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Abstract

Cache-coherence protocols have been one of the greatest correctness challenges of
the hardware world. A memory subsystem usually consists of several caches and
the main memory, and a cache-coherence protocol defined in such a system allows
multiple memory-access transactions to execute in a distributed manner, across the
levels of a cache hierarchy. This source of concurrency is the most challenging part
in formal verification of cache coherence.

In this dissertation, we introduce Hemiola, a framework embedded in Coq to
design, prove, and synthesize cache-coherence protocols in a structural way. The
framework guides the user to design protocols that never experience inconsistent inter-
leavings while handling transactions concurrently. Any protocol designed in Hemiola
always satisfies the serializability property, allowing a user to prove the protocol as-
suming that transactions are executed one-at-a-time. The proof relies on conditions
on the protocol topology and state-change rules, but we have designed a domain-
specific protocol language that guides the user to design protocols that satisfy these
properties by construction.

The framework also provides a novel way to design and prove invariants by adding
predicates to messages in the system, called predicate messages. On top of serializ-
ability, it is much simpler to prove a predicate message, since it is guaranteed that
the predicate is not spuriously broken by other messages.

We used Hemiola to design and prove hierarchical MSI and MESI protocols, in
both inclusive and noninclusive variants, as case studies. We also demonstrated
that the case-study protocols are indeed hardware-synthesizable, by using a com-
pilation/synthesis toolchain in the framework.
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Chapter 1

Introduction: What Makes Hardware

Verification Complex

Modern hardware designs are extremely complex. Such a statement has become so

hackneyed that it does not draw any attention, but dealing with complex hardware

is still a big problem. A single-core processor and a memory system were enough to

run computer programs in the early days. Computer architecture has become much

more complicated, equipped with multicores, various accelerators (e.g., GPUs, NPUs,

etc.), hardware security modules (HSMs), hierarchical memory subsystems, and so

on. Such hardware components form a large, complex hardware circuit often called

a system on a chip (SoC).

Concurrency is one of the major challenges in hardware design. Concurrent exe-

cution has been very natural in hardware in terms of maximizing utility of hardware

components. For instance, at a high level, processing units and a memory subsystem

run concurrently; e.g., a processor core may execute other instructions after mak-

ing a memory request while the memory handles it. Looking at each component, a

processor core may be pipelined, which is very common these days, implying that

(computer-architecture) instructions are executed concurrently as well. The memory

subsystem may be composed of several caches and the main memory, and several re-

quests from different cores are handled concurrently in a distributed way throughout

the caches and the memory. Concurrency does not mean complete parallelism; for cor-
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rectness, some ordering among execution units should be maintained, and managing

this constraint is indeed a great challenge.

As hardware has become large with extreme concurrency, hardware verification has

become much more challenging as well. Industry has most commonly used testing and

bounded model checking (BMC) [18] for quality assurance of hardware circuits, but

these techniques are not sound and may miss subtle bugs. Due to this shortcoming,

both industry and academia have developed so-called formal-verification techniques.

At least in hardware verification, there are two mainstream approaches to formally

verifying hardware: model checking and theorem proving.

Model checking [17, 20] basically tries to verify a hardware module by exploring

all reachable states, checking whether the desired properties hold in those states. The

biggest benefit of model checking is that it is fully automated. That being said, state-

space explosion is a typical problem in model checking; it often requires too much

time and (memory) space to explore all reachable states.

Theorem proving, also called deductive verification, provides a mechanism to gen-

erate proofs based on a certain logic. Theorems are proven either manually by a user

(called interactive theorem proving), automatically by various solvers (called auto-

mated theorem proving), or in a combined way (both interactive and automated).

The biggest benefit of theorem proving is that once a theorem is proven, it can be

used repeatedly for bigger proofs. Theorem provers usually provide rich logics and

thus allow a user to state theorems general enough to be reused. That being said,

a theorem prover usually requires a user to understand the target computer system

deeply enough to state theorems and proofs in detail.

Problem statement

Among various hardware-verification challenges and formal-verification methodolo-

gies, this dissertation specifically deals with cache-coherence protocols with the Coq

proof assistant [23], an interactive theorem prover.

Cache-coherence protocols have been regarded as one of the greatest correctness

challenges of the hardware world. As per typical distributed-protocol verification, the
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main challenge comes while dealing with interleavings among transactions. In cache-

coherence protocols, a request from a processor may require multiple caches to change

their local states, and we call a sequence of such state transitions a transaction. Thus

it is natural that different cache objects concurrently handle different requests, which

makes the transactions interleaved. Interleavings make the verification much more

difficult, by significantly increasing the number of states to be explored.

Research on model checking has produced sound techniques to overcome state-

space explosion by interleavings. One of the core techniques is to establish nonin-

terference lemmas [47, 51, 16, 74, 58, 69], which ensure that concurrent executions

of transactions are not spuriously interleaved. In addition to this resolution, model

checkers have supported parameterization to verify cache-coherence protocols with

unknown numbers of cores [79, 78, 3]. In order to cover hierarchical protocols, re-

cent approaches [13, 14, 45, 46, 60] also employed modularity to verify protocols per

hierarchy level.

While the same concern exists in theorem proving (by requiring additional proof

effort to deal with interleavings), it also has employed similar techniques. Parame-

terization is a natural fit for theorem proving, thanks to rich logics, making it pos-

sible to prove a cache-coherence protocol with an arbitrary tree shape given as a

parameter [76]. Modularity has been harnessed as well, e.g., with assume-guarantee

reasoning [48].

The established style of noninterference reasoning, though, has an inherent weak-

ness: it requires explicit lemma statements per-protocol. The lemmas are often de-

scribed explicitly by the user (guided by intuition) or discovered automatically (typ-

ically guided by counterexamples). Another issue is that even though these lemmas

are stated and proven, it is hard to be sure if the lemmas are enough to resolve all

possible interleavings in the system.

Use of modularity has also imposed significant restrictions in protocol design,

in order to obtain clear module boundaries among caches. A concrete limitation of

modular design and verification comes when trying to verify cache-coherence protocols

that are not inclusive. Noninclusive caches have been in common industrial use for
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a decade: AMD Opteron servers are known to use exclusive caches [36], and Intel

Skylake-X processors use noninclusive caches [2, 82, 77].

We would like to avoid all of these weaknesses via a new approach doing mech-

anized proof in an expressive logic, stating and proving once-and-for-all a general

property and using it multiple times. Particularly, in proving cache-coherence proto-

cols, we want to formalize the most-general form of noninterference, find minimal and

abstract conditions that are not coupled to any specific protocols but still imply non-

interference, state the implication as a theorem, prove it once, and use it repeatedly

for various cache-coherence protocols.

The abstract conditions that imply noninterference can be found from the intu-

itions that protocol designers already have. In order to describe a case where the

protocol deals with two different requests passing through the same cache, for in-

stance, a designer often says “this cache acts like a serialization point so the two

transactions can safely interleave with each other.” While the notions of interleaving

and serialization are already pervasive, we have found no past work trying to find a

minimal set of conditions that ensure transactions are always serialized, formalizing

them in a reusable framework.

We go one step further: rather than requiring the user to prove the conditions

per-protocol, we establish a framework that guides the user to design protocols that

automatically satisfy the conditions, without worrying about possible complex inter-

leavings among different transactions. The framework does not require the user to

write any noninterference properties or to design the protocol in a modular manner.

In this paper, we introduce the Hemiola framework, embedded in the Coq proof

assistant, which eliminates the burden of designing and proving correct interleavings

in cache-coherence protocols. Specifically, Hemiola formalizes a set of message-passing

distributed protocols with tree hierarchies and particular topologies of channels be-

tween nodes, with associated locks. Hemiola exposes a domain-specific language of

protocols, such that any expressible protocol is guaranteed to exhibit “general” nonin-

terference, which will be called serializability and formalized later in the dissertation.

Furthermore, Hemiola provides a novel invariant proof method that only requires
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consideration of execution histories that do not interleave memory accesses – so that

almost all formal reasoning about concurrency is already done by the framework, not

proofs of individual protocols.

To demonstrate usability of our framework, we provide complete correctness proofs

for hierarchical cache-coherence protocols, in both inclusive and noninclusive vari-

ants, as case studies. We also demonstrate that the case-study protocols are indeed

hardware-synthesizable, by using a compilation/synthesis toolchain in Hemiola.

All the code and proofs of the framework and the case studies are available as

open source at the following link:

https://github.com/mit-plv/hemiola

Contributions

To sum up, the contributions of this dissertation include the following:

∙ We discover a minimal set of topology and lock conditions that ensures serial-

izability, extracted from usual cache-coherence protocol designs. We then iden-

tify a domain-specific protocol language, where every protocol defined in this

language ensures serializability by construction, backed up with mechanized

Coq proof (chapter 5). Lastly, we formalize how serializability helps prove cor-

rectness (trace refinement), by using the novel notion of predicate messages in

distributed protocols.

∙ Using the protocol language, we provide the complete correctness proofs of three

hierarchical cache-coherence protocols: inclusive and noninclusive MSI proto-

cols and a noninclusive MESI protocol (chapter 8). Ours are the first complete

mechanized proofs for various hierarchical “noninclusive” cache-coherence pro-

tocols, and as a bonus they share a large segment of reusable proofs (including

with the inclusive variant).

∙ We provide a toolchain to compile Hemiola protocols to hardware implementa-

tions and to synthesize them to run on FPGAs. We also evaluate our case-study
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protocols, in order to demonstrate that they indeed run on hardware with rea-

sonable performance.

Outline

Before introducing our proposed techniques to verify cache-coherence protocols, we

will provide some background in chapter 2 to understand conventional protocol de-

signs and typical correctness challenges. After the background chapter, this disserta-

tion is composed of three parts.

The first part presents our underlying theory to reason about cache-coherence pro-

tocols. chapter 3 introduces protocol transition systems as underlying state-transition

systems to describe behaviors of cache-coherent memory subsystems. On top of a pro-

tocol transition system, we provide the formal definition of serializability in chapter 4.

This chapter also demonstrates how serializability helps state and prove invariants of

a given system.

The second part introduces Hemiola, a framework embedded in Coq to design and

verify cache-coherence protocols more structurally, by using the serializability guaran-

tee. chapter 5 first presents the Hemiola domain-specific language for easier protocol

design. chapter 6 describes the biggest contribution of the framework, a general

once-and-for-all property claiming that any protocol defined with the DSL obtains

serializability for free. We then discuss the first series of related work in chapter 7,

focusing on how previous approaches dealt with interleavings among transactions.

The last part provides our case studies to demonstrate practicality of the frame-

work. We present the designs and complete correctness proofs of hierarchical MSI

and MESI protocols on top of Hemiola in chapter 8. chapter 9 presents the protocol

compiler, which compiles a protocol described in Hemiola to a corresponding hard-

ware implementation and discusses the correctness of the compiler. We then discuss

the other series of related work in chapter 10, exploring some previous approaches to

verifying cache-coherence protocols.
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Chapter 2

Background and Overview

Before introducing our proposed method to design and prove cache-coherence pro-

tocols more structurally, in this chapter we provide some background to understand

conventional cache-coherence protocol designs and typical correctness challenges. We

first introduce a very simple cache-coherence protocol to explain the purpose of the

protocol, basic design, and a number of nontrivial corner cases that require careful

design. After that, we explore the design space of cache-coherence protocols for better

understanding of the case-study protocols that we will provide in chapter 8.

2.1 Cache-Coherence Protocols In a Nutshell

In this section, we provide a simple yet motivating example to explain the typical

challenges. For simplicity, throughout the section, we will consider a protocol pro-

tecting only a single memory location. We will see it is still nontrivial to design and

verify a correct protocol.

The overall goal of cache coherence is, as the name suggests, to preserve coher-

ence among multiple candidate values in a memory subsystem. In other words, if

the system is coherent, then it should behave like an atomic memory. This behavior

inclusion is formally defined as refinement, which will be introduced in section 3.2.2.

The correctness of a cache-coherence protocol is sometimes shown by proving repre-

sentative invariants, not talking about the relation to the desired spec. The single-
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𝑃 (𝑆, 𝑣, 𝑆⟨1,2⟩)

𝐶1(𝑆, 𝑣) 𝐶2(𝑆, 𝑣)

1 2 109

3 4 5 876

⊑
Spec(𝑣)

Figure 2-1: A simple MSI directory protocol and its spec

writer/multiple-reader (SWMR) invariant and the data-value invariant [55] are classic

choices; in proving the refinement of a protocol, these invariants (or similar ones) must

be proven.

Figure 2-1 shows caches and communication channels for a simple directory-based

MSI protocol (LHS of ⊑). Since we deal with only a single memory location, the

specification (RHS of ⊑) is a single-value (𝑣) container with atomic read and write.

There are three caches (𝑃 , 𝐶1, and 𝐶2) in the implementation, and each of them has

its own status (M, S, or I) and data (𝑣). The status of a cache represents a permission

on its local replica. In this MSI protocol, an object can read/write the data with the

M (“modified”) status, only read with S (“shared”), and cannot read/write with I

(“invalid”). The parent 𝑃 additionally has a data structure called a directory to track

the statuses of the children. For example, a directory might be 𝑆⟨1,2⟩, meaning that

both 𝐶1 and 𝐶2 have S status, in some logical snapshot of state.

Objects communicate through ordered channels, shown as (�) in the figure, where

each has a unique index (shown as a natural number in the figure). 𝐶1 and 𝐶2

have channels to receive and respond to external requests (from processor cores).

There are three types of channels between a parent and a child: a single channel for

parent-to-child messages and two channels for child-to-parent requests and responses,

respectively. It is natural to wonder why two separate channels are required from a

child to a parent; we will see the reason very soon. Note that channels are depicted

in a logical way; the actual hardware implementation may use different hardware

components (e.g., finite-capacity FIFOs or buses) that can simulate ordered channels.

Figure 2-2 depicts some example state-transition cases depending on statuses of
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Figure 2-2: Rule-execution cases in the simple MSI protocol

the caches. All the caches run concurrently, repeatedly executing rules that define

local state transitions. A rule may take some messages from input channels, perform

a state transition, and put messages in output channels. A rule may also have a

precondition, blocking use of that rule when the precondition does not hold. 1 shows

the case where a child 𝐶1 takes an external request (a rqWr) to write data, but it

does not have M status and thus further requests to the parent (b rqM) to get the

permission. At this moment, in many cache-coherence protocol designs, 𝐶1 changes its

status to a transient state SM to record its current status (S) and the next expected

status (M). This transient state also functions as a lock not to allow any further

external requests for the value.

Due to the concurrent execution of the caches, we might have another rule executed

at the same time. 2 is executed concurrently with 1 , where 𝐶2 also takes an external

request ( e rqWr) with the same purpose, thus requests f rqM to the parent as well.

Since 1 and 2 happened at the same time, now the parent 𝑃 needs to decide which

request to deal with. Suppose that it decided to handle b rqM first.

3 presents the next execution by 𝑃 , taking the input message b rqM and making

an invalidation request ( c rqI) to the other child 𝐶2 to change its status to I. This

invalidation request is required, since when a child has M the others should not be

able to read/write the data. The parent, at this moment, changes its directory status

to a transient state (named 𝑆𝐷 in some textbooks) to disallow any other requests

from the children. For instance, the parent should not handle f rqM, since otherwise

it will handle two “rqM”s simultaneously, which might lead to an incoherent state –
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Figure 2-3: Rule-execution cases, continued

two M statuses in the caches.

Lastly, 4 shows the case that 𝐶2 handles the invalidation request ( c rqI). A number

of corner cases should be handled carefully:

∙ Since 𝐶2 requested f rqM, it has a transient state SM when c rqI arrives. It should

still be able to handle this invalidation request even in the transient state (while

not allowing any external requests). In this case 𝐶2 accepts c rqI and changes its

transient state to IM. We see that transient states should be fine-grained enough

to distinguish which requests to handle.

∙ Due to the existence of f rqM, if we had a single channel from a child to a parent, a

deadlock would occur. 𝑃 cannot take f rqM since it has been locked (in a transient

state) after making an invalidation request. It cannot take d rsI as well since the

response is not the first one of the ordered channel. This case shows the necessity

of having multiple channels between a child and a parent.

A so-called three-channel system has been widely used and regarded as a good

choice to make the design correct and live [76, 75]. While there are other possible cor-

rect topology and network settings, the cases shown in Figure 2-2 at least demonstrate

that it is nontrivial to construct one of them.

Figure 2-3 presents some additional rule-execution cases right after 4 in Figure 2-

2. After 4 responds with d rsI, now 𝑃 can take it to respond back to 𝐶1. 5 presents

this step, taking d rsI and responding back to 𝐶1 with g rsM. At this moment 𝑃

changes its status to 𝑃 (𝐼, ·,𝑀(1)) (from the transient state 𝑆𝐷) to record that it no
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longer has the coherent value and just granted 𝐶1 the M status. Since the transient

state also functions like a lock, this status change can be also regarded as a lock

release, so that 𝑃 can handle some other requests.

6 is the next transition step by 𝑃 to accept a new request. f rqM has been

waiting for the transient state of 𝑃 to be released, and 6 finally takes it and sends

an invalidation request to 𝐶1.

Looking at the message channel 5, the one for parent-to-child messages (from 𝑃

to 𝐶1), there are two messages, g rsM and h rqI, residing in the channel. A single

parent-to-child channel affects the correctness of the protocol in this case. If we had

two separated downward channels, one for requests and the other for responses, 𝐶1

could handle h rqI first, change its status to I, handle g rsM later, and change its status

to M again. Since it sent the invalidation response to the parent, eventually 𝐶2 will

also get the M status, which leads to an incoherent state. Therefore, it is crucial to

have a single parent-to-child channel so that g rsM blocks h rqI to be handled first.

After 𝐶1 takes g rsM and responds back to the processor core with i rsWr, presented

as 7 , it can subsequently take the invalidation request h rqI and responds with j rsI,

as shown in 8 .

As examined in Figure 2-2 and Figure 2-3, in a cache-coherence protocol, tran-

sient states and network channels play a crucial role in making interleavings correct.

Regarding the sequence of rule executions (in red) [ 1 ; 3 ; 4 ] as an execution flow in

Figure 2-2 – we will call it a transaction in later sections – to handle the original ex-

ternal request a rqWr, we see that no further executions could happen after 2 , which

is for the other request e rqWr. As explained above case-by-case, proper transient

states and network channels block f rqM from further processing. Similarly, in Fig-

ure 2-3, the execution flow [ 5 ; 3 ] was not spuriously affected by 6 or 8 , thanks to the

correct channel setting.

Throughout the dissertation, we will use this example to convey various intuitions

in formal definitions and proofs, referred to as the “interleaving example.”
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2.2 Overview: the Hemiola Framework and Its For-

mal Guarantee

In the previous section, we confirmed that proper locking (by transient states) and

topology are crucial for designing a correct cache-coherence protocol. If those ingredi-

ents are that essential, can we craft a domain-specific language where only conformant

protocols are expressible? That is exactly what the Hemiola framework provides: it

provides rule templates, explained in section 5.3 in more detail, that employ proven-

safe topologies and network structures and automatically set associated locks, so

designers can design protocols without worrying about corner cases due to interleav-

ings.

Before diving into the details of the theory, in this section, we provide a brief

overview of the Hemiola framework by redefining the example protocol shown in

section 2.1 using rule templates. Specifically, we will show the use of transient states

discussed in section 2.1 directly in conventional descriptions and compare them with

the alternative locking mechanism exposed by Hemiola. After the comparison, we

will provide high-level intuitions about the formal meaning of safe interleaving and

how the rule templates ensure this property.

The Hemiola rule templates

Conventional description In Hemiola
(1) rule := rule.rquu

msgIn = extToC1.first; :from ext
extToC1.deq(); :me C1
assert (msgIn.id == rqWr); :accepts rqWr

(2) assert (!mshr.in_transition); :requires
assert (line.status ≤ msiS); (fun line msgIn => line#[status] ≤ msiS)

(3) mshr.in_transition <= msiSM; :transition
c1ToPRq.enq({id: rqM, val: 0}); (fun line msgIn => <| rqM, 0 |>).
endrule

Figure 2-4: A child requesting M from its parent

Figure 2-4 presents a conventional rule description (in pseudocode) used to request
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the M status from a parent on the left side of the figure. This rule definition matches

the rules 1 and 2 in the interleaving example shown in Figure 2-2. This figure also

presents a corresponding rule in Hemiola using one of the rule templates. There

are largely three benefits of using the Hemiola rule templates; we explain them by

matching the number annotations in the figure.

(1) Input/output patterns: in a conventional description, a user has to find and

designate a FIFO module to dequeue an input message and to check the purpose

of the message by looking at its message ID. In Hemiola, each rule template is

restricted in terms of input/output patterns; for instance, the rquu rule template

(where rquu stands for request-up-up) always takes an input request from one

of its children (:from the external world in this case) and generates an output

request to the parent of :me C1. We can also annotate that this rule only

:accepts an input message with an ID rqWr.

(2) In-transition checks: a conventional description uses a miss status holding regis-

ter (mshr) to record whether a line is in_transition or not. Hemiola employs an

abstract locking mechanism, and each rule template automatically sets/releases

the locks. Hence, a user does not need to describe any in-transition checks or

transient states manually, which is one of the major headaches in designing a

protocol. More specifically, Hemiola provides two kinds of locks: an uplock and

a downlock. The rquu rule template automatically sets an uplock, since it makes

an upward request (to the parent). The uplock is released when handling the

corresponding response from the parent. We will see some other use cases of

the locks in the other rule templates.

(3) Use of transient states: in a conventional description, a user should manually

update mshr to set a proper transient state and find a FIFO to enqueue an

output message. Neither is required in Hemiola; in this rquu rule template

we just need to construct an output message. All the rule templates assume

the three-channel system introduced in section 2.1; e.g., the rquu rule template

enqueues an output message to the upward-request channel.
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Conventional description In Hemiola
(1) rule := rule.rqud

msgIn = c1ToPRq.first; :from C1
c1ToPRq.deq(); :me P
assert (msgIn.id == rqM); :accepts rqM

(2) assert (!mshr.in_transition); :requires
assert (line.dir.st == msiS); (fun line msgIn => line#[dir].st == msiS)

(3) mshr.in_transition <= msiSD; :transition
pToC2.enq({id: rqI, val: 0}); (fun line msgIn => (C2, <| rqI, 0 |>).
endrule

Figure 2-5: A parent requesting invalidation from the other child sharer

Figure 2-5 shows another rule pattern to make a further request, used in the parent

object to send an invalidation request to the other sharer. This rule matches the rules

3 and 6 in the interleaving example shown in Figure 2-2 and Figure 2-3, respectively.

We have the same three benefits in the suggested rule template on the right side

of the figure: automatically correct input/output channels, no in-transition checks,

and no need to consider transient states. The only difference from the rquu template

is that this one generates further requests to children, not to the parent. (rqud

here stands for request-up-down.) It automatically sets a downlock, since it makes

downward requests to children. Likewise, the downlock is released when handling the

corresponding responses from the children.

Conventional description In Hemiola
(1) rule := rule.immu

msgIn = pToC2.first; :me C2
pToC2.deq(); :accepts rqI
assert (msgIn.id == rqI);

(2) assert (mshr.in_transition :requires
== msiSM); (fun line _ _ => line#[status] == msiS)

(3) mshr.in_transition <= msiIM; :transition
line.status <= msiI; (fun line msgIn =>
c2ToPRs.enq({id: rsI, val: 0}); (line +#[status ← msiI], <| rsI, 0 |>).
endrule

Figure 2-6: A child responding to invalidation immediately even in transition

The next pattern, shown in Figure 2-6, is used to respond immediately to a request

from a parent. The rules 4 and 8 in the interleaving example use this pattern to

handle an invalidation request. As already discussed in section 2.1, the child object
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should be able to handle this invalidation request from its parent even though it is in

transition. In a conventional description, it is required to change the transient state

properly (from msiSM to msiIM in this example). In Hemiola, as seen in the figure,

it is not required to manage such transient states; a user can just use the immu rule

template (where immu stands for immediate-up). The locking mechanism using an

uplock and a downlock is still enough to implement this case properly by prioritizing

downward requests over the uplock.

Conventional description In Hemiola
(1) rule := rule.rsud

msgIn = c2ToPRs.first; :accepts rsI
c2ToPRs.deq();
assert (msgIn.id == rsI);

(2) assert (mshr.in_transition); :holding rqM
assert (mshr.rq.id == rqM); :requires (fun _ _ _ => True)

(3) mshr.in_transition <= None; :transition
line.dir.st <= msiM; (fun line msgIn rq rsbTo =>
line.dir.excl <= mshr.rsbTo; (line +#[status ← msiI]
line.status <= msiI; +#[dir ← setDirM rsbTo],
pToC1.enq({id: rsM, val: 0}); <| rsM, 0 |>).
endrule

Figure 2-7: A parent responding back to the child requestor to grant M

In a usual cache-coherence protocol, when a cache object gets a response mes-

sage from another object, it must have previously sent a corresponding request to

that object. Figure 2-7 describes this case, where a parent cache object handles an

invalidation response from a child, like the rule 5 in the interleaving example. In a

conventional description, we need to check that the line is currently in_transition and

the original request held in the MSHR matches the input response. It is also required

to release the MSHR slot by setting in_transition to none. As expected, in Hemiola

we do not need to manage transient states at all; the rsud rule template (standing

for response-up-down) just requires an additional annotation :holding rqM to declare

that the rule handles a response message where the ID of the original request message

is rqM. This rule template automatically releases the downlock previously acquired

when sending a downward invalidation request.

Lastly, Figure 2-8 deals with the case where a child finally gets a response from its
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Conventional description In Hemiola
(1) rule := rule.rsdd

msgIn = pToC1.first; :accepts rsM
pToC1.deq();
assert (msgIn.id == rsM);

(2) assert (mshr.in_transition); :holding rqWr
assert (mshr.rq.id == rqWr); :requires (fun _ _ _ => True)

(3) mshr.in_transition <= None; :transition
line.status <= msiM; (fun line msgIn rq rsbTo =>
line.value <= mshr.rq.value; (line +#[status ← msiM]
c1ToExt.enq({id: rsWr, val: 0}); +#[value ← rq.(msg_value)],
endrule <| rsWr, 0 |>).

Figure 2-8: A child responding to a write request

parent to update its status to M, like a rule 7 in the interleaving example. The rsdd

rule template (standing for response-down-down) is very similar to the rsud template

but has a difference that it automatically releases the uplock that was previously

acquired when sending the rqM request.

We will explore much more detail of the locking mechanism and the rule templates

provided by Hemiola in chapter 5.

The serializability guarantee by Hemiola

We have emphasized that it is easier to describe cache-coherence protocols with the

Hemiola rule templates, but it does not mean a lot if the rule templates are just an

alternative representation of transient states. The biggest contribution of the Hemiola

framework is that using the rule templates (implicitly with the locking mechanism)

already implies safe interleavings among transactions.

Hemiola provides the formal definition of serializability as a criterion for safe

interleavings. Informally, that property claims that for any legal history of a system

we can always find a sequential history that reaches the same resulting state, where

each transaction is performed atomically (without any interleavings).

Figure 2-9 presents a history brought from the example in section 2.1, where

two histories (in red and blue) are interleaved to form a history ℎ. We can find a

corresponding sequential history ℎseq, formed by concatenating two transactions in
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State transition timeline State transition timeline

𝐶1 1 7 8

𝑃 3 5 6

𝐶2 2 4

⇒
𝐶1 1 7 8

𝑃 3 5 6

𝐶2 4 2

An original history ℎ A sequential history ℎseq

Figure 2-9: An example of a serializable history

red and blue. Following the rule executions in ℎseq, we see that it indeed reaches

the same state as the original history ℎ does. We will introduce all the required

formalization to define serializability in chapter 4.

The biggest contribution of the Hemiola framework is that use of the rule templates

implies serializability. Figure 2-9 just presents a specific history and its corresponding

sequential history. Hemiola provides a theorem guaranteeing that we can find a se-

quential history for any legal history in any protocol designed with the rule templates.

In other words, the theorem says that good request/response patterns with proper

locking mechanisms are enough to prove serializability.

How does this nontrivial theorem hold? The highest-level intuition behind this

theorem is the mutual exclusion by uplocks and downlocks. For instance, when an

object is uplocked, it cannot generate any further upward requests, indicating that

only a single transaction can (upwardly) pass through this object by acquiring an

uplock. Likewise, when an object is downlocked, it cannot generate any further

downward requests, meaning that a single transaction can (downwardly) pass through

this object by acquiring a downlock.

Mutual exclusion by a lock is one typical way to make an execution of a transaction

(thread) atomic. By repeatedly applying the atomicity guarantee by each lock, we

can derive a sequential history from a given interleaved one. Note again that the

state transitions by a transaction (other than locking) are irrelevant to the locking

mechanism, implying that the serializability proof indeed does not require any specific

conditions on a protocol.

All the required proof techniques to reason about these mutual exclusions and the
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actual serializability proof will be introduced in chapter 6. We will also present our

suggested methodology to exploit serializability for the verification of cache-coherence

protocols in section 4.3.

2.3 Design Space of Cache-Coherence Protocols

In section 2.1 and section 2.2, we examined a very specific protocol design. There are

different ways to design a cache-coherence protocol, and each design decision affects

performance and correctness of the protocol. In this section, we explore the major

design space of conventional cache-coherence protocols.

Snooping vs. Directory

A typical classification of a cache-coherence protocol is whether the protocol employs

a designated data structure to keep track of the statuses of child caches. There are

two representative classes: snooping and directory protocols.

A snooping protocol does not use any data structure to monitor the statuses of

child caches. Instead, when the parent communicates with its children, it broadcasts

a message to them. Each child cache decides whether to respond to the message from

the parent or just to ignore it, depending on its status. For example, suppose a sce-

nario, already mentioned in section 2.1, that the parent wants to make an invalidation

request to downgrade the status of the child who has the M status to I. Since the

parent cache does not have any information which child currently has M, it has no

choice but to broadcast invalidation-request messages to all of the children. The child

cache with M will respond to the parent after invalidating its status, while the other

caches will just ignore the request. In actual hardware implementations, snooping is

usually implemented with an ordered wire bus shared by the parent and children.

A directory protocol, as its name says, uses a directory structure to record which

child has which status. The example presented in section 2.1 is a directory protocol;

we see that the parent 𝑃 additionally has a directory data structure. Considering

the same invalidation scenario, since the parent knows which child has the M status
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exactly, it can make an invalidation request just to that child.

A snooping protocol is known to be easier to implement than a directory protocol,

since an ordered bus enforces less interleavings among transactions. That being said,

the snooping protocol is also known not to be scalable, since the cost of broadcasting

significantly increases when more child caches are involved. A directory protocol, on

the other hand, is known to be scalable and matches hierarchical protocols well, but

design and verification are relatively more difficult than for the snooping protocol.

This dissertation only deals with directory protocols due to their inherent difficul-

ties. We will build a framework that can ease the burden of designing and verifying

directory protocols and demonstrate the practicality of the framework with various

hierarchical directory protocols as case studies.

Write-update vs. Write-invalidate

A cache-coherence protocol can be also classified by the patterns of memory writes.

Among various memory-write patterns, we classify protocols by when each legal write

to a cache is propagated to the other caches. Then we have two classes: write-update

and write-invalidate protocols.

In a write-update protocol, if a cache wants to write to a line, it requests to update

the lines in the other caches first and updates its line after the updates by the others.

This protocol is beneficial when a cache writes to a line and the other caches want to

read it right after the write.

In a write-invalidate protocol, if a cache wants to write to a line, it first requests to

invalidate the lines in the other caches so that they cannot read or write the line. Once

all the other caches are invalidated, it can write a new value. The write-invalidate

policy is used more generally in practical cache-coherence protocols, since the write-

update policy requires to propagate new values for each update and is not efficient

when some other caches actually do not need to read the up-to-date value anymore.
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Write-through vs. Write-back

Another criterion about memory writes is when a write to a cache is applied to the

main memory; it provides two classes as well: write-through and write-back protocols.

In a write-through protocol, when a cache writes to a line (already with enough

permission), it further requests a write to the main memory as well. This protocol is

easier to design, since the up-to-date value can always be found in the main memory.

On the other hand, in a write-back protocol, a cache does not request to the

main memory to send the up-to-date value when writing to a line. The value is

eventually written back to the main memory when the line is evicted from the cache

side. Write-back protocols are harder to implement than write-through ones, since

they should provide a way to find the up-to-date value through all the caches, e.g., by

managing directories that point to caches with correct values. That being said, almost

all practical cache-coherence protocols use the write-back policy to avoid unnecessary

writeback to the main memory.

All the case-study protocols in this dissertation, which will be introduced in chap-

ter 8, follow the write-invalidate and write-back policies.

Inclusive vs. Noninclusive vs. Exclusive

The protocol we introduced in section 2.1 is a flat (nonhierarchical) protocol in that

child caches (𝐶1 and 𝐶2) communicate directly with the parent 𝑃 as the main memory

with a directory. In other words, there are no intermediate caches between the lowest-

level ones (called L1 caches) and the main memory. There is an essential tradeoff

between caches and the memory: caches have much faster latency than the memory

but lower hit rate. In order to mitigate hit rate of a cache, hierarchical cache-coherence

protocols have been developed and used. In a hierarchical protocol, a number of L1

caches are clustered to have an L2 cache as a parent, and so on. A higher-level cache

usually has a higher latency than lower-level caches but has a better hit rate due to

its increased size.

Hierarchical cache-coherence protocols can be classified by so-called cache-inclusion
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policies. Especially when designing a protocol with directories, it is practically easier

to design caches to require that every line in the value cache has its corresponding di-

rectory entry in the directory cache, and vice versa. It is indeed easier to design with

such a policy, since it allows to combine an information cache (one containing line

statuses, etc.) and a directory cache into a single cache, which is more space-efficient

by not having to store tags in each cache. This policy, in other words, means that

whenever a line is in a child cache there is a corresponding line in the parent cache as

well. We therefore call it inclusive, meaning that the parent cache includes the lines

in child caches.

Inclusive caches have a benefit that certain requests from the parent can be an-

swered immediately just by searching a directory status. For example, when a cache

gets an invalidation request from the parent and the line entry does not exist in the

directory, it does not need to forward the request to the children for complete inval-

idation, since by the inclusion policy absence of a directory status already implies

that the line does not exist in any child caches. That said, inclusive caches have a

drawback that some value entries are wasted; for example, when a directory status is

M, meaning that a child has the up-to-date value, the parent still holds a stale value

inside the value cache.

A noninclusive cache – also called a noninclusive nonexclusive (NINE) cache –

does not require such inclusion. Since it is not inclusive, it has less chance to waste

value lines. That said, the biggest drawback comes when a directory-status entry

does not exist in the directory cache; the absence of a directory status does not imply

that child caches do not have the line anymore. The same issue occurs in a snooping

protocol as well, e.g., a cache should always broadcast an invalidation request to all

the child caches in order to handle the one from the parent.

In order to resolve these issues, a number of practical cache-coherence protocols

use noninclusive value caches and inclusive directories, called NCID [82], e.g., Intel

Skylake-X processors are known to use the NCID structure [2, 77]. By having nonin-

clusive value caches we have less chance to waste value lines, and by having inclusive

directories we do not always need to visit child caches for invalidation.

35



As opposed to inclusive caches, an exclusive cache intends to maximize the utility

between child and the parent caches, by requiring that the lines of a child and the

parent are always disjoint to each other. AMD Opteron servers are known to use

exclusive caches [36]. A similar optimization to NCID is possible in exclusive caches,

by managing directories as inclusive while the value caches are exclusive.

Remarks

The classifications introduced so far are orthogonal to each other, i.e., every com-

bination of the policies gives different protocol design. For instance, the case-study

protocols that will be introduced in chapter 8 are directory-based and follow the

write-invalidate and write-back policies. One of the protocols is inclusive, whereas

the others are noninclusive.

Although not every combination of the policies is covered by the case studies, we

would like to claim that our proposed framework Hemiola is general enough to design

and verify cache-coherence protocols with any policies mentioned above, since the

domain-specific language and verification methodology provided by the framework

are not coupled to any specific protocol policies.
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Part I

Protocol Transition Systems and

Serializability
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Chapter 3

Protocol Transition Systems

The very first task to verify cache-coherence protocols in a theorem prover is to

define an underlying state-transition system formally. Formalization of such a system

typically consists of its formal syntax and semantics. Additionally, if we want to

verify a program defined in the system, a correctness criterion should be established

as well. In this chapter, we provide the formal definition of state-transition systems

for cache-coherence protocols, called protocol transition systems.

3.1 Cache-Coherence Protocols as Message-Passing

Systems

In a cache-coherence protocol, cache objects in a system communicate with each other

via messages. Such communication is asynchronous in that a sender (a cache object)

sends a message to a channel first, and a receiver handles it later. Here the notion

of a channel is logical, but the actual hardware implementation may use various

hardware components (e.g., finite-capacity FIFOs or buses) that can simulate it. The

hardware implementation of communication channels will be explained in detail later

in chapter 9.

The correctness proof of a cache-coherence protocol heavily relies on the formal-

ization of a message-passing system. An incorrect formalization can leave a protocol
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unprovable. It is also a part of the trusted computing base (TCB); one must read

through the formalization and be convinced that it is fair. The formalization of a

message-passing system varies by its purpose. For instance, in order to reason about

software distributed protocols, one may want to add Byzantine fault models [42] to

the formalization.

A cache-coherence protocol also requires its specific assumptions on top of a

message-passing system. First of all, communication channels should be ordered;

practical cache-coherence protocols indeed use ordered channels, and the correctness

of a protocol usually depends on this constraint. Also, each channel cannot be ac-

cessed twice in a single state-transition cycle, e.g., one cannot push two different

messages to a channel in the same cycle. This constraint is also due to the practical

implementations of an ordered channel; considering a channel as a black-box circuit,

there is usually a single “wire” to push a new element to the channel, thus accessing

it twice (through the wire) is not possible.

Last but foremost, a conventional message-passing system assumes that it is fair

to reason a single state transition (by a single object) at a time. In other words,

while multiple objects make their local state transitions by consuming and generating

messages in actual execution, it is still fine to assume that a state-transition step is

made by a single object. This assumption is powerful, especially in verification, since

without it there would be an exponential number of cases to consider for a state

transition. We certainly want to utilize the assumption in reasoning about cache-

coherence protocols. Fortunately, a convenient concept has been developed in rule-

based hardware description languages (RHDLs) such as Bluespec SystemVerilog [56],

called “one-rule-at-a-time semantics.” Our cache-coherence protocol descriptions will

be rule-based, and thus our formalization of the underlying system will assume that

rules are executed atomically, even when multiple rules are executed at the same

time. It is worth noting that the one-rule-at-a-time semantics has been used in

designing/verifying hardware components [76, 24, 25] and formalized [9, 15, 8].
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ID id ∈ I

Value val ∈ V

Message 𝑚 ::= ⟨ty, id, val⟩ ∈M , B * I * V

Index 𝑖 ∈ I (for channels, objects, etc.)

Channel Index & Message 𝑖𝑚 ::= (𝑖,𝑚) ∈ IM , I *M

Object state 𝑜 ∈ O

Rule precondition prec ∈ O× IM→ P

Rule transition trs ∈ O× IM→ O× IM

Rule 𝑟 ::= ⟨𝑖, prec, trs⟩

Object 𝑂 ::= ⟨𝑖, 𝑜init, 𝑟⟩

System 𝑆 ::= ⟨𝑂, 𝑖in, 𝑖rq, 𝑖rs⟩

Figure 3-1: Protocol transition system

3.2 Formal Definition of Protocol Transition Systems

Now we provide the formal syntax and semantics for protocol transition systems.

Notations Throughout the dissertation, we will use several notations for lists (se-

quences) and finite maps. An overline (e.g., 𝑙) denotes a list. 𝑙 denotes a list of

lists. [], (𝑙 + 𝑒), (𝑙1 + 𝑙2), (𝑙1 − 𝑙2), and (𝑙1 # 𝑙2) denote nil, single-element append,

general append, subtraction, and disjointness of lists, respectively. We use the same

operation (+) for the single-element and general append. ⊕𝑙 flattens the list of lists

𝑙 with repeated concatenation. |𝑙| is the length of a list.

Regarding a list of key-value pairs as a finite map, we override notations for lists.

For example, (𝑀 + 𝑙) updates multiple key-value pairs in a finite map 𝑀 . Moreover,

we overload the same operation (𝑀 + (𝑘, 𝑣)) for a single update for simplicity.

We will use ⟨·⟩ to denote a struct and use a name (e.g., 𝑠.fd) to access a field

value. (𝑠.fd) will be used as a shorter notation for (List.map (𝜆𝑠. 𝑠.fd) 𝑠).
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3.2.1 Syntax

Hemiola uses formal protocol transition systems as an underlying basis for reasoning

about cache-coherence protocols. Figure 3-1 explains what such systems are. A

message 𝑚 is a communication unit, consisting of a Boolean message type, a message

ID, and a value. A message type is false (true) for a request (response). A message

ID belongs to an enumeration of message kinds. We use value to refer to each line

in a cache or a memory. Note that a struct sometimes has an index to distinguish it

from the other components. A pair (𝑖,𝑚) is used to represent a message 𝑚 residing

in a channel with an index 𝑖.

Rules make local state transitions within an object. A rule 𝑟 is a struct composed

of its rule index, a precondition (prec), and a transition function (trs). Each rule has

a unique index within an object. A precondition prec takes two arguments, a current

object state and input messages (as a list of pairs (𝑖,𝑚)), and decides whether the

rule can be executed or not with the current state. A transition function takes the

same arguments but returns the next object state and output messages (also as a list

of (𝑖,𝑚)). Note that our formalization of the protocol transition system is shallowly

embedded in Coq, e.g., precondition and transition definitions use native Coq function

types.

An object 𝑂 contains its object index (unique within a system), an initial state

(𝑜init), and rules (𝑟) that make local state transitions within the object. The highest-

level component is a system 𝑆, which contains information about objects and chan-

nels. It consists of objects (𝑂) and channel indices for internal messages (𝑖in), external

inputs (𝑖rq), and external outputs (𝑖rs). It is necessary to distinguish between internal

and external channels, in order to define external behaviors of the system, i.e., the

interface of the cache-coherence protocol with processor cores, which will be explained

in section 3.2.2.

The definition is general in that any object can access any channel in the sys-

tem, just by mentioning the channel index in a state transition. In practical cache-

coherence protocols, however, only specific message-passing patterns are used. Re-

42



Types:

Message States 𝑀 ∈ I→M State 𝑠 ∈ S ::= ⟨𝑜,𝑀⟩

Label 𝑙 ::= 𝑙𝜖 | 𝑙in(𝑖𝑚) | 𝑙out(𝑖𝑚) | 𝑙int(𝑂.𝑖, 𝑟.𝑖, 𝑖𝑚, 𝑖𝑚)

Step:

StepSilent:
𝑠

𝑙𝜖−→
𝑆

𝑠

StepIns:
𝑖𝑚 ̸= [] 𝑖𝑚.𝑖 ⊆ 𝑆.𝑖rq

⟨𝑜,𝑀⟩ 𝑙in(𝑖𝑚)−−−−→
𝑆
⟨𝑜,𝑀 + 𝑖𝑚⟩

StepOuts:
𝑖𝑚 ̸= [] 𝑖𝑚 ⊆𝑀.hds 𝑖𝑚.𝑖 ⊆ 𝑆.𝑖rs

⟨𝑜,𝑀⟩ 𝑙out(𝑖𝑚)−−−−→
𝑆

⟨𝑜,𝑀 − 𝑖𝑚⟩

StepInt:

𝑆 = ⟨𝑂, 𝑖in, 𝑖rq, 𝑖rs⟩ 𝑂 ∈ 𝑆.𝑂 𝑟 ∈ 𝑂.𝑟

𝑖𝑚ins.𝑖 ⊆ 𝑆.𝑖in ∪ 𝑆.𝑖rq 𝑜[𝑂.𝑖] = 𝑜1 𝑖𝑚ins ⊆𝑀.hds

𝑟.prec (𝑜1, 𝑖𝑚ins) 𝑟.trs (𝑜1, 𝑖𝑚ins) = (𝑜2, 𝑖𝑚outs)

𝑖𝑚outs.𝑖 ⊆ 𝑆.𝑖in ∪ 𝑆.𝑖rs 𝑖𝑚ins.𝑖 # 𝑖𝑚outs.𝑖

⟨𝑜,𝑀⟩ 𝑙int(𝑂.𝑖,𝑟.𝑖,𝑖𝑚ins,𝑖𝑚outs)−−−−−−−−−−−−−→
𝑆

⟨
𝑜+ (𝑂.𝑖, 𝑜2),

𝑀 − 𝑖𝑚ins + 𝑖𝑚outs

⟩

Figure 3-2: Step semantics in protocol transition systems

calling our interleaving example in section 2.1, we see that the three objects (𝑃 , 𝐶1,

and 𝐶2) form a tree shape and communicate through the designated three channels

between the parent and a child. One of the main intuitions of the Hemiola framework

is that safe interleavings are ensured just by restricting the communication patterns

among objects (with proper locking mechanisms). We will explore how such a restric-

tion is enforced by defining a domain-specific language (DSL) in chapter 5 and how

the DSL implies safe interleavings in chapter 6.
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3.2.2 Semantics

State-transition steps

Figure 3-2 describes the semantics for state-transition steps in a protocol transition

system. A state transition (step) happens by a rule that takes input messages, makes

an object-state transition, and generates output messages. The semantics for a step

is presented as a judgment 𝑠0
𝑙−→
𝑆

𝑠1, where 𝑆 is the system to execute, 𝑠0 is a prestate,

𝑠1 is a poststate, and 𝑙 is a label generated by the state transition. The state of a

system (in domain S) is a pair of object states and message states. Object states are

represented in a finite map from object indices to object states. Message states are

also represented in a finite map from channel indices to ordered queues of messages.

From now on, we assume that all the input and output messages used in the step

definitions do not share the same channel, i.e., (List.NoDup 𝑖𝑚.𝑖). In other words,

while taking inputs and generating outputs, each step case never accesses a channel

twice. As already mentioned in section 3.1, this assumption is fair and practical in

hardware.

Rule [StepSilent] represents the case where no state transition happens in the

current step; an empty label (𝑙𝜖) is generated in this case. A system may accept input

messages from the external world. [StepIns] describes this case, where the external

input messages (𝑖𝑚) should not be empty (𝑖𝑚 ̸= []), and channels of the messages are

valid (𝑖𝑚.𝑖 ⊆ 𝑆.𝑖rq), i.e., the input messages are all put to external-request channels.

An external-inputs label (𝑙in(𝑖𝑚)) is generated in this case. [StepOuts] describes the

opposite case, for output messages being released to the external world. In this case,

in addition to the [StepIns] case, each output message should be in the head (the first

element) of its channel (𝑖𝑚 ⊆𝑀.hds).

Lastly, [StepInt] deals with a state transition by a rule (𝑟) in an object (𝑂).

It nondeterministically chooses an object and a rule in the object, checks that the

precondition holds (𝑟.𝑝 (𝑜1, 𝑖𝑚ins)), and applies the transition to update the state of

the system (𝑟.𝑡 (𝑜1, 𝑖𝑚ins) = (𝑜2, 𝑖𝑚outs)). An internal label (𝑙int(𝑂.𝑖, 𝑟.𝑖, 𝑖𝑚ins, 𝑖𝑚outs))

is generated in this case, which records an object index, a rule index, input messages,
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Steps and behaviors:

StepsNil:
𝑠

[]
=⇒
𝑆

𝑠
StepsCons:

𝑠0
𝑙
=⇒
𝑆

𝑠1 𝑠1
𝑙1−→
𝑆

𝑠2

𝑠0
𝑙+𝑙1==⇒
𝑆

𝑠2

Behavior:
𝑆init

𝑙
=⇒
𝑆

𝑠

𝑆 ⇓ ⌊𝑙⌋

Figure 3-3: Multiple transition steps and behaviors in protocol transition systems

and output messages. Each input message should be from either an internal channel

or an external-request one (𝑖𝑚ins.𝑖 ⊆ 𝑆.𝑖in ∪ 𝑆.𝑖rq) and should be the first element

of the channel (𝑖𝑚ins ⊆ 𝑀.hds). In contrast to the input messages, each output

message should be enqueued to either an internal channel or an external-response

one (𝑖𝑚outs.𝑖 ⊆ 𝑆.𝑖in ∪ 𝑆.𝑖rs). Lastly, the channels of the input and output messages

should be disjoint from each other (𝑖𝑚ins.𝑖 # 𝑖𝑚outs.𝑖). Note that the semantics is

based on ordered channels, so messages are enqueued and dequeued in each state-

transition case. We use notations 𝑀 + 𝑖𝑚 and 𝑀 − 𝑖𝑚 for such operations.

The step semantics is naturally lifted to one for multiple steps, as shown in Fig-

ure 3-3. It is presented as a judgment 𝑠0
𝑙
=⇒
𝑆

𝑠1, where 𝑆 is the system to execute, 𝑠0

is a prestate, 𝑠1 is a poststate, and 𝑙 is a sequence of labels generated by executions

of the steps. [StepsNil] serves the case where no state transitions happen, and no

labels are generated in this case. [StepsCons] is a natural inductive constructor that

combines previous steps (𝑠0
𝑙
=⇒
𝑆

𝑠1) and a new one (𝑠1
𝑙1−→
𝑆

𝑠2). The label by the new

step is appended to the end of the label sequence of the previous steps.

Throughout the dissertation, we will now call a sequence of labels a history. We

say that a state 𝑠 is reachable iff there is a history 𝑙 such that 𝑆init
𝑙
=⇒
𝑆

𝑠 holds, where

𝑆init is the initial state of the system 𝑆, constructed by composing all initial object

states. We use a simpler notation 𝑆 ⇒ 𝑠 for reachable states. We also say that a

history 𝑙 is legal iff there is a state 𝑠 such that 𝑆init
𝑙
=⇒
𝑆

𝑠 holds. We write 𝑆
𝑙
=⇒ ∙ to

assert that a history is legal.
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Behaviors and correctness

A system 𝑆 has a behavior ⌊𝑙⌋, denoted as 𝑆 ⇓ ⌊𝑙⌋, if there exists an execution of steps

that generates 𝑙, starting with the initial state of 𝑆 ([Behavior] in Figure 3-3). Here

the ⌊·⌋ operation filters out silent (𝑙𝜖) and internal (𝑙int) labels so only the external

parts remain. We call such a sequence of labels a trace. In other words, a trace only

consists of external-inputs and external-outputs labels.

Finally we define trace refinement as a notion of correctness in protocol transition

systems:

Definition 3.2.1 (Trace Refinement). A system 𝐼 (“implementation”) trace-refines

another system 𝑆 (“specification”), written as 𝐼 ⊑ 𝑆, iff every trace of 𝐼 is also a trace

of 𝑆:

𝐼 ⊑ 𝑆 , ∀𝑡. 𝐼 ⇓ 𝑡→ 𝑆 ⇓ 𝑡.

Trace refinement is one of the well-known correctness criteria to claim that the ex-

ternal (observable) behavior of a given implementation is within the behavior bound-

ary of the specification. In other words, by proving trace refinement, we can say that

the implementation does not go wrong in terms of the specification.

How do we prove trace refinement for a given implementation and a spec? It is

usually proven by establishing a simulation relation between the implementation and

the spec states:

Definition 3.2.2 (Simulation). We call a relation between two states (∼) : S×S→ P

a simulation between the systems 𝐼 and 𝑆 iff 1) the relation holds for the initial states

and 2) a step in 𝑆 exists for every step in 𝐼, which generates the same external label

and preserves the relation:

1) 𝐼init ∼ 𝑆init,

2) ∀𝑠0, 𝑠1, 𝑙. 𝑠0
𝑙−→
𝐼

𝑠1 → ∀𝑡0. 𝑠0 ∼ 𝑡0 → ∃𝑡1. 𝑡0
𝑙−→
𝑆

𝑡1 ∧ 𝑠1 ∼ 𝑡1.

It is also well-known that simulation directly implies trace refinement [11], which

is proven simply by induction on state-transition steps:
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Theorem 3.2.1 (Simulation implies trace refinement). If there is a simulation (∼)

between two systems 𝐼 and 𝑆, then 𝐼 ⊑ 𝑆.
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Chapter 4

Serializability in Protocol Transition

Systems

Serializability [64, 5] is a celebrated notion of concurrency correctness that originated

with databases and distributed systems. While each transaction in a system affects

multiple values, serializability guarantees that concurrent execution of such transac-

tions is correct in that the effect (state change) is the same as if the transactions were

executed separately in sequence. In this section, we provide the formal definition

of serializability on top of a protocol transition system and explain how it eases the

burden of designing and proving conventional invariants.

4.1 Cache-Coherence Protocols as Distributed Pro-

tocols

We already explored in section 2.1 with the interleaving example that the cache

objects in a cache-coherent memory system handle multiple requests from the pro-

cessor cores concurrently, in a distributed way. We also learned that transactions

to handle such requests are interleaved, so it is crucial in designing and proving a

cache-coherence protocol to ensure safe interleavings.

A very well-known approach to ensuring safe interleavings is to prove noninter-
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ference, which basically claims that no other state transitions spuriously affect state

relevant to an ongoing transaction. Not constrained to the cache-coherence proto-

cols, noninterference has been developed and employed in verifying other hardware

components (e.g., processors) and concurrent software. We will discuss various uses

of noninterference more in chapter 7.

Model checkers have employed noninterference lemmas for a long time. The lem-

mas are often described explicitly by the user (guided by intuition) or discovered

automatically (typically guided by counterexamples). The established style of non-

interference reasoning, though, has an inherent weakness: it requires explicit lemma

statements per-protocol. Another issue is that even though these lemmas are stated

and proven, it is hard to be sure if the lemmas are enough to resolve all possible

interleavings in the system.

Another well-known approach is to prove serializability, which claims that the

overall state transition of any interleaved transactions can be interpreted as if they

are executed serially, i.e., atomically in some order with no interleaving. Serializability

has been mainly developed and used in database systems and software distributed

systems. Regarding a cache-coherence protocol as a distributed protocol, one of

the main topics of this dissertation is to demonstrate that serializability can also be

employed to prove the protocol. To our knowledge, the notion of serializability has not

been used to provide a formal correctness proof of a cache-coherence protocol. Instead

of stating noninterference lemmas coupled to each protocol, which is a conventional

approach to the verification of cache-coherence protocols, in Hemiola we try to find

general conditions that ensures serializability, extracted and abstracted from practical

protocols, so the conditions can apply to various protocols.

4.2 From Atomic Histories to Serializability

In order to obtain the formal definition of serializability, we should define each basic

term first – transactions, sequential executions, etc. In this section, we provide all

the formal definitions required to define serializability, starting with atomic histories.
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AtomicStart:

𝑖𝑚init [𝑙int(𝑂.𝑖,𝑟.𝑖,𝑖𝑚init,𝑖𝑚end)]
∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼B 𝑖𝑚end

AtomicCont:
𝑖𝑚init 𝑙

∼∼∼B 𝑖𝑚end 𝑛ins ̸= [] 𝑛ins ⊆ 𝑖𝑚end

𝑖𝑚init 𝑙+𝑙int(𝑂.𝑖,𝑟.𝑖,𝑛ins,𝑛outs)
∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼B (𝑖𝑚end − 𝑛ins + 𝑛outs)

(a) Atomic histories

TrsSilent:
𝑆 $ [𝑙𝜖]

TrsIns:
𝑆 $ [𝑙in(𝑖𝑚)]

TrsOuts:
𝑆 $ [𝑙out(𝑖𝑚)]

TrsAtomic:

𝑆 ⊢ 𝑖𝑚init 𝑙
∼∼∼Bext 𝑖𝑚end

𝑆 $ 𝑙

(b) Transactions

Figure 4-1: Atomic histories and transactions in protocol transition systems

4.2.1 Atomic histories

Figure 4-1 provides basic definitions of atomic histories and transactions. A history

ℎ is atomic iff it satisfies the predicate (𝑖𝑚init ℎ
∼∼∼B 𝑖𝑚end) with initial messages 𝑖𝑚init

and live messages 𝑖𝑚end. [AtomicStart] initializes a history with an internal label.

[AtomicCont] inductively adds a label to an atomic history, where the input messages

of the new label should be from the live messages of the previous atomic history. A

shorter notation (
ℎ

∼∼∼B) will be used when 𝑖𝑚init and 𝑖𝑚end are clear from context.

Figure 4-2 presents an example of an atomic history from the interleaving example

presented in section 2.1. ℎ is generated by executions of five rules, 𝑟1 ∈ 𝐶1.𝑟, 𝑟2 ∈ 𝑃.𝑟,

𝑟3 ∈ 𝐶2.𝑟, 𝑟4 ∈ 𝑃.𝑟, and 𝑟5 ∈ 𝐶1.𝑟. 𝑟1 takes an input message (1, rqWr) (from the

channel with index 1) as an initial message of the history. 𝑟2 takes (3, rqM), the

output message from 𝑟1. 𝑟3 takes (8, rqI), the output message from 𝑟2. 𝑟4 takes

(7, rsI), the output message from 𝑟3. Finally, 𝑟5 takes (5, rsM), the output message

from 𝑟4. Summing up all the rule executions, by the definition of an atomic history

we get the predicate [(1, rqWr)] ℎ
∼∼∼B [(2, rsWr)]. This example shows that an atomic

history intuitively captures a transaction flow triggered by the initial messages.
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ℎ , [𝑙int(𝐶1.𝑖, 𝑟1.𝑖, [(1, rqWr)], [(3, rqM)]);

𝑙int(𝑃.𝑖, 𝑟2.𝑖, [(3, rqM)], [(8, rqI)]);

𝑙int(𝐶2.𝑖, 𝑟3.𝑖, [(8, rqI)], [(7, rsI)]);

𝑙int(𝑃.𝑖, 𝑟4.𝑖, [(7, rsI)], [(5, rsM)]);

𝑙int(𝐶1.𝑖, 𝑟5.𝑖, [(5, rsM)], [(2, rsWr)])]

Figure 4-2: An example of an atomic history

Note that an atomic history does not need to be a completed transaction. For

example, taking the first three rule executions (by 𝑟1, 𝑟2, and 𝑟3) will generate the

following history:

ℎ𝑝 , [𝑙int(𝐶1.𝑖, 𝑟1.𝑖, [(1, rqWr)], [(3, rqM)]);

𝑙int(𝑃.𝑖, 𝑟2.𝑖, [(3, rqM)], [(8, rqI)]);

𝑙int(𝐶2.𝑖, 𝑟3.𝑖, [(8, rqI)], [(7, rsI)])].

ℎ𝑝 is still an atomic history satisfying [(1, rqWr)]
ℎ𝑝

∼∼∼B [(7, rsI)] and is not completed

in the sense that the live message (rsI) is not a response sent on an external channel.

We call a history externally atomic if initial messages are external requests (𝑚init.𝑖 ⊆

𝑆.𝑖rq), denoted as (𝑆 ⊢ 𝑖𝑚init ℎ
∼∼∼Bext 𝑖𝑚end). We sometimes use the shorter notation

𝑆
ℎ

∼∼∼Bext for some 𝑖𝑚init and 𝑖𝑚end. The history ℎ in the example is externally

atomic, satisfying a predicate 𝑆 ⊢ [(1, rqWr)] ℎ
∼∼∼Bext [(7, rsI)], since the initial message

(1, rqWr) is an external request (from a processor core attached to 𝐶1). An externally

atomic history records the way the system responded to some set of messages received

from the outside world.
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4.2.2 Transactions

Transactions are the next level of abstraction, presented in Figure 4-1b. A transaction

is either a single silent label ([TrsSilent]), a single external inputs label ([TrsIns]), a sin-

gle external outputs label ([TrsOuts]), or an externally atomic history ([TrsAtomic]).

In other words, the permitted atomic execution steps, in this transactional semantics,

are arrival of new messages from the outside world, release of messages to the outside

world, or uninterrupted execution of an atomic history. We denote by 𝑆 $ ℎ that ℎ

is a transaction in 𝑆.

Note that an external-inputs label and an atomic history are regarded as separate

transactions. In other words, accepting an external request (or releasing an external

response) is regarded as a transaction separated from the atomic history handling the

request (generating the response). This design choice gives more serializable histories

in a given system, where the property is still meaningful enough to use it to verify

distributed protocols. We will see why this relaxed definition is a better choice right

in the next section (section 4.2.3).

4.2.3 Sequential histories and serializability

With a clear notion of transactions, we can easily define sequential histories and

serializability.

Definition 4.2.1 (Sequential Histories and Serializability).

1. A history ℎ is sequential iff the history is a concatenation of transactions:

Sequential 𝑆 ℎ , ∃ 𝑡. (∀𝑡 ∈ 𝑡. 𝑆 $ 𝑡) ∧ ℎ = ⊕𝑡.

2. A legal history ℎ is serializable in the system 𝑆 iff there exists a sequential history
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that reaches the same state:

Serializable 𝑆 ℎ , ∀𝑠. 𝑆init
ℎ
=⇒
𝑆

𝑠→

∃ℎseq. Sequential 𝑆 ℎseq ∧ 𝑆init
ℎseq
==⇒
𝑆

𝑠.

3. A system 𝑆 is serializable iff every legal history is serializable:

Serializable 𝑆 , ∀ℎ. Serializable 𝑆 ℎ.

It is quite natural to think of sequential histories only with atomic histories, e.g.,

like the one in Figure 2-9, but why do we have to separate external input/output labels

from atomic histories? Suppose that an object 𝐶 in a system 𝑆 takes two external

requests, say rq1 and rq2, in-order from the same channel and finishes handling rq2

earlier than rq1. Even if 𝐶 should start handling rq1 first because the channel is

ordered, this case may happen when rq1 requires further treatment by other objects

while 𝐶 can take rq2 and respond immediately to the corresponding external channel.

We may have the following legal history ℎ in 𝑆 for this kind of scenario:

ℎ = 𝑙in([(𝑖rq, rq1)]) + 𝑙in([(𝑖rq, rq2)]) + ℎ𝑎 + 𝑙out([(𝑖rs, rs2)]) + 𝑙out([(𝑖rs, rs1)]),

where 𝑖rq (and 𝑖rs) is the external-request (external-response) channel. If we had

not separated the external labels from an atomic history and regard the combined

history as a transaction, then we cannot sequentialize ℎ, i.e., separating the red and

blue transactions, thus ℎ is not serializable. However, it is still meaningful if we can

just sequentialize the internal processes of rq1 and rq2 (presented as ℎ𝑎) to have two

separated atomic histories. The next section will explain how we benefit from this

serializability definition. Lastly, note that this relaxed definition is still safe in that

it does not require preserving the order of the trace.
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4.3 Predicate Messages in Atomic Histories

Now we discuss how to exploit our notion of serializability: how does it help prove

trace refinement between an implementation and its spec? There is a clear gap

between two notions, serializability and trace refinement: the former only deals with

reachable states, whereas the latter only deals with behaviors. However, we can bridge

the gap by using serializability to help prove invariants (which only concern reachable

states), since a simulation – which implies trace refinement – proof usually requires

a number of invariants of the implementation.

We start by defining a conventional notion of an invariant:

Definition 4.3.1 (Invariants). We call ℐ : S→ P an invariant over a system 𝑆 if ℐ

holds for all reachable states, i.e., ∀𝑠. 𝑆 ⇒ 𝑠→ ℐ(𝑠).

In proving the correctness of a distributed protocol, it is quite common to state an

invariant like “some important property holds whenever the system includes a certain

message in a certain channel.” We call such an invariant a predicate message, formally

defined as following:

Definition 4.3.2 (Predicate Messages). A predicate message, denoted as 𝑆 ⊢ 𝑖𝑚{𝑃},

is an invariant over a system 𝑆 that additionally requires 𝑖𝑚, a pair of a channel and

a message, to be in the system:

𝑆 ⊢ 𝑖𝑚{ℐ} , ∀𝑠. 𝑆 ⇒ 𝑠 ∧ 𝑖𝑚 ∈ 𝑠.𝑀 → ℐ(𝑠).

We will write just 𝑖𝑚{ℐ} when the system 𝑆 is clear from context. We will

use an even-shorter version 𝑚{ℐ} when the channel that contains the message is

not ambiguous. The same notation id{ℐ} will be used most commonly to define a

predicate message that holds for every message with a given ID (id) with the clear

channel.

Figure 4-3 presents an example of a predicate message. Recalling the example

protocol from section 2.1, when the system has a message of a kind rsM, we expect
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∙ rsM{𝐶1.st = 𝐼 ∧ 𝑃.st = 𝐼}??

𝑟1 : (𝐶1.st←𝑀)
𝑂.st , (𝑠.𝑜)[𝑂.𝑖].st

Figure 4-3: Interference breaks a predicate message

the parent and the other child (who is not the requestor) to have I status (like {𝐶1.st =

𝐼 ∧𝑃.st = 𝐼} in the figure). However, the predicate is broken when a state transition

happens by another transaction; for instance, the predicate no longer holds if a state

transition happens by 𝑟1 ∈ 𝐶1, which takes an input (5, rsM) and updates the status

of 𝐶1 to M. From now on, we will use a brief notation like 𝑟1 : (𝐶1.st←𝑀) to denote

a rule with some commands.

Investigating this corner case carefully, we can find that actually no two different

rsM messages can be in the system at the same time. This finding implies that now

the predicate message for rsM should have a much-more-complicated form, which

considers all possible noninterference cases. The complete desired predicate message

for (8, rsM) will then look like:

(8, rsM)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

// The original predicate
𝐶1.st = 𝐼 ∧ 𝑃.st = 𝐼 ∧
// Noninterference with another transaction to get M from 𝐶1

(7, rsI) /∈ 𝑠.𝑀 ∧ (5, rsM) /∈ 𝑠.𝑀 ∧
// More noninterference cases will be required
· · ·

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
It is indeed a burden to consider all possible interleavings per predicate mes-

sage. We would not have faced such a complication if we could ensure that no other

transactions interfere while handling a transaction. Serializability guarantees exactly

that simplification, and Hemiola provides a way of designing and proving predicate

messages in the simpler form, not taking any interleavings into account.

Our novel approach to employing predicate messages in atomic histories begins
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𝑟1 : (𝐶1.st← 𝐼)

𝑟𝑝 : (𝑃.st← 𝐼)

𝑟2 : (𝐶2.st←𝑀)

ℐ𝑎 𝑠 𝑖𝑚𝑜 , ((4, rsI) ∈ 𝑖𝑚𝑜 → (𝑠.𝑜)[𝐶1.𝑖].st = 𝐼) ∧

((8, rsM) ∈ 𝑖𝑚𝑜 → (𝑠.𝑜)[𝐶1.𝑖].st = 𝐼 ∧ (𝑠.𝑜)[𝑃.𝑖].st = 𝐼)

Figure 4-4: Predicate messages defined as an atomic invariant

with formalizing the notion of atomic invariants :

Definition 4.3.3 (Atomic Invariants). ℐ𝑎 : IM×S→ P is called an atomic invariant

iff ℐ𝑎 (𝑖𝑚𝑜, 𝑠1) holds for any atomic history ℎ with 𝑠0
ℎ
=⇒
𝑆

𝑠1 and 𝑖𝑚𝑖
ℎ

∼∼∼B 𝑖𝑚𝑜.

Note that an atomic invariant takes the live messages (𝑖𝑚𝑜) from an atomic history

as an additional argument, compared with ordinary invariants.

Figure 4-4 shows an example of predicate messages defined in an atomic history,

formalized as an atomic invariant. ℐ𝑎 shows how predicate messages are formalized

into an atomic invariant; it is basically a conjunction of predicates, where each pred-

icate has a form of (𝑖𝑚 ∈ 𝑖𝑚𝑜 → 𝑃 (𝑠)), claiming that the predicate 𝑃 holds when

𝑖𝑚 is in the live messages 𝑖𝑚𝑜. Compare this form with the original definition of

predicate messages, defined in Definition 4.3.2, where (𝑖𝑚 ∈ 𝑠.𝑀) is replaced with

(𝑖𝑚 ∈ 𝑖𝑚𝑜), thus avoiding possible interference by other messages.

We can prove that the atomic invariant ℐ𝑎 holds for the atomic history (in the

figure) step-by-step:

∙ The initial step of the atomic history is the one by 𝑟1. The live messages are

[(4, rsI)]. Since 𝑟1 changes the status of 𝐶1 to I, it is straightforward to prove ℐ𝑎.

∙ The next step is by 𝑟𝑝, and at this point the live messages are [(8, rsM)]. By the

induction hypothesis, we obtain the predicate message (4, rsI){𝐶1.st = 𝐼}. Since 𝑟𝑝

changes the status of 𝑃 to I, we can prove the predicate for (8, rsM).
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Atomic invariant: ℐ𝑎 (𝑚𝑖, 𝑠𝑖) ℐ𝑎 (𝑚𝑖+1, 𝑠𝑖+1)

Conventional invariant: ℐ(𝑠𝑖) ℐ(𝑠𝑖+1)
...

...
Steps: 𝑠0 → · · · → 𝑠𝑖 𝑠𝑖+1 → · · · → 𝑠𝑛

(Atomic history)

Figure 4-5: Atomic invariants in conventional invariant proof

∙ The last step is by 𝑟2, and the live messages are [(10, rsWr)]. ℐ𝑎 trivially holds here

since it does not contain any predicate for (10, rsWr).

It is worth emphasizing again that the invariant proof was straightforward since no

other state transitions interfere with an atomic history.

How do atomic invariants help prove conventional invariants? If the system 𝑆 is

serializable, by its definition, for every reachable state 𝑠 with a history ℎ (𝑆init
ℎ
=⇒
𝑆

𝑠),

there is a sequential history ℎseq that reaches the same state (𝑆init
ℎseq
==⇒
𝑆

𝑠). Since ℎseq

is a concatenation of transactions, an invariant can be proven by showing that any

transaction preserves it.

The three induction cases ([TSilent], [TIns], and [TOuts]) do not need any special

treatment, since each case induces just a single step. The [TAtomic] case, however,

requires coordination with atomic invariants. In other words, we can employ both

conventional/atomic invariants (ℐ and ℐ𝑎) to prove the ones for the next state (𝑠𝑖+1):

Figure 4-5 explains how to use an atomic invariant ℐ𝑎 while proving a conventional

invariant ℐ in the [TrsAtomic] case. The point is that we can employ both ℐ(𝑠𝑖) and

ℐ𝑎 (𝑚𝑖, 𝑠𝑖) to prove ℐ(𝑠𝑖+1). For instance, we may want to have an invariant claiming

that at most one node of the system has M status at a time. We will indeed use this

invariant in our case studies, although the exact statement is a bit more complex. The

predicate messages defined in Figure 4-4 will play a crucial role here, e.g., the one for

(8, rsM) says that 𝐶1 and 𝑃 both have I status, which means that the state transition

by (𝑟2 : 𝐶2.st←𝑀) preserves the invariant. We will see more comprehensive uses of

predicate messages in our case studies (chapter 8).

58



Part II
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Chapter 5

The Hemiola Domain-Specific

Language

As explained in chapter 4, on top of serializability, it is much easier to design and

prove invariants. That being said, it will still be a large burden if a user has to

prove serializability per-protocol. In this chapter, we would like to provide abstract

conditions to prove serializability, in order not to prove it directly for each protocol.

Furthermore, we design a domain-specific language (DSL) that every protocol defined

on top of this language automatically satisfies the conditions to guarantee serializ-

ability. The conditions have already been mentioned with the motivating example

in section 2.1 – network topology and locking mechanisms, extracted from transient

states of practical cache-coherence protocols.

5.1 Topology and Network Requirements

In order to employ the serializability guarantee in Hemiola, the objects in a given

system should form a tree topology. Most cache-coherent memory subsystems follow

this topology, where leaf nodes correspond to L1 caches, and the root corresponds

to the main memory. A child and its parent in the tree communicate using the

three channels shown in section 2.1: an upward-request channel, an upward-response

channel, and a single downward channel. Note that the use of the three channels does
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not mean the actual hardware implementation should use just the three channels; it

can use any channel implementation that refines the three channels regarded as a

specification. For example, we may want to have an additional queue that accepts

all the requests from child caches (from the corresponding upward-request channels),

so the parent can have a single entry point to handle child requests. We will indeed

see in chapter 9 how logical channels in Hemiola are implemented at register-transfer

level.

Hemiola as a Coq library generates the topology and network channels automat-

ically from instances of a simple inductive type. For example, the following tree

definition will generate topology and channels for four L1 caches, two L2 caches, the

last-level cache (LLC), and the main memory:

Definition t: tree := Node [Node [Node [Leaf; Leaf]; Node [Leaf; Leaf]]].

5.2 Locking Mechanism

We saw in section 2.1 why fine-grained transient states are required to ensure safe

interleavings in cache-coherence protocols. Revisiting the corner case described in

Figure 2-2, a child should be able to handle an invalidation request from the parent

even if it is in a transient state (SM), and after the response it changes its transient

state to IM. By looking at these transient states carefully, we have discovered that

another necessary condition, other than the tree-topology condition, is the locking

perspective from the transient states.

Hemiola supports a general locking mechanism reflecting this discovery; instead

of looking at the type of a message (e.g., invalidation), the framework provides more-

general locking, just by looking at whether the message is from the parent or one of

its children. This relaxed locking mechanism is then not coupled with any specific

cache-coherence protocols but is still sufficient to prove serializability.

In particular, Hemiola provides two kinds of locks: uplocks and downlocks. We say

an object is uplocked (downlocked) when it holds an uplock (downlock). Figure 5-1

depicts the locking mechanism in Hemiola. An uplock is set when an object makes
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𝐶

∙ rq1

𝑃1

∙rq2
𝑃2

∙ rqs

𝑃1 sets an uplock
when sending rq2 to 𝑃2

𝑃2 sets a downlock
when sending rqs to children

Figure 5-1: Locking mechanism in Hemiola

an upward request to its parent (𝑃1 in the figure); it is released when the object gets

a corresponding response from the parent. On the contrary, a downlock is set when

an object makes a downward request(s) to some of its children (𝑃2 in the figure).

Uplocked Downlocked
Acquiring an uplock 7 3

Releasing an uplock 3 7

Acquiring a downlock 3 7

Releasing a downlock 3 3

Figure 5-2: Locking conditions in Hemiola

Figure 5-2 shows the conditions to acquire or release the locks. We explore each

case with examples in actual cache-coherence protocols:

An uplock cannot be set if the object is already uplocked. As already

explained with the interleaving example in section 2.1, we do not want to make a

further request to the parent (with the same line) when it already made an upward

request. Requesting to the parent twice would result in spurious interleavings.

An uplock can be set even when the object is downlocked; instead, it

cannot be released when downlocked. It means that an object can make a

request to its parent even when it has made requests to its children. It is still safe,

since the lock release will not be allowed when downlocked, i.e., the uplock release

should always wait for the downlock to be released.

This case happens only when a protocol is defined with caches forming at least

three levels, i.e., there is an intermediate cache object that has both a parent and
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children. Suppose an intermediate cache is in an invalidation process, i.e., invalidation

requests have been sent to children, and the cache has been downlocked since then.

Also suppose that a child with the S status made an upward request to get the

M status. In this case, the intermediate cache should be able to deal with this

upward request and to make a further request to its parent, even when it is in the

invalidation process. Granting the M status to the child, however, will happen after

the invalidation process is finished, since the uplock can be released only after the

downlock is released.

A downlock cannot be set if the object is already downlocked. This case is

also presented in the example in section 2.1; we do not want to make another set of

invalidation requests to children (with the same line) when a parent object is in the

invalidation process. Handling two invalidation processes would lead to an incoherent

state due to spurious interleavings.

A downlock can be set and released even when uplocked. This relaxation

is very important to make the locking mechanism live. If a downlock could not be

released when uplocked, we would have a deadlock case, where both locks wait for

each other.

This case also happens when a protocol is at least 3-level. Similarly to the above

case, suppose that an intermediate cache already forwarded a request from its child

to the parent to get the M status, so it has been uplocked. When it receives an

invalidation request from the parent at this moment, it should be able to deal with

this request and possibly make further invalidation requests to some of its children.

It sets a downlock for the invalidation process, even when it has been uplocked. We

will see a couple of actual cases in chapter 8 with the case-study protocols, where

both an uplock and a downlock are acquired to deal with two respective transactions.
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Remarks on transient states

Now every cache object defined in Hemiola does not need to set transient states to con-

sider all combinations among stable statuses; instead, the framework helps maintain

the cache status and claim proper locks. For example, instead of setting a transient

state SM, it is now desirable to maintain its status S and to set an uplock to record

it just made the upward request. (The framework provides even more, actually, by

guiding users to employ the rule templates, introduced in the next section, that au-

tomatically set proper locks.)

Each object defined in Hemiola has a semantic lock state, a finite map from a

lock type (uplock or downlock) to lock information: the original request message, the

original requestor index, and requestee indices from which we expect to get responses.

In the common terminology of cache-coherence protocols, each lock corresponds to a

miss status holding register (MSHR). An MSHR is set when a cache miss happens

and the miss triggers further requests to obtain a proper status and up-to-date data.

As with Hemiola lock holders, MSHRs play a crucial role both in deciding whether to

handle certain requests and in storing information needed to handle them properly.

It is worth emphasizing that an uplock and a downlock are assigned for each line.

In other words, the locking conditions presented in Figure 5-2 do not apply to the

locks for different cache lines. This separation is safe, since in a cache-coherence

protocol the transactions for different cache lines never interfere with each others. It

is not practical, however, to have an uplock and a downlock for each line in the actual

hardware implementation. We need to restrict the number of locks (MSHRs) to make

the implementation synthesizable. A detailed discussion about this restriction will be

provided in chapter 9.

5.3 Rule Templates

On top of the topology/network requirements and the locking mechanism, Hemiola

provides rule templates to ensure that objects communicate within the topology and

locks are properly set. In this section, we will explore what kinds of rule templates
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Hemiola provides and discuss their uses. Each rule template will be introduced with

the form {𝑃}𝑂[𝑄] and arrows with ∘ and ∙, which means that the rule template

is for an object 𝑂, requires input messages (∘) and a precondition 𝑃 , performs a

state transition 𝑄, and generates output messages (∙). UL, DL, UL×, and DL× in

a precondition indicate that the object is uplocked, downlocked, uplock-free, and

downlock-free, respectively. UL ⇑, DL ⇑, UL ⇓, and DL ⇓ in a state transition indicate

setting an uplock, setting a downlock, releasing an uplock, and releasing a downlock,

respectively. SLT annotates that the rule template forbids any state modification

beside locking.

Rule templates for immediate responses

{UL×
DL×
}𝑂[·]
∘rq ∙ rs( )

(a) immd

An immediate-down (immd) rule responds immediately to an up-

ward request, requiring both locks be free. This rule allows not to

take (generate) any input (output) messages. (The input/output

messages are parenthesized in the form.) In other words, using

this rule, an object can make a local state transition without any

input/output messages, but in this case both locks should be free.

This rule also shows that a transaction may start without any

input messages as a trigger, which still matches the definition of

externally atomic histories in Figure 4-1.

{DL×}𝑂[·]
∘rq ∙ rs

(b) immu

An immediate-up (immu) rule responds immediately to a down-

ward request, and it only requires the downlock be free. In other

words, even when uplocked, an object can make a state transition

by taking a downward request and generating an upward response

immediately.

Rule templates to communicate with the parent
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{UL×}𝑂[UL⇑
SLT ]

∘rq

∙rq

( )

(c) rquu

A request-up-up (rquu) rule (possibly) takes an upward request

from a child and make another request to the parent. It requires

the uplock to be free but does not care whether the object is

downlocked or not. A state transition is not allowed when setting

any lock (either an uplock or a downlock).

{ UL
DL×
}𝑂[UL ⇓ ]

∘rs

∙rs( )

(d) rsdd

A response-down-down (rsdd) rule is dual to the rquu rule, which

takes a downward response and (possibly) responds to the original

child requestor. This rule releases the corresponding uplock. Note

that in order to handle a response from the parent, the object

should be downlock-free. This precondition is indeed required to

ensure correctness (serializability), as explained in section 5.2.

Rule templates to communicate with children

{DL×}𝑂[DL⇑
SLT ]

∘rq ∙ rqs( )

(d) rqud

A request-up-down (rqud) rule (possibly) takes an upward re-

quest and makes downward requests to some of the children except

the child requestor. A downlock is set in this case, and thus no

state transition is allowed. This rule does not have a precondition

that the object should be uplock-free, i.e., the object can handle

a request from the parent even when uplocked. This relaxation is

still safe in terms of correctness (serializability) and necessary to

avoid a deadlock.

{DL}𝑂[DL ⇓ ]

∙rs ∘ rss( )

(e) rsud

A response-up-down (rsud) rule is dual to the rqud rule, which

takes upward responses and (possibly) responds back to the origi-

nal child requestor. The rule releases the corresponding downlock.

As explained in section 5.2, it does not require any conditions on

the uplock.
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{DL×}𝑂[DL⇑
SLT ]

∘rq

∙rqs

A request-down-down (rqdd) rule takes a downward request

(from the parent) and makes downward requests to some of the

children. Similar to rqud, a downlock is set, and no state tran-

sition is allowed. This rule also does not require the object to be

uplock-free, which is to avoid a deadlock.

{DL}𝑂[DL ⇓ ]

∙rs

∘rss

A response-up-up (rsuu) rule is dual to the rqdd rule, which

takes upward responses and responds back to the parent. Similar

to rsud, this rule also releases the corresponding downlock.

A rule template for whole-tree traversal

{ UL
DL×
}𝑂[UL⇓

DL⇑ ]

∘rs

∙rqs

A response-down-request-down rule (rsrq) takes a downward re-

sponse (from the parent) and makes new downward requests to

some of the children. It makes a transfer from an uplock to a new

downlock by releasing the uplock and setting a downlock, where

the child-requestor information is moved from the uplock. This

rule forces the order of a traversal, saying that the traversal for

the outer objects must be done before traversing the inner objects.

The forced order is important to avoid a deadlock. For example, if

the object makes requests to its parent and children at the same

time and sets both an uplock and a downlock, a deadlock may

occur.

Example uses in cache-coherence protocols

In order to understand the rule templates better, we present how they can be used

to describe an actual cache-coherence protocol. Figure 5-3 presents a number of rule

templates used to describe the interleaving example described in section 2.1. We use

an arrow (→) and a label ( 1 rquu) to denote a state transition by a rule defined with
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𝑃 (𝑆, 𝑣, 𝑆⟨1,2⟩)

𝐶1(𝑆, 𝑣) 𝐶2(𝑆, 𝑣)

1 2

∙a rqWr
109

∙e rqWr

3 4 5

∙b rqM

876

∙
d rsI
∙

c rqI
∙

f rqM
1 rquu

3 rqud

4 immu2

𝑃 (𝑆, 𝑣, 𝑆⟨1,2⟩)

𝐶1(𝑆, 𝑣) 𝐶2(𝑆, 𝑣)

1 2

∙ i rsWr
109

3 4 5

∙
g rsM

∙
h rqI

∙j rsI
876

∙ d rsI∙

f rqM

5

rsud
7 rsdd

6

8

...

Figure 5-3: Use of the rule templates in a cache-coherence protocol

a certain rule template, e.g., 1 rquu is a rule in 𝐶1 using the rquu rule template,

taking an input message (1, rqWr) and outputting (3, rqM).

1 (or 2 ) uses the rquu rule template. It takes rqWr from the external-input

channel of 𝐶1 (or 𝐶2) and makes a request rqM to the parent 𝑃 to obtain the M

status. By the definition of rquu, it implicitly checks if the object is not uplocked

and acquires the uplock. As explained in section 2.1, this uplock is not to allow any

further external requests.

3 (or 6 ) uses the rqud rule template. It takes rqM from the upward-request

channel of 𝐶1 (or 𝐶2) and makes an invalidation request rqI to the other child 𝐶2 (or

𝐶1). By the definition of rqud, it implicitly checks if the object is not downlocked and

acquires the downlock. This downlock is not to allow any further upward requests to

𝑃 . Indeed, after 3 is executed, f rqM has been stalled until the downlock is released

by 5 .

4 (or 8 ) uses the immu rule template. It takes rqI from the downward channel

to 𝐶2 (or 𝐶1) and responds to the parent with rsI. Note that immu does not require

the uplock be free. Indeed, at the moment 4 is executed, 𝐶2 has been uplocked by

2 rquu.

5 uses the rsud rule template. It takes rsI from the upward-response channel from

𝐶2 and responds back to 𝐶1 with rsM. rsud by definition releases the downlock at

this moment so 𝑃 can take another upward request (e.g., f rqM).

Lastly, 7 uses the rsdd rule template. It takes rsM from the downward channel
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to 𝐶1 and responds back with rsWr to the external world. The uplock is released at

this moment. rsdd by definition also checks if the object is downlock-free, but in this

case 𝐶1 is a leaf node (an L1 cache) so it never sets the downlock.

Remarks

The rule templates are designed carefully to perform any practical transactions safely

with serializable behavior. Consider an extreme case in a cache-coherence protocol.

When an L1 cache wants to obtain a write permission, all the other caches should

be invalidated (changing each cache status to Invalid). In order to perform such a

transaction, it must be able to traverse all the other caches. This transaction kind

is one of the longest-running in cache-coherence protocols, and the rule templates

are designed with proper locking (UL and DL) and a state-change condition (SLT),

not to create any incoherence while such a long transaction is interleaved with other

transactions.
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Chapter 6

Serializability in Hemiola

In this chapter, we provide the proof of serializability in Hemiola. As introduced in

chapter 5, the proof largely requires two conditions: tree topology with the three

channel kinds (introduced in section 5.1) and the locking mechanism (introduced in

section 5.2). Since the Hemiola DSL with the rule templates faithfully follows such

conditions, it is also fair to say that just using the DSL ensures serializability. While

conventional approaches to verifying cache-coherence protocols deal with transient

states directly and prove noninterference lemmas per-state, Hemiola provides the

serializability guarantee as the most general form of noninterference, obtained from

conditions that are not coupled to any specific cache-coherence protocol, e.g., the DSL

does not mention any cache-coherence specifics.

In proving serializability we use a well-established technique called commuting

reductions [44]. This reduction technique has been used before to prove correctness

of concurrent software [32, 12] and distributed systems [31], but to our knowledge no

past work has tried to discover serializability conditions for cache-coherence protocols

and proved them using reductions. We will provide more detailed discussion of the

use of commuting reductions in chapter 7.
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6.1 The Intuition: Merging Atomic-History Frag-

ments

We first present our intuition of how commuting reductions are used in the serial-

izability proof; first, we need to formalize reduction. The most basic commuting

reduction happens between two adjacent state-transition steps:

Definition 6.1.1 (Commutativity of steps). Two adjacent state-transition steps com-

mute, denoted as (𝑠0
𝑙0−→
𝑆

𝑠1) ] (𝑠1
𝑙1−→
𝑆

𝑠2), if the state transitions with the opposite

order reach the same state:

(𝑠0
𝑙0−→
𝑆

𝑠1) ] (𝑠1
𝑙1−→
𝑆

𝑠2) , ∃𝑠′1. 𝑠0
𝑙1−→
𝑆

𝑠′1 ∧ 𝑠′1
𝑙0−→
𝑆

𝑠2.

We will write just 𝑙0 ] 𝑙1 when the system 𝑆 and the states involved with 𝑙0 and

𝑙1 are clear from context.

We can naturally lift the definition to one for histories to argue whether two

histories commute or not:

Definition 6.1.2 (Commutativity of histories). Two adjacent histories commute,

denoted as (𝑠0
ℎ0=⇒
𝑆

𝑠1) ] (𝑠1
ℎ1=⇒
𝑆

𝑠2), if the state transitions with the opposite order

reach the same state:

(𝑠0
ℎ0=⇒
𝑆

𝑠1) ] (𝑠1
ℎ1=⇒
𝑆

𝑠2) , ∃𝑠′1. 𝑠0
ℎ1=⇒
𝑆

𝑠′1 ∧ 𝑠′1
ℎ0=⇒
𝑆

𝑠2.

We overload the same notation for the commutativity of histories. We will also

use the shorter version ℎ0 ] ℎ1 with clear context.

Our high-level intuition for the serializability proof is that for a given interleaved

history we can perform a finite number of reductions to get a sequential history that

reaches the same state. More specifically, we will try to merge any two separated

atomic-history fragments by performing reductions.

We elaborate this intuition more by using a concrete example. Figure 6-1 shows

two interleaving transactions in red and blue, started from 𝐶1 and 𝐶2, respectively,
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𝑃

𝐶1 𝐶2

1 2

∙rqWr ∙ rsWr

3 4 5

∙rqM ∙
rsM

876

∙
rsI
∙ rqI

1 rquu

3 rqud

4 immu

5 rsud

7 rsdd

𝑃

𝐶1 𝐶2

109

∙ rsWr∙rqWr

3 4 5

∙rsI ∙
rqI

876

∙ rsM∙
rqM

2 rquu

6 rqud

8 immu

9 rsud

10 rsdd

Figure 6-1: The two interleaving transactions

both seeking the M status in the simple MSI protocol presented in section 2.1. We

introduce each state transition here to understand the interleaving better. We use the

same annotations introduced in section 5.3 to indicate which rule template is used

for each case:

∙ 1 rquu and 2 rquu: forward rqM to 𝑃 since 𝐶1 (or 𝐶2) does not have the M

status.

∙ 3 rqud and 6 rqud: 𝑃 makes an invalidation request to the other child (𝐶2 and

𝐶1, respectively).

∙ 4 immu and 8 immu: 𝐶2 (or 𝐶1) changes its status to I and responds with rsI

immediately.

∙ 5 rsud and 9 rsud: the invalidation has finished so 𝑃 responds with rsM to the

original requestor.

∙ 7 rsdd and 10 rsdd: 𝐶1 (or 𝐶2) takes the response and upgrades its status to M.

Figure 6-2 shows the original legal interleaved history (top) and how reductions

apply to it and make it sequential (bottom). In order to merge [ 3 ; 4 ; 5 ] and [ 7 ],

either [ 3 ; 4 ; 5 ] ] [ 6 ] or [ 6 ] ] [ 7 ] should hold. We will say that [ 6 ] is pushed to the

left (right) when it commutes with [ 3 ; 4 ; 5 ] ([ 7 ]).

Two state transitions trivially commute if 1) the object state transitions happen

in different objects and 2) input/output channels used for the transitions are all

orthogonal to each other. (We will formalize this intuition as a lemma in the actual

73



State transition timeline

𝐶1 1 7 8

𝑃 3 5 6 9

𝐶2 2 4 10

↓ (merge [ 3 ; 4 ; 5 ] and [ 7 ] by commuting 6 and 7 )

𝐶1 1 7 8

𝑃 3 5 6 9

𝐶2 2 4 10

↓ (merge [ 1 ] and [ 3 ; 4 ; 5 ; 7 ] by commuting [ 2 ] and [ 3 ; 4 ; 5 ; 7 ])

𝐶1 1 7 8

𝑃 3 5 6 9

𝐶2 4 2 10

Figure 6-2: Serialization of an interleaved history by reductions

rqI and rsM
are different,
due to their
message types.

𝑃
5

∙ rqI
∙ rsM

𝐶1

6 rqud

7 rsdd

(a) Reduction by different message types

silent

rqM and rsI
use different
channels.

𝑃
6 7 8

∙rqM
∙rsI ∙ rqI

𝐶2
2 rquu

4 immu

(b) Reduction by the rule-template properties

Figure 6-3: Nontrivial reduction cases

serializability proof, shown in section 6.2.) If either of the conditions does not hold,

we may need to analyze more.

In the first merge case, [ 6 ] can be pushed to the right, i.e., ( 6 ] 7 ) holds. The

object state transitions are straightforward to deal with, since they are orthogonal

(𝑃 for 6 and 𝐶1 for 7 ). It is nontrivial to deal with the used channels, however, since

the output of 6 (rqI) and the input of 7 (rsM) share the same channel 5. Figure 6-3a

depicts this case; we see 6 and 7 still commute, since 7 rsdd should take a “response”

(rsM) while 6 rqud outputs a “request” (rqI). It indicates that 6 and 7 are involved

with different messages in the same channel, thus not affecting commutativity. After
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the merge, we obtain a new (less-interleaved) history, shown in the middle of Figure 6-

2.

Now we should merge [ 1 ] and [ 3 ; 4 ; 5 ; 7 ]; in this case, 2 can be pushed to the

right. While this reduction is trivial in the sense of orthogonal objects and channels,

the only nontrivial case is between 2 and 4 , where both rules are executed in 𝐶2.

These state transitions still commute, as shown in Figure 6-3b, since 2 cannot make

any object state transition, according to the definition of the “rquu” rule template.

After this merge we finally obtain the sequential history.

How can we argue that the atomic-history fragments are always mergeable? As

we start to see in the two cases in Figure 6-2, mergeability follows from the rule tem-

plates. While trying to merge two fragments, we especially look at the rule template

used in the last state transition of the first fragment and figure out which state tran-

sitions can be performed between the two. For example, when checking mergeability

between [ 3 ; 4 ; 5 ] and [ 7 ], we find that 5 generates the output message rsM, and it

blocks all the other transactions to go from 𝑃 to 𝐶1, e.g., 6 was blocked until 7

consumes rsM. We can thus commute 6 and 7 due to this blocking. In this sense,

in proving serializability, we look at each rule template and characterize the allowed

state transitions between two atomic-history fragments.

6.2 The Formal Proof of Serializability

Based on the intuitions from section 6.1, in this section we provide the formal proof

of serializability. The biggest contribution of the Hemiola framework includes precise

formalization of the intuitions – merging atomic fragments, commutativity among

rule templates, left/right pushes, etc. – and the serializability proof employing those

intuitions. The highest-level theorem will simply claim that use of good topology and

the rule templates automatically guarantees serializability.
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STSilent:
𝑆 $𝑠 [𝑙𝜖]

STIns:
𝑆 $𝑠 [𝑙in(𝑚)]

STOuts:
𝑆 $𝑠 [𝑙out(𝑚)]

STAtomic: 𝑚init 𝑙
∼∼∼B 𝑚end

𝑆 $𝑠 𝑙

Figure 6-4: Semi-transactions

6.2.1 Semi-sequential histories

In section 6.1 we briefly provided the intuition of making a history sequential by

merging atomic-history fragments repeatedly. In order to employ the intuition in the

actual proof, we need to show that finitely many reductions suffice. For example, while

merging two atomic-history fragments, if we happen to split any fragment between

the two (so the number of intermediate fragments increases), we will never be sure

whether the merging process will finish with a sequential history or not.

What would be the way to say how much a given history is sequentialized? Semi-

transactions are defined in order to have a quantitative progress measure for re-

ductions. The definition, given in Figure 6-4, is almost the same as for (ordinary)

transactions, except that an atomic history does not need to be external. Thanks to

this relaxation, any atomic-history fragment is a semi-transaction.

Semi-sequential histories are also defined in a similar way:

Definition 6.2.1 (Semi-Sequential Histories). A history ℎ is semi-sequential with

degree 𝑛 iff the history is a concatenation of 𝑛 semi-transactions.

Sequentials 𝑆 ℎ 𝑛 , ∃ 𝑡. |𝑡| = 𝑛 ∧ (∀𝑡 ∈ 𝑡. 𝑆 $𝑠 𝑡) ∧ ℎ = ⊕𝑡.

The only difference from sequential histories is that we count the number of semi-

transactions. In our interleaving example, looking at the original interleaved history

shown in Figure 6-2, we can find the following semi-transactions in-order: [ 1 ], [ 2 ],

[ 3 ; 4 ; 5 ], [ 6 ], [ 7 ], and [ 8 ; 9 ; 10]. In this case, the degree of a semi-sequential history

is 6, the number of semi-transactions. Note that the degree of a semi-sequential
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history is not uniquely determined. In the example, when splitting [ 3 ; 4 ; 5 ] into the

three separate single-label atomic histories – [ 3 ], [ 4 ], and [ 5 ] – we obtain another

semi-sequential history with degree 8.

This definition indicates that in order to obtain a serialized history, we should per-

form reductions to decrease the count as much as possible. Hemiola employs theorems

that reflect this intuition:

Theorem 6.2.1. Given a system 𝑆, a legal history is always semi-sequential:

∀ℎ. 𝑆 ℎ
=⇒ ∙ → ∃𝑛. Sequentials 𝑆 ℎ 𝑛.

Proof. The proof is straightforward, since by definition any single-label history is a

semi-transaction, and thus any history is semi-sequential, i.e., ∀ℎ. Sequentials 𝑆 ℎ |ℎ|.

�

Theorem 6.2.2 (Semi-sequentiality and serializability). If 𝑆 satisfies the following

property, then 𝑆 is serializable:

∀ℎ, 𝑛, 𝑠. 𝑆init
ℎ
=⇒
𝑆

𝑠 ∧ Sequentials 𝑆 ℎ 𝑛→

Sequential 𝑆 ℎ ∨

∃ℎ𝑟,𝑚. 𝑆init
ℎ𝑟=⇒
𝑆

𝑠 ∧ Sequentials 𝑆 ℎ𝑟 𝑚 ∧𝑚 < 𝑛.

Proof. The proof employs the well-foundedness of the less-than operator (<) for nat-

ural numbers. For a given history ℎ in a system 𝑆, we can find an initial number

𝑛 that satisfies Sequentials 𝑆 ℎ 𝑛 (by Theorem 6.2.1). Now by the given property,

ℎ is either already sequential or reduces to ℎ𝑟 with degree 𝑚 < 𝑛. Therefore, finite

iteration of the property will eventually reduce the history to a sequential history. �

6.2.2 Reduction of external input/output labels

For a given legal history in a system, the very first step to reduce it to a sequential

history is to push all external input and output labels to the leftmost and rightmost
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regions of the history, respectively. Recall that serializability (Definition 4.2.1) does

not require the sequential history to preserve the behavior of a history but to reach

the same state.

The following two dual theorems are enough to push all external labels:

Theorem 6.2.3. In any legal history in the system 𝑆, the first external-input (the

last external-output) label can be pushed to the beginning (the end) of the history.

∀𝑠0, 𝑠1, ℎ0, 𝑖𝑚, ℎ1. NoExtIns(ℎ0)→ 𝑠0
ℎ0+𝑙in(𝑖𝑚)+ℎ1
========⇒

𝑆
𝑠1 → 𝑠0

𝑙in(𝑖𝑚)+ℎ0+ℎ1
========⇒

𝑆
𝑠1 and

∀𝑠0, 𝑠1, ℎ0, 𝑖𝑚, ℎ1. NoExtOuts(ℎ1)→ 𝑠0
ℎ0+𝑙out(𝑖𝑚)+ℎ1
=========⇒

𝑆
𝑠1 → 𝑠0

ℎ0+ℎ1+𝑙out(𝑖𝑚)
=========⇒

𝑆
𝑠1,

where NoExtIns and NoExtOuts are defined as follows:

NoExtIns(ℎ) , ∀𝑙. 𝑙 ∈ ℎ→ ∀𝑖𝑚. 𝑙 ̸= 𝑙in(𝑖𝑚).

NoExtOuts(ℎ) , ∀𝑙. 𝑙 ∈ ℎ→ ∀𝑖𝑚. 𝑙 ̸= 𝑙out(𝑖𝑚).

Proof. By definition it suffices to prove ℎ0 ] [𝑙in(𝑖𝑚)]. Since NoExtIns(ℎ0), each label

in ℎ0 is a silent, external-output, or internal label. It is trivial that a silent label

and an external-input label commute, since the silent label makes no state transition.

An external-output label and an external-input label also commute, since they use

different channels. Commutativity between an internal label and an external-input

label is relatively nontrivial, since an internal label may dequeue some external inputs.

They still commute, however, since dequeue of an external-input label means there is

already an external input message in the channel, and the external-input label adds

a different message to the system. The proof for the external-output label is almost

same as the one for the external-input label. �

Figure 6-5 shows an original example history and the resulting history after push-

ing all the external input and output labels in the original history. We can generate

such a history by performing reductions:
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𝑙0in 𝑙0int 𝑙0out 𝑙1in 𝑙1int 𝑙1out

↓* (after some reductions)

𝑙0in 𝑙1in 𝑙0int 𝑙1int 𝑙0out 𝑙1out

Figure 6-5: Pushing all external input/output labels

∙ Try to pick the first external-input label that is not in the leftmost region of

the history yet. If it exists, it can always be pushed to the left, right after

the external-input labels that are already in the leftmost region, by applying

Theorem 6.2.3.

∙ Try to pick the last external output label that is not at the rightmost region of

the history yet. If it exists, it can always be pushed to the right, right before

the external-output labels that are already in the rightmost region, by applying

Theorem 6.2.3.

Note that pushing the external input (output) labels to the leftmost (rightmost)

positions is possible since the semantics of the protocol transition system is based on

infinite-sized buffers, allowing the system to accept all the external input messages as

early as possible and to postpone releasing all the external output messages as late

as possible.

6.2.3 Interleaving and nonconfluent histories

Now we formalize the atomic-history fragments mentioned in section 6.1 – whether

the two fragments belong to the same transaction or not. From this section, we will

just deal with histories only consisting of internal labels, to focus on how to serialize

atomic histories, assuming external labels are already pushed to the edges by the

method described in section 6.2.2.

The below notion of continuity lets us figure out whether two histories are related

as adjacent parts of a whole atomic history:

Definition 6.2.2 (Continuity).
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1. Two atomic histories ℎ1 and ℎ2 are continuous (≻) iff the initial messages of

ℎ2 are in the live messages of ℎ1:

ℎ1 ≻ ℎ2 , 𝑖𝑚init
1

ℎ1
∼∼∼B 𝑖𝑚end

1 ∧ 𝑖𝑚init
2

ℎ2
∼∼∼B 𝑖𝑚end

2 ∧ 𝑖𝑚init
2 ⊆ 𝑖𝑚end

1 .

2. We say ℎ1 and ℎ2 are externally continuous (denoted as 𝑆 ⊢ ℎ1 ≻ext ℎ2) if they

are continuous and ℎ1 is externally atomic.

3. Two atomic histories ℎ1 and ℎ2 are discontinuous iff the live messages of ℎ1 are

disjoint from the initial messages of ℎ2:

ℎ1 � ℎ2 , 𝑖𝑚init
1

ℎ1
∼∼∼B 𝑖𝑚end

1 ∧ 𝑖𝑚init
2

ℎ2
∼∼∼B 𝑖𝑚end

2 ∧ 𝑖𝑚end
1 # 𝑖𝑚init

2 .

Note that discontinuity requires that the live messages of the previous history are

disjoint to the initial messages of the next history. Therefore, it is not true that two

atomic histories are always either continuous or discontinuous. We will very soon

explore how to deal with the other case, where the next history takes multiple sets of

live messages from the previous histories.

From now on, throughout this chapter, we will have a number of definitions that

use a sequence of atomic histories. Such a sequence ℎ will be predicated as 𝒜 (ℎ),

with the following formal definition: 𝒜 (ℎ) , ∀ℎ ∈ ℎ. (
ℎ

∼∼∼B).

Using the notion of continuity, we can also formalize interleaving of atomic histo-

ries:

Definition 6.2.3 (Interleaved Histories). In a given system 𝑆, a sequence of atomic

histories ℎ is interleaved iff there exist two histories ℎ1 and ℎ2 in the sequence that
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are externally continuous and any history between the two is discontinuous to ℎ1:

Interleaved 𝑆 ℎ , 𝒜 (ℎ) ∧

∃ℎ1, ℎ2, ℎ1, ℎ2, ℎ3.

ℎ = ℎ1 + ℎ1 + ℎ2 + ℎ2 + ℎ3 ∧

𝑆 ⊢ ℎ1 ≻ext ℎ2 ∧ (∀ℎ′ ∈ ℎ2. ℎ1 � ℎ′).

We also call a history ℎ interleaved, written (Interleaved 𝑆 ℎ), iff we can find an

interleaved sequence of histories ℎ𝑠 that satisfies ℎ = ⊕ℎ𝑠.

There are two subtleties in defining the notion of interleaving precisely. First, we

look for externally continuous histories, not just continuous ones, to define whether

the whole history is interleaved or not. It does not restrict the notion since when

continuous histories are found in a legal history, either they are already externally

continuous or others are found at the beginning of the atomic-history chain that

contains them. Second, we require that the earlier history (ℎ1) is discontinuous to

each history (∀ℎ′ ∈ ℎ2) between the two externally continuous histories (ℎ1 and ℎ2).

This is to ensure that the live messages generated by ℎ1 are preserved – i.e., not

consumed by some other atomic histories – until ℎ2 takes its initial messages from

the live messages.

Note that our interleaving example is indeed interleaved: we can find externally

continuous histories [ 1 ] and [ 3 ; 4 ; 5 ], and [ 1 ] is discontinuous with the only interme-

diate atomic history [ 2 ].

One of the main intuitions to prove serializability is to categorize a given history.

If the history is already sequential, we do not need to proceed further. If the history

is interleaved, we will need to merge the externally continuous histories, which will

decrease the degree of semi-sequentiality and lead to a sequential history. This cate-

gorization, however, implicitly assumes any history is either sequential or interleaved.

An additional condition is required, unfortunately, just to reason with sequential

and interleaved histories. In other words, there is a third type of a history, happening

when at least two different external atomic histories come together via a local state
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ℎ1
∼∼∼∼∼B 𝑖𝑚end

1
⊇ ℎ2

𝑖𝑚init
2 ∼∼∼∼∼B

(a) Continuous

ℎ1
∼∼∼∼∼B 𝑖𝑚end

1
#

ℎ2
𝑖𝑚init

2 ∼∼∼∼∼B

(b) Discontinuous

ℎ0
∼∼∼∼∼B 𝑖𝑚end

0

...
ℎ(𝑛−1)
∼∼∼∼∼B 𝑖𝑚end

𝑛

ℎ𝑛
𝑖𝑚init

𝑛 ∼∼∼∼∼B...

(c) Confluent

Figure 6-6: Three relation types between atomic histories

transition consuming some live messages of these histories. Figure 6-6 depicts the

three types of relations between two atomic histories. While atomic-history fragments

in an interleaved history are only expected to be continuous or discontinuous to

each other, there is another relation type, which is called confluent histories. This

confluence case does not happen in any practical cache-coherence protocols, but we

still need a formal predicate to ensure that the target system never generates such

cases.

The nonconfluence predicate removes this case, by claiming that any atomic his-

tory is either the start of a new transaction or a continuation of a previous transaction:

Definition 6.2.4 (Nonconfluence). A system 𝑆 is nonconfluent iff any first non-

external history (if it exists) is interleaved (with an external atomic history):

Nonconfluent 𝑆 , ∀ℎ, ℎ0, 𝑠. 𝒜 (ℎ+ ℎ0) ∧

𝑆init
⊕ℎ+ℎ0====⇒

𝑆
𝑠 ∧ (∀ℎ ∈ ℎ. 𝑆

ℎ
∼∼∼Bext) ∧ ¬(𝑆

ℎ0
∼∼∼Bext)→

Interleaved 𝑆 (ℎ+ ℎ0).

6.2.4 Merging interleaved histories

In the last section, we examined the three types of histories and showed that the

nonconfluence property rules out all confluent histories, so it is safe to reason only with

interleaved histories. (Sequential histories are already good in terms of serializability.)

In section 6.1 we provided our intuition that an interleaved history will be reduced to
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a sequential history by repeatedly merging atomic-history fragments. In this section,

we provide the formal definition of such merges and show that the nonconfluence and

mergeability properties imply serializability.

As mentioned in section 6.2.3, the main purpose of merging two continuous his-

tories is to decrease the degree of semi-sequentiality, so we have a less-interleaved

history. Focusing solely on this purpose, we formally define the notion of mergeabil-

ity as follows:

Definition 6.2.5 (Mergeability). For a given system 𝑆, two histories ℎ1 and ℎ2 are

mergeable iff any history containing the two histories can be reduced to the one where

the two histories are merged and the number of atomic-history fragments for the other

histories is preserved:

𝑆 ⊢ ℎ1 ◁▷ ℎ2 , ∀𝑠1. 𝑆 ⇒ 𝑠1 →

∀ℎ, 𝑠2. 𝒜 (ℎ) ∧ 𝑠1
ℎ1+⊕ℎ+ℎ2======⇒

𝑆
𝑠2 →

∃ℎl, ℎr. 𝒜 (ℎl) ∧ 𝒜 (ℎr) ∧

𝑠1
⊕ℎl+ℎ1+ℎ2+⊕ℎr
==========⇒

𝑆
𝑠2 ∧ |ℎ| = |ℎl|+ |ℎr|.

Furthermore, we say the system 𝑆 is mergeable if any externally continuous histories

in a legal history are mergeable:

Mergeable 𝑆 , ∀ℎ1, ℎ2. 𝑆 ⊢ ℎ1 ≻ext ℎ2 → 𝑆 ⊢ ℎ1 ◁▷ ℎ2.

The mergeability definition is abstract in that it relates the intermediate histories

(ℎ) and the pushed histories (ℎl and ℎr) not by mentioning they are indeed pushed

from ℎ, but just by requiring the number of atomic-history fragments are preserved

(|ℎ| = |ℎl|+ |ℎr|). This condition implies that the number of atomic-history fragments

is preserved after the merge. When ℎ1 and ℎ2 are continuous histories, however, by

merging ℎ1 and ℎ2 we get the entire number of fragments decreased by 1, which means

that the history after the merge has a smaller semi-sequentiality degree.
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We are finally equipped with enough definitions to introduce a convenient general

way to prove serializability:

Theorem 6.2.4. If a system 𝑆 is nonconfluent and mergeable, then it is serializable.

∀𝑆. Nonconfluent 𝑆 ∧Mergeable 𝑆 → Serializable 𝑆.

Proof. For a given history ℎ, by Theorem 6.2.2 there exists a sequence of atomic

histories ℎ𝑠 such that ⊕ℎ𝑠 = ℎ. In the sequence we try to find the first externally

continuous histories. If we cannot find any, then by definition ℎ is already sequential.

If there exist such histories, by the definition of nonconfluence (Definition 6.2.4) they

are interleaved. Now by mergeability (Definition 6.2.5) we can find a new sequence

of histories ℎ𝑟 that reaches the same state, where the externally continuous histories

are merged, thus |ℎ𝑟| < |ℎ|. Applying Theorem 6.2.2, we will eventually obtain a

sequential history reaching the same state by repeating this process. �

6.2.5 Reduction and pushes by separation

Theorem 6.2.4 presents a good intuition on how to prove serializability using noncon-

fluence and mergeability. The mergeability definition (Definition 6.2.5), however, is

rather abstract; it does not provide any actual techniques to merge continuous his-

tories. In this section, we explore a method to merge continuous histories, by using

state-transition separation and pushability.

Reduction by separation

We begin with introducing the trivial reduction between two state transitions:

Theorem 6.2.5. Two state transitions commute if they affect different objects and
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different input/output channels:

∀𝑜1, 𝑟1, ins1, outs1, 𝑜2, 𝑟2, ins2, outs2.

𝑜1 ̸= 𝑜2 ∧ (ins1.𝑖 ∪ outs1.𝑖) # (ins2.𝑖 ∪ outs2.𝑖)→

𝑙int(𝑜1, 𝑟1, ins1, outs1) ] 𝑙int(𝑜2, 𝑟2, ins2, outs2).

For a given history ℎ, we denote by objs (ℎ) (chns (ℎ)) the set of object (channel)

indices whose state is used by ℎ, obtained by collecting the object index (the in-

put/output channel indices) in each label in ℎ. We can then lift the trivial reduction

theorem to one for histories, using objs (ℎ) and chns (ℎ):

Theorem 6.2.6 (Reduction by trivial separation). Two histories commute if they

affect different objects and different input/output channels:

∀ℎ1, ℎ2. objs (ℎ1) # objs (ℎ2) ∧ chns (ℎ1) # chns (ℎ2)→ ℎ1 ] ℎ2.

Theorem 6.2.6 is too trivial to be used in actual atomic histories generated by the

Hemiola DSL. We thus relax this theorem with respect to object and message states,

so it can be used in the actual serializability proof.

Firstly, instead of comparing object indices, objs (ℎ1) and objs (ℎ2), sometimes we

would like to prove the commutativity of state transitions within an object directly.

Given two internal labels 𝑙int(𝑂.𝑖, 𝑟1.𝑖, ins1, outs1) and 𝑙int(𝑂.𝑖, 𝑟2.𝑖, ins2, outs2) (created

by the same object 𝑂), if we prove the following property then the two labels are

commutative in terms of object state transitions:

ObjSep 𝑟1 𝑟2 , ∀𝑜0, ins1, ins2.

let (𝑜1, outs1) := 𝑟1.trs (𝑜0, ins1) in

let (𝑜2, outs2) := 𝑟2.trs (𝑜1, ins2) in

let (𝑜′1, outs
′
2) := 𝑟2.trs (𝑜0, ins2) in

outs2 = outs
′
2 ∧ 𝑟1.trs (𝑜′1, ins1) = (𝑜2, outs1).
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For instance, while using the Hemiola DSL, when an object forwards an upward

request it sets an uplock. The object should be able to handle a downward request to

it even after setting the uplock. These two state transitions are always commutative,

since there is no state transition while forwarding the upward request (except locking),

and handling the downward request does not affect the uplock.

This object separation is naturally extended to one for atomic histories:

Definition 6.2.6. For given atomic histories ℎ1 and ℎ2, we say ℎ1 and ℎ2 are object-

separated, denoted as (ObjSepHst ℎ1 ℎ2), if the following conditions are satisfied:

ObjSepHst ℎ1 ℎ2 , ∀𝑙1, 𝑙2. 𝑙1 ∈ ℎ1 ∧ 𝑙2 ∈ ℎ2 →

let 𝑙int(𝑂1.𝑖, 𝑟1.𝑖, ins1, outs1) := 𝑙1 in

let 𝑙int(𝑂2.𝑖, 𝑟2.𝑖, ins2, outs2) := 𝑙2 in

𝑂1.𝑖 ̸= 𝑂2.𝑖 ∨ ObjSep 𝑟1 𝑟2.

Note that each label 𝑙 in ℎ1 (or ℎ2) is always an internal label, since it is an atomic

history. The intuition here is that ℎ1 and ℎ2 are commutative in terms of object state

transitions when each pair of respective label – representing object state transitions

– in ℎ1 and ℎ2 are commutative either because they use different objects (separation)

or by the commutativity conditions within the same object.

Next we consider message states. Instead of comparing channel indices regardless

of their input/output types, we relax the notion to allow the live messages of ℎ1 and

the initial messages of ℎ2 to be in the same channel but still different. We first define

a couple of new notions for atomic histories:

Definition 6.2.7. For given an atomic history ℎ, we define the input and output

messages of ℎ, denoted as ins (ℎ) and outs (ℎ), respectively:

ins (ℎ) , ⊕(List.map (𝜆𝑙. let 𝑙int(𝑜, 𝑟, ins, outs) := 𝑙 in ins.𝑖) ℎ).

outs (ℎ) , ⊕(List.map (𝜆𝑙. let 𝑙int(𝑜, 𝑟, ins, outs) := 𝑙 in outs.𝑖) ℎ).

As seen in the definition, ins (ℎ) (outs (ℎ)) collects all the input (output) message
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channels of the internal labels. We will also use inits (ℎ) and lives (ℎ) to refer to the

initial messages and live messages of ℎ, respectively.

Definition 6.2.8. Given atomic histories ℎ1 and ℎ2, we say ℎ1 and ℎ2 are message-

separated, denoted as (MsgSepHst ℎ1 ℎ2), if the following conditions are satisfied:

MsgSepHst ℎ1 ℎ2 , ∀ inits1, lives1, inits2, lives2.

inits1
ℎ1

∼∼∼B lives1 ∧ inits2
ℎ2

∼∼∼B lives2 →

ins (ℎ1) # ins (ℎ2) ∧ ins (ℎ1) # outs (ℎ2) ∧

lives1 # inits2 ∧ outs (ℎ1) # outs (ℎ2).

Instead of having chns (ℎ1) # chns (ℎ2) as a disjointness condition, we see a re-

laxation between lives1 and inits2 to require disjointness not only by channel indices,

but also by message values.

This relaxation is indeed required to prove serializability in Hemiola. We can find

an instance from our interleaving example, again, specifically from Figure 6-3a. It is

the case where the atomic history [ 6 ] happens first, generating rqI to the channel 5 as

the live message, and the atomic history [ 7 ] happens next, consuming rsM from the

same channel. These two histories commute, but if we just use Theorem 6.2.6 with

the trivial conditions, we cannot prove commutativity. We can employ the relaxed

condition (Definition 6.2.8), though, since rqI and rsM are different messages, thus the

relaxed condition lives1 # inits2 holds.

Using the new, relaxed object and message separations, we present the following

reduction theorem:

Theorem 6.2.7 (Reduction by separation).

∀ℎ1, ℎ2. (
ℎ1

∼∼∼B) ∧ (
ℎ2

∼∼∼B) ∧ SepHst ℎ1 ℎ2 → ℎ1 ] ℎ2,

where SepHst ℎ1 ℎ2 , ObjSepHst ℎ1 ℎ2 ∧ MsgSepHst ℎ1 ℎ2.

Proof. The proof is quite straightforward by nested induction on (
ℎ1

∼∼∼B) and (
ℎ2

∼∼∼B).

The base case is to prove 𝑙1 ] 𝑙2 when ℎ1 = [𝑙1] and ℎ2 = [𝑙2]. Suppose 𝑙1 =
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𝑙int(𝑂1.𝑖, 𝑟1.𝑖, ins1, outs1) and 𝑙2 = 𝑙int(𝑂2.𝑖, 𝑟2.𝑖, ins2, outs2). Then we obtain the object

separation (ObjSep 𝑟1 𝑟2) from (ObjSepHst ℎ1 ℎ2). We also obtain ins1.𝑖 # ins2.𝑖,

ins1.𝑖 # outs2.𝑖, outs1 # ins2, and outs1.𝑖 # outs2.𝑖 from (MsgSepHst ℎ1 ℎ2). These

conditions are enough to prove commutativity between 𝑙1 and 𝑙2 just by construction.

Induction cases are straightforward as well, e.g., if ℎ1 = ℎ′
1 + 𝑙1 we perform reduction

between 𝑙1 and ℎ2 first and do another reduction between ℎ′
1 and ℎ2 by the induction

hypothesis to perform the whole reduction between ℎ1 and ℎ2. �

Pushes by separation

Now we provide our method to merge continuous histories, by pushing all intermediate

atomic-history fragments outside of the continuous histories. Pushing an intermediate

atomic-history fragment will require a finite number of history reductions, and we will

use Theorem 6.2.7 for each one.

Suppose that we want to merge continuous histories ℎ1 and ℎ2 through the inter-

mediate atomic histories ℎ. We first categorize each atomic history into two groups:

left-pushable histories and right-pushable histories, with the following requirements:

1. ℎ1 and a left-pushable history are always commutative:

∀ℎ ∈ ℎ. LeftPushable ℎ→ ℎ1 ] ℎ.

2. A right-pushable history and ℎ2 are always commutative:

∀ℎ ∈ ℎ. RightPushable ℎ→ ℎ ] ℎ2.

3. A right-pushable history and a left-pushable one are always commutative:

∀ℎ𝑟, ℎ𝑙 ∈ ℎ. RightPushable ℎ𝑟 → LeftPushable ℎ𝑙 → ℎ𝑟 ] ℎ𝑙.

These three conditions are enough to merge ℎ1 and ℎ2.
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Theorem 6.2.8. If each ℎ ∈ ℎ can be categorized in terms of left/right pushability,

then 𝑆 ⊢ ℎ1 ◁▷ ℎ2 holds.

Proof. We first try to find the first left-pushable history in ℎ. If it does not exist, then

all the atomic-history fragments in ℎ are right-pushable. In this case ⊕ℎ ] ℎ2 holds

by repeatedly commuting the last fragment of ℎ and ℎ2. If the first left-pushable

history exists, suppose ℎ = ℎ𝑟+ℎ𝑙+ℎ𝑒, where ℎ𝑙 is the first left-pushable history. By

its definition, each history in ℎ𝑟 is right-pushable, thus we can prove (ℎ1+⊕ℎ𝑟) ] ℎ𝑙,

i.e., ℎ𝑙 can be pushed before ℎ1. We will eventually have intermediate histories that

are all right-pushable, by repeatedly pushing the first left-pushable history before ℎ1.

Once we obtain such histories, we can push them after ℎ2 finally to merge ℎ1 and

ℎ2. �

How can we establish such pushability conditions? A naive approach is to use the

object and message separation conditions introduced in Definition 6.2.6 and Defini-

tion 6.2.8:

LeftPushable ℎ , SepHst ℎ1 ℎ.

RightPushable ℎ , SepHst ℎ ℎ2.

We get the first and second conditions of pushability with these definitions by simply

applying Theorem 6.2.7. The third condition, however, is nontrivial, requiring the

following property:

∀ℎ𝑙, ℎ𝑟. SepHst ℎ1 ℎ𝑙 → SepHst ℎ𝑟 ℎ2 → ℎ𝑙 ] ℎ𝑟.

This is not provable by itself, since there are no conditions relating ℎ1 and ℎ2. Thus

in our serializability proof we define left/right pushability in a more restricted way.

We will introduce such restricted pushability definitions right in the next section.

6.2.6 All together: the serializability proof

We are now equipped with enough formalization and ready to prove the serializability

guarantee in Hemiola. In this section, we provide the serializability proof in Hemi-
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ola. Recalling the requirements from chapter 5, a protocol should be defined on a

tree topology (OnTree 𝑆 𝑡), and each rule should be defined using the rule templates

(GoodRules 𝑆 𝑡). Throughout the section, we will deal with a system 𝑆 with these

conditions. In order to prove serializability, we will use Theorem 6.2.4, i.e., noncon-

fluence and mergeability will be proven for the protocol defined with the Hemiola

DSL.

Both the nonconfluence and mergeability proofs require a number of invariants

that apply to any protocol satisfying (OnTree 𝑆 𝑡) and (GoodRules 𝑆 𝑡). All the

invariants mentioned in the proof should be provable by inducting on state-transition

steps, where each transition step requires a case analysis by rule template.

The very first invariant is to categorize the input messages of each internal label:

Invariant 6.1. Input messages of each internal label always belong to one of four

categories: 1) single request to the parent, 2) single response to a child, 3) single

request to a child, or 4) multiple responses from children.

Nonconfluence is easier to prove than mergeability, simply by looking at the initial

messages of the first non-external atomic history:

Theorem 6.2.9 (Nonconfluence in Hemiola).

∀𝑆, 𝑡. OnTree 𝑆 𝑡 ∧ GoodRules 𝑆 𝑡→ Nonconfluent 𝑆.

Proof of nonconfluence Following the definition of nonconfluence, let ℎ𝑒 be the

sequence of externally atomic histories before the first non-external atomic history

ℎ𝑖. Since each history in ℎ𝑒 takes external input request messages, it is trivial that

any two histories in ℎ𝑒 are discontinuous to each other. Now considering the first

non-external atomic history in the definition of nonconfluence, the initial messages

are internal and thus belong to one of the four categories presented in Invariant 6.1.

For the first three, the initial message is just a singleton. Since the history (⊕ℎ𝑒+

ℎ𝑖) is legal, at the time the initial message is consumed by ℎ𝑖 it is in the semantic
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message state. It is straightforward that the semantically live messages before ℎ𝑖 is

executed are all generated by ℎ𝑒; furthermore, we can prove that any live message

before ℎ𝑖 belongs to the live messages of an external atomic history in ℎ𝑒. Thus we

should be able to find an external atomic history, say ℎ0
𝑒 ∈ ℎ𝑒, whose live messages

contain the initial message. (𝑆 ⊢ ℎ0
𝑒 ≻ext ℎ𝑖) trivially holds by ℎ0

𝑒 generating the

initial message of ℎ𝑖. Therefore (Interleaved 𝑆 (⊕ℎ𝑒 + ℎ𝑖)) holds by definition.

The last category (multiple responses from children) is nontrivial, since there is

a chance that one part of the messages is generated by an external atomic history

and the other part is from another history. If we prove that the messages are from

a single external atomic history, nonconfluence is proven similarly to the first three

cases. The idea comes from looking at the downlock associated with the responses.

Suppose that an external atomic history ℎ𝑒 outputted requests to children. It is

trivial that ℎ𝑒 is continuous to any (non-external) atomic history that takes one of

the children requests as the initial message. Now according to what is specified by

the designated rule template for making requests to children (by GoodRules 𝑆 𝑡), the

parent sets a downlock and does not accept any other atomic histories to make another

set of requests to the children. We can use this fact to prove that any response to the

parent after making the child requests is in the live messages of a non-external atomic

history that took the corresponding request, since no other ongoing atomic histories

can pass through the parent by the downlock. Let ℎ𝑐
𝑗 be an atomic history that

generates a response, where 𝑗 = 0, 1, · · · matches each corresponding child request.

Since ℎ𝑒 does not contain any non-external atomic histories, the only possible case

is that ℎ𝑒 and ℎ𝑐
𝑗 are merged together to form a single external atomic history, i.e., ℎ𝑐

𝑒 ,

(ℎ𝑒+
∑︀

𝑗 ℎ
𝑐
𝑗) itself is the external atomic history whose live messages contain all the re-

sponses to the parent. By definition it is trivial to prove (𝑆 ⊢ ℎ𝑐
𝑒 ≻ext ℎ𝑖), and the rest

of the proof is same as the other three cases. (End of the nonconfluence proof) �

The mergeability proof is trickier, requiring a number of additional invariants

about locks and messages. The intuition is already provided in section 6.1; when

merging two atomic-history fragments, say ℎ1 and ℎ2, we will specifically look at the

initial messages of ℎ2 (generated by ℎ1) as well as the locks associated with the initial
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messages. The messages and the locks will tell us which atomic histories can pass the

object to make state transitions through it.

The proof will use the following simple invariant about messages residing in the

system:

Invariant 6.2. There are no two messages with the same message type in the same

channel. A downward request and response may be in the same channel, but always

the response comes to the channel first.

Theorem 6.2.10 (Mergeability in Hemiola).

∀𝑆, 𝑡. OnTree 𝑆 𝑡 ∧ GoodRules 𝑆 𝑡→ Mergeable 𝑆.

Proof of mergeability Following the definition of mergeability, let ℎ1 and ℎ2 be

the externally continuous histories (𝑆 ⊢ ℎ1 ≻ext ℎ2) and ℎ be the intermediate his-

tories between the two. As already observed and used in the nonconfluence proof

(Theorem 6.2.9), the initial messages of ℎ2 (i.e., inits (ℎ2)) belong to the four cate-

gories: an upward request, a downward response, a downward request, or multiple

upward responses (to the parent).

In addition to this categorization, in order to prove mergeability, we need to

categorize the live messages of ℎ1 (i.e., lives (ℎ1)) as well, which is phrased as an

invariant:

Invariant 6.3. The live messages of an external atomic history belong to one of

the following three categories: 1) an upward request, 2) a downward response, or 3)

multiple downward requests and upward responses.

Mergeability will be proven for each combination of the live messages (of ℎ1) and

the initial messages (of ℎ2), constrained by inits (ℎ2) ⊆ lives (ℎ1) due to continuity.

The following case analyses are by the live messages of ℎ1.

1) An upward request : since inits (ℎ2) ⊆ lives (ℎ1), inits (ℎ2) can at most contain

an upward request, and due to the categorization of inits (ℎ2) it should be a single
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upward request as well. We need to prove another invariant about upward requests:

Invariant 6.4. If an atomic history generates an upward request as its live message,

it only consists of internal labels generated by the “rquu” rule template, i.e., taking an

upward request from a child and forwarding it to the parent.

This invariant is proven by inducting on atomic-history steps, not on ordinary

state-transition steps.

For each case, we will apply Theorem 6.2.8 to merge ℎ1 and ℎ2, which requires

defining left/right pushability. In this upward-request case, we set the pushability as

follows:

LeftPushable ℎ , True. RightPushable ℎ , False.

These definitions simply say that any atomic-history fragment between ℎ1 and ℎ2 is

always left-pushable. Since nothing is declared to be right-pushable, we only need to

prove the first condition of pushability, i.e., ∀ℎ ∈ ℎ. ℎ1 ] ℎ.

We apply Theorem 6.2.7 to prove it. The only information we have about ℎ1 is

that any internal label in ℎ1 only sets an uplock (without any other state transition)

and requests to the parent. In that sense, the object separation (ObjSepHst ℎ1 ℎ) is

straightforward, since ℎ cannot affect any uplocks set by ℎ1. The message separation

(MsgSepHst ℎ1 ℎ) is obvious as well, since ℎ cannot use any upward-request channels

used by ℎ1 due to the uplocks made by ℎ1.

2) A downward response: by the same reasoning, inits (ℎ2) should be a single

downward response. We need two dual invariants to prove this case.

Invariant 6.5. If an atomic history ℎ consumes a downward response to the object

𝑂 as the initial message, the object state transitions performed by ℎ are constrained

to occur only within the subtree with the root 𝑂 (denoted as tr (𝑂)).

Invariant 6.6. If an atomic history ℎ consumes a downward response to the object

𝑂 as the live message, then there exist ℎ𝑙 and ℎ𝑟 such that ℎ = ℎ𝑙 + ℎ𝑟, where ℎ𝑙 only

consists of internal labels generated by the “rquu” rule template and ℎ𝑟 is constrained

to act only within the complement of the subtree with the root 𝑂 (denoted as tr−1 (𝑂)).

93



Now considering the sequence of atomic histories ⊕ℎ, we decide whether a history

ℎ ∈ ℎ is left- or right-pushable, by looking at the object state transitions performed by

it. An important fact here is that since the downward response to the object 𝑂 resides

in the system after ℎ1, no intermediate history can perform state transitions both in

tr (𝑂) and tr−1 (𝑂). More specifically, if an intermediate history is within tr−1 (𝑂),

it can have a downward request to 𝑂 (by Invariant 6.2 it cannot have a downward

response) as a live message, regarded as the closest effect to 𝑂. We can still use the

message separation in Theorem 6.2.7, since the downward response and a possible

downward request by an intermediate history are different messages, determined by

their message types.

Now we can define the following pushability definitions for the downward-response

case:

LeftPushable ℎ , ∃𝑂ℎ ∈ objs (ℎ). 𝑂ℎ ∈ tr (𝑂).

RightPushable ℎ , ∃𝑂ℎ ∈ objs (ℎ). 𝑂ℎ ∈ tr−1 (𝑂).

The first pushability condition (∀ℎ ∈ ℎ. LeftPushable ℎ → ℎ1 ] ℎ) is proven in

two steps: to prove commutativity between ℎ𝑟 and ℎ first (ℎ𝑟 ] ℎ) and then prove it

between ℎ𝑙 and ℎ (ℎ𝑙 ] ℎ). The former is provable by using the fact from Invariant 6.6

that ℎ𝑟 is constrained within tr−1 (𝑂). Now Theorem 6.2.7 will be enough to prove

the commutativity. The latter is already proven in the case (1) for upward requests;

again from Invariant 6.6 ℎ𝑙 is like ℎ1 in the case (1).

The second condition (∀ℎ ∈ ℎ. RightPushable ℎ→ ℎ ] ℎ2) is proven very similarly

but in the opposite way. From Invariant 6.5 we get that ℎ2 is constrained within tr (𝑂).

Since ℎ is constrained within tr−1 (𝑂), we can easily prove the object separation in

Theorem 6.2.7. For message separation, the only corner case is when ℎ generates a

downward request to 𝑂. This case is still covered by the message-separation condition,

since it requires the separation of messages (lives1 # inits2), not the separation of

channel indices.

By these pushability definitions, the third condition is also proven naturally by

applying Theorem 6.2.7. Let us call 𝑂 the separation point in the sense that 𝑂
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separates possible state transitions by an intermediate history. This concept will be

used in the other cases as well.

3) Multiple downward requests and upward responses : this case is the most complex

one in terms of setting the correct pushability conditions. We first define a new notion

to define the common ancestor of the downward requests and upward responses:

Invariant 6.7. If an atomic history ℎ has multiple downward requests and upward

responses as its live messages, there exists a unique common ancestor of the messages

(recall OnTree 𝑆 𝑡, which says that 𝑆 is defined on the tree topology), called the root

of downward requests and upward responses, which has a downlock set by an upward

request. (Note that there are two ways to make a downlock: one by an upward request

and the other by a downward request.)

Let 𝑂𝑟 be the root of the live messages. Suppose that the downward requests are

to the set of objects {𝑂𝑖}𝑖∈𝐼 with an index set 𝐼. Similarly, suppose that the upward

responses are from the set of objects {𝑂𝑗}𝑗∈𝐽 with an index set 𝐽 . Another invariant

that can be proven while proving Invariant 6.7 is that 𝐼 and 𝐽 are disjoint.

Similarly to the case (2), ℎ1 can be decomposed into the upward/downward-

request labels (no state transitions except locking) and all the other labels, and any

intermediate atomic history is left-pushable before such request labels. Therefore,

the following invariant about the coverage of ℎ1 will not mention those object state

transitions as part of the constraint:

Invariant 6.8. Borrowing the notions of the root and the index sets mentioned above,

ℎ1 is constrained within tr−1 (𝑂𝑟) ∪ (
⋃︀

𝑗∈𝐽 tr (𝑂𝑗)).

Considering inits (ℎ2) ⊆ lives (ℎ1) and the categorization of the initial messages, we

get ℎ2 initiates with either a downward request or multiple upward responses. Based

on this, we provide two invariants about the coverage of ℎ2:

Invariant 6.9. If ℎ2 consumes a downward request to 𝑂𝑖 with 𝑖 ∈ 𝐼, it is constrained

within tr (𝑂𝑟)−(
⋃︀

𝑗∈𝐽 tr (𝑂𝑗)). If ℎ2 consumes upward responses, then by the noncon-

fluence property (Theorem 6.2.9) the responses should be from {𝑂𝑗}𝑗∈𝐽 and 𝐼 = ∅; it

is also constrained within tr (𝑂𝑟)− (
⋃︀

𝑗∈𝐽 tr (𝑂𝑗)).

95



Now we finally define the following pushability definitions for this downward-

requests-upward-responses case:

LeftPushable ℎ , ∃𝑂ℎ ∈ objs (ℎ). 𝑂ℎ ∈ tr (𝑂) ∧ 𝑂ℎ /∈ (
⋃︀

𝑗∈𝐽 tr (𝑂𝑗)).

RightPushable ℎ , ∃𝑂ℎ ∈ objs (ℎ). 𝑂ℎ ∈ tr−1 (𝑂) ∨ 𝑂ℎ ∈ (
⋃︀

𝑗∈𝐽 tr (𝑂𝑗)).

The proof of the pushability conditions is then very similar to the one in case (2), by

checking whether each separation meets the conditions in Theorem 6.2.7.

(End of the mergeability proof) �

Finally we combine all the theorems together to obtain the serializability guarantee

in Hemiola:

Theorem 6.2.11 (Hemiola’s serializability guarantee).

∀𝑆, 𝑡. OnTree 𝑆 𝑡 ∧ GoodRules 𝑆 𝑡→ Serializable 𝑆,

Proof. Applying Theorem 6.2.4, it suffices to prove (Nonconfluent 𝑆) and (Mergeable 𝑆).

Theorem 6.2.9 provides the former, and Theorem 6.2.10 provides the latter. �
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Chapter 7

Related Work I: Approaches to

Dealing with Interleavings

In chapter 4, we have formalized serializability as a correctness criterion for safe

interleavings. We also demonstrated that the serializability property eases the burden

of designing and proving conventional invariants required to prove trace refinement

as a correctness criterion. In chapter 5 and chapter 6, we provided a domain-specific

language that guarantees serializability automatically and proved the guarantee using

commuting reductions.

It is worth emphasizing again that the use of serializability is not mandatory

to verify distributed protocols; it is rather a proof strategy that can make the rest

of the proof much easier. Before moving on to the next part of dissertation – the

actual use of serializability in case studies – we would like to explore some other

approaches to dealing with interleavings, not bounded to the verification of cache-

coherence protocols.

Noninterference lemmas One of the methods to ensure safe interleavings is to

claim that other execution units (concurrent threads, transactions, etc.) do not affect

desired (pre)conditions to execute a unit. Noninterference refers to such a property,

where its definition and form vary by the target computer system to verify.

We first look into a case in concurrent software; to our knowledge, the very first
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attempt to describe such properties occurs in the foundational paper by Owicki and

Gries:

In [62] on page 324:

“The key word is of course ‘interfere’. One possibility to obtain non-

interference is not to allow shared variables, but this is too restrictive.

A more useful rule is to require that certain assertions used in the proof

{𝑃𝑖}𝑆𝑖{𝑄𝑖} of each process are left invariantly true under parallel execu-

tion of the other processes.”

This paper extends the conventional Hoare logic [33] to reason about parallel (concur-

rent) execution of sequential programs. Here the noninterference property is described

implicitly, as a requirement that the assertions used in the Hoare triple are not inter-

fered with by the concurrent execution of the other processes. The paper later defines

noninterference formally, by providing sufficient conditions that any execution of a

statement never interferes with a given Hoare-triple proof. In this case, each property

is presented as a specific lemma proving the noninterference conditions.

The use of noninterference in Hoare logic has been made more explicit later by

several variants like concurrent separation logic (CSL) [57] and rely-guarantee reason-

ing [38]. CSL provides the “Critical Region Rule” to reason about interaction among

processes via a shared resource [10]:

{(𝑃 *𝑅𝐼𝑟) ∧𝐵}𝐶 {𝑄 *𝑅𝐼𝑟}
{𝑃} with 𝑟 when 𝐵 do 𝐶 {𝑄}

Here 𝑟 is the shared resource, acting like a lock to enter critical regions in a program.

This rule requires defining a resource invariant 𝑅𝐼𝑟, stating desired properties when

a process holds 𝑟. Mutual exclusion by a shared lock is one typical way to ensure

noninterference. The uplock and downlock used in Hemiola function similarly. For ex-

ample, acquiring a downlock means entering a “subtree” section (although not entirely

critical) whose root is the downlocked object; a transaction holding the downlock it-

erates through the subtree, makes state transitions, and releases it when getting out

of the subtree.
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The most basic rule in CSL is the “Parallel Composition Rule,” which composes

completely parallel processes [10]:

{𝑃1}𝐶1 {𝑄1} · · · {𝑃𝑛}𝐶𝑛 {𝑄𝑛}
{𝑃1 * · · · * 𝑃𝑛}𝐶1 ‖ · · · ‖ 𝐶𝑛 {𝑄1 * · · · *𝑄𝑛}

It is interesting to compare this rule with how we use predicate messages in Hemiola

for a single transaction on top of serializability. There is still concurrency in exe-

cuting a single transaction; e.g., after a parent cache makes invalidation requests to

children, each child (subtree) handles its request concurrently. Since the child sub-

trees are disjoint, this kind of execution is completely parallel, and indeed resulting

predicate messages for corresponding invalidation responses deal with disjoint parts

of the system state. In the sense of dealing with trivial concurrency, we would like to

note that using predicate messages for input messages to prove the case for an output

message is quite similar to the Parallel Composition Rule in CSL.

On the other hand, in rely-guarantee reasoning, two binary relations, called the

“rely” and “guarantee” conditions, are added to the Hoare triple to reason about

concurrent programs. The judgement has the form of 𝑅,𝐺 ⊢ {𝑃}𝐶 {𝑄}, meaning

that every state change by another thread is in 𝑅 and every state change by 𝐶

is in 𝐺. ({𝑃}𝐶 {𝑄} has the same meaning from the conventional Hoare triple.)

Noninterference is then exhibited when constructing 𝑅,𝐺 ⊢ {𝑃}𝐶 {𝑄} from the

original Hoare triple {𝑃}𝐶 {𝑄}, requiring that 𝑃 and 𝑄 are stable (not interfered

with) under 𝑅, i.e., ∀𝑠, 𝑡. 𝑃 (𝑠) ∧𝑅(𝑠, 𝑡)→ 𝑃 (𝑡).

Now we explore the use of noninterference in hardware verification, more related

to the techniques used in the Hemiola framework. To our knowledge, the notion was

mentioned for the first time in a paper by McMillan as a part of compositional model

checking:

In [47] on page 234:

“We can also verify the design for an arbitrary number of execution units.

To do this, as one might expect, we split the result lemma into cases

based on the execution unit used to produce the result, eliminating all
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the other units. This, however, requires introducing a ‘noninterference

lemma’. This states that no other execution unit spuriously produces the

result in question.”

In model checking, noninterference properties are usually represented as lemmas (in-

variants) described in linear temporal logic [34], and the lemmas are specific to a

hardware design to verify. The use of noninterference lemmas has been later sys-

tematized to the CMP method [47, 51, 16], for model checkers to use the lemmas to

reduce state space to be explored.

Commuting reduction Another way to ensure safe interleavings is to prove com-

mutativity between two adjacent state transitions representing partial executions by

two different execution units, called (commuting) reductions [44].

CIVL [32] employed reductions and mover types [30] to verify concurrent garbage

collection. While the CIVL verifier also supports noninterference and rely-guarantee,

the authors reported that the use of commutativity is optional but beneficial in their

experience. CSPEC [12] is another framework, embedded in the Coq proof assistant,

that also uses mover types to verify a concurrent mail server. The framework also

provides a library of reusable proof patterns, easing commutativity proofs.

Reductions have been employed in verifying distributed systems as well. Iron-

Fleet [31] employed refinement layers and reductions to verify a Paxos-based [40]

replicated state machine and a shared key-value store. Reductions were particularly

used to deal with interleavings by event handlers in the host implementation; once

the interleaved execution is fully reduced, a refinement to the distributed-protocol

layer can be proven directly.

Hemiola also employs commuting reductions and the techniques mentioned above

to prove serializability for any protocol defined by the Hemiola DSL. While not ex-

hibiting mover types in protocol descriptions, a similar concept is used in the serial-

izability proof under the name of left/right pushability, explained in section 6.2.5.
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Part III

Design, Proof, Implementation, and

Synthesis of Hierarchical

Cache-Coherence Protocols
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Chapter 8

Case Studies: Hierarchical MSI and

MESI Protocols

In this chapter we specify, implement, and formally prove the correctness of the

following three hierarchical cache-coherence protocols: an inclusive MSI protocol,

a noninclusive MSI protocol, and a noninclusive MESI protocol. Each protocol is

parameterized by a tree 𝑡 that decides the topology of the memory subsystem 𝑆,

thus the system naturally satisfies OnTree 𝑆 𝑡. Cache objects in each protocol are

defined using the rule templates (defined in section 5.3) thus the system satisfies

GoodRules 𝑆 𝑡 by construction. These predicates imply that each protocol satisfies

the serializability property, proven in Theorem 6.2.11. We will see how Hemiola helps

implement and prove the protocols by taking full advantage of serializability.

8.1 Design Principles

We first present the common design principles shared by all the case studies.

8.1.1 Topology as a parameter

Each design is parameterized by a tree 𝑡 that decides the topology of the memory

subsystem. In other words, whenever we instantiate the tree parameter, we get a
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cache-coherence design and its correctness proof for free. For example, the following

tree definition will generate a cache-coherence protocol for four L1 caches, two L2

caches, the last-level cache (LLC), and the main memory:

Definition t: tree := Node [Node [Node [Leaf; Leaf]; Node [Leaf; Leaf]]].

There are three different kinds of caches in this topology-parameterized protocol.

First of all, there are L1 caches (denoted as 𝐿1) that correspond to leaf nodes in the

tree. Symmetrically, each uses the same set of rules. The second kind is the last-level

cache (LLC), which is the only one attached to the main memory, the root of the tree.

It is possible to design multiple LLCs attached to the main memory in Hemiola, but

our case studies follow standard practice in sticking to a single LLC. All the other

caches between the L1 caches and the LLC are called intermediate caches (denoted

as 𝐿𝑖), and they share a common set of rules as well.

8.1.2 Design and proof per-line

Each case-study protocol is defined just for a single cache line first and naturally

extended to all cache lines using a protocol compiler that will be introduced in sec-

tion 9.1. This approach is reasonable in terms of correctness, since a transaction does

not affect coherence for lines other than its own. Consider the “duplicated” protocol

first, where each cache line, its status, a directory entry, communication channels,

and a lock holder are all duplicated per-line. It is infeasible to extend the protocol

literally in this way, since we cannot require physically distinct channels and lock

holders for all cache lines. The protocol compiler restricts the resources (e.g., chan-

nels, lock holders, etc.) to make the implementation hardware-synthesizable. Note

that in this sense the duplicated protocol can be regarded as the most general multi-

line design, whose behaviors can cover all the behaviors of compiled implementations

(see section 9.2 for details).
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8.1.3 Nondeterministic invalidation/eviction

Each protocol initiates invalidations and evictions nondeterministically. In other

words, there are rules in each cache that can be executed even without being trig-

gered by input messages, to make invalidation requests to the child caches or to make

an eviction request to the parent. This design choice is certainly not realistic, but

it always has more behaviors than any design with a specific invalidation/eviction

policy, thus in terms of correctness a refinement to the specific design is trivial.

For instance, a number of practical cache-coherence protocols manage a data struc-

ture (a cache) to keep track of the least-recently-used (LRU) cache line per set (lines

with the same index) [59]. Use of such a data structure and the decision algorithm

are irrelevant to the correctness of a protocol. In other words, a protocol with the

LRU replacement policy, regardless of its implementation, always has fewer behaviors

than the one with nondeterministic eviction.

Another instance is a back-invalidation policy used in an inclusive cache. Back

invalidation is necessary to maintain the cache inclusion among the parent and child

caches and may happen right before evicting a parent cache line. There is another

practical policy, called self-invalidation [68], where some voluntary back invalidations

happen to increase performance. Similar to the case of cache replacement, a protocol

with nondeterministic invalidation includes all the behaviors by the one with a specific

invalidation policy.

8.1.4 Directory-based coherence

Each protocol uses a directory structure to ensure coherence, introduced in section 2.3.

In our designs, each node with children has its own directory structure to track their

statuses. The directory holds sound information about the status of each child subtree.

For example, for a certain cache line, if an L1 cache 𝐿1 has M status for the line,

then all the ancestors (including the main memory) of 𝐿1 have the directory status

M pointing to the child subtree that contains 𝐿1.
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8.1.5 Noninclusive-cache inclusive-directory structure

Our noninclusive protocols employ the noninclusive-cache inclusive-directory (NCID) [82]

structure to optimize the cache space. As explained in section 2.3, in noninclusive

protocols the parent cache does not have to contain all the line values that children

have, and back invalidations are not required to evict a line.

Measuring performance among various cache-inclusion policies is beyond the scope

of this thesis. That said, we choose noninclusive caches as part of our case studies

to demonstrate that Hemiola is general enough to design and prove various cache-

coherence protocols, where specifically the noninclusive caches are the ones that most

previous work had difficulty dealing with properly.

8.2 The MSI Protocol

The MSI protocol is known as a base cache-coherence protocol that can be opti-

mized to more sophisticated protocols like MESI, MOSI, etc. Even though it is a

base protocol, there are a lot of nontrivial cases that require deep understanding of

the protocol itself and the nature of distributed protocols, especially in hierarchical

protocols. In this section we design two hierarchical, directory-based MSI protocols,

one with an inclusive cache-inclusion policy and the other with a noninclusive policy.

As explained in section 8.1, the description and the correctness proof are for a single

cache line, parameterized by a tree deciding the system topology.

8.2.1 Protocol description

Cache states

A cache state has the form 𝑂(st, v, dir, owned), consisting of a status, a value, a direc-

tory, and a Boolean called an ownership bit.

A status is either M(= 3), S(= 2), I(= 1), or the “Not Present” status (NP= 0),

encoded by natural numbers. NP means that the line does not exist in the cache

object. In our case-study protocols we distinguish I and NP to avoid unnecessary
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line creation when invalidating the line [55]. That is, when the cache object gets an

invalidation request, if the line status is NP, then it should not change its status to I

but maintain the NP status.

A directory contains a status of its children called a directory status and a list of

child-cache indices that have the directory status. We will denote the directory like

S⟨1,2⟩, saying that the directory status is S and child subtrees with indices 1 and 2

may contain caches with S status.

The ownership bit is to determine whether the cache is responsible for writing

the value back to the parent when invalidated. When a cache has the M status, the

ownership bit is always true. However, when the cache has S, the ownership bit can

be either true or false. Note that 𝐿1 does not have a directory since it has no children.

It also does not have an ownership bit, since it does not have a case where it has S

status but is responsible for writing the value back.

𝑃 (I, ·,M⟨1⟩,⊥)

𝐶1(M, 𝑣) 𝐶2(I, ·)

...

∙
rqS

=⇒ 𝑃 (S, 𝑣, S⟨1,2⟩,⊤)

𝐶1(S, 𝑣) 𝐶2(I, ·)

...

∙rsS(𝑣)

Figure 8-1: An ownership bit set in a shared-state cache

Figure 8-1 presents an example of a shared-state cache having its ownership bit

set in a hierarchical memory subsystem. It could happen when an L1 cache 𝐶2 wants

to get S while another L1 cache 𝐶1 has M. In this case, 𝐶2 sends rqS and waits for

the response with the value rsS(𝑣). After a few steps, the value is pulled from 𝐶1,

and the parent 𝑃 gets the data as well, entering a shared status with ownership bit

set. Here the bit says that the shared value might be dirty, so it should be written

back.

The ownership bit intuitively constrains which caches can have valid status. In

the figure, all the other caches outside 𝑃 , after pulling a value from 𝐶1, are in the

invalid status, since previously 𝐶1 had the dirty value with M. We will see how this
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intuition is used for the correctness proof soon in section 8.2.2.

Protocol description with rule templates

We present a number of rule descriptions in the MSI protocols that employ the rule

templates provided in Hemiola. Each rule template is defined in Coq, taking in several

parameters and generating a rule. We exploited Coq’s notation mechanism to have a

compact definition for each rule template.

1 Definition l1GetSRqUpUp: Rule :=
2 rule.rquu
3 :accepts getRq
4 :from cidx
5 :me oidx
6 :requires (fun ost msgIn => ost#[status] ≤ msiI)
7 :transition (fun ost msgIn => <| rqS; 0 |>).

Figure 8-2: 𝐿1 requesting S to its parent

Figure 8-2 presents an actual rule definition, starting with an invocation of a

particular rule template rule.rquu, which takes a request from one of its children

and sends a further request to its parent. An L1 cache does not have any children;

in this case cidx will be instantiated to an abstract node referring to the external

interface (i.e., processor core) for it. Each line starting with a colon (:) provides

more information about the rule. This rule accepts a message with the ID rqS

from the child with the index cidx. This rule template also requires to write down

which object (cache) it belongs to (me), the precondition (requires), and the state-

transition function (transition). The output rqS message that we generate carries

no data value, so we pair it with a dummy zero value.

Each rule template has different (Coq) types for a precondition and a state-

transition function. In this example rule, the precondition takes the current object

state (ost) and an input message (msgIn) from the child. It suffices to say that the

current status is either I or NP (ost#[status] ≤ msiI), thus the cache needs to request

to the parent. Note that the statuses are defined as natural numbers, so we can use

arithmetic operations inside the precondition.
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The transition function also takes the current object state and the input message,

and it returns only the message to the parent. In this example the cache forwards

rqS to the parent without any meaningful value. As explained in section 5.3, when

forwarding a request to the parent, no state transition should happen except locking.

The rule template ensures this requirement by restricting the type of the transition

function. Note that the rule does not mention locking at all. Each rule template

automatically sets a proper lock; in this case an uplock is set right after sending a

request to the parent.

1 Definition liDownSRsUpDownM: Rule :=
2 rule.rsudo
3 :accepts downRsS
4 :holding rqS
5 :requires (fun _ _ _ => True)
6 :transition (fun ost rsFrom rs rq rsbTo =>
7 (ost +#[status <- msiS]
8 +#[val <- rs.(msg_value)]
9 +#[dir <- setDirS [rsbTo; rsFrom]]

10 +#[owned <- true],
11 <| rsS; rs.(msg_value) |>)).

Figure 8-3: 𝐿𝑖 responding to the child that requested rqS

Figure 8-3 presents another example rule that is fired at the last of the steps shown

in Figure 8-1, which sends the response to the child who requested rqS. Template

rule.rsudo says that the rule takes a single response and responds back to the original

requestor. The rule accepts the response message with the ID downRsS. This rule can

be executed when it is holding a downlock, where the holder contains the original

request message with the ID rqS. While the rule does not require any additional

precondition (fun _ _ _ => True), it changes the object state, unlike rules that make

requests.

The transition function takes the current object state (ost), the object index that

sent a response (rsFrom), the response message (rs), the original request in a lock

holder (rq), and the index of the original requestor (rsbTo). The transition returns a

pair of the next state and an output message; this rule sets its status to S, stores the
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up-to-date value brought from the downRsS message, sets the directory status to S by

adding the two children – one that was downgraded to S before and the other that

originally requested S – as sharers, and sets the ownership bit as true since the up-to-

date value might be dirty in this case. It also sends a response (rsS) to the requestor

with the up-to-date value. Lastly, the rule automatically releases the downlock.

1 Definition liDropImm: Rule :=
2 rule.imm
3 :requires (fun ost _ _ => ost#[status] <= msiS ∧ ost#[owned] = false)
4 :transition (fun ost => ost +#[status <- msiNP]).

Figure 8-4: 𝐿𝑖 immediately dropping a line

Figure 8-4 is a rule only used in the noninclusive protocol. Template rule.imm is

for making an immediate state transition that neither takes any input messages nor

generates any output messages. Its precondition just says that the line is possibly

shared but need not be written back (the ownership bit is false). In this case, we

can silently drop the line by setting the status to NP, to denote explicitly that the

line is removed. Note that there is no precondition about the directory status at

all; a line can be dropped even when the directory status is S or M, which is not

allowed in inclusive caches. Our noninclusive protocol employs NCID, and in this

case the dropped line may migrate to the so-called extended directory [82]. We will

see in section 9.1 how this migration is implicitly processed in the actual hardware

implementation.

1 Definition liBInvRqS: Rule :=
2 rule.rqsd
3 :requires (fun ost => ost#[dir].(dir_st) = msiS)
4 :transition (fun ost => (ost#[dir].(dir_sharers), <| downRqIS; O |>)).
5
6 Definition liBInvRqM: Rule :=
7 rule.rqsd
8 :requires (fun ost => ost#[dir].(dir_st) = msiM)
9 :transition (fun ost => ([ost#[dir].(dir_excl)], <| downRqIM; O |>)).

Figure 8-5: 𝐿𝑖 initiating a back invalidation

Lastly, Figure 8-5 shows two rules to initiate back invalidation, only used in the
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inclusive protocol. Template rule.rqsd is for making downward requests without any

input messages. liBInvRqS requires the directory status to be S, and in this case it

makes downward requests to the sharers. On the other hand, liBInvRqM requires the

directory status to be M, and in this case it makes a single downward request to the

exclusive child cache.

It is worth recalling that thanks to the rule templates, rule descriptions in the pro-

tocol never mention anything about how to set/release locks to deal with interleavings

safely; they are rather designed as if only a single transaction is being processed when

executing a rule.

8.2.2 Correctness proof

Now we present the correctness proof of the MSI protocol, claiming that the im-

plementation refines to a single-line memory as a spec. We already discussed in

section 4.3 that a number of invariants are necessarily required to prove simulation.

The two variants – inclusive and noninclusive protocols – have different set of rules

but require the same invariants. In this section, we provide necessary invariants to

prove the correctness of the MSI protocol, and we demonstrate how Hemiola helps

prove such invariants using predicate messages.

Logical status of a cache

Before talking about invariants, we would like to clarify how to deal with cache

statuses in transition. For example, what would be the representative cache status if

a cache currently has a status S but is just about to handle the eviction response (say

rsPut) that will remove the line? It implies that the parent directory already accepted

the eviction request and changed the directory status (for the child) properly. In this

case, it would make more sense to regard the child cache status as I.

In order to deal with this situation, we introduce a notion called logical status to

obtain an abstract status of each cache. In the above example, even if the cache has

not handled rsPut yet, the logical status is I. Logical statuses are defined formally as
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follows:

∙ A cache has logical status M iff it has M and there is no rsPut to it.

∙ A cache has logical status S iff either 1) it has S and there is no rsPut to it or

2) there is a response rsS to it.

∙ A cache has logical status I iff either 1) it has I and there is no rsM or rsS to it

or 2) there is a response rsPut to it.

Note that the logical status of a cache is not M when there is a response rsM to it,

since the response could still imply an ongoing invalidation process. We will see the

actual use case of the rsM message very soon in Figure 8-6.

Invariants The MSI protocol largely requires three invariants, where each invariant

corresponds to a desired property of one status – M, S, and I.

Invariant 8.1 (Exclusiveness invariant). Whenever a cache object 𝑂 has logical status

M, then all the other caches are in logical I status. We denote this predicate by

Invalid (𝜆𝑐. 𝑐 ̸= 𝑂), where Invalid (𝑆) claims that any cache object in the object set 𝑆

has logical I status.

Invariant 8.2 (Sharing invariant). All caches in logical S status have the same co-

herent value.

Invariant 8.3 (Invalidness invariant on ownership bits). If a cache 𝐶 has an owner-

ship bit true, then all the caches outside 𝐶 (i.e., tr−1 (𝐶)) have logical I status, i.e.,

Invalid (tr−1 (𝐶)).

Invariant 8.4 (Invalidness invariant on directory status M). If a parent 𝑃 has a

directory status M for a child 𝐶𝑖, then all the caches outside 𝐶𝑖 (including 𝑃 ) have

logical I status, i.e., Invalid (tr−1 (𝐶𝑖)).

The sharing invariant (Invariant 8.2) is the easiest one to prove, since the rules

involved with sharing the coherent value employ just simple value forwarding. For
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(𝑃.owned = ⊤){Invalid (tr−1 (𝑃 ))}

𝑃

𝐶0
𝐶1

𝐶𝑛
∙

rsI
∙

rsI{Invalid (tr (𝐶𝑛))}
∙

rsM{Invalid (tr−1 (𝐶0))}

current/next

𝐿1
(𝐿1.st = 𝑀){Invalid (𝜆𝑐.𝑐 ̸= 𝐿1)}

eventually
∙

rsM{Invalid (tr−1 (𝐿1))}

Figure 8-6: Use of predicate messages to prove the exclusiveness invariant

example, the rule in Figure 8-3 just takes a message downRsS that contains the coherent

value and stores/sends the value. Proving the preservation of the invariant for this

rule is very straightforward.

Invariant proofs using predicate messages

While proving the sharing invariant is easy, it is nontrivial to prove the exclusiveness

(Invariant 8.1) and invalidness (Invariant 8.3 and Invariant 8.4) invariants, since these

invariants are involved with global cache states. We have already learned in section 4.3

that in order to prove this kind of invariant, it is desirable to state some supporting

invariants based on the existence of certain messages, called predicate messages. We

also discovered that on top of serializability it is much easier to state and prove

predicate messages.

We would like to present a practical usage of predicate messages in proving the

exclusiveness invariant, shown in Figure 8-6. Suppose that an L1 cache (shown as

𝐿1 in gray in the figure) requested to the parent to get M status. When it finally

handles the response rsM, it should know all the other caches (except itself) have

the logical I status to prove the exclusiveness invariant (denoted as {Invalid (𝜆𝑐.𝑐 ̸=

𝐿1)}). This proof case can be supported using a predicate message for rsM, stating

Invalid (tr−1 (𝐶)) (outside of the subtree rooted at 𝐶) when the message goes to

𝐶. Since 𝐿1 is the leaf node in the tree, it is trivial to prove (Invalid (tr−1 (𝐿1)) →

Invalid (𝜆𝑐.𝑐 ̸= 𝐿1)), so we see an example of a predicate message helping prove a

conventional invariant.
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Figure 8-6 also shows another case, where conventional invariants and predicate

messages coordinate to prove a predicate message for the next state. When a child

𝐶𝑖 sends its invalidation response rsI, it should know that all the caches inside the

subtree of 𝐶𝑖 have been invalidated (denoted as Invalid (tr (𝐶𝑖))). When the parent 𝑃

subsequently handles the invalidation responses, it responds with rsM to the original

requestor (𝐶0 in the figure), requiring to prove Invalid (tr−1 (𝐶0)). While 𝑃 also

changes its status to I in this state transition, how do we infer that the caches outside

𝑃 are in the logical I status, which is required to prove the predicate over rsM? In this

case, we should prove a simple object-level invariant of 𝑃 that it has the ownership

bit true. Then we can use Invariant 8.3 to obtain the desired predicate (denoted

as (𝑃.owned = ⊤){Invalid (tr−1 (𝑃 ))}). Combining all the predicates and the state

transition by 𝑃 , we can prove the next predicate message for rsM.

Refinement proof

Once equipped with sufficient invariants, it is straightforward to prove the refinement

between the implementation and the spec. The only work is to define a correct

simulation that relates all the coherent values in the implementation and the single

value in the spec. The coherent values are collected by looking at the logical status

of each object; if the logical status is S or M then values either in the object or in

some messages (e.g., rsS) are coherent.

Denoting by Coh (𝑠, 𝑜, 𝑣) that an object 𝑜 contains a coherent value 𝑣 in a system

state 𝑠, the simulation can be stated as follows:

Theorem 8.2.1 (Correctness of the MSI protocol). The following simulation relation

holds between the implementation system state 𝑠𝐼 and the spec system state 𝑠𝑆.

𝑠𝐼 ∼ 𝑠𝑆 , ∃𝑣. ∀𝑜. Coh (𝑠𝐼 , 𝑜, 𝑣) ∧ 𝑠𝑆 = Spec (𝑣).

where Spec (𝑣) represents a single-value state for the spec.

114



8.3 The MESI Protocol

The MESI protocol [65] applies further optimizations to the MSI protocol, by adding

a status called Exclusive-Unmodified. As the name of the status says, if a cache line

has E status, then the line is exclusive to the cache but also clean. In this section

we present a hierarchical MESI protocol and demonstrate that the design and the

correctness proof are easily extended from the ones for the MSI protocol with the

support of Hemiola.

8.3.1 Protocol description

Cache states

The cache state in the MESI protocol is the same as in the MSI protocol, taking the

form 𝑂(st, v, dir, owned). The only difference is that the status may be E.

New rules added beyond the MSI protocol

There are several rules added in order to deal with the E status. Like the previous

rule-template examples, proper preconditions and transitions are automatically set in

terms of locking.

1 Definition l1GetMImmE: Rule :=
2 rule.immd
3 :accepts rqM
4 :from cidx
5 :requires (fun ost _ _ => ost#[status] = mesiE)
6 :transition
7 (fun ost msg => (ost +#[status <- mesiM]
8 +#[val <- msg.(msg_value)],
9 <| rsM; 0 |>)).

Figure 8-7: 𝐿1 silently upgraded to M

Figure 8-7 shows a basic case, where an L1 cache is silently upgraded from E to

M to write data. Template rule.immd says that it takes a request from the external

world (similar to Figure 8-2) and immediately sends an external response. As defined
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in the state transition function, the cache silently changes its status to M, stores the

new value from the input message, and responds with rsM.

1 Definition liGetSImmME: Rule :=
2 rule.immd
3 :accepts rqS
4 :from cidx
5 :requires (fun ost _ _ => mesiE ≤ ost#[status] ∧
6 ost#[dir].(dir_st) = mesiI)
7 :transition (fun ost _ => (ost +#[status <- mesiI]
8 +#[dir <- setDirE cidx],
9 <| rsE; ost#[val] |>)).

Figure 8-8: 𝐿𝑖 responding with rsE

Another case, shown in Figure 8-8, happens when an intermediate cache gets a

request from a child to read the data, while it has status E or M. In this case, instead

of responding with rsS, the cache sends rsE to provide E. Once the original requestor

obtains E status, it can both read and write the data.

8.3.2 Correctness proof

Logical status and new invariants for E

We extend the notion of logical status from the MSI protocol, declaring that a cache

in MESI is E if either 1) it has E and there is no eviction response to it or 2) there is

a response rsE to it. We should extend the invariants as well to cover caches with E

status.

∙ The exclusiveness invariant (Invariant 8.1) also applies to E; whenever a cache

has logical status E, all the other caches are logically in I.

∙ The sharing (Invariant 8.2) and invalidness (Invariant 8.3 and Invariant 8.4)

invariants remain the same.

∙ A new invariant for E claims that if a cache takes an eviction request without

writeback from a child, and the directory status pointing to the child is E, then

it has a coherent value.
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Invariant and refinement proofs

Unlike the exclusiveness and the invalidness invariants, the invariant for E does not

involve a large chunk of caches; it is rather an invariant that just relates a child

and the parent cache states. Therefore, we do not employ predicate messages in this

invariant proof, instead using a normal induction on state-transition steps.

The simulation relation for the MESI protocol is just the same as the one for the

MSI protocol, while the coherence predicate Coh (𝑠𝐼 , 𝑜, 𝑣) is extended slightly to cover

caches with E status and messages with ID rsE.

117



118



Chapter 9

Compilation and Synthesis to

Hardware

As mentioned in section 8.1.2, so far we have dealt with cache-coherence protocols

for a single line, where the specification has a single line as well. In order to build

a hardware-synthesizable multiline implementation, we developed a simple compiler

that takes a single-line Hemiola protocol as a source program and generates a multi-

line implementation described in Kami [15]. Kami is a hardware formal-verification

framework, where its own HDL and proof tools are defined in Coq, allowing users to

design, specify, verify, and synthesize their hardware components.

The protocol transition system and the rule templates given in the Hemiola DSL

match well rule-based HDLs like Kami; a rule in Hemiola naturally maps to an equiv-

alent rule in Kami, which describes atomic state transitions in hardware modules.

Instead of directly compiling Hemiola protocols to a register-transfer language (RTL),

we chose to build a compiler from Hemiola to Kami as a first step toward using the

protocols and their correctness proofs within larger Kami proofs including processors

– though this dissertation does not include those composition proofs. Since Kami

already has a hardware-synthesis toolchain, we can just compile a Hemiola program

to Kami and use the toolchain to run it on FPGAs.

In this chapter, we will explore how a single-line Hemiola protocol is compiled

to a multiline cache-coherence protocol implementation in Kami and demonstrate its
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Figure 9-1: Compilation and Synthesis of Hemiola protocols

synthesis to hardware (FPGA). We will further discuss the desired specification of

the multiline implementations, which is naturally derived from the source Hemiola

protocol.

9.1 Compilation of a Hemiola Protocol

9.1.1 Compiler ingredients

Figure 9-1 depicts a compilation/synthesis flow from a given Hemiola protocol to an

FPGA-ready circuit. We provide an overview for each ingredient in the compiler,

following the diagram.

Preprocessing: reification

A source program of the protocol compiler is a single-line protocol described in Hemi-

ola with the rule templates. Before feeding a Hemiola source program to the compiler,

a preprocessing step is required, which is to reify the program into an AST we can

hand off to the compiler. Hemiola supports automated, correct-by-construction reifi-

cation driven by a series of tactics in Coq. For instance, the rule-reification tactic

(reify_rule) reifies a Hemiola rule to the corresponding rule AST, where HRule is a
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Coq record (struct) containing the AST and its correctness, i.e., denotation of the

AST matches the denotation of the original rule:

Definition hl1GetMImmE: HRule l1GetMImmE := ltac:(reify_rule).

Kami: the target language

Kami [15] is a hardware-verification framework embedded in Coq with its own HDL

at register-transfer level. A hardware design in Kami consists of modules with encap-

sulated private state (registers), public methods, and rules that make atomic state

changes. Rules are fired by a global scheduler by Bluespec, later synthesized to the

corresponding scheduling circuitry. The Bluespec scheduler tries to find a maximal

number of rules to execute in a cycle, with the convenient semantic guarantee that the

execution can be interpreted as if the rules are executed atomically and sequentially,

called one-rule-at-a-time execution.

As mentioned in section 3.1, the underlying transition system of Hemiola is also

rule-based, and the semantics is based on one-rule-at-a-time execution. In this sense,

Kami is a good target HDL in that a rule in Hemiola can be compiled to a corre-

sponding rule in Kami.

Another advantage of using Kami as a target language is its verification tools

defined in Coq. Similarly to Hemiola, Kami also employs trace refinement as a

correctness criterion. Kami as a formal-verification framework provides an effective

verification technique called modular refinement, which basically says that trace re-

finement proofs of submodules can be combined together to obtain the refinement for

the whole module:

Theorem 9.1.1 (Modular refinement in Kami).

∀𝐼1, 𝐼2, 𝑆1, 𝑆2. 𝐼1 ⊑ 𝑆1 ∧ 𝐼2 ⊑ 𝑆2 → 𝐼1 + 𝐼2 ⊑ 𝑆1 + 𝑆2.

A corollary of Theorem 9.1.1 is called modular substitution, where we can substi-

tute a submodule in another submodule to have a simpler design as an intermediate

step to the final refinement:
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Theorem 9.1.2 (Modular substitution in Kami).

∀𝐼1, 𝐼2, 𝐼 ′1. 𝐼1 ⊑ 𝐼 ′1 → 𝐼1 + 𝐼2 ⊑ 𝐼 ′1 + 𝐼2.

This corollary will be referred to when substituting our optimized cache-controller

submodules in the entire memory subsystem with simpler ones, explained in sec-

tion 9.2.

Reification and compilation of custom data structures

Since a Hemiola protocol may use its own custom data structure (e.g., directory

structure for the MESI protocol), the compiler requires a user to provide a reifier and

a compiler for the data structure. This task is straightforward for the user, since both

reification and compilation work at the level of expressions, not rules. For instance,

a field access dir.(dir_sharers) for a Coq record dir is reified to an expression AST

node (HDirGetSh hdir), where hdir is the reified directory structure, and compiled

to cdir@."dir_sharers" in Kami, which uses a field-access expression.

Prebuilt cache-related components

The compiler uses prebuilt hardware components described in Kami. Some of them

are for implementing NCID [82] introduced in section 8.1.5, whose operations include

asynchronous read and write of the line information (ownership bits, statuses, direc-

tory statuses, etc.) and value. The cache normally uses a primitive BRAM (block

RAM) module in Kami, later synthesized to a BRAM on an FPGA. The cache module

also manages victim lines that should be evicted eventually.

Another prebuilt component holds a finite number of MSHRs, whose abstract

interface includes registering, updating, and releasing MSHRs with respect to their

types (uplock or downlock) and locking addresses. Recall that ideally (as a spec)

MSHRs are assigned per-line, but the actual design can contain only a finite number

of them. The compiler takes several counts as configuration parameters to determine

the sizes of caches (e.g., the number of lines and ways) and MSHRs (e.g., the number
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Figure 9-2: Compilation of a pipelined cache module

of uplocks and downlocks).

9.1.2 Compilation of a pipelined cache module

One of the biggest differences between a source Hemiola protocol and the target

Kami code is that the target accesses multiple lines asynchronously. In the source

protocol, a single line can be read (or written) immediately by directly accessing a

value, whereas in the target the value is accessed asynchronously by making a read

(or write) request with a certain line address to a cache and by handling the response.

In order to optimize asynchronous line accesses, the protocol compiler employs a

prebuilt pipeline. Figure 9-2 presents a source Hemiola cache object and the corre-

sponding target Kami module, generated by the protocol compiler. Each Hemiola rule

in the source cache object takes input messages from various channels, reads/writes

values (e.g., a line status, a line value, locks, etc.), and generates output messages (to

various channels) atomically.

A Hemiola rule execution corresponds to the execution of multiple stages in the
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pipeline, each of which takes part in the source-rule execution. The first stage (IN in

the figure) takes input messages from various channels; in order to avoid a deadlock,

the pipeline has different entries for inputs from the parent and the children. The IN

stage also checks MSHRs to see if the input message can be accepted to the pipeline

or not. Depending on the management of MSHRs, it either accepts the input, stalls

it, or adds it to the “retry” entries in the MSHR-managing module. Whether to stall

or retry later determines whether the protocol is blocking or nonblocking ; we will

discuss the difference in detail right in the next section.

The second stage (IR) asynchronously requests the line information (status, direc-

tory status, etc.) with the line address from the input message. It makes the request

in terms of the index (from the line address), i.e., it tries to read all the tags and

information values with the same index.

The third stage (LR) gets the response for the line information and tries to find

if any tag matches the line address. If so, it is a cache hit ; the LR stage requests to

get the line value with the index and tag. Otherwise, it is a cache miss ; the LR stage

decides the victim line by means of the replacement-managing module and requests

to get the line value for the victim.

The last stage (EX) gets the response for the line value. In case of a cache hit,

using the line information and value read from the earlier stages, a properly selected

Kami rule (compiled from a source Hemiola rule) possibly requests a write to the line

and generates output messages. In case of a cache miss, the line status is decoded

to NP (Not Present), and a proper state transition is made by a Kami rule. The

line information and value in this case are the ones for the new victim; the EX stage

registers the victim using those values.

Blocking vs. nonblocking protocols

The protocol compiler takes a single-line Hemiola protocol and generates a corre-

sponding multiline implementation. In terms of safety (correctness), this compilation

is sound enough, since the coherence of each line is orthogonal to coherence of others.

However, in terms of progress, since the implementation can only use finite re-
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sources (e.g., communication channels, MSHRs, etc.), a transaction for a certain line

is often blocked by another transaction for a different line. For instance, suppose

that a request is blocked (stalled) at the IN stage in Figure 9-2, because there is al-

ready an ongoing transaction with the same line address, represented as an acquired

lock in MSHRs. If the pipeline just let this request remain in the pipeline, some

other requests, possibly with different line addresses, will be blocked as well since

the pipeline is in-order. This case just defines a blocking cache-coherence protocol ; a

stalled request affects the other transactions to be blocked as well.

We can optimize this blocking protocol by moving the blocking request to a des-

ignated slot (e.g., a fresh MSHR) and allowing subsequent messages to pass through

the pipeline. This is one way to implement a nonblocking protocol [39, 72, 4]; a trans-

action has a chance not to be blocked by other messages. Note that the degree of

nonblocking is determined by the number of resources, e.g., the more MSHRs the

pipeline has, the less blocking would happen.

The MSHR-managing module, prebuilt in Kami, supports this kind of nonblock-

ing while maintaining the safety of interleavings. That is, a new input message is

temporarily held in an MSHR slot when there is already a slot occupied with the

same line address. The module manages MSHRs and tracks execution dependencies

among them, so the pipeline retries processing the input message that was held tem-

porarily in the MSHR right after the preoccupied MSHR slot is released, i.e., the

ongoing transaction is finished.

9.2 Correctness of the Protocol Compiler

As explained in section 9.1, the protocol compiler takes a cache configuration as an

argument, thus we can have several different implementations by providing different

configurations. Then what would be the specification for all possible implementations

from a given source protocol? In this section we naturally extend a single-line Hemi-

ola protocol to a multiline one and justify its role as the specification for multiline

implementations.
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The core idea is mentioned already in the previous section: the coherence of each

line is orthogonal to coherence of others. In this case, a single-line Hemiola protocol is

naturally extended to a multiline one by using the notion of compositionality. Com-

positionality claims that if two systems are index-disjoint (i.e., objects and channel

indices are disjoint) thus not communicating with each other, then refinement of the

composed system is obtained for free just by composing the specs:

Theorem 9.2.1 (Compositionality).

∀𝐼1, 𝐼2, 𝑆1, 𝑆2. 𝐼1 ⊑ 𝑆1 ∧ 𝐼2 ⊑ 𝑆2 → 𝐼1 ⊕ 𝐼2 ⊑ 𝑆1 ⊕ 𝑆2,

where 𝐼1 ⊕ 𝐼2 implicitly assumes that the indices used in 𝐼1 and 𝐼2 are disjoint.

Hemiola additionally supports an index-extension mechanism, which takes a sys-

tem 𝑆 and a prefix index 𝑖, generating a new system 𝑆(𝑖) where every object or channel

index in the system is extended by attaching 𝑖. Note that an index in Hemiola is a

list of numbers, so it is easy to extend an index just by concatenating another one.

Hemiola also provides a lemma that 𝑆(𝑖) and 𝑆(𝑗) are index-disjoint when 𝑖 ̸= 𝑗.

Composing these elements, we obtain a replication theorem that is used directly

to convert a single-line cache-coherence protocol to an ideal multiline protocol:

Theorem 9.2.2 (Replication). ∀𝐼, 𝑆. 𝐼 ⊑ 𝑆 → ∀𝑛.
⨁︀𝑛

𝑖=0 𝐼
(𝑖) ⊑

⨁︀𝑛
𝑖=0 𝑆

(𝑖).

The multiline protocol derived from the replication theorem is indeed ideal; it

has line values, lock holders, and communication channels per cache line. Thus the

protocol can serve as a spec for all the multiline implementations generated by the

protocol compiler, since they have limited resources, which implies that the behavior

of the multiline protocol covers their behaviors.

Figure 9-3 elaborates more on the role of the multiline specification. For a given

Hemiola single-line protocol (𝐼ℎ0 ), we can lift the refinement using the replication

theorem to obtain a refinement for the multiline protocol (𝐼ℎ𝑀). Since both Hemiola

and Kami are rule-based description languages, we expect it is straightforward to have

an ideal multiline protocol in Kami (𝐼𝑘𝑀) in the sense of simple transliteration, while
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𝐼ℎ0 ⊑ℎ 𝑆ℎ
0

𝐼ℎ𝑀 ⊑ℎ 𝑆ℎ
𝑀

𝐼𝑘𝑚 ⊑𝑘 𝐼𝑘𝑀 ⊑𝑘 𝑆𝑘
𝑀

(compiler correctness)

compiles-to

(section 9.1)

replication (Theorem 9.2.2)

(transliteration)

Figure 9-3: A single-line protocol, a multiline spec, and multiline implementations

preserving the refinement. After all, the correctness of the protocol compiler must

be refinement from a target Kami implementation (𝐼𝑘𝑚) to the multiline protocol. In

proving this refinement, Theorem 9.1.2 will be required, since every pipelined cache

module in 𝐼𝑘𝑚 should be substituted with a naive module in 𝐼𝑘𝑀 , transliterated from

𝐼ℎ𝑀 .

As presented in Figure 9-3, the compiler correctness proof is a part of the bigger

correctness proof of a cache-coherent memory subsystem implementation at the lower

level. While this dissertation only focuses on proving cache-coherence protocols de-

scribed in the high level, we believe that proving the low-level implementation in this

manner is another valuable future work.

9.3 Synthesis of a Hemiola Protocol

Once we have obtained a multiline cache-coherence protocol implementation from the

compiler, we can use Kami’s synthesis toolchain to transliterate it to a Bluespec [56]

program and synthesize it to load on an FPGA.

Before synthesis, we first evaluated two Hemiola protocols, Hem2 and Hem3, in-

stantiated from our hierarchical noninclusive MESI protocol described in section 8.3,

using the Bluespec simulator. Hem3 is a 3-level protocol, consisting of four 32KB

4-way set-associative L1 caches, two 128KB 8-way L2 caches, and a 512KB 16-way
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Performance
AllSh PairSh ExSh1 ExSh2

(#trs/cycle)

Hem3 0.259 0.868 0.506 0.764

Hem2 0.270 0.800 0.637 0.913

RiscyOO 0.336 0.791 0.637 0.988

#trs in 5× 105 cycles

Hem3 129,459 434,063 252,797 381,801

Hem2 134,927 399,919 318,727 456,674

RiscyOO 167,978 395,612 318,521 493,851

Figure 9-4: Evaluation of Hemiola protocols

last-level cache. Hem2 is 2-level, consisting of four L1 caches and the last-level cache.

Each line holds 32 bytes in all the protocols. We compared the performance with

an existing Bluespec implementation, RiscyOO [80, 81], featuring a 2-level inclusive

MESI protocol with self-invalidation [68]. We set the cache sizes of RiscyOO the same

as for Hem2. We also set the number of MSHR slots in each cache between RiscyOO

and Hem2 the same.

In order to measure the performance of the Hemiola protocols, we designed four

artificial workloads, shown in Figure 9-4, that make random requests but mimic some

amount of temporal/spatial locality of memory accesses. We measure the performance

of each workload with a register-file-based 512KB reference memory, thus any memory

address used in the workloads is within [0, 219 − 1].

The AllSh workload generates random memory requests for each core, where each

request address is randomly chosen throughout the entire memory range, regarding

all the memory values are shared by all the cores. We assume the memory read/write

ratio as 3 : 1 (i.e., memory reads are three-times more than writes) for each workload.

The PairSh, ExSh1, and ExSh2 workloads use designated exclusive and shared

memory regions, determined by several parameters. An exclusive memory region is

set for each L1 cache, whose size equals the size of the cache. Any two exclusive

memory regions are disjoint to each other. A shared region has the size of 2LgShRange
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Clock length (ns) Critical path (ns) #LUTs #FFs

Hem2 40 36.861 126,714 41,203

Hem3 40 37.608 240,034 61,011

Figure 9-5: Synthesis of Hemiola protocols

lines, where LgShRange specifies the log size of the shared region. All the three

workloads use LgShRange = 5, i.e., 32 lines are shared by the L1 caches.

In the PairSh workload, the first two L1 caches only accesses the first shared region,

and the other two caches only accesses the second one. The two shared regions are

disjoint to each other. Any exclusive region and shared region are disjoint as well,

but they can have the same L1-cache index, thus some evictions may happen from

each L1 cache. ExSh1 and ExSh2 use a single shared region.

Each of the three workloads takes two additional parameters to simulate tempo-

ral/spatial locality. LgExShRatio specifies the access ratio between the exclusive and

shared regions. PairSh and ExSh1 use LgExShRatio = 1, meaning that the workload

makes memory accesses of the exclusive and shared regions by equal chances. ExSh2

uses LgExShRatio = 2, i.e., the probability to access the shared region is 1/22. NumTl-

Cycles specifies how many consecutive memory accesses happen in a specific region.

All the workloads use NumTlCycles = 25, meaning that 25 memory accesses happen

for each visit of a region.

Figure 9-4 also shows the performance result. We measured the performance by

counting the number of transactions performed in 5× 105 simulation cycles. Though

one should not draw too many conclusions from the precise measurements, the result

shows that the Hemiola protocols are competitive with a practical implementation

coded by hand.

Next we synthesized the Hemiola protocols, shown in Figure 9-5. We used Xil-

inx’s Virtex-7 VC707 FPGA [1] and its toolkit for synthesis. Each protocol uses a

minimal clock length that can safely cover its critical path. Both Hem3 and Hem2

stayed within the FPGA’s budget of lookup tables (LUTs) and flip-flops (FFs). We

performed tandem verification covering over 109 memory requests for each protocol
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on the FPGA, by connecting it to a tester module that generates a random workload

and a reference memory to check its correctness.
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Chapter 10

Related Work II: Verification of

Cache-Coherence Protocols

In this chapter, we explore a number of approaches to verifying various cache-coherence

protocols. While testing and bounded model checking (BMC) [18] have dominated the

verification of the protocols in industry, formal verification also has been developed

and used steadily to verify modern protocols. Formal verification (at least of hard-

ware) is performed largely by two methods: model checking or theorem proving. We

describe how each methodology has been developed to cover practical cache-coherence

protocols.

Model-checking cache-coherence protocols Model checking has dominated the

formal verification of hardware. Various model checkers like Murphi [27, 26], SMV [50,

37], and TLA+ [41] have been used to verify either high-level hardware designs or

RTL implementations. Verification of cache-coherence protocols, in the beginning,

was limited to finite numbers of caches and specific protocols due to conventional

state-space-explosion issues. McMillan and Schwalbe [53] verified the Gigamax cache-

coherence protocol, which employs bus snooping. They used SMV [50, 37] to verify

safety and liveness of the protocol, but at that time only succeeded with the 2-level

protocol with two clusters, each of which has six processors. Joshi et al. tried to

verify various cache-coherence protocols using TLA+ and TLC [41]. In early phases
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the TLC model checker was not mature enough to provide a full correctness proof,

so they focused on proving a number of invariants and finding bugs through those

invariant proofs. Later they tried to verify another protocol with a more-developed

TLC, but the verification was still limited to a single cache line, two data values, and

three processors, due to the state-space explosion to twelve million reachable states.

These verifications were performed quite a long time ago, but we want to draw from

these early approaches that state-space explosion has been a typical issue in model

checking.

In order to overcome such state-space explosion, model checkers have been devel-

oped featuring sound techniques such as symbolic model checking [49, 50], partial-

order reduction [6], symmetry reduction [7, 35], data-type reduction [47], and composi-

tional model checking [47]. As explored in chapter 7, model-checking cache-coherence

protocols especially requires the design and use of noninterference lemmas to deal

with the state-space explosion by interleavings [47, 51, 16].

In order to obtain effective noninterference lemmas, a number of approaches used

descriptions in terms of transactions (called “message flows”) [74, 58, 69]. These papers

claimed that effective verification obligations can be constructed by looking at the

ordering information in message flows and demonstrated that such obligations help

the CMP method [51, 16] converge. Instead of looking at each transaction, Hemi-

ola provides serializability that guarantees noninterference among any transactions

defined on top of the framework.

In order to verify cache-coherence protocols with arbitrary numbers of cores (but

no hierarchy), parameterization has been used in designing and model-checking the

protocols [28, 29, 16, 79, 78, 3]. Since Hemiola is built on Coq, we can take full

advantage of parameterization, and indeed the framework supports verification of

cache-coherence protocols with an arbitrary tree shape as a parameter.

In order to increase scalability further, recent approaches used abstraction and

modularity in protocol design and successfully verified hierarchical cache-coherence

protocols in a compositional way [13, 14, 45, 46]. However, these approaches face

a common obstacle: because of the modularity requirement, it became hard to de-
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sign and verify noninclusive protocols. There have been approaches [13, 14] to solve

this problem using assume-guarantee reasoning and history variables [21, 19], while

still maintaining the concept of compositional verification, but they faced state-space

explosion again, and thus they just verified a two-level MSI protocol with three L2

caches. Recently, the Neo theory [45, 46] has been developed as a safe way to com-

pose “subtrees” of caches to have a hierarchical protocol. The authors argued that

it is possible to verify noninclusive protocols in the Neo framework when a directory

is still inclusive (e.g., NCID [82]) but did not provide the actual design and proof.

Here in Hemiola we provided the proofs of hierarchical noninclusive cache-coherence

protocols, without any such restrictions.

Another notable success of cache-coherence verification employed program syn-

thesis to generate a protocol for a given atomic specification [61, 60]. The synthesizer

can generate various hierarchical protocols, each of which is nontrivial and more op-

timized than the protocols defined in Hemiola. The atomic specification is similar to

Hemiola’s rule templates in the sense that a user can describe the protocol just with

stable states. They used Murphi to verify synthesized protocols, but in a two-level

protocol [61] they only succeeded up to three caches without exhausting memory, and

for hierarchical protocols [60] they succeeded only with the root, two cache-H, and

two cache-L nodes. They also mentioned that this extension to hierarchical protocols

cannot cover noninclusive protocols.

Theorem proving for cache-coherence protocols While not dominant, theo-

rem proving also has been used steadily to verify cache-coherence protocols. In the

early days, the correctness proofs were done with specific protocol models, where

the relation to the corresponding RTL implementation is left as TCB [67, 54]. The

FLASH cache-coherence protocol model was proven to be correct using the PVS the-

orem prover [67]. They used aggregation of distributed transactions [66] to verify the

protocol and claimed that the technique can be applied generally for other protocols.

Another approach proved a write-invalidate cache-coherence protocol using the ACL2

theorem prover [54]. The protocol is based on bus snooping, and the design and proof
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are parameterized by the number of processors.

One past project tried to prove both correctness and liveness of adaptive cache-

coherence protocols using the PVS theorem prover [71, 73, 70]. They verified the

Cachet adaptive cache-coherence protocol that consists of several micro-protocols.

Inside the protocol, each line in a cache can dynamically switch from one micro-

protocol to another one for performance. In order to verify the protocol more easily,

they suggested to design and prove protocols in two stages: one for imperative rules,

which are only about correctness, and the other for directive rules that affect both

correctness and liveness. Imperative rules correspond to the rules defined in Hemi-

ola for protocol description, whereas directive rules correspond to the rules in the

pipelined cache controller prebuilt in the Hemiola protocol compiler.

A recent success was a proof of a hierarchical MSI protocol with an arbitrary tree

topology using Coq [76]. However, the proof was also for the specific protocol and

thus not structured to promote streamlined reuse of results for other protocols. It

also employed rather complex and ad-hoc invariants needed to characterize transient

states. This work provided basic motivation of the Hemiola framework in designing

and reusing invariants more systematically in a theorem prover.

Another notable project designed a modular-specification approach for cache co-

herence, verifying each module (i.e., cache) against the spec while automatically gen-

erating (and proving) invariants, using the Ivy verification tool [63, 48, 52]. The

modular spec is specialized to the TileLink protocol [22], whose interface is similar to

the rule templates in Hemiola. That being said, this project targeted only the specific

TileLink protocol, thus not clearly distinguishing which invariants can be reused for

other protocols (like serializability provided by Hemiola) and which are for the actual

protocol.

In order to avoid tedious invariant search, a toolchain was built to generate in-

variants and their proofs automatically for the FLASH cache-coherence protocol [43].

However, it did not provide the final refinement proof between the implementation

and the spec.
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Conclusion

In this dissertation, we discussed difficulties in designing and proving hardware cache-

coherence protocols, proposed a methodology to ease the burden, and demonstrated

it by building a framework Hemiola within the Coq interactive theorem prover. We

also designed and proved various hierarchical cache-coherence protocols on top of

the framework and synthesized them using the protocol compiler provided by the

framework.

As the last chapter of this dissertation, we would like to summarize each previous

chapter and to discuss a number of future-work directions. Afterwards, we conclude

by adding remarks, recalling our introduction to why hardware verification is complex

and how we can use an interactive theorem prover to alleviate the verification burden.

Chapter summaries

We began with constructing an underlying basis to reason about hardware cache-

coherence protocols. We defined protocol transition systems in chapter 3, viewing

cache-coherence protocols as message-passing systems. A system consists of objects,

and the objects communicate by ordered message channels. Local state transitions

within an object are performed by rules, each of which has a precondition and a

transition function. In a protocol transition system, thanks to the so-called one-rule-

at-a-time semantics, it is safe to assume that a state-transition step of a system is

always made nondeterministically by a rule in an object.

On top of protocol transition systems, we provided the formal definition of serial-

izability in chapter 4. A memory subsystem consists of several caches and the main

memory, and a cache-coherence protocol defined within the system allows handling
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multiple memory requests concurrently in a distributed way. Viewing cache-coherence

protocols as distributed protocols, we call such concurrent executions interleaved, and

the serializability property guarantees that any interleaving can be interpreted as a se-

quence of transaction executions reaching the same resulting state. We also provided

a novel mechanism to prove invariants, called predicate messages, and demonstrated

that it is much easier to state and prove predicate-message invariants in a serializable

system.

As the next part of this dissertation, we established a framework called Hemiola,

embedded in the Coq proof assistant, to design and prove cache-coherence protocols

more easily. Even if serializability can ease the burden of stating and proving invari-

ants, it will still be a large burden if a user has to prove serializability per-protocol.

Thus we presented the Hemiola DSL in chapter 5, where any protocol defined by the

DSL automatically obtains the serializability property for free. The DSL contains

rule templates, each of which takes input messages, sets/releases locks, and produces

output messages properly to satisfy serializability.

We described a proof in chapter 6 that the use of the rule templates indeed implies

serializability, using a well-known technique called commuting reductions. This impli-

cation is the biggest theorem in Hemiola, but the theorem is general (thus reusable)

in that it can be applied to any protocol defined using the rule templates. Com-

muting reductions are the most basic notion of noninterference between two adjacent

state transitions, and the serializability proof employs them by showing that any

interleaved history of a system defined with the Hemiola DSL can be reduced to a

sequential history that reaches the same state, by a finite number of reductions. In

order to show that finitely many reductions suffice, we developed the notion of merge-

ability to figure out which two atomic-history fragments to merge while not breaking

the other fragments.

The final part of this dissertation was to design and synthesize hierarchical cache-

coherence protocols as case studies. We defined three hierarchical protocols on top of

Hemiola: inclusive and noninclusive MSI protocols and a noninclusive MESI protocol.

All of the protocols require a similar set of invariants: the exclusiveness, sharing,
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and invalidness invariants. We provided in chapter 8 the correctness proofs of the

protocols using these invariants and demonstrated that predicate messages help prove

the invariants.

Lastly, the case-study protocols were compiled to corresponding hardware im-

plementations and synthesized to run on FPGAs. In chapter 9, we developed the

protocol compiler, which takes a single-line Hemiola protocol and generates a mul-

tiline implementation defined in the Kami hardware-verification framework. The

compiler employs a number of prebuilt hardware components also defined in Kami,

which include noninclusive caches, inclusive directories, MSHR controllers, and so on.

Furthermore, we synthesized compiled Kami protocol implementations by borrowing

the toolchains in Kami and Bluespec. Our evaluation shows that the implementations

are competitive with a practical implementation coded by hand.

Future work

There are a number of valuable future-work directions to make the Hemiola framework

more robust. First of all, as already mentioned in section 9.2, we plan to prove the

correctness of the protocol compiler. The compiler correctness proof will be used

eventually for proving the correctness of low-level cache-coherent memory subsystems

compiled from Hemiola protocols.

Another important future direction is to prove liveness of the protocols designed

in Hemiola. Even though we designed the rule templates carefully to avoid dead-

locks, we think that a formal proof should be supported by the framework as well.

Proving liveness generally requires deadlock, livelock, and starvation freedom. Even

though such properties should be properly stated and proven for low-level hardware

implementations, it will be interesting to explore some properties in the protocol-

description level that can help prove liveness.

The last future work is to extend the rule templates to cover more sophisticated

message-communication patterns. Highly optimized cache-coherence protocols often

require message-communication patterns that cannot be performed by the current

rule templates. For instance, some protocols require direct communication among
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siblings (i.e., not arbitrated by the parent), and no rule templates currently support

it. Extending the rule templates will require the extension of the serializability proof,

which includes adding more rule-template cases for each invariant proof.

Concluding remarks

Hemiola as a research project has started to answer the question “how we can formally

verify practical cache-coherence protocols with reasonable effort.” This question in-

volves two research challenges. First, practical protocols are huge, designed with

cache hierarchies, which implies that a verification methodology should be scalable.

Second, there are a lot of design options, and the methodology should be general

enough to cover many designs.

We tried to solve these problems by taking full advantage of an interactive theorem

prover. Verification effort is reduced by proving a general theorem that can be applied

for various purposes. The more general the theorem is, the more verification effort is

reduced. This idea looks very trivial but is hard to realize in practical verification,

since to design such a general theorem itself is challenging, and the proof will be

difficult as well. Indeed, in building the Hemiola framework, we spent a significant

amount of the time finding a general set of requirements that ensures serializability,

plus proving that assertion in Coq.

That said, we believe Hemiola represents good evidence that interactive theorem

proving is worthwhile to use for practical hardware verification. While model checking

has dominated the formal verification of hardware especially in industry, it apparently

seems that (interactive) theorem proving has not been employed practically, due to a

stereotype that theorem proving requires too much human effort. We would like to

argue that this stereotype is no longer true, once equipped with good proof structures,

e.g., reusable proofs. Lastly, we hope that in the future there will be more approaches

to verifying realistic hardware components with interactive theorem provers.
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