
Type Checker for Annotated Assembly Programs

by

Julian Zanders
B.S. Electrical Engineering and Computer Science

Massachusetts Institute of Technology, 2023

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2025

© 2025 Julian Zanders. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free license
to exercise any and all rights under copyright, including to reproduce, preserve, distribute
and publicly display copies of the thesis, or release the thesis under an open-access license.

Authored by: Julian Zanders
Department of Electrical Engineering and Computer Science
May 9, 2025

Certified by: Adam Chlipala
Professor of Computer Science, Thesis Supervisor

Accepted by: Katrina LaCurts
Chair, Master of Engineering Thesis Committee

2

Type Checker for Annotated Assembly Programs
by

Julian Zanders

Submitted to the Department of Electrical Engineering and Computer Science
on May 9, 2025 in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

ABSTRACT

The rise of speculative-execution attacks, such as Spectre, has presented a security
challenge to developers. Speculation on secret data can expose it, but running without
speculation is suboptimal for runtime. To fix this, researchers have been evaluating “smart”
speculation schemes, which determine when to speculate and when not to in order to balance
runtime with security.

Our lab proposes Octal, a solution that utilizes software and hardware in tandem. Data
values are marked as secret or public using type inference, and the veracity of inference is
checked using a type checker. Then, hardware can separate the secret and public values.

My contributions were to the type checker, as well as some scripting to evaluate results.

Thesis supervisor: Adam Chlipala
Title: Professor of Computer Science

3

4

Acknowledgments

Many thanks to my supervisor, Adam Chlipala, as well as PhD students Shixin Song and
Tingzhen Dong, for their guidance and support throughout the process!

5

6

Contents

List of Figures 9
List of Tables 11

1 Background 13
1.1 Speculative Execution . 13
1.2 Spectre Attack . 14
1.3 Speculative Constant Time . 14

2 Introduction 15
2.1 Implementation . 15

2.1.1 Hardware and Software . 15
2.1.2 Program Transformation: Type Inference 15
2.1.3 Program Transformation: Type Checking 16
2.1.4 My Contributions . 16

3 Symbolic Execution for Type Checking 17
3.1 Technologies . 17
3.2 Type Representation . 17

3.2.1 Architectural State Representation 17
3.2.2 Dependent-Type Representation . 18
3.2.3 Taint-Type Representation . 18
3.2.4 Architectural-State Representation 18

3.3 Implementation . 18
3.3.1 Control Flow . 18
3.3.2 Small Steps on Instructions . 19
3.3.3 Iterations on Implementation . 20

4 Evaluating Octal on Benchmarks 23

A Typing Rules 25
A.1 Architectural State Type . 25
A.2 Rules for Instructions . 26

B Benchmark Evaluation Script 31

References 37

7

8

List of Figures

1.1 Example of Code Vulnerable to Speculative Execution 14

3.1 Simplified Type Representation of the Architectural State 18
3.2 Static Single-Assignment for addq %rax $0x08. 20

4.1 Number of Manual Annotations Required for Each Benchmark 24

9

10

List of Tables

11

12

Chapter 1

Background

1.1 Speculative Execution

Early CPU optimization focused on physical characteristics of the chip, such as size and
clock frequency. However, as physical limitations have made this increasingly unviable over
time, designers have shifted their attention to optimizing the instruction pipeline [1]. Of the
pipeline optimizations that have been implemented, speculative execution has perhaps had
the most prominent implications on computer security.

Speculative execution is closely related to out-of-order processing, which is the non-
sequential execution of program instructions. When implemented correctly, out-of-order
processing does not violate functional correctness. For example, if two add instructions
execute on entirely disjoint pairs of registers, it doesn’t actually matter which of the two
instructions executes first. The architectural state will end up in the same state regardless.

CPUs that can perform out-of-order processing can then be extended with branch predic-
tors to implement speculative execution. Upon reaching a branch, speculative execution
has the CPU speculate on the most likely result of the branch condition and continue
executing instructions on the corresponding control-flow path. If the speculation is correct,
then the program ultimately runs faster, since it did not have to stall any instructions while
awaiting the conditional result. Modern branch predictors use heuristics to speculate correctly
far more often than not. However, as we will see in a future section, these heuristics can also
be exploited by attackers.

It is important to note that preserving a program’s functional correctness requires that
only the instructions on the correct control flow path are committed to the architectural
state. Therefore, speculative execution depends on transient execution, which occurs when
the CPU executes instructions and stores them in the microarchitectural state but does not
immediately commit those results to the architectural state. On correct branch predictions,
the results must be committed from the microarchitecture to the architecture. Otherwise,
the results must be squashed.

13

1 if(x < sensitiveArray.length) {
2 int y = sensitiveArray[x];
3 int z = instrumentArray[y * cacheLineSize];
4 }

Figure 1.1: Example of Code Vulnerable to Speculative Execution

1.2 Spectre Attack

Unfortunately for computer security, preserving functional correctness enforces no constraints
on the microarchitectural state. This has left most CPUs vulnerable to speculative execution
attacks, the most notable of which for our purposes is called “Spectre” [1].

Spectre and its variants leverage the fact that, while an otherwise secure computer
program may not leak any secrets to the architectural state, its underlying microarchitectural
implementation may store secrets that can be indirectly observed. For example, suppose that
a software program implemented a conditional branch that, if true, would load contents of a
secret memory location. Even if the condition evaluates to false during runtime, if the condition
were predicted to be true, the secret data may well be loaded into the microarchitecture, such
as in the cache.

It is not possible for a developer to directly read the contents of cache memory. However,
by using covert channels, information about the cache state can be inferred. For example,
in the code snippet in Figure 1.1, suppose that the branch predictor incorrectly guessed that
the branch would be taken, causing lines 2 and 3 to be speculatively executed. Now, even if
an attacker doesn’t have direct access to sensitiveArray, they can still exploit the fact that
the contents of instrumentArray were loaded into the cache during speculative execution.
By looping over the values in instrumentArray and determining which access takes the least
time, the attacker can infer that that value corresponds to the one preloaded into the cache.
As such, the contents of sensitiveArray have been leaked [1].

1.3 Speculative Constant Time

Researchers have iterated on a number of software mitigations for speculative-execution
attacks. There is Cryptographic Constant Time (CCT), which requires that software
be written without using secret data for variable-time operations (most notably branch
conditions and memory accesses) [2]. This helps mitigate timing side channels, but since
speculative execution exploits microarchitectural features, CCT is not sufficient as a defense
against attacks like Spectre.

As such, researchers have moved on to a stricter property called Speculative Constant
Time (SCT). A program satisfies SCT if for any two initial states with identical public
values, there are no observable differences in the machine’s architectural or microarchitectural
state after running any series of directives [2]. (Note that this property inherently satisfies
CCT.) This generalized statement of SCT covers any arbitrary side channel, including those
created by speculative execution.

14

Chapter 2

Introduction

Our project aims to automatically transform programs satisfying Cryptographic Constant
Time into programs that satisfy Speculative Constant Time without violating speculative
noninterference. Our approach utilizes software and hardware in tandem, with each easing
the job of the other.

Previous hardware-only SCT implementations have either required heavy hardware changes
or have not preserved the Speculative Noninterference Property [3, 4]. Previous hardware-
software SCT implementations have required a prohibitive amount of manual transformation
on the original programs [5]. We aim to extend the existing research to achieve Specula-
tive Constant Time, achieve Speculative Noninterference, minimize hardware changes, and
minimize manual effort.

2.1 Implementation

The lab has developed a hardware-software solution known as Octal.

2.1.1 Hardware and Software

In terms of hardware, it is relatively easy to track taint status directly in a register, and
it is relatively easy to track taint status on page level. Octal follows this model. On the
architectural level, each register in an Octal machine is augmented with a bit indicating taint
status, whereas system memory is preemptively partitioned into public and secret regions.
On a software level, an x86 Assembly source program can then be automatically rewritten
such that memory accesses involving secrets are addressed to the secret region and memory
accesses involving public data are addressed to the public region.

2.1.2 Program Transformation: Type Inference

Octal relies on inferring the basic types of registers and memory, as well as inferring arithmetic
relations among those type variables. These basic types are comprised of the dependent
type, which represents the data value; and the taint status, which represents whether or not
the value should be treated as secret. Thus, a type can be instantiated for each possible

15

architectural state of the program, and subtyping relations among different architectural
states can be defined.

2.1.3 Program Transformation: Type Checking

Type checking is the process of verifying that a term will eventually evaluate to a value (i.e.
an nonstuck term in normal form). In the context of Octal, type checking uses the inferred
type of each basic block as input. It then checks that, at each taken jump instruction, the
type representing the state of the program when the jump is taken is a subtype of the inferred
architectural state of the jump target.

2.1.4 My Contributions

My main contribution was implementing symbolic execution for the type checker. I also
annotated benchmarks to compare our approach to ProSpeCT [5].

16

Chapter 3

Symbolic Execution for Type Checking

3.1 Technologies

Symbolic execution was implemented using a number of preexisting software solutions.

• Microsoft Z3. Microsoft Z3 is a Satisfiability Modulo Theories (SMT) solver. SMT
solvers attempt to determine whether or not a given set of constraints are satisfiable.
There are a number of such “theories” corresponding to the type of the variables in the
constraints. For example, there are theories on bit vectors, integers, Booleans, and so
on. Since our basic types are comprised of dependent types, which represent binary
numbers stored in the computer architecture, and taint types, which represent a binary
taint status, we used a combination of the bit vector theory and the Boolean theory to
implement our checker.

• OCaml. OCaml is a functional programming language. Its strong typing paired with
the functional paradigm make it very well-suited for problems in program verification.

3.2 Type Representation

Before anything else, the type of the architectural state must be defined.

3.2.1 Architectural State Representation

We represent the architectural state of our abstract machine as a compound type. Among
other things, this compound type consists of a context, a register file, a memory map, and a
collection of flags.

The register file is a record type that maps register names to basic types. The memory
map is a record type that maps memory regions to basic types. The flag map is a record type
that maps flags to Booleans. A basic type is a tuple of one dependent type (representing the
value being stored) and one taint type (representing the taint status of that value).

17

b := 0 | 1
e := x | v | ⊤ | e1 ⊕ e2 | ⊖e
τ := x | 0 | 1 | τ1 ∨ τ2
β := (e, τ)
R := {r1 : β1, ...}
M := {m1 : β1, ...}
F := {fcarry : bcarry, fsign : fsign, ...}
A := (R,M,F)

Figure 3.1: Simplified Type Representation of the Architectural State

3.2.2 Dependent-Type Representation

Dependent types are represented in Z3 as bit vectors. Like most values in Z3, bit vectors
can be represented as both interpreted constants (bit vectors with known values) and
uninterpreted constants (bit vectors with unknown values). Regardless of whether or not they
are interpreted, arithmetic expressions on those bit vectors can be built with Z3’s standard bit
vector operations.This enables us to represent program state symbolically even with unknown
values.

3.2.3 Taint-Type Representation

Taint types are represented in Z3 as Booleans, where true (1) corresponds to tainted and
false (0) corresponds to untainted. Just as with bit vectors, Z3 can represent taint types with
both interpreted and uninterpreted values.

3.2.4 Architectural-State Representation

Figure 3.1 displays a partial description of the architectural state type. It is not comprehensive
but rather defines the aspects of the state type that are relevant to symbolic execution.

3.3 Implementation

The type checker’s symbolic execution was implemented using the Microsoft Z3 OCaml
library. This was effectively an implementation of small-step semantics for each x86 Assembly
instruction that appeared in our benchmarks.

3.3.1 Control Flow

The type checker is static, so it only ever runs instructions sequentially. The instruction
itself determines how the architectural state will be updated. However, conditional jump
instructions cannot be handled as in normal program execution, as it is not generally possible
to evaluate the condition statically. Instead, for jump instructions, we must generate Z3

18

checks, and then assert constraints on the architectural state for subsequent instructions in
the basic block. This process is as follows:

When a conditional jump instruction is reached (with jmp being equivalent to a conditional
jump whose condition is simply true)...

1. Push a new scope onto the Z3 solver.

2. Assert that the branch condition is true.

3. Generate a Z3 check that verifies that the current architectural state is a subtype of
the branch target.

4. Pop the scope off of the Z3 solver.

5. Assert that the branch condition is false.

6. Proceed to the next instruction.

This process allows for both branch results to be statically tested. The taken check is
asserted under the assumption that the static type meets the branch condition, and then
symbolic execution proceeds under the assumption that the static type does not meet the
branch condition.

3.3.2 Small Steps on Instructions

Overview

Our OCaml implementation subdivides instructions into unary, binary, and ternary. For each
of these instructions, the operands and any needed flag statuses are passed as inputs into
the symbolic-execution function. The outputs of this function are the resulting basic type
(comprised of a dependent type and a taint status) and the updated flag map.

For arithmetic and bitwise instructions such as add, mul, and xor, dependent types are
computed directly using functions built into the Z3 library. Similarly, for taint tracking on
these instructions, taint types are computed using Z3 library functions.

Symbolic execution for some instructions requires more complex computations than for
others. For example, certain instructions only use a certain subset of the bits in a register,
requiring intermediate masking or extraction steps to compute accurately. An in-depth
discussion of typing rules for each instruction can be found in Appendix A.

The result of the symbolic execution is then used to update the correct architectural
elements and generate a new state. That new state is used for the next instruction, and the
cycle repeats.

A : (R,M,F) → A′ : (R′,M ′, F ′)

19

1 (declare -const rax!1 (_ BitVec 64))
2 (declare -const fcarry !1 Bool)
3 (declare -const fparity !1 Bool)
4 (declare -const faux!1 Bool)
5 (declare -const fzero!1 Bool)
6 (declare -const fsign!1 Bool)
7 (declare -const foverflow !1 Bool)
8 (assert (= rax!1 (bvadd rax!0 #x0000000000000008)))
9 (assert (= fcarry !1 (not (bvadd_no_overflow rax!0 #

x0000000000000008))))
10 ...

Figure 3.2: Static Single-Assignment for addq %rax $0x08.

Static Single-Assignment

We have seen that the small step can be represented as the generation of a new state. However,
in practice, full state representations are not generated for each instruction. Instead, for each
instruction, new interpreted constants are generated for each modified architectural element.

For example, Figure 3.2 displays the Z3 code generated for the instruction addq %rax,
$0x08. This will affect the accumulator as well as six flags of interest. Thus, we declare new
constants for those elements and constrain their values according to the instruction.

3.3.3 Iterations on Implementation

In the process of developing the type checker, I went through a number of iterations on my
codebase. The most informative iterations were on our memory representation.

Memory Representation

Representing memory slots in Z3 was one of the most challenging problems. A register can
be trivially represented by creating a new Z3 constant, as a (bit vector, Boolean) tuple can
easily represent the dependent type and taint type. However, for memory, it is not nearly as
straightforward. Memory is one contiguous block that assembly code can address into at any
region, and each memory address may contain its own value and taint status.

My first attempt was to maintain a Z3 array. In Z3, arrays are not “arrays” in the
traditional sense; they are far more analogous to dictionaries or hash tables. The user is free
to define both the type of the key and the type of the value. It seemed, then, that Z3 was
well-equipped to model memory as a bit vector → (bit vector, Boolean) array. The memory
address could be the key, and the basic type the value. This seemed to have the advantage
of letting arbitrary symbolic expressions on bit vectors index into the array, which would
provide natural support for x86 instructions like lea.

Unfortunately, this approach ended up being prohibitive in terms of runtime. While Z3
was able to successfully type check some tiny toy programs with this approach, maintaining

20

the array was prohibitively expensive, with Z3 unable to return any result even after many
hours of runtime.

Ultimately, the approach that ended up working was precomputing memory slots via
type inference and giving a single Z3 constant for each slot. A slot is defined by the range of
addresses that it spans, and then the full slot has a single basic type. Determining which
instructions operate on which memory slot can then be delegated to type inference.

21

22

Chapter 4

Evaluating Octal on Benchmarks

To evaluate the user-friendliness of Octal, we wanted to compare the manual effort of
generating annotated assembly to the manual effort of annotating a C program. Manual C
code annotation is used in other secure speculation projects, such as ProSpeCT [5], so it
serves as a suitable baseline for comparison.

ProSpeCT requires that all secret variables be stored in their own memory region.
Practically, this can be achieved in C code by marking secret variables as static and
storing them in a custom memory region with attribute markers.

We apply this annotation style to implementations of three representative cryptographic
functions: salsa20 (a stream cipher), sha512 (a cryptographic hash function), and ed25519
(a digital signature scheme). The implementations were provided in C by the BoringSSL
library. Each secret value was marked as such, and values that were used to compute those
secrets were also marked as secret. Arrays were also marked as secret if they were not used
as indices or pointers, as they commonly serve as instruments in Spectre-like attacks. All
other values were marked as public.

Since Octal aims to separate secret and public data into separate memory regions,
developers would theoretically have the choice of either moving secret data into static memory
and leaving public data on the stack, or moving public data into static memory and leaving
secret memory on the stack. As such, we attempted both options for each benchmark and
evaluated our results.

I annotated each of the three aforementioned benchmarks and wrote a small Python script
(which can be found in Appendix B) to count the number of manual annotations. This allows
us to visualize the amount of manual work that Octal saves over other solutions.

The results can be seen in Figure 4.1. This admittedly small sample would suggest that
annotating secret data tends to require more manual annotation than annotating public data.
However, the amount of work saved on the part of a human programmer when annotating
only public variables would be negligible, as they would still have to identify all of the secret
variable declarations as such to decide not to annotate them. As such, the potential for human
error (either by omitting necessary annotations or incorrectly annotating a declaration) with
so many required annotations is evident.

23

Benchmark Public Declarations Secret Declarations Total Annotations
Salsa20 5 7 12
SHA512 8 7 15
ED25519 11 231 242

Figure 4.1: Number of Manual Annotations Required for Each Benchmark

24

Appendix A

Typing Rules

This appendix contains a description of the typing rules implemented by symbolic execution.

A.1 Architectural State Type

Below is a description of the architectural state type A.

b := 0 | 1
e := x | v | ⊤ | e1 ⊕ e2 | ⊖e
τ := x | 0 | 1 | τ1 ∨ τ2
β := (e, τ)
R := {r1 : β1, . . .}
M := {m1 : β1, . . .}
F := {fcarry : b, fsign : b, ...}
A := (R,M,F)

We can also define types of operations. Our approach divided operations by the numbers
of operands they take as input. Additionally, all operations take the flag map as input.

uop := β → F → (β, F)
bop := β → β → F → (β, F)
top := β → β → β → F → (β, F)

From there, we can define our small-step semantics. For example, we can define small
steps for unary instructions whose results are stored in registers, or binary instructions whose
results are stored in memory slots.

25

Small Step (Unary Instruction, Register Destination)
a : (Ra,Ma, Fa) op : uop src1 : β flags : F

op(src1, f lags) = (β′, F ′) dst ∈ Ra

a, op → (Ra[dst → β′],Ma, F
′)

Small Step (Binary Instruction, Memory Destination)
a : (Ra,Ma, Fa) op : bop src1 : β1 src2 : β2 flags : F

op(src1, src2, f lags) = (β′, F ′) dst ∈ Ma

a, op → (Ra,Ma[dst → β′], F ′)

A.2 Rules for Instructions

Here, we will define typing rules for a representative set of instructions. For ease of expression,
we will first define the following set of auxiliary functions:

• Let BW be a function that returns the bitwidth of the given dependent type. For
example, BW (10101010) = 8.

• Let EXT be a function that extracts the specified slice of bits (inclusive) from the
given dependent type. For example, EXT (110101, 3, 1) = 010.

• Let SB be a function that returns the number of set bits in the passed dependent type.
For example, SB(10010010) = 3.

• Let MSB be a function that returns the most significant bit of the passed dependent
type. For example, MSB(1000000000000000) = 1.

• Let BT be a function that takes two dependent types representing a bit string and a posi-
tion and returns the bit at that position in the bit string. For example, BT (11101, 1) = 0.

• Let SE be a function that sign-extends the given dependent type by the given number
of bits. For example, SE(111, 3) = 111111 and SE(011, 3) = 000011.

• Note that we assume that each of the arithmetic operations +,−,×, and / outputs a
bit vector with the minimum-length bitwidth to hold the full result, while the modulus
operator (%) is assumed to truncate its input to the minimum-length bitwidth to hold
the full result. For example, 1111 + 1 = 10000, whereas (1111 + 1)%24 = 0000. This
distinction will be relevant for a number of typing rules for both dependent types and
flags.

Arithmetic Operations

The arithmetic operations add, adc, sub, and sbb have nearly identical typing rules. They
set the carry, parity, auxiliary, zero, sign, and overflow flags according to their results. inc
and dec use nearly identical typing rules as well, with the caveat that they preserve the

26

state of the carry flag and use that carry flag as the second operand. Below are full typing
rules for add and adc, from which the rules for the other aforementioned instructions can be
extrapolated.

add src1, src2
src1 : (e1, τ1) src2 : (e2, τ2) fl : F eresult = e1 + e2 edest = eresult%2BW (e1)

add(src1, src2, f l) →

(edest, τ1 ∨ τ2), f l

fcarry → eresult >= 2BW (edest)

fparity → SB(EXT (edest, 7, 0))%2 == 0
faux → EXT (e1, 3, 0) + EXT (e2, 3, 0) ≥ 24

fzero → edest == 0
fsign → MSB(edest)

foverflow → ¬(−2BW (edest)−1 ≤ edest < 2BW (edest)−1)

adc src1, src2
src1 : (e1, τ1) src2 : (e2, τ2) fl : F eadd = e2 + fl[fcarry]

eresult = e1 + eadd edest = eresult%2BW (e1)

adc(src1, src2, f l) →

(edest, τ1 ∨ τ2), f l

fcarry → eresult >= 2BW (edest)

fparity → SB(EXT (edest, 7, 0))%2 == 0
faux → EXT (e1, 3, 0) + EXT (eadd, 3, 0) ≥ 24

fzero → edest == 0
fsign → MSB(edest)

foverflow → ¬(−2BW (edest)−1 ≤ edest < 2BW (edest)−1)

The multiplication instructions mul and imul are different in that they set fewer flags

(those being the carry and overflow flags). imul in particular also has varied behavior
depending on the number of arguments given to the instruction. Note that both mul and
the one-operand form of imul implicitly take the bottom BW (esrc) bits of the accumulator
as an input operand. Also note that the three-operand form of imul only varies in having
a specified destination rather than an implied destination, so the two variants get identical
rules.

mul src
src : (esrc, τsrc) acc : (eacc, τacc) fl : F eresult = esrc × eacc edest = eresult%22×BW (esrc)

mul(src, acc, fl) →
(
(edest, τsrc ∨ τacc), f l

[
fcarry → (edest ≫ BW (esrc)) ̸= 0

foverflow → (edest ≫ BW (esrc)) ̸= 0

])

imul src (One Source Operand)
src : (esrc, τsrc) acc : (eacc, τacc) fl : F eresult = esrc × eacc edest = eresult%22×BW (esrc)

imul(src, acc, fl) →
(
(edest, τsrc ∨ τacc), f l

[
fcarry → edest == EXT (eresult, BW (esrc)− 1, 0)

foverflow → edest == EXT (eresult, BW (esrc)− 1, 0)

])

imul src1, src2 (Two/Three Source Operands)
src1 : (e1, τ1) src2 : (e2, τ2) fl : F eresult = e1 × e2 edest = eresult%2BW (e1)

imul(src1, src2, f l) →
(
(edest, τ1 ∨ τ2), f l

[
fcarry → edest == EXT (eresult, BW (edest)− 1, 0)

foverflow → edest == EXT (eresult, BW (edest)− 1, 0)

])

27

Bitshift Operations

Since flags are set differently depending on the value of the second operand, binary bitshift
operations tend to have relatively convoluted typing rules. For simplicity, we can write
entirely distinct rules based on the value of the second operand. We will also assume that
the second operand evaluates to a number that does not equal or exceed the bitwidth of the
first operand. (If we did not make this assumption, we would have to either address masking
effects or model undefined x86 behaviors in our typing rules.) Typing rules for bit rotation
instructions rol and ror will not be explicitly defined, but a similar ruleset covers those
instructions.

The left logical and arithmetic shifts are identical instructions.

sal/shl src, cnt (Count = 0)
src : (esrc, τsrc) cnt : (ecnt, τcnt) ecnt = 0 fl : F

shl(src, cnt, fl) → ((esrc, τsrc ∨ τcnt), f l)

sal/shl src, cnt (Count = 1)
src : (esrc, τsrc) cnt : (ecnt, τcnt) ecnt = 1 fl : F
edest = esrc ≪ ecnt f ′

carry = BT (esrc, BW (esrc)− ecnt)

shl(src, cnt, fl) →

(edest, τsrc ∨ τcnt), f l

fcarry → f ′

carry

fparity → SB(EXT (edest, 7, 0))%2 == 0
fzero → edest == 0
fsign → MSB(edest)

foverflow → MSB(edest) ̸= f ′
carry

sal/shl src, cnt (Count > 1)
src : (esrc, τsrc) cnt : (ecnt, τcnt) 1 < ecnt < BW (esrc) fl : F edest = esrc ≪ ecnt

shl(src, cnt, fl) →

(edest, τsrc ∨ τcnt), f l

fcarry → BT (esrc, BW (esrc)− ecnt)
fparity → SB(EXT (edest, 7, 0))%2 == 0
fzero → edest == 0
fsign → MSB(edest)

By constrast, logical right shift and arithmetic right shift are different operations. We
will cover logical right shift as a representative instruction, but note that the arithmetic right
shift sets the overflow flag differently on one-bit shifts.

shr src, cnt (Count = 0)
src : (esrc, τsrc) cnt : (ecnt, τcnt) ecnt = 0 fl : F

shr(src, cnt, fl) → ((esrc, τsrc ∨ τcnt), f l)

shr src, cnt (Count = 1)
src : (esrc, τsrc) cnt : (ecnt, τcnt) ecnt = 1 fl : F edest = esrc ≫ ecnt

shr(src, cnt, fl) →

(edest, τsrc ∨ τcnt), f l

fcarry → BT (esrc, ecnt − 1)
fparity → SB(EXT (edest, 7, 0))%2 == 0
fzero → edest == 0
fsign → MSB(edest)

foverflow → MSB(esrc)

28

shr src, cnt (Count > 1)
src : (esrc, τsrc) cnt : (ecnt, τcnt) 1 < ecnt < BW (esrc) fl : F edest = esrc ≫ ecnt

shr(src, cnt, fl) →

(edest, τsrc ∨ τcnt), f l

fcarry → BT (esrc, ecnt − 1)
fparity → SB(EXT (edest, 7, 0))%2 == 0
fzero → edest == 0
fsign → MSB(edest)

foverflow → MSB(esrc)

Also not explicitly defined here, but supported by symbolic execution, are the shld and
shrd instructions. Their definition is comparable to the left- and right-shift instructions
described above. The bswap instruction is also supported, which swaps the endianness of the
dependent type but leaves taint status and flags unaffected.

Bitwise Operations

Bitwise operations and, or, and xor all have nearly identical typing rules. They set the flags
identically, with the only difference being the bitwise operation itself. We will look at and as
a representative instruction.

and src1, src2
src1 : (e1, τ1) src2 : (e2, τ2) fl : F edest = esrc1 ∧ esrc2

and(src1, src2, f l) →

(edest, τ1 ∨ τ2), f l

fcarry → 0
fparity → SB(EXT (edest, 7, 0))%2 == 0
fzero → edest == 0
fsign → MSB(edest)

foverflow → 0

There are also unary bitwise operations not and neg.

not src
src : (esrc, τsrc) fl : F

not(src, fl) → ((!esrc, τsrc), f l)

neg src
src : (esrc, τsrc) fl : F edest = −esrc

neg(src, fl) →

(edest, τsrc), f l

fcarry → esrc ̸= 0
fparity → SB(EXT (edest, 7, 0))%2 == 0
faux → EXT (edest, 3, 0) < 0
fzero → edest == 0
fsign → MSB(edest)

foverflow → ¬(−2BW (edest)−1 ≤ edest < 2BW (edest)−1)

Move Operations

The mov, movz, and movs instructions are considered unary, as the value of the input is simply
copied to the destination with the appropriate type of bit extension. Below is the typing rule
for mov, which represents all three well.

29

mov dst, src
src : (esrc, τsrc) fl : F

mov(src, fl) → ((esrc, τsrc), f l)

In the context of Octal’s type checker, lea is implemented identically to mov. (When the
source operand is passed to the checker, the memory slot has already been resolved by type
inference.)

This leaves cmoveq as the only binary move operation.

cmoveq dst, src
src : (esrc, τsrc) dst : (edst, τdst) fl : F

cmoveq(dst, src, fl) → (if fl[fzero] then (esrc, τsrc) else (edst, τdst), f l)

Miscellaneous Instructions

The bt instruction is unique in that it does not affect any register or memory slot. Instead,
it only affects the carry flag. In the context of the type checker, the operation still returns a
basic type as a destination, but the destination will ultimately be discarded. Thus, we simply
use a dummy basic type.

bt pos, str
pos : (epos, τpos) str : (estr, τstr) fl : F

bt(pos, str, f l) →
(
(0, τpos ∨ τstr), f l

[
fcarry → BT (estr, epos)

])
The remaining instructions covered by Octal are packed floating-point operations: punpck

packxs, padd, psub, pxor, pandn, pand, por, psll, psrl, xorp, and pshuf. While these
operations do appear in the benchmarks, they appear very infrequently and have little
meaningful effect on the final results. Thus, in this iteration of Octal, symbolic execution
evaluates these operations to a dependent type of ⊤ and ignores the flags.

Pack Instruction
src : (esrc, τsrc) dst : (edst, τdst) fl : F

pack(dst, src, fl) → ((⊤, τsrc ∨ τdst), f l)

30

Appendix B

Benchmark Evaluation Script

Here is the Python code used to evaluate benchmarks after annotation.
1 from pathlib import Path
2 import matplotlib.pyplot as plt
3 import numpy as np
4 import sys
5 import argparse
6 import os
7

8 script_dir = Path(__file__).resolve ().parent
9 proj_dir = script_dir.parent

10 src_dir = proj_dir / "src"
11

12

13 class Edit:
14 def __init__(self , original , edited , line_number):
15 self.original = original
16 self.edited = edited
17 self.line_number = line_number
18

19 def __str__(self):
20 return f"{self.line_number }: {self.edited}"
21

22 #########################
23 # FUNCTIONAL PARAMETERS #
24 #########################
25

26 """
27 These functions implement some of the key functionality of the

comparison routine.
28 Editing these will edit the way the comparator evaluates its lines.
29 """
30

31

32 def pub_stack_search(base_line: str , edit_line: str):

31

33 """
34 Returns whether or not the ‘edit_line ‘ contains a secret section

attribute.
35 This only counts towards the total if the two lines are not

identical.
36 """
37 return "PUBLIC_VAR" in edit_line and base_line != edit_line
38

39

40 def sec_stack_search(base_line: str , edit_line: str):
41 """
42 Returns whether or not the ‘edit_line ‘ contains a public section

attribute.
43 This only counts towards the total if the two lines are not

identical.
44 """
45 return "SECRET_VAR" in edit_line and base_line != edit_line
46

47

48 def trim_line(inp: str , commenting: bool):
49 """
50 Returns the result of removing all comments and trailing/leading

whitespace
51 from the inputted line of C source code.
52 Also returns whether or not the following line is part of a multi

-line comment.
53 """
54 result = inp
55

56 # Follow multi -line comments
57 if commenting:
58 if (end_comment_idx := inp.find("*/")) == -1:
59 return "", True
60 result = inp[end_comment_idx +2:]
61

62 # Remove trailing comments
63 next_multiline = result.find("/*")
64 next_inline = result.find("//")
65 first_comment = min([next_multiline , next_inline], key=lambda x:x

if x != -1 else float("inf"))
66 multiline_commenting = False
67 if first_comment != -1:
68 result = result [: first_comment]
69 multiline_commenting = first_comment == next_multiline
70

71 # Purge #include statements and calls to Valgrind
72 if "#include" in result or "valgrind" in result.lower():

32

73 result = ""
74

75 return result.strip(), multiline_commenting
76

77

78 ##########################
79 # SOURCE CODE COMPARATOR #
80 ##########################
81

82 """
83 These functions implement the source code comparator.
84 """
85

86 def compare_lines(base_src: list , edit_src: list , compare_func):
87 """
88 Given the lines of the base source code and the lines of the

edited
89 source code , returns the list of all edits made between the base
90 and edited code. It is assumed that all edits are:
91 (1) made inline OR
92 (2) edit whitespace OR
93 (3) edit comments
94

95 Other types of edits will break the comparator , so don’t do those
.

96 """
97 def find_next(src: list , ptr: int , commenting: bool):
98 line = None
99 while ptr < len(src):

100 line , commenting = trim_line(src[ptr], commenting)
101

102 if len(line) != 0:
103 break
104

105 ptr += 1
106

107 return line , ptr , commenting
108

109 all_edits = []
110

111 base_ptr , base_commenting = 0, False
112 edit_ptr , edit_commenting = 0, False
113 while True:
114 base_line , base_ptr , base_commenting = find_next(base_src ,

base_ptr , base_commenting)
115 edit_line , edit_ptr , edit_commenting = find_next(edit_src ,

edit_ptr , edit_commenting)

33

116

117 if base_ptr == len(base_src) or edit_ptr == len(edit_src):
118 break
119

120 if compare_func(base_line , edit_line):
121 all_edits.append(Edit(base_line , edit_line , base_ptr))
122

123 base_ptr += 1
124 edit_ptr += 1
125

126 return all_edits
127

128

129 def analyze_one_set(base_file: Path , pub_file: Path , sec_file: Path):
130 """
131 Analyzes one set of files for changes among the three.
132 A "set" of file consists of the base source file ,
133 the source file modified to place all public variables on the

stack ,
134 and the source file modified to place all secret variables on the

stack.
135

136 Returns a tuple of two lists , where the lists are the edits in
the

137 public and secret stack variants , respectively.
138 """
139

140 # Read all three files
141 with base_file.open() as f:
142 base_contents = f.readlines ()
143 with pub_file.open() as f:
144 pub_contents = f.readlines ()
145 with sec_file.open() as f:
146 sec_contents = f.readlines ()
147

148 pub_edits = compare_lines(base_contents , pub_contents ,
pub_stack_search)

149 sec_edits = compare_lines(base_contents , sec_contents ,
sec_stack_search)

150

151 print(f"Found {len(pub_edits)} variables marked public")
152 print(f"Found {len(sec_edits)} variables marked secret")
153

154 return pub_edits , sec_edits
155

156

157 def generate_fileset(directory: Path , base_name: str):

34

158 """
159 Given the directory to the source files (relative to src_dir)
160 and the name of the base file (NOT including the .c extension),
161 returns a tuple of the three files in the set.
162 """
163

164 file_dir = src_dir / directory
165 return (
166 file_dir / f"{base_name }.c",
167 file_dir / f"{base_name}_stack.c",
168 file_dir / f"{base_name}_stack.c"
169)
170

171

172 def plot_results(results , labels , save_dir):
173 """
174 Plots the results of the experiments in a cute little bar chart.
175 """
176 bar_width = 0.25
177 fig = plt.subplots(figsize =(12, 8))
178

179 publics = [len(result [0]) for result in results]
180 secrets = [len(result [1]) for result in results]
181 totals = [pub + sec for pub , sec in zip(publics , secrets)]
182

183 bars1 = np.arange(len(publics))
184 bars2 = [position + bar_width for position in bars1]
185 bars3 = [position + bar_width for position in bars2]
186

187 plt.bar(bars1 , publics , color="r", width=bar_width , label="Public
Stack")

188 plt.bar(bars2 , secrets , color="b", width=bar_width , label="Secret
Stack")

189 plt.bar(bars3 , totals , color="g", width=bar_width , label="Total
Changes")

190

191 plt.title("Changes Required to Manually Initialize Benchmarks",
fontweight="bold", fontsize =24)

192 plt.xlabel("Benchmark", fontsize =15)
193 plt.ylabel("Number of Changes", fontsize =15)
194 plt.xticks ([r + bar_width for r in range(len(publics))], labels)
195

196 if not os.path.exists(save_dir):
197 os.makedirs(save_dir)
198

199 plt.savefig(save_dir / "changes.png")
200

35

201 plt.legend ()
202 plt.show()
203

204

205 if __name__ == "__main__":
206 fileset_data = [
207 ("salsa20", "standalone_salsa20", "salsa20"),
208]
209

210 filesets = [generate_fileset(folder , name) for folder , name , _ in
fileset_data]

211 results = [analyze_one_set(base , pub , sec) for base , pub , sec in
filesets]

212

213 parser = argparse.ArgumentParser ()
214 parser.add_argument("-p", "--plot", help="Set to true to plot

results")
215 args = parser.parse_args ()
216

217 if args.plot:
218 plot_results(results ,
219 [data [2] for data in fileset_data],
220 script_dir / "analysis")

36

References

[1] C. Canella, J. V. Bulk, M. Schwarz, M. Lipp, B. von Berg, P. Ortner, F. Piessens, D.
Evtyushkin, and D. Gruss. “A Systematic Evaluation of Transient Execution Attacks
and Defenses”. In: 28th USENIX Security Symposium (2019). url: https://www.usenix.
org/system/files/sec19-canella.pdf.

[2] S. Cauligi, C. Disselkoen, K. v. Gleissenthall, D. Tullsen, D. Stefan, T. Rezk, and G.
Barthe. “Constant-Time Foundations for the New Spectre Era”. In: PLDI ’20’ (2020).
doi: 10.1145/3385412.3385970.

[3] B. C. Pierce. Software Foundations. Vol. 7. Cambridge, UK: Princeton University, 1920.

[4] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W. Fletcher. “Speculative
Taint Tracking (STT): A Comprehensive Protection for Speculatively Accessed Data”. In:
MICRO ’52’ (2019). url: https://iacoma.cs.uiuc.edu/iacoma-papers/micro19_2.pdf.

[5] L.-A. Daniel, M. Bognar, J. Noorman, S. Bardin, T. Rezk, and F. Piessens. “ProSpeCT:
Provably Secure Speculation for the Constant-Time”. In: (2023). doi: 10.48550/arXiv.
2302.12108.

37

https://www.usenix.org/system/files/sec19-canella.pdf
https://www.usenix.org/system/files/sec19-canella.pdf
https://doi.org/10.1145/3385412.3385970
https://iacoma.cs.uiuc.edu/iacoma-papers/micro19_2.pdf
https://doi.org/10.48550/arXiv.2302.12108
https://doi.org/10.48550/arXiv.2302.12108

	Title page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Background
	1.1 Speculative Execution
	1.2 Spectre Attack
	1.3 Speculative Constant Time

	2 Introduction
	2.1 Implementation
	2.1.1 Hardware and Software
	2.1.2 Program Transformation: Type Inference
	2.1.3 Program Transformation: Type Checking
	2.1.4 My Contributions

	3 Symbolic Execution for Type Checking
	3.1 Technologies
	3.2 Type Representation
	3.2.1 Architectural State Representation
	3.2.2 Dependent-Type Representation
	3.2.3 Taint-Type Representation
	3.2.4 Architectural-State Representation

	3.3 Implementation
	3.3.1 Control Flow
	3.3.2 Small Steps on Instructions
	3.3.3 Iterations on Implementation

	4 Evaluating Octal on Benchmarks
	A Typing Rules
	A.1 Architectural State Type
	A.2 Rules for Instructions

	B Benchmark Evaluation Script
	References

