather
than forcing it early with a generic variable node. The rValue constructor allows
us to do this. The rExpr constructor, by contrast, holds expressions which we are
allowed to do further matching on.

How does the use of these different constructors show up? Recall from Figure 4-2 in
Subsection 4.3.2 that we put constants into 𝜂-long application form by calling reflect
at the base case of reduce(𝑐). When performing this 𝜂-expansion, we build up a
rawexpr. When we encounter an argument with an arrow type, we drop it directly
into an rValue constructor, marking it as not subject to structure revealing. When
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we encounter an argument whose type is not an arrow, we can guarantee that there is
no thunked rewriting, and so we can put the value into an rExpr constructor, marking
it as subject to structure decomposition.

One might ask: since we distinguish the creation of rExpr and rValue on the basis of
the argument’s type, could we not just use the same constructor for both? The reason
we cannot do this is that when revealing structure, we may decompose an expression
in an rExpr node into an application of an expression to another expression. In this
case, the first of these will have an arrow type, and both must be placed into the
rExpr constructor and be marked as subject to further decomposition. Hence we
cannot distinguish these cases just on the basis of the type, and we do in fact need
two constructors.

5.7.1 Relating Expressions and Values

First, some background context: When writing PHOAS compiler passes, there are in
general two correctness conditions that must be proven about them. The first is a
soundness theorem. In Figure 3.1.3, we called this theorem check_is_even_expr_sound.
For compiler passes that produce syntax trees, this theorem will relate the denotation
of the input AST to the denotation of the output AST and might hence alternatively
be called a semantics-preservation theorem, or an interpretation-correctness theorem.
The second theorem, only applicable to compiler passes that produce ASTs (unlike
our evenness checker from Subsection 3.1.2), is a syntactic well-formedness theorem.
It will say that if the input AST is well-formed, then the output AST will also be
well-formed. As seen in Figure 3.1.3, the definition of well-formed for PHOAS relates
two expressions with different var arguments. Hence most PHOAS well-formedness
theorems are proven by showing that a given compiler pass preserves relatedness
between PHOASTs with different var arguments.

The fact that NbE values contain thunked rewriting creates a great deal of subtlety
in relating rawexprs. As the only correctness conditions on the rewriter are that it
preserves denotational semantics of expressions and that it maps related expressions
to related expressions, these are the only facts that hold about the NbEt values in
rValue. Since native PHOAS expressions do not permit such thunked values, we
can only relate NbEt values to the interpretations of such expressions. Even this
is not straightforward, as we must use an extensional equivalence relation, saying
that an NbEt value of arrow type is equivalent to an interpreted function only when
equivalence between the NbEt value argument and the interpreted function argument
implies equivalence of their outputs.

126



5.7.2 Which Equivalence Relation?
Generalizing the challenge from Subsection 5.7.1, it turns out that describing how
to relate two (or more!) objects was one of the most challenging parts of the proof
effort. All told, we needed approximately two dozen ways of relating various objects.

We begin with the equivalence relations hinted at in previous sections.

wf_rawexpr In Section 5.5, we introduced without definition the four-place wf_rawexpr
relation. This relation, a beefed-up version of the PHOAS definition of related in
Figure 3.1.3, takes in two rawexprs, two PHOAS expressions (of the same type),
and is parameterized over a list of pairs of allowed and related variables, much like
the definition of related. It requires that both rawexprs have the same amount of
revealed structure (important only because we broke the abstraction barrier of re-
vealed structure only mattering as an optimization); that the unrevealed structure,
the “alternate” expression of the rApp and rIdent nodes, match exactly with the
given expressions; and that the structure that is revealed matches as well with the
given expressions. The only nontrivial case in this definition is what to say about
when NbEt values match expressions. We say that an NbEt value is equivalent only to
the result of calling NbE’s reify function on that value. That this definition suffices
is highly nonobvious; we refer the reader to our Coq proofs, performed without any
axioms, as our justification of sufficiency. That each NbEt value must match at least
the result of calling NbE’s reify function on that value is a result of how we handle
unrevealed forms when building up the arguments to an 𝜂-long identifier application
as discussed briefly in Subsection 5.1.1 (What Does This Reduction Consist Of?).
Namely, when forming applications of rawexprs to NbEt values during 𝜂-expansion,
we say that the “unrevealed” structure of an NbEt value v is reify v.

interp_maybe_do_again In Section 5.6, we discussed a small subset of the impli-
cations of supporting rewriting again in the output of a rewrite rule. The most easily
describable intricacy and overhead caused by this feature shows up in the definition
of what it means for a rewrite rule to preserve denotational semantics. At the user
level, this is quite obvious: the left-hand side of the rewrite rule (prior to reification6)
must equal the right-hand side. However, there are two subtleties to expressing the
correctness condition to intermediate representations of the rewrite rule. We will
discuss one of them here and the other in Section 5.8 (What’s the Ground Truth:
Patterns or Expressions?).

At some point in the rewriting process, the rewrite rule must be expressed in terms
of a PHOAS expression whose var type is either the output var type—if this rule is

6Note that this reification is a tactic procedure reifying Gallina to PHOAS, not the reify function
of normalization by evaluation discussed elsewhere in this chapter.

127



not subject to more rewriting—or else is the NbEt value type—if the rule is subject
to more rewriting. Hence we must be able to relate an object of this type to the
denotational interpretation that we are hoping to preserve. There are two subtleties
here. The first is that we cannot simply “interpret” the NbEt values stored in Var
nodes; we must use the extensional relation described above in Section 5.7 (Delayed
Rewriting in Variable Nodes), saying that an NbEt value of arrow type is equivalent
to an interpreted function only when equivalence between the NbEt value argument
and the interpreted function argument implies equivalence of their outputs.

Second, we cannot simply interpret the expression which surrounds the Var node, and
we must instead ensure that the “interpretation” of 𝜆s in the AST is extensional over
all appropriately related NbEt values they might be passed. Note that it’s not even
obvious how to materialize the function they must be extensionally related to. When
trying to prove that the application of (𝜆 f x. v1 (f x)) to NbEt values v2 and
v3 is appropriately related to some interpreted function 𝑔, how do we materialize the
interpreted functions equivalent to (𝜆 f x. v1 (f x)) and v2 which when combined
via application give 𝑔? The answer is that we cannot, at least if we are looking for
the application to be equal to 𝑔. If we require that the application only be related to
𝑔 (where “related” in this case means extensionally or pointwise equal), then we can
materialize such functions by reading them off our inductive hypotheses. While we
initially depended on the axiom of functional extensionality, after sinking dozens of
hours into understanding the details of these relatedness functions, we were eventually
able to extract the insight that two interpreted functions are extensionally equal if and
only if there exists an expression to which both functions are related. See commits
4d7999e and e9b3505 in the mit-plv/rewriter repository on GitHub for more details
on the exact changes required to implement this insight and remove the dependence
on the axiom of functional extensionality.

Related Miscellanea While delving into the details of all two-dozen ways of re-
lating objects is beyond the scope of this dissertation, we mention a couple of other
nonobvious design questions that we found challenging to answer.

Recall from Subsection 4.3.2 that NbEt values are Gallina functions on arrow types;
dropping the subtleties of the UnderLets monad, we had

NbE𝑡(𝑡1 → 𝑡2) ≔ NbE𝑡(𝑡1) → NbE𝑡(𝑡2)
NbE𝑡(𝑏) ≔ expr(𝑏)

The PHOAS relatedness condition of Figure 3.1.3 (PHOAS) is parameterized over a
list of pairs of permitted related variables.
Design Question: What is the relation between the permitted related variables lists
of the terms of types NbE𝑡(𝑡1), NbE𝑡(𝑡2), and NbE𝑡(𝑡1 → 𝑡2)?
Spoiler: The list for NbE𝑡(𝑡1) is unconstrained and is prepended to the list for
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NbE𝑡(𝑡1 → 𝑡2) (which is given) to get the list for NbE𝑡(𝑡2). That is, we write

related NbE𝑡1→𝑡2(Γ, 𝑓1, 𝑓2) ≔ ∀ Γ′ 𝑣1 𝑣2, related NbE𝑡1(Γ
′, 𝑣1, 𝑣2)

→ related NbE𝑡2(Γ
′ ++Γ, 𝑓1(𝑣1), 𝑓2(𝑣2))

related NbE𝑏(Γ, 𝑒1, 𝑒2) ≔ related(Γ, 𝑒1, 𝑒2)

Some correctness lemmas do not need full-blown relatedness conditions. For example,
in some places, we do not need that a rawexpr is fully consistent with its alternate
expression structure, only that the types match and that the top-level structure of
each alternate PHOAS expression matches the node of the rawexpr.
Design Question: Is it better to minimize the number of relations and fold these
“self-matching” or “goodness” properties into the definitions of relatedness, which
are then used everywhere; or is it better to have separate definitions for goodness and
relatedness and have correctness conditions which more tightly pin down the behavior
of the corresponding functions?
(Non-Spoiler: We don’t have an answer to this one.)

5.8 What’s the Ground Truth: Patterns or Ex-
pressions?

We mentioned in Subsection 5.7.2 (Which Equivalence Relation?) that there were
two subtleties to expressing the interpretation-correctness condition for intermediate
representations of rewrite rules, and we proceeded to discuss only one of them. We
discuss the other one here.

We must answer the question, in proving our rewriter correct: What denotational
semantics do we use for a rewrite rule?

In our current framework, we talk about rewrite rules in terms of patterns, which are
special ASTs which contain extra pattern variables in both the types and the terms,
and in terms of a replacement function, which takes in unification data and returns
either failure or else a PHOAST with the data plugged in. While this design is sort-of
a historical accident of originally intending to write rewrite rules by hand, there is
also a genuine question of how to relate patterns to replacement functions. While
we could, in theory, in a better-designed rewriter, indirect through the expressions
that each of these came from, the functions turning expressions into patterns and
replacement rules are likely to be quite complicated, especially with the support for
rewriting again described in Section 5.6 (Rewriting Again in the Output of a Rewrite
Rule).
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The way we currently relate these is that we write an interpretation function for pat-
terns, parameterized over unification data, and relate this to the interpretation of the
replacement function applied to unification data, suitably restricted to just the type
variables of the pattern in question to make various dependent types line up. Note
that this restriction of the unification data would likely be unnecessary if we stripped
out all of the dependent types that we don’t actually need; c.f. Subsection 5.1.3 (Type
Codes). This interpretation function is itself also severely complicated by the use of
dependent types in talking about unification data.

5.9 What’s the Takeaway?
This chapter has been a brief survey of the engineering challenges we encountered in
designing and implementing a framework for building verified partial evaluators with
rewriting. We hope that this deep dive into the details of our framework has fleshed
out some of the design principles and challenges we’ve discussed in previous sections.

If the reader wishes to take only one thing from this chapter, we invite it to be a sense
and understanding of just how important good abstraction barriers and API design
are to engineering at scale in verified and dependently typed settings, which we will
come back to in Chapter 7.
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Chapter 6

Reification by Parametricity
Fast Setup for Proof by Reflection,
in Two Lines of ℒtac

6.1 Introduction

We introduced reification in Section 3.2 as the starting point for proof by reflection.
Reification consists of translating a “native” term of the logic into an explicit abstract
syntax tree, which we may then feed to verified procedures or any other functional
programs in the logic. As mentioned in Figure 4.5.1, the method of reification used in
our framework for reflective partial evaluation and rewriting presented in Chapter 4
was not especially optimized and can be a bottleneck for large terms, especially those
with many binders. Popular methods turn out to be surprisingly slow, often to
the point where, counterintuitively, the majority of proof-execution time is spent in
reification – unless the proof engineer invests in writing a plugin directly in the proof
assistant’s metalanguage (e.g., OCaml for Coq).

In this chapter, we present a new strategy discovered by Andres Erbsen and me dur-
ing my doctoral work, originally presented and published as [GEC18], showing that
reification can be both simpler and faster than with standard methods. Perhaps sur-
prisingly, we demonstrate how to reify terms almost entirely through reduction in the
logic, with a small amount of tactic code for setup and no ML programming. We
have already summarized our survey into prior approaches to reification Section 3.2,
providing high-quality implementations and documentation for them, serving a tuto-
rial function independent of our new contributions. We will begin in Section 6.2 with
an explanation of our alternative technique. We benchmark our approach against 18
competitors in Section 6.3.
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6.2 Reification by Parametricity

We propose factoring reification into two passes, both of which essentially have robust,
built-in implementations in Coq: abstraction or generalization, and substitution or
specialization.

term
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reify
//
reified
syntax

denoteoo
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}}
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``
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==

Figure 6-1: Abstraction and Reification

The key insight to this factoring is that
the shape of a reified term is essentially
the same as the shape of the term that we
start with. We can make precise the way
these shapes are the same by abstracting
over the parts that are different, obtaining
a function that can be specialized to give
either the original term or the reified term.

That is, we have the commutative triangle
in Figure 6-1.

6.2.1 Case-By-Case Walkthrough

Function Applications and Constants.

Consider the example of reifying 2 × 2. In this case, the term is 2 × 2 or (mul (S (S
O)) (S (S O))).

To reify, we first generalize or abstract the term 2 × 2 over the successor function S,
the zero constructor O, the multiplication function mul, and the type ℕ of natural
numbers. We get a function taking one type argument and three value arguments:

Λ𝑁. 𝜆(Mul ∶ 𝑁 → 𝑁 → 𝑁) (O ∶ 𝑁) (S ∶ 𝑁 → 𝑁). Mul (S (S O)) (S (S O))

We can now specialize this term in one of two ways: we may substitute ℕ, mul, O,
and S, to get back the term we started with; or we may substitute expr, NatMul,
NatO, and NatS to get the reified syntax tree

NatMul (NatS (NatS NatO)) (NatS (NatS NatO))

This simple two-step process is the core of our algorithm for reification: abstract over
all identifiers (and key parts of their types) and specialize to syntax-tree constructors
for these identifiers.
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Wrapped Primitives: let Binders, Eliminators, Quantifiers.

The above procedure can be applied to a term that contains let binders to get
a PHOAS tree that represents the original term, but doing so would not capture
sharing. The result would contain native let bindings of subexpressions, not PHOAS
let expressions. Call-by-value evaluation of any procedure applied to the reification
result would first substitute the let-bound subexpressions – leading to potentially
exponential blowup and, in practice, memory exhaustion.

The abstraction mechanisms in all proof assistants (that we know about) only allow
abstracting over terms, not language primitives. However, primitives can often be
wrapped in explicit definitions, which we can abstract over. For example, we already
used a wrapper for let binders, and terms that use it can be reified by abstracting
over that definition. If we start with the expression

dlet 𝑎 ∶= 1 in 𝑎 × 𝑎

and abstract over (@Let In ℕ ℕ), S, O, mul, and ℕ, we get a function of one type
argument and four value arguments:

Λ𝑁. 𝜆 (Mul ∶ 𝑁 → 𝑁 → 𝑁). 𝜆(O ∶ 𝑁). 𝜆(S ∶ 𝑁 → 𝑁).
𝜆(LetIn ∶ 𝑁 → (𝑁 → 𝑁) → 𝑁). LetIn (S O) (𝜆𝑎. Mul 𝑎 𝑎)

We may once again specialize this term to obtain either our original term or the
reified syntax. Note that to obtain reified PHOAS, we must include a Var node in
the LetIn expression; we substitute (𝜆𝑥 𝑓. LetIn 𝑥 (𝜆𝑣. 𝑓 (Var 𝑣))) for LetIn to
obtain the PHOAS tree

LetIn (NatS NatO) (𝜆𝑣. NatMul (Var 𝑣) (Var 𝑣))

Wrapping a metalanguage primitive in a definition in the code to be reified is in general
sufficient for reification by parametricity. Pattern matching and recursion cannot be
abstracted over directly, but if the same code is expressed using eliminators, these can
be handled like other functions. Similarly, even though ∀/Π cannot be abstracted
over, proof automation that itself introduces universal quantifiers before reification
can easily wrap them in a marker definition ( forall T P := forall (x:T), P x)
that can be. Existential quantifiers are not primitive in Coq and can be reified directly.

Lambdas.

While it would be sufficient to require that, in code to be reified, we write all lambdas
with a named wrapper function, that would significantly clutter the code. We can
do better by making use of the fact that a PHOAS object-language lambda (Abs
node) consists of a metalanguage lambda that binds a value of type var, which can
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be used in expressions through constructor Var ∶ var → expr. Naïve reification by
parametricity would turn a lambda of type 𝑁 → 𝑁 into a lambda of type expr →
expr. A reification procedure that explicitly recurses over the metalanguage syntax
could just precompose this recursive-call result with Var to get the desired object-
language encoding of the lambda, but handling lambdas specially does not fit in the
framework of abstraction and specialization.

First, let us handle the common case of lambdas that appear as arguments to higher-
order functions. One easy approach: while the parametricity-based framework does
not allow for special-casing lambdas, it is up to us to choose how to handle func-
tions that we expect will take lambdas as arguments. We may replace each higher-
order function with a metalanguage lambda that wraps the higher-order arguments in
object-language lambdas, inserting Var nodes as appropriate. Code calling the func-
tion sum upto 𝑛 𝑓 ∶= 𝑓(0)+𝑓(1)+⋯+𝑓(𝑛) can be reified by abstracting over relevant
definitions and substituting (𝜆𝑛 𝑓. SumUpTo 𝑛 (Abs (𝜆𝑣. 𝑓 (Var 𝑣)))) for sum upto.
Note that the expression plugged in for sum upto differs from the one plugged in for
Let In only in the use of a deeply embedded abstraction node. If we wanted to reify
LetIn as just another higher-order function (as opposed to a distinguished wrapper
for a primitive), the code would look identical to that for sum upto.

It would be convenient if abstracting and substituting for functions that take higher-
order arguments were enough to reify lambdas, but here is a counterexample. Starting
with

𝜆 𝑥 𝑦. 𝑥 × ((𝜆 𝑧. 𝑧 × 𝑧) 𝑦),

abstraction gives

Λ𝑁. 𝜆(Mul ∶ 𝑁 → 𝑁 → 𝑁). 𝜆 (𝑥 𝑦 ∶ 𝑁). Mul 𝑥 ((𝜆 (𝑧 ∶ 𝑁). Mul 𝑧 𝑧) 𝑦),

and specialization and reduction give

𝜆 (𝑥 𝑦 ∶ expr). NatMul 𝑥 (NatMul 𝑦 𝑦).

The result is not even a PHOAS expression. We claim a desirable reified form is

Abs(𝜆 𝑥. Abs(𝜆 𝑦. NatMul (Var 𝑥) (NatMul (Var 𝑦) (Var 𝑦))))

Admittedly, even our improved form is not quite precise: 𝜆 𝑧. 𝑧 × 𝑧 has been lost.
However, as almost all standard Coq tactics silently reduce applications of lambdas,
working under the assumption that functions not wrapped in definitions will be arbi-
trarily evaluated during scripting is already the norm. Accepting that limitation, it
remains to consider possible occurrences of metalanguage lambdas in normal forms
of outputs of reification as described so far. As lambdas in expr nodes that take
metalanguage functions as arguments (LetIn, Abs) are handled by the rules for these
nodes, the remaining lambdas must be exactly at the head of the expression. Manip-
ulating these is outside of the power of abstraction and specialization; we recommend
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postprocessing using a simple recursive tactic script.

6.2.2 Commuting Abstraction and Reduction
Sometimes, the term we want to reify is the result of reducing another term. For
example, we might have a function that reduces to a term with a variable number of
let binders.1 We might have an inductive type that counts the number of let … in
… nodes we want in our output.

Inductive count := none | one_more (how_many : count).

It is important that this type be syntactically distinct from ℕ for reasons we will see
shortly.

unreduced term
(big 1 𝑛)

reduce
��

reduced
term

generalize
!!

reify
//
reified
syntax

denoteoo

ge
ne

ra
liz

e
��

abstracted term

specialize

aa

sp
ec

ial
ize

AA

Figure 6-2: Abstraction, Reification, Reduction

We can then define a recur-
sive function that constructs some
number of nested let binders:

Fixpoint big (x:nat) (n:count)
: nat
:= match n with

| none => x
| one_more n'
=> dlet x' := x * x in

big x' n'
end.

Our commutative diagram in Fig-
ure 6-1 now has an additional node,
becoming Figure 6-2. Since generalization and specialization are proportional in speed
to the size of the term begin handled, we can gain a significant performance boost
by performing generalization before reduction. To explain why, we split apart the
commutative diagram a bit more; in reduction, there is a 𝛿 or unfolding step, fol-
lowed by a 𝛽𝜄 step that reduces applications of 𝜆s and evaluates recursive calls. In
specialization, there is an application step, where the 𝜆 is applied to arguments, and
a 𝛽-reduction step, where the arguments are substituted. To obtain reified syntax, we
may perform generalization after 𝛿-reduction (before 𝛽𝜄-reduction), and we are not
required to perform the final 𝛽-reduction step of specialization to get a well-typed
term. It is important that unfolding big results in exposing the body for generaliza-
tion, which we accomplish in Coq by exposing the anonymous recursive function; in
other languages, the result may be a primitive eliminator applied to the body of the

1More realistically, we might have a function that represents big numbers using multiple words of
a user-specified width. In this case, we may want to specialize the procedure to a couple of different
bitwidths, then reify the resulting partially reduced terms.
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fixpoint. Either way, our commutative diagram thus becomes

unreduced term
𝛿��

small partially
reduced term

𝛽𝜄
//

''

reduced
term

''

//
reduced

reified syntax
oo

vv

abstracted
term

gg
66

unreduced
reified syntax

vv

𝛽𝜄
OO

unreduced
abstracted term

gg

application
66

Let us step through this alternative path of reduction using the example of the
unreduced term big 1 100, where we take 100 to mean the term represented by
(one more⋯(one more⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

100

none )⋯)⏟
100

.

Our first step is to unfold big, rendered as the arrow labeled 𝛿 in the diagram. In Coq,
the result is an anonymous fixpoint; here we will write it using the recursor count rec
of type ∀𝑇 . 𝑇 → (count → 𝑇 → 𝑇) → count → 𝑇. Performing 𝛿-reduction, that is,
unfolding big, gives us the small partially reduced term

(𝜆(𝑥 ∶ ℕ). 𝜆(𝑛 ∶ count).
count rec (ℕ → ℕ) (𝜆𝑥. 𝑥) (𝜆𝑛′. 𝜆big𝑛′. 𝜆𝑥. dlet 𝑥′ ∶= 𝑥×𝑥 in big𝑛′ 𝑥′)) 1 100

We call this term small, because performing 𝛽𝜄 reduction gives us a much larger
reduced term:

dlet 𝑥1 ∶= 1 × 1 in ⋯ dlet 𝑥100 ∶= 𝑥99 × 𝑥99 in 𝑥100

Abstracting the small partially reduced term over (@Let In ℕ ℕ), S, O, mul, and
ℕ gives us the abstracted unreduced term

Λ𝑁. 𝜆(Mul ∶ 𝑁 → 𝑁 → 𝑁)(O ∶ 𝑁)(S ∶ 𝑁 → 𝑁)(LetIn ∶ 𝑁 → (𝑁 → 𝑁) → 𝑁).
(𝜆(𝑥 ∶ 𝑁). 𝜆(𝑛 ∶ count). count rec (𝑁 → 𝑁) (𝜆𝑥. 𝑥)

(𝜆𝑛′. 𝜆big𝑛′. 𝜆𝑥. LetIn (Mul 𝑥 𝑥) (𝜆𝑥′. big𝑛′ 𝑥′)))
(S O) 100

Note that it is essential here that count is not syntactically the same as ℕ; if they
were the same, the abstraction would be ill-typed, as we have not abstracted over
count rec. More generally, it is essential that there is a clear separation between
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types that we reify and types that we do not, and we must reify all operations on the
types that we reify.

We can now apply this term to expr, NatMul, NatS, NatO, and, finally, to the term
(𝜆𝑣 𝑓. LetIn 𝑣 (𝜆𝑥. 𝑓 (Var 𝑥))). We get an unreduced reified syntax tree of type
expr. If we now perform 𝛽𝜄 reduction, we get our fully reduced reified term.

We take a moment to emphasize that this technique is not possible with any other
method of reification. We could just as well have not specialized the function to the
count of 100, yielding a function of type count → expr, despite the fact that our
reflective language knows nothing about count!

This technique is especially useful for terms that will not reduce without concrete
parameters but which should be reified for many different parameters. Running re-
duction once is slightly faster than running OCaml reification once, and it is more
than twice as fast as running reduction followed by OCaml reification. For suffi-
ciently large terms and sufficiently many parameter values, this performance beats
even OCaml reification.2

6.2.3 Implementation in ℒtac

ExampleMoreParametricity.v in the associated codebase, available at https://
github.com/mit-plv/reification-by-parametricity, mirrors the development of
reification by parametricity in Subsection 6.2.1.

Unfortunately, Coq does not have a tactic that performs abstraction.3 However, the
pattern tactic suffices; it performs abstraction followed by application, making it a
sort of one-sided inverse to 𝛽-reduction. By chaining pattern with an ℒtac-match
statement to peel off the application, we can get the abstracted function.

Ltac Reify x :=
match (eval pattern nat, Nat.mul, S, O, (@Let_In nat nat) in x) with
| ?rx _ _ _ _ _ =>
constr:( fun var => rx (@expr var) NatMul NatS NatO

(fun v f => LetIn v (fun x => f (Var x))) )
end.

Note that if @expr var lives in Type rather than Set, we must pattern over (nat
: Type) rather than nat. In older versions of Coq, an additional step involving
retyping the term with the ℒtac primitive type of is needed; we refer the reader to

2We discovered this method in the process of needing to reify implementations of cryptographic
primitives [Erb+19] for a couple hundred different choices of numeric parameters (e.g., prime mod-
ulus of arithmetic). A couple hundred is enough to beat the overhead.

3The generalize tactic returns ∀ rather than 𝜆, and it only works on types.
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Parametricity.v in the code supplement.

The error messages returned by the pattern tactic can be rather opaque at times; in
ExampleParametricityErrorMessages.v, we provide a procedure for decoding the
error messages.

Open Terms.

At some level it is natural to ask about generalizing our method to reify open terms
(i.e., with free variables), but we think such phrasing is a red herring. Any lemma
statement about a procedure that acts on a representation of open terms would need
to talk about how these terms would be closed. For example, solvers for algebraic
goals without quantifiers treat free variables as implicitly universally quantified. The
encodings are invariably ad-hoc: the free variables might be assigned unique numbers
during reification, and the lemma statement would be quantified over a sufficiently
long list that these numbers will be used to index into. Instead, we recommend
directly reifying the natural encoding of the goal as interpreted by the solver, e.g. by
adding new explicit quantifiers. Here is a hypothetical goal and a tactic script for
this strategy:

(a b : nat) (H : 0 < b) |- ∃ q r, a = q × b + r ∧ r < b

repeat match goal with
| n : nat |- ?P =>
match eval pattern n in P with
| ?P' _ => revert n; change (_forall nat P')
end

| H : ?A |- ?B => revert H; change (impl A B)
| |- ?G => (* ∀ a b, 0 < b -> ∃ q r, a = q × b + r ∧ r < b *)
let rG := Reify G in
refine (nonlinear_integer_solver_sound rG _ _);
[ prove_wf | vm_compute; reflexivity ]

end.

Briefly, this script replaced the context variables a and b with universal quantifiers in
the conclusion, and it replaced the premise H with an implication in the conclusion.
The syntax-tree datatype used in this example can be found in the Coq source file
ExampleMoreParametricity.v.

6.2.4 Advantages and Disadvantages
This method is faster than all but Ltac2 and OCaml reification, and commuting
reduction and abstraction makes this method faster even than the low-level Ltac2
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reification in many cases. Additionally, this method is much more concise than nearly
every other method we have examined, and it is very simple to implement.

We will emphasize here that this strategy shines when the initial term is small, the
partially computed terms are big (and there are many of them), and the operations to
evaluate are mostly well-separated by types (e.g., evaluate all of the count operations
and none of the nat ones).

This strategy is not directly applicable for reification of match (rather than elimina-
tors) or let … in … (rather than a definition that unfolds to let … in …), forall
(rather than a definition that unfolds to forall), or when reification should not be
modulo 𝛽𝜄𝜁-reduction.

6.3 Performance Comparison
We have done a performance comparison of the various methods of reification to the
PHOAS language @expr var from Section 3.1.3 in Coq 8.12.2. A typical reification
routine will obtain the term to be reified from the goal, reify it, run transitivity
(denote reified term) (possibly after normalizing the reified term), and solve
the side condition with something like lazy [denote]; reflexivity. Our test-
ing on a few samples indicated that using change rather than transitivity; lazy
[denote]; reflexivity can be around 3X slower; note that we do not test the time
of Defined.

There are two interesting metrics to consider: (1) how long does it take to reify the
term? and (2) how long does it take to get a normalized reified term, i.e., how long
does it take both to reify the term and normalize the reified term? We have chosen to
consider (1), because it provides the most fine-grained analysis of the actual reification
method.

6.3.1 Without Binders
We look at terms of the form 1 * 1 * 1 * … where multiplication is associated to
create a balanced binary tree. We say that the size of the term is the number of 1s.
We refer the reader to the attached code for the exact test cases and the code of each
reification method being tested.

We found that the performance of all methods is linear in term size.

Sorted from slowest to fastest, most of the labels in Figure 6-3 should be self-
explanatory and are found in similarly named .v files in the associated code; we
call out a few potentially confusing ones:
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■ TypeClasses

■ CanonicalStructuresPHOAS

■ Ltac2

■ TypeClassesBodyFlatPHOAS

■ LtacPrimUncurry

■ LtacTCExplicitCtx

■ TypeClassesBodyHOAS

■ LtacTacInTermExplicitCtx

■ LtacTacInTermGallinaCtx

■ LtacTCGallinaCtx

■ LtacTacInTermPrimPair

■ LtacTCPrimPair

■ CanonicalStructuresHOAS

■ CanonicalStructuresFlatPHOAS

■ CanonicalStructuresFlatHOAS

■ Parsing

■ Mtac2

■ Mtac2Unfolded

■ ParsingElaborated

■ Ltac2LowLevel

■ TemplateCoq

■ Parametricity (reduced term)

■ Parametricity (unreduced term)

■ OCaml
5000 10000 15000 20000

n

1

2

3

4

5

6

7

Time (s)

Size of term (no binders) vs Reification time

Figure 6-3: Performance of Reification without Binders

• The “Parsing” benchmark is “reification by copy-paste”: a script generates a .v
file with notation for an already-reified term; we benchmark the amount of time
it takes to parse and typecheck that term. The “ParsingElaborated” benchmark
is similar, but instead of giving notation for an already-reified term, we give the
complete syntax tree, including arguments normally left implicit. Note that
these benchmarks cut off at around 5000 rather than at around 20 000, because
on large terms, Coq crashes with a stack overflow in parsing.

• We have four variants starting with “CanonicalStructures” here. The Flat vari-
ants reify to @expr nat rather than to forall var, @expr var and benefit
from fewer function binders and application nodes. The HOAS variants do
not include a case for let … in … nodes, while the PHOAS variants do. Un-
like most other reification methods, there is a significant cost associated with
handling more sorts of identifiers in canonical structures.

We note that on this benchmark our method is slightly faster than template-coq,
which reifies to de Bruijn indices, and slightly slower than the quote plugin in the
standard library4 and the OCaml plugin we wrote by hand.

6.3.2 With Binders
We look at terms of the form dlet a1 := 1 * 1 in dlet a2 := a1 * a1 in … dlet
a𝑛 := a𝑛−1 * a𝑛−1 in a𝑛, where 𝑛 is the size of the term. The first graph shown
here includes all of the reification variants at linear scale, while the next step zooms
in on the highest-performance variants at log-log scale.

4This plugin no longer appears in this graph because it was removed in Coq 8.10 [Dén18], though
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Figure 6-4: Performance of Reification with Binders

In addition to reification benchmarks, the graph in Figure 6-4 includes as a refer-
ence (1) the time it takes to run lazy reduction on a reified term already in nor-
mal form (“identity lazy”) and (2) the time it takes to check that the reified term
matches the original native term (“lazy Denote”). The former is just barely faster
than OCaml reification; the latter often takes longer than reification itself. The line
for the template-coq plugin cuts off at around 10 000 rather than around 20 000 be-
cause at that point template-coq starts crashing with stack overflows.

it appears in the graph in Gross, Erbsen, and Chlipala [GEC18].
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6.4 Future Work, Concluding Remarks
We identify one remaining open question with this method that has the potential of
removing the next largest bottleneck in reification: using reduction to show that the
reified term is correct.

unreduced term
𝛿��

small partially
reduced term

&&

unreduced
reified syntax

???

xxunreduced
abstracted term

ff
88

Figure 6-5: Completing the commutative triangle

Recall our reification procedure
and the associated diagram,
from Figure 6.2.2. We perform
𝛿 on an unreduced term to ob-
tain a small, partially reduced
term; we then perform abstrac-
tion to get an abstracted, unre-
duced term, followed by appli-
cation to get unreduced reified
syntax. These steps are all fast.
Finally, we perform 𝛽𝜄-reduction
to get reduced, reified syntax and perform 𝛽𝜄𝛿 reduction to get back a reduced form
of our original term. These steps are slow, but we must do them if we are to have
verified reflective automation.

It would be nice if we could prove this equality without ever reducing our term. That
is, it would be nice if we could have the diagram in Figure 6-5.

The question, then, is how to connect the small partially reduced term with denote
applied to the unreduced reified syntax. That is, letting 𝐹 denote the unreduced
abstracted term, how can we prove, without reducing 𝐹, that

𝐹 ℕ Mul O S (@Let In ℕ ℕ) = denote (𝐹 expr NatMul NatO NatS LetIn)

We hypothesize that a form of internalized parametricity would suffice for proving
this lemma. In particular, we could specialize the type argument of 𝐹 with ℕ×expr.
Then we would need a proof that for any function 𝐹 of type

∀(𝑇 ∶ Type), (𝑇 → 𝑇 → 𝑇) → 𝑇 → (𝑇 → 𝑇) → (𝑇 → (𝑇 → 𝑇) → 𝑇) → 𝑇

and any types 𝐴 and 𝐵, and any terms 𝑓𝐴 ∶ 𝐴 → 𝐴 → 𝐴, 𝑓𝐵 ∶ 𝐵 → 𝐵 → 𝐵, 𝑎 ∶ 𝐴,
𝑏 ∶ 𝐵, 𝑔𝐴 ∶ 𝐴 → 𝐴, 𝑔𝐵 ∶ 𝐵 → 𝐵, ℎ𝐴 ∶ 𝐴 → (𝐴 → 𝐴) → 𝐴, and ℎ𝐵 ∶ 𝐵 → (𝐵 →
𝐵) → 𝐵, using 𝑓 × 𝑔 to denote lifting a pair of functions to a function over pairs:

fst (𝐹 (𝐴 × 𝐵) (𝑓𝐴 × 𝑓𝐵) (𝑎, 𝑏) (𝑔𝐴 × 𝑔𝐵) (ℎ𝐴 × ℎ𝐵)) = 𝐹 𝐴 𝑓𝐴 𝑎 𝑔𝐴 ℎ𝐴 ∧
snd (𝐹 (𝐴 × 𝐵) (𝑓𝐴 × 𝑓𝐵) (𝑎, 𝑏) (𝑔𝐴 × 𝑔𝐵) (ℎ𝐴 × ℎ𝐵)) = 𝐹 𝐵 𝑓𝐵 𝑏 𝑔𝐵 ℎ𝐵

This theorem is a sort of parametricity theorem.

Despite this remaining open question, we hope that our performance results make a
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strong case for our method of reification; it is fast, concise, and robust.
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Part III

API Design
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Chapter 7

Abstraction

7.1 Introduction

In Chapters 1 and 2, we discussed two different fundamental sources of performance
bottlenecks in proof assistants: the power that comes from having dependent types,
in Subsection 1.3.1; and the de Bruijn criterion of having a small trusted kernel, in
Subsection 1.3.2. In this chapter, we will dive further into the performance issues
arising from the first of these design decisions, expanding on Subsection 2.6.4 (The
Number of Nested Abstraction Barriers) and proposing some general guidelines for
handling these performance bottlenecks.

This chapter is primarily geared at the users of proof assistants and especially at
proof-assistant library developers.

We saw in The Number of Nested Abstraction Barriers three different ways that
design choices for abstraction barriers can impact performance: We saw in Type-
Size Blowup: Abstraction Barrier Mismatch that API mismatch results in type-size
blowup; we saw a particularly striking example of this in Section 5.5 (Monads: Miss-
ing Abstraction Barriers at the Type Level) where an API mismatch resulted in
vastly more complicated theorem statements. We saw in Conversion Troubles that
imperfectly opaque abstraction barriers result in slowdown due to needless calls to
the conversion checker. We saw in Type Size Blowup: Packed vs. Unpacked Records
how the choice of whether to use packed or unpacked records impacts performance.

In this chapter, we will focus primarily on the first of these three ways that de-
sign choices for abstraction barriers can impact performance; while it might seem
like a simple question of good design, it turns out that good API design in depen-
dently typed programming languages is significantly harder than in nondependently
typed programming languages. We will additionally weave in ways that abstraction
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barriers have helped us develop our tools and libraries, though this use of abstrac-
tion barriers (sometimes called data abstraction) is already well-known in software
engineering [SSA96]. Mitigating the second source of performance bottlenecks, im-
perfectly opaque abstraction barriers, on the other hand, is actually just a question
of meticulous tracking of how abstraction barriers are defined and used and design-
ing them so that all unfolding is explicit. However, we will present an exception to
the rule of opaque abstraction barriers in Section 7.5 in which deliberate breaking of
all abstraction barriers in a careful way can result in performance gains of up to a
factor of two: Section 7.5 presents one of our favorite design patterns for categorical
constructions—a way of coaxing Coq’s definitional equality into implementing proof
by duality, one of the most widely known ideas in category theory. Finally, the
question of whether to use packed or unpacked records is actually a genuine trade-off
in both design space and performance, as far as I can tell; the nonperformance de-
sign considerations have been discussed before in Garillot et al. [Gar+09b], while the
performance implications are relatively straightforward. As far as I’m aware, there’s
not really a good way to get the best of all worlds.

Much of this chapter will draw on examples and experience from a category-theory
library we implemented in Coq [GCS14], which we introduce in Section 7.3.

The only prior work we’ve been able to find where abstraction barriers are mentioned
for proof development performance is Gu et al. [Gu+15]. Though this paper suggests
that good abstraction barriers resulted in simpler invariants which alleviated proof
burden on the developer, we suspect that their use of abstraction barriers also dodged
the proof-generation and proof-checking performance bottlenecks of large types, large
terms, large goals, and excessive unfolding that plague developments with leaky ab-
straction barriers.

7.2 When and How To Use Dependent Types Painlessly
Though abstraction barriers have been studied in the context of nondependently typed
languages [SSA96], we’re not aware of any systematic investigation of abstraction in
dependently typed languages. Hence we provide in this section some rules of thumb
that we’ve learned for developing good abstraction in dependently typed languages.
Following these guidelines, in our experience, tends both to alleviate proof burden by
decoupling and simplifying theorem statements and also to improve the performance
of individual proofs, sometimes by an order of magnitude or more, by avoiding the
superlinear scaling laid out in Section 2.6 (The Four Axes of the Landscape).

The extremes of using dependent types are relatively easy:

• Total separation between proofs and programs, so that programs are nondepen-
dently typed, works relatively well.
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• Preexisting mathematics, where objects are fully bundled with proofs and never
need to be separated from them, also works relatively well.

We present a rule of thumb for being in the middle: it incurs enormous overhead—
both proof-authoring time and often proof-checking time—to recombine proofs and
programs after separating them; if this separation and recombination is being done
to define an opaque transformation that acts on proof-carrying code, that is okay,
but if the abstraction barrier cannot be constructed, enormous overhead results.

For example, if we have length-indexed lists and want to index into them with elements
of a finite type, things are fine until we need to divorce the index from its proof of
finiteness. If, for example, we want to index into the concatenation of two lists with
an index into the first of the lists, then we will likely run into trouble, because we
are trying to consider the index separately from its proof of finitude, but we have to
recombine them to do the indexing.

We saw in footnote 3 in Subsection 5.2.1 (Pattern-Matching Evaluation on Type-
Indexed Terms) how dependent types cause coupling between otherwise-unrelated
design decisions. This is due to the fact that every single operation needs to declare
how it interacts with all of the various indices and must effectively include a proof
for each of these interactions. In the example of Subsection 5.2.1, we considered
indexing the list of terms over a list of types and indexing both this list of types and
the decision tree over a natural-number length. In this case, the choice of whether
we operate in the middle of the list or at the front of the list is severely complicated
by the length index. If we need to insert an unknown number of elements into the
middle of a length-indexed list, the length of the resulting list is not judgmentally the
sum of the lengths, because addition is not judgmentally commutative.

7.3 A Brief Introduction to Our Category-Theory
Library

Category theory [Mac] is a popular all-encompassing mathematical formalism that
casts familiar mathematical ideas from many domains in terms of a few unifying
concepts. A category can be described as a directed graph plus algebraic laws stating
equivalences between paths through the graph. Because of this spartan philosophical
grounding, category theory is sometimes referred to in good humor as “formal abstract
nonsense.” Certainly the popular perception of category theory is quite far from
pragmatic issues of implementation. Our implementation of category theory ran
squarely into issues of design and efficient implementation of type theories, proof
assistants, and developments within them.

One might presume that it is a routine exercise to transliterate categorical concepts
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from the whiteboard to Coq. Most category theorists would probably be surprised
to learn that standard constructions “run too slowly”, but in our experience that is
exactly the result of experimenting with naïve first Coq implementations of categor-
ical constructs. It is important to tune the library design to minimize the cost of
manipulating terms and proving interesting theorems.

Category theory, said to be “notoriously hard to formalize” [Har96b], provides a good
stress test of any proof assistant, highlighting problems in usability and efficiency.

Formalizing the connection between universal morphisms and adjunctions provides
a typical example of our experience with performance. A universal morphism is a
construct in category theory generalizing extrema from calculus. An adjunction is a
weakened notion of equivalence. In the process of rewriting our library to be com-
patible with homotopy type theory, we discovered that cleaning up this construction
conceptually resulted in a significant slow-down, because our first attempted rewrite
resulted in a leaky abstraction barrier and, most importantly, large goals (Subsec-
tion 8.2.3). Plugging the holes there reduced goal sizes by two orders of magnitude1,
which led to a factor of ten speedup in that file (from 39s to 3s) but incurred a factor
of three slow-down in the file where we defined the abstraction barriers (from 7s to
21s).2 Working around slow projections of Σ types (Subsection 7.4.2) and being more
careful about code reuse each gave us back half of that lost time.3

Although preexisting formalizations of category theory in proof assistants abound [Meg;
AKS13; OKe04; Pee+; Saï; Sim; SW10; KKR06; Gro14; Ahrb; Ahra; CM98; Cha;
Ish; Pou; Soza; Niq10; Pot; Ahr10; Web02; Cap; HS00; AP90; Kat10; KSW; AKS;
Moh95; Spi11; CW01; Acz93; Wil05; Miq01; Dyc85; Wil12; Har96b; Age95; Nuo13],
we chose to implement our library [HoT20] from scratch. Beginning from scratch
allowed me to familiarize myself with both category theory and Coq, without simul-
taneously having to familiarize myself with a large preexisting code base.

7.4 A Sampling of Abstraction Barriers
We acknowledge that the concept of performance issues arising from choices of ab-
straction barriers may seem a bit counterintuitive. After all, abstraction barriers
generally live in the mind of the developer, in some sense, and it seems a bit insane
to say that performance of the code depends on the mental state of the programmer.

Therefore, we will describe a sampling of abstraction barriers and the design choices
that went into them, drawn from real examples, as well as the performance issues

1The word count of the larger of the two relevant goals went from 7,312 to 191.
2See commit eb00990 in HoTT/HoTT on GitHub for more details.
3See commits c1e7ae3, 93a1258, bab2b34, and 3b0932f in HoTT/HoTT on GitHub for more

details.
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that arose from these choices. We will also discuss ways that various design choices
increased or reduced the effort required of us to define objects and prove theorems.

7.4.1 Abstraction in Limits and Colimits
In many projects, choosing the right abstraction barriers is essential to reducing
mistakes, improving maintainability and readability of code, and cutting down on
time wasted by programmers trying to hold too many things in their heads at once.
This project was no exception; we developed an allergic reaction to constructions
with more than four or so arguments, after making one too many mistakes in defining
limits and colimits. Limits are a generalization, to arbitrary categories, of subsets of
Cartesian products. Colimits are a generalization, to arbitrary categories, of disjoint
unions modulo equivalence relations.

Our original flattened definition of limits involved a single definition with 14 nested
binders for types and algebraic properties. After a particularly frustrating experience
hunting down a mistake in one of these components, we decided to factor the definition
into a larger number of simpler definitions, including familiar categorical constructs
like terminal objects and comma categories. This refactoring paid off even further
when some months later we discovered the universal morphism definition of adjoint
functors [Wik20a; nCa12a]. With a little more abstraction, we were able to reuse
the same decomposition to prove the equivalence between universal morphisms and
adjoint functors, with minimal effort.

Perhaps less typical of programming experience, we found that picking the right
abstraction barriers could drastically reduce compile time by keeping details out of
sight in large goal formulas. In the instance discussed in the introduction, we got a
factor of ten speed-up by plugging holes in a leaky abstraction barrier!4

7.4.2 Nested Σ Types
In Coq, there are two ways to represent a data structure with one constructor and
many fields: as a single inductive type with one constructor (records) or as a nested
Σ type. For instance, consider a record type with two type fields 𝐴 and 𝐵 and a
function 𝑓 from 𝐴 to 𝐵. A logically equivalent encoding would be Σ𝐴. Σ𝐵. 𝐴 → 𝐵.
There are two important differences between these encodings in Coq.

The first is that while a theorem statement may abstract over all possible Σ types, it
may not abstract over all record types, which somehow have a less first-class status.
Such a limitation is inconvenient and leads to code duplication.

4See commit eb00990 in HoTT/HoTT on GitHub for the exact change.
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The far-more-pressing problem, overriding the previous point, is that nested Σ types
have horrendous performance and are sometimes a few orders of magnitude slower.
The culprit is projections from nested Σ types, which, when unfolded (as they must
be, to do computation), each take almost the entirety of the nested Σ type as an
argument and so grow in size very quickly.

Let’s consider a toy example to see the asymptotic performance. To construct a
nested Σ type with three fields of type unit, we can write the type:

{ _ : unit & { _ : unit & unit }}

If we want to project out the final field, we must write projT2 (projT2 x) which,
when implicit arguments are included, expands to

@projT2 unit (𝜆 _ : unit, unit) (@projT2 unit (𝜆 _ : unit, { _ : unit
& unit }) x)

This term grows quadratically in the number of projections because the type of the
𝑛th field is repeated approximately 2𝑛 times. This is even more of a problem when
we need to destruct x to prove something about the projections, as we need to
destruct it as many times as there are fields, which adds another factor of 𝑛 to the
performance cost of building the proof from scratch; in Coq, this cost is either avoided
due to sharing or else is hidden by a quadratic factor with a much larger constant
coefficient. Note that this is a sort-of dual to the problem of Subsection 2.6.1; there,
we encountered quadratic overhead in applying the constructors (which is also a
problem here), whereas right now we are discussing quadratic overhead in applying
the eliminators. See Figure 7-1 for the performance details.

We can avoid much of the cost of building the projection term by using primitive
projections (see Subsection 8.1.6 for more explanation of this feature). Note that this
feature is a sort-of dual to the proposed feature of dropping constructor parameters
described in Section 2.6.1. This does drastically reduce the overhead of building the
projection term but only cuts in half the constant factor in destructing the variable so
as to prove something about the projection. See Figure 7-1b for performance details.

There are two solutions to this issue:

1. use built-in record types

2. carefully define intermediate abstraction barriers to avoid the quadratic over-
head

Both of these essentially solve the issue of quadratic overhead in projecting out the
fields. This is the benefit of good abstraction barriers.
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(a) Normal Record
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(b) With Primitive Projections

Figure 7-1: There are two ways we look at the performance of building a term like
projT1 (projT2 ... (projT2 x)) with 𝑛 projT2s: we can define a recursive func-
tion that computes this term and then use cbv to reduce away the recursion and time
how long this takes; or we can build the term using Ltac2 and then typecheck it.
These plots display both of these methods and in addition display the time it takes
to run destruct to break 𝑥 into its component fields, as a lower bound for how long
it takes to prove anything about a nested Σ type with 𝑛 fields. The second graph
displays the timing with primitive projections turned on. Note that the 𝑥-axis is 10×
larger on this plot.
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In Coq 8.11, destruct is unfortunately still quadratic due to issues with name gen-
eration, but the constant factor is much smaller; see Figure 7-2 and Coq bug #12271.

We now come to the question: how much do we pay for using this abstraction barrier?
That is, how much is the one-time cost of defining the abstraction barrier? Obviously,
we can just make definitions for each of the projections and for the eliminator and pay
the cubic (or perhaps even quartic; see the leading term in Figure 7-1) overhead once.
There’s an interesting question, though, of if we can avoid this overhead altogether.

As seen in Figure 7-2, using records partially avoids the overhead. Defining the record
type, though, still incurs a quadratic factor due to hash consing the projections; see
Coq bug #12270.

If our proof assistant does not support records out-of-the-box, or we want to avoid us-
ing them for whatever reason5, we can instead define intermediate abstraction barriers
by hand. Here is what code that almost works looks like for four fields:

Local Set Implicit Arguments.
Record sigT {A} (P : A -> Type) := existT { projT1 : A ; projT2 : P projT1 }.
Definition sigT_eta {A P} (x : @sigT A P) : x = existT P (projT1 x) (projT2 x).
Proof. destruct x; reflexivity. Defined.
Definition _T0 := unit.
Definition _T1 := @sigT unit (fun _ : unit => _T0).
Definition _T2 := @sigT unit (fun _ : unit => _T1).
Definition _T3 := @sigT unit (fun _ : unit => _T2).
Definition T := _T3.
Definition Build_T0 (x0 : unit) : _T0 := x0.
Definition Build_T1 (x0 : unit) (rest : _T0) : _T1

:= @existT unit (fun _ : unit => _T0) x0 rest.
Definition Build_T2 (x0 : unit) (rest : _T1) : _T2

:= @existT unit (fun _ : unit => _T1) x0 rest.
Definition Build_T3 (x0 : unit) (rest : _T2) : _T3

:= @existT unit (fun _ : unit => _T2) x0 rest.
Definition Build_T (x0 : unit) (x1 : unit) (x2 : unit) (x3 : unit) : T

:= Build_T3 x0 (Build_T2 x1 (Build_T1 x2 (Build_T0 x3))).

Definition _T0_proj (x : _T0) : unit := x.
Definition _T1_proj1 (x : _T1) : unit := projT1 x.
Definition _T1_proj2 (x : _T1) : _T0 := projT2 x.
Definition _T2_proj1 (x : _T2) : unit := projT1 x.
Definition _T2_proj2 (x : _T2) : _T1 := projT2 x.
Definition _T3_proj1 (x : _T3) : unit := projT1 x.
Definition _T3_proj2 (x : _T3) : _T2 := projT2 x.

5Note that the UniMath library [Voe15; VAG+20; Gra18] does this.
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Record command (without primitive projections)
3.73 ⋅ 10−6𝑛2 + 4.97 ⋅ 10−4𝑛 − 5.21 ⋅ 10−2

destruct (with primitive projections)
7.73 ⋅ 10−7𝑛2 + 2.45 ⋅ 10−5𝑛 − 4.48 ⋅ 10−3

destruct (without primitive projections)
7.1 ⋅ 10−7𝑛2 − 5.14 ⋅ 10−5𝑛 + 2.49 ⋅ 10−3

Record command (with primitive projections)
2.37 ⋅ 10−7𝑛2 + 1.35 ⋅ 10−5𝑛 + 4.72 ⋅ 10−4

Figure 7-2: Timing of running a Record command to define a record with 𝑛 fields and
the time to destruct such a record. Note that building the goal involving projecting
out the last field takes less than 0.001s for all numbers of fields that we tested.
(Presumably for large enough numbers of fields, we’d start getting a logarithmic
overhead from parsing the name of the final field, which, when represented as 𝑥
followed by the field number in base 10, does grow in size as log10 𝑛.) Note that the
nonmonotonic timing is reproducible and seems to be due to hitting garbage collection;
see Coq issue #12270 for more details.
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Definition proj_T_1 (x : T) : unit := _T3_proj1 x.
Definition proj_T_1_rest (x : T) : _T2 := _T3_proj2 x.
Definition proj_T_2 (x : T) : unit := _T2_proj1 (proj_T_1_rest x).
Definition proj_T_2_rest (x : T) : _T1 := _T2_proj2 (proj_T_1_rest x).
Definition proj_T_3 (x : T) : unit := _T1_proj1 (proj_T_2_rest x).
Definition proj_T_3_rest (x : T) : _T0 := _T1_proj2 (proj_T_2_rest x).
Definition proj_T_4 (x : T) : unit := _T0_proj (proj_T_3_rest x).

Definition _T0_eta (x : _T0) : x = Build_T0 (_T0_proj x) := @eq_refl _T0 x.
Definition _T1_eta (x : _T1) : x = Build_T1 (_T1_proj1 x) (_T1_proj2 x)

:= @sigT_eta unit (fun _ : unit => _T0) x.
Definition _T2_eta (x : _T2) : x = Build_T2 (_T2_proj1 x) (_T2_proj2 x)

:= @sigT_eta unit (fun _ : unit => _T1) x.
Definition _T3_eta (x : _T3) : x = Build_T3 (_T3_proj1 x) (_T3_proj2 x)

:= @sigT_eta unit (fun _ : unit => _T2) x.

Definition T_eta (x : T)
: x = Build_T (proj_T_1 x) (proj_T_2 x) (proj_T_3 x) (proj_T_4 x)
:= let lhs3 := x in

let lhs2 := _T3_proj2 lhs3 in
let lhs1 := _T2_proj2 lhs2 in
let lhs0 := _T1_proj2 lhs1 in
let final := _T0_proj lhs0 in
let rhs0 := Build_T0 final in
let rhs1 := Build_T1 (_T1_proj1 lhs1) rhs0 in
let rhs2 := Build_T2 (_T2_proj1 lhs2) rhs1 in
let rhs3 := Build_T3 (_T3_proj1 lhs3) rhs2 in
(((@eq_trans _T3)

lhs3 (Build_T3 (_T3_proj1 lhs3) lhs2) rhs3
(_T3_eta lhs3)
((@f_equal _T2 _T3 (Build_T3 (_T3_proj1 lhs3)))

lhs2 rhs2
((@eq_trans _T2)

lhs2 (Build_T2 (_T2_proj1 lhs2) lhs1) rhs2
(_T2_eta lhs2)
((@f_equal _T1 _T2 (Build_T2 (_T2_proj1 lhs2)))

lhs1 rhs1
((@eq_trans _T1)

lhs1 (Build_T1 (_T1_proj1 lhs1) lhs0) rhs1
(_T1_eta lhs1)
((@f_equal _T0 _T1 (Build_T1 (_T1_proj1 lhs1)))

lhs0 rhs0
(_T0_eta lhs0)))))))

: x = Build_T (proj_T_1 x) (proj_T_2 x) (proj_T_3 x) (proj_T_4 x)).
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Import EqNotations.
Definition T_rect (P : T -> Type)

(f : forall (x0 : unit) (x1 : unit) (x2 : unit) (x3 : unit),
P (Build_T x0 x1 x2 x3))

(x : T)
: P x
:= rew <- [P] T_eta x in

f (proj_T_1 x) (proj_T_2 x) (proj_T_3 x) (proj_T_4 x).

It only almost works because, although the overall size of the terms, even accounting
for implicits, is linear in the number of fields, we still incur a quadratic number of
unfoldings in the final cast node in the proof of T_eta. Note that this cast node is only
present to make explicit the conversion problem that must happen; removing it does
not break anything, but then the quadratic cost is hidden in nontrivial substitutions
of the let binders into the types. It might be possible to avoid this quadratic factor
by being even more careful, but I was unable to find a way to do it.6 Worse, though,
due to the issue with nested let binders described in Section 2.6.1, we would still
incur a quadratic typechecking cost.

We can, however, avoid this cost by turning on primitive projections via Set Primitive
Projections at the top of this block of code: this enables judgmental 𝜂-conversion
for primitive records, whence we can prove T_eta with the proof term @eq_refl T
x.

At least, so says the theoretical analysis. Our best stab at implementing this still
resulted in at least quadratic asymptotic performance, if not worse.

7.5 Internalizing Duality Arguments in Type The-
ory

In general, we tried to design our library so that trivial proofs on paper remain trivial
when formalized. One of Coq’s main tools to make proofs trivial is the definitional

6Note that even reflective automation (see Chapter 3) is not sufficient to solve this issue. Essen-
tially, the bottleneck is that at the bottom of the chain of let binders in the 𝜂 proof, we have two
different types for the 𝜂 principle. One of them uses the globally defined projections out of T, while
the other uses the projections of x defined in the local context. We need to convert between these
two types in linear time. Converting between two differently defined projections takes time linear
in the number of under-the-hood projections, i.e., linear in the number of fields. Doing this once
for each projection thus takes quadratic time. Using a reflective representation of nested Σ types,
and thus being able to prove the 𝜂 principle once and for all in constant time, would not help here,
because it takes quadratic time to convert between the type of the 𝜂 principle in reflective-land and
the type that we want. One thing that might help would be to have a version of conversion checking
that was both memoized and could perform in-place reduction; see Coq issue #12269.
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equality, where some facts follow by computational reduction of terms. We came up
with some small tweaks to core definitions that allow a common family of proofs by
duality to follow by computation.

This is an exception to the rule of opaque abstraction barriers. Here, deliberate
breaking of all abstraction barriers in a careful way can result in performance gains
of up to a factor of two!

Proof by duality is a common idea in higher mathematics: sometimes, it is productive
to flip the directions of all the arrows. For example, if some fact about least upper
bounds is provable, chances are that the same kind of fact about greatest lower bounds
will also be provable in roughly the same way, by replacing “greater than”s with “less
than”s and vice versa.

Concretely, there is a dualizing operation on categories that inverts the directions of
the morphisms:

Notation "C o p" := ({| Ob := Ob C; Hom x y := Hom C y x; ... |}).

Dualization can be used, roughly, for example, to turn a proof that Cartesian product
is an associative operation into a proof that disjoint union is an associative operation;
products are dual to disjoint unions.

One of the simplest examples of duality in category theory is initial and terminal
objects. In a category 𝒞, an initial object 0 is one that has a unique morphism 0 → 𝑥
to every object 𝑥 in 𝒞; a terminal object 1 is one that has a unique morphism 𝑥 → 1
from every object 𝑥 in 𝒞. Initial objects in 𝒞 are terminal objects in 𝒞op. The initial
object of any category is unique up to isomorphism; for any two initial objects 0 and
0′, there is an isomorphism 0 ≅ 0′. By flipping all of the arrows around, we can prove,
by duality, that the terminal object is unique up to isomorphism. More precisely, from
a proof that an initial object of 𝒞op is unique up to isomorphism, we get that any two
terminal objects 1′ and 1 in 𝒞, which are initial in 𝒞op, are isomorphic in 𝒞op. Since
an isomorphism 𝑥 ≅ 𝑦 in 𝒞op is an isomorphism 𝑦 ≅ 𝑥 in 𝒞, we get that 1 and 1′ are
isomorphic in 𝒞.

It is generally straightforward to see that there is an isomorphism between a theorem
and its dual, and the technique of dualization is well-known to category theorists,
among others. We discovered that, by being careful about how we defined construc-
tions, we could make theorems be judgmentally equal to their duals! That is, when
we prove a theorem

initial_ob_unique : ∀ C(x y : Ob C),
is_initial_ob x → is_initial_ob y → x ≅ y,
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we can define another theorem

terminal_ob_unique : ∀ C(x y : Ob C),
is_terminal_ob x → is_terminal_ob y → x ≅ y

as

terminal_ob_unique C x y H H' := initial_ob_unique Cop y x H' H.

Interestingly, we found that in proofs with sufficiently complicated types, it can take
a few seconds or more for Coq to accept such a definition; we are not sure whether
this is due to peculiarities of the reduction strategy of our version of Coq, or speed
dependency on the size of the normal form of the type (rather than on the size of the
unnormalized type), or something else entirely.

In contrast to the simplicity of witnessing the isomorphism, it takes a significant
amount of care in defining concepts, often to get around deficiencies of Coq, to achieve
judgmental duality. Even now, we were unable to achieve this ideal for some theorems.
For example, category theorists typically identify the functor category 𝒞op → 𝒟op

(whose objects are functors 𝒞op → 𝒟op and whose morphisms are natural transfor-
mations) with (𝒞 → 𝒟)op (whose objects are functors 𝒞 → 𝒟 and whose morphisms
are flipped natural transformations). These categories are canonically isomorphic (by
the dualizing natural transformations), and, with the univalence axiom [Uni13], they
are equal as categories! However, to make these categories definitionally equal, we
need to define functors as a structural record type (see Section 2.6.1) rather than a
nominal one.

7.5.1 Duality Design Patterns
One of the simplest theorems about duality is that it is involutive; we have that
(𝒞op)op = 𝒞. In order to internalize proof by duality via judgmental equality, we
sometimes need this equality to be judgmental. Although it is impossible in general
in Coq 8.4 (see dodging judgmental 𝜂 on records below), the latest version of Coq
available when we were creating this library, we want at least to have it be true for
any explicit category (that is, any category specified by giving its objects, morphisms,
etc., rather than referred to via a local variable).

Removing Symmetry

Taking the dual of a category, one constructs a proof that 𝑓 ∘ (𝑔 ∘ ℎ) = (𝑓 ∘ 𝑔) ∘ ℎ from
a proof that (𝑓 ∘ 𝑔) ∘ ℎ = 𝑓 ∘ (𝑔 ∘ ℎ). The standard approach is to apply symmetry.
However, because applying symmetry twice results in a judgmentally different proof,
we decided instead to extend the definition of Category to require both a proof of
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𝑓 ∘(𝑔∘ℎ) = (𝑓 ∘𝑔)∘ℎ and a proof of (𝑓 ∘𝑔)∘ℎ = 𝑓 ∘(𝑔∘ℎ). Then our dualizing operation
simply swaps the proofs. We added a convenience constructor for categories that asks
only for one of the proofs and applies symmetry to get the other one. Because we
formalized 0-truncated category theory, where the type of morphisms is required to
have unique identity proofs, asking for this other proof does not result in any coherence
issues.

Dualizing the Terminal Category

To make everything work out nicely, we needed the terminal category, which is the
category with one object and only the identity morphism, to be the dual of itself.
We originally had the terminal category as a special case of the discrete category on
𝑛 objects. Given a type 𝑇 with uniqueness of identity proofs, the discrete category
on 𝑇 has as objects inhabitants of 𝑇 and has as morphisms from 𝑥 to 𝑦 proofs that
𝑥 = 𝑦. These categories are not judgmentally equal to their duals, because the type
𝑥 = 𝑦 is not judgmentally the same as the type 𝑦 = 𝑥. As a result, we instead used
the indiscrete category, which has unit as its type of morphisms.

Which Side Does the Identity Go On?

The last tricky obstacle we encountered was that when defining a functor out of the
terminal category, it is necessary to pick whether to use the right identity law or the
left identity law to prove that the functor preserves composition; both will prove that
the identity composed with itself is the identity. The problem is that dualizing the
functor leads to a road block where either concrete choice turns out to be “wrong,”
because the dual of the functor out of the terminal category will not be judgmentally
equal to another instance of itself. To fix this problem, we further extended the
definition of category to require a proof that the identity composed with itself is the
identity.

Dodging Judgmental 𝜂 on Records

The last problem we ran into was the fact that sometimes, we really, really wanted
judgmental 𝜂 on records. The 𝜂 rule for records says any application of the record
constructor to all the projections of an object yields exactly that object; e.g. for pairs,
𝑥 ≡ (𝑥1, 𝑥2) (where 𝑥1 and 𝑥2 are the first and second projections, respectively). For
categories, the 𝜂 rule says that given a category 𝒞, for a “new” category defined by
saying that its objects are the objects of 𝒞, its morphisms are the morphisms of 𝒞,
…, the “new” category is judgmentally equal to 𝒞.

In particular, we wanted to show that any functor out of the terminal category is
the opposite of some other functor; namely, any 𝐹 ∶ 1 → 𝒞 should be equal to
(𝐹 op)op ∶ 1 → (𝒞op)op. However, without the judgmental 𝜂 rule for records, a local
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variable 𝒞 cannot be judgmentally equal to (𝒞op)op, which reduces to an application
of the constructor for a category, unless the 𝜂 rule is built into the proof assistant. To
get around the problem, we made two variants of dual functors: given 𝐹 ∶ 𝒞 → 𝒟,
we have 𝐹 op ∶ 𝒞op → 𝒟op, and given 𝐹 ∶ 𝐶op → 𝒟op, we have 𝐹 op′ ∶ 𝒞 → 𝒟. There
are two other flavors of dual functors, corresponding to the other two pairings of op

with domain and codomain, but we have been glad to avoid defining them so far. As
it was, we ended up having four variants of dual natural transformation and are very
glad that we did not need sixteen. When Coq 8.5 was released, we no longer needed
to pull this trick, as we could simply enable the 𝜂 rule for records judgmentally.

7.5.2 Moving Forward: Computation Rules for Pattern Match-
ing

While we were able to work around most of the issues that we had in internalizing
proof by duality, the experience would have been far nicer if we had more 𝜂 rules. The
𝜂 rule for records is explained above. The 𝜂 rule for equality says that the identity
function is judgmentally equal to the function 𝑓 ∶ ∀𝑥 𝑦, 𝑥 = 𝑦 → 𝑥 = 𝑦 defined by
pattern matching on the first proof of equality; this rule is necessary to have any hope
that applying symmetry twice is judgmentally the identity transformation.

Homotopy type theory provides a framework that systematizes reasoning about proofs
of equality, turning a seemingly impossible task into a manageable one. However,
there is still a significant burden associated with reasoning about equalities, because
so few of the rules are judgmental.

We have spent some time attempting to divine the appropriate computation rules for
pattern-matching constructs, in the hopes of making reasoning with proofs of equality
more pleasant.7

7See Coq issue #3179 and Coq issue #3119.
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Part IV

Conclusion
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Chapter 8

A Retrospective on Performance
Improvements

Throughout this dissertation, we’ve looked at the problem of performance in proof
assistants, especially those based on dependent type theory, with Coq as our primary
tool under investigation. Part I aimed to convince the reader that this problem
is interesting, important, challenging, and understudied, as it differs in nontrivial
ways from performance bottlenecks in nondependently typed languages. Part II took
a deep dive into a particular set of performance bottlenecks and presented a tool
and, we hope, exposed the underlying design methodology, which allows eliminating
asymptotic bottlenecks in one important part of proof-assistant systems. Part III
zoomed back out to discuss design principles to avoid performance pitfalls.

In this chapter, we will look instead at the successes of the past decade1, ways in
which performance has improved in major ways. Section 8.1 will discuss specific im-
provements in the implementation of Coq which resulted in performance gains, paying
special attention to the underlying bottlenecks being addressed. Those without spe-
cial interest in the low-level details of proof-assistant implementation may want to
skip to Section 8.2, which will discuss changes to the underlying type theory of Coq
which make possible drastic performance improvements. While we will again have
our eye on Coq in Section 8.2, we will broaden our perspective in Section 8.3 to dis-
cuss new discoveries of the past decade or so in dependent type theory which enable
performance improvements but have not yet made their way into Coq.

1Actually, the time span we’re considering is the course of the author’s experience with Coq,
which is a bit less than a decade.
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8.1 Concrete Performance Advancements in Coq
In this section, we dive into the minutiae: concrete changes to Coq that have mea-
surably increased performance.

8.1.1 Removing Pervasive Evar Normalization
Back when I started using Coq, in version 8.4, almost every single tactic was at least
linear in performance in the size of the goal. This included tactics like “add new
hypothesis to the context of type True” (pose proof I) and tactics like “give me
the type of the most recently added hypothesis” (match goal with H : ?T |- _
=> T end). The reason for this was pervasive evar normalization.

Let us review some details of the way Coq handles proof scripts. In Coq the current
state of a proof is represented by a partial proof term, where not-yet-given subterms
are existential variables, or evars, which may show up as goals. For example, when
proving the goal True ∧ True, after running split, the proof term would be conj
?Goal1 ?Goal2, where ?Goal1 and ?Goal2 are evars. There are two subtleties:

1. Evars may be under binders. Coq uses a locally nameless representation of terms
(c.f. Section 3.1.3), where terms use de Bruijn indices to refer to variables bound
in the term but use names to refer to variables bound elsewhere. Thus terms
generated in the context of a proof goal refer to all context variables by name
and evars too refer to all variables by name. Hence each evar carries with it a
named context, which causes a great deal of trouble as described in Section 2.6.3
(Quadratic Creation of Substitutions for Existential Variables).

2. Coq supports backtracking, so we must remember the history of partial proof
terms. In particular, we cannot simply mutate partial proof terms to instantiate
the evars, and copying the entire partial proof term just to update a small part
of it would also incur a great deal of overhead. Instead, Coq never mutates the
terms and instead simply keeps a map of which evars have been instantiated
with which terms, called the evar map.

There is an issue with the straightforward implementation of evars and evar maps.
When walking terms, care must be taken with the evar case, to check whether or not
the evar has in fact been instantiated or not. Subtle bugs in unification and other
areas of Coq resulted from some functions being incorrectly sensitive to whether or
not a term had been built via evar instantiation or given directly.2 The fast-and-easy
solution used in older versions of Coq was to simply evar-normalize the goal before
walking it. That is, every tactic that had to walk the goal for any reason whatsoever
would create a copy of the type of the goal—and sometimes the proof context as

2See the discussion at Pédrot [Péd17b] for more details.
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well—replacing all instantiated evars with their instantiations. Needless to say, this
was very expensive when the size of the goal was large.

As of Coq 8.7, most tactics no longer perform useless evar normalization and in-
stead walk terms using a dedicated API which does on-the-fly normalization as nec-
essary [Péd17b]. This brought speedups of over 10% to some developments and
improved asymptotic performance of some tactic scripts and interactive proof devel-
opment.

8.1.2 Delaying the Externalization of Application Arguments
Coq has many representations of terms. There is constr expr, the AST produced by
Coq’s parser. Internalization turns constr expr into the untyped glob constr rep-
resentation of terms by performing name resolution, bound-variable checks, notation
desugaring, and implicit-argument insertion [Coqb]. Type inference fills in the holes
in untyped glob constrs to turn them into typed constrs, possibly with remaining
existential variables [Coqe]. In order to display proof goals, this process must be re-
versed. The internal representation of constr must be “detyped” into glob constrs,
which involves primarily just turning de Bruijn indices into names [Coqc]. Finally,
implicit arguments must be erased and notations must be resugared when external-
izing glob constrs into constr exprs, which can be printed relatively straightfor-
wardly [Coqa; Coqd].

In old versions, Coq would externalize the entire goal, including subterms that were
never printed due to being hidden by notations and implicit arguments. Starting in
version 8.5pl2, lazy externalization of function arguments was implemented [Péd16b].
This resulted in massive speed-ups to interactive development involving large goals
whose biggest subterms were mostly hidden.

Changes like this one can be game-changers for interactive proof development. The
kind of development that can happen when it takes a tenth of a second to see the
goal after executing a tactic is vastly different from the kind of development that
can happen when it takes a full second or two. In the former case, the proof engine
can almost feel like an extension of the coder’s mind, responding to thoughts about
strategies to try almost as fast as they can be typed. In the latter case, development
is significantly more clunky and involves much more friction.

In the same vein, bugs such as #3691 and #4819, where Coq crawled the entire evar
map in -emacs mode (used for ProofGeneral/Emacs) looking at all instantiated evars,
resulted in interactive proof times of up to half a second for every goal display, even
when the goal was small and there was nothing in the context. Fixed in Coq 8.6,
these bugs, too, got in the way of seamless proof development.
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8.1.3 The ℒtac Profiler
If you blindly optimize without profiling, you will likely waste your time
on the 99% of code that isn’t actually a performance bottleneck and miss
the 1% that is.

— Charles E. Leiserson3 [Lei20]

In old versions of Coq, there was no good way to profile tactic execution. Users
could wrap some invocations in time to see how long a given tactic took or could
regularly print some output to see where execution hung. Both of these are very
low-tech methods of performance debugging and work well enough for small tactics.
For debugging hundreds or thousands of lines of ℒtac code, though, these methods
are insufficient.

A genuine profiler for ℒtac was developed in 2015 and integrated into Coq itself in
version 8.6 [TG15].

For those interested in amusing quirks of implementation details, the profiler itself was
relatively easy to implement. If I recall correctly, Tobias Tebbi, after hearing of my
ℒtac performance woes, mentioned to me the profiler he implemented over the course
of a couple of days. Since ℒtac already records backtraces for error reporting, it was
a relatively simple matter to hook into the stack-trace recorder and track how much
time was spent in each call stack. With some help from the Coq development team,
I was able to adapt the patch to the new tactic engine of Coq ≥ 8.5 and shepherded
it into Coq’s codebase.

8.1.4 Compilation to Native Code
Starting in version 8.5, Coq allows users to compile their functional Gallina programs
to native code and fully reduce them to determine their output [BDG11; Dén13a]. In
some cases, the native compiler is almost 10× faster4 than the optimized call-by-value
evaluation bytecode-based virtual machine described in Grégoire and Leroy [GL02].

3Although this quote comes from the class I took at MIT, 6.172 — Performance Engineering of
Software Systems, the inspiration for the quote is an extended version of Donald Knuth’s “premature
optimization is the root of all evil” quote:

Programmers waste enormous amounts of time thinking about, or worrying about, the
speed of noncritical parts of their programs, and these attempts at efficiency actually
have a strong negative impact when debugging and maintenance are considered. We
should forget about small efficiencies, say about 97% of the time: premature optimiza-
tion is the root of all evil. Yet we should not pass up our opportunities in that critical
3%.

— Donald E. Knuth [Knu74b, p. 268]

4https://github.com/coq/coq/pull/12405#issuecomment-633612308
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The native compiler shines most at optimizing algorithmic and computational bot-
tlenecks. For example, computing the number of primes less than 𝑛 via the Sieve of
Eratosthenes is about 2× to 5× faster in the native compiler than in the VM. By
contrast, when the input term is very large compared to the amount of computation,
the compilation time can dwarf the running time, eating up any gains that the native
compiler has over the VM. This can be seen by comparing the times it takes to get
the head of the explicit list of all unary-encoded natural numbers less than, say, 3000,
on which the native compiler (1.7s) is about 5% slower than the VM (1.6s) which
itself is about 2× slower than built-in call-by-value reduction machine (0.79s) which
requires no translation. Furthermore, when the output is large, both the VM and the
native compiler suffer from inefficiencies in the readback code.

8.1.5 Primitive Integers and Arrays
Primitive 31-bit integer-arithmetic operations were added to Coq in 2007 [Spi07;
Arm+10]. Although most of Coq merely used an inductive representation of 31-
bit integers, the VM included code for compiling these constants to native machine
integers.5 After hitting memory limits in storing the inductive representations in
proofs involving proof traces from SMT solvers, work was started to allow the use of
primitive datatypes that would be stored efficiently in proof terms [Dén13b].

Some of this work has since been merged into Coq, including IEEE 754-2008 binary64
floating-point numbers merged in Coq 8.11 [MBR19], 63-bit integers merged in Coq
8.10 [DG18], and persistent arrays [CF07] merged into Coq 8.13 [Dén20b]. Work
enabling primitive recursion over these native datatypes is still underway [Dén20a],
and the actual use of these primitive datatypes to reap the performance benefits is
still to come as of the writing of this dissertation.

8.1.6 Primitive Projections for Record Types
Since version 8.5, Coq has had the ability to define record types with projections whose
arguments are not stored in the term representation [Soz14]. This allows asymptotic
speedups, as discussed in Subsection 7.4.2 (Nested Σ Types).

Note that this is a specific instance of a more general theory of implicit arguments [Miq01;
BB08], and there has been other work on how to eliminate useless arguments from
term representations [BMM03].

5The integer arithmetic is 31-bit rather than 32-bit because OCaml reserves the lowest bit for
tagging whether a value is a pointer address to a tagged value or an integer.
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8.1.7 Fast Typing of Application Nodes
In Section 2.6.3 (Quadratic Substitution in Function Application), we discussed how
the typing rule for function application resulted in quadratic performance behavior
when there was in fact only linear work that needed to be done. As of Coq 8.10, when
typechecking applications in the kernel, substitution is delayed so as to achieve linear
performance [Péd18]. Unfortunately, the pretyping and type-inference algorithm is
still quadratic, due to the type-theory rules used for type inference.

8.2 Performance-Enhancing Advancements in the
Type Theory of Coq

While some of the above performance enhancements touch the trusted kernel of Coq,
they do not fundamentally change the type theory. Some performance enhancements
require significant changes to the type theory. In this section we will review a couple
of particularly important changes of this kind.

8.2.1 Universe Polymorphism
Recall that the main case study of Chapter 7 was our implementation of a category-
theory library. Recall also from Type Size Blowup: Packed vs. Unpacked Records
how the choice of whether to use packed or unpacked records impacts performance;
while unpacked records are more friendly for developing algebraic hierarchies, packed
records achieve significantly better performance when large towers of dependent con-
cepts (such as categories, functors between categories, and natural transformations
between functors) are formalized.

This section addresses a particular feature which allows an entire-library 2× speed-up
when using fully packed records. How is such a large performance gain achievable?
Without this feature, called universe polymorphism, encoding some mathematical
objects requires duplicating the entire library! Removing this duplication of code will
halve the compile time.

What Are Universes?

Universes are type theory’s answer to Russell’s paradox [ID16]. Russell’s paradox,
a famous paradox discovered in 1901, proceeds as follows. A set is an unordered
collection of distinct objects. Since each set is an object, we may consider the set of
all sets. Does this set contain itself? It must, for by definition it contains all sets.

So we see by example that some sets contain themselves, while others (such as the
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empty set with no objects) do not. Let us consider now the set consisting of exactly
the sets that do not contain themselves. Does this set contain itself? If it does not,
then it fails to live up to its description as the set of all sets that do not contain
themselves. However, if it does contain itself, then it also fails to live up to its
description as a set consisting only of sets that do not contain themselves. Paradox!

The resolution to this paradox is to forbid sets from containing themselves. The
collection of all sets is too big to be a set, so let’s call it (and collections of its size)
a proper class. We can nest this construction, as type theory does: We have Type0,
the Type1 of all small types, and we have Type1, the Type2 of all Type1s, etc. These
subscripts are called universe levels, and the subscripted Types are sometimes called
universes.

Most constructions in Coq work just fine if we simply place them in a single, high-
enough universe. In fact, the entire standard library in Coq effectively uses only three
universes. Most of the standard library in fact only needs one universe. We need a
second universe for the few constructions that talk about equality between types, and
a third for the encoding of a variant of Russell’s paradox in Coq.

However, one universe is not sufficient for category theory, even if we don’t need to
talk about equality of types nor prove that Type : Type is inconsistent.

The reason is that category theory, much like set theory, talks about itself.

Complications from Categories of Categories

In standard mathematical practice, a category 𝒞 can be defined [Awo] to consist of:

• a class Ob𝒞 of objects

• for all objects 𝑎, 𝑏 ∈ Ob𝒞, a class Hom𝒞(𝑎, 𝑏) of morphisms from 𝑎 to 𝑏

• for each object 𝑥 ∈ Ob𝒞, an identity morphism 1𝑥 ∈ Hom𝒞(𝑥, 𝑥)

• for each triple of objects 𝑎, 𝑏, 𝑐 ∈ Ob𝒞, a composition function ∘ ∶ Hom𝒞(𝑏, 𝑐) ×
Hom𝒞(𝑎, 𝑏) → Hom𝒞(𝑎, 𝑐)

satisfying the following axioms:

• associativity: for composable morphisms 𝑓, 𝑔, ℎ, we have 𝑓 ∘ (𝑔 ∘ℎ) = (𝑓 ∘𝑔) ∘ℎ.

• identity: for any morphism 𝑓 ∈ Hom𝒞(𝑎, 𝑏), we have 1𝑏 ∘ 𝑓 = 𝑓 = 𝑓 ∘ 1𝑎
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Some complications arise in applying this definition of categories to the full range of
common constructs in category theory. One particularly prominent example formal-
izes the structure of a collection of categories, showing that this collection itself may
be considered as a category.

The morphisms in such a category are functors, maps between categories consisting
of a function on objects, a function on hom-types, and proofs that these functions
respect composition and identity [Mac; Awo; Uni13].

The naïve concept of a “category of all categories”, which includes even itself, leads
into mathematical inconsistencies which manifest as universe-inconsistency errors in
Coq, much as with the set of all sets discussed above.

The standard resolution, as with sets, is to introduce a hierarchy of categories, where,
for instance, most intuitive constructions are considered small categories, and then
we also have large categories, one of which is the category of small categories. Both
definitions wind up with literally the same text in Coq, giving:

Definition SmallCat : LargeCategory :=
{| Ob := SmallCategory;

Hom C D := SmallFunctor C D;
⋮

|}.

It seems a shame to copy-and-paste this definition (and those of Category, Functor,
etc.) 𝑛 times to define an 𝑛-level hierarchy.

Universe polymorphism is a feature that allows definitions to be quantified over their
universes. While Coq 8.4 supports a restricted flavor of universe polymorphism that
allows the universe of a definition to vary as a function of the universes of its argu-
ments, Coq 8.5 and later [Soz14] support an established kind of more general universe
polymorphism [HP91], previously implemented only in NuPRL [Con+86]. In these
versions of Coq, any definitions declared polymorphic are parametric over their uni-
verses.

While judicious use of universe polymorphism can reduce code duplication, careless
use can lead to tens of thousands of universe variables which then become a perfor-
mance bottleneck in their own right.6

6See, for example, the commit message of a445bc3 in the HoTT/HoTT library on GitHub, where
moving from Coq 8.5𝛽2 to 8.5𝛽3 incurred a 4× slowdown in the file hit/V.v, entirely due to
performance regressions in universe handling, which were later fixed. This slowdown is likely the
one of Coq bug #4537.

See also commit d499ef6 in the HoTT/HoTT library on GitHub, where reducing the number of
polymorphic universes in some constants used by rewrite resulted in an overall 2× speedup, with
speedups reaching 10× in some rewrite-heavy files.
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8.2.2 Judgmental 𝜂 for Record Types
The same commit that introduced universe polymorphism in Coq 8.5 also introduced
judgmental 𝜂 conversion for records with primitive projections [Soz14]. We have
already discussed the advantages of primitive projections in Subsection 8.1.6, and we
have talked a bit about judgmental 𝜂 in Section 7.5.1 (Dodging Judgmental 𝜂 on
Records) and Section 7.5 (Internalizing Duality Arguments in Type Theory).

The 𝜂 conversion rule for records says that every term 𝑥 of record type 𝑇 is convertible
with the constructor of 𝑇 applied to the projections of 𝑇 applied to 𝑥. For example,
if x has type A * B, then the 𝜂 rule equates x with (fst x, snd x).

As discussed in Section 7.5, having records with judgmental 𝜂 conversion allows de-
duplicating code that would otherwise have to be duplicated.

8.2.3 SProp: The Definitionally Proof-Irrelevant Universe
Coq is slow at dealing with large terms. For goals around 175,000 words long7, we
have found that simple tactics like apply f equal take around 1 second to execute,
which makes interactive theorem proving very frustrating.8 Even more frustrating
is the fact that the largest contribution to this size is often arguments to irrelevant
functions, i.e., functions that are provably equal to all other functions of the same
type. (These are proofs related to algebraic laws like associativity, carried inside
many constructions.)

Opacification helps by preventing the type checker from unfolding some definitions,
but it is not enough: the type checker still has to deal with all of the large arguments
to the opaque function. Hash-consing might fix the problem completely.

Alternatively, it would be nice if, given a proof that all of the inhabitants of a type
were equal, we could forget about terms of that type, so that their sizes would not
impose any penalties on term manipulation. One solution might be irrelevant fields,
like those of Agda, or implemented via the Implicit CiC [BB08; Miq01]. While there
is as-yet no way to erase these arguments, Coq versions 8.10 and later have the

Coq actually had an implementation of full universe polymorphism between versions 8.3 and 8.4,
implemented in commit d98dfbc and reverted mere minutes later in commit 60bc3cb. In-person
discussion, either with Matthieu himself or with Bob Harper, revealed that Matthieu abandoned
this initial attempt after finding that universe polymorphism was too slow, and it was only by
implementing the algorithm of Harper and Pollack [HP91] that universe polymorphism with typical
ambiguity [Shu12; Spe66; HP91], where users need not write universe variables explicitly, was able
to be implemented in a way that was sufficiently performant.

7When we had objects as arguments rather than fields in our category-theory library (see Sec-
tion 2.6.4), we encountered goals of about 219,633 words when constructing pointwise Kan exten-
sions.

8See also Coq bug #3280.
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ability to define types as judgmentally irrelevant, paving the way for more aggressive
erasure [Gil18; Gil+19].

8.3 Performance-Enhancing Advancements in Type
Theory at Large

We come now to discoveries and inventions of the past decade or so which have
not yet made it into Coq but which show great promise for significant performance
improvements.

8.3.1 Higher Inductive Types: Setoids for Free
Recall again that the main case study of Chapter 7 was our implementation of a
category-theory library.

Equality

Equality, which has recently become a very hot topic in type theory [Uni13] and higher
category theory [Lei], provides another example of a design decision where most usage
is independent of the exact implementation details. Although the question of what
it means for objects or morphisms to be equal does not come up much in classical
1-category theory, it is more important when formalizing category theory in a proof
assistant, for reasons seemingly unrelated to its importance in higher category theory.
We consider some possible notions of equality.

Setoids A setoid [Bis67] is a carrier type equipped with an equivalence relation; a
map of setoids is a function between the carrier types and a proof that the function
respects the equivalence relations of its domain and codomain. Many authors [Pee+;
KSW; Meg; HS00; Ahrb; Ahr10; Ish; Pot; Soza; CM98; Wil12] choose to use a setoid
of morphisms, which allows for the definition of the category of set(oid)s, as well as the
category of (small) categories, without assuming functional extensionality, and allows
for the definition of categories where the objects are quotient types. However, there
is significant overhead associated with using setoids everywhere, which can lead to
slower compile times. Every type that we talk about needs to come with a relation and
a proof that this relation is an equivalence relation. Every function that we use needs
to come with a proof that it sends equivalent elements to equivalent elements. Even
worse, if we need an equivalence relation on the universe of “types with equivalence
relations”, we need to provide a transport function between equivalent types that
respects the equivalence relations of those types.
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Propositional Equality An alternative to setoids is propositional equality, which
carries none of the overhead of setoids but does not allow an easy formulation of quo-
tient types and requires assuming functional extensionality to construct the category
of sets.

Intensional type theories like Coq’s have a built-in notion of equality, often called
definitional equality or judgmental equality, and denoted as 𝑥 ≡ 𝑦. This notion
of equality, which is generally internal to an intensional type theory and therefore
cannot be explicitly reasoned about inside of that type theory, is the equality that
holds between 𝛽𝛿𝜄𝜁𝜂-convertible terms.

Coq’s standard library defines what is called propositional equality on top of judgmen-
tal equality, denoted 𝑥 = 𝑦. One is allowed to conclude that propositional equality
holds between any judgmentally equal terms.

Using propositional equality rather than setoids is convenient because there is already
significant machinery made for reasoning about propositional equalities, and there is
much less overhead. However, we ran into significant trouble when attempting to
prove that the category of sets has all colimits, which amounts to proving that it
is closed under disjoint unions and quotienting; quotient types cannot be encoded
without assuming a number of other axioms.

Higher Inductive Types The recent emergence of higher inductive types allows
the best of both worlds. The idea of higher inductive types [Uni13] is to allow induc-
tive types to be equipped with extra proofs of equality between constructors. They
originated as a way to allow homotopy type theorists to construct types with nontriv-
ial higher paths. A very simple example is the interval type, from which functional
extensionality can be proven [Shu]. The interval type consists of two inhabitants
zero : Interval and one : Interval, and a proof seg : zero = one. In a hypo-
thetical type theory with higher inductive types, the type checker does the work of
carrying around an equivalence relation on each type for us and forbids users from
constructing functions that do not respect the equivalence relation of any input type.
For example, we can, hypothetically, prove functional extensionality as follows:

Definition f_equal {A B x y} (f : A → B) : x = y → f x = f y.
Definition functional_extensionality {A B} (f g : A → B)

: (∀ x, f x = g x) → f = g
:= 𝜆 (H : ∀ x, f x = g x)

⇒ f_equal (𝜆 (i : Interval) (x : A)
⇒ match i with

| zero ⇒ f x
| one ⇒ g x
| seg ⇒ H x
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end)
seg.

Had we neglected to include the branch for seg, the type checker should complain
about an incomplete match; the function 𝜆 i : Interval ⇒ match i with zero
⇒ true | one ⇒ false end of type Interval → bool should not typecheck for
this reason.

The key insight is that most types do not need special equivalence relations, and,
moreover, if we are not explicitly dealing with a type with a special equivalence
relation, then it is impossible (by parametricity) to fail to respect the equivalence
relation. Said another way, the only way to construct a function that might fail to
respect the equivalence relation would be by some eliminator like pattern matching,
so all we have to do is guarantee that direct invocations of the eliminator result in
functions that respect the equivalence relation.

As with the choice involved in defining categories, using propositional equality with
higher inductive types rather than setoids derives many of its benefits from not having
to deal with all of the overhead of custom equivalence relations in constructions that
do not need them. In this case, we avoid the overhead by making the type checker
or the metatheory deal with the parts we usually do not care about. Most of our
definitions do not need custom equivalence relations, so the overhead of using setoids
would be very large for very little gain.

8.3.2 Univalence and Isomorphism Transport
When considering higher inductive types, the question “when are two types equiva-
lent?” arises naturally. The standard answer in the past has been “when they are
syntactically equal”. The result of this is that two inductive types that are defined
in the same way, but with different names, will not be equal. Voevodsky’s univalence
principle gives a different answer: two types are equal when they are isomorphic.
This principle, encoded formally as the univalence axiom, allows reasoning about
isomorphic types as easily as if they were equal.

Tabareau et al. built a framework on top of the insights of univalence, combined with
parametricity [Rey83; Wad89], for automatically porting definitions and theorems to
equivalent types [TTS18; TTS19].

What is the application to performance? As we saw, for example, in Section 5.2
(NbE vs. Pattern-Matching Compilation: Mismatched Expression APIs and Leaky
Abstraction Barriers), the choice of representation of a datatype can have drastic
consequences on how easy it is to encode algorithms and write correctness proofs.
These design choices can also be intricately entwined with both the compile-time
and run-time performance characteristics of the code. One central message of both
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Chapter 5 and Chapter 7 is that picking the right API really matters when writing
code with dependent types. The promise of univalence, still in its infancy, is that we
could pick the right API for each algorithmic chunk, prove the APIs isomorphic, and
use some version of univalence to compose the APIs and reason about the algorithms
as easily as if we had used the same interface everywhere.

8.3.3 Cubical Type Theory
One important detail we elided in the previous subsections is the question of compu-
tation. Higher inductive types and univalence are much less useful if they are opaque
to the type checker. The proof of function extensionality, for example, relies on the
elimination rule for the interval having a judgmental computation rule.9

Higher inductive types whose eliminators compute on the point constructors can be
hacked into dependently typed proof assistants by adding inconsistent axioms and
then hiding them behind opaque APIs so that inconsistency cannot be proven [Lic11;
Ber13]. This is unsatisfactory, however, on two counts:

1. The eliminators do not compute on path constructors. For example, the interval
eliminator would compute on zero and one but not on seg.

2. Adding these axioms compromises the trust story.

Cubical type theory is the solution to both of these problems, for both higher inductive
types and univalence [Coh+18]. Unlike most other type theories, computation in
cubical type theory is implemented by appealing to the category-theoretic model,
and the insights that allow such computation are slowly making their way into more
mainstream dependently typed proof assistants [VMA19].

9We leave it as a fun exercise for the advanced reader to figure out why the Church encoding of
the interval, where Interval := ∀ P (zero : P) (one : P) (seg : zero = one), P, does not
yield a proof a functional extensionality.
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Chapter 9

Concluding Remarks

We spent Part I mapping out the landscape of the problems of performance we en-
countered in dependently typed proof assistants. In Part II and Part III, we laid out
more-or-less systematic principles and tools for avoiding these performance bottle-
necks. In the last chapter, Chapter 8, we looked back on the concrete performance
improvements in Coq over time.

We look now to the future.

The clever reader might have noticed something that we swept under the rug in
Parts II and III. In Section 1.3 we laid out two basic design choices—dependent types
and the de Bruijn criterion—which are responsible for much of the power and much of
the trust we can have in a proof assistant like Coq. We then spent the next chapters
of this dissertation investigating the performance bottlenecks that can perhaps be
said to result from these choices and how to ameliorate these performance issues.

If the strategies we laid out in Parts II and III for how to use dependent types and
untrusted tactics in a performant way are to be summed up in one word, that word
is: “don’t!” To avoid the performance issues resulting from tactics being untrusted,
the source of much of the trust in proof assistants like Coq, we suggest in Part II
that users effectively throw away the entire tactic engine and instead code tactics
reflectively. To avoid the performance issues incurred by unpredictable computation
at the type level, the source of much of the power of dependent type theory, we
broadly suggest in Part III to avoid using the computation at all (except in the rare
cases where the entire proof can be moved into computation at the type level, such
as proof by duality (Section 7.5) and proof by reflection (Chapter 3)).

This is a sorry state of affairs: we are effectively advising users to basically avoid
using most of the power and infrastructure of the proof assistant.
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We admit that we are not sure what an effective resolution to the performance issue of
computation at the type level would look like. While Chapter 7 lays out in Section 7.2
(When and How To Use Dependent Types Painlessly) principles for how and when to
use dependent types that allow us to recover much of the power of dependent types
without running into issues of slow conversion, even at scale, this is nowhere near a
complete roadmap for actually using partial computation at the type level.

On the question of using tactics, however, we do know what a resolution would look
like, and hence we conclude this dissertation with such a call for future research.

As far as we can tell, no one has yet laid out a theory of what are the necessary basic
building blocks of a usable tactic engine for proofs. Such a theory should include:

• a list of basic operations

• with necessary asymptotic performance,

• justification that these building blocks are sufficient for constructing all the
proof automation users might want to construct, and

• justification that the asymptotic performance does not incur needless overhead
above and beyond the underlying algorithm of proof construction.

What is needless overhead, though? How can we say what the performance of the
“underlying algorithm” is?

A first stab might be thus: we want a proof engine which, for any heuristic algorithm
𝐴 that can sometimes determine the truth of a theorem statement (and will otherwise
answer “I don’t know”) in time 𝒪(𝑓(𝑛)), where 𝑛 is some parameter controlling the
size of the problem, we can construct a proof script which generates proofs of these
theorem statements in time not worse than 𝒪(𝑓(𝑛)), or perhaps in time that is not
much worse than 𝒪(𝑓(𝑛)).

This criterion, however, is both useless and impossible to meet.

Useless: In a dependently typed proof assistant, if we can prove that 𝐴 is sound, i.e.,
that when it says “yes” the theorem is in fact true, then we can simply use reflection
to create a proof by appeal to computation. This is not useful when what we are
trying to do is describe how to identify a proof engine which gives adequate building
blocks aside from appeal to computation.

Impossible to meet: Moreover, even if we could modify this criterion into a useful
one, perhaps by requiring that it be possible to construct such a proof script without
any appeal to computation, meeting the criterion would still be impossible. Taking
inspiration from Garrabrant et al. [Gar+16, pp. 24–25], we ask the reader to consider
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a program prg(𝑥) which searches for proofs of absurdity (i.e., False) in Coq which
have length less than 2𝑥 characters and which can be checked by Coq’s kernel in
less than 2𝑥 CPU cycles. If such a proof of absurdity is found, the program outputs
true. If no such proof is found under the given computational limits, the program
outputs false. Assuming that Coq is, in fact, consistent, then we can recognize true
theorems of the form prg(𝑥) = false for all 𝑥 in time 𝒪(log𝑥). (The running time is
logarithmic, rather than linear or constant, because representing the number 𝑥 in any
place-value system, such as decimal or binary, requires log𝑛 space.) At the same time,
by Gödel’s incompleteness theorem, there is no hope of proving ∀𝑥, prg(𝑥) = false,
and hence we cannot prove this simple 𝒪(log𝑥)-time theorem recognizer correct. We
almost certainly will be stuck running the program, which will take time Ω(2𝑥), which
is certainly not an acceptable overhead over 𝒪(log𝑥).

We do not believe that all hope is lost, though! Gödelian incompleteness did not
prove to be a fatal obstacle to verification and automation of proofs, as we saw in
Section 1.1, and we hope that it proves to be surmountable here as well.

We can take a second stab at specifying what it might mean to avoid needless over-
head: Suppose we are given some algorithm 𝐴 which can sometimes determine the
truth of a theorem statement (and will otherwise answer “I don’t know”) in time
𝒪(𝑓(𝑛)), and suppose we are given a proof that 𝐴 is sound, i.e., a proof that when-
ever 𝐴 claims a theorem statement is true, that statement is in fact true. Then we
would like a proof engine which permits the construction of proofs, without any ap-
peal to computation, of theorems that 𝐴 claims are true in time 𝒪(𝑓(𝑛)), or perhaps
time that is not much worse than 𝒪(𝑓(𝑛)). Said another way, we want a proof engine
for which reflective proof scripts can be turned into nonreflective proof scripts without
incurring overhead, or at least without incurring too much overhead.

Is such a proof engine possible? Is such a proof engine sufficient? Is this criterion
necessary? Or is there perhaps a better criterion? We leave all of these questions for
future work in this field, noting that there may be some inspiration to be drawn from
the extant research on the overhead of using a functional language over an imperative
one [Cam10; BG92; Ben96; BJD97; Oka96; Oka98; Pip97]. This body of work shows
that we can always turn an imperative program into a strict functional program with
at most 𝒪(log𝑛) overhead, and often we get no overhead at all.1

We hope the reader leaves this dissertation with an improved understanding of the
performance landscape of engineering of proof-based software systems and perhaps
goes on to contribute new insight to this nascent field themselves.

1Note that if we are targeting a lazy functional language rather than a strict one, it may in fact
always be possible to achieve a transformation without any overhead [Cam10].
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Appendix A

Appendices for Chapter 2, The
Performance Landscape in
Type-Theoretic Proof Assistants

A.1 Full Example of Nested-Abstraction-Barrier
Performance Issues

In Section 2.6.4, we discussed an example where unfolding nested abstraction barriers
caused performance issues. Here we include the complete code for that example.1

Require Import Coq.Program.Basics.
Require Import Coq.Program.Tactics.

Set Primitive Projections.
Set Implicit Arguments.
Set Universe Polymorphism.
Set Printing Width 50.

Obligation Tactic := cbv beta; trivial.

Record prod (A B:Type) : Type := pair { fst : A ; snd : B }.
Infix "*" := prod : type_scope.
Add Printing Let prod.
Notation "( x , y , .. , z )" := (pair .. (pair x y) .. z) : core_scope.
Arguments pair {A B} _ _.
Arguments fst {A B} _.

1This code is also available in the file fragments/CategoryExponentialLaws.v on GitHub in
the JasonGross/doctoral-thesis repository.
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Arguments snd {A B} _.

Reserved Notation "g '∘' f" (at level 40, left associativity).
Reserved Notation "F '0' x"

(at level 10, no associativity, format "'[' F '0' ']' x").
Reserved Notation "F '1' m"

(at level 10, no associativity, format "'[' F '1' ']' m").
Reserved Infix "≅" (at level 70, no associativity).
Reserved Notation "x ≅ y :>>> T" (at level 70, no associativity).

Record Category :=
{
object :> Type;
morphism : object -> object -> Type;

identity : forall x, morphism x x;
compose : forall s d d',

morphism d d'
-> morphism s d
-> morphism s d'

where "f '∘' g" := (compose f g);

associativity : forall x1 x2 x3 x4
(m1 : morphism x1 x2)
(m2 : morphism x2 x3)
(m3 : morphism x3 x4),

(m3 ∘ m2) ∘ m1 = m3 ∘ (m2 ∘ m1);

left_identity : forall a b (f : morphism a b), identity b ∘ f = f;
right_identity : forall a b (f : morphism a b), f ∘ identity a = f;

}.

Declare Scope category_scope.
Declare Scope object_scope.
Declare Scope morphism_scope.
Bind Scope category_scope with Category.
Bind Scope object_scope with object.
Bind Scope morphism_scope with morphism.
Delimit Scope morphism_scope with morphism.
Delimit Scope category_scope with category.
Delimit Scope object_scope with object.

Arguments identity {_} _.
Arguments compose {_ _ _ _} _ _.
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Infix "∘" := compose : morphism_scope.
Notation "1" := (identity _) : morphism_scope.
Local Open Scope morphism_scope.

Record isomorphic {C : Category} (s d : C) :=
{
fwd : morphism C s d
; bwd : morphism C d s
; iso1 : fwd ∘ bwd = 1
; iso2 : bwd ∘ fwd = 1

}.

Notation "s ≅ d :>>> C" := (@isomorphic C s d) : morphism_scope.
Infix "≅" := isomorphic : morphism_scope.

Declare Scope functor_scope.
Delimit Scope functor_scope with functor.

Local Open Scope morphism_scope.

Record Functor (C D : Category) :=
{
object_of :> C -> D;
morphism_of : forall s d, morphism C s d

-> morphism D (object_of s) (object_of d);
composition_of : forall s d d'

(m1 : morphism C s d) (m2: morphism C d d'),
morphism_of _ _ (m2 ∘ m1)
= (morphism_of _ _ m2) ∘ (morphism_of _ _ m1);

identity_of : forall x, morphism_of _ _ (identity x)
= identity (object_of x)

}.

Arguments object_of {C D} _.
Arguments morphism_of {C D} _ {s d}.

Bind Scope functor_scope with Functor.

Notation "F '0' x" := (object_of F x) : object_scope.
Notation "F '1' m" := (morphism_of F m) : morphism_scope.

Declare Scope natural_transformation_scope.
Delimit Scope natural_transformation_scope with natural_transformation.
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Module Functor.
Program Definition identity (C : Category) : Functor C C
:= {| object_of x := x

; morphism_of s d m := m |}.

Program Definition compose (s d d' : Category)
(F1 : Functor d d') (F2 : Functor s d)

: Functor s d'
:= {| object_of x := F1 (F2 x)

; morphism_of s d m := F1 1 (F2 1 m) |}.
Next Obligation. Admitted.
Next Obligation. Admitted.

End Functor.

Infix "∘" := Functor.compose : functor_scope.
Notation "1" := (Functor.identity _) : functor_scope.

Local Open Scope morphism_scope.
Local Open Scope natural_transformation_scope.

Record NaturalTransformation {C D : Category} (F G : Functor C D) :=
{
components_of :> forall c, morphism D (F c) (G c);
commutes : forall s d (m : morphism C s d),

components_of d ∘ F 1 m = G 1 m ∘ components_of s
}.

Bind Scope natural_transformation_scope with NaturalTransformation.

Module NaturalTransformation.
Program Definition identity {C D : Category} (F : Functor C D)
: NaturalTransformation F F
:= {| components_of x := 1 |}.

Next Obligation. Admitted.

Program Definition compose {C D : Category} (s d d' : Functor C D)
(T1 : NaturalTransformation d d') (T2 : NaturalTransformation s d)

: NaturalTransformation s d'
:= {| components_of x := T1 x ∘ T2 x |}.

Next Obligation. Admitted.
End NaturalTransformation.

Infix "∘" := NaturalTransformation.compose
: natural_transformation_scope.

Notation "1" := (NaturalTransformation.identity _)
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: natural_transformation_scope.

Program Definition functor_category (C D : Category) : Category
:= {| object := Functor C D

; morphism := @NaturalTransformation C D
; identity x := 1
; compose s d d' m1 m2 := m1 ∘ m2 |}%natural_transformation.

Next Obligation. Admitted.
Next Obligation. Admitted.
Next Obligation. Admitted.

Notation "C -> D" := (functor_category C D) : category_scope.

Program Definition prod_category (C D : Category) : Category
:= {| object := C * D

; morphism s d
:= morphism C (fst s) (fst d) * morphism D (snd s) (snd d)

; identity x := (1, 1)
; compose s d d' m1 m2 := (fst m1 ∘ fst m2, snd m1 ∘ snd m2)

|}%type%morphism.
Next Obligation. Admitted.
Next Obligation. Admitted.
Next Obligation. Admitted.

Infix "*" := prod_category : category_scope.

Program Definition Cat : Category :=
{|
object := Category
; morphism := Functor
; compose s d d' m1 m2 := m1 ∘ m2
; identity x := 1

|}%functor.
Next Obligation. Admitted.
Next Obligation. Admitted.
Next Obligation. Admitted.

Local Open Scope functor_scope.
Local Open Scope natural_transformation_scope.
Local Open Scope object_scope.
Local Open Scope morphism_scope.
Local Open Scope category_scope.

Arguments Build_Functor _ _ & .
Arguments Build_isomorphic _ _ _ & .
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Arguments Build_NaturalTransformation _ _ _ _ & .
Arguments pair _ _ & .
Canonical Structure default_eta {A B} (v : A * B) : A * B := (fst v, snd v).
Canonical Structure pair' {A B} (a : A) (b : B) : A * B := pair a b.

Declare Scope functor_object_scope.
Declare Scope functor_morphism_scope.
Declare Scope natural_transformation_components_scope.
Arguments Build_Functor (C D)%category_scope
& _%functor_object_scope _%functor_morphism_scope (_ _)%function_scope.
Arguments Build_NaturalTransformation [C D]%category_scope (F G)%functor_scope
& _%natural_transformation_components_scope _%function_scope.

Notation "x : A ↦o f"
:= (fun x : A%category => f) (at level 70) : functor_object_scope.

Notation "x ↦o f"
:= (fun x => f) (at level 70) : functor_object_scope.

Notation "' x ↦o f"
:= (fun '(x%category) => f) (x strict pattern, at level 70)

: functor_object_scope.
Notation "m @ s --> d ↦m f"

:= (fun s d m => f) (at level 70) : functor_morphism_scope.
Notation "' m @ s --> d ↦m f"

:= (fun s d 'm => f) (at level 70, m strict pattern)
: functor_morphism_scope.

Notation "m : A ↦m f"
:= (fun s d (m : A%category) => f) (at level 70)

: functor_morphism_scope.
Notation "m ↦m f"

:= (fun s d m => f) (at level 70) : functor_morphism_scope.
Notation "' m ↦m f"

:= (fun s d '(m%category) => f) (m strict pattern, at level 70)
: functor_morphism_scope.

Notation "x : A ↦t f"
:= (fun x : A%category => f) (at level 70)

: natural_transformation_components_scope.
Notation "' x ↦t f"

:= (fun '(x%category) => f) (x strict pattern, at level 70)
: natural_transformation_components_scope.

Notation "x ↦t f"
:= (fun x => f) (at level 70)

: natural_transformation_components_scope.

Notation "⟨ fo ; mo ⟩"
:= (@Build_Functor _ _ fo mo _ _) (only parsing) : functor_scope.
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Notation "⟨ f ⟩"
:= (@Build_NaturalTransformation _ _ _ _ f _) (only parsing)

: natural_transformation_scope.

Notation "'𝜆' ⟨ fo ; mo ⟩"
:= (@Build_Functor _ _ fo mo _ _) (only parsing) : functor_scope.

Notation "'𝜆' ⟨ f ⟩"
:= (@Build_NaturalTransformation _ _ _ _ f _) (only parsing)

: natural_transformation_scope.

Notation "'𝜆o' x1 .. xn , fo ; '𝜆m ' m1 .. mn , mo"
:= (@Build_Functor

_ _
(fun x1 => .. (fun xn => fo) .. )
(fun s d => (fun m1 => .. (fun mn => mo) .. ))
_ _)

(only parsing, x1 binder, xn binder, m1 binder, mn binder, at level 70)
: functor_scope.

Notation "'𝜆t' x1 .. xn , f"
:= (@Build_NaturalTransformation

_ _ _ _
(fun x1 => .. (fun xn => f) .. )
_)

(only parsing, x1 binder, xn binder, at level 70)
: natural_transformation_scope.

(** [(C1 × C2 → D) ≅ (C1 → (C2 → D))] *)
(** We denote functors by pairs of maps on objects ([↦o]) and

morphisms ([↦m ]), and natural transformations as a single map
([↦t]) *)

Time Program Definition curry_iso1 (C1 C2 D : Category)
: (C1 * C2 -> D) ≅ (C1 -> (C2 -> D)) :>>> Cat
:= {| fwd

:= ⟨ F ↦o ⟨ c1 ↦o ⟨ c2 ↦o F 0 (c1, c2)
; m ↦m F 1 (identity c1, m) ⟩

; m1 ↦m ⟨ c2 ↦t F 1 (m1, identity c2) ⟩ ⟩
; T ↦m ⟨ c1 ↦t ⟨ c2 ↦t T (c1, c2) ⟩ ⟩ ⟩;

bwd
:= ⟨ F ↦o ⟨ '(c1, c2) ↦o (F 0 c1)0 c2

; '(m1, m2) ↦m (F 1 m1) _ ∘ (F 0 _)1 m2 ⟩
; T ↦m ⟨ '(c1, c2) ↦t (T c1) c2 ⟩ ⟩ |}.

(** [(C1 × C2 → D) ≅ (C1 → (C2 → D))] *)
(** We denote functors by pairs of maps ([𝜆]) on objects ([↦o]) and
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morphisms ([↦m ]), and natural transformations as a single map
([𝜆 ⟨ ... ↦t ... ⟩]) *)

Time Program Definition curry_iso2 (C1 C2 D : Category)
: (C1 * C2 -> D) ≅ (C1 -> (C2 -> D)) :>>> Cat
:= {| fwd

:= 𝜆 ⟨ F ↦o 𝜆 ⟨ c1 ↦o 𝜆 ⟨ c2 ↦o F 0 (c1, c2)
; m ↦m F 1 (identity c1, m) ⟩

; m1 ↦m 𝜆 ⟨ c2 ↦t F 1 (m1, identity c2) ⟩ ⟩
; T ↦m 𝜆 ⟨ c1 ↦t 𝜆 ⟨ c2 ↦t T (c1, c2) ⟩ ⟩ ⟩;

bwd
:= 𝜆 ⟨ F ↦o 𝜆 ⟨ '(c1, c2) ↦o (F 0 c1)0 c2

; '(m1, m2) ↦m (F 1 m1) _ ∘ (F 0 _)1 m2 ⟩
; T ↦m 𝜆 ⟨ '(c1, c2) ↦t (T c1) c2 ⟩ ⟩ |}.

(** [(C1 × C2 → D) ≅ (C1 → (C2 → D))] *)
(** We denote functors by pairs of maps on objects ([𝜆o]) and

morphisms ([𝜆m ]), and natural transformations as a single map
([𝜆t]) *)

Time Program Definition curry_iso3 (C1 C2 D : Category)
: (C1 * C2 -> D) ≅ (C1 -> (C2 -> D)) :>>> Cat
:= {| fwd

:= 𝜆o F, 𝜆o c1, 𝜆o c2, F 0 (c1, c2)
; 𝜆m m , F 1 (identity c1, m)

; 𝜆m m1, 𝜆t c2, F 1 (m1, identity c2)
; 𝜆m T, 𝜆t c1, 𝜆t c2, T (c1, c2);

bwd
:= 𝜆o F, 𝜆o '(c1, c2), (F 0 c1)0 c2

; 𝜆m '(m1, m2), (F 1 m1) _ ∘ (F 0 _)1 m2
; 𝜆m T, 𝜆t '(c1, c2), (T c1) c2 |}.

(** [(C1 × C2 → D) ≅ (C1 → (C2 → D))] *)
(** We provide the action of functors on objects ([object_of]) and on

morphisms ([morphism_of]), and we provide the action of natural
transformations on object ([components_of] *)

Time Program Definition curry_iso (C1 C2 D : Category)
: (C1 * C2 -> D) ≅ (C1 -> (C2 -> D)) :>>> Cat
:= {| fwd

:= {| object_of F
:= {| object_of c1

:= {| object_of c2 := F 0 (c1, c2);
morphism_of _ _ m := F 1 (identity c1, m) |};

morphism_of _ _ m1
:= {| components_of c2 := F 1 (m1, identity c2) |} |};

morphism_of _ _ T
:= {| components_of c1

216



:= {| components_of c2 := T (c1, c2) |} |} |};
bwd
:= {| object_of F

:= {| object_of '(c1, c2)
:= (F 0 c1)0 c2;
morphism_of '(s1, s2) '(d1, d2) '(m1, m2)
:= (F 1 m1) d2 ∘ (F 0 s1)1 m2 |};

morphism_of s d T
:= {| components_of '(c1, c2) := (T c1) c2 |} |}; |}.

(* Finished transaction in 1.958 secs (1.958u,0.s) (successful) *)
Next Obligation. Admitted.
Next Obligation. Admitted.
Next Obligation. Admitted.
Next Obligation. Admitted.
Next Obligation. Admitted.
Next Obligation. Admitted.
Next Obligation. Admitted.
Next Obligation. Admitted.
Next Obligation. Admitted.
Next Obligation. Admitted.
Next Obligation. Admitted.
Next Obligation. Admitted.
Next Obligation. Admitted.
Next Obligation. Admitted.
Next Obligation.
(**
1 subgoal (ID 1464)

============================
forall C1 C2 D : Category,
{|
object_of := F

↦o {|
object_of := pat

↦o
(F0 (fst pat))0
(snd pat);

morphism_of := pat1 @ pat -->
pat0
↦m
(F1 (fst pat1))
(snd pat0)
∘
(F0 (fst pat))1
(snd pat1);
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composition_of := curry_iso_obligation_7
F;

identity_of := curry_iso_obligation_8
F |};

morphism_of := T @ s --> d
↦m {|

components_of := pat
↦t T (fst pat)
(snd pat);

commutes := curry_iso_obligation_9
T |};

composition_of := curry_iso_obligation_11
(D:=D);

identity_of := curry_iso_obligation_10 (D:=D) |}
∘ {|

object_of := F
↦o {|

object_of := c1
↦o
{|
object_of := c2
↦o F0 (c1, c2);
morphism_of := m @
s --> d
↦m F1 (1, m);
composition_of := curry_iso_obligation_1
F c1;
identity_of := curry_iso_obligation_2
F c1 |};

morphism_of := m1 @ s --> d
↦m {|
components_of := c2
↦t F1 (m1, 1);
commutes := curry_iso_obligation_3
F s d m1 |};

composition_of := curry_iso_obligation_5
F;

identity_of := curry_iso_obligation_4
F |};

morphism_of := T @ s --> d
↦m {|

components_of := c1
↦t {|
components_of := c2
↦t T (c1, c2);
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commutes := curry_iso_obligation_6
T c1 |};

commutes := curry_iso_obligation_12
T |};

composition_of := curry_iso_obligation_14
(D:=D);

identity_of := curry_iso_obligation_13 (D:=D) |} =
1

*)
(** About 48 lines *)
cbv [compose Cat Functor.compose NaturalTransformation.compose].
(**

1 subgoal (ID 1469)

============================
forall C1 C2 D : Category,
{|
object_of := x

↦o {|
object_of := F

↦o
{|
object_of := pat
↦o (F0 (fst pat))0
(snd pat);

morphism_of := pat1 @
pat --> pat0
↦m (F1
(fst pat1))
(snd pat0)
∘ (F0 (fst pat))1
(snd pat1);

composition_of := curry_iso_obligation_7
F;

identity_of := curry_iso_obligation_8
F |};

morphism_of := T @ s --> d
↦m
{|
components_of := pat
↦t T (fst pat)
(snd pat);
commutes := curry_iso_obligation_9
T |};

composition_of := curry_iso_obligation_11
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(D:=D);
identity_of := curry_iso_obligation_10

(D:=D) |}0
({|
object_of := F

↦o {|
object_of := c1
↦o {|
object_of := c2
↦o F0 (c1, c2);
morphism_of := m @
s --> d
↦m F1 (1, m);
composition_of := curry_iso_obligation_1
F c1;
identity_of := curry_iso_obligation_2
F c1 |};
morphism_of := m1 @
s --> d
↦m {|
components_of := c2
↦t F1 (m1, 1);
commutes := curry_iso_obligation_3
F s d m1 |};
composition_of := curry_iso_obligation_5
F;
identity_of := curry_iso_obligation_4
F |};

morphism_of := T @ s --> d
↦m
{|
components_of := c1
↦t {|
components_of := c2
↦t T (c1, c2);
commutes := curry_iso_obligation_6
T c1 |};

commutes := curry_iso_obligation_12
T |};

composition_of := curry_iso_obligation_14
(D:=D);

identity_of := curry_iso_obligation_13
(D:=D) |}0 x);

morphism_of := m @ s --> d
↦m {|
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object_of := F
↦o
{|
object_of := pat
↦o (F0 (fst pat))0
(snd pat);
morphism_of := pat1 @
pat --> pat0
↦m (F1
(fst pat1))
(snd pat0)
∘ (F0 (fst pat))1
(snd pat1);
composition_of := curry_iso_obligation_7
F;
identity_of := curry_iso_obligation_8
F |};

morphism_of := T @ s0 --> d0
↦m {|
components_of := pat
↦t T (fst pat)
(snd pat);
commutes := curry_iso_obligation_9
T |};

composition_of := curry_iso_obligation_11
(D:=D);

identity_of := curry_iso_obligation_10
(D:=D) |}1

({|
object_of := F

↦o
{|
object_of := c1
↦o {|
object_of := c2
↦o F0 (c1, c2);
morphism_of := m0 @
s0 --> d0
↦m F1 (1, m0);
composition_of := curry_iso_obligation_1
F c1;
identity_of := curry_iso_obligation_2
F c1 |};

morphism_of := m1 @
s0 --> d0

221



↦m {|
components_of := c2
↦t F1 (m1, 1);
commutes := curry_iso_obligation_3
F s0 d0 m1 |};

composition_of := curry_iso_obligation_5
F;

identity_of := curry_iso_obligation_4
F |};

morphism_of := T @ s0 --> d0
↦m
{|
components_of := c1
↦t {|
components_of := c2
↦t T (c1, c2);
commutes := curry_iso_obligation_6
T c1 |};
commutes := curry_iso_obligation_12
T |};

composition_of := curry_iso_obligation_14
(D:=D);

identity_of := curry_iso_obligation_13
(D:=D) |}1 m);

composition_of := Functor.compose_obligation_1
{|
object_of := F

↦o {|
object_of := pat
↦o (F0 (fst pat))0
(snd pat);
morphism_of := pat1 @
pat --> pat0
↦m (F1
(fst pat1))
(snd pat0)
∘ (F0 (fst pat))1
(snd pat1);
composition_of := curry_iso_obligation_7
F;
identity_of := curry_iso_obligation_8
F |};

morphism_of := T @ s --> d
↦m {|
components_of := pat
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↦t T (fst pat)
(snd pat);
commutes := curry_iso_obligation_9
T |};

composition_of := curry_iso_obligation_11
(D:=D);

identity_of := curry_iso_obligation_10
(D:=D) |}

{|
object_of := F

↦o {|
object_of := c1
↦o {|
object_of := c2
↦o F0 (c1, c2);
morphism_of := m @
s --> d
↦m F1 (1, m);
composition_of := curry_iso_obligation_1
F c1;
identity_of := curry_iso_obligation_2
F c1 |};
morphism_of := m1 @
s --> d
↦m {|
components_of := c2
↦t F1 (m1, 1);
commutes := curry_iso_obligation_3
F s d m1 |};
composition_of := curry_iso_obligation_5
F;
identity_of := curry_iso_obligation_4
F |};

morphism_of := T @ s --> d
↦m {|
components_of := c1
↦t {|
components_of := c2
↦t T (c1, c2);
commutes := curry_iso_obligation_6
T c1 |};
commutes := curry_iso_obligation_12
T |};

composition_of := curry_iso_obligation_14
(D:=D);
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identity_of := curry_iso_obligation_13
(D:=D) |};

identity_of := Functor.compose_obligation_2
{|
object_of := F

↦o
{|
object_of := pat
↦o (F0 (fst pat))0
(snd pat);
morphism_of := pat1 @
pat --> pat0
↦m (F1
(fst pat1))
(snd pat0)
∘ (F0 (fst pat))1
(snd pat1);
composition_of := curry_iso_obligation_7
F;
identity_of := curry_iso_obligation_8
F |};

morphism_of := T @ s --> d
↦m
{|
components_of := pat
↦t T (fst pat)
(snd pat);
commutes := curry_iso_obligation_9
T |};

composition_of := curry_iso_obligation_11
(D:=D);

identity_of := curry_iso_obligation_10
(D:=D) |}

{|
object_of := F

↦o
{|
object_of := c1
↦o {|
object_of := c2
↦o F0 (c1, c2);
morphism_of := m @
s --> d
↦m F1 (1, m);
composition_of := curry_iso_obligation_1
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F c1;
identity_of := curry_iso_obligation_2
F c1 |};
morphism_of := m1 @
s --> d
↦m {|
components_of := c2
↦t F1 (m1, 1);
commutes := curry_iso_obligation_3
F s d m1 |};
composition_of := curry_iso_obligation_5
F;
identity_of := curry_iso_obligation_4
F |};

morphism_of := T @ s --> d
↦m
{|
components_of := c1
↦t {|
components_of := c2
↦t T (c1, c2);
commutes := curry_iso_obligation_6
T c1 |};
commutes := curry_iso_obligation_12
T |};

composition_of := curry_iso_obligation_14
(D:=D);

identity_of := curry_iso_obligation_13
(D:=D) |} |} = 1

*)
(** About 254 lines *)
cbn [object_of morphism_of components_of].
(**

1 subgoal (ID 1471)

============================
forall C1 C2 D : Category,
{|
object_of := x

↦o {|
object_of := pat

↦o
x0
(fst pat,
snd pat);
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morphism_of := pat1 @ pat -->
pat0
↦m
x1
(fst pat1, 1)
∘
x1
(1, snd pat1);

composition_of := curry_iso_obligation_7
{|
object_of := c1
↦o {|
object_of := c2
↦o x0 (c1, c2);
morphism_of := m @
s --> d
↦m x1 (1, m);
composition_of := curry_iso_obligation_1
x c1;
identity_of := curry_iso_obligation_2
x c1 |};
morphism_of := m1 @
s --> d
↦m {|
components_of := c2
↦t x1 (m1, 1);
commutes := curry_iso_obligation_3
x s d m1 |};
composition_of := curry_iso_obligation_5
x;
identity_of := curry_iso_obligation_4
x |};

identity_of := curry_iso_obligation_8
{|
object_of := c1
↦o {|
object_of := c2
↦o x0 (c1, c2);
morphism_of := m @
s --> d
↦m x1 (1, m);
composition_of := curry_iso_obligation_1
x c1;
identity_of := curry_iso_obligation_2
x c1 |};
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morphism_of := m1 @
s --> d
↦m {|
components_of := c2
↦t x1 (m1, 1);
commutes := curry_iso_obligation_3
x s d m1 |};
composition_of := curry_iso_obligation_5
x;
identity_of := curry_iso_obligation_4
x |} |};

morphism_of := m @ s --> d
↦m {|

components_of := pat
↦t m
(
fst pat,
snd pat);

commutes := curry_iso_obligation_9
{|
components_of := c1
↦t {|
components_of := c2
↦t m (c1, c2);
commutes := curry_iso_obligation_6
m c1 |};
commutes := curry_iso_obligation_12
m |} |};

composition_of := Functor.compose_obligation_1
{|
object_of := F

↦o {|
object_of := pat
↦o (F0 (fst pat))0
(snd pat);
morphism_of := pat1 @
pat --> pat0
↦m (F1
(fst pat1))
(snd pat0)
∘ (F0 (fst pat))1
(snd pat1);
composition_of := curry_iso_obligation_7
F;
identity_of := curry_iso_obligation_8
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F |};
morphism_of := T @ s --> d

↦m {|
components_of := pat
↦t T (fst pat)
(snd pat);
commutes := curry_iso_obligation_9
T |};

composition_of := curry_iso_obligation_11
(D:=D);

identity_of := curry_iso_obligation_10
(D:=D) |}

{|
object_of := F

↦o {|
object_of := c1
↦o {|
object_of := c2
↦o F0 (c1, c2);
morphism_of := m @
s --> d
↦m F1 (1, m);
composition_of := curry_iso_obligation_1
F c1;
identity_of := curry_iso_obligation_2
F c1 |};
morphism_of := m1 @
s --> d
↦m {|
components_of := c2
↦t F1 (m1, 1);
commutes := curry_iso_obligation_3
F s d m1 |};
composition_of := curry_iso_obligation_5
F;
identity_of := curry_iso_obligation_4
F |};

morphism_of := T @ s --> d
↦m {|
components_of := c1
↦t {|
components_of := c2
↦t T (c1, c2);
commutes := curry_iso_obligation_6
T c1 |};
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commutes := curry_iso_obligation_12
T |};

composition_of := curry_iso_obligation_14
(D:=D);

identity_of := curry_iso_obligation_13
(D:=D) |};

identity_of := Functor.compose_obligation_2
{|
object_of := F

↦o
{|
object_of := pat
↦o (F0 (fst pat))0
(snd pat);
morphism_of := pat1 @
pat --> pat0
↦m (F1
(fst pat1))
(snd pat0)
∘ (F0 (fst pat))1
(snd pat1);
composition_of := curry_iso_obligation_7
F;
identity_of := curry_iso_obligation_8
F |};

morphism_of := T @ s --> d
↦m
{|
components_of := pat
↦t T (fst pat)
(snd pat);
commutes := curry_iso_obligation_9
T |};

composition_of := curry_iso_obligation_11
(D:=D);

identity_of := curry_iso_obligation_10
(D:=D) |}

{|
object_of := F

↦o
{|
object_of := c1
↦o {|
object_of := c2
↦o F0 (c1, c2);
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morphism_of := m @
s --> d
↦m F1 (1, m);
composition_of := curry_iso_obligation_1
F c1;
identity_of := curry_iso_obligation_2
F c1 |};
morphism_of := m1 @
s --> d
↦m {|
components_of := c2
↦t F1 (m1, 1);
commutes := curry_iso_obligation_3
F s d m1 |};
composition_of := curry_iso_obligation_5
F;
identity_of := curry_iso_obligation_4
F |};

morphism_of := T @ s --> d
↦m
{|
components_of := c1
↦t {|
components_of := c2
↦t T (c1, c2);
commutes := curry_iso_obligation_6
T c1 |};
commutes := curry_iso_obligation_12
T |};

composition_of := curry_iso_obligation_14
(D:=D);

identity_of := curry_iso_obligation_13
(D:=D) |} |} = 1

*)
(** About 200 lines *)

Abort.

Import EqNotations.
Axiom to_arrow1_eq

: forall C1 C2 D (F G : Functor C1 (C2 -> D))
(Hoo : forall c1 c2, F c1 c2 = G c1 c2)
(Hom : forall c1 s d (m : morphism _ s d),

(rew [fun s => morphism D s _] (Hoo c1 s) in
rew [morphism D _] (Hoo c1 d) in
(F c1)1 m) = (G c1)1 m)
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(Hm : forall s d (m : morphism _ s d) c2,
(rew [fun s => morphism D s _] Hoo s c2 in
rew Hoo d c2 in
(F 1 m) c2)
= (G 1 m) c2),

F = G.
Axiom to_arrow2_eq

: forall C1 C2 C3 D (F G : Functor C1 (C2 -> (C3 -> D)))
(Hooo : forall c1 c2 c3, F c1 c2 c3 = G c1 c2 c3)
(Hoom : forall c1 c2 s d (m : morphism _ s d),

(rew [fun s => morphism D s _] (Hooo c1 c2 s) in
rew [morphism D _] (Hooo c1 c2 d) in
(F c1 c2)1 m) = (G c1 c2)1 m)

(Hom : forall c1 s d (m : morphism _ s d) c2,
(rew [fun s => morphism D s _] Hooo c1 s c2 in
rew Hooo c1 d c2 in
((F c1)1 m) c2)
= ((G c1)1 m) c2)

(Hm : forall s d (m : morphism _ s d) c2 c3,
(rew [fun s => morphism D s _] Hooo s c2 c3 in
rew Hooo d c2 c3 in
(F 1 m) c2 c3)
= ((G 1 m) c2 c3)),

F = G.

Local Ltac unfold_stuff
:= intros;

cbv [Cat compose prod_category
Functor.compose NaturalTransformation.compose];

cbn [object_of morphism_of components_of].

Local Ltac fin_t
:= repeat first [ progress intros

| reflexivity
| progress cbn
| rewrite left_identity
| rewrite right_identity
| rewrite identity_of
| rewrite <- composition_of ].

Next Obligation.
Proof.

Time solve [ intros; unshelve eapply to_arrow1_eq; unfold_stuff; fin_t ].
(* Finished transaction in 0.061 secs (0.061u,0.s) (successful) *)
Undo.
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Time solve [ intros; unfold_stuff; unshelve eapply to_arrow1_eq; fin_t ].
(* Finished transaction in 0.176 secs (0.176u,0.s) (successful) *)

Qed.

Next Obligation.
Proof.

Time solve [ intros; unshelve eapply to_arrow2_eq; unfold_stuff; fin_t ].
(* Finished transaction in 0.085 secs (0.085u,0.s) (successful) *)
Undo.
Time solve [ intros; unfold_stuff; unshelve eapply to_arrow2_eq; fin_t ].
(* Finished transaction in 0.485 secs (0.475u,0.007s) (successful) *)

Qed.

A.1.1 Example in the Category of Sets
We include here the code for the components defined in the category of sets.2

Time
Definition curry_iso_components_set {C1 C2 D : Set}

:= ((fun (F : C1 * C2 -> D)
=> (fun c1 c2 => F (c1, c2)) : C1 -> C2 -> D),

(fun (F : C1 * C2 -> D)
=> (fun c1 c2s c2d (m2 : c2s = c2d)

=> f_equal F (f_equal2 pair (eq_refl c1) m2))),
(fun (F : C1 * C2 -> D)
=> (fun c1s c1d (m1 : c1s = c1d) c2

=> f_equal F (f_equal2 pair m1 (eq_refl c2)))),
(fun F G (T : forall x : C1 * C2, F x = G x :> D)
=> (fun c1 c2 => T (c1, c2))),

(fun (F : C1 -> C2 -> D)
=> (fun '(c1, c2) => F c1 c2) : C1 * C2 -> D),

(fun (F : C1 -> C2 -> D)
=> (fun s d (m : s = d :> C1 * C2)

=> eq_trans (f_equal (F _) (f_equal (@snd _ _) m))
(f_equal (fun F => F _) (f_equal F (f_equal (@fst _ _) m)))

: F (fst s) (snd s) = F (fst d) (snd d))),
(fun F G (T : forall (c1 : C1) (c2 : C2), F c1 c2 = G c1 c2 :> D)
=> (fun '(c1, c2) => T c1 c2)

: forall '((c1, c2) : C1 * C2), F c1 c2 = G c1 c2)).
(* Finished transaction in 0.009 secs (0.009u,0.s) (successful) *)

2This code is also available in the file fragments/CategoryExponentialLawsSet.v on GitHub
in the JasonGross/doctoral-thesis repository.
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Appendix B

Appendices for Chapter 4, A
Framework for Building Verified
Partial Evaluators

B.1 Additional Benchmarking Plots

B.1.1 Rewriting Without Binders
The code in Figure 4-3 in Section 4.5.1 is parameterized on both 𝑛, the height of the
tree, and 𝑚, the number of rewriting occurrences per node. The plot in Figure 4-4a
displays only the case of 𝑛 = 3. The plots in Figure B-1 display how performance
scales as a factor of 𝑛 for fixed 𝑚, and the plots in Figure B-2 display how performance
scales as a factor of 𝑚 for fixed 𝑛. Note the logarithmic scaling on the time axis in
the plots in Figure B-1, as term size is proportional to 𝑚 ⋅ 2𝑛.

We can see from these graphs and the ones in Figure B-2 that (a) we incur constant
overhead over most of the other methods, which dominates on small examples; (b)
when the term is quite large and there are few opportunities for rewriting relative to
the term size (i.e., 𝑚 ≤ 2), we are worse than rewrite !Z.add_0_r but still better
than the other methods; and (c) when there are many opportunities for rewriting
relative to the term size (𝑚 > 2), we thoroughly dominate the other methods.
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Figure B-1: Timing of different partial-evaluation implementations for code with no
binders for fixed 𝑚. Note that we have a logarithmic time scale, because term size is
proportional to 2𝑛.
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Figure B-2: Timing of different partial-evaluation implementations for code with no
binders for fixed 𝑛 (1, 2, 3, and then we jump to 9)
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B.1.2 Additional Information on the Fiat Cryptography Bench-
mark

It may also be useful to see performance results with absolute times, rather than
normalized execution ratios vs. the original Fiat Cryptography implementation. Fur-
thermore, the benchmarks fit into four quite different groupings: elements of the cross
product of two algorithms (unsaturated Solinas and word-by-word Montgomery) and
bitwidths of target architectures (32-bit or 64-bit). Here we provide absolute-time
graphs by grouping in Figure B-3.
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raphy vs. prime modulus
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B.2 Additional Information on Microbenchmarks
We performed all benchmarks on a 3.5 GHz Intel Haswell running Linux and Coq
8.10.0. We name the subsections here with the names that show up in the code which
is available at the v0.0.1 tag of the mit-plv/rewriter repository on GitHub and the
v0.0.5 tag of the mit-plv/fiat-crypto repository on GitHub.

B.2.1 UnderLetsPlus0
We provide more detail on the “nested binders” microbenchmark of Section 4.5.1
displayed in Figure 4-4b.

Recall that we are removing all of the + 0s from

let 𝑣1 ∶= 𝑣0 + 𝑣0 + 0 in
⋮
let 𝑣𝑛 ∶= 𝑣𝑛−1 + 𝑣𝑛−1 + 0 in
𝑣𝑛 + 𝑣𝑛 + 0

The code used to define this microbenchmark is

Definition make_lets_def (n:nat) (v acc : Z) :=
@nat_rect (fun _ => Z * Z -> Z)

(fun '(v, acc) => acc + acc + v)
(fun _ rec '(v, acc) =>

dlet acc := acc + acc + v in rec (v, acc))
n
(v, acc).

We note some details of the rewriting framework that were glossed over in the main
body of Chapter 4, which are useful for using the code: Although the rewriting
framework does not support dependently typed constants, we can automatically pre-
process uses of eliminators like nat_rect and list_rect into nondependent versions.
The tactic that does this preprocessing is extensible via ℒtac’s reassignment feature.
Since pattern-matching compilation mixed with NbE requires knowing how many
arguments a constant can be applied to, we must internally use a version of the re-
cursion principle whose type arguments do not contain arrows; current preprocessing
can handle recursion principles with either no arrows or one arrow in the motive.
Even though we will eventually plug in 0 for 𝑣, we jump through some extra hoops
to ensure that our rewriter cannot cheat by rewriting away the + 0 before reducing
the recursion on 𝑛.

We can reduce this expression in three ways.
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Our Rewriter

One lemma is required for rewriting with our rewriter:

Lemma Z.add_0_r : forall z, z + 0 = z.

Creating the rewriter takes about 12 seconds on the machine we used for running the
performance experiments:

Make myrew := Rewriter For (Z.add_0_r, eval_rect nat, eval_rect prod).

Recall from Subsection 4.1.1 that eval_rect is a definition provided by our frame-
work for eagerly evaluating recursion associated with certain types. It functions by
triggering typeclass resolution for the lemmas reducing the recursion principle associ-
ated to the given type. We provide instances for nat, prod, list, option, and bool.
Users may add more instances if they desire.

setoid rewrite and rewrite strat

To give as many advantages as we can to the preexisting work on rewriting, we
prereduce the recursion on nats using cbv before performing setoid rewrite. (Note
that setoid rewrite cannot itself perform reduction without generating large proof
terms, and rewrite strat is not currently capable of sequencing reduction with
rewriting internally due to bugs such as Coq bug #10923.) Rewriting itself is easy;
we may use any of repeat setoid rewrite Z.add 0 r, rewrite strat topdown
Z.add 0 r, or rewrite strat bottomup Z.add 0 r.

B.2.2 Plus0Tree
This is a version of Appendix B.2.1 without any let binders, discussed in Section 4.5.1
but not displayed in Figure 4-4.

We use two definitions for this microbenchmark:

Definition iter (m : nat) (acc v : Z) :=
@nat_rect (fun _ => Z -> Z)
(fun acc => acc)
(fun _ rec acc => rec (acc + v))
m
acc.

Definition make_tree (n m : nat) (v acc : Z) :=
Eval cbv [iter] in
@nat_rect (fun _ => Z * Z -> Z)
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(fun '(v, acc) => iter m (acc + acc) v)
(fun _ rec '(v, acc) =>
iter m (rec (v, acc) + rec (v, acc)) v)

n
(v, acc).

B.2.3 LiftLetsMap
We now discuss in more detail the “binders and recursive functions” example from
Section 4.5.1.

The expression we want to get out at the end looks like:

let 𝑣1,1 ∶= 𝑣 + 𝑣 in

⋮
let 𝑣1,𝑛 ∶= 𝑣 + 𝑣 in

let 𝑣2,1 ∶= 𝑣1,1 + 𝑣1,1 in

⋮
let 𝑣2,𝑛 ∶= 𝑣1,𝑛 + 𝑣1,𝑛 in

⋮
[𝑣𝑚,1,… , 𝑣𝑚,𝑛]

Recall that we make this example with the code

Definition map_double (ls : list Z) :=
list_rect _ [] (𝜆 x xs rec, let y := x + x in y :: rec) ls.

Definition make (n : nat) (m : nat) (v : Z) :=
nat_rect _ (List.repeat v n) (𝜆 _ rec, map_double rec) m.

We can perform this rewriting in four ways; see Figure 4-4c.

Our Rewriter

One lemma is required for rewriting with our rewriter:

Lemma eval_repeat A x n
: @List.repeat A x ('n)

= ident.eagerly nat_rect _ [] (𝜆 k repeat_k, x :: repeat_k) ('n).

Recall that the apostrophe marker (') is explained in Subsection 4.1.1. Recall again
from Subsection 4.1.1 that we use ident.eagerly to ask the reducer to simplify a case
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of primitive recursion by complete traversal of the designated argument’s constructor
tree. Our current version only allows a limited, hard-coded set of eliminators with
ident.eagerly (nat rect on return types with either zero or one arrows, list rect
on return types with either zero or one arrows, and List.nth default), but nothing
in principle prevents automatic generation of the necessary code.

We construct our rewriter with

Make myrew := Rewriter For (eval_repeat, eval_rect list, eval_rect nat)
(with extra idents (Z.add)).

On the machine we used for running all our performance experiments, this command
takes about 13 seconds to run. Note that all identifiers which appear in any goal to
be rewritten must either appear in the type of one of the rewrite rules or in the tuple
passed to with extra idents.

Rewriting is relatively simple, now. Simply invoke the tactic Rewrite_for myrew.
We support rewriting on only the left-hand-side and on only the right-hand-side using
either the tactic Rewrite_lhs_for myrew or else the tactic Rewrite_rhs_for myrew,
respectively.

rewrite strat

To reduce adequately using rewrite strat, we need the following two lemmas:

Lemma lift_let_list_rect T A P N C (v : A) fls
: @list_rect T P N C (Let_In v fls)

= Let_In v (fun v => @list_rect T P N C (fls v)).
Lemma lift_let_cons T A x (v : A) f
: @cons T x (Let_In v f) = Let_In v (fun v => @cons T x (f v)).

To rewrite, we start with cbv [example make map_dbl] to expose the underlying
term to rewriting. One would hope that one could just add these two hints to
a database db and then write rewrite strat (repeat (eval cbn [list rect];
try bottomup hints db)), but unfortunately this does not work due to a number
of bugs in Coq: #10934, #10923, #4175, #10955, and the potential to hit #10972.
Instead, we must put the two lemmas in separate databases and then write the
code repeat (cbn [list rect]; (rewrite strat (try repeat bottomup hints
db1)); (rewrite strat (try repeat bottomup hints db2))). Note that the rewrit-
ing with lift_let_cons can be done either top-down or bottom-up, but rewrite strat
breaks if the rewriting with lift_let_list_rect is done top-down.
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CPS and the VM

If we want to use Coq’s built-in VM reduction without our rewriter, to achieve the
prior state-of-the-art performance, we can do so on this example, because it only in-
volves partial reduction and not equational rewriting. However, we must (a) module-
opacify the constants which are not to be unfolded and (b) rewrite all of our code in
CPS.

Then we are looking at

map dbl cps(ℓ, 𝑘) ≔

⎧{{
⎨{{⎩

𝑘([]) if ℓ = []
let 𝑦 ∶= ℎ +ax ℎ in if ℓ = ℎ ∶∶ 𝑡
map dbl cps(𝑡,

(𝜆𝑦𝑠, 𝑘(𝑦 ∶∶ 𝑦𝑠)))

make cps(𝑛,𝑚, 𝑣, 𝑘) ≔

⎧{{
⎨{{⎩

𝑘([𝑣,… , 𝑣⏟
𝑛

]) if 𝑚 = 0

make cps(𝑛,𝑚 − 1, 𝑣, if 𝑚 > 0
(𝜆ℓ,map dbl cps(ℓ, 𝑘))

example cps𝑛,𝑚 ≔ ∀𝑣, make cps(𝑛,𝑚, 𝑣, 𝜆𝑥. 𝑥) = []

Then we can just run vm compute. Note that this strategy, while quite fast, results in
a stack overflow when 𝑛⋅𝑚 is larger than approximately 2.5⋅104. This is unsurprising,
as we are generating quite large terms. Our framework can handle terms of this size
but stack-overflows on only slightly larger terms.

Takeaway

From this example, we conclude that rewrite strat is unsuitable for computations
involving large terms with many binders, especially in cases where reduction and
rewriting need to be interwoven, and that the many bugs in rewrite strat result
in confusing gymnastics required for success. The prior state of the art—writing
code in CPS—suitably tweaked by using module opacity to allow vm compute, re-
mains the best performer here, though the cost of rewriting everything is CPS may
be prohibitive. Our method soundly beats rewrite strat. We are additionally bot-
tlenecked on cbv, which is used to unfold the goal post-rewriting and costs about a
minute on the largest of terms; see Coq bug #11151 for a discussion on what is wrong
with Coq’s reduction here.

B.2.4 SieveOfEratosthenes
We define the sieve using PositiveMap.t and list Z:
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Definition sieve' (fuel : nat) (max : Z) :=
List.rev
(fst
(@nat_rect
(𝜆 _, list Z (* primes *) *
PositiveSet.t (* composites *) *
positive (* np (next_prime) *) ->
list Z (* primes *) *
PositiveSet.t (* composites *))

(𝜆 '(primes, composites, next_prime),
(primes, composites))

(𝜆 _ rec '(primes, composites, np),
rec
(if (PositiveSet.mem np composites ||

(Z.pos np >? max))%bool%Z
then
(primes, composites, Pos.succ np)

else
(Z.pos np :: primes,
List.fold_right
PositiveSet.add
composites
(List.map
(𝜆 n, Pos.mul (Pos.of_nat (S n)) np)
(List.seq 0 (Z.to_nat(max/Z.pos np)))),

Pos.succ np)))
fuel
(nil, PositiveSet.empty, 2%positive))).

Definition sieve (n : Z)
:= Eval cbv [sieve'] in sieve' (Z.to_nat n) n.

We need four lemmas and an additional instance to create the rewriter:

Lemma eval_fold_right A B f x ls :
@List.fold_right A B f x ls
= ident.eagerly list_rect _ _

x
(𝜆 l ls fold_right_ls, f l fold_right_ls)
ls.

Lemma eval_app A xs ys :
xs ++ ys
= ident.eagerly list_rect A _

ys
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(𝜆 x xs app_xs_ys, x :: app_xs_ys)
xs.

Lemma eval_map A B f ls :
@List.map A B f ls
= ident.eagerly list_rect _ _

[]
(𝜆 l ls map_ls, f l :: map_ls)
ls.

Lemma eval_rev A xs :
@List.rev A xs
= (@list_rect _ (fun _ => _))

[]
(𝜆 x xs rev_xs, rev_xs ++ [x])%list
xs.

Scheme Equality for PositiveSet.tree.

Definition PositiveSet_t_beq
: PositiveSet.t -> PositiveSet.t -> bool

:= tree_beq.

Global Instance PositiveSet_reflect_eqb
: reflect_rel (@eq PositiveSet.t) PositiveSet_t_beq
:= reflect_of_brel

internal_tree_dec_bl internal_tree_dec_lb.

We then create the rewriter with

Make myrew := Rewriter For
(eval_rect nat, eval_rect prod, eval_fold_right,
eval_map, do_again eval_rev, eval_rect bool,
@fst_pair, eval_rect list, eval_app)
(with extra idents (Z.eqb, orb, Z.gtb,
PositiveSet.elements, @fst, @snd,
PositiveSet.mem, Pos.succ, PositiveSet.add,
List.fold_right, List.map, List.seq, Pos.mul,
S, Pos.of_nat, Z.to_nat, Z.div, Z.pos, O,
PositiveSet.empty))

(with delta).

To get cbn and simpl to unfold our term fully, we emit

Global Arguments Pos.to_nat !_ / .

244



B.3 Reading the Code

As mentioned in Appendix B.2 the code described and used in Chapter 4 is available
at the v0.0.1 tag of the mit-plv/rewriter repository on GitHub and the v0.0.5 tag
of the mit-plv/fiat-crypto repository on GitHub. Both repositories build with
Coq 8.9, 8.10, 8.11, and 8.12, and they require that whichever OCaml was used to
build Coq be installed on the system to permit building plugins. (If Coq was installed
via opam, then the correct version of OCaml will automatically be available.) Both
code bases can be built by running make in the top-level directory.

The performance data for both repositories are included at the top level as .txt
and .csv files on different branches. The rewriter repository has performance data
available on the branch PhD-Dissertation-2021-perf-data, and the fiat-crypto
repository has performance data available on the branch PhD-Dissertation-2021-
perf-data.

The performance data for the microbenchmarks can be rebuilt using make perf-
SuperFast perf-Fast perf-Medium followed by make perf-csv to get the .txt
and .csv files. The microbenchmarks should run in about 24 hours when run with
-j5 on a 3.5 GHz machine. There also exist targets perf-Slow and perf-VerySlow,
but these take significantly longer.

The performance data for the macrobenchmark can be rebuilt from the Fiat Cryptog-
raphy repository by running make perf -k. We ran this with PERF MAX TIME=3600
to allow each benchmark to run for up to an hour; the default is 10 minutes per bench-
mark. Expect the benchmarks to take over a week of time with an hour timeout and
five cores. Some tests are expected to fail, making -k a necessary flag. Again, the
perf-csv target will aggregate the logs and turn them into .txt and .csv files.

The entry point for the rewriter is the Coq source file rewriter/src/Rewriter/
Util/plugins/RewriterBuild.v.

The rewrite rules used in Fiat Cryptography are defined in fiat-crypto/src/Rewriter/
Rules.v and proven in fiat-crypto/src/Rewriter/RulesProofs.v. Note that
the Fiat Cryptography copy uses COQPATH for dependency management and .dir-
locals.el to set COQPATH in Emacs/PG; you must accept the setting when opening a
file in the directory for interactive compilation to work. Thus interactive editing either
requires ProofGeneral or manual setting of COQPATH. The correct value of COQPATH
can be found by running make printenv.

We will now go through Chapter 4 and describe where to find each reference in the
code base.
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B.3.1 Code from Section 4.1, Introduction
Code from Subsection 4.1.1, A Motivating Example

The prefixSums example appears in the Coq source file rewriter/src/Rewriter/
Rewriter/Examples/PrefixSums.v. Note that we use dlet rather than let in bind-
ing acc' so that we can preserve the let binder even under 𝜄 reduction, which much
of Coq’s infrastructure performs eagerly. Because we do not depend on the axiom of
functional extensionality, we also in practice require Proper instances for each higher-
order identifier saying that each constant respects function extensionality. Although
we glossed over this detail in the body of Chapter 4, we also prove

Global Instance: forall A B,
Proper ((eq ==> eq ==> eq) ==> eq ==> eq ==> eq)

(@fold_left A B).

The Make command is exposed in rewriter/src/Rewriter/Util/plugins/RewriterBuild.v
and defined in rewriter/src/Rewriter/Util/plugins/rewriter build plugin.mlg.
Note that one must run make to create this latter file; it is copied over from a version-
specific file at the beginning of the build.

The do_again, eval_rect, and ident.eagerly constants are defined at the bottom
of module RewriteRuleNotations in rewriter/src/Rewriter/Language/Pre.v.

Code from Subsection 4.1.2, Concerns of Trusted-Code-Base Size

There is no code mentioned in this section.

Code from Subsection 4.1.3, Our Solution

We claimed that our solution meets five criteria. We briefly justify each criterion with
a sentence or a pointer to code:

• We claimed that we did not grow the trusted base. In any example file (of
which a couple can be found in rewriter/src/Rewriter/Rewriter/Examples/
), the Make command creates a rewriter package. Running Print Assumptions
on this new constant (often named rewriter or myrew) should demonstrate a
lack of axioms. Print Assumptions may also be run on the proof that results
from using the rewriter.

• We claimed fast partial evaluation with reasonable memory use; we assume
that the performance graphs stand on their own to support this claim. Note
that memory usage can be observed by making the benchmarks while passing
TIMED=1 to make.
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• We claimed to allow reduction that mixes rules of the definitional equality with
equalities proven explicitly as theorems; the “rules of the definitional equality”
are, for example, 𝛽 reduction, and we assert that it should be self-evident that
our rewriter supports this.

• We claimed common-subterm sharing preservation. This is implemented by
supporting the use of the dlet notation which is defined in rewriter/src/
Rewriter/Util/LetIn.v via the Let In constant. We will come back to the
infrastructure that supports this.

• We claimed extraction of standalone partial evaluators. The extrac-
tion is performed in the Coq source files perf unsaturated solinas.v and
perf word by word montgomery.v, and the Coq files saturated solinas.v,
unsaturated solinas.v, and word by word montgomery.v, all in the direc-
tory fiat-crypto/src/ExtractionOCaml/. The OCaml code can be extracted
and built using the target make standalone-ocaml (or make perf-standalone
for the perf binaries). There may be some issues with building these binaries
on Windows as some versions of ocamlopt on Windows seem not to support
outputting binaries without the .exe extension.

The P-384 curve is mentioned. This is the curve with modulus 2384 − 2128 − 296 +
232−1; its benchmarks can be found in fiat-crypto/src/Rewriter/PerfTesting/
Specific/generated/p2384m2128m296p232m1 * word by word montgomery *. The
output .log files are included in the tarball; the .v and .sh files are automatically
generated in the course of running make perf -k.

We mention integration with abstract interpretation; the abstract-interpretation pass
is implemented in fiat-crypto/src/AbstractInterpretation/.

B.3.2 Code from Section 4.2, Trust, Reduction, and Rewrit-
ing

The individual rewritings mentioned are implemented via the Rewrite * tactics
exported at the top of rewriter/src/Rewriter/Util/plugins/RewriterBuild.v.
These tactics bottom out in tactics defined at the bottom of rewriter/src/Rewriter/
Rewriter/AllTactics.v.

Code from Subsection 4.2.1, Our Approach in Nine Steps

We match the nine steps with functions from the source code:

1. The given lemma statements are scraped for which named functions and types
the rewriter package will support. This is performed by rewriter scrape data
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in the file rewriter/src/Rewriter/Util/plugins/rewriter build.ml which
invokes the ℒtac tactic named make scrape data in a submodule in the source
file rewriter/src/Rewriter/Language/IdentifiersBasicGenerate.v on a
goal headed by the constant we provide as Pre.ScrapedData.t with args
in rewriter/src/Rewriter/Language/PreCommon.v.

2. Inductive types enumerating all available primitive types and functions are emit-
ted. This step is performed by rewriter emit inductives in file rewriter/
src/Rewriter/Util/plugins/rewriter build.ml invoking tactics, such as
make base elim in the Coq source file rewriter/src/Rewriter/Language/
IdentifiersBasicGenerate.v, on goals headed by constants from rewriter/
src/Rewriter/Language/IdentifiersBasicLibrary.v, including the constant
base elim with args for example, to turn scraped data into eliminators for
the inductives. The actual emitting of inductives is performed by code in the
file rewriter/src/Rewriter/Util/plugins/inductive from elim.ml.

3. Tactics generate all of the necessary definitions and prove all of the necessary
lemmas for dealing with this particular set of inductive codes. This step is per-
formed by the tactic make rewriter of scraped and ind in the source file
rewriter/src/Rewriter/Util/plugins/rewriter build.ml which invokes the
tactic make rewriter all defined in the file rewriter/src/Rewriter/Rewriter/
AllTactics.v on a goal headed by the constant VerifiedRewriter with ind args
defined in rewriter/src/Rewriter/Rewriter/ProofsCommon.v. The defini-
tions emitted can be found by looking at the tactic Build Rewriter in rewriter/
src/Rewriter/Rewriter/AllTactics.v, the ℒtac tactics build package in
rewriter/src/Rewriter/Language/IdentifiersBasicGenerate.v and also in
rewriter/src/Rewriter/Language/IdentifiersGenerate.v (there is a dif-
ferent tactic named build package in each of these files), and the ℒtac tactic
prove package proofs via which can be found in rewriter/src/Rewriter/
Language/IdentifiersGenerateProofs.v.

4. The statements of rewrite rules are reified and soundness and syntactic-well-
formedness lemmas are proven about each of them. This is done as part
of the previous step, when the tactic make rewriter all transitively calls
Build Rewriter from rewriter/src/Rewriter/Rewriter/AllTactics.v. Reifi-
cation is handled by the tactic Build RewriterT in rewriter/src/Rewriter/
Rewriter/Reify.v, while soundness and the syntactic-well-formedness proofs
are handled by the tactics prove interp good and prove good respectively,
both in rewriter/src/Rewriter/Rewriter/ProofsCommonTactics.v.

5. The definitions needed to perform reification and rewriting and the lemmas
needed to prove correctness are assembled into a single package that can be
passed by name to the rewriting tactic. This step is also performed by the
tactic make rewriter of scraped and ind in the source file rewriter/src/
Rewriter/Util/plugins/rewriter build.ml.
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When we want to rewrite with a rewriter package in a goal, the following steps are
performed, with code in the following places:

1. We rearrange the goal into a closed logical formula: all free-variable quantifi-
cation in the proof context is replaced by changing the equality goal into an
equality between two functions (taking the free variables as inputs). Note that
it is not actually an equality between two functions but rather an equiv be-
tween two functions, where equiv is a custom relation we define indexed over
type codes that is equality up to function extensionality. This step is performed
by the tactic generalize hyps for rewriting in rewriter/src/Rewriter/
Rewriter/AllTactics.v.

2. We reify the side of the goal we want to simplify, using the inductive codes in
the specified package. That side of the goal is then replaced with a call to a
denotation function on the reified version. This step is performed by the tactic
do reify rhs with in rewriter/src/Rewriter/Rewriter/AllTactics.v.

3. We use a theorem stating that rewriting preserves denotations of well-formed
terms to replace the denotation subterm with the denotation of the rewriter ap-
plied to the same reified term. We use Coq’s built-in full reduction (vm compute)
to reduce the application of the rewriter to the reified term. This step is per-
formed by the tactic do rewrite with in rewriter/src/Rewriter/Rewriter/
AllTactics.v.

4. Finally, we run cbv (a standard call-by-value reducer) to simplify away the
invocation of the denotation function on the concrete syntax tree from rewrit-
ing. This step is performed by the tactic do final cbv in rewriter/src/
Rewriter/Rewriter/AllTactics.v.

These steps are put together in the tactic Rewrite for gen in rewriter/src/Rewriter/
Rewriter/AllTactics.v.

Our Approach in More Than Nine Steps

As the nine steps of Subsection 4.2.1 do not exactly match the code, we describe here
a more accurate version of what is going on. For ease of readability, we do not clutter
this description with references to the code, instead allowing the reader to match up
the steps here with the more coarse-grained ones in Subsection 4.2.1 or Section B.3.2.

In order to allow easy invocation of our rewriter, a great deal of code (about 6500 lines)
needed to be written. Some of this code is about reifying rewrite rules into a form
that the rewriter can deal with them in. Other code is about proving that the reified
rewrite rules preserve interpretation and are well-formed. We wrote some plugin
code to automatically generate the inductive type of base-type codes and identifier
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codes, as well as the two variants of the identifier-code inductive used internally in
the rewriter. One interesting bit of code that resulted was a plugin that can emit an
inductive declaration given the Church encoding (or eliminator) of the inductive type
to be defined. We wrote a great deal of tactic code to prove basic properties about
these inductive types, from the fact that one can unify two identifier codes and extract
constraints on their type variables from this unification, to the fact that type codes
have decidable equality. Additional plugin code was written to invoke the tactics that
construct these definitions and prove these properties, so that we could generate an
entire rewriter from a single command, rather than having the user separately invoke
multiple commands in sequence.

In order to build the precomputed rewriter, the following actions are performed:

1. The terms and types to be supported by the rewriter package are scraped from
the given lemmas.

2. An inductive type of codes for the types is emitted, and then three different ver-
sions of inductive codes for the identifiers are emitted (one with type arguments,
one with type arguments supporting pattern type variables, and one without
any type arguments, to be used internally in pattern-matching compilation).

3. Tactics generate all of the necessary definitions and prove all of the necessary
lemmas for dealing with this particular set of inductive codes. Definitions cover
categories like “Boolean equality on type codes” and “how to extract the pattern
type variables from a given identifier code,” and lemma categories include “type
codes have decidable equality” and “the types being coded for have decidable
equality” and “the identifiers all respect function extensionality.”

4. The rewrite rules are reified, and we prove interpretation-correctness and well-
formedness lemmas about each of them.

5. The definitions needed to perform reification and rewriting and the lemmas
needed to prove correctness are assembled into a single package that can be
passed by name to the rewriting tactic.

6. The denotation functions for type and identifier codes are marked for early
expansion in the kernel via the Strategy command; this is necessary for con-
version at Qed-time to perform reasonably on enormous goals.

When we want to rewrite with a rewriter package in a goal, the following steps are
performed:

1. We use etransitivity to allow rewriting separately on the left- and right-
hand-sides of an equality. Note that we do not currently support rewrit-
ing in nonequality goals, but this is easily worked around using let v :=
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open constr:( ) in replace <some term> with v and then rewriting in the
second goal.

2. We revert all hypotheses mentioned in the goal and change the form of the goal
from a universally quantified statement about equality into a statement that two
functions are extensionally equal. Note that this step will fail if any hypotheses
are functions not known to respect function extensionality via typeclass search.

3. We reify the side of the goal that is not an existential variable using the inductive
codes in the specified package; the resulting goal equates the denotation of the
newly reified term with the original evar.

4. We use a lemma stating that rewriting preserves denotations of well-formed
terms to replace the goal with the rewriter applied to our reified term. We use
vm compute to prove the well-formedness side condition reflectively. We use
vm compute again to reduce the application of the rewriter to the reified term.

5. Finally, we run cbv to unfold the denotation function, and we instantiate the
evar with the resulting rewritten term.

B.3.3 Code from Section 4.3, The Structure of a Rewriter
The expression language 𝑒 corresponds to the inductive expr type defined in module
Compilers.expr in rewriter/src/Rewriter/Language/Language.v.

Code from Subsection 4.3.1, Pattern-Matching Compilation and Evalua-
tion

The pattern-matching compilation step is done by the tactic CompileRewrites in
rewriter/src/Rewriter/Rewriter/Rewriter.v, which just invokes the Gallina def-
inition named compile rewrites with ever-increasing amounts of fuel until it suc-
ceeds. (It should never fail for reasons other than insufficient fuel, unless there is a
bug in the code.) The workhorse function here is compile rewrites step.

The decision-tree-evaluation step is done by the definition eval rewrite rules,
also in the file rewriter/src/Rewriter/Rewriter/Rewriter.v. The correctness
lemmas are the theorem eval rewrite rules correct in the file rewriter/src/
Rewriter/Rewriter/InterpProofs.v and the theorem wf eval rewrite rules in
rewriter/src/Rewriter/Rewriter/Wf.v. Note that the second of these lemmas,
not mentioned in Chapter 4, is effectively saying that for two related syntax trees,
eval rewrite rules picks the same rewrite rule for both. (We actually prove a
slightly weaker lemma, which is a bit harder to state in English.)
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The third step of rewriting with a given rule is performed by the rewrite with rule
definition in rewriter/src/Rewriter/Rewriter/Rewriter.v. The correctness proof
goes by the name interp rewrite with rule in the file rewriter/src/Rewriter/
Rewriter/InterpProofs.v. Note that the well-formedness-preservation proof for
this definition in inlined into the proof of the lemma wf_eval_rewrite_rules men-
tioned above.

The inductive description of decision trees is decision_tree in rewriter/src/Rewriter/
Rewriter/Rewriter.v.

The pattern language is defined as the inductive pattern in rewriter/src/Rewriter/
Rewriter/Rewriter.v. Note that we have a Raw version and a typed version; the
pattern-matching compilation and decision-tree evaluation of Aehlig, Haftmann, and
Nipkow [AHN08] is an algorithm on untyped patterns and untyped terms. We found
that trying to maintain typing constraints led to headaches with dependent types.
Therefore when doing the actual decision-tree evaluation, we wrap all of our expres-
sions in the dynamically typed rawexpr type and all of our patterns in the dynamically
typed Raw.pattern type. We also emit separate inductives of identifier codes for each
of the expr, pattern, and Raw.pattern type families.

We partially evaluate the partial evaluator defined by eval_rewrite_rules in the
ℒtac tactic make_rewrite_head in rewriter/src/Rewriter/Rewriter/Reify.v.

Code from Subsection 4.3.2, Adding Higher-Order Features

The type NbE𝑡 mentioned in Subsection 4.3.2 is not actually used in the code; the
version we have is described in Subsection 4.4.2 as the definition value' in rewriter/
src/Rewriter/Rewriter/Rewriter.v.

The functions reify and reflect are defined in rewriter/src/Rewriter/Rewriter/
Rewriter.v and share names with the functions in Chapter 4. The function reduce
is named rewrite_bottomup in the code, and the closest match to NbE is rewrite.

B.3.4 Code from Section 4.4, Scaling Challenges
Code from Subsection 4.4.1, Variable Environments Will Be Large

The inductives type, base_type (actually the inductive type base.type.type in the
linked code), and expr, as well as the definition Expr, are all defined in rewriter/
src/Rewriter/Language/Language.v. The definition denoteT is type.interp (the
fixpoint interp in the module type) in rewriter/src/Rewriter/Language/Language.v.
The definition denoteE is expr.interp, and DenoteE is the fixpoint expr.Interp.

As mentioned above, nbeT does not actually exist as stated but is close to value' in
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rewriter/src/Rewriter/Rewriter/Rewriter.v. The functions reify and reflect
are defined in rewriter/src/Rewriter/Rewriter/Rewriter.v and share names with
the functions in Chapter 4. The actual code is somewhat more complicated than the
version presented in Chapter 4, due to needing to deal with converting well-typed-
by-construction expressions to dynamically typed expressions for use in decision-tree
evaluation and also due to the need to support early partial evaluation against a con-
crete decision tree. Thus the version of reflect that actually invokes rewriting at
base types is a separate definition assemble_identifier_rewriters, while reify
invokes a version of reflect (named reflect) that does not call rewriting. The
function named reduce is what we call rewrite_bottomup in the code; the name
Rewrite is shared between Chapter 4 and the code. Note that we eventually instan-
tiate the argument rewrite_head of rewrite_bottomup with a partially evaluated
version of the definition named assemble_identifier_rewriters. Note also that
we use fuel to support do_again, and this is used in the definition repeat_rewrite
that calls rewrite_bottomup.

The correctness proofs are InterpRewrite in the Coq source file rewriter/src/
Rewriter/Rewriter/InterpProofs.v and Wf_Rewrite in rewriter/src/Rewriter/
Rewriter/Wf.v.

Packages containing rewriters and their correctness theorems are in the record VerifiedRewriter
in rewriter/src/Rewriter/Rewriter/ProofsCommon.v; a package of this type is
then passed to the tactic Rewrite_for_gen from rewriter/src/Rewriter/Rewriter/
AllTactics.v to perform the actual rewriting. The correspondence of the code to
the various steps in rewriting is described in the second list of Section B.3.2.

Code from Subsection 4.4.2, Subterm Sharing Is Crucial

To run the P-256 example in Fiat Cryptography, after building the library, run the
code

Require Import Crypto.Rewriter.PerfTesting.Core.
Require Import Crypto.Util.Option.

Import WordByWordMontgomery.
Import Core.RuntimeDefinitions.

Definition p : params
:= Eval compute in invert_Some (of_string "2^256-2^224+2^192+2^96-1" 64).

Goal True.
(* Successful run: *)
Time let v := (eval cbv
-[Let_In
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runtime_nth_default
runtime_add runtime_sub runtime_mul runtime_opp runtime_div runtime_modulo
RT_Z.add_get_carry_full RT_Z.add_with_get_carry_full RT_Z.mul_split]

in (GallinaDefOf p)) in
idtac.

(* Unsuccessful OOM run: *)
Time let v := (eval cbv
-[(*Let_In*)
runtime_nth_default
runtime_add runtime_sub runtime_mul runtime_opp runtime_div runtime_modulo
RT_Z.add_get_carry_full RT_Z.add_with_get_carry_full RT_Z.mul_split]

in (GallinaDefOf p)) in
idtac.

Abort.

The UnderLets monad is defined in the file rewriter/src/Rewriter/Language/
UnderLets.v.

The definitions nbeT', nbeT, and nbeT_with_lets are in rewriter/src/Rewriter/
Rewriter/Rewriter.v and are named value', value, and value_with_lets, re-
spectively.

Code from Subsection 4.4.3, Rules Need Side Conditions

The “variant of pattern variable that only matches constants” is actually special sup-
port for the reification of ident.literal (defined in the module RewriteRuleNotations
in rewriter/src/Rewriter/Language/Pre.v) threaded throughout the rewriter. The
apostrophe notation ' is also introduced in the module RewriteRuleNotations in
rewriter/src/Rewriter/Language/Pre.v. The support for side conditions is han-
dled by permitting rewrite-rule-replacement expressions to return option expr in-
stead of expr, allowing the function expr_to_pattern_and_replacement in the file
rewriter/src/Rewriter/Rewriter/Reify.v to fold the side conditions into a choice
of whether to return Some or None.

Code from Subsection 4.4.4, Side Conditions Need Abstract Interpretation

The abstract-interpretation pass is defined in the source folder fiat-crypto/src/
AbstractInterpretation/, and the rewrite rules handling abstract-interpretation
results are the Gallina definitions arith_with_casts_rewrite_rulesT, as well as
strip_literal_casts_rewrite_rulesT, fancy_with_casts_rewrite_rulesT, and
finally mul_split_rewrite_rulesT, all defined in fiat-crypto/src/Rewriter/Rules.v.

The clip function is the definition ident.cast in fiat-crypto/src/Language/
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PreExtra.v.

Code from Subsection 4.4.5, Limitations and Preprocessing

The ℒtac hooks for extending the preprocessing of eliminators are the ℒtac tac-
tics reify_preprocess_extra and reify_ident_preprocess_extra in a submod-
ule of rewriter/src/Rewriter/Language/PreCommon.v. These hooks are called by
reify_preprocess and reify_ident_preprocess in a submodule of rewriter/src/
Rewriter/Language/Language.v. Some recursion lemmas for use with these tac-
tics are defined in the Thunked module in fiat-crypto/src/Language/PreExtra.v.
These tactics are overridden in the Coq source file fiat-crypto/src/Language/
IdentifierParameters.v.

The typeclass associated to eval_rect (c.f. Section B.3.1) is rules_proofs_for_eager_type
defined in rewriter/src/Rewriter/Language/Pre.v. The instances we provide by
default are defined in a submodule of src/Rewriter/Language/PreLemmas.v.

The hard-coding of the eliminators for use with ident.eagerly (c.f. Section B.3.1) is
done in the tactics reify_ident_preprocess and rewrite_interp_eager in rewriter/
src/Rewriter/Language/Language.v, in the inductive type restricted_ident and
the typeclass BuildEagerIdentT in rewriter/src/Rewriter/Language/Language.v,
and in the ℒtac tactic handle_reified_rewrite_rules_interp defined in the file
rewriter/src/Rewriter/Rewriter/ProofsCommonTactics.v.

The Let_In constant is defined in rewriter/src/Rewriter/Util/LetIn.v.

B.3.5 Code from Section 4.5, Evaluation
Code from Subsection 4.5.1, Microbenchmarks

This code is found in the files in rewriter/src/Rewriter/Rewriter/Examples/.
We ran the microbenchmarks using the code in rewriter/src/Rewriter/Rewriter/
Examples/PerfTesting/Harness.v together with some Makefile cleverness.

The code from Section 4.5.1, Rewriting Without Binders can be found in Plus0Tree.v.

The code from Section 4.5.1, Rewriting Under Binders can be found in UnderLetsPlus0.v.

The code used for the performance investigation described in Section 4.5.1, Perfor-
mance Bottlenecks of Proof-Producing Rewriting is not part of the framework we are
presenting.

The code from Section 4.5.1, Binders and Recursive Functions can be found in
LiftLetsMap.v.
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The code from Section 4.5.1, Full Reduction can be found in SieveOfEratosthenes.v.

Code from Subsection 4.5.2, Macrobenchmark: Fiat Cryptography

The rewrite rules are defined in fiat-crypto/src/Rewriter/Rules.v and proven in
the file fiat-crypto/src/Rewriter/RulesProofs.v. They are turned into rewrit-
ers in the various files in fiat-crypto/src/Rewriter/Passes/. The shared induc-
tives and definitions are defined in the Coq source file fiat-crypto/src/Language/
IdentifiersBasicGENERATED.v, the Coq source file fiat-crypto/src/Language/
IdentifiersGENERATED.v, and finally also the Coq source file fiat-crypto/src/
Language/IdentifiersGENERATEDProofs.v. Note that we invoke the subtactics of
the Make command manually to increase parallelism in the build and to allow a shared
language across multiple rewriter packages.
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Appendix C

Notes on the Benchmarking Setup

We performed most benchmarks in this dissertation on a 3.5 GHz Intel Haswell run-
ning Linux and Coq 8.12.2 with OCaml 4.06.1. We describe in this appendix excep-
tions to this benchmarking setup.

Excepting the benchmarks in Chapters 4 and 6 and Appendix B, all of the bench-
marks can be found in the GitHub repository https://github.com/JasonGross/
doctoral-thesis in the folder performance-experiments and the folder performance-
experiments-8-9. Most benchmarks in this dissertation, excepting those that de-
pend on external plugins or very large codebases, have been ported to https://
github.com/coq-community/coq-performance-tests, where we expect they will
continue to be updated to work with the latest version of Coq.

C.1 Plots in Chapter 1, Background
We collected data for Figure 1-2 with Coq 8.8.2. Due to various changes in notation
printing, the code-printing pipeline for this old version of Fiat Cryptography does not
work correctly with Coq versions ≥ 8.9.

C.2 Plots in Chapter 2, The Performance Land-
scape in Type-Theoretic Proof Assistants

Figure 2-1 is the same as Figure 1-2 which was discussed in Appendix C.1. As in
Figure 2-1 and for the same reasons, we collected data for Figure 2-2 with Coq 8.8.2.

We collected data for Figures 2-6 and 2-7 with Coq 8.9.1 because Coq 8.10 and later
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do not show the relevant superlinear behavior due to Coq PR #9586.

C.3 Plots in Chapter 4, A Framework for Building
Verified Partial Evaluators

All plots in Chapter 4 and its appendix (Appendix B) were constructed using mea-
surements from Coq 8.10.0. Gathering the data for these plots takes over a week, and
we were loathe to repeatedly rerun the benchmarks using newer versions of Coq as
they came out.
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