
An Extensible Framework for Synthesizing Efficient,

Verified Parsers

by

Jason S. Gross

Submitted to the Department of Electrical Engineering and Computer

Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2015

© Massachusetts Institute of Technology 2015. All rights reserved.

Author .

Department of Electrical Engineering and Computer Science

August 19, 2015

Certified by. .

Adam Chlipala

Associate Professor without Tenure of Computer Science

Thesis Supervisor

Accepted by .

Leslie A. Kolodziejski

Chair, Department Committee on Graduate Students

2

An Extensible Framework for Synthesizing Efficient, Verified

Parsers

by

Jason S. Gross

Submitted to the Department of Electrical Engineering and Computer Science
on August 19, 2015, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

Parsers have a long history in computer science. This thesis proposes a novel approach
to synthesizing efficient, verified parsers by refinement, and presents a demonstration
of this approach in the Fiat framework by synthesizing a parser for arithmetic ex-
pressions. The benefits of this framework may include more flexibility in the parsers
that can be described, more control over the low-level details when necessary for
performance, and automatic or mostly automatic correctness proofs.

Thesis Supervisor: Adam Chlipala
Title: Associate Professor without Tenure of Computer Science

3

4

Acknowledgments

Thank you, Mom, for encouraging me from my youth and supporting me in all that
I do. Thank you, Allison Schneider, for providing emotional support and encourage-
ment when I was discouraged about the state of my thesis. Thank you, officemates,
Benjamin Delaware, CJ Bell, Peng Wang, Clément Pit–Claudel, for your work with
me on Fiat, and for bouncing ideas back and forth with me about parsers. Thank
you, Natasha Plotkin, for your invaluable role as my human compiler, when I was
having trouble with the duration of my write–compile–revise loops. Last, and most
of all, thank you, Adam Chlipala, for your patience, guidance, advice, and wisdom,
during the writing of this thesis, and through my research career.

5

6

Contents

1 Parsing Context-Free Grammars 9

1.1 Parsing . 9

1.1.1 Infinite Regress . 11

1.1.2 Aborting Early . 12

1.1.3 Aside: Removing Left Recursion 13

1.2 Standard Formal Definitions . 13

1.2.1 Context-Free Grammar . 13

1.2.2 Parse Trees . 14

1.3 Completeness and Soundness . 15

2 Related Work and Other Approaches to Parsing 17

2.1 Coq . 17

2.2 Recursive-Descent Parsing . 17

2.2.1 Parser Combinators . 18

2.2.2 Parsing with Derivatives . 20

2.3 Other Approaches to Parsing . 21

2.4 Related Work on Verifying Parsers 22

2.5 What’s New and What’s Old . 23

3 Completeness, Soundness, and Parsing Parse Trees 25

3.1 Proving Completeness: Conceptual Approach 25

3.2 Minimal Parse Trees: Formal Definition 26

3.3 Parser Interface . 27

3.3.1 Parsing Parses . 31

3.3.2 Example . 33

3.3.3 Parametricity . 36

3.3.4 Putting It All Together . 37

3.4 Semantic Actions . 37

3.5 Missteps, Insights, and Dependently Typed Lessons 39

3.5.1 The Trouble of Choosing the Right Types 39

3.5.2 Misordered Splitters . 39

3.5.3 Minimal Parse Trees vs. Parallel Traces 40

7

4 Refining Splitters by Fiat 41
4.1 Splitters at a Glance . 41
4.2 What Counts as Efficient? . 41
4.3 Introducing Fiat . 42

4.3.1 Incremental Construction by Refinement 42
4.3.2 The Fiat Mindset . 42

4.4 Optimizations . 46
4.4.1 An Easy First Optimization: Indexed Representation of Strings 46
4.4.2 Putting It All Together . 46
4.4.3 Upcoming Optimizations . 46

5 Fixed-Length Items, Parsing (ab)*; Parsing #s; Parsing #, () 49
5.1 Parsing (ab)*: At Most One Nonterminal 49
5.2 Parsing Parenthesized Numbers: Fixed Lengths 50
5.3 Putting It Together . 51

6 Disjoint Items, Parsing #, + 53

7 Parsing Well-Parenthesized Expressions 57
7.1 At a Glance . 57
7.2 Grammars We Can Parse . 57
7.3 The Splitting Strategy . 58

7.3.1 The Main Idea . 58
7.3.2 Building the Lookup Table . 58
7.3.3 Table Correctness . 59
7.3.4 Diving into Refinement Code 60

8 Future Work 65
8.1 Future Work with Dependent Types 66

A Selected Coq Code 69
A.1 A Fiat Goal After Trivial Rules Are Refined 69
A.2 Coq Code for the First Refinement Step 70

8

Chapter 1

Parsing Context-Free Grammars

We begin with an overview of the general setting and a description of our approach
to parsing. Our parser can be found on GitHub, in the folder src/Parsers of https:
//github.com/JasonGross/fiat.1

Why parsing? Parsing, a well-studied algorithmic problem, is the first step for
a variety of applications. To perform meaningful analysis on text of any written
language, the first step is generally to break the text up into words, sentences, and
paragraphs, and impose some sort of structure on the words in each sentence; this
requires parsing. To compile, interpret, or execute a program, a computer first needs
to read its code from the disk and turn the resulting stream of bytes into a struc-
tured representation that it can manipulate and run; this requires parsing. Parsing
JavaScript, in particular, is a useful application; JavaScript has become the de facto
language of the web. Unlike machine code, which was designed to be easy for comput-
ers to manipulate quickly, JavaScript was designed to be relatively easy to read by a
person. Having responsive dynamic webpages requires downloading and interpreting
JavaScript quickly; if the JavaScript parser being used is slow, there’s no hope of
loading content without frustrating delays for the user.

1.1 Parsing

The job of a parser is to decompose a flat list of characters, called a string, into a
structured tree, called a parse tree, on which further operations can be performed. As
a simple example, we can parse "ab" as an instance of the regular expression (ab)∗,
giving this parse tree, where we write · for string concatenation.

1The version, as of the writing of this thesis, is 2c1aa766b9923ce75f26d6477f9fd5d8b6d3f9c1. The
Fiat homepage is http://plv.csail.mit.edu/fiat/. The more general, dependently typed version
of the parser is at https://github.com/JasonGross/parsing-parses.

9

https://github.com/JasonGross/fiat
https://github.com/JasonGross/fiat
https://github.com/JasonGross/fiat/tree/2c1aa766b9923ce75f26d6477f9fd5d8b6d3f9c1
http://plv.csail.mit.edu/fiat/
https://github.com/JasonGross/parsing-parses

"a" ∈ 'a' "b" ∈ 'b'
"" ∈ ε

"" ∈ (ab)∗

"a" · "b" · "" ∈ ab(ab)∗

"ab" ∈ (ab)∗

Our parse tree is implicitly constructed from a set of general inference rules for parsing.
There is a naive approach to parsing a string s: run the inference rules as a logic
program. Several execution orders work: we may proceed bottom-up, by generating
all of the strings that are in the language and not longer than s, checking each one
for equality with s; or top-down, by splitting s into smaller parts in a way that
mirrors the inference rules. In this thesis, we present an implementation based on
the second strategy, parameterizing over a “splitting oracle” that provides a list of
candidate locations at which to split the string, based on the available inference rules.
Soundness of the algorithm is independent of the splitting oracle; each location in the
list is attempted. To be complete, if any split of the string yields a valid parse, the
oracle must give at least one splitting location that also yields a valid parse. Different
splitters yield different simple recursive-descent parsers.

There is a trivial, brute-force splitter that suffices for proving correctness: simply
return the list of all locations in the string, the list of all numbers between 0 and the
length of the string. Because we construct a parser that terminates no matter what
list it is given, and all valid splits are trivially in this list, this splitting “oracle” is
enough to fill the oracle-shaped-hole in the correctness proofs. Thus, we can largely
separate concerns about correctness and concerns about efficiency. In Chapter 3, we
focus only on correctness; we set up the framework we use to achieve efficiency in
Chapter 4, and we demonstrate the use of the framework in Chapters 5, 6 and 7.

Although this simple splitter is sufficient for proving the algorithm correct, it is hor-
ribly inefficient, running in time O(n!), where n is the length of the string. We
synthesize more efficient splitters in later chapters; we believe that parameterizing
the parser over a splitter gives us enough expressiveness to implement essentially
all optimizations of interest, while yielding a sufficiently constrained design space to
make proofs relatively straightforward. For example, to achieve linear parse time on
the (ab)∗ grammar, we could have a splitter that, when trying to parse 'c1' · 'c2' ·
s as ab(ab)∗, splits the string into ('c1', 'c2', s); and when trying to parse s as ε,
does not split the string at all.

Parameterizing over a splitting oracle allows us to largely separate correctness con-
cerns from efficiency concerns.

Proving completeness—that our parser succeeds whenever there is a valid parse tree—
is conceptually straightforward: trace the algorithm, showing that if the parser returns
false at a given point, then assuming a corresponding parse tree exists yields a
contradiction. The one wrinkle in this approach is that the procedure, the logic
program, is not guaranteed to terminate.

10

1.1.1 Infinite Regress

Nontermination is a particularly pressing problem for us; we have programmed our
parser in the proof assistant Coq [8], which only permits terminating programs. Coq
is an interactive proof assistant; it includes a strongly typed functional programming
language, called Gallina, in the tradition of OCaml and Haskell. Because Gallina
programs do double duty as both functional programs and proofs, via the Curry-
Howard isomorphism [9, 13], all programs are required to be provably terminating.
However, naive recursive-descent parsers do not always terminate!

To see how such parsers can diverge, consider the following example. When defining
the grammar (ab)∗, perhaps we give the following production rules:

s ∈ ε
(ε)

s ∈ (ab)∗
s0 ∈ 'a' s1 ∈ 'b'

("ab")
s0s1 ∈ (ab)∗

s0 ∈ (ab)∗ s1 ∈ (ab)∗
((ab)∗(ab)∗)

s0s1 ∈ (ab)∗

Now, let us try to parse the string "ab" as (ab)∗:

"" ∈ ε
"" ∈ (ab)∗

"" ∈ ε
"" ∈ (ab)∗

...
"ab" ∈ (ab)∗

"" · "ab" ∈ (ab)∗

"ab" ∈ (ab)∗

"" · "ab" ∈ (ab)∗

"ab" ∈ (ab)∗

Thus, by making a poor choice in how we split strings and choose productions, we
can quickly hit an infinite regress.

Assuming we have a function split : String → [String × String] which is our
splitting oracle, we may write out a potentially divergent parser specialized to this
grammar.

any_parses : [String× String]→ Bool

any_parses [] := false

any_parses (("a", "b") :: _) := true

any_parses ((s1, s2) :: rest_splits)

:= (parses s1 && parses s2) || any_parses rest_splits

parses : String→ Bool

parses "" := true

parses str := any_parses (split str)

11

Here and throughout this thesis, we take the Haskell convention of using [T] to denote
a list whose elements are of type T.

If split returns ("", "ab") as the first item in its list when given "ab", then parses

will diverge in the way demonstrated above with the infinite derivation tree.

1.1.2 Aborting Early

To work around this wrinkle, we keep track of what nonterminals we have not yet
tried to parse the current string as, and we abort early if we see a repeat. For our
example grammar, since there is only one nonterminal, we only need to keep track of
the current string. We refactor the above code to introduce a new parameter prev_s,
recording the previous string we were parsing. We use s < prev_s to denote the test
that s is strictly shorter than prev_s.

any_parses : String→ [String× String]→ Bool

any_parses _ [] := false

any_parses _ (("a", "b") :: _) := true

any_parses prev_s ((s1, s2) :: rest_splits)

:= (s1 < prev_s && s2 < prev_s

&& parses s1 && parses s2)

|| any_parses prev_s rest_splits

parses : String→ Bool

parses "" := true

parses str := any_parses str (split str)

We can convince Coq that this definition is total via well-founded recursion on the
length of the string passed to parses. For a more complicated grammar, we would
need to use a well-founded relation that also included the number of nonterminals
not yet tried for this string; we do this in Figure 3-3 in Subsection 3.3.2.

With this refactoring, however, completeness is no longer straightforward. We must
show that aborting early does not eliminate good parse trees.

We devote the rest of Chapters 1 and 3 to describing an elegant approach to proving
completeness. Ridge [22] carried out a proof about essentially the same algorithm in
HOL4, a proof assistant that does not support dependent types. We instead refine
our parser to have a more general polymorphic type signature that takes advantage
of dependent types, supporting a proof strategy with a different kind of aesthetic
appeal. Relational parametricity frees us from worrying about different control flows
with different instantiations of the arguments: when care is taken to ensure that the

12

execution of the algorithm does not depend on the values of the arguments, we are
guaranteed that all instantiations succeed or fail together. Freed from this worry, we
convince our parser to prove its own soundness and completeness by instantiating its
arguments correctly.

1.1.3 Aside: Removing Left Recursion

To wrap up the description of our parsing algorithm, we call attention to a venerable
technique for eliminating nontermination: preprocessing the grammar to remove left
recursion. Intuitively, left recursion occurs whenever it is possible to encounter the
same inference rule multiple times without removing any characters from the begin-
ning of the string [18] The standard technique for removing left recursion involves
ordering the inference rules; the idea is that, before the first terminal that shows up
in any rule, only nonterminals earlier in the ordering should appear.

We choose a slightly different approach to eliminating nontermination. Since we will
want to prove correctness properties of our parser, we have to verify the correctness
of each step of our algorithm. Verifying the correctness of such a left-recursion-
eliminating step is non-trivial, and, furthermore, preprocessing the grammar in such
a fashion does not significantly simplify the evidence Coq requires to ensure termina-
tion. The approach we take is a kind of lazy variant of this; rather than preemptively
eliminating the possibility of infinite chains of identical inference rules, we forbid such
parses on-the-fly.

1.2 Standard Formal Definitions

Before proceeding, we pause to standardize on terminology and notation for context-
free grammars and parsers. In service of clarity for some of our later explanations,
we formalize grammars via natural-deduction inference rules, a slightly nonstandard
choice.

1.2.1 Context-Free Grammar

A context-free grammar consists of items, which may be either terminals (characters)
or nonterminals ; plus a set of productions, each mapping a nonterminal to a sequence
of items.

As in standard presentations, we restrict our attention to grammars where the set of
nonterminals is finite. In our formalization, since a nonterminal is named by a string,
we require that each grammar provide a list of “valid” nonterminals, each of which
must only reference other valid nonterminals.

13

Example: (ab)∗

The regular-expression grammar (ab)∗ has a single nonterminal (ab)∗, which parses
empty strings, as well as parsing strings which are an 'a', followed by a 'b', followed
by a string which parses as the nonterminal (ab)∗. In the standard, compact, notation
for specifying context free grammars, we can write this as:

(ab)∗ ::= ε | 'a' 'b' (ab)∗

We can also present this grammar as a collection of inference rules, one for each
production, and one for each terminal, in the grammar. This presentation is most
useful for describing parse trees, so we will use it primarily in Section 1.3; we’ll use
the more compact representation for the larger grammars described in later chapters.

The inference rules of the regular-expression grammar (ab)∗ are:

Terminals:

"a" ∈ 'a' "b" ∈ 'b'

Productions and nonterminals:

s ∈ ε
s ∈ (ab)∗ "" ∈ ε

s0 ∈ 'a' s1 ∈ 'b' s2 ∈ (ab)∗

s0s1s2 ∈ (ab)∗

1.2.2 Parse Trees

A string s parses as:

� a given terminal ch iff s = 'ch'.

� a given sequence of items xi iff s splits into a sequence of strings si, each of
which parses as the corresponding item xi.

� a given nonterminal nt iff s parses as one of the item sequences that nt maps
to under the set of productions.

We may define mutually inductive dependent type families of ParseTreeOfs and
ParseItemsTreeOfs for a given grammar:

ParseTreeOf : Item→ String→ Type

ParseItemsTreeOf : [Item]→ String→ Type

14

For any terminal character ch, we have the constructor

('ch') : ParseTreeOf 'ch' "ch"

For any production rule mapping a nonterminal nt to a sequence of items its, and
any string s, we have this constructor:

(rule) : ParseItemsTreeOf its s→ ParseTreeOf nt s

We have the following two constructors of ParseItemsTree. In writing the type of
the latter constructor, we adopt a common space-saving convention where we assume
that all free variables are quantified implicitly with dependent function (Π) types. We
also write constructors in the form of schematic natural-deduction rules, since that
notation will be convenient to use later on.

"" ∈ ε : ParseItemsTreeOf [] ""

s1 ∈ it s2 ∈ its

s1s2 ∈ it :: its
: ParseTreeOf it s1

→ ParseItemsTreeOf its s2

→ ParseItemsTreeOf (it :: its) s1s2

For brevity, we will sometimes use the notation s ∈ X to denote both ParseTreeOf X s

and ParseItemsTreeOf X s, relying on context to disambiguate based on the type of
X. Additionally, we will sometimes fold the constructors of ParseItemsTreeOf into
the (rule) constructors of ParseTreeOf, to mimic the natural-deduction trees.

We also define a type of all parse trees, independent of the string and item, as this
dependent-pair (Σ) type, using set-builder notation; we use ParseTree to denote the
type

{(nt, s) : Nonterminal× String | ParseTreeOf nt s}

1.3 Completeness and Soundness

Parsers come in a number of flavors. The simplest flavor is the recognizer, which
simply says whether or not there exists a parse tree of a given string for a given
nonterminal; it returns Booleans. There is also a richer flavor of parser that returns
inhabitants of option ParseTree.

For any recognizer has_parse : Nonterminal→ String→ Bool, we may ask whether
it is sound, meaning that when it returns true, there is always a parse tree; and
complete, meaning that when there is a parse tree, it always returns true. We may
express these properties as theorems (alternatively, dependently typed functions) with
the following type signatures:

15

has_parse_sound : (nt : Nonterminal)→ (s : String)

→ has_parse nt s = true

→ ParseTreeOf nt s

has_parse_complete : (nt : Nonterminal)→ (s : String)

→ ParseTreeOf nt s

→ has_parse nt s = true

For any parser

parse : Nonterminal → String → option ParseTree,

we may also ask whether it is sound and complete, leading to theorems with the
following type signatures, using p1 to denote the first projection of p:

parse_sound : (nt : Nonterminal)

→ (s : String)

→ (p : ParseTree)

→ parse nt s = Some p

→ p1 = (nt, s)

parse_complete : (nt : Nonterminal)

→ (s : String)

→ ParseTreeOf nt s

→ parse nt s 6= None

Since we are programming in Coq, this separation into code and proof actually makes
for more awkward type assignments. We also have the option of folding the soundness
and completeness conditions into the types of the code. For instance, the following
type captures the idea of a sound and complete parser returning parse trees, using
the type constructor + for disjoint union (i.e., sum or variant type):

parse : (nt : Nonterminal)

→ (s : String)

→ ParseTreeOf nt s + (ParseTreeOf nt s→ ⊥)

That is, given a nonterminal and a string, parse either returns a valid parse tree, or
returns a proof that the existence of any parse tree is contradictory (i.e., implies ⊥,
the empty type). Our implementation follows this dependently typed style. Our main
initial goal in the project was to arrive at a parse function of just this type, generic
in an arbitrary choice of context-free grammar, implemented and proven correct in
an elegant way.

16

Chapter 2

Related Work and Other Approaches
to Parsing

Stepping back a bit, we describe how our approach to parsing relates to existing work.

2.1 Coq

As stated in Subsection 1.1.1, we define our parser and prove its correctness in the
proof assistant Coq [8]. Like other proof assistants utilizing dependent type theory,
Coq takes advantage of the Curry-Howard isomorphism [9, 13] to allow proofs to be
written as functional programs; dependent types allow universal and existential quan-
tification. Coq natively permits only structural recursion, where recursive function
calls may be invoked only on direct structural subterms of a given, specified argu-
ment. The standard library defines combinators for turning well-founded recursion
into structural recursion, which can be used to define essentially all recursive func-
tions which provably halt in all cases (which is a class containing, as it turns out,
essentially all algorithms of interest). Coq’s mathematical language, Gallina, imple-
ments Martin-Löf’s dependent lambda calculus. Coq has a separate tactic language,
called Ltac [10], which allows imperative construction of proof objects, and functions,
by forwards and backwards reasoning.

2.2 Recursive-Descent Parsing

The most conceptually straightforward approaches to parsing fall into the class called
recursive-descent parsing, where, to parse a string s as a given production p, you
attempt to parse various parts of s as each of the items in the list p. The control
flow of the code mirrors the structure of the grammar, as well as the structure of
the eventual parse tree, descending down the branches of the parse tree, recursively
calling itself at each step. The algorithm we have described in Chapter 1 seems to

17

fall out almost trivially from the inductive description of parse trees; we come back
to this in Section 8.1 when we briefly sketch how it should be possible to generalize
this algorithm to other inductive type families.

2.2.1 Parser Combinators

A popular approach to implementing recursive-descent parsing, called combinator
parsing [14], involves writing a small set of typed combinators, or higher-order func-
tions, which are then applied to each other in various combinations to write a parser
that mimics closely the structure of the grammar.

Essentially, parsers defined via parser combinators answer the question “what prefixes
of a given string can be parsed as a given item?” Each function returns a list of
postfixes of the string it is passed, indicating all of the strings that might remain for
the other items in a given rule.

Basic Combinators

We now define the basic combinators. In the simplest form, each combinator takes
in a string, and returns a list of strings (the postfixes); we can define the type

parser := String → [String].

We can define the empty-string parser, as well as the parser for a nonterminal with
no production rules, which always fails:

ε : parser

ε str := [str]

fail : parser

fail _ := []

Failure is indicated by returning the empty list; success at parsing the entire string
is indicated by returning a list containing the empty string.

The parser for a given terminal fails if the string does not start with that character,
and returns all but the first character if it does:

terminal : Char → parser

terminal ch (ch :: str) := [str]

terminal _ _ := []

We now define combinators for sequencing and alternatives:

(>>>) : parser → parser → parser

18

(p0 >>> p1) str := flat_map p1 (p0 str)

(|||) : parser → parser → parser

(p0 ||| p1) str := p0 str ++ p1 str

where ++ is list concatenation, and flat_map, which concatenates the lists returned
by mapping its first argument over each of the elements in its second argument, has
type (A → [B]) → [A] → [B].

An Example

We can now easily define a parser for the grammar (ab)∗:

parse_(ab)∗ : parser

parse_(ab)∗ := (terminal 'a' >>> terminal 'b' >>> parse_(ab)∗) ||| ε

Note that, by putting ε last, we ensure that this parser returns the list in order of
longest parse (shortest postfix) to shortest parse (longest postfix).

Semantic Actions

Frequently, programmers want parsers to not just say whether or not a given string,
or prefix of a string, can be parsed, but to also build a parse tree, or perform some
other computation or construction on the structure of the string. A common way to
accomplish this is with semantic actions : Associate to each production a function
which, when given values associated to each of the nonterminals in its sequence,
computes a value to associate to the given nonterminal. By calling these functions
at each node of the parse tree, passing the function at each node the values returned
by its descendants, we can compute a value associated to a string as we parse it. For
example, we might annotate a simple expression grammar, to compute the numerical
value associated with a string expression, like this:

e ::= n {int_of_string(n)}
| e1 "+" e2 {e1 + e2}
| "(" e ")" {e}

Parser combinators can be easily extended to return a list not just of postfixes, but
of pairs of a value and a postfix. The parser type can be parameterized over the
type of the value returned. The alternative combinator would return a disjoint union,
and the sequencing combinator would return a pair of the two values returned by
its inputs. The terminal parser would return the single character it parsed, and the
empty string parser would return an element of the singleton type. Each rule for a
nonterminal could then be wrapped with a combinator which applies the semantic
action to the relevant values. A more detailed explanation can be found in [14]. We
describe in Section 3.4 how our parser can easily accommodate semantic actions.

19

Proving Correctness and Dealing with Nontermination

Although parser combinators are straightforward, it is easy to make them loop forever.
It is well-known that parsers defined naively using parser combinators don’t handle
grammars with left recursion, where the first item in a given production rule is the
nonterminal currently being defined. For example, if we have the nonterminal expr
::= number | expr '+' expr, then the parser for expr '+' expr will call the parser
for expr, which will call the parse for expr '+' expr, which will quickly loop forever.

The algorithm we presented in Subsection 1.1.2 is essentially the same as the algorithm
Ridge presents in [22] to deal with this problem. By wrapping the calls to the parsers,
in each combinator, with a function that prunes duplicative calls, Ridge provides a
way to ensure that parsers terminate. Also included in [22] are proofs in HOL4
that such wrapped parsers are both sound (and therefore terminating) and complete.
Furthermore, Ridge’s parser has worst-case O(n5) running time in the input-string
length.

2.2.2 Parsing with Derivatives

Might, Darais, and Spiewak describe an elegant method for recursive-descent parsing
in [17], based on Brzozowski’s derivatives [5], which might be considered a conceptual
dual to standard combinator parsing. Rather than returning a list of possible string
remnants, constructed by recursing down the structure of the grammar, we can iterate
down the characters of a string, computing an updated language, or grammar, at each
point.

The language defined by a grammar is the set of strings accepted by that grammar.
Here we describe the mathematical ideas behind parsing with derivatives. Might et al.
take a slightly different approach to ensure termination; where we will describe the
mathematical operations on languages, they define these operations on a structural
representation of the language, akin to an inductive definition of the grammar.

Much as we defined parser combinators for the elementary operations of a grammar
(ε, terminals, sequencing, and alternatives), we can define similar combinators for
defining a (lazy, or coinductive) language for a grammar. Defining the type language
to be a set (or just a coinductive list) of strings, we have:

ε : language

ε := {""}

terminal : Char → language

terminal ch := {ch}

(>>>) : language → language → language

20

L0 >>> L1 := { s0s1 | s0 ∈ L0 and s1 ∈ L1}

(|||) : language → language → language

L0 ||| L1 := L0 ∪ L1

The essential operations for computing derivatives are filtering and chopping. To
filter a language L by a character c is to take the subset of strings in L which start
with c. To chop a language L is to remove the first character from every string. The
derivative Dc(L) with respect to c of a language L is then the language L, filtered by
c and chopped:

Dc : language → language

Dc L :=
⋃

(c::str)∈L

{str}

We can then define a has_parse proposition by taking successive derivatives:

has_parse : language → String → Prop

has_parse L "" := "" ∈ L
has_parse L (ch :: str) := has_parse (Dch L) str

To ensure termination and good performance, Might et al. define the derivative op-
eration on the structure of the grammar, rather than defining combinators that turn
a grammar into a language, and furthermore take advantage of laziness and memo-
ization. After adding code to prune the resulting language of useless content, they
argue that the cost of parsing with derivatives is reasonable.

Formal Verification

Almeida et al. formally verify, in Coq, finite automata for parsing the fragment of
derivative-based parsing which applies to regular expressions [1]. This fragment dates
back to Brzozowski’s original presentation of derivatives [5].

2.3 Other Approaches to Parsing

Recursive-descent parsing is not the only strategy for parsing.

Top-Down Parsers: LL(k) Recursive-descent parsing is a flavor of so-called “top-
down” parsing; at each point in the algorithm, we know which nonterminal we are
parsing the string as. We thus build the parse tree from the top down, filling in more
portions of the parse tree by picking which rule of a fixed nonterminal we should use.

Some context-free grammars have linear-time recursive-descent parsers that only re-

21

quire k tokens after the current one being considered to decide which rule to ap-
ply; these grammars are called LL(k) grammars. More recently, arbitrary context-
free grammars can be handled with Generalized LL parsers [23], or with ALL(*)
parsers [21], which are based on arbitrary look-ahead using regular expressions.

Bottom-Up Parsers: LR Bottom-up parsers, of which LR parsers [6] are one
of the most well-known flavors, instead associate the parts of the string which have
already been parsed to complete parse trees. For example, consider the grammar
with two nonterminals, ab ::= 'a' 'b', and (ab)∗ ::= ε | ab (ab)∗. When parsing
"abab" as (ab)∗, an LR parser would parse 'a' as the terminal 'a', parse 'b' as the
terminal 'b', and then reduce those two parse trees into a single parse tree for ab. It
would then parse 'a' as 'a', parse 'b' as 'b', and then reduce those into the parse
tree for ab; we now have two parse trees for ab. Noticing that there are no characters
remaining, the parser would reduce the latter ab into a parse tree for (ab)∗ and then
combine that with the earlier ab parse tree to get a parse of the entire string as (ab)∗.

LR parsers originated in the days when computers has much more stringent con-
straints on memory and processing power, and they apply only to strict subsets of
context-free grammars; correctness and complexity guarantees rely on being able to
uniquely determine what rule to apply based on a fixed lookahead.

More recently, Generalize LR (GLR) parsers have been devised which can handle all
context-free grammars [24].

Parsing expression grammars (PEGs) Ford proposes an alternative to context-
free grammars, called parsing expression grammars [12], which can always be deter-
ministically parsed in linear time. The basic idea is to incorporate some of the features
of regular expressions directly into the grammar specification, and to drop the ability
to have ambiguous alternatives; PEGs instead have prioritized alternatives.

2.4 Related Work on Verifying Parsers

In addition to the work on verifying derivative-based parsing of regular expressions [1],
a few other past projects have verified parsers with proof assistants, applying to
SLR [2] and LR(1) [15] parsers. Several projects have used proof assistants to ap-
ply verified parsers within larger programming-language tools. RockSalt [19] does
run-time memory-safety enforcement for x86 binaries, relying on a verified machine-
code parser that applies derivative-based parsing for regular expressions. The verified
Jitawa [20] and CakeML [16] language implementations include verified parsers, han-
dling Lisp and ML languages, respectively.

22

2.5 What’s New and What’s Old

The goal of this project is to demonstrate a new approach to generating parsers:
incrementally building efficient parsers by refinement.

We begin with naive recursive-descent parsing. We ensure termination via memoiza-
tion, a la [22]. We parameterize the parser on a “splitting oracle”, which describes how
to recurse (Section 1.1). As far as we can tell, the idea of factoring the algorithmic
complexity like this is new.

We use the Coq library Fiat [11] to incrementally build efficient parsers by refinement;
we describe Fiat starting in Chapter 4.

Additionally, we take a digression in Chapter 3 to describe how our parser can be used
to prove its own completeness; the idea of reusing the parsing algorithm to generate
proofs, parsing parse trees rather than strings, is not found in the literature, to the
author’s knowledge.

23

24

Chapter 3

Completeness, Soundness, and
Parsing Parse Trees

3.1 Proving Completeness: Conceptual Approach

Recall from Subsection 1.1.2 that the essential difficulty with proving completeness
is dealing with the cases where our parser aborts early; we must show that doing so
does not eliminate good parse trees.

The key is to define an intermediate type, that of “minimal parse trees.” A “minimal”
parse tree is simply a parse tree in which the same (string, nonterminal) pair does not
appear more than once in any path of the tree. Defining this type allows us to split
the completeness problem in two; we can show separately that every parse tree gives
rise to a minimal parse tree, and that having a minimal parse tree in hand implies
that our parser succeeds (returns true or Some _).

Our dependently typed parsing algorithm subsumes the soundness theorem, the min-
imization of parse trees, and the proof that having a minimal parse tree implies that
our parser succeeds. We write one parametrically polymorphic parsing function that
supports all three modes, plus the several different sorts of parsers (recognizers, gen-
erating parse trees, running semantic actions). That level of genericity requires us to
be flexible in which type represents “strings,” or inputs to parsers. We introduce a
parameter that is often just the normal String type, but which needs to be instanti-
ated as the type of parse trees themselves to get a proof of parse tree minimizability.
That is, we “parse” parse trees to minimize them, reusing the same logic that works
for the normal parsing problem.

Before presenting our algorithm’s interface, we will formally define and explain mini-
mal parse trees, which will provide motivation for the type signatures of our parser’s
arguments.

25

3.2 Minimal Parse Trees: Formal Definition

In order to make tractable the second half of the completeness theorem, that having
a minimal parse tree implies that parsing succeeds, it is essential to make the in-
ductive structure of minimal parse trees mimic precisely the structure of the parsing
algorithm. A minimal parse tree thus might better be thought of as a parallel trace
of parser execution.

As in Subsection 1.2.2, we define mutually inductive type families of MinParseTreeOfs
and MinItemsTreeOfs for a given grammar. Because our parser proceeds by well-
founded recursion on the length of the string and the list of nonterminals not yet
attempted for that string, we must include both of these in the types. Let us call the
initial list of all nonterminals unseen0.

MinParseTreeOf : String→ [Nonterminal]

→ Item→ String→ Type

MinItemsTreeOf : String→ [Nonterminal]

→ [Item]→ String→ Type

Much as in the case of parse trees, for any terminal character ch, any string s0, and
any list of nonterminals unseen, we have the constructor

min_parse
'ch' : MinParseTreeOf s0 unseen 'ch' "ch"

For any production rule mapping a nonterminal nt to a sequence of items its, any
string s0, any list of nonterminals unseen, and any string s, we have two constructors,
corresponding to the two ways of progressing with respect to the well-founded relation.
We have the following, where we interpret the < relation on strings in terms of lengths.

(rule)< : s < s0

→ MinItemsTreeOf s unseen0 its s

→ MinParseTreeOf s0 unseen nt s

(rule)= : s = s0

→ nt ∈ unseen

→ MinItemsTreeOf s0 (unseen− {nt}) its s

→ MinParseTreeOf s0 unseen nt s

In the first case, the length of the string has decreased, so we may reset the list of
not-yet-seen nonterminals, as long as we reset the base of well-founded recursion s0
at the same time. In the second case, the length of the string has not decreased, so
we require that we have not yet seen this nonterminal, and we then remove it from
the list of not-yet-seen nonterminals.

26

Finally, for any string s0 and any list of nonterminals unseen, we have the following
two constructors of MinItemsTreeOf.

min_parse[] : MinItemsTreeOf s0 unseen [] ""

min_parse:: : s1s2 ≤ s0

→ MinParseTreeOf s0 unseen it s1

→ MinItemsTreeOf s0 unseen its s2

→ MinItemsTreeOf s0 unseen (it :: its) s1s2

The requirement that s1s2 ≤ s0 in the second case ensures that we are only making
well-founded recursive calls.

Once again, for brevity, we will sometimes use the notation s ∈ X <(s0,v) to denote
both MinParseTreeOf s0 v X s and MinItemsTreeOf s0 v X s, relying on context to
disambiguate based on the type of X. Additionally, we will sometimes fold the con-
structors of MinItemsTreeOf into the two (rule) constructors of MinParseTreeOf,
to mimic the natural-deduction trees.

3.3 Parser Interface

Roughly speaking, we read the interface of our general parser off from the types of
the constructors for minimal parse trees. Every constructor leads to one parameter
passed to the parser, much as one derives the types of general “fold” functions for
arbitrary inductive datatypes. For instance, lists have constructors nil and cons, so
a fold function for lists has arguments corresponding to nil (initial accumulator) and
cons (step function). The situation for the type of our parser is similar, though we
need parallel success (managed to parse the string) and failure (could prove that no
parse is possible) parameters for each constructor of minimal parse trees.

The type signatures in the interface are presented in Figure 3-1. We explain each type
one by one, presenting various instantiations as examples. Note that the interface we
actually implemented is also parameterized over a type of Strings, which we will
instantiate with parse trees later in this chapter. The interface we present here fixes
String, for conciseness.

Since we want to be able to specialize our parser to return either option ParseTree

or Bool, we want to be able to reuse our soundness and completeness proofs for
both. Our strategy for generalization is to parameterize on dependent type families
for “success” and “failure”, so we can use relational parametricity to ensure that all
instantiations of the parser succeed or fail together. The parser has the rough type
signature

parse : Nonterminal → String → Tsuccess + Tfailure.

27

We use ParseQuery to denote the type of all propositions like “"a" ∈ 'a'”; a query
consists of a string and a grammar rule the string might be parsed into. We use
the same notation for ParseQuery and ParseTree inhabitants. All *_success and
*_failure type signatures are implicitly parameterized over a string s0 and a list of
nonterminals unseen. We assume we are given unseen0 : [Nonterminal].

Tsuccess, Tfailure : String→ [Nonterminal]→ ParseQuery→ Type

split : String→ [Nonterminal]→ ParseQuery→ [N]

terminal_success : (ch : Char)→ Tsuccess s0 unseen ("ch" ∈ 'ch')

terminal_failure : ∀ ch s, s 6= "ch"→ Tfailure s0 unseen (s ∈ 'ch')

nil_success : Tsuccess s0 unseen ("" ∈ ε)
nil_failure : (s : String)→ s 6= ""→ Tfailure s0 unseen (s ∈ ε)

cons_success : (it : Item)→ (its : [Item])→ (s1 s2 : String)

→ s1s2 ≤ s0

→ Tsuccess s0 unseen (s1 ∈ it)

→ Tsuccess s0 unseen (s2 ∈ its)

→ Tsuccess s0 unseen (s1s2 ∈ it :: its)

cons_failure : (it : Item)→ (its : [Item])→ (s : String)

→ s ≤ s0

→
(
∀ (s1, s2) ∈ split s0 unseen (s ∈ it :: its) ,

Tfailure s0 unseen (s1 ∈ it)

+ Tfailure s0 unseen (s2 ∈ its)
)

→ Tfailure s0 unseen (s ∈ it :: its)

production_success< : (its : [Item])→ (nt : Nonterminal)→ (s : String)

→ s < s0

→ (p : a production mapping nt to its)

→ Tsuccess s unseen0 (s ∈ its)

→ Tsuccess s0 unseen (s ∈ nt)

production_success= : (its : [Item])→ (nt : Nonterminal)→ (s : String)

→ nt ∈ unseen

→ (p : a production mapping nt to its)

→ Tsuccess s0 (unseen− {nt}) (s ∈ its)

→ Tsuccess s0 unseen (s ∈ nt)

Figure 3-1: The dependently typed interface of our parser, Part 1 of 2

28

production_failure< : (nt : Nonterminal)→ (s : String)

→ s < s0

→
(
∀ (its : [Item]) (p : a production mapping nt to its),

Tfailure s unseen0 (s ∈ its)
)

→ Tfailure s0 unseen (s ∈ nt)

production_failure= : (nt : Nonterminal)→ (s : String)

→ s = s0

→
(
∀ (its : [Item]) (p : a production mapping nt to its),

Tfailure s0 (unseen− {nt}) (s ∈ its)
)

→ Tfailure s0 unseen (s ∈ nt)

production_failure 6∈ : (nt : Nonterminal)→ (s : String)

→ s = s0

→ nt 6∈ unseen

→ Tfailure s0 unseen (s ∈ nt)

Figure 3-2: The dependently typed interface of our parser, Part 2 of 2

To instantiate the parser as a Boolean recognizer, we instantiate everything trivially;
we use the fact that > + > ∼= Bool, where > is the singleton type inhabited by ().
Just to show how trivial everything is, here is a precise instantiation of the parser,
still parameterized over the initial list of nonterminals and the splitter, where > is
the one constructor of the one-element type >:

Tsuccess _ _ _ := >
Tfailure _ _ _ := >

terminal_success _ _ _ := ()

terminal_failure _ _ _ _ _ := ()

nil_success _ _ := ()

nil_failure _ _ _ _ := ()

cons_success _ _ _ _ _ _ _ _ _ := ()

cons_failure _ _ _ _ _ _ _ := ()

production_success< _ _ _ _ _ _ _ _ := ()

production_success= _ _ _ _ _ _ _ _ _ := ()

production_failure< _ _ _ _ _ _ := ()

production_failure= _ _ _ _ _ _ := ()

production_failure 6∈ _ _ _ _ _ _ := ()

29

To instantiate our parser so that it returns option ParseTree (rather, the depen-
dently typed flavor, ParseTreeOf), we take advantage of the isomorphism T + > ∼=
option T . We show only the success instantiations, as the failure ones are iden-
tical with the Boolean recognizer. For readability of the code, we write schematic
natural-deduction proof trees inline.

Tsuccess _ _ (s ∈ X) := s ∈ X

terminal_success _ _ ch := ('ch')

nil_success _ _ := "" ∈ ε

cons_success _ _ it its s1 s2 _ d1 d2 :=
d1

s1∈it
d2

s2∈its

s1s2 ∈ it :: its

production_success< _ _ it nt s _ p d :=
d

s∈its
s ∈ nt

(p)

production_success= _ _ it nt s _ p d :=
d

s∈its
s ∈ nt

(p)

What remains is instantiating the parser in such a way that proving completeness is
trivial. The simpler of our two tasks is to show that when the parser fails, no minimal
parse tree exists. Hence we instantiate the types as follows, where ⊥ is the empty
type (equivalently, the false proposition).

Tsuccess _ _ _ := >

Tfailure s0 unseen (s ∈ X) :=
(
s ∈ X <(s0,unseen)

)
→ ⊥

Using E to denote a (possibly automated) proof deriving a contradiction, we can
unenlighteningly instantiate the arguments as

terminal_success _ _ _ := ()

terminal_failure _ _ _ _ _ := E

nil_success _ _ := ()

nil_failure _ _ _ _ := E

cons_success _ _ _ _ _ _ _ _ _ := ()

cons_failure _ _ _ _ _ _ _ := E

production_success< _ _ _ _ _ _ _ _ := ()

production_success= _ _ _ _ _ _ _ _ _ := ()

production_failure< _ _ _ _ _ _ := E

production_failure= _ _ _ _ _ _ := E

production_failure 6∈ _ _ _ _ _ _ := E

A careful inspection of the proofy arguments to each failure case will reveal that

30

there is enough evidence to derive the appropriate contradiction. For example, the
s 6= "" hypothesis of nil_failure contradicts the equalities implied by the type
signature of min_parse[], and the use of [] contradicts the equality implied by
the use of it::its in the type signature of min_parse[]. Similarly, the s 6= "ch"

hypothesis of terminal_failure contradicts the equality implied by the usage of the
single identifier ch in two different places in the type signature of min_parse

'ch'.

3.3.1 Parsing Parses

We finally come to the most twisty part of the parser: parsing parse trees. Recall
that our parser definition is polymorphic in a choice of String type. We proceed with
the straw-man solution of literally passing in parse trees as strings to be parsed, such
that parsing generates minimal parse trees, as introduced in Section 3.1 and defined
formally in Section 3.2. Intuitively, we run a top-down traversal of the tree, pausing
at each node before descending to its children. During that pause, we eliminate one
level of wastefulness : if the parse tree is proving s ∈ X, we look for any subtrees also
proving s ∈ X. If we find any, we replace the original tree with the smallest duplicative
subtree. If we do not find any, we leave the tree unchanged. In either case, we then
descend into “parsing” each subtree.

We define a function deloop to perform the one step of eliminating waste:

deloop : ParseTreeOf nt s→ ParseTreeOf nt s

This transformation is straightforward to define by structural recursion.

To implement all of the generic parameters of the parser, we must actually augment
the result type of deloop with stronger types. Define the predicate Unloopy(t) on
parse trees t to mean that, where the root node of t proves s ∈ nt, for every subtree
proving s ∈ nt′ (same string, possibly different nonterminal), (1) nt′ is in the set of
allowed nonterminals, unseen, associated to the overall tree with dependent types,
and (2) if this is not the root node, then nt′ 6= nt.

We augment the return type of deloop, writing:

{t : ParseTreeOf nt s | Unloopy(t)}.

We instantiate the generic “string” type parameter of the general parser with this
type family, so that, in implementing the different parameters to pass to the parser,
we have the property available to us.

Another key ingredient is the “string” splitter, which naturally breaks a parse tree
into its child trees. We define it like so:

split _ _ (s ∈ it :: its) :=

31

case parse_tree_data s of∣∣ p1
s1∈it

p2
s2∈its

s1s2 ∈ it :: its
→

[
(deloop p1, deloop p2)

]
∣∣ _ → E

split _ _ _ := []

Note that we use it and its nonlinearly; the pattern only binds if its it and its

match those passed as arguments to split. We thus return a nonempty list only if
the query is about a nonempty sequence of items. Because we use dependent types
to enforce the requirement that the parse tree associated with a string matches the
query we are considering, we can derive contradictions in the non-matching cases.

This splitter satisfies two important properties. First, it never returns the empty list
on a parse tree whose list of productions is nonempty; call this property nonempty
preservation. Second, it preserves Unloopy. We use both facts in the other parameters
to the generic parser (and we leave their proofs as exercises for the reader—Coq
solutions may be found in our source code).

Now recall that our general parser always returns a type of the form Tsuccess+Tfailure,
for some Tsuccess and Tfailure. We want our tree minimizer to return just the type of
minimal trees. However, we can take advantage of the type isomorphism T +⊥ ∼= T
and instantiate Tfailure with ⊥, the uninhabited type; and then apply a simple fix-up
wrapper on top. Thus, we instantiate the general parser like so:

Tsuccess s0 unseen (d : s ∈ X) := s ∈ X <(s0,unseen)

Tfailure _ _ _ := ⊥

The success cases are instantiated in an essentially identical way to the instantia-
tion we used to get option ParseTree. The terminal_failure and nil_failure

cases provide enough information (s 6= "ch" and s 6= "", respectively) to derive
⊥ from the existence of the appropriately typed parse tree. In the cons_failure

case, we make use of the splitter’s nonempty preservation behavior, after which
all that remains is ⊥ + ⊥ → ⊥, which is trivial. In the production_failure<
and production_failure= cases, it is sufficient to note that every nonterminal is
mapped by some production to some sequence of items. Finally, to instantiate the
production_failure 6∈ case, we need to appeal to the Unloopy-ness of the tree to de-
duce that nt ∈ unseen. Then we can derive ⊥ from the hypothesis that nt 6∈ unseen,
and we are done.

We instantiate the general parser with an input type that requires Unloopy, so our
final tree minimizer is really the composition of the instantiated parser with deloop,
ensuring that invariant as we kick off the recursion.

32

3.3.2 Example

In Subsection 1.1.1, we defined an ambiguous grammar for (ab)∗ which led our naive
parser to diverge. We will walk through the minimization of the following parse tree
of "abab" into this grammar. For reference, Figure 3-3 contains the fully general
implementation of our parser, modulo type signatures.

For reasons of space, define T to be the parse tree

"" ∈ ε
"" ∈ (ab)∗

"a" ∈ 'a' "b" ∈ 'b'
"a" · "b" ∈ (ab)∗

"ab" ∈ (ab)∗
((ab)∗(ab)∗)

"" · "ab" ∈ (ab)∗

Then we consider minimizing the parse tree:

T
"ab" ∈ (ab)∗

T
"ab" ∈ (ab)∗

((ab)∗(ab)∗)
"ab" · "ab" ∈ (ab)∗

"abab" ∈ (ab)∗

Letting T ′m denote the same tree as T ′, the eventual minimized version of T , but
constructed as a MinParseTree rather than a ParseTree, the tree we will end up
with is:

T ′m
< ("ab", [(ab)∗])

"ab" ∈ (ab)∗
T ′m

< ("ab", [(ab)∗])
"ab" ∈ (ab)∗

< ("abab", [])
"ab" · "ab" ∈ (ab)∗

< ("abab", [(ab)∗])
"abab" ∈ (ab)∗

To begin, we call parse, passing in the entire tree as the string, and (ab)∗ as the
nonterminal. To transform the tree into one that satisfies Unloopy, the first thing
parse does is call deloop on our tree. In this case, deloop is a no-op; it promotes
the deepest non-root nodes labeled with ("abab" ∈ (ab)∗), of which there are none.

We then take the following execution steps, starting with unseen := unseen0 :=
[(ab)∗], the singleton list containing the only nonterminal, and s0 := "abab".

1. We first ensure that we are not in an infinite loop. We check if s < s0 (it is not,
for they are both equal to "abab"), and then check if our current nonterminal,
(ab)∗, is in unseen. Since the second check succeeds, we remove (ab)∗ from
unseen; calls made by this stack frame will pass [] for unseen.

2. We may consider only the productions for which the parse tree associated to
the string is well-typed; we will describe the headaches this seemingly innocuous
simplification caused us in Subsection 3.5.2. The only such production in this
case is the one that lines up with the production used in the parse tree, labeled

33

parse nt s := parse′ (s0 := s) (unseen := unseen0) (s ∈ nt)

parse′ ("ch" ∈ 'ch') := inl terminal_success

parse′ (_ ∈ 'ch') := inr (terminal_failure E)

parse′ ("" ∈ ε) := inl nil_success

parse′ (_ ∈ ε) := inr (nil_failure E)

parse′ (s ∈ it :: its) :=

case any_parse s it its (split (s ∈ it :: its)) of∣∣ inl ret → inl ret∣∣ inr ret → inr (cons_failure _ ret)

parse′ (s ∈ nt) :=

if s < s0

then if (parse′ (s0 := s) (unseen := unseen0) (s ∈ its)) succeeds

returning d for any production p mapping nt to its

then inl (production_success< _ p d)

else inr (production_failure< _ _)

else if nt ∈ unseen

then if (parse′ (unseen := unseen− {nt}) (s ∈ its)) succeeds

returning d for any production p mapping nt to its

then inl (production_success= _ p d)

else inr (production_failure= _ _)

else inr (production_failure 6∈ _ _)

any_parse s it its [] := inr (λ _ : (_ ∈ []). E)

any_parse s it its (x :: xs) :=

case parse′ (takex s ∈ it), parse′ (dropx s ∈ its),

any_parse s it its xs of∣∣ inl ret1, inl ret2, _ → inl (cons_success _ ret1 ret2)∣∣ _ , _ , inl ret′ → inl ret′∣∣ ret1 , ret2 , inr ret′ → inr _

where the hole on the last line constructs a proof of
∀ x′ ∈ (x :: xs) , Tfailure _ _ (takex′ s ∈ it) + Tfailure _ _ (dropx′ s ∈ its)
by using ret′ directly when x′ ∈ xs, and using whichever one of ret1 and ret2 is on
the right when x′ = x. While straightforward, the use of sum types makes it painfully
verbose without actually adding any insight; we prefer to elide the actual term.

Figure 3-3: Pseudo-Implementation of our parser. We adopt the convention that
dependent indices to functions (e.g., unseen) are implicit.

34

(ab)∗(ab)∗.

3. We invoke split on our parse tree.

(a) The split that we defined then invokes deloop on the two copies of the
parse tree

T
"ab" ∈ (ab)∗

Since there are non-root nodes labeled with ("ab" ∈ (ab)∗), the label of
the root node, we promote the deepest one. Letting T ′ denote the tree

"a" ∈ 'a' "b" ∈ 'b'
("ab")

"a" · "b" ∈ (ab)∗

the result of calling deloop is the tree

T ′

"ab" ∈ (ab)∗

(b) The return of split is thus the singleton list containing a single pair of
two parse trees; each element of the pair is the parse tree for "ab" ∈ (ab)∗

that was returned by deloop.

4. We invoke parse on each of the items in the sequence of items associated to
(ab)∗ via the rule ((ab)∗(ab)∗). The two items are identical, and their associ-
ated elements of the pair returned by split are identical, so we only describe
the execution once, on

T ′

"ab" ∈ (ab)∗

(a) We first ensure that we are not in an infinite loop. We check if s < s0. This
check succeeds, for "ab" is shorter than "abab". We thus reset unseen and
s0; calls made by this stack frame will pass unseen0 ≡ [(ab)∗] for unseen,
and s ≡ "ab" for s0.

(b) We may again consider only the productions for which the parse tree asso-
ciated to the string is well-typed. The only such production in this case is
the one that lines up with the production used in the parse tree T ′, labeled
("ab").

(c) We invoke split on our parse tree.

i. The split that we defined then invokes deloop on the trees "a" ∈ 'a'

and "b" ∈ 'b'. Since these trees have no non-root nodes (let alone
non-root nodes sharing a label with the root), deloop is a no-op.

ii. The return of split is thus the singleton list containing a single pair
of two parse trees; the first is the parse tree "a" ∈ 'a', and the second
is the parse tree "b" ∈ 'b'.

35

(d) We invoke parse on each of the items in the sequence of items associated
to (ab)∗ via the rule ("ab"). Since both of these items are terminals, and
the relevant equality check (that "a" is equal to "a", and similarly for
"b") succeeds, parse returns terminal_success. We thus have the two
MinParseTrees: "a" ∈ 'a' and "b" ∈ 'b'.

(e) We combine these using cons_success (and nil_success, to tie up the
base case of the list). We thus have the tree T ′m.

(f) We apply production_success< to this tree, and return the tree

T ′m
< ("ab", [(ab)∗])

"ab" ∈ (ab)∗

5. We now combine the two identical trees returned by parse using cons_success
(and nil_success, to tie up the base case of the list). We thus have the tree

T ′m
< ("ab", [(ab)∗])

"ab" ∈ (ab)∗
T ′m

< ("ab", [(ab)∗])
"ab" ∈ (ab)∗

< ("abab", [])
"ab" · "ab" ∈ (ab)∗

6. We apply production_success= to this tree, and return the tree we claimed
we would end up with,

T ′m
< ("ab", [(ab)∗])

"ab" ∈ (ab)∗
T ′m

< ("ab", [(ab)∗])
"ab" ∈ (ab)∗

< ("abab", [])
"ab" · "ab" ∈ (ab)∗

< ("abab", [(ab)∗])
"abab" ∈ (ab)∗

3.3.3 Parametricity

Before we can combine different instantiations of this interface, we need to know that
they behave similarly. Inspection of the code, together with relational parametricity,
validates assuming the following axiom, which should also be internally provable by
straightforward induction (though we have not bothered to prove it). The alternative
that we have actually taken to get our end-to-end proof to be axiom-free, in the code
base we use to perform various optimizations described in Chapters 4, 5, 6 and 7, is
to prove soundness more manually, for the instantiation of the parser that we use in
those sections.

The parser extensionality axiom states that, for any fixed instantiation of split, and
any arbitrary instantiations of the rest of the interface, giving rise to two different
functions parse1 and parse2, we have

∀ (nt : Nonterminal) (s : String),

bool_of_sum (parse1 nt s) = bool_of_sum (parse2 nt s)

36

where bool_of_sum is, for any types A and B, the function of type A + B → Bool

obtained by sending everything in the left component to true and everything in the
right component to false.

3.3.4 Putting It All Together

Now we have parsers returning the following types:

has_parse : Nonterminal→ String→ Bool

parse : (nt : Nonterminal)→ (s : String)

→ option (ParseTreeOf nt s)

has_no_parse : (nt : Nonterminal)→ (s : String)

→ >+ (MinParseTreeOf nt s→ ⊥)

min_parse : (nt : Nonterminal)→ (s : String)

→ ParseTreeOf nt s

→ MinParseTreeOf nt s

Note that we have taken advantage of the isomorphism >+> ∼= Bool for has_parse,
the isomorphism A+> ∼= option A for parse, and the isomorphism A+⊥ ∼= A for
min_parse.

We can compose these functions to obtain our desired correct-by-construction parser:

parse_full : (nt : Nonterminal)→ (s : String)

→ ParseTreeOf nt s + (ParseTreeOf nt s→ ⊥)

parse_full nt s :=

case parse nt s, has_no_parse nt s of∣∣ Some d, _ → inl d∣∣ _ , inr nd → inr (nd ◦ min_parse)∣∣ _ , _ → E

In the final case, we derive a contradiction by applying the parser extensionality
axiom, which says that parse and has_no_parse must agree on whether or not s

parses as nt.

3.4 Semantic Actions

Our parsing algorithm can also be specialized to handle the common use case of
semantic actions. Consider, for example, the following simultaneous specification of
a grammar and some semantic actions:

e ::= n {int_of_string(n)}

37

| e1 "+" e2 {e1 + e2}
| "(" e ")" {e}

Supposing we have defined this grammar separately for our parser, we can instantiate
the interface as follows to implement these semantic actions:

Tsuccess _ _ (_ ∈ e) := Z
Tsuccess _ _ (_ ∈ 'ch') := >

Tsuccess _ _
(
_ ∈ (its : [Item])

)
:=
∏

it∈its

Tsuccess _ _ (_ ∈ it)

Tfailure _ _ _ := >

As all failure cases are instantiated with (), we elide them.

The terminal case is trivial:

terminal_success _ _ _ := ()

The nil and cons cases are similarly straightforward; we have defined Tsuccess on
item sequences to be the corresponding tuple type.

nil_success _ _ := ()

cons_success _ _ _ _ _ _ _ x xs := (x, xs)

We will use a single definition definition production_success to combine production_success<
and production_success= here, as the definition does not depend on any of the ar-
guments that vary between them. This is where the semantic actions take place. We
deal first with the case of a number:

production_success _ n e s _ _ _ := int_of_string s

In the case of e1 "+" e2, we get a tuple of three values: the value corresponding to e1,
the value corresponding to "+" (which in this case must just be ()), and the value
corresponding to e2:

production_success _ [e, '+', e] e _ _ _ (v1, _, v2)

:= v1 + v2

Finally, we deal with the case of "(" e ")". We again get a tuple of three values: the
value corresponding to "(", the value corresponding to e, and the value corresponding
to ")". As above, the character literals are mapped to dummy > semantic values, so
we ignore them.

production_success _ ['(', e, ')'] e _ _ _ (_, v, _)

38

:= v

3.5 Missteps, Insights, and Dependently Typed Lessons

We will now take a step back from the parser itself, and briefly talk about the process
of coding it. We encountered a few pitfalls that we think highlight some key aspects
of dependently typed programming, and our successes suggest benefits to be reaped
from using dependent types.

3.5.1 The Trouble of Choosing the Right Types

Although we began by attempting to write the type signature of our parser, we found
that trying to write down the correct interface, without any code to implement it, was
essentially intractable. Giving your functions dependent types requires performing a
nimble balancing act between being uselessly general on the one hand, and too overly
specific on the other, all without falling from the high ropes of well-typedness onto
the unforgiving floor of type errors.

We have found what we believe to be the worst sin the typechecker will let you
get away with: having different levels of generality in different parts of your code
base, which are supposed to interface with each other, without a thoroughly vetted
abstraction barrier between them. Like setting your high ropes at different tensions,
every trip across the interface will be costly, and if the abstraction levels get too far
away, recovering your balance will require Herculean effort.

We eventually gave up on writing a dependently typed interface from the start, and
decided instead to implement a simply typed Boolean recognizer, together with proofs
of soundness and completeness. Once we had in hand these proofs, and the data types
required to carry them out, we found that it was mostly straightforward to write down
the interface and refine our parser to inhabit its newly generalized type.

3.5.2 Misordered Splitters

One of our goals in this presentation was to hide most of the abstraction-level mis-
match that ended up in our actual implementation, often through clever use of no-
tation overloading. One of the most significant mismatches we managed to overcome
was the way to represent the set of productions. In this chapter, we left the type as
an abstract mathematical set, allowing us to forgo concerns about ordering, quantifi-
cation, and occasionally well-typedness.

In our Coq implementation, we fixed the type of productions to be a list very early on,
and paid the price when we implemented our parse-tree parser. As mentioned in the
execution of the example in Subsection 3.3.2, we wanted to restrict our attention to
certain productions and rule out the other ones using dependent types. This should

39

be possible if we parameterize over not just a splitter, but a production-selector,
and only require that our string type be well-typed for productions given by the
production-selector. However, the implementation that we currently have requires a
well-typed string type for all productions; furthermore, it does not allow the order in
which productions are considered to depend on the augmented string data. We paid
for this with the extra 300 lines of code we had to write to interleave two different
splitters, so that we could handle the cases that we dismissed above as being ill-
typed and therefore not necessary to consider. That is, because our types were not
formulated in a way that actually made these cases ill-typed, we had to deal with
them, much to our displeasure.

3.5.3 Minimal Parse Trees vs. Parallel Traces

Taking another step back, our biggest misstep actually came before we finished the
completeness proof for our simply typed Boolean recognizer.

When first constructing the type MinParseTree, we thought of them genuinely as
minimal parse trees (ones without a duplicate label in any single path). After much
head-banging, of knowledge that a theorem was obviously true, against proof goals
that were obviously impossible, we discovered the single biggest insight—albeit a
technical one—of the project. The type of “minimal parse trees” we had originally
formulated did not match the parse trees produced by our algorithm. A careful exam-
ination of the algorithm execution in Subsection 3.3.2 should reveal the difference.1

Our insight, thus, was to conceptualize the data type as the type of traces of parallel
executions of our particular parser, rather than as truly minimal parse trees.

This may be an instance of a more general phenomenon present when programming
with dependent types: subtle friction between what you think you are doing and what
you are actually doing often manifests as impossible proof goals.

1For readers wanting to skip that examination: the algorithm we described allows a label (s ∈ nt)
to appear one extra time along a path if, the first time it appears, its parent node’s label, (s′ ∈ nt′),
satisfies s < s′. That is, between shrinking the string being parsed and shrinking it again, the first
nonterminal that appears may be duplicated once.

40

Chapter 4

Refining Splitters by Fiat

4.1 Splitters at a Glance

We have now finished describing the general parsing algorithm, as well as its correct-
ness proofs; we have an algorithm that decides whether or not a given structure can
be imposed on any block of unstructured text. The algorithm is parameterized on
an “oracle” that describes how to split the string for each rule; essentially all of the
algorithmically interesting content is in the splitters. For the remainder of this thesis,
we will focus on how to implement the splitting oracle. Correctness is not enough,
in general; algorithms also need to be fast to use. We thus focus primarily on effi-
ciency when designing splitting algorithms, and work in a framework that guarantees
correctness.

The goals of this work, as mentioned in Section 2.5, are to present a framework for
constructing proven-correct parsers incrementally and argue for its eventual feasibility.
To this end, we build on the previous work of Fiat [11], to allow us to build programs
incrementally while maintaining correctness guarantees. This section will describe
Fiat and how it is used in this project. The following sections will focus more on the
details of the splitting algorithms and less on Fiat itself.

4.2 What Counts as Efficient?

To guide our implementations, we characterize efficient splitters informally, as follows.
Although our eventual concrete efficiency target is to be competitive with extant
open-source JavaScript parsers, when designing algorithms, we aim at the asymptotic
efficiency target of linearity in the length of the string. In practice, the dominating
concern is that doubling the length of the string should only double the duration
of the parse, and not quadruple it (or more!). To be efficient, it suffices to have
the splitter return at most one index. In this case, the parsing time is O(length
of string × (product over all nonterminals of the number of possible rules for that

41

nonterminal)).

Consider, for example, the following very silly grammar for parsing either the empty
string or the character 'a': let E0 ::= ε and F0 ::= ε denote nonterminals with a single
production rule which allows them to parse the empty string. Let Ei+1 ::= Ei | Fi
and Fi+1 ::= Ei | Fi be nonterminals, for each i, which have two rules which both
eventually allow them to parse the empty string. If we let G ::= Ei | 'a' for some i,
then, to successfully parse the string "a", we end up making approximately 2i+1 calls
to the splitter.

To avoid hitting this worst-case scenario, we can use a nonterminal-picker, which
returns the list of possible production rules for a given string and nonterminal. As
long as it returns at most one possible rule in most cases, in constant time, the parsing
time will be O(length of string); backtracking will never happen. This is future work.

4.3 Introducing Fiat
4.3.1 Incremental Construction by Refinement

Efficiency targets in hand, we move on to incremental construction. The key idea
is that parsing rules tend to fall into clumps that are similar between grammars.
For example, many grammars use delimiters (such as whitespace, commas, or binary
operation symbols) as splitting points, but only between well-balanced brackets (such
as double quotes, parentheses, or comment markers). We can take advantage of these
similarities by baking the relevant algorithms into basic building blocks, which can
then be reused across different grammars. To allow this reuse, we construct the
splitters incrementally, allowing us to deal with different rules in different ways.

The Fiat framework [11] is the scaffolding of our splitter implementations. As a frame-
work, the goal of Fiat is to enable library writers to construct algorithmic building
blocks packaged with correctness guarantees, in such a way that users can easily and
mostly automatically make use of these building blocks when they apply.

4.3.2 The Fiat Mindset

The correctness guarantees of Fiat are based on specifications in the form of propo-
sitions in Gallina, the mathematical language used by Coq. For example, the spec-
ification of a valid has_parse method is that has_parse nt str = true ←→
inhabited (ParseTreeOf nt s). Fiat allows incremental construction of algorithms
by providing a language for seamlessly mixing specifications and code. The language
is a light-weight monadic syntax with one extra operator: a nondeterministic choice
operator; we define the following combinators:

x← c; c′ Run c and store the result in x; continue with c′, which may mention x.

c; ; c′ Run c. If it terminates, throw away the result, and run c′.

42

ret x Immediately return the value x.

{x | P(x)} Nondeterministically choose a value of x satisfying P.

If none exists, the program is considered to not terminate.

An algorithm starts out as a nondeterministic choice of a value satisfying the specifi-
cation. Coding then proceeds by refinement. Formally, we say that a computation c′

refines a computation c, written c′ ⊆ c, if every value that c′ can compute to, c can
also compute to. We freely generate the relation “the computation c can compute to
the value v”, written c v, by the rules:

ret v v

{x | P(x)} v iff v satisfies P

(c; ; c′) v iff there is a v′ such that c v′ and c′ v

(x← c; c′(x)) v iff there is a v′ such that c v′ and c′(v′) v

In our use case, we express the specification of the splitter as a nondeterministic
choice of a list of split locations, such that any splitting location that results in a
valid parse tree is contained in the list. More formally, we can define the proposition

split_list_is_complete : Grammar → String → [Item] → [N] → Prop

split_list_is_complete G str [] splits = ⊥
split_list_is_complete G str (it :: its) splits

= ∀ n, n < length str

→ (has_parse it (take n str) ∧ has_parse its (drop n str))

→ n ∈ splits

where we overload has_parse to apply to items and productions alike, and where we
use [N] to denote the type of lists of natural numbers. In practice, we pass the first
item and the rest of the items as separate arguments, so that we don’t have to deal
with the empty list case.

Let production_is_reachable G p be the proposition that p could show up during
parsing, i.e., that p is a tail of a rule associated to some valid nonterminal in the
grammar; we define this by folding over the list of valid nonterminals. The specifi-
cation of the splitter, as a nondeterministic computation, for a given grammar G, a
given string str, and a given rule it::its, is then:

{ splits : [N]
| production_is_reachable G (it :: its)

→ split_list_is_complete G str it its splits }

43

We then refine this into a choice of a splitting location for each rule actually in the
grammar (checking for equality with the given rule), and then can refine (implement)
the splitter for each rule separately. For example, for the grammar (ab)∗, defined
to have a single nonterminal (ab)∗ which can either be empty, or be mapped to
'a' 'b' (ab)∗, we would refine this to the computation:

If [(ab)∗] =p it :: its Then

{ splits : [N]
| split_list_is_complete G str (ab)∗ [] splits }

Else If ['b', (ab)∗] =p it :: its Then

{ splits : [N]
| split_list_is_complete G str 'b' [(ab)∗] splits }

Else If ['a', 'b', (ab)∗] =p it :: its Then

{ splits : [N]
| split_list_is_complete G str 'a' ['b', (ab)∗] splits }

Else

{ dummy_splits : list N | > }

where =p refers to a Boolean equality test for productions. Note that in the final case,
we permit any list to be picked, because whenever the production we are handling is
reachable, the value returned by that case will never be used.

We can now refine each of these cases separately, using setoid_rewrite; this tactic
replaces one subterm of the goal with an “equivalent” subterm, where the “equivalence”
can be any transitive relation which is respected by the functions applied to the
subterm. Using setoid_rewrite allows us to hide the glue required to state our
lemmas about computations as wholes, while using them to replace subterms of other
computations. The key to refining each part separately, to making Fiat work, is that
the refinement rules package their correctness properties, so users don’t have to worry
about correctness when programming by refinement. We use Coq’s setoid rewriting
machinery to automatically glue together the various correctness proofs when refining
only a part of a program.

For example, we might have a lemma singleton which says that returning the length
of the string is a valid refinement for any rule that has only one nonterminal; its type,
for a particular grammar G, a particular string str, and a particular nonterminal nt,
would be

singleton G str nt

: (ret [length str])

⊆

44

{ splits : [N]
| split_list_is_complete G str nt [] splits }

Then setoid_rewrite (singleton _ _ (ab)∗) would refine

If [(ab)∗] =p it :: its Then

{ splits : [N]
| split_list_is_complete G str (ab)∗ [] splits }

Else If ['b', (ab)∗] =p it :: its Then

{ splits : [N]
| split_list_is_complete G str 'b' [(ab)∗] splits }

Else If ['a', 'b', (ab)∗] =p it :: its Then

{ splits : [N]
| split_list_is_complete G str 'a' ['b', (ab)∗] splits }

Else

{ dummy_splits : [N] | > }

into

If [(ab)∗] =p it :: its Then

ret [length str]

Else If ['b', (ab)∗] =p it :: its Then

{ splits : [N]
| split_list_is_complete G str 'b' [(ab)∗] splits }

Else If ['a', 'b', (ab)∗] =p it :: its Then

{ splits : [N]
| split_list_is_complete G str 'a' ['b', (ab)∗] splits }

Else

{ dummy_splits : [N] | > }

Note that the only change is in the computation returned in the first branch of the
conditional.

We now describe the refinements that we do within this framework, to implement
efficient splitters.

45

4.4 Optimizations
4.4.1 An Easy First Optimization: Indexed Representation of

Strings

One optimization that is always possible is to represent the current string being parsed
in this recursive call as a pair of indices into the original string. This allows us to
optimize the code doing string manipulation, as it will no longer need to copy strings
around, only do index arithmetic.

This optimization, as well as the trivial optimizations described in Chapter 5, are
implemented automatically by the initial lines of any parser refinement process in
Fiat.

4.4.2 Putting It All Together

Now that we have the concepts and ideas behind refining parsers, or, more precisely,
splitting oracles for parsers, in the Fiat framework, what does the code actually look
like? Every refinement process, which defines a representation for strings, along with
a proven-correct method of splitting them, begins with the same code:

Lemma ComputationalSplitter’ : FullySharpened (string_spec G).

Proof.

start honing parser using indexed representation.

hone method "splits".

{

simplify parser splitter.

We begin the proof with a call to the tactic start honing parser using indexed

representation; Coq’s mechanism for custom tactic notations makes it easy to define
such space-separated identifiers. This tactic takes care of the switch to using indices
into the original string, of replacing the single nondeterministic choice of a complete
list of splits with a sequence of If statements returning separate computations for each
rule, and of replacing nondeterministic choices with direct return values when such
values can be determined by trivial rules (which will be described in Chapter 5). The
tactic hone method "splits" says that we want to refine the splitter, rather than,
say, the representation of strings that we are using. The tactic simplify parser

splitter performs a number of straightforward and simple optimizations, such as
combining nested If statements which return the same value.

4.4.3 Upcoming Optimizations

In the next few sections, we build up various strategies for splitters. Although our
eventual target is JavaScript, we cover only a more modest target of very simple

46

arithmetical expressions in this thesis. We begin by tying up the (ab)∗ grammar,
and then moving on to parse numbers, parenthesized numbers, expressions with only
numbers and '+', and then expressions with numbers, '+', and parentheses.

47

48

Chapter 5

Fixed-Length Items, Parsing (ab)*;
Parsing #s; Parsing #, ()

In this chapter, we explore the Fiat framework with a few example grammars, which
we describe how to parse. Because these rules are so straightforward, they can be
handled automatically, in the very first step of the derivation; we will explain how
this works, too.

Recall the grammar for the regular expression (ab)∗:

(ab)∗ ::= ε | 'a' 'b' (ab)∗

In addition to parsing this grammar, we will also be able to parse the grammar for
non-negative parenthesized integers:

pexpr ::= '(' pexpr ')' | number
number ::= digit number?

number? ::= ε | number
digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

5.1 Parsing (ab)*: At Most One Nonterminal

The simpler of these grammars is the one for (ab)∗. The idea is that if any rule has at
most one nonterminal, then there is only one possible split: we assign one character
to each terminal and the remaining characters to the single nonterminal.

For any given rule, we can compute straightforwardly whether or not this is the case;

49

Haskell-like pseudocode for doing so is:

has_at_most_one_nt : [Item] → Bool

has_at_most_one_nt [] := true

has_at_most_one_nt ('ch'::xs) := has_at_most_one_nt xs

has_at_most_one_nt (nt::xs) := has_only_terminals xs

has_only_terminals : [Item] → Bool

has_only_terminals [] := true

has_only_terminals ('ch'::xs) := has_only_terminals xs

has_only_terminals (nt::xs) := false

The code for determining the split location is even easier: if the first item of the rule
is a terminal, then split at character 1; if the first item of the rule is a nonterminal,
and there are n remaining items in the rule, then split n characters before the end of
the string.

5.2 Parsing Parenthesized Numbers: Fixed Lengths

The grammar for parenthesized numbers has only one rule with multiple nonterminals:
the rule for number ::= digit number?. The strategy here is also simple: because
digit only accepts strings of length exactly 1, we always want to split after the first
character.

The following pseudocode determines whether or not all strings parsed by a given
item are a fixed length, and, if so, what that length is:

fixed-length-of : [Nonterminal] → [Item] → option Z
fixed-length-of valid_nonterminals [] := Some 0

fixed-length-of valid_nonterminals (Terminal _::xs)

:= case fixed-length-of valid_nonterminals xs of
| Some k → Some (1 + k)

| None → None

fixed-length-of valid_nonterminals (Nonterminal nt::xs)

if nt ∈ valid_nonterminals

then let lengths :=

map (fixed-length-of (remove nt valid_nonterminals))

(Lookup nt)

in if all of the elements of lengths are equal to L for some L

then case L, fixed-length-of valid_nonterminals xs of
| Some L’, Some k → Some (L’ + k)

| _ , _ → None

50

else None

else None

We have proven that for any nonterminal for which this method returns just k, the
only valid split of any string for this rule is at location k. This is the correctness
obligation that Fiat demands of us to be able to use this rule.

5.3 Putting It Together

Both of these refinement strategies are simple and complete for the rules they handle;
if a rule has at most one nonterminal, or if the first element of a rule has a fixed length,
then we can’t do any better than these rules. Therefore, we incorporate them into the
initial invocation of start honing parser using indexed representation. As
described in Chapter 4, to do this, we express the splitter by folding If statements
over all of the rules of the grammar that are reachable from valid nonterminals. The
If statements check equality of the rule against the one we were given, and, if they
match, look to see if either of these strategies applies. If either does, than we return the
appropriate singleton value. If neither applies, then we default to the nondeterministic
pick of a list containing all possible valid splits. The results of applying this procedure
without treating any rules specially was shown in Subsection 4.3.2. The readers
interested in precise details can find verbatim code for the results of applying this
procedure, including the rules of this chapter, in Appendix A.1. For the similarly
interested readers, the Coq code that computes the goal that the user is presented
with, after start honing parser using indexed representation, can be found
in Appendix A.2.

51

52

Chapter 6

Disjoint Items, Parsing #, +

Consider now the following grammar for arithmetic expressions involving '+' and
numbers:

expr ::= number +expr?

+expr? ::= ε | '+' expr

number ::= digit number?

number? ::= ε | number
digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

The only rule not handled by the strategies of the previous chapter is the rule
expr ::= number +expr?. We can handle this rule by noticing that the set of characters
in the strings accepted by number is disjoint from the set of possible first characters of
the strings accepted by +expr?. Namely, all characters in strings accepted by number

are digits, while the first character of a string accepted by +expr? can only be '+'.

The following code computes the set of possible characters of a rule:

possible-terminals’ : [Nonterminal] → [Item] → [Char]

possible-terminals’ _ [] := []

possible-terminals’ valid_nonterminals (’ch’ :: xs)

:= [ch] ∪ possible-terminals’ valid_nonterminals xs

possible-terminals’ valid_nonterminals (nt :: xs)

:= if nt ∈ valid_nonterminals

then fold

(∪)
(possible-terminals’ valid_nonterminals xs)

(map (possible-terminals’ (remove nt valid_nonterminals))

53

(Lookup nt))

else possible-terminals’ valid_nonterminals xs

possible-terminals : Grammar → [Item] → [Char]

possible-terminals G its

:= possible-terminals’ (valid_nonterminals_of G) its

In the case where the nonterminal is not in the list of valid nonterminals, we assume
that we have already seen that nonterminal higher up the chain of recursion (which we
will have, if it is valid according to the initial list), and thus don’t have to recompute
its possible terminals.

The following code computes the set of possible first characters of a rule:

possible-first-terminals’ : [Nonterminal] → [Item] → [Char]

possible-first-terminals’ _ [] := []

possible-first-terminals’ valid_nonterminals (’ch’ :: xs)

:= [ch]

possible-first-terminals’ valid_nonterminals (nt :: xs)

:= (if nt ∈ valid_nonterminals

then
fold

(∪)
[]

(map (possible-first-terminals’ (remove nt valid_nonterminals))

(Lookup nt))

else [])

∪
(if has_parse nt ""

then possible-first-terminals’ valid_nonterminals xs

else [])

possible-first-terminals : Grammar → [Item] → [Char]

possible-first-terminals G its

:= possible-first-terminals’ (valid_nonterminals_of G) its

We can decide has_parse at refinement time with the brute-force parser, which tries
every split; when the string we’re parsing is empty, O(length!) is not that long.
The idea is that we recursively look at the first element of each production; if it is
a terminal, then that is the only possible first terminal of that production. If it’s a
nonterminal, then we have to fold the recursive call over the alternatives. Additionally,
if the nonterminal might end up parsing the empty string, then we have to also move
on to the next item in the production and see what its first characters might be.

54

By computing whether or not these two lists are disjoint, we can decide whether or
not this rule applies. When it applies, we can either look for the first character not in
the first list (in this example, the list of digits), or we can look for the first character
which is in the second list (in this case, the '+'). Since there are two alternatives,
we leave it up to the user to decide which one to use.

For this grammar, we choose the shorter list. We define a function:

index_of_first_character_in : String → [Char] → N

by folding over the string. We can then phrase the refinement rule as having type

is_disjoint (possible-terminals G [it]) (possible-first-terminals G its)

= true

→ ret [index_of_first_character_in str (possible-first-terminals G its)]

⊆
{ splits : [N]
| split_list_is_complete G str it its splits }

Applying this rule involves normalizing the calls to is_disjoint, possible-terminals,
and possible-first-terminals. This normalization shows up as a side condition,
given to us by setoid_rewrite, which can be solved by the tactic reflexivity; the
reflexivity tactic proves the equality of two things which are syntactically equal
modulo computation.

55

56

Chapter 7

Parsing Well-Parenthesized
Expressions

7.1 At a Glance

We finally get to a grammar that requires a non-trivial splitting strategy. In this
section, we describe how to parse strings for a grammar that accepts arithmetical
expressions involving numbers, pluses, and well-balanced parentheses. More generally,
this strategy handles any binary operation with guarded brackets.

7.2 Grammars We Can Parse

Consider the following two grammars, with digit denoting the nonterminal that
accepts any single decimal digit.

Parenthesized addition:

expr ::= pexpr +expr

+expr ::= ε | '+' expr

pexpr ::= number | '(' expr ')'

number ::= digit number?

number? ::= ε | number
digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

We have carefully constructed this grammar so that the first character of the string
suffices to uniquely determine which rule of any given nonterminal to apply.

S-expressions are a notation for nested space-separated lists. By replacing digit with

57

a nonterminal that accepts any symbol in a given set, which must not contain either
of the brackets, nor whitespace, and replacing '+' with a space character ' ', we get
a grammar for S-expressions:

expr ::= pexpr sexpr

sexpr ::= ε | whitespace expr

pexpr ::= atom | '(' expr ')'

atom ::= symbol atom?

atom? ::= ε | atom
whitespace ::= whitespace-char whitespace?

whitespace? ::= ε | whitespace
whitespace-char ::= ' ' | '\n' | '\t' | '\r'

7.3 The Splitting Strategy
7.3.1 The Main Idea

The only rule not already handled by the baseline automation of start honing

parser using indexed representation is the rule that says that a pexpr +expr

is an expr. The key insight here is that, to know where to split, we need to know
where the next '+' at the current level of parenthesization is. If we can compute an
appropriate lookup table in time linear in the length of the string, then our splitter
overall will be linear.

7.3.2 Building the Lookup Table

We build the table by reading the string from right to left, storing for each character
the location of the next '+' at the current level of parenthesization. To compute this
location we keep a list of the location of the next '+' at every level of parenthesization.

Let’s start with a very simple example, before moving to a more interesting one. To
parse "4+5", we are primarily interested in the case where we are parsing something
that is a number, or parenthesized on the left, followed by a '+', followed by any
expression. For this item, we want to split the string right before the '+', and say
that the "4" can be parsed as a number (or parenthesized expression), and that the
"+5" can be parsed as a '+' followed by an expression.

To do this, we build a table that keeps track of the location of the next '+', starting
from the right of the string. We will end up with the table:

Table Entries: 1 0 ∅
String: " 4 + 5 "

At the '5', there is no next '+', and we are not parenthesized at all, so we record this

58

as ∅. At the '+', we record that there is a '+' at the current level of parenthesization,
with 0. Then, since the '4' is not a '+', we increment the previous number, and
store 1. This is the correct location to split the string: we parse one character as a
number and the rest as +expr.

Now let’s try a more complicated example: "(1+2)+3". We want to split this string
into "(1+2)" and "+3". The above strategy is insufficient to do this; we need to keep
track of the next '+' at all levels of parenthesization at each point. We will end up
with the following table, where the bottom-most element is the current level, and the
ones above that are higher levels. We use lines to indicate chains of numbers at the
same level of parenthesization.

4 3 2 1
Table Entries:

5 1 0 ∅ ∅ 0 ∅
String: " (1 + 2) + 3 "

We again start from the right. Since there are no '+'s that we have seen, we store
the singleton list [∅], indicating that we know about only the current level of paren-
thesization, and that there is no '+' to the right. At the '+' before the "3", we
store the singleton list [0], indicating that the current character is a '+', and we
only know about one level of parenthesization. At the ')', we increment the counter
for '+', but we also now know about a new level of parenthesization. So we store the
two element list [∅, 1]. At the '3', we increment all numbers, storing [∅, 2]. At
the '+' before the "2", we store 0 at the current level, and increment higher levels,
storing [0, 3]. At the '1', we simply increment all numbers, storing [1, 4]. Finally,
at the '(', we pop a level of parenthesization and increment the remaining numbers,
storing [5]. This is correct; we have 5 characters in the first string, and when we go
to split "1+2" into "1" and "+2", we have the list [1, 4], and the first string does
indeed contain 1 character.

As an optimization, we can drop all but the first element of each list once we’re
done computing, and, in fact, can do this as we construct the table. However, for
correctness, it is easier to reason about a list located at each location.

7.3.3 Table Correctness

What is the correctness condition on this table? The correctness condition Fiat gives
us is that the splits we compute must be the only ones that give rise to valid parses.
This is hard to reason about directly, so we use an intermediate correctness condition.
Intuitively, this condition corresponds to saying that the table should have a cell
pointing to a given location if and only if that location is the first '+' at the relevant
level of parenthesization; importantly, we talk about every level of parenthesization
at every point in the string.

59

More formally, each cell in the table corresponds to some level of parenthesization; if
a list ` is associated to a given position in the string, then the nth element of that list
talks about the '+' at parenthesization level n. The correctness condition is then:
for any cell of the table, talking about parenthesization level n, if the cell is empty
(is ∅, or does not exist at all), then, for any substring s of the string starting at the
location corresponding to that cell, and ending with a '+', the result of prepending n
open parentheses to s must not be well-parenthesized. Additionally, if the cell points
to a given location, then that location must contain a '+', and the fragment of the
string starting at the current location and going up to but not including the '+',
must not contain any '+'s which are “exposed”; all intervening '+'s must be hidden
by a pair of parentheses enclosing a well-parenthesized substring of this fragment.

Even more formally, we can define a notation of paren-balanced and paren-balanced-
hiding-'+'. Say that a string is paren-balanced at level n if it closes exactly n more
parentheses than it opens, and there is no point at which it has closed more than n
more parentheses than it has opened. So the string "1+2)" is paren-balanced at level
1 (because it closes 1 more parenthesis than it opens), and the string "1+2)+(3" is
not paren balanced at any level (though the string "1+2)+(3)" is paren-balanced at
level 1). A string is paren-balanced-hiding-'+' at level n if it is paren-balanced at
level n, and, at any point at which there is a '+', at most n − 1 more parentheses
have been closed than opened. So "(1+2)" is paren-balanced-hiding-'+' at level 0,
and "(1+2))" is paren-balanced-hiding-'+' at level 1, and "(1+2)+3" is not paren-
balanced-hiding-'+' at any level, though it is paren-balanced at level 0.

Then, the formal correctness condition is that if a cell at parenthesis level n points to
a location `, then the string from the cell up to but not including ` must be paren-
balanced-hiding-'+' at level n, and the character at location ` must be a '+'. If the
cell is empty, then the string up to but not including any subsequent '+' must not
be paren-balanced at level n.

The table computed by the algorithm given above satisfies this correctness condition,
and this correctness condition implies that the splitting locations given by the table
are the only ones that produce valid parse trees; there is a unique table satisfying this
correctness condition (because it picks out the first '+' at the relevant level), and
any split location which is not appropriately paren-balanced/paren-balanced-hiding
results in no parse tree.

7.3.4 Diving into Refinement Code

Although the rule itself is non-trivial, our goal is to make using this rule as trivial as
possible; we now explain how this refinement rule requires only one line of code to
use (modulo long tactic names):

setoid_rewrite refine_binop_table;

[presimpl_after_refine_binop_table | reflexivity..].

60

The tactic presimpl_after_refine_binop_table is nothing more than a neatly
packaged collection of calls to the unfold tactic, which performs δ-reduction (def-
inition unfolding); this unfolding allows the subsequent call to reflexivity to in-
stantiate some existential variables (placeholders which tell Coq “fill me in later”),
without needing higher-order unification. As mentioned at the end of Chapter 6,
reflexivity takes care of discharging the side conditions which can be decided by
computation; this is commonly called “reflective automation,” for its widespread use
in proving a lemma by appealing to computation run on a “reflection,” or syntactic
representation, of that lemma [4].

There are three components to making a rule that can be used with a one-liner: not
requiring a change of representation; reflective computation of the side conditions,
allowing them all to be discharged with reflexivity; and automatic discovery of
any arguments to the rule. We cover each of these separately.

Doing Without a New Representation of Strings

Recall from Section 5.3 that the first step in any splitter refinement, implemented as
part of the start honing parser using indexed representation tactic, is to use
an indexed representation of strings, where splitting a string only involves updating
the indices into the original string. Naively, to implement the refinement strategy
of this chapter, we’d either need to store a fresh table, somehow derived from the
previous one, every time we split the string, or recompute the entire table from
scratch on every invocation of the splitting method.

How do we get around computing a new table on splits? We pull the same trick here
that we pulled on strings; we refer only to the table that is built from the initial string,
and describe the correctness condition on the table in terms of arbitrary substrings
of that string.

Fiat presents us with a goal involving a statement of the form “nondeterministically
pick a list of splitting locations that is complete for the substring of str starting at
n and ending at m, for the rule pexpr+expr.” In code form, this is:

{ splits : [N]
| split_list_is_complete

G

(substring n m str)

nt

('ch'::its)

splits }

This code, which matches our current implementation, doesn’t quite allow us to
handle what we claim to handle in this section; we should be able to handle any rule

61

that starts with a nonterminal nt, such that the set of possible characters in any
string which can be parsed as nt is disjoint from the set of possible first characters of
any string parsed by the rest of the rule. This code only handles the case where the
rest of the rule begins with a terminal.

The final refinement rule, which we use with setoid_rewrite, says that this is refined
by a lookup into a suitably defined table:

(ret [case List.nth n table None of∣∣ Some idx → idx∣∣ None → dummy_value

])

⊆
{ splits : [N]
| split_list_is_complete

G

(substring n m str)

nt

('ch'::its)

splits }

By phrasing the rule in terms of substring n m str, rather than in terms of an
arbitrary string, the computation of the table is the same in every call to the splitter.
All that remains is to lift the computation of the table to a location outside the
recursive call to the parsing function; we plan to implement code to do this during
the extraction phase soon.

Before moving on to the other components of making usage of this rule require only
one line of code, we note that we make use of the essential property that removing
characters from the end of the string doesn’t add new locations where splitting could
yield a valid parse; if a given location is the first '+' at the current level of paren-
thesization, this does not change when we remove characters from the end of the
string.

Discharging the Side Conditions Trivially

To prove the correctness condition on the table, we need to know some things about
the grammar that we are handling. In particular, we need to know that if we are
trying to parse a string as a rule analogous to pexpr, then there can be no exposed
'+' characters, and, furthermore, that every such parseable string has well-balanced
parentheses. To allow discharging the side conditions trivially, we define a function
that computes whether or not this is the case for a given nonterminal in a given

62

grammar. We then prove that, whenever this function returns true, valid tables
yield complete lists of splitting locations.

To make things simple, we approximate which grammars are valid; we require that
every open parenthesis be closed in the same rule (rather than deeply nested in further
nonterminals). In Haskell-like pseudocode, the function we use to check validity of a
grammar can be written as:

grammar-and-nonterminal-is-valid : Grammar → Nonterminal → Bool

grammar-and-nonterminal-is-valid G nt

:= fold (&&) true (map (paren-balanced-hiding G) (G.(Lookup) nt))

pb’ : Grammar → Nat → [Item] → Bool

pb’ G n [] := (n == 0)

pb’ G n (Nonterminal nt :: s)

:= fold (&&) (pb’ G 0) (G.(Lookup) nt) && pb’ G n s

pb’ G n (’(’ :: s) := pb’ G (n + 1) s

pb’ G n (’)’ :: s) := n > 0 && pb’ G (n - 1) s

pb’ G n (_ :: s) := pb’ G n s

paren-balanced G := pb’ G 0

pbh’ : Grammar → Nat → [Item] → Bool

pbh’ G n [] := (n == 0)

pbh’ G n (Nonterminal nt :: s)

:= fold (pbh’ G 0) (G.(Lookup) nt) && pb’ G n s

pbh’ G n (’+’ :: s) := n > 0 && pbh’ G n s

pbh’ G n (’(’ :: s) := pbh’ G (n + 1) s

pbh’ G n (’)’ :: s) := n > 0 && pbh’ G (n - 1) s

pbh’ G n (_ :: s) := pbh’ G n s

paren-balanced-hiding G := pbh’ G 0

There is one subtlety here, that was swept under the rug in the above code: this
computation might not terminate! We could deal with this by memoizing this com-
putation in much the same way that we memoized the parser to deal with potentially
infinite parse trees. Rather than dealing with the subtleties of figuring out what to do
when we hit repeated nonterminals, we perform the computation in two steps. First,
we trace the algorithm above, building up a list of which nonterminals need to be
paren-balanced, and which ones need to be paren-balanced-hiding. Second, we fold
the computation over these lists, replacing the recursive calls for nonterminals with
list membership tests.

63

Automatic Discovery of Arguments

Throughout this chapter, we’ve been focusing on the arithmetic-expression example.
However, the exact same rule can handle S-expressions, with just a bit of generaliza-
tion. There are two things to be computed: the binary operation and the parenthesis
characters.1

We require that the first character of any string parsed by the nonterminal analogous
to +expr be uniquely determined; that character will be the binary operator; we can
reuse the code from Chapter 6 to compute this character and ensure that it is unique.

To find the parenthesis characters, we first compute a list of candidate character pairs:
for each rule associated to the nonterminal analogous to pexpr, we consider the pair
of the first character and the last character (assuming both are terminals) to be a
candidate pair.2 We then filter the list for characters which yield the conclusion that
this rule is applicable to the grammar, according to the algorithm of the previous
subsubsection. We then require, as a side condition, that the length of this list be
positive.

1Currently, our code requires the binary operation to be exposed as a terminal in the rule we are
handling. We plan on generalizing this to the grammars described in this chapter shortly.

2Again, generalizing this to characters hidden by nested nonterminals should be straightforward.

64

Chapter 8

Future Work

Parsing JavaScript The eventual target for this demonstration of the framework is
the JavaScript grammar, and we aim to be competitive, performance-wise, with pop-
ular open-source JavaScript implementations. We plan to profile our parser against
these on various test suites and examples of JavaScript code.

Generating Parse Trees We plan to eventually generate parse trees, and error
messages, rather than just Booleans, in the complete pipeline. We have already
demonstrated that this requires only small adjustments to the algorithm in the section
on the dependently typed parser; what remains is integrating it with the Fiat code
for refining splitters.

Validating Extraction By adapting ongoing work by Pit–Claudel et al., our parsers
will be able to be compiled to verified Bedrock [7], and thus to assembly, within Coq.
Currently, we use Coq’s unverified extraction mechanism to turn our parsers into
OCaml.

Picking Productions As mentioned in Section 4.2, our parsers perform poorly on
large grammars with many rules. We plan to improve performance by parameterizing
over an oracle to pick which rules to look at for a given nonterminal; much like
the oracle for splitting, it should also be possible to handle a wide swath of cases
automatically, and handle the remaining ones by refinement.

Common Subexpression Elimination: Lifting Computation out of Recur-
sive Calls As mentioned briefly in Section 7.3.4, we plan to implement common
subexpression elimination during the extraction phase. This will effectively memoize
the computation of the table for splitting locations described in Chapter 7.

65

8.1 Future Work with Dependent Types

Recall from Chapter 3 that dependent types have allowed us to refine our parsing
algorithm to prove its own soundness and completeness.

However, we still have some work left to do to clean up the implementation of the
dependently typed version of the parser.

Formal extensionality/parametricity proof To completely finish the formal
proof of completeness, as described in this thesis, we need to prove the parser ex-
tensionality axiom from Subsection 3.3.3. We need to prove that the parser does
not make any decisions based on any arguments to its interface other than split,
internalizing the obvious parametricity proof. Alternatively, we could hope to use
an extension of Coq which materializes internally the metathoretic “free theorem”
parametricity facts [3].

Even more self-reference We might also consider reusing the same generic parser
to generate the extensionality proofs, by instantiating the type families for success and
failure with families of propositions saying that all instantiations of the parser, when
called with the same parsing problem, always return values that are equivalent when
converted to Booleans. A more specialized approach could show just that has_parse
agrees with parse on successes and with has_no_parse on failures:

Tsuccess _ _ (s ∈ nt)

:= has_parse nt s = true ∧ parse nt s 6= None

Tfailure _ _ (s ∈ nt)

:= has_parse nt s = false ∧ has_no_parse 6= inl ()

Synthesizing dependent types automatically? Although finding sufficiently
general (dependent) type signatures was a Herculean task before we finished the
completeness proof and discovered the idea of using parallel parse traces, it was
mostly straightforward once we had proofs of soundness and completeness of the
simply typed parser in hand; most of the issues we faced involving having to figure
out how to thread additional hypotheses, which showed up primarily at the very end
of the proof, through the entire parsing process. Subsequently instantiating the types
was also mostly straightforward, with most of our time and effort being spent writing
transformations between nearly identical types that had slightly different hypotheses,
e.g., converting a Foo involving strings shorter than s1 into another analogous Foo,
but allowing strings shorter than s2, where s1 is not longer than s2. Our experience
raises the question of whether it might be possible to automatically infer dependently
typed generalizations of an algorithm, which subsume already-completed proofs about
it, and perhaps allow additional proofs to be written more easily.

66

Further generalization Finally, we believe our parser could be generalized even
further; the algorithm we have implemented is essentially an algorithm for inhabit-
ing arbitrary inductive type families, subject to some well-foundedness, enumerabil-
ity, and finiteness restrictions on the arguments to the type family. The interface
we described in Chapter 3 is, conceptually, a composition of this inhabitation algo-
rithm with recursion and inversion principles for the type family we are inhabiting
(ParseTreeOf in this thesis). Our techniques for refining this algorithm so that it
could prove itself sound and complete should therefore generalize to this viewpoint.

67

68

Appendix A

Selected Coq Code

A.1 A Fiat Goal After Trivial Rules Are Refined

For each grammar, the Fiat framework presents us with goals describing the unimple-
mented portion of the splitter for this particular grammar. For example, the goal for
the grammar that parses arithmetic expressions involving plusses and parentheses,
after taking care of the trivial obligations that we describe in Chapter 5, looks like
this:

1 focused subgoals (unfocused: 3)

, subgoal 1 (ID 3491)

r_n : string * (nat * nat)

n : item ascii * production ascii

H := ?88 : hiddenT

============================

refine

(ls <- If ([Nonterminal "pexpr"] =p fst n :: snd n)

|| (([Nonterminal "expr"] =p fst n :: snd n)

|| ([Nonterminal "number"] =p fst n :: snd n)

|| (([Terminal ")"] =p fst n :: snd n)

|| ([Terminal "0"] =p fst n :: snd n)

|| ([Terminal "1"] =p fst n :: snd n)

|| ([Terminal "2"] =p fst n :: snd n)

|| ([Terminal "3"] =p fst n :: snd n)

|| ([Terminal "4"] =p fst n :: snd n)

|| ([Terminal "5"] =p fst n :: snd n)

|| ([Terminal "6"] =p fst n :: snd n)

|| ([Terminal "7"] =p fst n :: snd n)

|| ([Terminal "8"] =p fst n :: snd n)

69

|| ([Terminal "9"] =p fst n :: snd n)

|| ([Nonterminal "digit"] =p fst n :: snd n)))

Then ret [ilength r_n]

Else (If [Nonterminal "pexpr"; Terminal "+";

Nonterminal "expr"] =p fst n :: snd n

Then {splits : list nat

| ParserInterface.split_list_is_complete

plus_expr_grammar

(string_of_indexed r_n)

(Nonterminal "pexpr")

[Terminal "+"; Nonterminal "expr"]

splits}

Else

ret [If ([Terminal "+"; Nonterminal "expr"]

=p fst n :: snd n)

|| ([Terminal "("; Nonterminal "expr"; Terminal ")"]

=p fst n :: snd n)

|| ([Nonterminal "digit"; Nonterminal "number"]

=p fst n :: snd n)

Then 1

Else (If [Nonterminal "expr"; Terminal ")"]

=p fst n :: snd n

Then pred (ilength r_n)

Else (If [Nonterminal "number"]

=p fst n :: snd n

Then ilength r_n

Else 0))]);

ret (r_n, ls)) (H r_n n)

A.2 Coq Code for the First Refinement Step

The general code for computing the goal the user is presented with, after start

honing parser using indexed representation, is:

Definition expanded_fallback_list’

(P : String -> item Ascii.ascii -> production Ascii.ascii

-> item Ascii.ascii -> production Ascii.ascii

-> list nat -> Prop)

(s : T)

(it : item Ascii.ascii) (its : production Ascii.ascii)

(dummy : list nat)

: Comp (T * list nat)

:= (ls <- (forall_reachable_productions

G

70

(fun p else_case

=> If production_beq ascii_beq p (it::its) Then

(match p return Comp (list nat) with

| nil => ret dummy

| _::nil => ret [ilength s]

| (Terminal _):: _ :: _ => ret [1]

| (Nonterminal nt):: p’

=> If has_only_terminals p’ Then

ret [(ilength s - Datatypes.length p’)%natr]

Else

(option_rect

(fun _ => Comp (list nat))

(fun (n : nat) => ret [n])

{ splits : list nat

| P

(string_of_indexed s)

(Nonterminal nt)

p’

it

its

splits }%comp

(length_of_any G nt))

end)

Else else_case)

(ret dummy));

ret (s, ls))%comp.

71

72

Bibliography

[1] José Bacelar Almeida, Nelma Moreira, David Pereira, and Simão Melo de
Sousa. “Partial Derivative Automata Formalized in Coq”. In: Proceedings of
the 15th International Conference on Implementation and Application of Au-
tomata. CIAA’10. Winnipeg, MB, Canada: Springer-Verlag, 2011, pp. 59–68.
isbn: 978-3-642-18097-2. url: http : / / dl . acm . org / citation . cfm ? id =
1964285.1964292.

[2] Aditi Barthwal and Michael Norrish. “Verified, Executable Parsing”. In: Pro-
ceedings of the 18th European Symposium on Programming Languages and Sys-
tems: Held As Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2009. ESOP ’09. York, UK: Springer-Verlag, 2009, pp. 160–
174. isbn: 978-3-642-00589-3. doi: 10.1007/978-3-642-00590-9_12. url:
http://dx.doi.org/10.1007/978-3-642-00590-9_12.

[3] Jean-Philippe Bernardy and Moulin Guilhem. “Type-theory in Color”. In: Pro-
ceedings of the 18th ACM SIGPLAN International Conference on Functional
Programming. ICFP ’13. Boston, Massachusetts, USA: ACM, 2013, pp. 61–
72. isbn: 978-1-4503-2326-0. doi: 10.1145/2500365.2500577. url: http:
//doi.acm.org/10.1145/2500365.2500577.

[4] Samuel Boutin. “Using reflection to build efficient and certified decision proce-
dures”. In: Proc. TACS. 1997.

[5] Janusz A. Brzozowski. “Derivatives of Regular Expressions”. In: Journal of the
ACM (JACM) 11.4 (Oct. 1964), pp. 481–494. issn: 0004-5411. doi: 10.1145/
321239.321249. url: http://doi.acm.org/10.1145/321239.321249.

[6] Nigel P Chapman. LR Parsing: Theory and Practice. CUP Archive, 1987.

[7] Adam Chlipala. “The Bedrock Structured Programming System: Combining
Generative Metaprogramming and Hoare Logic in an Extensible Program Ver-
ifier”. In: Proc. ICFP. ACM, 2013, pp. 391–402.

[8] The Coq Development Team. The Coq Reference Manual, version 8.4. Available
electronically at http://coq.inria.fr/doc. 2012.

[9] H. B. Curry. “Functionality in Combinatory Logic”. In: Proceedings of the Na-
tional Academy of Sciences of the United States of America 20(11) (1934),
pp. 584–590.

73

http://dl.acm.org/citation.cfm?id=1964285.1964292
http://dl.acm.org/citation.cfm?id=1964285.1964292
http://dx.doi.org/10.1007/978-3-642-00590-9_12
http://dx.doi.org/10.1007/978-3-642-00590-9_12
http://dx.doi.org/10.1145/2500365.2500577
http://doi.acm.org/10.1145/2500365.2500577
http://doi.acm.org/10.1145/2500365.2500577
http://dx.doi.org/10.1145/321239.321249
http://dx.doi.org/10.1145/321239.321249
http://doi.acm.org/10.1145/321239.321249
http://coq.inria.fr/doc

[10] David Delahaye. “A tactic language for the system Coq”. In: Logic for Program-
ming and Automated Reasoning. Springer. 2000, pp. 85–95.

[11] Benjamin Delaware, Clément Pit-Claudel, Jason Gross, and Adam Chlipala.
“Fiat: Deductive synthesis of abstract data types in a proof assistant”. In: Pro-
ceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages. ACM. 2015, pp. 689–700.

[12] Bryan Ford. “Parsing Expression Grammars: A Recognition-based Syntactic
Foundation”. In: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. POPL ’04. Venice, Italy: ACM, 2004,
pp. 111–122. isbn: 1-58113-729-X. doi: 10.1145/964001.964011. url: http:
//doi.acm.org/10.1145/964001.964011.

[13] William A. Howard. “The formulae-as-types notion of construction”. In: To H.B.
Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism. Ed. by
Jonathan P. Seldin and J. Roger Hindley. Original paper manuscript from 1969.
Academic Press, 1980, pp. 479–490.

[14] Graham Hutton. “Higher-order Functions for Parsing”. In: Journal of Functional
Programming 2.3 (July 1992), pp. 323–343.

[15] Jacques-Henri Jourdan, François Pottier, and Xavier Leroy. “Validating LR(1)
Parsers”. In: Proceedings of the 21st European Conference on Programming Lan-
guages and Systems. ESOP’12. Tallinn, Estonia: Springer-Verlag, 2012, pp. 397–
416. isbn: 978-3-642-28868-5. doi: 10.1007/978-3-642-28869-2_20. url:
http://dx.doi.org/10.1007/978-3-642-28869-2_20.

[16] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. “CakeML:
A Verified Implementation of ML”. In: Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL ’14. San
Diego, California, USA: ACM, 2014, pp. 179–191. isbn: 978-1-4503-2544-8. doi:
10.1145/2535838.2535841. url: http://doi.acm.org/10.1145/2535838.
2535841.

[17] Matthew Might, David Darais, and Daniel Spiewak. “Parsing with Derivatives:
A Functional Pearl”. In: Proceedings of the 16th ACM SIGPLAN International
Conference on Functional Programming. ICFP ’11. Tokyo, Japan: ACM, 2011,
pp. 189–195. isbn: 978-1-4503-0865-6. doi: 10.1145/2034773.2034801. url:
http://doi.acm.org/10.1145/2034773.2034801.

[18] Robert C Moore. “Removing left recursion from context-free grammars”. In:
Proceedings of the 1st North American chapter of the Association for Computa-
tional Linguistics conference. Association for Computational Linguistics. 2000,
pp. 249–255.

[19] Greg Morrisett, Gang Tan, Joseph Tassarotti, Jean-Baptiste Tristan, and Ed-
ward Gan. “RockSalt: better, faster, stronger SFI for the x86”. In: Proceedings
of the 33rd ACM SIGPLAN conference on Programming Language Design and
Implementation. PLDI ’12. Beijing, China: ACM, 2012, pp. 395–404. isbn: 978-

74

http://dx.doi.org/10.1145/964001.964011
http://doi.acm.org/10.1145/964001.964011
http://doi.acm.org/10.1145/964001.964011
http://dx.doi.org/10.1007/978-3-642-28869-2_20
http://dx.doi.org/10.1007/978-3-642-28869-2_20
http://dx.doi.org/10.1145/2535838.2535841
http://doi.acm.org/10.1145/2535838.2535841
http://doi.acm.org/10.1145/2535838.2535841
http://dx.doi.org/10.1145/2034773.2034801
http://doi.acm.org/10.1145/2034773.2034801

1-4503-1205-9. doi: 10.1145/2254064.2254111. url: http://doi.acm.org/
10.1145/2254064.2254111.

[20] Magnus O. Myreen and Jared Davis. “A Verified Runtime for a Verified Theorem
Prover”. In: Proceedings of the Second International Conference on Interactive
Theorem Proving. ITP’11. Berg en Dal, The Netherlands: Springer-Verlag, 2011,
pp. 265–280. isbn: 978-3-642-22862-9. url: http://dl.acm.org/citation.
cfm?id=2033939.2033961.

[21] Terence Parr, Sam Harwell, and Kathleen Fisher. “Adaptive LL(*) Parsing: The
Power of Dynamic Analysis”. In: Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems Languages & Applica-
tions. ACM. 2014, pp. 579–598.

[22] Tom Ridge. “Simple, Functional, Sound and Complete Parsing for All Context-
free Grammars”. In: Proceedings of the First International Conference on Cer-
tified Programs and Proofs. CPP’11. Kenting, Taiwan: Springer-Verlag, 2011,
pp. 103–118. isbn: 978-3-642-25378-2. doi: 10.1007/978-3-642-25379-9_10.
url: http://dx.doi.org/10.1007/978-3-642-25379-9_10.

[23] Elizabeth Scott and Adrian Johnstone. “GLL Parsing”. In: Proceedings of the
Ninth Workshop on Language Descriptions Tools and Applications. LDTA ’09.
2009, pp. 177–189.

[24] Masaru Tomita. Efficient Parsing for Natural Language: A fast algorithm for
practical systems. Vol. 8. Springer Science & Business Media, 2013.

75

http://dx.doi.org/10.1145/2254064.2254111
http://doi.acm.org/10.1145/2254064.2254111
http://doi.acm.org/10.1145/2254064.2254111
http://dl.acm.org/citation.cfm?id=2033939.2033961
http://dl.acm.org/citation.cfm?id=2033939.2033961
http://dx.doi.org/10.1007/978-3-642-25379-9_10
http://dx.doi.org/10.1007/978-3-642-25379-9_10

	Parsing Context-Free Grammars
	Parsing
	Infinite Regress
	Aborting Early
	Aside: Removing Left Recursion

	Standard Formal Definitions
	Context-Free Grammar
	Parse Trees

	Completeness and Soundness

	Related Work and Other Approaches to Parsing
	Coq
	Recursive-Descent Parsing
	Parser Combinators
	Parsing with Derivatives

	Other Approaches to Parsing
	Related Work on Verifying Parsers
	What's New and What's Old

	Completeness, Soundness, and Parsing Parse Trees
	Proving Completeness: Conceptual Approach
	Minimal Parse Trees: Formal Definition
	Parser Interface
	Parsing Parses
	Example
	Parametricity
	Putting It All Together

	Semantic Actions
	Missteps, Insights, and Dependently Typed Lessons
	The Trouble of Choosing the Right Types
	Misordered Splitters
	Minimal Parse Trees vs. Parallel Traces

	Refining Splitters by Fiat
	Splitters at a Glance
	What Counts as Efficient?
	Introducing Fiat
	Incremental Construction by Refinement
	The Fiat Mindset

	Optimizations
	An Easy First Optimization: Indexed Representation of Strings
	Putting It All Together
	Upcoming Optimizations

	Fixed-Length Items, Parsing (ab)*; Parsing #s; Parsing #, ()
	Parsing (ab)*: At Most One Nonterminal
	Parsing Parenthesized Numbers: Fixed Lengths
	Putting It Together

	Disjoint Items, Parsing #, +
	Parsing Well-Parenthesized Expressions
	At a Glance
	Grammars We Can Parse
	The Splitting Strategy
	The Main Idea
	Building the Lookup Table
	Table Correctness
	Diving into Refinement Code

	Future Work
	Future Work with Dependent Types

	Selected Coq Code
	A Fiat Goal After Trivial Rules Are Refined
	Coq Code for the First Refinement Step

