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ABSTRACT

Programmable network switches are complex pieces of hardware that leverage nonobvi-
ous optimizations such as pipelining to offer flexible configuration interfaces. In this thesis,
we propose a novel formal-verification methodology aimed at establishing strong correct-
ness theorems for synthesizable hardware designs for network functionality, demonstrated
through a case-study analysis of a Tofino-like programmable switch that we call VeriSwit.
Our approach hinges on modularity, whereby the system is split into interconnected units,
each equipped with its specification and proof, oblivious to the internals of other units. We
conduct VeriSwit’s modular verification in the Coq theorem prover. Experiments with syn-
thesis for both FPGA and ASIC targets, combined with simulation, show that 100 GB/s
line rate is easily achieved.
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Chapter 1

Introduction

Programmable network switches are complex digital hardware designs, prone to bugs, many
of which are difficult to catch with testing alone. We demonstrate for the first time that
comprehensive mathematical correctness proof of programmable switch implementations is
feasible. A mathematical proof removes the need for testing or code auditing to find bugs.
Instead, one proof can cover infinitely many workloads.

Our techniques apply generally to a variety of networking hardware, but we chose to focus
evaluation on one case study: a programmable switch in the style of Tofino, which we call
VeriSwit. Figure 1.1 illustrates the hardware microarchitecture, which we implemented our-
selves with provability in mind. The microarchitectures of Tofino and VeriSwit are highly
concurrent and require performing intricate size and offset arithmetic. It is very easy to
introduce bugs that are hard to catch with testing, or even with certain formal-verification
techniques like bounded model checking. One hardware-industry study [1] reports that verifi-
cation and validation easily account for over 25% of the costs of developing a chip, suggesting
major cost-saving opportunities from streamlining the process. Common categories of bugs
(see §4.1 for more discussion) include coordination errors between pipeline stages, mistakes
in scheduling parallel workers, fencepost errors in buffer addressing, and lurking mistakes in
infrequently exercised error-handling logic.

A bug in a switch can invalidate all of the guarantees that formal verification of e.g. P4
programs had provided. Testing and bounded model checking can help build some confidence
that a switch behaves correctly in a variety of scenarios. However, it may always turn out
that the test suite was insufficient or the bound to model checking was too low. As a
result, unbounded proofs of correctness are appealing. Such a mathematical proof, ideally
checkable by the proof-checking algorithm of an off-the-shelf theorem prover, establishes that
an artifact behaves correctly under any input of any length. The feasibility of such techniques
has been demonstrated before for a variety of concurrent hardware (e.g. processors [2]) and
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Figure 1.1: High-level illustration of VeriSwit. The rounded-corner units represent hardware
components that may execute concurrently.

software (e.g. OS kernels [3], [4]). However, to the best of our knowledge, no prior work
has demonstrated unbounded proof of networking hardware, just networking software (e.g.
[5]–[10]).

Our unbounded proof of correctness for VeriSwit is accepted by the Coq theorem prover,
which is a very general platform used for applications from pure math to systems software
and hardware. It supports automatic and trustworthy checking of intricate proofs written
by developers in a special source-code language. In applying formal methods to VeriSwit,
we had to address two key questions.

First, what is the right kind of formal correctness statement (specification) for a pro-
grammable switch? We developed a specification style in terms of an unoptimized reference
implementation of switch functionality : an alternative hardware design free of optimizations,
hence much easier to audit for compatibility with expectations. While the code of VeriSwit
itself is dominated by concurrency and intricate offset arithmetic, the VeriSwit specification
includes very little of those aspects. We prove that any behavior of VeriSwit can be mimicked
by the simpler specification.

Second, how should the proof be divided into manageable pieces, to control proof-engineering
effort? We adopted the Fjfj framework [11] for Coq proof of hardware designs, which pro-
vides a module system for not just breaking hardware designs into hierarchies of components
but also mimicking that hierarchy in proof structure as well, so that each component can
have its own specification and proof, uncomplicated by the rest of the hierarchy. The largest
contribution of our work is a specific hierarchical proof structure that tames the complexities
of an optimized switch. That is, we show how to break the overwhelming overall correctness
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proof into lemmas that tackle one optimization at a time. (Figure 4.2 diagrams the proof
structure, with more detail in section 4.3.)

We created the VeriSwit hardware design from scratch in the Bluespec hardware language,
aiming for sufficient realism while controlling complexity to simplify our exploration of the
design space of formal-methods techniques. To evaluate VeriSwit’s realism, we synthesized
for both VCU118 FPGAs and the FreePDK ASIC platform, giving us clock-frequency in-
formation. Our experiments then largely rely on cycle-accurate Verilog simulation, whose
results can be scaled using the frequencies confirmed with synthesis. The upshot is that an
ASIC version of this design should easily sustain line rate of 100 Gb/s in throughput.
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Chapter 2

Related Work

2.1 Hardware Verification

Beyond the hardware-verification tools we adapt for VeriSwit, there is a long tradition of veri-
fication, mostly focused on processors. Combinational circuits are hardware implementations
of Boolean functions. Over the years, research has produced impressive techniques to solve
many practical problems in their verification [12], [13]. Those tools and techniques, very effec-
tive for combinational circuits, are also at the root of most mainstream formal-verification
techniques in use today for verification of sequential machines [14]–[16]. While they can
search impressively large spaces, these techniques get hit by combinatorial-explosion prob-
lems, and even the most advanced automatic-verification techniques have trouble handling
processors that have more than a couple instructions in flight; we expect the same obstacles
to arise for programmable networking hardware. Other approaches require specification of
explicit refinement maps that connect state of simpler and more optimized implementations.
Here some pioneering work was by Hunt et al. [17], [18], tackling industrial designs, often
in the ACL2 theorem-proving system. Quite a lot of work [19]–[25] has been done in other
frameworks (for example, in UCLID5 [26] or in SMV [27]), using various levels of automa-
tion and tackling custom models expressed at various levels of abstraction over synthesizable
designs, trading off for complexity of the architectural schemes being proven. In general, we
are not aware of past work with hardware formal verification applied to network switches.

2.2 Formal Methods in Networking

There have been many impactful applications of formal methods in networking, including dif-
ferent styles of programmability in networks, like software-defined networking (SDN). Zhang
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and Malik [5] demonstrated that SAT solvers can be used to check that SDN configurations
satisfy properties like lack of forwarding loops. The configurations they dealt with are de-
scribed as networks’ data planes. Another data-plane-testing framework PTA [28] can assert
properties of a given switch such as correctness and performance by using hardware to gener-
ate test packets. Guha, Reitblatt, and Foster [6], on the other hand, showed that the control
plane is also feasible for formal verification, as they carried out a Coq proof of correctness
for an SDN-language compiler and the runtime support needed for orchestrating configura-
tion changes. Similar results have been demonstrated for the new breed of programmability
around the P4 language, including in verification of individual P4 programs [7] and first steps
toward verification of compilers and other tools that manipulate P4 [8]. Gauntlet [29] applies
translation validation to formally compare P4 IRs through P4C (P4 compiler) passes to find
semantic bugs in the compiler. With an additional model-based testing module, it is able to
detect bugs in the closed-source Tofino backend compiler. In addition to employing formal
analysis, Minesweeper [30] offers a verification framework with extensive network design and
data plane coverage across a wide range of network protocols, topologies, and potential data
planes emerging from the control plane. Its follow-on work [31] improves the developer inter-
face and feedback on test suites. P6 [32] integrates reinforcement-learning techniques with
fuzzing to guide the generator, enabling it to detect, localize, and patch P4 bugs. Network
verification tools have even seen significant industry adoption, as with Batfish [9] and Veri-
Flow [10]. This whole research area covers an impressive span of programmable-networking
stacks, but as far as we are aware, no prior work has verified the hardware that acts on
data-plane configurations, hence missed hardware bugs could invalidate all properties being
proved.
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Chapter 3

Methodology and Techniques

In this chapter, we present in detail the background of the tools we utilized to carry out the
proof, our definition for correctness and some key techniques we used in proving correctness.

3.1 Rule-Based Languages and Simulation Relations

Our work VeriSwit is coded in Bluespec [33], a relatively high-level hardware description lan-
guage that is an alternative to the more common Verilog or VHDL. Bluespec offers high-level,
software-style programming abstractions: designs may be split across modules in object-
oriented programming style, with private state and public methods. The Bluespec compiler
produces RTL (“the assembly language of digital hardware”), automatically coordinating the
concurrent execution of different modules. Both BSV [33] and Fjfj [11] are rule-based HDLs,
centered around modules that consist of private states, expose public methods as interfaces
to interact with, and maintain a set of atomic internal state transitions called rules within
the module. BSV is used to write synthesizable code and deploy on FPGA/ASIC, while Fjfj
is used to model the formal behavior of the implementation code, manually translated from
BSV code line-by-line, to allow us to reason about correctness. We introduce the related
terminology by simplifying the settings in each to have a unified model that covers both
cases.

On a high level, each module M = (S, V,A,R) in rule-based languages has a set of internal
states S, a list of value methods V where each element is represented as a ternary relation of
the form N × S ×N (we take N to be the set of all possible data in the system. In BSV, N
equals bitstream or tuple of bitstreams of given length; in Fjfj, N = N, the set of all natural
numbers), a list of action methods A where each element is represented as a ternary relation
of the form N × S × S, and a list of rules R where each element is represented as a binary
relation of the form S × S. For any index n, the ternary tuple v = (a, s, r) at the nth index
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in V means that the nth value method of M returns r given the input a and the current
state s ∈ S. Similarly, A[n] = (a, s, s′) means that executing the nth action value of M with
argument a would transform state s to s′, and the same goes for rules except rules do not
take any arguments.

The correctness terminology relies on the notion of simulation relation. This property
implies that for any behavior of the implementation as a result of a sequence of interactions
with it, the exact same behavior of the specification must also be observable following the
same sequence of interactions. Following from above, we are able to reduce the complexity
of the implementation to a minimum as presented in its specification. We present our formal
definition of simulation relation in the following.

Definition 1 (State Simulation) Formally, given two modules Mi = (Si, Vi, Ai, Ri),Ms =

(Ss, Vs, As, Rs) exposing the same interface (i.e. Vi, Vs have the same cardinality, and Ai, As

have the same cardinality), a state s ∈ Ss simulates a state i ∈ Si (or s is indistinguishable
from i, denoted i Mi

≺Ms s, or i ≺ s if both Mi,Ms are unambiguous) if
1. for any argument and return value a, r along with the current implementation state i,

if (a, i, r) is related by Vi[n] for some n, then (a, s, r) must be related by Vs[n] (any
value readily observed by a value method of the implementation is also readily observed
by the same value method of the specification with the same argument);

2. for any argument a and a new implementation state i′ ∈ Si, if (a, i, i′) is related by
Ai[n] for some n, then there exists an s′ ∈ Ss such that (a, s, s′) is related by As[n]

(any action method of the implementation that is able to take a step must also be able
to take a step in the specification with the same argument).

In addition, with the state simulation definition, we may define Module Simulation.

Definition 2 (Module Simulation) Given an additional binary relation φ on Si×Ss (of-
ten called a refinement mapping), we say that module Ms simulates module Mi along φ,
denoted Mi ⊑φ Ms, if for every initial state i ∈ Si, there is a state s ∈ Ss such that φ(i, s)
and i ≺ s hold, and additionally, both φ and ≺ ( indistinguishbility property) are invariants
of the state transitions of corresponding actions in Ai and As and rules in Ri, up to the
transitive closure of Rs. This means that for any states i ∈ Si and s ∈ Ss, if i ≺ s and
φ(i, s), we have

1. for any argument a and a new implementation state i′ ∈ Si, if (a, i, i′) is related by
Ai[n] for some n, then there exists an s0 ∈ Ss such that (a, s, s0) is related by As[n], and
a (possibly empty) sequence of rules r1, . . . , rk of specification and sequence of states
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s1, . . . , sk ∈ Ss such that for all 0 ≤ ℓ < k,

(sℓ, sℓ+1) ∈ Rs[rℓ+1]

and both φ(i′, sk) and i′ ≺ sk still hold (Figure 3.1a);
2. for any new implementation state i′ ∈ Si, if (i, i′) is related by Ri[n] for some n, then

there exists a (possibly empty) sequence of rules r1, . . . , rk of specification and sequence
of states s1, . . . , sk ∈ Ss such that for all 0 ≤ ℓ < k (write s0 = s),

(sℓ, sℓ+1) ∈ Rs[rℓ+1]

and both φ(i′, sk) and i′ ≺ sk still holds (Figure 3.1b).

i s

s0

i′ sn

∼

Ai[n](a)

As[n](a)

R∗
s

∼

(a) Action refinement condition.

i s0

i′ sn

∼

Ri[n] R∗
s

∼

(b) Rule refinement condition

Figure 3.1: Inductive Refinement Conditions. ∼ represents the conjunction of φ and ≺.
Ai[n](a) represents the transformations of implementation states by the nth action method
with a as arguments. Same goes for spec

The above simulation relation has a couple of properties that allow such a verification
methodology to scale. First, the simulation relation is transitive. Namely, for all modules
M1,M2,M3, if M1 ⊑ M2 and M2 ⊑ M3, then M1 ⊑ M3 (we omit mentioning refinement
mappings to put an emphasis on the refinement relations, which automatically implies the
existence of the map). This theorem allows us to prove the refinements separately, tackling
one verification challenge at a time and leaving others untouched. Then we can connect
the proofs together via the transitivity property. The next theorem is more involving in
terms of the details of the implementation; readers who are interested should look at the
project of Fjfj [11]. In short, this theorem allows us to replace a “submodule” in Fjfj with
its specification, and the refinement relation can be lifted to the parent modules as well.
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Figure 3.2: Packet-buffer implementation

3.2 Anatomy of a Module Proof

We illustrate here with the example of the packet buffer, a relatively simple module that
mimics the real implementation in the work but still involves delicate optimizations (and
indeed, as we cover in section 4.6, there are further optimizations to be proved in an additional
proof step), to demonstrate how the proof of a refinement relation is done.

1 Record Pkt :=

2 {

3 data : N;

4 size : N;

5 }.

6 Record PacketBufferState :=

7 {

8 mem : N -> option Pkt;

9 currPkt : Pkt;

10 idx : N;

11 didx : N;

12 }.

Listing 3.1: Packet-buffer specification

In the optimized version (Figure 3.2), the packet buffer has 8 submodules: a BRAM1 that
stores the bodies of packets in consecutive 1024-bits chunks with a vector of Booleans in-

1This acronym stands for “block RAM,” the highest-capacity RAM typically made available in FPGA
programming.
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dicating slot availability, a vector that stores packet metadata (e.g. start and end address
in the BRAM, size of actual packet in the last word) with a vector of Booleans indicating
the availability of each entry, one egress meta pointer (emp in Figure 3.2), one ingress meta
pointer (imp), one ingress BRAM pointer (tp), and a BRAM pointer that holds the head
pointer (hp) to the current ingress packet.

In the specification, the packet buffer (Listing 3.1) is represented as a function from
numbers (addresses) to packet records, each of which holds the whole packet and its size,
one packet record that stores the current ingress packet and one egress pointer and one
ingress pointer, just as in the optimized version.

As an example, our proof of the packet buffer uses a simulation relation summarized in
English like so:
• For every valid (nonfree) meta entry, all words in BRAM between start and end pointers
(both inclusive) must be valid.
• For every invalid (free) meta entry M with index n, the specification-level packet storage
mem has no entry for n.
• For every valid (nonfree) meta entry M with index n, mem maps n to a packet, whose data
equals the concatenation of all words of the BRAM from the start pointer b of M to the end
pointer e of M (both inclusive), and the total packet size (in bytes) equals 128 multiplied
by e− b plus the size in the last word stored in M .
• The data of currPkt equals the concatenation of all words of the BRAM from the packet
head pointer to the BRAM tail pointer (exclusive), and the total size (in bytes) equals 128

multiplied by e− b.
• Remaining index fields agree between specification and implementation.
• Other assertions of upper bounds (e.g. Tail < 28).

3.3 Verification Technique: Pipeline Flushing

It is quite technical to design and correct the invariants used in proving the simulation
relation as we see above. Luckily, there are existing standard techniques when proving designs
with certain patterns, one of which is the pipeline design. Consider an implementation design
with a couple of internal pipeline queues where each deals with one arbitrary combinational
function (denoted f, g : N → N , where again N represents the set of data within the given
system) (Figure 3.3a), and we want to prove its correctness against a specification that only
has an output queue that buffers the result of g ◦ f upon any input (Figure 3.3b). Both
modules expose two action methods, one to enqueue an element (called enq) and the other
to dequeue (called deq), and a value method first to fetch the content at the head of the
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dequeue buffer. Such simplification of designs appears everywhere in hardware verification
including in VeriSwit.

(a) Pipeline Implementation (b) Pipeline Specification

Figure 3.3: An Example of Pipeline Refinement

The naive way of constructing a refinement mapping is to assert the content of ℓ in the
specification to be equal to the concatenation of lists map(g ◦ f, ℓ0),map(g, ℓ1), ℓ2, where
map is a higher-order function that takes the function in the first argument and applies it
to every element in the list. However, this approach becomes very tedious as the pipeline
grows in size and complexity, and it is challenging to engineer good proof-automation tools
for such an easily extractable pipeline pattern, hence difficult to scale to larger pipeline
designs. An alternative can be adopted once an important fact is observed from the pipeline
implementation: the outside world may not interact with the system further after enqueuing
to observe the result, unless the enqueued element has moved across all the internal buffers
and reached the output buffer. This property can be rephrased as “the position or the content
of the enqueued element is indistinguishable or unknown from the outside world unless it is
in the final output buffer”.

With this observation, we may relate a set of possible implementation states in the re-
finement mapping with one configuration of the specification state. The set is given by
the transitive closure of the inverses of rule relations, and it is called the flushing relation.
Namely,

Definition 3 A pair of implementation state (ℓ0, ℓ1, ℓ2) and specification state ℓ is related
by the flushing relation if

1. Base Rule: all the internal buffers except the output buffer ℓ2 are empty, and the content
of ℓ2 precisely equals the content of ℓ;

2. Inductive Rule: for all rules R of the implementation (in this case the rules that dequeue
from the previous buffers, execute the combinational circuit f or g and put it to the
next buffers), if R relates (ℓ0, ℓ1, ℓ2) and (ℓ′0, ℓ

′
1, ℓ

′
2) for some new buffer ℓ′0, ℓ

′
1, ℓ

′
2 of the

implementation, then (ℓ′0, ℓ
′
1, ℓ

′
2) and ℓ must be related by the flushing relation.
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In other words, starting from the base rule that relates (ℓ0, ℓ1, ℓ2) and ℓ, any state of the
implementation that can be a starting state of executing any sequence of rules and end up
with (ℓ0, ℓ1, ℓ2) is related by the flushing relation to ℓ as well.

To use the flushing relation as the refinement mapping and prove the refinement according
to definition 2, we use induction on the rules of the flushing relation. But first, it helps to
show that the flushing relation as φ implies indistinguishability, or ≺. In the base case, we
know that ℓ2 = ℓ, so it is trivial to see that observing using first would either be blocked
if ℓ is also empty or give the same return value in both modules. Similarly, deq is able to
proceed in the specification assuming it may proceed in the implementation. Since we are
assuming an infinite buffer size, enq will always be ready. It also holds that both ℓ0 and ℓ1

are empty in the base case, so none of the rules in the implementation is ready because they
cannot dequeue from the previous buffer. We leave the proof for the inductive case for the
implication of indistinguishability after we prove that φ is an invariant of the system, as it
exhibits a very similar but simpler proof structure.

After we showed that φ implies indistinguishability, it is now sufficient to prove that φ

by itself is an invariant of the system as stated in definition 2. We demonstrate how the rule
case in definition 2 is done and the action method case would follow from the same proof.
The proof requires to show that given the initial state i = (ℓ0, ℓ1, ℓ2) and ℓ being related by
the flushing relation, for any index to the rules list, after executing the rule method Ri[n] on
(ℓ0, ℓ1, ℓ2) that results in new state (ℓ′0, ℓ

′
1, ℓ

′
2), the flushing relation still holds on (ℓ′0, ℓ

′
1, ℓ

′
2)

and ℓ (note there is no internal rule in the specification so we omit the transitive closure from
the proof statement). In the base case, note as every internal buffer is empty, it prevents any
internal rule from firing hence vacuously holds. In the inductive case for one of the flushing
rules Ri[m], the inductive hypothesis states that the implementation state i′h as a result of
executing the rule sequence Ri[m] and then Ri[n] from initial state i is related by flushing
with s. With the inductive hypothesis, it is required to show that starting with the same
initial state i, the implementation state i′′ as a result of executing the rule sequence Ri[n]

and then Ri[m] is related by flushing with s (and of course it is possible to proceed with the
rules), as shown in Figure 3.4a.

When n = m, it is trivial to conclude that ih = i′ and i′h = i′′ as both f and g are
functional and have unique output given the same input, making the rules deterministic.
When n ̸= m, one needs to reduce the proof to Figure 3.4b and show the commutativity
of rules Ri[n] and Ri[m] hence i′′ = i′h in the diagram on the left, ultimately utilizing the
inductive hypothesis to finish the proof. The commutativity follows from the fact that buffers
touched by different rules do not overlap or block each other. More specifically, either the
two distinct rules would dequeue and enqueue to 4 distinct buffers (in a pipeline system with
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(a) Inductive Proof

i ih

i′ i′′

Ri[m]

Ai[n](a)/Ri[n] Ai[n](a)/Ri[n]

Ri[m]

(b) Commutativity of Rules/Actions with
flushing Rules

Figure 3.4: Proof for refinement relation for flushing. F represents the Flushing Relation.
Dashed line represents the final proposition to be proved

more stages), or one of the buffers overlaps but one rule consumes while the other supplies,
preventing any inconsistent behavior in this form of race condition. It is worth noticing that
every pair of rules needs to be proved to commute, so the total complexity is on the order
of N2 if there are N rules. Nevertheless, such a commutativity proof only needs to look at
the behavior or the semantics of the rules, with no other complex proof required, providing
a good opportunity to engineer one proof tactic that can handle all possible forms of the
pipeline. This would finish the proof.

As we remarked before, the case for the action method in definition 2 is similar to the
above. One important difference is in the base case for enq, where all the internal buffers are
empty and ℓ2 = ℓ, we want to show that after enqueuing in both implementation and speci-
fication modules the states are still related by the flushing relation. To do this, we manually
flush the enqueued element through the pipeline by applying the inductive rule of flushing.
Since each internal buffer is empty, we may do so consecutively until the element is pushed
to the output buffer, resulting in an equality of the new states ℓ′2 = ℓ′ and consequentially
satisfying the base rule again.

In the experience of proving using the flushing relation, we noticed that it is not necessary
to include every rule of the implementation in the inductive rules for flushing. For a system
with multiple streams of pipelines or even orthogonal pipelines, it may be possible to split
different pipelines into different proofs and connect at last by the transitivity of module
refinement, only flushing the corresponding rules involved in a given pipeline. This reduces
the total number of commutativity proofs as well as other complexities involved in the base
rule. It is also possible to apply flushing to multiple-staged sequential execution that may
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use stage counters instead of pipeline buffers.
Sometimes the pipeline may not always be in order or even deterministic. When dealing

with out-of-order nondeterministic pipelines, the standard flushing definition and its proof
may fail due to insufficient inductive hypothesis. For example, rules are no longer commuta-
tivity as nondeterminism could lead to non-unique elements dequeued from certain buffers.
Instead, it is required to relax both the flushing relation definition and the module simulation
definition to allow arbitrary permutation (or constrained permutation up to some equiva-
lence relation depending on the level of nondeterminism given by the pipeline) of the internal
buffers prior to any rule execution. This generalizes the inductive hypothesis to include a
family of possible initial states, allowing one to prove a strong commutativity theorem that
is valid up to arbitrary permutations of the initial lists.
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Chapter 4

Case Study: VeriSwit and its
Specification

The heart of formal verification is showing that a complex artifact behaves like a simpler
specification. We begin introducing VeriSwit by explaining both its real microarchitecture
and its simpler specification.

4.1 VeriSwit Microarchitecture

We primarily follow the RMT (Reconfigurable Match Tables) model, also known as PISA
(Protocol Independent Switch Architecture), proposed in previous work [34]. The two most
important components that provide programmability are programmable parsers and recon-
figurable match-action units (MAUs). By embedding high-performance hardware key-value
storage called TCAM (ternary content-addressable memory), both the parsers and MAUs
perform wildcard matching at line rate. At the top level, multiple MAUs are pipelined to
maintain line rate throughout, and multiple parsers are parallelized together to process differ-
ent packets at the same time to match the high throughput of the MAU pipeline. Figure 1.1
shows our primary components, which also include a deparser and a packet buffer.

Recall that VeriSwit is coded in Bluespec [33], where itself is a Bluespec module exposing
eight public methods (which wind up compiled to input and output wires). There is enq
to enqueue a chunk of ingress packet, deq to dequeue a chunk of egress packet, and six
methods for reprogramming the switch: one to update parsing rules and five to update
aspects of MAU behavior. (A production implementation would include a compiler from P4
to the table formats used by VeriSwit, but so far we have tested VeriSwit by producing those
tables manually.) The enq method can take up to 1024 bits of packet content in each cycle,
represented as a 1024-bit data value, an 8-bit length, an 8-bit input port, and a Boolean
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value that indicates if the current chunk of 1024 bits contains the last bytes of the current
packet.

When a packet tries to enter VeriSwit, its first 1k data bits are enqueued by calling enq,
at which point that chunk of data is immediately sent to the parallelized parsers to start
parsing, in parallel to storing the data in the packet buffer (where they will be ignored until
the packet makes its way to egress). The rest of the packet would then be considered as part
of the packet body and stored inside the packet buffer without sending it to parsers.

Parsing proceeds header-by-header, extracting fields into a PHV (packet header vector).
A parser may also mark a packet as invalid (e.g., when a table lookup fails, a header is
too long, etc.), at which point the corresponding packet content in the packet buffer is also
deleted. If a PHV is parsed successfully, it is passed to the MAUs, which may also mark a
packet invalid. Last, valid PHVs would proceed to the deparser, where the egress header is
assembled according to the PHV and combined with the original body and sent as switch
output.

We selected a realistic subset of switch functionality that falls short of full Tofino but
presents enough of the core representative challenges for verification.

• At the center of a typical Tofino flow diagram is a traffic manager, which can employ
queues to schedule the flow of packets, replicate packets, and so forth. We imple-
mented a simpler architecture where every ingress packet is either dropped or passed
on ASAP as one egress packet. Architectural consequences include not distinguishing
MAU activity for ingress vs. egress; we instead have one MAU pipeline.

• We use TCAMs to support both exact matching and ternary matching, instead of
having dedicated SRAM-based cuckoo hash tables for exact matching as in the PISA
model.

• We only support stateless network policies, where decisions on dropping or rewriting
packets are only made on the basis of ingress packet contents, not other stateful data
(e.g. flow rate, packet count, or previous packets in general).

We manually transcribed our implementation into the Coq theorem prover, using the Fjfj
framework [11] for verifying Bluespec-style code. Compared to the Bluespec version, the Fjfj
version and proof are abbreviated in considering some simple combinational-logic circuits to
be given and assumed correct, but we explicitly represent and prove all stateful elements
and any logic that spans multiple clock cycles.

Opportunities for Bugs

A few categories of bugs are difficult to catch in switches.
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Pipelines. Switches often boost throughput by breaking expensive computations into
stages that run concurrently, with queues connecting the stages to each other. Simple cases
look like linear pipelines, but more complex topologies are also useful (as we will see for
MAUs in section 4.5). Coordination errors between subsystems can lead to wrong answers
in relatively rare race conditions. As an example, consider a parser that repeatedly consults
a TCAM to determine the proper handling of each header field, pushing requests into later
pipeline stages as appropriate to extract and store each relevant header into the right num-
bered slot of a PHV. It would be natural to code logic dictating that when the TCAM returns
a flag indicating that no more headers should be processed, the PHV should be passed on
to the next stage of the switch. Perhaps this logic is even correct for specific rule sets that
include several unused fields before a header’s end, giving the rest of the stages enough time
to extract. However, in general, pending work might still exist in the pipeline that should
block the release of the PHV. An early release would lead to MAUs running on incomplete
PHV values. It is nontrivial to design a test suite that we can be sure would exercise any
such potential coordination problem.

Dynamic multiplexing. It is also natural for switches to include multiple copies of certain
functional blocks, which run in parallel and need to be scheduled dynamically. Parsers are
the core examples in our switch. We need multiple parsing “threads” to run simultaneously
(on different packets) to keep up with the throughput of MAU pipelines. Hardware logic
must route each arriving packet to an available parser. That logic might very well include a
bug that only manifests when all parsers are busy, for instance, assigning a packet to a parser
that is already in use, causing confusing mixing of their headers. We expect this bug to show
up only under high load, and the specific standard of “high” depends on the implementation
details of the switch, so it would be easy to write a test suite that accidentally omits any
cases to trigger such a bug in certain designs. Furthermore, such cases are challenging
even for some styles of formal methods, like bounded model-checking, which can guarantee
correctness up to some bound on a number of system execution steps. The reason is that
bugs that only show up under high load may require many steps to appear, quite likely above
practical bounds for model-checking. Bugs of this kind have been discovered in real systems
like NetFPGA and reported in previous work [28].

Fencepost errors. Some classic programming headaches also arise here, including unusual
cases where numeric parameters line up just right to make trouble. Take the example of a
packet buffer, which stores packet contents while headers are being analyzed and rewritten.
What happens if a 1024-bit chunk of packet data is being written concurrently with an at-
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tempt by another part of the system to dequeue that chunk (after header-rewriting finished)?
Such a race condition might lead to that chunk being missed in the generated egress packet.
It requires precise knowledge of the switch’s “microarchitecture” to craft a test case to trigger
the bug.

Handling error conditions. Another familiar programming challenge is error-handling
code, which may be triggered relatively infrequently. For instance, one MAU in a pipeline
may detect that a PHV is invalid. It does not drop the packet immediately, as some co-
ordination needs to be done to free the buffer that stores the corresponding packet body.
Instead, the packet is pushed onward through the pipeline, with a bit set to indicate that it
should be dropped at the end. (Motivations for this implementation choice include saving
on duplicate circuitry for full error handling across many MAUs.) If this process is not prop-
erly scheduled in the logic throughout MAU stages, the switch may, for example, apply an
arithmetic operation intended for a valid packet to this doomed invalid packet instead, even
if correct behavior always arises for any flow of valid packets. Again, to trigger this behavior
with tests, it does not suffice merely to realize that error handling is worth exercising; test
cases must trigger errors with just the right timing, even relative timing across packets.

4.2 VeriSwit Specification

Our goal with exhaustive verification is to prove that a design is free of whole categories
of bugs, as sketched above. In formal methods in general, a specification is a (system-
specific) logical characterization of correct behavior – and here we mean logical formulas
written out completely rigorously in text files and ingested by appropriate software formal-
verification tools. Any bug category that we are worried about should be ruled out by
the specification. The basic strategy is to design a specification that does not include the
complexities that allow those bug categories to arise, then prove that the implementation
mimics the specification on any possible system input (of any length). The greatest source
of simplification in our specification is that it will keep concurrency to a minimum, including
just what is fundamental to the switch’s interface and not anything motivated only by
performance considerations. More specifically, the specification we settled on includes queues
for ingress and egress packets, but any packet is processed atomically. There is no chance for
concurrent interference from other packets wending their way through the switch.

We want to emphasize a crucial upshot of this methodology: the switch may employ
sophisticated concurrency, but we prove that it behaves the same as a switch with minimal
concurrency.
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Figure 4.1: VeriSwit’s specification, where the ovals delineate the only units of concurrency.

The top-level specification necessarily exposes the same interface of methods as the real
switch, but its internal state is greatly simplified (Figure 4.1). The specification holds the
configuration tables for both parsers and MAUs, in addition to current ingress and egress
packets, plus a list of all other processed packets, waiting to be dequeued. When a packet tries
to enter the specification, the enqueued content is concatenated to the end of an unbounded
ingress buffer. When the last chunk is enqueued, meaning that the whole ingress packet has
entered the switch, those buffer contents are sent to be processed with the policy represented
by the tables, in one single step. Invalid packets are discarded immediately and silently.
Hence, all concurrency is in maintaining data structures of packets waiting to be processed
and packets waiting to be output by the system. The actual complex logic to analyze and
rewrite packets is pushed into a single routine that runs uninterrupted on a full packet.

These questions of concurrency granularity are so important, and we will return to them
so often, that a visual convention in diagrams will help. Recall Figure 1.1, which shows the
optimized VeriSwit design. Every rounded-corner rectangle in that figure there denotes a kind
of concurrent thread that runs alongside the others, with opportunities for race conditions
and other classic concurrency bugs. In contrast, in the specification diagram of Figure 4.1,
the only two threads are those drawn within ovals. Most importantly, all of the complex
logic is within the largest oval, where it is able to process a whole packet sequentially, with
no interference by other threads. If VeriSwit is proved to mimic the behavior of its much-
less-concurrent specification, then there must not be any lurking concurrency bugs.

Our final theorem covers only the safety property that all egress packets have been con-
structed using the proper logic. We do not yet consider liveness properties, like that any
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Figure 4.2: Hierarchical decomposition of VeriSwit’s proof. “Stacks of boxes coming out of
the page” indicate proofs by transitivity through multiple intermediate module designs.

valid ingress packet eventually exits. We also do not prove (only show empirically) that the
system meets any particular throughput target. These additional properties seem feasible
for future work.

4.3 Structure of VeriSwit’s Proof

In theory, one could write out a monolithic simulation relation, connecting the state elements
of the top-level specification and the VeriSwit microarchitecture. However, a direct proof
against that relation would be extremely intricate. Instead, we break the proof down in two
main ways, following the reasoning tools that Fjfj provides.

Recall the transitive property of the refinement relation. Given a sequence of modules,
each of which is proved to simulate the next, this sequence may be collapsed with transi-
tive reasoning: the first module simulates the last. How does this technical construction
relate to the implementation challenges of switches? The first module would be the fully
optimized version, and the last module is the specification. Each intermediate module rep-
resents a hybrid design including some but not all optimizations. This way, the proof can
introduce optimizations gradually, and each simulation relation need only explain why a
single optimization is sound.
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The second method is more complex to describe, but it is also more central to taming so-
phisticated designs. We want to decompose proof effort hierarchically. For instance, VeriSwit
depends on subsystems for parsing, match-action units, deparsing, and buffer management.
Each subsystem should have its own specification, proved separately. The crucial modu-
lar proof principle of Fjfj says if VeriSwit is correct when the subsystems are replaced with
their own specifications, then the switch with the true subsystem implementations is also cor-
rect. That way, switch-level reasoning is protected from complications of the optimizations
within the subsystems. A switch-level refinement relation may be written just in terms of
specification-level state of subsystems.

In fact, this hierarchy principle applies throughout levels of our system design. Figure 4.2
shows the decomposition we follow, with hierarchy three levels deep. The promise of this
technique is that each box in the diagram may be assigned to a different engineer, who is free
to implement new optimizations, which require new proof only at the level of the module
directly affected.

Now let us explain the most interesting modules.

4.4 Parser

4.4.1 Parser Implementation

A parser in the PISA model allows the switch to support any arbitrary protocol stack. It
does so by acting like a finite state machine, with configurable transition functions from state
to state encoded as entries in a TCAM. Starting with a default state, it computes the next
state by looking up the value of a specific header within the TCAM. Based on the TCAM
response, it puts the fields of the current header at specific locations in the final PHV and
advances pointers within the packet and parsing state. This process continues until either
the TCAM responds with a flag indicating the end of parsing or some error occurs.

Figure 4.3 diagrams VeriSwit’s optimized parser. Submodules with square corners rep-
resent register-like interfaces, i.e., read and write operations that are executed instantly.
Submodules with rounded corners represent server-like interfaces, where requests flow in
and responses flow out, potentially after significant and unpredictable delays. A BRAM
is a canonical example of a server-like interface, given practical latencies for memories of
nontrivial size. The parser’s TCAM is the reconfigurable storage unit that provides pro-
grammability, with a method updateParseTable available to install changes. However, we do
not want to allow the parser to be reprogrammed while it is processing a packet, nor do we
want one parser to work on two packets at once. Hence, using the guard feature of Bluespec,
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Figure 4.3: VeriSwit parser implementation.

updateParseTable and the input method enq are written to abort safely, if called while the
parsing state machine is active. When the parser is ready to process a packet, the first
1024 bits may be enqed. The rest of the job is pipelined across rules processTableResponse,
issueTableRequest, and rotate. Rules are one of the distinctive features of Bluespec, which
act somewhat like parallel threads in software. Once the parsing has finished, parseState is
changed to again permit new packets or reconfiguration.

In order to prevent the parser from running into a nonterminating loop, there is also an
iteration counter.

4.4.2 Parser Specification

Here we present VeriSwit’s parser specification, highlighting its simplifications from the im-
plementation. Most directly, there are simply fewer state elements in the specification: just
the reprogrammable parse table, a flag indicating if parsing is finished, and a list of PHVs
ready to be output. Even more importantly, the parser spec has no internal concurrency :
every packet is parsed instantly with sequential code. The specification distinguishes 5 cases
of steps by the parser, considering whether the limit on iterations has been reached, whether
a TCAM lookup succeeds, a bit in the TCAM result saying whether parsing is finished, and
whether enough bytes of the packet have been read to allow processing the current header.
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4.4.3 Parser Proof

The proof uses transitive reasoning via an intermediate implementation that eliminates all
the pipeline modules except for the TCAM, which necessarily requires some asynchronous
processing due to its unpredictable latency. In the intermediate implementation, both match-
key extraction and field insertion are done in one single step, leaving only one rule that fetches
TCAM responses, decodes them, and acts accordingly, either ending the process or issuing
a new TCAM request for the next iteration.

To reason about pipelines, we rely on a classic technique known from verification of CPUs:
flushing relations. One could in principle write out an ad-hoc simulation relation for each
pipeline. However, one general relation often suffices, when comparing an implementation
with a longer pipeline to a specification with only a suffix of those pipeline stages. We say
that the longer pipeline is related to the shorter one if all of the shared queues have identical
contents, after letting all additional implementation stages run fully to empty out their input
queues.

The resulting proof obligations center on showing that pieces of logic commute with each
other. That is, two such logic units must produce identical state when run in either order.
We must show that each rule (“parallel thread”) of the longer pipeline commutes with its
associated deq method, as well as with any other rule. For a manual proof collapsing n

pipeline stages, it would be quite time-consuming to work through the reasoning for each of
the O(n2) cases, but for a pipelined system, different stages usually touch different parts of
the internal modules, hence it is often mostly trivial to show commutativity. We generally
develop proof automation that can handle all of the cases using common proof structure.

Flushing can capture most of what makes a pipeline correct, but we do need to write out
some parts of a simulation relation manually, such as asserting equivalence of internal state
elements like the TCAM.

Applying the general technique to our parser example, we must first show refinement from
the implementation to the intermediate implementation with a shorter pipeline. Instead of
allowing the flushing relation to flush any rule, we only allow flushing for the rule that
matches the key and the rule that inserts the fields in the PHV. Our base state equivalence
forces identical response lists in the TCAMs of both modules, other modules like CrossBar
and Inserter must have empty responses, plus a few other bookkeeping conditions.

Next, to show refinement from the intermediate implementation to the specification, no
flushing relation is used as there is no more pipelining. Instead, the relation asserts that at
any time, if we continue to parse what is currently sitting in the registers of the intermediate
implementation using the parse function defined in the specification, we would end up with
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the exact same content as what is already completely parsed by the specification.

4.4.4 Parallizing Parsers

To feed the high throughput of the MAU pipeline, multiple parsers are parallelized together
to form a module Parsers. In the implementation, an arbiter is used to resolve conflicts when
more than one parser is ready to dequeue. The specification of Parsers is very similar to one
instance of Parser, where the only difference is that the dequeue ordering is nondeterministic:
any fully parsed packet may be selected to output next. The proof’s simulation relation
asserts that the concatenation of all the parsed PHVs across parsers in the implementation is
a permutation of the parsed PHVs in the specification. Our proof relies heavily on automation
specific to permutations.

4.5 Match-Action Units (MAUs)

In proving MAUs and sequences of MAUs, we again make heavy use of the technique of
pipeline flushing, adopting comprehensive proof automation. In addition, we include the
notion of “undefined behavior” when designing the specification for MAU/MAUs, allowing
us to remove unnecessary circuit logic that guards against disallowed usage, when we can
prove statically that other modules would never ask for disallowed behavior from the one we
are proving.

4.5.1 MAU Implementation

Our MAU implementation (Figure 4.4a) is a purely pipelined system that distributes the
PHV processing across 5 stages: key extraction, matching, instruction lookup, data forward-
ing, and ALU. The first stage extracts preconfigured fields from the PHV. The second stage
sends the extracted key to match in the TCAM. In the third stage, the TCAM response is
fetched and decoded to form BRAM requests to retrieve VLIW (very long instruction word)
instructions for the ALUs, PHV valid bits, preconfigured constant data and its corresponding
location in the PHV, and the amount of PHV rotation for field copying. The last stage uses
all of the above data to instruct the ALUs to update each register in the PHV accordingly
and push the result to the output buffer. If the PHV is marked invalid at any time (either
when enqueued to the MAU or with a TCAM lookup failure), the PHV is still pipelined
through the MAUs in FIFO order, but no request is issued in the computational units.
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(a) The real implementation, with some bypassing of pipeline stages

(b) An intermediate implementation used in the proof, with extra
queues inserted to synchronize all handling of a given packet

Figure 4.4: MAU implementation
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4.5.2 MAU Specification

1 Record MAUConfig := {

2 ksInstrs : N;

3 tableInstrs : list (N * N * N);

4 validsInstrs : N -> N;

5 aluInstrs : N -> N;

6 memInstrs : N -> N;

7 }.

8

9 Record MAUState := {

10 state : MAUConfig;

11 resps : list N;

12 }.

Listing 4.1: MAU specification state

In our specification, we only have 5 internal state fields (Listing 4.1) and one undefined-
behavior bit. According to the specification, when a valid PHV is enqueued to the MAU,
keys are extracted according to ksInstrs and are directly fed to search in tableInstrs by
comparing the keys with the keys stored. If there is a match, the value is used to index
tableInstrs, aluInstrs, and memInstrs, and the final computation is done according to their
values. The whole matching and computation is done in one single step. After the PHV is
processed, it is placed in the output buffer resps. If the PHV is marked invalid at any point,
it is sent directly to the output buffer while preserving the FIFO order.

Note that VeriSwit would reject any reprogramming request if there are packets in flight.
Such a check is and should be handled at the outermost level by checking the contents of
the packet buffer, a different module (section 4.6). It would break modularity to allow the
MAU specification to mention packet-buffer state, so instead we refer to MAU-specific signs
of packets in flight, with guard conditions that mention just that local state. Specifically, the
specification sets a bit for undefined behavior when any table is reprogrammed while resps is
nonempty, and thereafter (as with undefined behavior in the C programming language) any
behavior of an MAU is legal (“the warranty has been voided”). Higher levels of the VeriSwit
proof will establish that, in fact, this condition is never encountered.

4.5.3 MAU Proof

Due to the complexity of pipelining and branching in an MAU, an intermediate implemen-
tation is used to simplify the proofs. Note that in the MAU implementation, there are
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unaligned pipeline stages across different information flows. For example, CrossBar and
TCAM serve as two pipeline stages, but there is only one PHV queue corresponding to these
two stages. Unnecessary instances of queues waste registers, hence are undesirable in the
real implementation. However, this creates a challenge for verification, specifically in char-
acterizing how elements move through pipelines in slightly different flows between versions
of a module. Thus in the intermediate implementation, we break every queue and server-like
module into multiple stages that it might map to in the other parallel flows, and we created
an MAU with aligned pipeline stages across all flows (Figure 4.4b).

In addition to breaking up stages, another “simplification” for verification is additional
rules (“parallel threads”). We use this technique to let us perform a top-level case split in a
proof, on whether a PHV is valid or not. When proving the correctness from implementation
to the intermediate implementation, one only needs to assert that, for every queue in one
module that gets broken into multiple in the other module, the concatenated contents of
the expanded queues equal contents of the original. In proving each internal rule of the
implementation, one would branch on the validity of the first PHV and first rules in the
intermediate implementation accordingly. When trying to prove the refinement relation
from the intermediate implementation to the specification, a flushing relation is again used
to assert that the final queue in the intermediate implementation equals the resps queue
in the specification, if we allow all the rules in the intermediate implementation to fire and
flush all other queues.

4.6 Packet Buffer

The packet-buffer unit stores the content of each whole packet, including both the header
and the payload. It assigns a unique identifier to each incoming packet, which is sent down
the processing pipeline along with the header and metadata. When the pipeline finishes
processing the header, a request to retrieve its payload is sent to the packet buffer with the
corresponding identifier. Subsequently, all parts of the packet are returned chunk-by-chunk.

4.6.1 Packet-Buffer Implementation

The packet buffer is implemented in the style of a ring buffer. It uses SRAM to buffer the
content of the packet, and it maintains a list of packet metadata such as a start and end
pointer of the packet in SRAM and its total size. There are pointers to keep track of the
“head” of the buffer for both SRAM and metadata, and every slot of SRAM and metadata
is tagged with a free bit to indicate if the slot is free to use. When a packet tries to enter
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the switch, the enqueuing request for the packet buffer is issued with the packet data. The
request is accepted once the availability of the heads at both SRAM and metadata list is
asserted, and if either one of the heads at SRAM and metadata list is occupied, the switch
is considered full, causing the incoming packet to be rejected. For every chunk of data
accepted by the packet buffer, the head pointer for SRAM is incremented. Thus the whole
packet is stored consecutively in the buffer. Once the whole packet finishes enqueuing, the
corresponding metadata information regarding this packet (e.g. the head and tail location
in the SRAM, the total size) is stored at the head of the metadata list, and the head pointer
is incremented. The corresponding identifier is precisely the pointer to the metadata list for
this packet.

The packet buffer supports random access to the set of packets stored in it. Reading a
packet triggers an SRAM read per 1024-bit chunk of the packet. Throughput optimizations
include allowing the request to read one chunk and the response returning the previous
chunk to be in-flight simultaneously. Some further subtlety is connected to a queue recording
packet identifiers chosen to be dropped, which eventually triggers a state machine for freeing
all associated packet-buffer resources.

4.6.2 Packet-Buffer Specification

We propose a clean specification for the packet buffer that does not require breaking packets
into chunks. This spec behaves like a map from the packet identifier to the full packet
contents, or a null value if the slot is unoccupied. It maintains a fresh identifier that can be
assigned to incoming packets and does not conflict with stored packets, plus separate state to
store incoming but incomplete packets. Once the packet finishes enqueuing, it is stored in the
storage map indexed by the unused identifier. The new identifier is then nondeterministically
set to any unused identifier.

4.6.3 Packet-Buffer Proof

The proof for the packet buffer is split into two parts. The bottom part unifies the SRAM
blocks to eliminate data segmentation, and the top part eliminates the concurrent SRAM
requests and response handling.

In the bottom proof that connects the implementation to an intermediate specification,
we heavily rely on an invariant assertion about the “nonoverlapping” property of the ranges
specified by packet metadata that is stored in the metadata list. The notion of range also
includes the case when the tail wraps around the edge of the SRAM. This invariant allows
us to assert that when certain parts of the SRAM are modified, all other parts are left
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untouched. In addition, it is also crucial to relate the segmented packet in SRAM with its
full packet represented in the intermediate specification, considering the offset of the trailing
bits and the availability of the slots.

In the top proof that connects the intermediate specification with the final specification
for the packet buffer, the response queue is eliminated, along with the concurrent logic
that handles queue responses. It is also required to concatenate the segmented data in the
SRAM’s response queue and map to its full representation.

4.7 Overall Switch

Finally, we present the top-level proof for VeriSwit, with respect to the proven specifications
for submodules such as parsers and MAUs. That is, in this capstone proof of the project,
we may assume that each optimized component is replaced by its specification, because the
simulation proof for each component justifies that reasoning. Before diving into proof details,
we quickly recap the optimized design and the specification.

In VeriSwit (Figure 1.1), when a packet arrives, its header is separated from the payload
and sent to one of the several parsers that run in parallel. A parser reads the raw content in
the header and generates structured data to pass on to match-action units (MAUs), which run
as a pipeline to perform different header transformations. Afterward, the deparser patches
the header changes into original packets. The packet buffer stores the original packet payload
throughout its lifetime in the switch.

In the specification (Figure 4.1), the header transformations are done in one single com-
putational step, and the payload moves along with its header in this process. When a
packet finishes enqueuing, it is directly manipulated according to the configured policies,
then buffered into a set of all processed packets, waiting to be dequeued. One packet is
then chosen nondeterministically from the buffer to be the egress packet, outputting to the
outside.

4.7.1 Top-Level Proof

This proof is split by transitivity into four steps (illustrated with Figure 4.5), where each
eliminates one or more chosen architectural optimizations to ease verification later in the
process. The bottom 3 layers are rewritten in Fjfj and look like synthesizable code, while
the top 2 layers are specified as logical Coq functions. The transitive reasoning proceeds
through the following intermediate designs.

1. The first intermediate design actually combines three consequential simplifications,
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(a) Real implementation

(b) Simplify checking of when reconfiguration is
permitted, simplify error handling, reduce de-
parser nondeterminism

(c) Collapse all handling of a packet into an atomic
step

(d) Remove packet buffer, instead flowing packet
bodies throughout system

Figure 4.5: The four steps of the top-level VeriSwit proof
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which happen to be orthogonal enough to each other that it is roughly as easy to prove
them in one step as in several.
(a) The system must block reconfiguration requests when packets are in-flight, to

avoid inconsistent processing. The necessary condition for safe reconfiguration is
that all places packets might be stored within the system are empty. However, it
is expensive to check all of those places on every reconfiguration request. Instead,
we prove that it suffices just to check if the packet buffer is nonempty.

(b) Our specifications allow some nondeterminism in the order of packet processing.
We add an extra rule to force some nondeterminism to be resolved earlier in the
deparser, dequeuing a packet to stash it in a register, from where it will later be
dequeued.

(c) To avoid duplicating error-handling logic throughout a circuit, VeriSwit continues
to move packets through its pipelines after they are found invalid. Here we change
that behavior, performing immediate drops of invalid packets.

2. The next intermediate design collapses the packet-processing pipeline so that all pars-
ing, match-action application, and deparsing happens atomically for a packet, much
like in the top-level specification. Due to the introduction of nondeterminism at the
pipeline head by parsing, we had to apply a careful variant of the flushing technique
for proving simulation, allowing the states being related to differ by permutation of
queue contents.

3. Finally, our last intermediate differs from the specification only in eliminating packet-
buffering logic and state, instead passing full packet contents through the process as
needed. However, packet-buffer memory is retained in the design but not relied on in
all the same places. The flushing-based proof of this refinement involves some care in
choosing which rules to allow to fire during flushing (specifically avoiding the one that
introduces nondeterminism).

4. We prove the last refinement to the top-level specification, where we must remove
packet-buffer memory altogether and delay processing of any given packet until all of
its data has arrived.
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Chapter 5

Evaluation

In this section, we answer the following three questions about VeriSwit. The first two are
to confirm that we chose a sufficiently realistic design to verify (as our research focus is on
proofs, not novel switch implementation).

1. What is the architectural performance of VeriSwit, in gigabits per clock cycle, for
different configurations and workloads (section 5.1)?

2. What clock periods can VeriSwit achieve both on FPGA and in ASIC, to get a through-
put performance number in gigabits per seconds (section 5.2)?

3. How much effort was it to prove the correctness of VeriSwit (section 5.3)?

Methodology Our verified codebase of VeriSwit in Coq aligns closely with an implemen-
tation of VeriSwit in Bluespec SystemVerilog [33]. The design evaluated consists of about
three thousand lines of BSV, parameterized by the numbers of MAUs and parsers. We
compiled the Bluespec code into Verilog using the bsc compiler1. The resulting Verilog was
then separately synthesized for an FPGA, processed through an ASIC flow, and simulated
with Verilator [35]. Our evaluation primarily focuses on two configurations: (2P,2MAU)
and (8P,8MAU), with reported results pertaining to the (8P,8MAU) configuration unless
specified otherwise.

The performance metrics in our architectural performance analysis are derived from Ver-
ilator simulations. This method was chosen to eliminate potential bottlenecks associated
with transmitting a generated workload to VeriSwit running on an FPGA via PCIe, which is
constrained by the limited bandwidth (a few GB per second) of the Connectal framework2.
Therefore, by using Verilator simulations, we ensure that the throughput measurements are
not affected by communication bottlenecks with the FPGA.

1https://github.com/B-Lang-org/bsc
2https://github.com/cambridgehackers/connectal
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5.1 Architectural Performance

The overall throughput of the switch in Gbps is a product of the throughput per cycle
multiplied by the clock frequency. We first report the first factor and how it varies with
different parameters for different workloads, as it is independent of the synthesis target.

Throughput Characterization To quantify the variability of the performance of VeriSwit,
we first design a synthetic test suite parameterized by the depth of the parsing tree (the max-
imum number of headers of packets) and the size of the ingress packet. In each test iteration,
we configure the parse table so that the given number of headers is read from the packet, and
we set all the MAUs to pass the PHV on without modification. As our MAUs always process
1 packet per cycle, this simplification in the benchmark should not affect the throughput of
the system (confirmed in the next paragraph). Then we start sending packets of the given
length, recording the average throughput per cycle.

We run the above test cases against a few different design parameters and report the
results in Figure 5.1a, Figure 5.1b, and Figure 5.1c. These throughput numbers are scaled
with the FPGA clock rates we report on in the next section. Though our work is oriented
toward eventual ASIC fabrication, we already nearly saturate 100 Gb/s line rate with the
FPGA clock rate. Adding more parsers does decrease the throughput ceiling thanks to
additional coordination logic, but again we believe that ceiling would be pushed back above
100 Gb/s thanks to the constant factor of performance that typically follows going from
FPGAs to ASICs.

Realistic Policies For an integration test and evaluation, we put VeriSwit to the test
in simulation against a set of real network policies summarized in Table 5.1. In this way,
we both confirm the expressivity of VeriSwit as a programmable switch and evaluate the
performance of VeriSwit on those policies. Our policy-specific throughput observations line
up well with our estimates from the last section (Figure 5.1).

5.2 Synthesis

We now report on evaluating frequency and resource usage for different configurations on
both FPGA and ASIC targets.

FPGA We synthesized the Verilog produced by the Bluespec compiler down to FPGA
using Vivado 2019.1, targeting a Virtex UltraScale+ XCVU9P-L2FLGA2104 FPGA on a
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(b) 8 Parsers
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(c) 16 Parsers
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Figure 5.1: Throughput graphs. Figs. (a), (b), and (c) are the results for the generic test
suites with 4, 8, and 16 parsers, respectively, running in simulation. The throughput is
calculated as the average number of bits ingested per cycle in simulation multiplied by the
highest clock frequency achieved on FPGA. Fig (d) shows the throughput in the case of
packet dropping for the TTL and Firewall policies (Policies C and F). The drop rates are
25% in C and 50% in F.

VCU118 board. For testing the design, we communicate with the host machine using
Connectal. We report resource usage of the synthesized bitstreams for a few parameters
in Figure 5.2. In term of resources, we highlight the heavy use of BRAMs: the (8P,8MAU)
configuration requires about 3.2 MB (572*36Kb + 282*18Kb) of on-chip memory. We suc-
cessfully synthesized a small configuration (2 Parsers, 2 MAU) of VeriSwit at 100MHz, and
we successfully synthesized the ideal configuration design we propose (8 Parsers, 8 MAUs) at
83.3MHz. The slightly lower frequency is likely due to routing congestion as we are reaching
high occupancy on the FPGA. We had access just to a smaller VCU108 FPGA, which we
synthesized for separately and then ran some simple tests on, to confirm end-to-end proper
behavior and performance.

(# MAUs,# Parsers) Freq LUT FF BRAMs
(2,2) 100 183K 98K (172, 76)
(8,8) 88 462K 347K (572, 282)

Figure 5.2: Clock frequency (MHz) and resource usage (Lookup Tables, Flipflops, and
BRAMs (36Kb blocks and 18Kb blocks)) for a Xilinx VCU118 board, for several VeriSwit
configurations.

ASIC To preview how VeriSwit might synthesize for silicon fabrication, we used the aca-
demic open-source Process Design Kit FreePDK 45nm [36] for ASIC logic synthesis. Due to
the lack of available open SRAM macros for this PDK, we substituted the memories with
black boxes. The post-synthesis logic area estimate reported is 4.3mm2, for a total of 2.5M
cells (2M combinational cells and 500K sequential cells). This is without counting the SRAM
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ID Policy Description #instructions
A Uncond. forwarding to a port 15
B Forwarding based on dest. addr. 42
C Dropping from a src. addr. 34
D Uncond. header insertion 41
E Uncond. header removal 23
F TTL decr. and discard if 0 37

Table 5.1: List of policies

areas that would need to be added. The post-synthesis logic passes the timing analysis with
a clock speed of 400MHz (a max throughput of about 400 Gbps), giving us confidence that
with access to commercial PDKs of similar technologies and a memory compiler, we can
readily surpass a total bandwidth of 100Gbps post-place and route.

5.3 Code Statistics

We summarize the size of the codebase (Table 5.2). We include 4 main components and
report the number of lines of code in Bluespec implementation (synthesizable HDL code),
Fjfj (embedded HDL in Coq for proof), and their specification and proofs. The “MAUs” line
may stand out for including more lines of specification code than implementation; here the
restatement of some code as logical formulas happens to be in a more verbose style, though
such specifications are significantly easier to reason about.

Table 5.2: Lines of code per module/type

Module BSV Fjfj Impl. Fjfj Spec. FjFj Proof
Parsers 246 266 203 2575
MAUs 258 257 513 2778

PacketBuffer 172 238 163 5229
Switch 149 285 170 7985
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Chapter 6

Conclusion

VeriSwit demonstrates that it is feasible to carry out an unbounded mathematical proof of
correctness for a programmable switch. Our Bluespec implementation nearly achieves 100
Gb/s line rate running on an FPGA (so hitting that target in an ASIC version should be
straightforward), showing an important aspect of realism for a switch. The machine-checked
Coq proof then applies two main tools to structure the proof and control human effort:
hierarchical decomposition following module structure and transitive proof via intermedi-
ate module designs. These ideas should generalize to other kinds of networking hardware
(including more full-featured switches), which certainly make for a fruitful future-work di-
rection.
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Appendix A

Appendix

1 Record NetworkPkt := {

2 PktData : N;

3 PktSize : N;

4 PktPort : N;

5 }.

6

7 Record SwitchState := {

8 parseTable : list (N * N * (ParserSpec.ParseTableValue));

9 matchStates : list MAUState;

10

11 ingressPkt : NetworkPkt;

12 resps : list NetworkPkt;

13 egressPkt : NetworkPkt;

14 }.

Listing 1: Datatypes of Top-Level Switch Specification

1

2 (* synthesize *)

3 module mkParser(Parser #(1));

4 TCAM_R #( SizeOf #( ParseTableKey), SizeOf #( ParseTableValue),

ParseTableSz) parseTable <- mkParserTCAM;

5 CrossBar #(6,2,8) ks <- mkCrossBar64To4;

6 Rotater #(7, 8) rot <- mkRotater128;

7 Meta meta = unpack (0);

8

9 Reg#( ParseState) parseState <- mkReg(Ready);
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10 Reg#(Bit #(1024)) stream <- mkReg (0);

11 Reg#(Bit #(8)) pktOffset <- mkReg (0);

12 Reg#(Bit #(8)) bodyOffset <- mkReg (0);

13 FIFO#(Bit #(8)) states <- mkFIFO ();

14 Reg#(Bit #(8)) countDown <- mkReg ({ ’1});

15

16 Reg#( Vector #(128, Bit #(8))) phv <- mkReg(unpack (0));

17 Reg#( Vector #(128, Bool)) valids <- mkReg(unpack (0));

18 Reg#(Bool) valid <- mkReg(True);

19 Reg#(Bit #(8)) index <- mkReg (0);

20

21 rule processTableResponse

22 if (parseState == Processing);

23 let resp <- parseTable.deq_resp_r ();

24 if(countDown == 0)

25 begin

26 parseState <= Done;

27 valid <= False;

28 end

29 else

30 begin

31 case (resp.value) matches

32 tagged Valid .rr:

33 begin

34 ParseTableValue r = unpack(rr);

35 if(r.done)

36 begin

37 parseState <= Done;

38 end

39 else if({’0, r.size} > pktOffset)

40 begin

41 parseState <= Done;

42 valid <= False;

43 end

44 else

45 begin

46 Bit #(1024) mask = ~({ ’1} >> {r.size , 3’b0});

47 Bit #(128) maskV = (~({ ’1} >> r.size)) >> r.contOffset;
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48

49 Bit #(1024) header = stream & mask;

50 rot.enq(unpack(header), (0)-unpack(truncate(r.contOffset)))

;

51

52 stream <= stream << {r.size , 3’b0};

53 pktOffset <= pktOffset - {’0, r.size};

54 bodyOffset <= bodyOffset + {’0, r.size};

55 valids <= unpack ((pack(valids) | maskV));

56

57 ks.enq(unpack(truncateLSB(header)), r.matchData);

58 states.enq(r.state);

59 countDown <= countDown - 1;

60 end

61 end

62 tagged Invalid:

63 begin

64 valid <= False;

65 parseState <= Done;

66 end

67 endcase

68 end

69 endrule

70

71 rule issueTableRequest

72 if (parseState == Processing);

73 let data <- ks.deq();

74 states.deq();

75 ParseTableKey key = ParseTableKey {

76 state: states.first ,

77 data: data

78 };

79 parseTable.enq_req_r(TCAMRequest {

80 tkey: TernaryKey {

81 key: pack(key),

82 dc: {’1}

83 },

84 value: 0
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85 });

86 endrule

87

88 rule rotate

89 if (parseState == Processing);

90 let data <- rot.deq();

91 phv <= unpack ((pack(phv) | pack(data)));

92 endrule

93

94 method Action updateTable(ParseTableKey key , ParseTableKey dc,

ParseTableValue value) if (parseState == Ready);

95 parseTable.enq_req_w(TCAMRequest {

96 tkey: TernaryKey {

97 key: pack(key),

98 dc: pack(dc)

99 },

100 value: pack(value)

101 });

102 endmethod

103

104 method Action enq(ParserRequest pkt) if (parseState == Ready);

105 let new_size = pkt.size <= 128 ? pkt.size : 128;

106 countDown <= {’1};

107 parseState <= Processing;

108 pktOffset <= new_size;

109 bodyOffset <= 0;

110 Vector #(128, Bit #(8)) _phv = unpack (0);

111 _phv[meta.inPortPos] = pkt.p;

112 stream <= (pkt.pkt >> {(128 - new_size), 3’b0 }) << {(128 -

new_size), 3’b0 };

113 phv <= _phv;

114 Vector #(128, Bool) _valids = unpack (0);

115 // _valids[meta.inPortPos] = True;

116 valids <= _valids;

117 valid <= True;

118 index <= pkt.index;

119 parseTable.enq_req_r(TCAMRequest {

120 tkey: TernaryKey {
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121 key: unpack (0),

122 dc: {’1}

123 },

124 value: 0

125 });

126 endmethod

127

128 method ActionValue #( PHVData) deq()

129 if (parseState == Done && (!rot.notEmpty) && (!ks.notEmpty));

130 // $display ("(%d)deq", cnt);

131 parseState <= Ready;

132 return PHVData {

133 phv: phv ,

134 valids: valids ,

135 valid: valid ,

136 index: index ,

137 bodyOffset: bodyOffset

138 };

139 endmethod

140

141 method PHVData first()

142 if (parseState == Done && (!rot.notEmpty) && (!ks.notEmpty));

143 return PHVData {

144 phv: phv ,

145 valids: valids ,

146 valid: valid ,

147 index: index ,

148 bodyOffset: bodyOffset

149 };

150 endmethod

151

152 method Bool ready ();

153 return (parseState == Ready);

154 endmethod

155

156 method Bool done();

157 return (parseState == Done);

158 endmethod
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159

160 endmodule

Listing 2: Parser Implementation in Bluespec
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1 Module ParserSpec.

2 Record ParserState :=

3 {

4 parseTable : list (N * N * N);

5 resps : list N;

6 isDone : bool;

7 }.

8

9 Notation "’NewParserState ’ parseTable resps done" :=

10 {|

11 parseTable := parseTable;

12 resps := resps;

13 isDone := done;

14 |} (at level 100).

15

16 Definition updateParseTable (arg : N) (st : SModule) (new_st :

SModule) : Prop :=

17 exists (st’ : ParserState) (new_st ’ : ParserState)

18 parseTable parseTable ’ resps done ,

19 st = *( st’ )* /\ new_st = *( new_st ’ )* /\

20 st’ = NewParserState parseTable resps done /\

21 new_st ’ = NewParserState parseTable ’ resps done /\

22 dlet {key dc value} := arg in

23 parseTable ’ = (parseTable) ++ [(dc, (N.lor key dc), value)] /\

24 resps = [].

25 Arguments updateParseTable arg st / new_st.

26

27 Definition enq (arg : N) (st : SModule) (new_st : SModule) : Prop

:=

28 exists (st’ : ParserState) (new_st ’ : ParserState)

29 parseTable resps ’ resps done ,

30 dlet {pkt size index port} := arg in

31 st = *( st’ )* /\ new_st = *( new_st ’ )* /\

32 st’ = NewParserState parseTable resps done /\

33 new_st ’ = NewParserState parseTable resps ’ done /\

34 let new_size := (set_size size) in

35 let ’(phv ’, valids ’, valid ’, bodyOffset ’) := parse parseTable (

ParserSpec.correct_header_offset pkt 1024 new_size ) new_size
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port in

36 resps ’ = resps ++ [{# phv ’ valids ’ valid ’ bodyOffset ’ index} ]

37 .

38 Arguments enq arg st / new_st.

39

40 Definition deq_first (arg : N) (st : SModule) (new_st : SModule) (

ret : N) : Prop :=

41 exists (st’ : ParserState) (new_st ’ : ParserState)

42 parseTable resps resps ’ resp done ,

43 st = *( st’ )* /\ new_st = *( new_st ’ )* /\

44 st’ = NewParserState parseTable resps done /\

45 new_st ’ = NewParserState parseTable resps ’ false /\

46 resps = (resp :: resps ’) /\

47 ret = resp

48 .

49 Arguments deq_first arg st / new_st ret.

50

51 Definition deq (arg : N) (st : SModule) (new_st : SModule) : Prop

:=

52 exists ret , deq_first arg st new_st ret.

53 Arguments deq arg st / new_st.

54

55 Definition first (arg : N) (st : SModule) (ret : N) : Prop :=

56 exists new_st , deq_first arg st new_st ret.

57 Arguments first arg st / ret.

58

59 Definition ready (arg : N) (st : SModule) (ret : N) : Prop :=

60 exists (st’ : ParserState)

61 parseTable resps done ,

62 st = *( st’ )* /\

63 st’ = NewParserState parseTable resps done /\

64 ret = match resps with | [] => 1 | _ => 0 end.

65 Arguments ready arg st / ret.

66

67 Definition done (arg : N) (st : SModule) (ret : N) : Prop :=

68 exists (st’ : ParserState)

69 parseTable resps done ,

70 st = *( st’ )* /\
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71 st’ = NewParserState parseTable resps done /\

72 ret = N.b2n done.

73 Arguments done arg st / ret.

74

75 Definition updateDone (st : SModule) (new_st : SModule) : Prop :=

76 exists (st’ : ParserState) (new_st ’ : ParserState)

77 parseTable resps done ’,

78 st = *( st’ )* /\

79 new_st = *( new_st ’ )* /\

80 st’ = NewParserState parseTable resps false /\

81 new_st ’ = NewParserState parseTable resps done ’.

82 Arguments updateDone st / new_st.

83

84 Definition spec : spec_module_t :=

85 {|

86 value_spec := list_to_array unexisting_vmethod [first; ready;

done];

87 action_spec := list_to_array unexisting_amethod [updateParseTable

; enq; deq];

88 rule_spec := [updateDone ];

89 subrules_spec := [];

90 |}.

91 Global Instance mkParser : module spec :=

92 primitive_module #(rules [updateDone] vmet [first; ready; done ]

amet [updateParseTable; enq; deq]).

93

94 End ParserSpec.

Listing 3: Coq example code
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