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ABSTRACT

Formal verification is an exciting development in software engineering, enabling implemen-
tations of programs to be rigorously checked against mathematical specifications. Assuming
the specification is well-defined, formal verification provides guarantees of a program’s correct-
ness and freedom from bugs that are simply not possible with test-based methods. There’s
just one catch: the process of verifying large programs in popular theorem provers such as
Coq (now known as Rocq) or Lean is painfully slow. These proof assistants rely on proof
engines to construct proofs of correctness for given properties, but to our knowledge, there
is no widely available proof engine that offers strong performance guarantees. Even more
frustrating is the lack of consensus on what “good” performance should even mean in this
context. This thesis lays the groundwork for addressing that gap by presenting a proof engine
design that achieves asymptotically linear-time performance with respect to several important
variables. We illustrate the design and its performance characteristics with examples from an
implementation of the design and outline directions for future work.
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Chapter 1

Introduction

1.1 Motivation

Validation of software is critical in ensuring its correctness and reliability, particularly in
systems where errors can have significant consequences. While methods for validation such
as code review and testing have been the status quo for decades, there has been a recent
shift toward more rigourous approaches, such as formal verification, which is able to provide
mathematical guarantees about a program’s behavior. Proof assistants like Coq [1] and
Lean [2] are at the forefront of this shift, offering powerful frameworks for formal verification
using expressive logical foundations. However, the scalability of these tools is hindered by
inefficiencies in their underlying proof-engines. These inefficiencies limit their ability to verify
larger and more intricate systems, creating a need for improved performance and better
asymptotic behavior in proof-engine design.

In particular, the verification of major projects like Fiat Cryptography [3], an MIT project
building a performant elliptic-curve library, suffer from the poor performance of rewriting
operations such as setoid_rewrite or rewrite_strat. The amount of time required for
certain rewrite operations has been shown to grow exponentially with input size and often
results in out-of-memory errors. These challenges underline the urgent need for more efficient
proof-engine designs to support real-world applications. While all of the formal reasoning for
Fiat Cryptography is done in Coq, other proof assistants suffer from similar slowdowns.

1.2 Summary

We present MEngine, a novel design and accompanying program for the generation and
validation of type-checked proof terms. The defining design principle of MEngine is that its
kernel enforces an invariant: every term (referred to as an Expression) is well-typed with
respect to a (possibly given) context at creation time. Any Expression object constructed
from others may thus assume those components are already valid. Internally, we represent
Expressions as directed acyclic graphs (DAGs), following an approach similar to that described
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in [4]. This principle enables a range of optimizations, including pointer-based tactic caching,
efficient substitution, and a significantly reduced memory footprint.

In Chapter 2, we provide background on the status quo, focusing on the Coq proof
assistant (now known as Rocq). We then introduce the Bedrock2 project [5], a major
Coq development supporting the specification, implementation, and verification of low-level
programs. Bedrock2 proofs are often slow to verify, as we discuss later. In Chapter 3, we
detail the kernel and proof-engine design, including the primitives and tactics implemented in
our system. Chapter 4 presents performance evaluation across three benchmarks, the last of
which is a real-world use case derived from Bedrock2. We conclude in Chapter 5 by reviewing
our contributions, limitations, and directions for future work.
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Chapter 2

Background

2.1 Proof Assistants and Coq

In this section, we give an overview of proof assistants and what they share in common.

2.1.1 Architecture of Proof Assistants

Most proof assistants, excluding various Higher-Order-Logic (HOL) variants, share the same
basic building blocks, including a proof-engine, type-checker, parser, and so on with a type
theory as their foundation. Type theory defines a type system, which is essentially a set of
rules for assigning types to terms. Type systems generalize the idea that terms in programs,
like 1 or "abc", have types, such as int or string. The type theory that has served as the
foundation for most major theorem provers is the Calculus of Inductive Constructions [6, 7],
which is based on the earlier Calculus of Constructions. We will provide an detailed overview
of the Calculus of Constructions (CoC) in Section 2.1.2. Within CoC type systems, proving
a theorem will correspond to showing that a particular type is inhabited by some term.

A type-checker, often referred to as the kernel, is the part of a proof assistant responsible
for verifying that terms have valid types according to the system’s rules. Due to Gödel’s
second incompleteness theorem, we cannot verify the correctness of a proof assistant within
the proof assistant itself ??. As a result, kernels are typically designed to be small, simple,
and well-delimited programs, which are trusted to be correct and bug-free.

Constructing the proof terms by hand is often a cumbersome task. The proof-engine is
the program that is responsible for building the proof term and more generally maintaining
the proof state of incomplete proofs. Proof engines often provide access to tactics, which
specify how to manipulate a proof state to generate a complete proof.

2.1.2 The Calculus of Constructions

The Calculus of Constructions (CoC) is an extension of the Curry-Howard Isomorphism,
which establishes a deep connection between logic and programming. In this framework,
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the big picture is that “a proof is a program, and the formula it proves is the type for the
program.” This means that constructing a proof of a theorem can be viewed as writing a
program, where the proof itself corresponds to the program’s behavior, and the logical formula
being proven corresponds to the program’s type. This view forms the basis for using proof
assistants like Coq and Lean, where users write and verify programs that also serve as formal
proofs.

The syntax used to describe the Calculus of Constructions (CoC) is as follows. Terms can
be variables (such as x or y), typed abstractions (such as λx : A,B), or applications (such as
P Q). The type of a typed abstraction is a product, written as Πx : A,B. The type of a
type is a special constant called Type. Additionally, the type of all propositions is a special
constant called Prop. There are some subtleties to be aware of, particularly that assuming
the type of Type itself is Type is naive, as it leads to an inconsistent system, but this issue
won’t be addressed in this thesis.

In CoC, we also have reducible expressions (redexes). Redexes are terms that can be
simplified or “reduced” to more basic forms through series of reduction rules. These rules
allow the computation of terms, much like evaluating expressions in a programming language.
For example, a term like a lambda abstraction (λx : A,B) can be reduced when applied to
an argument, simplifying the term by substituting the argument for the variable x. In CoC,
the reduction process helps determine if a term inhabits the correct type, which is essential
in constructing and verifying formal proofs.

CoC extends the ordinary untyped lambda calculus with several desirable properties, the
most important being that it is strongly normalizing. Strongly normalizing systems have
the property that all sequences of reductions eventually halt. Consider the untyped terms
(λx, x x) and y. Applying the first term to the second, we can perform a β-reduction to
simplify the term:

(λx, x x)y
β−→ y y.

Since there are no longer any reducible expressions (redexes), the computation halts.
However, applying the term to itself does not result in the same satisfaction. Instead, it
produces an infinite loop:

(λx, x x)(λx, x x)
β−→ (λx, x x)(λx, x x)

· · ·
β−→ (λx, x x)(λx, x x).

This problem is fully resolved in the strongly normalizing systems like the Calculus of
Constructions.
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Type-Checking in the Calculus of Constructions

In the Calculus of Constructions, the goal is to ensure that terms are well-typed. CoC defines
a set of inference rules that specify the conclusions allowed based on a given set of hypotheses.
These hypotheses typically involve contexts (denoted as Γ or ∆), which are collections of
variable bindings, associating variables (e.g., x or y) with their corresponding types (e.g., A
or B). For example, a context Γ = [x : P ][y : B]∗ lists such bindings, where ∗ denotes the
end of the context (though it is often omitted).

A term t is said to be well-typed under a context ∆ if it can be derived using the inference
rules of CoC, denoted as ∆ ⊢ t. If the type of t is T , we write ∆ ⊢ t : T .

2.2 Related Work

Previous work in the field has explored various approaches to improving performance, but
to my knowledge, there is no proof-engine that achieves the goal of performance scaling
nearly linearly with the size of programs being verified. Several studies have highlighted the
challenges of scaling proof assistants such as Coq and Lean, especially in the context of large,
real-world verification tasks. In particular, research has focused on optimizing the handling
of contexts, variable substitutions, and the underlying data structures used to represent proof
terms.

2.2.1 Bottom-Up β-Reduction

As mentioned in the paper by Gross et al. [8], one of the reasons that a proof-engine could
suffer from performance issues is due to a lack of subterm sharing. Consider the following
untyped term:

(λx, (x (f z))) (λy, (y (f z))).

A basic, naive representation of this term allocates memory for each variable and constructs
a tree-like structure to represent how the variables are related. This approach is both space-
inefficient and time-consuming. For instance, the subterm (f z) appears twice, under two
different binders, but this representation doesn’t provide a simple way to identify such
repetitions without searching the entire tree.

A solution, proposed by Shivers and Wand in 2010 [4], is to represent terms from the
lambda calculus using a directed acyclic graph (DAG). The core idea of their approach is
as follows: no variable has more than one node in the DAG, each λ binds a unique variable
and maintains a reference to it, and terms generally maintain uplinks to other terms that
reference them. Our approach builds directly on this structure. MEngine enables efficient
representation of large subterms by allowing shared subexpressions to be stored once and
referenced multiple times. In many cases, we can avoid duplicate computation by preserving
this sharing.
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2.2.2 Performance Engineering of Proof-Based Software Systems at
Scale

As part of his PhD thesis [9], Gross presents a survey of performance issues in Coq, along
with several micro- and macro-benchmarks. His work includes several technical contributions,
but we focus on a select few benchmarks from his work as case studies in Chapter 4.

2.2.3 Towards a Scalable Proof Engine

In 2023, Gross, Erbsen, Philipoom, Agrawal, and Chlipala addressed the challenges of building
performant proof-engines [8]. The paper focuses on equational rewriting within Coq and
identifies the related performance bottlenecks. The authors found that even when no full
matches occur for a rewrite rule, certain rewrite tactics can still exhibit cubic complexity
due to the overhead of partial matches and existential-variable (evar) creation. Additionally,
they observed that proof-term size grows quadratically with the number of binders, and
that the quadratic overhead in type-checking arises from Coq’s handling of let-bindings and
substitutions. These inefficiencies further highlight the difficulty of scaling proof-engines for
large applications.

2.2.4 Slowness in Coq

Despite its expressiveness, Coq has long been known to suffer from various performance issues
that can hinder large-scale proof development [8–10]. Many of these bottlenecks stem from core
components of the system, including its kernel, tactic engine, and unification algorithm. The
Coq issue tracker on GitHub documents numerous open reports that illustrate common forms
of slowdown. For example, performance degrades significantly when repeatedly importing
files with extensive notation overloads or when applying rewrite tactics like setoid_rewrite
and rewrite_strat.

2.2.5 Bedrock2

Bedrock2 is a low-level programming language and verification framework built on Coq,
designed for verifying memory-manipulating programs [5]. It supports basic control structures,
arithmetic, and memory operations, and it uses separation logic to model memory. While
Bedrock2 is a very effective tool for creating verified low-level programs, it suffers from
performance challenges in large-scale proofs.
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Chapter 3

Design Overview

In this section we will describe the overall design choices implemented in MEngine in detai
and, in certain areas, the alternative choices that have been or could’ve been considered.

3.1 Kernel

3.1.1 Expressions

At the center of the kernel is the Expression type, a tagged union struct in C with various
constructors.

typedef enum
{
VAR_EXPRESSION,
LAMBDA_EXPRESSION,
APP_EXPRESSION,
FORALL_EXPRESSION,
TYPE_EXPRESSION,
PROP_EXPRESSION,
FIX_EXPRESSION,
HOLE_EXPRESSION,
MATCH_EXPR_EXPRESSION,

} ExpressionType;

struct Expression
{
ExpressionType type;
union
{
VarExpression var;
LambdaExpression lambda;
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AppExpression app;
ForallExpression forall;
TypeExpression type;
PropExpression prop;
HoleExpression hole;
FixExpression fix;
MatchExprExpression matchExpr;

} value;
};

Notably, we do not currently support inductive types. We include FixExpression and
MatchExprExpression as special cases, discussed in Chapter 4.

Each expression variant includes several pieces of information, including a context in
which the expression is valid, its type, and references to where it is referred to by other
expressions (referred to as uplinks). Expressions form directed acyclic graphs by referencing
other Expression objects: for example, an application (AppExpression) will refer to a
function expression and an argument expression. Uplinks are not considered part of this
graph and exist solely for efficient traversal. Alternatively, an uplink can refer to a context.

typedef enum
{
LAMBDA_BODY,
APP_FUNC,
APP_ARG,
FORALL_BODY,
CTX_VAR,
HOLE_TYPE

} Relation;

typedef struct
{
Expression *expression;
Context *context;
Relation relation;

} Uplink;

We now describe several important expression types in detail.

• A VarExpression represents a variable binding, either for a term or a type. It includes
a human-readable name (used only for display), its type as an Expression, and the
minimal context Γ in which the type is well-formed (i.e., such that Γ ⊢ A where A is
the variable’s type). Variables are treated as unique by pointer; that is, two variables
with the same name and type are considered distinct unless they are represented by
the same pointer.

18



• An AppExpression represents function application, consisting of a function expression
and an argument expression. It also stores the resulting type of the application and
the minimal context in which both the function and the argument are well-typed.
Unlike a VarExpression, which is unique by pointer, there may be many distinct
AppExpression instances that are syntactically identical.

• A LambdaExpression encodes a lambda abstraction. It includes a bound variable, a
body expression, and the full type of the lambda (a ForallExpression). The context
reflects the environment in which the lambda body is valid, excluding the bound
variable.

• A ForallExpression has a similar structure to LambdaExpression, and is used to
represent dependent function types. It includes a bound variable, the body (which
depends on that variable), and the context under which the expression is well-typed.

• The TypeExpression and PropExpression constructors represent the Type and Prop
universes respectively. These are singletons in the system and are shared wherever
those universes are referenced. Neither contain additional data.

• The HoleExpression represents a typed hole, which may later be instantiated. It
includes a name for display, a required return type, the defining context, and uplinks.

typedef struct
{
char *name;
Expression *type;
Context *context;
DoublyLinkedList *uplinks;
RewriteProof *rresult;

} VarExpression;

typedef struct
{
Expression *func;
Expression *arg;
Expression *cache;
Expression *type;
Context *context;
DoublyLinkedList *uplinks;
RewriteProof *rresult;

} AppExpression;

typedef struct
{
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Context *context;
Expression *bound_variable;
Expression *type;
Expression *body;
DoublyLinkedList *uplinks;
RewriteProof *rresult;

} LambdaExpression;

typedef struct
{
Context *context;
Expression *bound_variable;
Expression *type;
Expression *body;
DoublyLinkedList *uplinks;

} ForallExpression;

typedef struct
{
DoublyLinkedList *uplinks;

} TypeExpression;

typedef struct
{
DoublyLinkedList *uplinks;

} PropExpression;

typedef struct
{
char *name;
Expression *return_type;
Context *defining_context;
DoublyLinkedList *uplinks;

} HoleExpression;

To initialize an Expression, we provide two sets of APIs: one with explicit context
management required and one which is self-managing. We start by describing the one with
explicit context management required:

// Initialize a new variable expression with a given name, type,
// and defining context. The variable’s type must be valid in the defining context.
Expression *init_var_expression_wc(

const char *name, Expression *type, Context *defining_context);

20



// Initialize a new lambda expression with a bound variable, body,
// and context. The body must be valid in the given context.
Expression *init_lambda_expression_wc(

Expression *bound_variable, Expression *body, Context *context);

// Initialize a new application expression with a function, argument,
// and context. The function and argument must be valid in the given context.
Expression *init_app_expression_wc(

Expression *func, Expression *arg, Context *context);

// Initialize a new forall expression with a bound variable, body,
// and context. The body must be valid in the given context.
Expression *init_forall_expression_wc(

Expression *bound_variable, Expression *body, Context *context);

In each of these functions, type-checking is performed according to the rules of CoIC
(Chapter 2) before returning an Expression pointer. For example, when initializing a variable
"x" with type nat in a given defining context Γ, we first check whether Γ ⊢ nat. If this
judgment does not hold, a null pointer is returned to indicate failure.

For init_lambda_expression_wc and init_forall_expression_wc, we require that
the body is well-typed under the given context. However, the context stored in the resulting
Expression is not the one passed in but rather the result of context_minus(context,
bound_variable). This yields the minimal context in which the lambda or forall expression
is valid—that is, a context that no longer depends on the bound variable.

Additionally, the type of each expression is computed and stored in the Expression struct
at initialization time. For instance, the application constructor init_app_expression_wc
first verifies that the function has a dependent function type (i.e., a FORALL_EXPRESSION)
and that the argument’s type matches the function’s domain. Once verified, it performs the
appropriate substitution according to the CoIC typing rule.

Expression *constr_app_type(Expression *func, Expression *arg) {
Expression *func_type = get_expression_type(func);
Expression *variable = func_type→ value.forall.bound_variable;
Expression *expected_arg_type = get_expression_type(variable);
Expression *actual_arg_type = get_expression_type(arg);
Expression *return_type = func_type→ value.forall.body;

if (congruence(actual_arg_type, expected_arg_type)) {
return subst(return_type, variable, arg);

}

return NULL;
}
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Each of these initialization routines enforces the kernel invariant that every constructed
expression is well-typed with respect to the context stored in the resulting Expression. This
design ensures that, once created, an Expression can be assumed valid by downstream clients
of the kernel without the need for rechecking. As a result, this API not only guarantees the
correctness of individual expressions but also enables efficient and modular construction of
larger terms, since each component can safely assume the well-typedness of its subterms.

As previously mentioned, the difference between the two sets of APIs lies in how contexts
are handled.

Expression *init_var_expression(const char *name, Expression *type);
Expression *init_lambda_expression(Expression *bound_variable, Expression *body);
Expression *init_app_expression(Expression *func, Expression *arg);
Expression *init_forall_expression(Expression *bound_variable, Expression *body);

Instead of requiring a context to be provided as input, these functions compute the
minimal context required for the resulting term to be valid. For example, in the case of
init_var_expression, this context is the context of the type, extended with the variable
binding itself. In the case of init_app_expression, the context is the result of directly
joining the function and argument contexts:

context_add(get_expression_context(func), get_expression_context(arg)).

Otherwise, the functionality of these functions remains the same.

Expression *init_type_expression();
Expression *init_prop_expression();

As mentioned earlier, the expressions representing Type and Prop are singletons. Ac-
cordingly, init_type_expression and init_prop_expression serve as getters for these
singleton expressions. The need for the first set of APIs becomes apparent when we later
discuss holes: to fill a hole, the candidate expression must be valid under the hole’s defining
context, so we must ensure that the context is preserved correctly.

Holes are placeholders for expressions that are not yet known or constructed. They allow
us to defer parts of term construction until more information is available, supporting an
incremental or interactive style of proof development. A hole is created via the following
function:

Expression *init_hole_expression(char *name, Expression *type, Context *context);

This function initializes a hole with a user-friendly name, an expected return type, and
a defining context. The defining context captures the assumptions under which the hole is
expected to be filled. This context is crucial for ensuring that any term used to fill the hole
is well-scoped and well-typed under the assumptions available at the point of hole creation.
It is assumed that anywhere where the hole is referenced, it is a legal operation to fill the
hole with a suitable term.
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Before a term can be substituted into a hole, we must ensure it is type-compatible and
context-valid. This check is performed by can_fill, which returns true if and only if:

• The term’s type matches the hole’s expected return type.

• The term’s context is valid under the hole’s defining context.

bool can_fill(Expression *hole, Expression *term);

The actual filling of a hole is performed by fill_hole. This function first recursively fills
any sub-holes required by the term. Then, it updates all uplinks referencing the hole, by
directly modifying the parent expressions in place to point to the new term. This approach
allows us to propagate updates to the entire term tree efficiently.

void fill\_hole(Expression *hole, Expression *term);

Together, can_fill and fill_hole implement a form of hole unification, where ex-
pressions can be incrementally completed, while preserving type soundness and scoping
discipline.

3.1.2 Contexts

Contexts in our system play a foundational role in tracking the assumptions under which
terms are defined. They serve a purpose similar to Coq’s Section mechanism, but unlike
Coq, contexts are explicitly constructed and manipulated.

At the base of the system is the empty context, which is a singleton similar to Type and
Prop. It is created and later returned by calls to the following function:

Context *context_create_empty();

Larger contexts are built incrementally by extending an existing context with a new
variable binding. Each context node holds the type of a variable, a pointer to its parent
context, and the length of the context. This means a context Γ = x1:A1, x2:A2, . . . , xn:An is
represented as a chain of Context structs, each pointing back to its predecessor.

typedef struct Context {
Expression *var_type;
struct Context *parent;
int length;

} Context;

The type of a variable being added to a context must itself be well-formed under the
parent context, which maintains the invariant that every type annotation in the context
is meaningful with respect to the bindings that precede it. To enforce this invariant, we
implement two helper procedures: valid_in_context and valid_to_add_to_context.
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bool valid_in_context(Expression *expr, Context *context) {
Context *curr_expr_ctx = get_expression_context(expr);
if (context_is_ancestor(curr_expr_ctx, context)) {
return true;

}

while (!context_is_empty(curr_expr_ctx)) {
Expression *curr_var = curr_expr_ctx→ var_type;
if (context_find(context, curr_var) == NULL) {
return false;

}
curr_expr_ctx = curr_expr_ctx→ parent;

}
return true;

}

bool valid_to_add_to_context(Expression *expr, Context *context) {
if (expr→ type != VAR_EXPRESSION) {
return false;

}

Expression *expr_type = get_expression_type(expr);
return valid_in_context(expr_type, context);

}

Variables themselves are pointer-unique, so a single variable expression can appear in
multiple contexts, provided that its type remains valid.

The basic operation on Context is insertion. Assuming that the expression to be added is
a variable that is valid in the given context, we either return the given context if the variable
is already in the context, or we return an extended context.

Additionally, we support two operations for largely composing and simplifying contexts:
context_add and context_minus, respectively.

context_add takes two contexts and produces a new context that includes all variable
bindings from both. This operation is not simply concatenation, since the two contexts may
have overlapping or redundant bindings. Instead, we traverse the ancestors of one context
and incrementally insert any missing bindings into the other. Insertion is guarded by validity
checks: a variable is only added if its type is well-formed in the current context and it hasn’t
already been inserted. This operation is symmetric and produces the same context up to
variable binding ordering.

context_minus, on the other hand, computs the minimal context in which a binder (e.g.,
λ or ∀) is valid. Given a context Γ and a variable x, we remove x and all bindings after x

from Γ. After removing the subtrahend, we attempt to reinsert as many remaining bindings
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as possible into the resulting context, but only those whose types remain valid in the reduced
context.

Context *context_add(Context *context_A, Context *context_B) {
if (context_A == NULL || context_B == NULL) {
return NULL;

}

if (context_A == context_B) {
return context_A;

}

Context *start_context = context_A;
Context *add_from_context = context_B;

DoublyLinkedList *add_from_ancestors = context_ancestors(add_from_context);
int n = dll_len(add_from_ancestors);

Context *result = start_context;
for (int i = 0; i < n; i++) {
Expression *curr_add_from_expr = dll_at(add_from_ancestors, i)→ data;
if (context_find(start_context, curr_add_from_expr) == NULL) {
result = context_insert(result, curr_add_from_expr);

}
}

return result;
}

Context *context_minus(Context *context, Expression *subtrahend) {
Context *until_subtra = context_find(context, subtrahend);
if (until_subtra == NULL) {
return context;

}

DoublyLinkedList *given_ancestors = context_ancestors_until(context, subtrahend);
int n = dll_len(given_ancestors);
Context *result = until_subtra→ parent;

for (int i = 0; i < n; i++) {
Expression *curr_vartype = dll_at(given_ancestors, i)→ data;
if (valid_to_add_to_context(curr_vartype, result)) {
result = context_insert(result, curr_vartype);

}
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}
return result;

}

3.1.3 Substitutions and Reductions

Substitution and reduction are the necessary mechanisms in our system, so we describe them
here. The substitution procedure subst recursively replaces occurrences of an expression
old_e with another expression new_e [old_e → new_a. Additionally, by using Lambda-DAGs
(described in Chapter 2), we need to respect the convention that each lambda expression
(or forall expression) binds a unique variable. Thus, this necessitates the implementation of
what we call parallel substitutions. If we are substituting into a lambda or forall expression
with a bound variable a : T , we may initialize a new variable of a similar type (potentially
modified from the original as result of the substition), a′ : T [old_e → new_a], then continue
the substitution in the body with a list of substitutions: [old_e → new_a][a → a′].

Expression *p_subst(Expression *expression,
DoublyLinkedList *old_exprs, DoublyLinkedList *new_exprs) {

int n = dll_len(old_exprs);
if (n != dll_len(new_exprs)) {
return NULL;

} else if (n == 0) {
return expression;

}

Context *e_ctx = get_expression_context(expression);
bool needs_substitution = false;
for (int i = 0; i < n; i++) {
Expression *old_e = dll_at(old_exprs, i)→ data;
if (context_find(e_ctx, old_e)) {
needs_substitution = true;
break;

}
}

if (!needs_substitution) {
return expression;

}

switch (expression→ type) {
case (VAR_EXPRESSION):
case (HOLE_EXPRESSION): {
for (int i = 0; i < n; i++) {
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Expression *old_e = dll_at(old_exprs, i)→ data;
Expression *new_e = dll_at(new_exprs, i)→ data;
if (expression == old_e) {
return new_e;

}
}
return expression;

}
case (APP_EXPRESSION): {
Expression *app_func = expression→ value.app.func;
Expression *app_arg = expression→ value.app.arg;
Expression *new_app_func = p_subst(app_func, old_exprs, new_exprs);
Expression *new_app_arg = p_subst(app_arg, old_exprs, new_exprs);

if ((app_func == new_app_func) &&(app_arg == new_app_arg)) {
return expression;

}

if (forms_redex(new_app_func, new_app_arg)) {
Expression *reduced = reduce(new_app_func, new_app_arg);
return reduced;

} else {
return init_app_expression(new_app_func, new_app_arg);

}
}
case (FORALL_EXPRESSION): {
Expression *forall_var = expression→ value.forall.bound_variable;
int search_result = dll_search_for_idx(old_exprs, forall_var);
if (search_result != -1) {
Expression *new_forall_var = dll_at(new_exprs, search_result)→ data;
Expression *forall_body = expression→ value.forall.body;

return init_forall_expression(new_forall_var,
p_subst(forall_body, old_exprs, new_exprs));

}
Expression *forall_var_ty = get_expression_type(forall_var);
Expression *new_forall_var_type = p_subst(
forall_var_ty, old_exprs, new_exprs);

Expression *new_forall_var = init_var_expression(
forall_var→ value.var.name, new_forall_var_type);

dll_insert_at_tail(old_exprs, dll_new_node(forall_var));
dll_insert_at_tail(new_exprs, dll_new_node(new_forall_var));
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Expression *forall_body = expression→ value.forall.body;
Expression *new_body = p_subst(forall_body, old_exprs, new_exprs);

dll_remove_tail(old_exprs);
dll_remove_tail(new_exprs);

return init_forall_expression(new_forall_var, new_body);
}
...

}
}

Once substitution is implemented, beta-reduction is simple: given an application function
and argument, where the application function is a lambda expression, take the bound variable
and substitute for the application argument in the body.

3.2 Engine

This section describes the tactics implemented in the proof-engine. Unlike Coq, our prototype
does not include an intermediate tactic language or an Ltac-style layer. Instead, all tactics
are implemented directly in C. Since equational rewriting has received the most attention in
Coq performance engineering, we mainly focus on rewriting.

3.2.1 Rewriting

Our rewriter is a bottom-up recursive procedure inspired by the rewriting strategy proposed
in [8]. The rewrite procedure takes in as input an expression to rewrite in and a lemma to
rewrite with. It starts by recursively traversing to the leaves of the expression DAG and
applies a rewrite-head function, which matches the input expression against the lefthand side
of the lemma.

RewriteProof *rewrite_head(Context *goal_context, Expression *expr,
Expression *lemma) {

Expression *lemma_ty = get_expression_type(lemma);

if (lemma_ty→ type == FORALL_EXPRESSION) {
UnificationResult *unification_result =

unify_and_instantiate(goal_context, lemma, lemma_ty, expr);
if (unification_result == NULL)

return init_rewrite_proof(expr, expr, build_eq_refl(expr), dll_create());

Expression *instantiated_lemma = unification_result→ lemma_instantiation;
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if (instantiated_lemma != NULL) {
Expression *lhs = get_lhs_eq(get_expression_type(instantiated_lemma));
Expression *rhs = get_rhs_eq(get_expression_type(instantiated_lemma));

if (expr_match(lhs, expr)) {
return init_rewrite_proof(expr, rhs, instantiated_lemma,

unification_result→ new_goals);
}

}

return init_rewrite_proof(expr, expr, build_eq_refl(expr), dll_create());
}

Expression *lhs = get_lhs_eq(lemma_ty);
Expression *rhs = get_rhs_eq(lemma_ty);
if (expr_match(lhs, expr)) {
return init_rewrite_proof(expr, rhs, lemma, dll_create());

} else {
return init_rewrite_proof(expr, expr, build_eq_refl(expr), dll_create());

}
}

If the lemma contains no binders, and is simply of the form lemma : eq T lhs rhs, we can
match the input expression e against lhs to see if they are equivalent. In case of success,
we return a RewriteProof object representing an input expression, output expression, and
proof of their equality:

typedef struct {
Expression *expr;
Expression *rewritten_expr;
Expression *equality_proof;
DoublyLinkedList *remaining_goals;

} RewriteProof;

In case of failure, we simply instead return a RewriteProof object where the input and
output expressions are identical and the equality proof is given by eq_refl, signifying that
no rewriting has occurred.

If the lemma contains binders, we need to perform instantiation to eliminate the leading
forall quantifiers. We recursively attempt to construct an application of the lemma by either
unifying its quantified variables with subterms of the input expression or filling them with
holes if unification fails. This process accumulates any remaining open holes in a list. Once the
lemma has been fully applied and no more binders remain, we return a UnificationResult
that packages the instantiated lemma along with the list of remaining open goals.

The holes are useful because they allow partially applying a lemma even when some
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arguments are not yet known, enabling the proof-engine to defer their resolution. For example,
consider the lemma:

mult_0_l : ∀x, 0 = 0 ∗ x.

Suppose we want to rewrite the lefthand side of a goal 0 = 0 ∗ y using this lemma. From
the expression 0, we cannot immediately infer that x should be instantiated with y. However,
the shape of the goal suggests that the lemma should apply, so we shouldn’t fail outright
either. Instead, the engine introduces a hole ?x and applies the lemma as mult_0_l ?x,
producing the statement 0 = 0∗ ?x. This partially instantiated equality is still usable in
rewriting, and the remaining goal will eventually unify ?x with y. In this way, holes allow the
engine to proceed with rewriting even in the presence of incomplete information, deferring
certain decisions to later unification or tactic steps.

Additionally, we implement a major optimization: we begin by checking whether the
input expression could potentially be unified with the instantiated form of the lemma using
could_apply. This check is performed before attempting full unification to avoid unnecessary
computations. Specifically, could_apply checks whether the input expression and the lemma’s
body are compatible based on their structure, accounting for the presence of bound variables
(as in forall quantifiers) and ignoring them.

On successful unification, the lemma is instantiated with the expression, and if the
lefthand side of the instantiated lemma matches the input expression, a RewriteProof object
is returned with the rewritten expression (righthand side) and the associated proof, along
with any new subgoals/holes generated during unification.

We can now describe the rewrite procedure in full. We start with a call to an exposed
function rewrite:

RewriteProof *rewrite(Context *goal_context, Expression *expr, Expression *lemma)

This function acts as a dispatcher to other functions specific to the ExpressionType:
AppExpression, LambdaExpression, etc. rewrite_app begins by recursively calling _rewrite—which
has the same function signature as rewrite—on its application function and argument. The
only difference between _rewrite and rewrite is that the latter is responsible for clearing
rrewrite proofs. Once these recursive calls return, assuming the returned expressions differ
from the originals, we build a new expression defined by the application of the new function
and argument, with the proof provided by an application of the axiom app_cong.

app_cong :∀(A : Type)(B : Type)

(f : A → B)(g : A → B),

(x : A)(y : A),

(eq (A → B) f g) → (eq A x y) →
eq B (f x) (g y)

At this point, we attempt to apply rewrite_head on the newly formed expression. If
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rewrite_head fails, we return the RewriteProof explaining how the original expression
(expr) converts to the new application expression, with the proof being provided by the
app_cong axiom. If rewrite_head is successful, we use eq_trans, another axiom, to prove
how the three terms are related. Finally, we cache the result with the expression.

RewriteProof *rewrite_app(Context *goal_context, Expression *expr,
Expression *lemma) {

Expression *func = expr→ value.app.func;
Expression *arg = expr→ value.app.arg;
RewriteProof *rw_func_proof = _rewrite(goal_context, func, lemma);
RewriteProof *rw_arg_proof = _rewrite(goal_context, arg, lemma);

RewriteProof *mid_rewrite_proof;

if (nothing_rewritten(rw_func_proof) &&nothing_rewritten(rw_arg_proof)) {
mid_rewrite_proof =

init_rewrite_proof(expr, expr, build_eq_refl(expr), dll_create());
} else {
DoublyLinkedList *merged = dll_merge(rw_func_proof→ remaining_goals,

rw_arg_proof→ remaining_goals);
mid_rewrite_proof =

init_rewrite_proof(expr,
init_app_expression(rw_func_proof→ rewritten_expr,

rw_arg_proof→ rewritten_expr),
build_app_cong(rw_func_proof, rw_arg_proof), merged);

}

Expression *mid = mid_rewrite_proof→ rewritten_expr;
Expression *fx_mid = mid_rewrite_proof→ equality_proof;
DoublyLinkedList *mid_goals = mid_rewrite_proof→ remaining_goals;

RewriteProof *rewritten_mid = rewrite_head(goal_context, mid, lemma);
RewriteProof *result;
if (nothing_rewritten(rewritten_mid)) {
result = init_rewrite_proof(expr, mid, fx_mid, mid_goals);

} else {
DoublyLinkedList *merged =

dll_merge(mid_goals, rewritten_mid→ remaining_goals);
result = init_rewrite_proof(

expr, rewritten_mid→ rewritten_expr,
build_eq_trans(mid_rewrite_proof, rewritten_mid), merged);

}

free_rewrite_proof(mid_rewrite_proof);
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free_rewrite_proof(rewritten_mid);

set_rresult(expr, result);
return result;

}

In the case of rewriting lambda abstractions, we take care to reconstruct the body under
the binder and apply functional extensionality over the resulting proof, rather than building
the equality directly from the new expression. See [8] for more details on the approach taken.

To avoid duplicate computation, our rewriting procedure incorporates caching at every
expression node. After rewriting an expression, we store the resulting RewriteProof directly
in the Expression as the rresult attribute. Caching in this way avoids redundant work when
the same subexpression appears multiple times in the DAG, allowing subsequent rewrites to
retrieve the result in constant time. Efficient reuse becomes especially important when a very
large subexpression is referenced repeatedly, enabling us to maintain linear time performance
with respect to the size of the DAG.

At the end of the call to the top-level rewrite function, we recursively clear the cached
rewrite results. Clearing the cached rewrite results ensures that subsequent rewrites, especially
those using a different lemma, do not incorrectly reuse stale data. Because rewrite results
are stored directly on expression nodes without tracking which lemma was used, retaining
these caches could lead to incorrect behavior. Alternative, we could’ve considered using an
external caching mechanism, such as a hash table keyed by both expression and lemma, to
allow reuse of rewrite results across calls.

Additionally, we implement a variant of rewrite capable of handling a user-specified list of
lemmas rather than a single one. The main modification lies in the rewrite_head function,
which now iteratively attempts to apply each lemma in the list until no further rewriting is
possible. The proofs are chained together using eq_trans, which allows for chaining multiple
rewrites driven by different lemmas without requiring separate calls to rewrite.

RewriteProof *rewrites_head(
Context *goal_context, Expression *expr, int n, va_list lemmas) {

RewriteProof *current_proof = init_rewrite_proof(
expr, expr, build_eq_refl(expr), dll_create());

Expression *current_expr = expr;

while (true) {
bool rewrote = false;
va_list copy;
va_copy(copy, lemmas);
for (int i = 0; i < n; i++) {
Expression *ith_lemma = va_arg(copy, Expression *);
Expression *ith_lemma_ty = get_expression_type(ith_lemma);
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UnificationResult *unification_result = unify_and_instantiate(
goal_context, ith_lemma, ith_lemma_ty, current_expr);

if (unification_result == NULL) continue;
Expression *instantiated_lemma = unification_result→ lemma_instantiation;

if (instantiated_lemma != NULL) {
Expression *lhs = get_lhs_eq(get_expression_type(instantiated_lemma));
Expression *rhs = get_rhs_eq(get_expression_type(instantiated_lemma));
if (expr_match(lhs, current_expr)) {
RewriteProof *curr_to_next = init_rewrite_proof(
current_expr, rhs, instantiated_lemma, unification_result→ new_goals);

Expression *proof_of_curr_to_next = build_eq_trans(
current_proof, curr_to_next);

current_proof = init_rewrite_proof(
expr, rhs, proof_of_curr_to_next,
dll_merge(current_proof→ remaining_goals,

curr_to_next→ remaining_goals));
current_expr = rhs;
free_rewrite_proof(curr_to_next);
rewrote = true;

}
}

}
va_end(copy);
if (!rewrote) return current_proof;

}
}

The rewrite tactic described above operates directly on expressions, rewriting the lefthand
sides of equalities in a forward manner. However, this is not generally how proof-engines
manipulate goals. Instead, users typically specify a goal they wish to prove, and the engine
generates a goal state or hole, with the expected type. In the case of equational rewriting,
this goal has the form eq . . .. Each rewriting step then provides a proof that the current goal
is equivalent to a new, simpler goal, effectively transforming the problem into a sequence of
equivalence-preserving subgoals.

We provide rewrite_transform, which operates not on arbitrary expressions but directly
on goals. Given a goal expression (a hole with an expected return type) and a rewrite lemma,
this function attempts to transform the goal’s expected type by applying the lemma. If
successful, it produces two things: a new hole with the rewritten goal type, and a term that
satisfies the original goal by invoking eq_subst with the rewrite proof and the new goal as
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an argument. The new goal may then be resolved independently.

eq_subst : ∀(P : Prop)(Q : Prop)

eq Prop P Q → Q → P.

In practice, a single lemma may not be sufficient to simplify the goal fully. For this reason,
we also support rewrites_transform, which accepts an arbitrary list of lemmas and applies
them exhaustively. Each application rewrites the current goal type and updates the proof
term accordingly, chaining substitutions via nested uses of eq_subst. This process continues
until no lemma results in further simplification.

Together, rewrite_transform and rewrites_transform provide a bridge between our
rewriting engine and goal-directed proof construction.

3.2.2 Other Tactics

We also provide basic implementations of other tactics for evaluation purposes. These include
intro and eapply. All of these are hole-oriented tactics designed to be used together to
solve a goal.

The intro tactic handles goals whose expected type is a ∀ expression. When the goal has
type forall x : T, U, the tactic responds by extending the local context with the bound
variable x, then generating a new goal of type U in that extended context. The original goal
is filled with a lambda abstraction binding x and returning the new goal.

IntroReturn *intro(Expression *goal) {
if (goal→ type != HOLE_EXPRESSION) return NULL;

Expression *goal_ty = get_expression_type(goal);
if (goal_ty→ type != FORALL_EXPRESSION) return NULL;

Expression *goal_ty_bv = goal_ty→ value.forall.bound_variable;
Expression *goal_ty_body = goal_ty→ value.forall.body;

Context *new_context = context_insert(get_expression_context(goal), goal_ty_bv);

Expression *new_goal = init_hole_expression("Goal", goal_ty_body, new_context);
Expression *proof_of_original = init_lambda_expression(goal_ty_bv, new_goal);

if (can_fill(goal, proof_of_original)) {
fill\_hole(goal, proof_of_original);
return init_intro_return(goal, new_goal, proof_of_original);

}
return NULL;

}
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The eapply tactic uses unification to match a goal against the type of a lemma, potentially
generating new subgoals. The unification procedure eunify is responsible for the unification
algorithm. Unlike the usual approaches that first instantiate a lemma and then unifies it
with the goal, our procedure performs both steps at once. As it traverses the lemma’s type,
which we expect to be several leading ∀s, it attempts to find instantiations for each bound
variable on-the-fly.

When a matching instantiation cannot be found for a bound variable, we create a hole
with the expected type and apply the lemma to this hole. These holes are appended to a list
of remaining subgoals.

Once the lemma is fully instantiated and applied, the result is returned along with the
generated goals. If the resulting term can satisfy the initial goal, the hole is filled and the
new subgoals are returned. Otherwise, the tactic fails.

UnificationResult *eunify(Expression *lemma, Expression *goal) {
Context *goal_context = get_expression_context(goal);
Expression *expr = get_expression_type(goal);

Expression *current_lemma_app = lemma;
Expression *current_lemma_app_ty = get_expression_type(current_lemma_app);
DoublyLinkedList *remaining_open = dll_create();

while (current_lemma_app_ty→ type == FORALL_EXPRESSION) {
Expression *bound_variable = current_lemma_app_ty→ value.forall.bound_variable;
Expression *hole_subst = _unify(

get_innermost_body(current_lemma_app_ty), expr, bound_variable);

if (hole_subst == NULL) {
Expression *hole_to_fill = init_hole_expression(
bound_variable→ value.var.name,
get_expression_type(bound_variable),
goal_context);

current_lemma_app = init_app_expression(current_lemma_app, hole_to_fill);
dll_insert_at_tail(remaining_open, dll_new_node(hole_to_fill));

} else {
current_lemma_app = init_app_expression(current_lemma_app, hole_subst);

}

current_lemma_app_ty = get_expression_type(current_lemma_app);
}

return init_unification_result(current_lemma_app, remaining_open);
}
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DoublyLinkedList *eapply(Expression *goal, Expression *lemma) {
UnificationResult *unification_result = eunify(lemma, goal);
Expression *instantiated_lemma = unification_result→ lemma_instantiation;
DoublyLinkedList *new_goals = unification_result→ new_goals;

if (can_fill(goal, instantiated_lemma)) {
fill\_hole(goal, instantiated_lemma);
return new_goals;

}

return NULL;
}
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Chapter 4

Case Studies

In this section, we will consider the following four questions over three different examples:

1. What performance do we get from Coq?

2. With conventional methods, how good can we expect the performance to be?

3. How fast does my design perform?

4. What is a reasonable lower bound?

4.1 A Basic Rewriting Example

We start by looking at a very basic example where we simplify an expression, under no
binders, using rewrite rules. Consider the following expression:

g (f (f (· · · f (a) · · · ))) (4.1)

where a has some type and f, g are unary functions over that type. For simplicity, we’ll call
the type nat, so a : nat and f, g : nat → nat. If a is a fixed point for the function f and we
had a theorem expressing the equality, we could expect to rewrite away all the occurrences of
f to be left with g(a).

Note that in this example, there are Θ(n) rewriting locations, so we might expect both
the proof-term size and time complexity to grow linearly. As shown in Figure 4.2, the time
complexity is superlinear in Coq!

After declaring eq, nat, etc as variable assumptions in Coq, and telling Coq that eq is an
equivalence relation, we used the code in Figure 4.1 to generate the desired expression and
rewrite back to g(a).

Not only does our approach outperform Coq (which is expected, since our approach was
written in C), it outperforms asymptotically, achieving Θ(n) time performance.
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Fixpoint repeat_f (n : Datatypes.nat) : nat :=
match n with
| 0 ⇒ a
| S n’ ⇒ f (repeat_f n’)
end.

Definition gfa (n : Datatypes.nat) : nat := g (repeat_f n).

Goal eq nat (gfa __N__) (g a).
Proof.
unfold gfa. cbn [repeat_f].
Time (repeat rewrite eq_fa_a).
(* or Time (rewrite_strat topdown eq_fa_a). *)
(* or Time (rewrite_strat bottomup eq_fa_a). *)
apply eq_refl.

Qed.

Figure 4.1: Template Coq code for generating and proving eq nat g(f(f(...f(a)..))))
(g(a)).

4.2 Rewriting under Binders

Consider the following example using let-bindings from Gross’s PhD thesis [9]:

let v1 := v0 + v0 + 0 in
...

let vn := vn−1 + vn−1 + 0 in

vn + vn + 0,

(4.2)

where the goal is to rewrite away all occurrences of +0, of which there are Θ(n) of. Note
that in this example, maintaining the let-bindings is crucial. Performing zeta-reduction on
this term to get rid of the let-bindings actually causes the number of rewrite locations to
spike up to Θ(2n).

Coq’s default behavior is to silently inline let-bindings! Because of this behavior, it is
common in large Coq developments to define constants such as Let_In to bypass this behavior.
The definition of Let_In to escape Coq’s default behavior of inlining let-in expressions is
adapted from [9]:

Definition Let_In {A P} (x : A) (f : forall a : A, P a) : P x
:= let y := x in f y.
Lemma Let_In_def : @Let_In = fun A P x f ⇒ let y := x in f y.
Proof. reflexivity. Qed.
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Figure 4.2: Execution time to prove eq nat (g(f(f(...f(a)..)))) (g(a)) using three
different rewriting strategies implemented in Coq, versus our approach. A rolling average
with a window size of 5 has been applied to clearly demonstrate the trends.

Global Strategy 100 [Let_In].
Hint Opaque Let_In : rewrite.
Global Instance Let_In_nd_Proper {A P}
: Proper ((@eq A) ==>

pointwise_relation _ (@eq P) ==>

(@eq P)) (@Let_In A (fun _ ⇒ P)).
Proof. cbv; intros; subst. apply app_cong.
apply lambda_extensionality. exact H0. exact H.
Qed.

This approach can be helpful in certain scenarios, but does not completely alleviate the
performance issues1. Furthermore, it is cumbersome and takes an unreasonable amount of
effort to understand and apply. In both approaches, the user must use the setoid_rewrite
tactic to remove +0’s, since the rewrite tactic is unable to rewrite under binders.

In our proof-engine, we take three different approaches. In Approach A, we naively
build an expression with (nearly) no subterm sharing. This approach is the equivalent of
evaluating out let-bindings. In Approach B, we can take advantage of native sharing to
avoid wasting time redoing work:

Expression *vnm1 = init_var_expression("v0", nat);

for (int i = 1; i <= n_depth; i++) {
Expression *doubled = init_app_expression(init_app_expression(

add, vnm1), vnm1);
vnm1 = init_app_expression(init_app_expression(add, doubled), O);

}

1See: https://github.com/rocq-prover/rocq/issues/12510
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Expression *expr = init_app_expression(
init_app_expression(add,
init_app_expression(init_app_expression(add, vnm1), vnm1)),

O);

In Approach C, we can define an equivalent to Let_In to combine the modern approach
in Coq with our proof-engine. A goal in this project was to make the Let_In obsolete, by
achieving similar performance results between Approach B and Approach C.

Figure 4.3: Execution time of removing +0’s from equation 4.2.

4.3 Symbolic Execution

The next example is inspired by Bedrock2 to show how we compare in real-world usecases.
Consider the following language, which is a simplified subset of the language implemented in
the Bedrock2 project [11].

Variable bopname : Type.
Variable bopname_add : bopname.
Variable bopname_sub : bopname.

Inductive expr : Type :=
| expr_literal : Z → expr
| expr_var : string → expr
| expr_op : bopname → expr → expr → expr.

Variable cmd : Type.
Variable cmd_skip : cmd.
Variable cmd_set : forall (lhs: string), forall (rhs: expr), cmd.
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Variable cmd_seq : forall (s1: cmd), forall (s2: cmd), cmd.
Variable cmd_input : forall (lhs: string), cmd.
Variable cmd_output : forall (arg: string), cmd.

In this language, programs are constructed by chaining together commands via the
cmd_seq operator. For example, the following program is intended to receive user input as a

and then double it:

cmd_seq

(cmd_input a)

(cmd_set a (bopname_add (expr_var a) (expr_var a))).

To define the behavior of such programs, we also need to specify the semantics of the
language. Following the approach used in the Bedrock2 project, we adopt an omnisemantics
model [12], which relates a command and an initial state (memory, local variables, and trace)
to a set of possible outcomes (a postcondition), rather than to a single deterministic result:

Variable exec : cmd →
list IOEvent →
partial_map word byte →
partial_map string word →
(list IOEvent → partial_map word byte → partial_map string word → Prop) → Prop.

An IOEvent represents an input or output event, such as the result of an external
function call or user input. The partial_map word byte type represents memory, while
partial_map string word represents local variables. Together, these three components
capture the full state of the program. The final argument to the command is a predicate on
the final state. Altogether, the execution semantics assert that a command, when run from a
given state, must satisfy the given postcondition. The following are the rules defining the
exec relation:

Variable exec_skip : forall
(t : list IOEvent) (m : partial_map word byte) (l : partial_map string word)
(post : list IOEvent → partial_map word byte → partial_map string word → Prop),
post t m l → exec cmd_skip t m l post.
Variable exec_set : forall
(t : list IOEvent) (x : string) (e : expr) (m : partial_map word byte)
(l : partial_map string word)
(post : list IOEvent → partial_map word byte → partial_map string word → Prop)
(v : word),
· eq (option word) (eval_expr m l e) (option_some word v) →
post t m (partial_map_put string word l x v) →
exec (cmd_set x e) t m l post.
Variable exec_seq : forall
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(t : list IOEvent) (c1 c2 : cmd) (m : partial_map word byte)
(l : partial_map string word)
(post : list IOEvent → partial_map word byte → partial_map string word → Prop),
exec c1 t m l (fun

(t’ : list IOEvent) (m’ : partial_map word byte) (l’ : partial_map string word)
⇒ exec c2 t’ m’ l’ post) → exec (cmd_seq c1 c2) t m l post.

Variable exec_input : forall
(t : list IOEvent) (lhs : string) (m : partial_map word byte)
(l : partial_map string word)
(post : list IOEvent → partial_map word byte → partial_map string word → Prop),
(forall v : word,

post (list_cons IOEvent (IOEvent_IN v) t) m
(partial_map_put string word l lhs v)) →

exec (cmd_input lhs) t m l post.

To automate proofs of programs built with these semantics, we wrote a tactic and a test
program. The generated program consists of a sequence of operations structured as follows:

cmd_input x

cmd_set t (expr_var x)

cmd_set t (expr_op bopname_add (expr_var t) (expr_var t))

cmd_set t (expr_op bopname_sub (expr_var t) (expr_var x))

... (repeated n times)

cmd_set t (expr_op bopname_add (expr_var t) (expr_var t))

cmd_set t (expr_op bopname_sub (expr_var t) (expr_var x))

Each command is sequenced appropriately using cmd_seq.
To prove the correctness of such generated programs, we use the repeat_exec tactic:

Ltac solve_eq_by_rewriting :=
let step :=

first [
rewrite partial_map_get_put_same

| rewrite partial_map_get_put_diff; apply not_eq_string_b_a
| rewrite binop_add_to_word_sub
| rewrite binop_add_to_word_add
]

in
simpl;
repeat step;
apply eq_refl.
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Ltac repeat_exec :=
repeat match goal with
| [ |- exec (cmd_seq _ _) _ _ _ _ ] ⇒

apply exec_seq
| [ |- exec (cmd_set _ _) _ _ _ _ ] ⇒

try rewrite partial_map_put_put_same;
eapply exec_set; try solve_eq_by_rewriting

| [ |- exec cmd_skip _ _ _ _ ] ⇒
apply exec_skip

end.

Finally, we attempted to solve the following goal:

Goal let n := __N__ in let t := (list_nil IOEvent) in
forall (m : partial_map word byte) (l : partial_map string word),

exec (generated_cmd n a b) t m l
(fun (t’ : list IOEvent) (m’ : partial_map word byte)

(l’ : partial_map string word) ⇒
and (·eq (partial_map word byte) m’ m)

(ex word (fun v : word ⇒
and (·eq (list IOEvent) t’ (list_cons IOEvent (IOEvent_IN v)

(list_nil IOEvent)))
(·eq (option word) (partial_map_get string word l’ a)

(option_some word v))))).
Proof.

unfold generated_cmd;
cbn [repeated_cmds];
intros;
apply exec_seq;
apply exec_input;
intros.
Time repeat_exec.

Admitted.

Here, __N__ is a placeholder for the desired number of repetitions. Note that Bedrock2
similarly implements a tactic for reasoning about straightline code, and this design is loosely
inspired by it. For reasons that are apparent in Figure 4.4, we don’t bother solving the
postcondition and instead focus on the amount of time it takes to get to the postcondition.

In MEngine, we implement a similar straightline tactic for solving exec goals, though
with important differences due to our core language design. Since MEngine does not di-
rectly implement inductive types, we added a small set of primitives FixExpression and
MatchExprExpression, along with normalization procedures that govern evaluation of ex-
pressions. Unlike the Coq version, our symbolic execution in MEngine always produces a
proof term. Moreover, we take care to ensure that each hole is initialized with the correct
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Figure 4.4: Results of solving the Bedrock2-like symbolic-execution goals in Coq and MEngine
for values of n.

defining context.
The results of running this benchmark in Coq and MEngine for different values of n are

shown in Figure 4.4. As shown, after n := 4, Coq was spending an unreasonable amount of
time to solve the goal, while our approach required only a few seconds.
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Chapter 5

Conclusion and Future Work

Overall, this project has reached the initial goal, which was to build a standalone proof-engine
that achieves asymptotically better performance than Coq over several benchmarks. Chapter
3 outlines the overall design and choices made, while Chapter 4 gives several examples of
benchmarks comparing standard and modern approaches in Coq vs. our approach. However,
there are several engineering challenges ahead for this design to be useful.

5.1 Memory Management

Currently, our approach is sloppy in terms of memory management. At the scale needed to
compete with Coq, poor memory management is not a problem, but looking ahead, our goal
is to support a fully fleshed-out memory-management system.

While we could implement a reference-counting algorithm for garbage collection, the
Shivers and Wand paper on Lambda-DAGs ([4]) contains a cleaner approach that leverages
the uplinks we are already using. The caveat is that their technique depends on the so-called
“single-DAG requirement,” which stipulates that each subterm belongs to exactly one rooted
DAG. This assumption does not hold in our setting, where a term can appear in multiple
rooted DAGs. For example, a variable eq might be used as part of multiple DAGs representing
the types of eq_refl or app_cong. At present, we believe the technique from the Shivers
and Wand paper can be extended by additionally maintaining uplinks to context nodes and
a top-level runtime system that tracks freshly allocated expressions and contexts that are
still referenceable but not currently referenced by other objects.

5.2 Optimizing Conversions and Congruence

Currently, we do not implement any way of tracking conversions between one expression and
another. Two expressions could be equivalent via a series of rewrites or reductions, but we
do not maintain this information. One could consider adding some form of convertibility
structure to capture these relationships and manipulate them for efficiency. A particularly
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attractive option is e-graphs [13], an efficient data structure for representing congruence
relations. While we have not implemented them at present, they remain an interesting feature
to consider for future work.

5.3 Benchmarking

Our next goal is to improve the benchmark suite. The current examples, while sufficient to
illustrate our asymptotic goals, are limited in scope and drawn mostly from Coq. We’d like to
include benchmarks from Lean as well, both to broaden the comparison and to explore how
the system handles different proof engineering idioms. More generally, we hope to extend the
benchmark set to cover more realistic automation developments.

5.4 Conclusion

In this thesis, we have described and demonstrated the design and implementation of a
scalable proof-engine, including built-in subterm sharing, efficient equational rewriting, and
incremental type-checking. While the core functionality is in place and demonstrably behaves
correctly in many representative examples, there is still significant work to be done to make
the design more usable. The author believes that the components presented are sound and
that the remaining gaps are largely issues of engineering. Looking forward, we hope that
this framework can serve as a foundation for further work on practical realization of scalable
formal systems.
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