
Verified Scheduling Via High-Level Scheduling Rewrites

by
Amanda Liu

B.S., Columbia University (2020)

Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degree of

Master of Science
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .

Department of Electrical Engineering and Computer Science
 May 13, 2022

Certified by.

Adam Chlipala
Associate Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Certified by.
 Jonathan Ragan-Kelley

Assistant Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .

 Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science

 Chair, Department Committee on Graduate Students

Verified Scheduling Via High-Level Scheduling Rewrites

by
Amanda Liu

Submitted to the Department of Electrical Engineering and Computer Science

on May 13, 2022 in Partial Fulfillment of the
Requirements for the Degree of Master of Science in

Electrical Engineering and Computer

ABSTRACT

I propose a lightweight Coq framework for optimizing tensor kernels written in a pure,
functional array language. Optimizations rely on user scheduling using series of verified,
semantics-preserving rewrites. Unusually for compilation targeting imperative code with arrays
and nested loops, all rewrites are source-to-source within a purely functional language. This
language comprises a set of core constructs for expressing high-level computation detail and a
set of what we call reshape operators, which can be derived from core constructs but trigger
low-level decisions about storage patterns and ordering. We will demonstrate that not only is
this system capable of deriving the optimizations of existing state-of-the-art languages like
Halide and generating comparably performant code, it is also able to schedule a family of useful
program transformations beyond what is reachable in Halide.

Thesis Supervisor: Adam Chlipala
Title: Associate Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Jonathan Ragan-Kelley
Title: Assistant Professor of Electrical Engineering and Computer Science

Much of the content of this thesis has also been published as a paper in the POPL 2022 issue of the
Proceedings of the ACM on Programming Languages [31] as well as written for a proposal submitted
to the National Science Foundation’s Core Programs co-authored with Gilbert Louis Bernstein, Prof.
Adam Chlipala, and Prof. Jonathan Ragan-Kelley.

3

Contents

1 Introduction 6
1.1 A Coq Framework . 6
1.2 Contributions . 7
1.3 Overview and Motivating Example . 7

2 Related Work 11
2.1 User-Schedulable Languages . 11
2.2 Rewrite-Based Optimization Systems . 11
2.3 Verified Program Derivation . 11
2.4 Functional Languages . 12

3 A Tensor Language 13
3.1 A Simple Pipeline Example . 13
3.2 Specification . 14

3.2.1 Types . 14
3.2.2 Syntax and Semantics . 14

4 Verified Rewrite Framework 16
4.1 Scheduling Rewrites . 16
4.2 Binders and Contexts . 17
4.3 Rewrite Tactics and Automation . 18

5 Compilation 20
5.1 Normalization . 20
5.2 Code Generation . 22

6 Reshape Operators 25
6.1 Compute and Storage Order . 25
6.2 Safe Garbage . 28
6.3 Adjoint Introduction . 29

7 Evaluation 31
7.1 Blur . 31
7.2 Scatter-to-Gather Optimization . 33
7.3 Im2col . 35

8 Implementation Details 36
8.1 Consistency and Shape . 36
8.2 Access Safety . 37

9 Future Work 38
9.1 Streamlining the Optimization Process with Automation 38
9.2 Increasing the Source Language’s Expressivity . 39
9.3 Verifying Current Lowering to C . 40
9.4 Proof-Generating Compilation to a New Lower-Level IR 40

4

9.5 Verified Compilation From the New IR to Machine Code 41
9.6 Verification of Hardware Accelerators . 41

5

Chapter 1

Introduction

In high-performance computing, a single natural algorithm over multidimensional arrays may
have a bewildering variety of different code realizations, to optimize for performance on different
machines. The alternatives generally trade off between optimizing for parallelism and data
locality. There are clear software-engineering benefits from explaining optimized code in terms
of transformations applied to unoptimized algorithms. For instance, the transformations may
be checked by compilers, so that functionality bugs can only be missed in the algorithm, not
specific optimizations on it. Programming languages like Halide for graphics [35] and TVM for
machine learning [10] have emerged to facilitate directly programming in this style, with compilers
driven by optimization directives. However, despite the intuitive appeal of this approach, most
programming in the domain has effectively mixed algorithms and optimizations in single source
files, which have no formal connections to alternative implementations of matching algorithms.

1.1 A Coq Framework
We propose a framework embedded in the Coq proof assistant, with a language of optimization
commands that is simultaneously more formally assured and more flexible than in past work. One
popular approach is phrasing optimizations as transformations within a single source or intermediate
language; the most common kind of transformation is a rewrite rule, a quantified term equality. There
have been several success stories, including in Elevate [17], Glenside [37], and others [38, 28]. A typical
such project presents rewrite rules as axioms and then studies engines to apply them effectively. We
instead give a formal semantics to a core language and formally verify rewrite rules as theorems.
Steuwer et. al. [38] proved rewrite rules with respect to a fixed target language (OpenCL), but
otherwise we are aware of no past work in this space that demonstrated a practical optimizer with
mechanized proofs of rewrite rules, and our proofs are also noteworthy for applying to very general
source-to-source rewrite rules.

Working in Coq has appealing advantages, similar to those that arise for embedded domain-specific
languages in general. Where past projects have created custom orchestration frameworks for their
languages of optimization commands, we inherit most functionality from Coq’s standard tactic engine.
As the existing tactic language is Turing-complete, we have a powerful framework for coding derivation
building blocks at many levels of abstraction and automation. With our tooling, any programmer

6

may add a new rewrite rule or automation procedure, with no danger of optimizer unsoundness,
because all rules must be proved from first principles. Further, working within a proof assistant creates
opportunities for connecting to other formal developments. We can imagine composing an algorithm
soundness proof with one of our derivations of optimized code with correctness of a lower-level-language
compiler or even a hardware accelerator – all of which are worthwhile future work.

In this proposal, our primary point of comparison is Halide [35], which uses a language of scheduling
primitives to optimize graphics code or tensor computations in general. The rewrites provided in
our framework allow us to emulate the majority of Halide’s scheduling directives. For instance, our
rewrites are expressive enough to capture the functionality of Halide scheduling directives such as
compute_at, split, tile, reorder, fuse, unroll, compute_inline, etc. While some of Halide’s
scheduling features are out of scope,1 we aim to demonstrate that we can nevertheless recover most of
the appealing properties of Halide, including comparable performance on representative examples. In
contrast to Halide, our scheduling process is entirely proved within Coq while still supporting a fairly
pleasant programmer experience (modulo usual gripes about interactive proving in Coq). Furthermore,
the chance to extend the system easily with new rewrite rules and procedures allows us to handle some
important examples that Halide itself cannot, including an “im2col” procedure of the kind prevalent in
machine learning.

1.2 Contributions
Summing up, we plan several contributions:

• We present the first HPC-guided-optimization system that produces machine-checked proofs from
first principles, justifying transformations of specific programs.

• We also show for the first time how to accommodate this breadth of potential transformations
solely as source-to-source rewrites within a purely functional language, thanks to the concept of
reshape operators.

• We explain how to use standard Coq features to build a library of definitions and tactics supporting
programming and transformation at a natural granularity for HPC programmers.

• We evaluate our prototype and show it produces C code competitive in performance with
alternative tools that offer weaker formal guarantees.

The next section outlines the approach with a motivating example. Then we return to define our
language (including formal semantics) bottom-up, before proceeding through three crucial elements of
our pipeline: basic scheduling rewrites, lowering to imperative code, and reshape operators. After an
interlude explaining Coq encoding details, we present preliminary results from an empirical evaluation
showing that we achieve competitive performance w.r.t. Halide on a small set of examples, also
managing to compile respectably fast versions of some algorithms beyond Halide’s applicability. We
wrap up with further related-work discussion.

Our framework implementation and examples are available open-source.

1.3 Overview and Motivating Example
The tensor-computation programs found in image-processing and machine-learning kernels often take
the form of complex mathematical pipelines. The program expressed below in Halide [35] contains the
definition of a simple pipeline comprising two stages where the first one reads from an input tensor
f and the second stage, defining the output, computes each cell as the sum of two adjacent values
computed in the first stage. It is followed by the scheduling directives that optimize this program into a
tiled, two-stage schedule, which is generally accomplished by splitting a single loop into a nested outer
and inner loop pair. This common scheduling strategy is useful for optimization in tensor-computation
pipelines since it maintains a degree of producer/consumer locality proportional to the size of the inner

1We do not yet address transformations requiring stateful looping structures, namely sliding-window optimization,
which would be valuable to incorporate as future work. We also do not currently support user-level control of optimizations
like vectorization and thread-level parallelism, instead delegating these decisions to the downstream compiler, but our
framework would naturally support explicit parallelism as well.

7

https://github.com/ChezJrk/verified-scheduling

generation, while also reducing the amount of redundant computation in pipelines with windows of
computation that share values between iterations.

ImageParam image(type_of<float>(), 1);
Func f, buf, output;
Var x, x_outer, x_inner;
f = BoundaryConditions::constant_exterior(image,0);
buf(x) = f(x);
output(x) = buf(x−1) + buf(x);

output.split(x, x_outer, x_inner, 8, TailStrategy::GuardWithIf);
buf.compute_at(output, x_outer);

Halide is a good comparison point for our efforts, since it is widely adopted in industry to produce
performance-competitive code. For instance, it is used to produce crucial routines within Adobe
Photoshop, and the YouTube video-ingestion pipeline runs Halide-compiled code. Note the crucial
split (indicated by a newline above) between the algorithm specification and scheduling (optimization)
directives. We will not explain those directives in detail, since our own work accomplishes the same
transformations by different means. However, it is worth pointing out that the intermediate results of
Halide scheduling directives can often no longer be represented in the source language, a downside
that we remedy in our framework.

The tensor-computation programs to be optimized in our framework are written in a high-level,
functional language with pure, algebraic constructs, called ATL. This notation allows intricate tensor-
computation pipelines to be expressed in high-level terms closely resembling mathematics equations.
Below is the same two-stage pipeline expressed in ATL.

let buf :=
n

i=0
f [i] in

n

i=0
[[[0 ≤ i − 1]]] · buf [i − 1] ⊕ buf [i]

The big-operator syntax is for an array generation (comprehension), giving an iteration variable,
its bounds, and an expression to evaluate with it for every value of the iteration variable. We will
sometimes describe such expressions colloquially as “loops” (and we will see shortly how that connection
is made precise through compilation). The colored brackets denote a guard expression, effectively
evaluating to zero or one based on the truth of the Boolean expression therein. We use a guard to
avoid depending on an out-of-bounds array access, in this case for the first iteration of the second loop.
We write ⊕ for a type-overloaded notion of addition.

Although this is a fairly simple program, most useful and interesting computational pipelines follow
a similar form, only at scale: various stages of computation over various input and intermediary bound
values using the loop-mimicking constructs of generation and summation, with data-dependent access
patterns throughout.

When we presume the input tensor f to be one-dimensional, our compiler lowers the computational
expression into C code of the following form:

void pipeline(float ∗f, int n, float ∗output) {
alloc buf;
for (int i = 0; i < n; i++)

buf[i] = f[i];
for (int i = 0; i < n; i++) {

if (0 ≤ i−1)
..

output[i] = ..
}

}

We implement ATL in Coq’s specification language Gallina and therefore inherit its semantics. As a
result, scheduling transformations on programs in our framework are phrased as quantified equivalences
between small ATL expressions, each one formally verified as a theorem. These theorems establish a

8

set of correct and composable scheduling rewrites that can be used to modify smaller expressions in
large programs.

The process for using the scheduling theorems and optimizing ATL programs within our framework
is conceived and implemented as a constructive proof of equivalence. The constructed value is the
optimized schedule derived from the input program, and the machine-checkable proof of equivalence
is constructed incrementally and automatically with each rewrite that is applied to transform the
program.

We keep this process of proof-constructing scheduling at a high level by providing in our framework
a powerful set of tactics to abstract away and automate any of the required low-level proof detail.
This way, the proof script for scheduling a program is kept at the level of abstraction of a sequence of
distinct rewrites resembling a paper proof of the same equivalence. Moreover, since Coq is also an
interactive theorem prover, the intermediate states of the program in the process of scheduling are
visible as the proof progresses, at each step displaying the program that results immediately from
the theorem rewritten before it. For example, the following is the proof script for scheduling the
simple ATL pipeline above from a distinct two-stage program into a tiled two-stage program–the same
optimization performed in the Halide example above.

reschedule. (* generic marker to begin derivation *)
inline let_binding.
rw get_gen.
rw get_gen.
rw flatten_trunc_tile_id around (GEN [_ < _] _) with 8.
inline tile.
rw← gp_iverson.
rw ll_get.
rw get_gen_some.
rw lbind_helper for (fun x ⇒ |[_ <? n]| x).
rw ll_gen.
done. (* generic marker to end derivation *)

The main tactic provided in our framework for rewriting programs is the rw tactic, which takes the
name of a theorem to be used to rewrite the program as well as some optional arguments to specify a
site if ambiguities are present. The inline tactic is written to take as an argument some symbol and
inline its definition in the program, performing some minor simplifications to clean up as well. This
scheduling procedure performed a tiling optimization on the two-stage pipeline. The newly scheduled
tile-pipeline program is shown below.

truncr n
⌈n/8⌉

io=0(
let v :=

8

ii=0
[[[io ∗ 8 + ii < n]]] · (([[[0 ≤ io ∗ 8 + ii − 1]]] · f [io ∗ 8 + ii − 1]) ⊕ f [io ∗ 8 + ii]) in

8

ii=0
[[[io ∗ 8 + ii < n]]] · v[ii]

)
The C code generated from the tiled ATL program is:

void pipeline(float ∗f, int n, float ∗output) {
for (int io = 0; io < (n + 8 −1) / 8; io++) {

float ∗v = calloc(sizeof(float), 8);
for (int ii = 0; ii < 8; i++) {

if (0 ≤ io ∗8 + ii < n)
..

v[ii] = ..
}
for (int ii = 0; ii < 8; ii++) {

if (io ∗ 8 + ii < n)
output[io ∗ 8 + ii] = ..

}

9

}
}

Via the newly introduced loop and nested structure, we have achieved a tiled version of the original
program. Furthermore, we were able to construct such an optimization through a series of formally
verified rewrites on a high-level, algebraic representation of this pipeline.

It is not obvious that all important scheduling optimizations can be performed on terms as high-level
as in ATL, but one of our main research contributions is demonstrating an effective interplay between
reshape operators like truncr as introduced above and the process of compiling to C, such that functional
programs signal all important design decisions for nested imperative loops. Interestingly, the reshape
operators are defined in terms of more basic operators like , not in terms of some explicitly imperative
semantics as in past work with proved rewrite laws, making it relatively easy to prove the rewrites we
need for effective optimization.

10

Chapter 2

Related Work

2.1 User-Schedulable Languages

Our work will contribute to the emerging area of user-schedulable languages. Languages and compilers
that offer explicit programmer control over program transformations have a longer history in HPC
[14, 16, 42, 21, 9], but most such systems provide few safety or correctness guarantees. Halide
popularized the idea of a scheduling language with which a programmer could derive many different
optimized implementations of a single reference program without changing its semantics [34, 35].
This approach has since been adapted to dense linear algebra and machine learning [10, 39, 40, 20],
sparse tensor algebra [27], distributed-memory computing [2], graph processing [43], and physical
simulation [24]. None of these systems provide formal assurance of program equivalence before and after
scheduling, and many allow unsound transformations. They also offer fixed languages of scheduling
transformations, which can only be extended at great complexity by modifying the language and
compiler. In contrast, our system provides similar user-scheduling functionality but in a way that
simultaneously supports extension with new user-defined transformations and formally guarantees
equivalence of programs before and after transformation.

2.2 Rewrite-Based Optimization Systems

Key to our approach is defining scheduling transformations in terms of algebraic rewrite rules. Recent
work develops rewrite-rule systems for optimizing array programs [38, 17], but they generally treat
rewrites as axioms and provide no formal guarantees. Previous work such as the VOQC quantum-circuit
optimizer also shows how a tactic engine and interactive theorem prover provide a natural framework for
building a verified program-optimization framework [23]. However, they use Coq to validate prewritten
optimization procedures, while we focus on step-by-step manual derivation of optimizations for specific
programs. Additionally, their application domain is different enough from ours that it is not surprising
they do not address the loop-and-computation-reordering challenge that our reshape operators solve.

2.3 Verified Program Derivation

Program derivation through proof in constructive logic has a long history. One recent framework (also
based on Coq) is Fiat, within whose unified setting automated proof-producing procedures have been
demonstrated for relational queries [12] and binary-format parsers [13]. Our work is complementary and
could be integrated as another derivation-automation domain within Fiat, though we manage to state
our specifications and derive programs deterministically, so the value of Fiat’s nondeterminism monad
would be minimal. Fiat goes further than we do, in making the translation from optimized functional
to low-level code proof-generating [33], and we would benefit from adopting similar techniques in future
work.

11

2.4 Functional Languages
Finally, as a functional tensor language, our program representation (ATL) builds on ideas from array
languages [26, 8, 7, 36] which have more recently been explored in a functional context [22, 6, 32]. It is
specifically derived from recent work on a functional tensor language for automatic differentiation [3],
which we have extended with features like reshape operators to express a richer space of implementation
details relevant to performance optimization. Concurrent work on Glenside [37] attempts to capture
some similar implementation details by augmenting a functional tensor language with an algebra of
“access patterns.”

12

Chapter 3

A Tensor Language

The source language that our framework uses is a pure, functional language named ATL (A
Tensor Language) that is designed to express tensor-computation-pipeline schedules as high-level,
algebraic expressions [3]. In this section we will introduce and formalize the core constructs of
ATL as well as their types and denotational semantics.

3.1 A Simple Pipeline Example
In this section we begin the description and formalization of the core language constructs of ATL by
analyzing a minimal, interesting program. Consider the simple two-stage pipeline written in ATL
below.

let buf :=
n

j=0
f(j) in

n

i=0
[[[0 ≤ i − 1]]] · buf [i − 1] ⊕ buf [i]

This program encodes a pipeline in which the first stage is some computation represented by the
function f(x), and the second stage is computed as a sum of f(x − 1) and f(x). In ATL, each function
is represented as a tensor generated by the tensor-comprehension operator . This operator realizes a
tensor with inputs computed from the expression in its body as a function of the index over a given
range. Separate stages in a pipeline are represented as sequential let-bindings in which each stage is
realized, and every reference to an upstream stage becomes an access into that buffer.

Given the loop bounds in this program, buf [i − 1] will be out-of-bounds for some iterations in
the second stage. Specifically, in the first iteration of the generation when i = 0, there is a resulting
attempt to access buf at −1. As a fix, we logically guard the expression with the condition 0 ≤ i − 1,
a predicate that ensures the access is valid. To do so, we use the indicator function from Ken Iverson’s
APL that returns 1 if its condition is true and 0 otherwise [19]. Consequently, for iterations where this
access is valid, this guard acts as the identity function; and for the iteration where the access is invalid,
the additive identity is returned instead.

The sum of two values is symbolized by the general ⊕ operator. Notice that in this program, while
the function types are well-defined, the dimensionality of the data that is being computed is unspecified
and therefore polymorphic. In particular, it can be inferred upon inspection that f has type Z → X,
so the overall expression has type X, where X is effectively a type-unification variable. In ATL, the
possible instantiations of X are limited to a class of scalar or tensor types that we elaborate on next.
Therefore, for groups of operators that have type-specific implementations but maintain the same
algebraic properties, we introduce single polymorphic operators, as is the case with addition and ⊕.

13

3.2 Specification
3.2.1 Types
In general, the computational pipelines described in ATL will be polymorphic like the simple pipeline
example. In other words, a schedule expressed in ATL is agnostic of the absolute dimensionality of the
data it computes over, unless it uses some type-specific operator like scalar multiplication to make
dimensionality concrete. To capture the options, we define ATL types with a simple grammar.

τ ::= R | [τ]

To put it simply, this means that any ATL expression’s type is either an element of R, a scalar; or
a tensor of elements of some type. As a result, the operators of ATL are inherently polymorphic.
All instances of this polymorphism for binary addition (⊕), sum reduction (

∑
), tensor access ([]),

and Iverson’s bracket or guard ([[[]]]) can be found in the denotational semantics we present in Figure
3.2, where a given polymorphic operator will be defined as having two semantics separated by a pipe
with the first being the semantics for scalars and the latter being for tensor types. In the process of
lowering, this abstraction vanishes in both the types and the operator instances, since the absolute
dimensionality and sizes of inputs must be given, which instantiates the dimensions in the rest of the
pipeline.

A detail worthy of note here is that in this construction, while it is possible to know symbolically
the sizes and dimensions of expressions in ATL statically, there is no type-level information concerning
the size of each dimension. Additionally, there is no type-enforced property of uniformity within
tensors. For example, the following is a completely valid program in ATL, syntactically speaking:

n

i=0

i

j=0
1

This simple program computes a tensor that comprises tensors of various lengths–a complexity that we
wish to disallow. We will use a convention function shape that takes an ATL expression with consistent
internal dimension sizes and returns as a list the size of each dimension. It returns the empty list
for scalar expressions. For example, reconsider the simple pipeline presented previously. If f were a
function producing scalars, then the final output would be a tensor of n scalars. The same statement
is expressed below using the shape function convention:

shape

let buf :=
n

j=0
f(j) in

n

i=0
[[[0 ≤ i − 1]]] · buf [i − 1] ⊕ buf [i]

 = [n]

We can use this same construct to discuss the simple pipeline in more general terms without having to
examine the concrete type of f . Suppose it is known that ∀x. shape(f(x)) = s. It follows that shape
applied to the simple pipeline yields the following:

shape

let buf :=
n

j=0
f(j) in

n

i=0
[[[0 ≤ i − 1]]] · buf [i − 1] ⊕ buf [i]

 = n :: s

3.2.2 Syntax and Semantics
The complete syntax of our embedding appears in Figure 3.1, with a denotational semantics excerpted
in Figure 3.2. Note that we chose to use a shallow embedding, which means that each syntactic
construct is just a library function written in Coq’s dependently typed, pure functional language
Gallina. We will not dwell here on more intuition for the different constructs, as we are about to see
many examples via algebraic properties to be proved. One remark, though, is in order for the final
clause of Figure 3.2, which explains array indexing. We treat out-of-bounds accesses as returning
default values, relying on later static analysis to confirm that derived programs never actually make
out-of-bounds accesses. It is important that default values are properly typed, so we compute them
based on those arrays’ first elements.

14

Variable x ∈ S
Index Expression I ::= x | i | I + I | I − I | I × I | ⌈I / I⌉ | I / I | I % I

Predicate p ::= true | false | I = I | I < I | I ≤ I | p ∧ p

Expression e ::= x | [[[p]]] · e | let x := e in e |
I

x=I

e |
I∑

x=I

e | e ⊕ e | e[I] | e ∗ e | e/e

Figure 3.1: Core ATL syntax

JRK = R
J[τ]K = list JτK

JI1 + I2K = JI1K + JI2K
J|e|K = length JeK

J[[[p]]] · eK = (if JpK then 1 else 0) * JeK
| J[[[p]]] · e[0]K :: J[[[p]]] · e[1]K :: . . . :: J[[[p]]] · e[|e| − 1]K :: []

Jlet x := e1 in e2K = let JxK = Je1K in Je2Kt
I2

x=I1

e

|

= Je[I1/x]K :: Je[(I1 + 1)/x]K :: . . . :: Je[(I2 − 1)/x]K :: []
t

I2∑
x=I1

e

|

= Je[I1/x] ⊕ e[(I1 + 1)/x] ⊕ . . . ⊕ e[(I2 − 1)/x]K

Je1 ⊕ e2K = Je1K + Je2K
| Je1[0] ⊕ e2[0]K :: Je1[1] ⊕ e2[1]K :: . . . ::
e1[max(J|e1|K,J|e2|K) - 1] ⊕ e2[max(J|e1|K,J|e2|K) - 1] :: []

Je[I]K =
{

JIKth element of JeK, index is in-bounds
J[[[false]]] · e[0]K, index is out-of-bounds

Figure 3.2: Denotational semantics for the core of the ATL language (selected rules)

15

Chapter 4

Verified Rewrite Framework

In this section, we detail the construction and utility of our rewrite framework so as to allow
high-level user scheduling of ATL programs through a series of algebraic rewrites verified within
Coq. We detail the proof mechanisms used to prove the set of minimal equivalences that are
used as composable scheduling rewrites to transform and optimize programs. In order to do so,
we introduce some common and useful examples of the rewrites we have proven as theorems in
our framework, as well as the lemmas we have proven to provide logical machinery necessary
for automated, conditional rewriting under binders and logical contexts. These mechanisms are
what allows us to automate the reasoning for applying these rewrites on ATL programs at a
high level.

4.1 Scheduling Rewrites
Each scheduling rewrite is formulated as a theorem of functional equivalence between two ATL programs.
Rather than being declared as an axiom, it is proven in accordance with the semantics of the language’s
embedding.

We begin once more by considering the simple two-stage pipeline program.

let buf :=
n

j=0
f(j) in

n

i=0
[[[0 ≤ i − 1]]] · buf [i − 1] ⊕ buf [i]

This schedule for computing the two-stage pipeline will first realize f over its full specified domain
to be stored into buf before the output stage is able to proceed and compute on buf . One possible
scheduling transformation would be traditional loop fusion, which allows the two loops apparent in
the program to be combined into one. In larger pipelines with stages requiring greater arithmetic
intensity or a greater number of operations being fused, this optimization takes advantage of improved
locality between when a value is computed and when it is used. In the case of our simple pipeline, this
transformation can be achieved by inlining the expression

n

i=0
f(i) into each occurrence of the binding

buf in the body of the let-binding. This transformation can be stated more generally as the following
equivalence:

let x := e1 in e2 = e2[e1/x]

16

Although this equivalence is relatively simple given that it is exactly in-line with the denotational
semantics for let-bindings, every transformation that our framework provides will be of this form: a
quantified equivalence between two ATL expressions, possibly with further premises.

After this rewrite is applied on the pipeline program, we are left with the following program:

n

i=0
[[[0 ≤ i − 1]]] ·

 n

j=0
f(j)

 [i − 1] ⊕

 n

j=0
f(j)

 [i]

Although the two stages in this pipeline have been combined into one, there is still a lot of redundant
computation being performed, resulting in a lack of locality. The full inlined generation expression
is computed only to have most array cells ignored, choosing just one index to read. This artifact is
common with substitution-based reductions. In order to reduce this program further and achieve a
fully fused form, a separate rewrite theorem is needed:

0 ≤ k < n(
n

i=0
e

)
[k] = e[k/i]

This equivalence follows from the intuition that an in-bounds access to a comprehension yields the
comprehension body evaluated at the right index. This identity, of course, only holds under the premise
that k is a nonnegative integer less than n.

In order to reduce the pipeline program further, this rewrite would need to be applied at two sites.
However, this scheduling rewrite reducing an access into a generation cannot be applied in the same
direct manner as the first let-inlining scheduling rewrite. The issue here is two-fold. First, the access
index quantified as k in the rewrite theorem statement will refer to i − 1 and i in the application sites
of this rewrite. However, both of these index expressions contain i, which is a binding introduced by
the operator and is not visible outside of the subexpression. Additionally, the rewrite will only
succeed if we can prove its premise about indices staying in-bounds. Since the index expressions in
question are not visible in the current context, there is no known information constraining the values
they may take on.

Most scheduling rewrites provided in this framework are similar to this example in requiring proof
of bounds at the rewrite site–possibly under binders.

4.2 Binders and Contexts
The generation, summation, and let-binding language constructs introduce name bindings for the
iterated indices and the let-bound expression, respectively. Therefore, optimizing subexpressions in
the bodies of such constructs will require rewriting under binders. Coq users are accustomed to
technicalities of rewriting under binders, appealing to axioms like functional extensionality. However,
we need a stronger principle here that also allows proof of side conditions using assumptions introduced
by binders. For example, in the body of tensor generation, the value of the bound index is limited by
the extents of the loop. Therefore, equivalence of expressions in the body of a generation operation
can be described in the following lemma:

∀x. 0 ≤ x < n → e1[x/i] = e2[x/i]
n

i=0
e1 =

n

i=0
e2

This lemma can be used to aid in applying the final rewrites needed to schedule the two-stage pipeline
into a totally fused program. The equivalence we are trying to establish with the rewrites is stated
below:

n

i=0
[[[0 ≤ i − 1]]] ·

 n

j=0
f(j)

 [i − 1] ⊕

 n

j=0
f(j)

 [i] =
n

i=0
[[[0 ≤ i − 1]]] · f(i − 1) ⊕ f(i)

17

We want to apply the general tensor-comprehension lemma stated above, whose premise quantifies over
in-bounds loop indices. Letting that fresh local variable also be called i, we must prove the following
given 0 ≤ i < n:

[[[0 ≤ i − 1]]] ·

 n

j=0
f(j)

 [i − 1] ⊕

 n

j=0
f(j)

 [i] = [[[0 ≤ i − 1]]] · f(i − 1) ⊕ f(i)

In this context, the access of i into the generation is valid, and the rewrite is able to succeed and result
in the following schedule:

n

i=0
[[[0 ≤ i − 1]]] ·

 n

j=0
f(j)

 [i − 1] ⊕ f(i)

The access at i−1 is not provably valid in this context just yet. Although the knowledge that 0 ≤ i < n
provides that i − 1 < n, there is no guarantee that it is nonnegative. However, the guard surrounding
the i − 1 access provides additional logical context that may assist this rewrite. Since this guard
acts as an indicator function of some predicate and acts as the identity function if the predicate is
true and effectively zeroes out the guarded expression if false, any shape-preserving rewrite applied
in the guarded expression may assume the guard’s predicate. This equivalence is formulated as the
context-producing lemma below:

shape(e1) = shape(e2) p → e1 = e2

[[[p]]] · e1 = [[[p]]] · e2

We will take advantage of this lemma to prove our intended rewrite:

[[[0 ≤ i − 1]]] ·

 n

j=0
f(j)

 [i − 1] = [[[0 ≤ i − 1]]] · f(i − 1)

By applying the guard-specific context-producing lemma, we arrive at the following equivalence. n

j=0
f(j)

 [i − 1] = f(i − 1)

Now in addition to the information provided from the generation that 0 ≤ i < n, the context includes
the constraint that 0 ≤ i − 1. This is sufficient information to ensure the validity of the access, and so
the scheduling rewrite may be applied here. Finally, we arrive at the following fully fused schedule of
the two-stage pipeline:

n

i=0
[[[0 ≤ i − 1]]] · f(i − 1) ⊕ f(i)

We equip other binding constructs with similar context lemmas, and our rw tactic applies the lemmas
automatically to rewrite under binders.

4.3 Rewrite Tactics and Automation
In order to provide a user-scheduling experience that consists of high-level, algebraic rewrites to induce
program transformations, our framework provides a set of tactics to abstract and automate the logical
reasoning described in the previous sections. The central schedule-rewriting tactic in our framework is
rw, which formalizes the patterns we used in the prior example. This tactic takes as an argument the
name of the theorem representing the scheduling rewrite to be performed, plus a number of optional
arguments for configuration and application-site specificity.

As a result, the scheduling process on the simple pipeline we have walked through is achieved in our
framework as the following high-level, interactive proof script consisting of a series of rewrite theorems.

18

reschedule. (* generic marker to begin derivation *)
rw unfold_let.
rw get_gen.
rw get_gen.
done. (* generic marker to end derivation *)

The conditions that must be proven in context in order for a rewrite to be applied largely reduce to
equalities and comparisons between the arithmetic expressions representing the shapes of dimensions
within the structure of the program. Rewrites that do not involve tiling result in indexing expressions
and loop bounds that land in the world of affine arithmetic, which is decidable. However, due to the use
of tiling and flattening, which introduce dimensions with terms that respectively include ceiling division
and multiplication, these arithmetic expressions are not exclusively affine. As a result, comparison
between these expressions is undecidable in the general case. However, expressions arise in a regular
form expressing Euclidean factorization of known terms. As a result, we are still able to prove the
conditions automatically for all interesting examples.

19

Chapter 5

Compilation

In order to demonstrate the ability of our framework to express useful, performant schedules, we
implemented a trusted lowering from ATL into C to be able to produce runnable code (which will
turn out to have competitive performance). In this section we detail the trusted lowering process
of ATL into C used for benchmarking purposes. This lowering procss includes a normalization
process that is driven by the same proof-rewriting framework as the optimization rewrites and
includes a set of verified normalization rewrites. Normalized ATL programs are then compiled
following a continuation-passing style to generate C code.

5.1 Normalization
In order to reduce the logical complexity required of code generation, we first normalize the form of
the program to be compiled. This normalization, unlike code generation, need not be trusted since it
consists entirely of verified rewrites.

Dimensionality Specialization
At the time of compilation, the input is no longer dimensionally polymorphic. In other words, τ has
been instantiated with a fully concretized tensor type. Although the exact size of each dimension is
still parametric and will be taken in as input into the compiled pipeline, the full dimensionality of the
input and therefore the program is known. This allows a use of a polymorphic operator to be expanded
to its type-specific equivalent. In particular, this allows the ⊕ binary operator to be replaced with
standard addition for the scalar type and an addition function tensor_add that performs addition on
tensors with the semantics described in Figure 3.2.

Take for example the unnormalized schedule for the fully fused simple pipeline program illustrated
below.

n

i=0
[[[0 ≤ i − 1]]] · f(i − 1) ⊕ f(i)

At the time of compilation, the dimensionality of f must be specified as an input to the pipeline. If
the input f is specialized to be a function of type Z → R, then this stage of normalization will result

20

in the following program:
n

i=0
[[[0 ≤ i − 1]]] · f(i − 1) + f(i)

If the input f were specialized to be a function of type returning a tensor of any dimension, then
this stage of normalization will result in the following program:

n

i=0
tensor_add ([[[0 ≤ i − 1]]] · f(i − 1)) (f(i))

Since this is mere instantiation of an abstract construct, all specifications of the polymorphic
operator and therefore all consequent properties proven still hold for the instantiation, so it maintains
semantic equivalence.

Normalization Lemmas
A computational pipeline written in ATL can be interpreted as a series of computer values being
realized into output and intermediary buffers, with these assignments occurring at the leaf nodes
in the program’s AST. As a result, each stage will correspond to a buffer and a set of loop nests
shaping computation to be stored into the buffer at each iteration. In the target language C, this
terminal assignment for expressions must be done at the scalar granularity. However, at this point in
normalization, there still remain leaf-node expressions that are not scalar. Take for example the fully
fused pipeline schedule. Consider the case where the input function f is taken to have a return type of
[R], where the shape of its values is [a]. One step of type-specific operator specialization yields the
program below:

n

i=0
tensor_add ([[[0 ≤ i − 1]]] · f(i − 1)) (f(i))

The final expression computed here to be stored in the output buffer is the sum of f(i − 1) and
f(i). However, this expression has a nonscalar type. In order to perform this assignment, a loop
must be inserted for each dimension of this tensor and each element of it accessed and assigned. This
transformation can be interpreted as yet another proved rewrite, similar to a scheduling rewrite:

shape(v1) = shape(v2) = n :: _

tensor_add v1 v2 =
n

i=0
v1[i] ⊕ v2[i]

This lemma states that the sum of two tensors expressed as an application of the tensor_add
function can be rephrased as a generation where each element is the sum of the elements of each tensor
at that specific index. Not only is this equivalence directly in-line with the semantic definition of tensor
addition, the transformation that it induces does not affect the ultimate schedule produced from code
generation, unlike most scheduling rewrites. After one application of this normalization lemma on the
example pipeline, we arrive at the following program:

n

i=0

a

j=0
[[[0 ≤ i − 1]]] · (f(i − 1))[j] ⊕ (f(i))[j]

The notable differences here are that the leaf-node expression being computed and stored is no
longer a sum of f(i − 1) and f(i) but an access into f(i − 1) and f(i), and there is a new loop nest
explicitly introduced into the ATL source. There is once again a polymorphic ⊕ operator introduced
by a rewrite lemma. However, the dimensionality of this program is still known, so this operator can
once again be normalized into a specific instance, yielding the following program.

n

i=0

a

j=0
[[[0 ≤ i − 1]]] · (f(i − 1))[j] + (f(i))[j]

21

At this point there are no longer any polymorphic operators present in the program, and the inner
expressions of all loop nests to be computed and stored are scalar, so we have arrived at the final
normal form of this program.

Our remaining crucial loop-oriented normalization is stated more generally. It operates on leaf-node
expressions that are not tensor additions but are of tensor types and need to be normalized.

shape(v) = n :: _

v =
n

i=0
v[i]

By lifting the logic and reasoning of normalization into the verified portion of our stack rather than
reasoning about it during code generation, we formalize and prove these transformations as lemmas to
be applied on the program as rewrites.

5.2 Code Generation
Once a program has been normalized, it is compiled into C code via a recursive, syntax-directed process
in accordance with the rules shown in Figure 5.1. Since the lowering of predicates and integer-indexing
expressions from ATL into C is almost a trivial syntactic mapping and is in-line with the denotational
semantics given in Figure 3.2, we will continue using the same J K notation in this section to represent
lowered integer and Boolean expressions. We also include the general usage of alloc to represent the
allocation of properly sized memory initialized to 0.

In this compilation procedure, the assignment of the lowering for some expression e is symbolically
constructed as y [i] . In this notation, y represents the name of the buffer where the result of this
expression should be stored. The symbol represents either an assignment (=) or accumulation (+=)
to be resolved. Finally, i is a lambda with arguments corresponding to indices and returns the final
indexing expression for this assignment. The indices are resolved by application downstream in the
recursive calls that process subexpressions of e.

Note that this construction of the left-hand indexing expression for assignment is delayed by using
the lambda to accumulate indices. The reason for this slight overhead in complexity will become more
apparent in the following section where we discuss reshape operators and their function as compilation
directives.

To better illustrate the process, with a focus on the detail of index accumulation, we return to our
running example of the fully fused pipeline. We begin by assuming that y is a buffer allocated with
space for n scalars. Also, since the overall dimensionality of this expression is that of a 1-dimensional
tensor, the lambda that we pass in for i takes in one index and returns it as a singleton.〈

y [λi.(i)] = ,

n

i=0
[[[0 ≤ i − 1]]] · f [i − 1] + f [i]

〉

The first construct in the expression to be encountered and compiled is the tensor comprehension.
This results in the generation of a for-loop whose body is to be generated by the body of the tensor
generation. At this point, the lambda has been applied, and the index expression is instantiated. We
know we will be storing into buffer y in the same order the for-loop is iterating.

for (int i = 0; i < n; i++) {
⟨ y [(i)] = , [[[0 ≤ i− 1]]] · f [i− 1] + f [i] ⟩

}

The next construct to be lowered is a scalar addition. Since two expressions are needed to compute
the sum, neither of which is the ultimate value to be stored into the buffer, temporary storage must be
created to store them. Since the types of these expressions are known to be scalars, they are allocated
as floats. Similarly, the starting lambda for the recursive lowering is simply unit.

for (int i = 0; i < n; i++) {
float tmp1 = 0, tmp2 = 0;
⟨ tmp1 [()] = , [[[0 ≤ i− 1]]] · f [i− 1] ⟩
⟨ tmp2 [()] = , f [i] ⟩

22

let λidx(0) = ()
λidx(1) = λi0.(i0)
λidx(2) = λi0.λi1.(i0, i1)

· · ·

⟨ y [i] , c ⟩ = y[i] c;
⟨ y [i] , x ⟩ = y[i] x;

⟨ y [i] , x[I1] · · · [Ik] ⟩ = y[i] x[JI1 K,· · ·,JIk K];

⟨ y [i] , e1 + e2 ⟩ =

alloc tmp1;
alloc tmp2;
⟨ tmp1 [λidx(0)] = , e1 ⟩ ;
⟨ tmp2 [λidx(0)] = , e2 ⟩ ;
y[i] tmp1 + tmp2;

(similarly for ∗ and /)

⟨ y [i] , let x := e1 in e2 ⟩ =

 alloc x(shape(x));
⟨ x [λidx(ndim(x))] = , e1 ⟩ ;
⟨ y [i] , e2 ⟩ ;〈

y [i] ,

n

j=m

e

〉
=

 for (int j = Jm K; j < Jn K; j++) {
⟨ y [i(j)] , e ⟩ ;

}〈
y [i] ,

n∑
j=m

e

〉
=

 for (int j = Jm K; j < Jn K; j++) {
⟨ y [i] += , e ⟩ ;

}

⟨ y [i] , [[[p]]] · e ⟩ =

 if (Jp K) {
⟨ y [i] , e ⟩ ;

}

Figure 5.1: Compilation rules for lowering the core ATL constructs into C

23

y[i] = tmp1 + tmp2;
}

When we encounter a guard in the left-hand-side expression of the sum, a conditional is generated.

for (int i = 0; i < n; i++) {
float tmp1 = 0, tmp2 = 0;
if (0 ≤ i−1)
⟨ tmp1 [()] = , f [i− 1] ⟩

⟨ tmp2 [()] = , f [i] ⟩
y[i] = tmp1 + tmp2;

}

Finally, we arrive at the translation of a tensor access. Due to our normalization process, it is known
that this value should be a scalar. It can thus be translated directly and stored using the accumulated
left-hand access expression.

for (int i = 0; i < n; i++) {
float tmp1 = 0, tmp2 = 0;
if (0 ≤ i−1)

tmp1 = f[i−1];
tmp2 = f[i];
y[i] = tmp1 + tmp2;

}

And so, we arrive at the C program compiled from the ATL expression of the fully fused pipeline.
However, even upon inspection of the schedules generated for this simple pipeline, potential for further
optimization and rescheduling stands out. For example, the rescheduling that was performed on the
original two-stage pipeline arrived at the same program in a totally fused state. Partial fusion involving
splitting the original loop into two nested loops offers a middle ground in terms of locality and repeated
computation. Additionally, we arrive at loops with conditional guards using conditions that only fail
on the loops’ very first iterations. It would be advantageous to separate such a loop into two, where the
more computationally expensive one is free from the burden of checking the conditional. It is clear that
although the core ATL language is capable of expressing a wide range of schedules distinguished by
the storing and computation-staging of intermediary values, there still remains a class of optimizations
that we cannot derive.

24

Chapter 6

Reshape Operators

In this section we introduce a set of operators to the core ATL language called reshape operators.
These operators are defined and ascribed semantics that correspond to intuitive tensor operations
such as concatenate and transpose. These operators act as special directives in lowering that
allow us to decouple compute order from storage order in accordance with the semantics of the
reshape operator itself. This allow us greater flexibility and expressivity in terms of the generated
imperative code from the level of the functional ATL language.

By virtue of how the core of ATL is constructed and lowering is defined, the shape of a program is
inherently tied to its computation order. All loop-producing language constructs shown in the lowering
in Figure 5.1 generate loops and modify the left-hand assignment expression in the same, well-defined
relative ordering between iteration order and storage order. Moreover, each buffer may only be written
by one loop nest. As a result, for the core language constructs of ATL, there is a default interpretation
of storage order with respect to compute order understood in our lowering process. However, a large
class of useful program transformations and optimizations require transfiguring program shape by
modifying loop structure and storage order. In order to achieve the degree of low-level control and
expressivity required for efficiency, it becomes necessary to be able to express these constructs within
the source language. However, within the algebraic style we have adopted for scheduling reasoning,
much of the low-level optimizations and structural changes that the system needs to be able to induce
appear semantics-preserving – one could say that they change performance but not functional behavior.
Our framework takes advantage of this fact and provides a family of operations called reshape operators
that are defined and proven in terms of existing constructs in the embedding but additionally act as
compiler directives to prompt special strategies when lowering to C. In this section, we present our set
of reshape operators in Figure 6.1 and demonstrate the scheduling control they provide during code
generation.

6.1 Compute and Storage Order
In this section, we deal with introducing control over the relative compute and storage order of
computations, via operators that act as directives in lowering. Again, these operators are fully
expressible (Figure 6.2) in terms of those we worked with in prior sections, but their payoff is in
signaling clever ways of manipulating the order (Figure 6.3) in which array assignments happen within
loop nests.

25

Concatenate e ◦ e
Transpose eT

Flatten flatten e
Split split I e

Pad on the Right padr I e
Pad on the Left padl I e

Truncate from the Right truncr I e
Truncate from the Left truncl I e

Figure 6.1: Reshape operators

e1 ◦ e2 :=
|e1|+|e2|

i=0
[[[i < |e1|]]] · e1[i] ⊕ [[[|e1| ≤ i]]] · e2[i − |e1|]

eT :=
|e[0]|

x=0

|e|

y=0
e[y; x]

flatten e :=
|e|×|e[0]|

i=0

|e|∑
j=0

|e[0]|∑
k=0

[[[i = j × |e[0]| + k]]] · e[j; k]

split k e :=
⌈|e|/k⌉

i=0

k

j=0
[[[i × k + j < |e|]]] · e[i × k + j]

padr k e :=
|e|+k

i=0
[[[i < |e|]]] · e[i] truncr k e :=

k

i=0
e[i]

padl k e :=
|e|+k

i=0
[[[k ≤ i]]] · e[i − k] truncl k e :=

k

i=0
e[i + |e| − k]

Figure 6.2: Definitions of reshape operators

⟨ y [i] , e1 ◦ e2 ⟩ =
[

⟨ y [i] , e1 ⟩ ;
⟨ y [λj.i(j + |e1[0]|)] , e2 ⟩ ;〈

y [i] , eT
〉

= ⟨ y [λj.λk.i(k)(j)] , e ⟩
⟨ y [i] , flatten e ⟩ = ⟨ y [λj.λk.i(j · |e[0]| + k)] , e ⟩
⟨ y [i] , split k e ⟩ = ⟨ y [λj.i(⌊j/k⌋)(j%k)] , e ⟩
⟨ y [i] , padr k e ⟩ := ⟨ y [i] , e ⟩

⟨ y [i] , truncr k e ⟩ := ⟨ y [i] , e ⟩
⟨ y [i] , padl k e ⟩ := ⟨ y [λj.i(j + k)] , e ⟩

⟨ y [i] , truncl k e ⟩ := ⟨ y [λj.i(j − k)] , e ⟩

Figure 6.3: Compilation rules for reshape operators

26

Concatenate
The concatenation operation is defined to link together two separate tensor expressions into one. For
one-dimensional expressions, it behaves exactly as list concatenation would and naturally extends to
higher dimensions by effectively gluing together the two expressions one after the other with regards to
their outermost dimension. Its in-language definition (along with several others we will get to shortly)
is shown in Figure 6.2. This operator signals code generation to store two tensors one after the other in
a shared output buffer, which makes this operator particularly useful for implementing loop splitting
and creating loop epilogues, since it results in more than one loop nest being able to write into the
same buffer, as shown in Figure 6.3.

Using the ◦ operator, loop splitting can be introduced in a rewrite with the following theorem:

0 ≤ k < n
n

i=0
e =

(
k

i=0
e

)
◦
(

n

i=k

e

)
Using this theorem, we can further schedule the fused two-stage pipeline program by splitting the
main generation at index 1 to isolate the guarded cases and achieve the following program: 1

i=0

a

j=0
[[[0 ≤ i − 1]]] · f(i − 1)[j] + f(i)[j]

 ◦

 n

i=1

a

j=0
[[[0 ≤ i − 1]]] · f(i − 1)[j] + f(i)[j]

Note that the guard against the nonnegativity of i−1 in the second loop is now trivially true within

the context of the loop and can be removed. Our framework provides a tactic called simpl_guard that
automatically descends through a program and reduces any provably true arithmetic guard condition
into true, removing verifiably trivial guards using the following rewrite theorem:

[[[true]]] · e = e

After executing the simpl_guard tactic, the pipeline program arrives at the following schedule: 1

i=0

a

j=0
([[[0 ≤ i − 1]]] · f(i − 1))[j] + f(i))[j]

 ◦

 n

i=1

a

j=0
f(i − 1)[j] + f(i)[j]

Transpose
When applied to a matrix, the transpose operator performs the equivalent function as its mathematical
counterpart, in that it switches row and column indices and as a result produces an expression flipped
along its diagonal with the outermost dimension swapped with the dimension immediately inside.
Thanks to shape polymorphism, this operation naturally extends the mathematical definition of a
matrix transpose and is well-defined in higher dimensions (Figure 6.2). In code generation, this operator
is implemented by switching the indices associated with the dimensions being transposed inside the
assignment-indexing expression (Figure 6.3).

Flatten
The flatten operator reduces the dimensionality of an n-dimensional tensor into an (n − 1)-dimensional
tensor while preserving the same contents. As shown in Figure 6.2, this operator effectively does so
by sequentially concatenating each of its rows one after the other, modifying the storage-indexing
expression by combining the two accesses associated with the indices being flattened into one (Figure
6.3). In the absence of any further reshaping, flattening does not introduce any fundamental change
in the relationship between compute and storage order of a tensor. However, when combined with
transposition, flattening allows for the expression of tiled computation orderings.

For instance, the following pattern computes a matrix of size 256 × 1024 in tiles of size 4 × 8.
Such a pattern is important for improving data locality in image-processing pipelines and matrix

27

multiplication (where tiling is more commonly known as blocking) as well as for exposing fixed-length
inner loops for unrolling and vectorization.

flatten
64

ihi=0

flatten
128

jhi=0

 4

ilo=0

8

jlo=0
· · ·

T

T

Split
A split operation is the natural left inverse of a flatten operation. This operator takes an n-dimensional
tensor and some splitting factor k and splits the tensor into an n + 1-dimensional tensor containing
subunits of length k. If the original tensor is unevenly split into subunits, the final tail is padded
with 0 values (Figure 6.2). Compilation simply breaks the single iteration variable into higher- and
lower-order components for purposes of indexing into the array being written to (Figure 6.3).

Our most common use of the split operation was to help introduce flatten operations, thanks to
their natural adjunction with each other.

6.2 Safe Garbage
In order to maintain shape consistency within a program, buffers and computation windows are often
extended and abbreviated to achieve specific dimensions. For instance, when processing an image in
tiled order, the total image size is not always divisible by the tile size. We may want to overallocate
intermediate memory (padding) or maintain regular loop sizes, without writing to unallocated or
unimportant memory (truncation of the computation).

Often, the exact values with which these computations are extended from an output are not
important or directly accessed, and so, instantiating them by writing into these regions of memory
is a wasted effort. Since all core language constructs necessitate some form of writing into memory,
we introduce pad and truncate operators as natural adjoints to construct shape-consistent tensors
in the source but also stand in as no-op commands in the lowering. While these operators do not
affect the relative compute and storage order of an expression, they do affect loop bounds and logic of
the generated code. Therefore, not only is such an implementation more efficient, but it implies all
garbage values in memory described by these operators may safely remain uninstantiated.

Pad
Often when an allocation or computation window is expanded due to shape constraints imposed in a
larger pipeline, the extended memory is not actually used in downstream computation. We introduce
the pad operators into ATL to add padding on the left and right sides of some tensor computation.
These padded values are allocated and simply left uninitialized.

In code generation, padding is implemented by expanding the dimension that is being padded by
the padding factor (Figure 6.2). When a tensor is padded on the right, no special change to indexing
is required; when a tensor is padded on the left, then accesses are appropriately offset (Figure 6.3).

Truncate
Truncation allows programs to limit the range of computation for an inner expression in the lowering
and is used as the left inverse of pad. We introduce the truncate operators to truncate expression from
the left and from the right side. These operators take as arguments some expression e to truncate and
a length k to truncate them to (Figure 6.2).

Similar to the pad operators, truncate operators are lowered to introduce offsets to the accessed
index when truncation occurs on the left, and they have no effect on lowering when an array is truncated
on its right (Figure 6.3).

This shift may seem inherently unsafe as it could result in out-of-bounds writes. However, the
introduction of these reshape operators into programs with verified scheduling rewrites always maintains
that these unsafe situations and undefined behavior are avoided, since complementary padding or
guards must always be introduced at the same time.

28

6.3 Adjoint Introduction
Programs can be written and scheduled with reshape operators in the program source, but to work
with reshape operators safely, it is necessary to start with a program written in the ATL core with
well-behaved accesses and no special compilation directives and be able to introduce these optimizations
into the program. In our framework, the idiomatic way of doing so is to introduce a pair of reshape
operators such that their composition yields the identity function. These identities are stated and
proven as lemmas and may be used to rewrite a program in the same manner that scheduling rewrites
are performed (Figure 6.4). Once the identity pair has been introduced into the program, one of the
operators (often the inner operator) is unfolded to its definition in terms of basic ATL operators. Then
it is simplified into the rest of the program, exposing opportunities for further scheduling. The other
operator remains intact to serve as a compilation directive, inducing the desired decoupling between
compute and storage order. We have found this pattern to be useful in many common situations.

To demonstrate how these operator duals are used to introduce reshapes into programs, consider
once more the fully fused pipeline schedule.

n

i=0
[[[0 ≤ i − 1]]] · f(i − 1) ⊕ f(i)

In order to tile this program, we introduce the tile operator using the following theorem:

0 ≤ k shape(v) = n :: s

v = truncr n (flatten (split k v))
We use this rewrite to wrap the entire program.

truncr n

(
flatten

(
split k

n

i=0
[[[0 ≤ i − 1]]] · f(i − 1) ⊕ f(i)

))
Next we unfold the split operator into its ATL definition.

truncr n

flatten
⌈n/k⌉

io=0

k

ii=0
[[[io × k + ii < n]]] ·

(
n

i=0
[[[0 ≤ i − 1]]] · f(i − 1) ⊕ f(i)

)
[io × k + ii]

Once more, we have direct access into a generation thanks to unfolding the split operator. We can
reduce this expression using the same rewrite from Section 4.2 and arrive at the following program.

truncr n

(
flatten(⌈n/k⌉

io=0

k

ii=0
[[[io × k + ii < n]]] · ([[[0 ≤ io × k + ii − 1]]] · f(io × k + ii − 1) ⊕ f(io × k + ii))

))
In this schedule, where there was one tensor generation before, there are now an inner and outer

tensor generation iterating over that domain. The flatten and truncation reduce the dimensionality of
this expression and shear off any trailing padding respectively.

In order to further accelerate computation, we may choose to break off a loop prologue and epilogue,
using the concatenation rewrite rule. After doing so, we can eliminate all guards from the main loop,
which will expose the loop to further unrolling and vectorization optimizations, even if the prologue
and epilogue continue to use scalar instructions.

truncr n

(
flatten((1

io=0

k

ii=0
[[[ii < n]]] · [[[1 ≤ ii]]] · f(ii − 1) ⊕ f(ii)

)
◦(

⌊n/k⌋

io=1

k

ii=0
f(io × k + ii − 1) ⊕ f(io × k + ii)

)
◦(

⌈n/k⌉

io=⌊n/k⌋

k

ii=0
[[[io × k + ii < n]]] · f(io × k + ii − 1) ⊕ f(io × k + ii)

)))

29

shape(v) = n :: _
v = truncr n (padl k v)

shape(v) = n :: _
v = truncl n (padr k v) v = (vT)T

shape(v) = n :: k :: _
v = split k (flatten v)

0 ≤ k shape(v) = n :: _
v = truncr n (flatten (split k v))

Figure 6.4: Dual-introduction rules

30

Chapter 7

Evaluation

Producing efficient implementations for the computational pipelines of interest in image-processing
and tensor kernels generally involves navigating the trade-off space of schedules along the axes of
locality, repeated computation, and parallelism [35]. In this section we demonstrate the capability
of our framework to do so by showing its expressiveness and flexibility to perform complex
scheduling transformations on three programs spread across this trade-off space. This includes one
example whose scheduling transformations correspond to the core features of Halide (Section 7.1)
and two which are significantly beyond the scope of Halide’s scheduling language (Sections 7.2 &
7.3), demonstrating our system’s generality and extensibility. Additionally, to demonstrate that
our system is capable of generating comparably optimized code to state-of-the-art systems, for
the programs to which it applies, we provide performance benchmarks against their equivalents
written in Halide.

7.1 Blur
We begin by investigating the performance of a number of possible optimized schedules produced
by our framework and Halide. We evaluate the expressivity of our framework and the efficacy of its
optimizations on another pipeline program very similar in form to the running example we have been
rescheduling. We evaluate an unnormalized blur function with a 3 × 3 kernel that can be expressed as
the composition of two functions: blur_x and blur_y.

blurx v x y := v[y; x − 1] ⊕ v[y; x] ⊕ v[y; x + 1]

blury v x y := blurx v x (y − 1) ⊕ blurx v x y ⊕ blurx v x (y + 1)

Although this algorithm is slightly more complex, the rewrites we will perform to reschedule it will
be similar in nature to those used to reschedule the smaller pipeline. The scheduling proof script for
this transformation is quite verbose due to common repeated patterns of rewrites, especially when
passing through intermediary states that require similar structural transformations. However, these
finer details can easily be factored out into higher-level tactics to carry out common operations more
concisely.

One thing to note is that if this algorithm were to be applied over the the full extent of an input–say
a blur over an entire image–there would be out-of-bounds accesses along the border since each stage

31

let buf :=
1

y=0
.. ◦

n+1

y=1

(1

x=0
.. ◦

m−1

x=1
v[y − 1; x − 1] ⊕ v[y − 1; x] ⊕ v[y − 1; x + 1] ◦

m

x=m−1
..

)
◦

n+2

y=n+1
..

in
n

y=0

m

x=0
buf [y; x] ⊕ buf [y + 1; x] ⊕ buf [y + 2; x]

Figure 7.1: Breadth-first schedule expressed in ATL

operates over a nontrivial window. In order to remain consistent, both Halide and our framework
use the strategy of conditionally guarding these boundary accesses and returning 0 for what would
be out-of-bounds accesses and partitioning the resulting loops into a constant-state region and more
logically complex prologue and epilogue loops to deal separately with the boundary conditions.

Two-Stage Blur
The first schedule we examine is a two-stage schedule, whose corresponding representation in ATL
is shown in Figure 7.1. This schedule first computes the full extent of the blurx function as defined
above over the input image in an intermediary buffer. It then computes the output in the second stage
blury from the buffer produced from the first stage. This type of schedule is a common strategy in
handwritten pipelines and often results from composing separate routines, since each function that
comprises the pipeline is computed in full in a breadth-first manner [35]. While this approach has the
benefit of ample opportunity for parallelization, it is lacking in properties of computational locality
since every value in the first stage is computed and stored before any are used in the computation of
the second stage.

Tiled Blur
While total fusion and breadth-first scheduling represent two scheduling extremes across considerations
of redundant computation and locality, a tiled strategy is able to take advantage of both properties to a
certain degree. In this strategy, within an iteration, a section of the output called a tile is processed at
once, and the corresponding first-stage values are computed and stored for the tile. The corresponding
code for this schedule utilizing a kn × km tile size is shown in Figure 7.2. While there is still redundant
computation between tiles along their borders, within a tile all values computed from the first stage
are stored and persistent across all iterations of computation, producing the output in the second stage.
Likewise, the finer granularity the tiles provide relative to the fully breadth-first two-stage approach
leverages greater locality since values computed in the first stage are used within the span of one tile.
Additionally, there is still abundant opportunity for parallelism both within and between tiles.

Performance Benchmarks
In Figure 7.3, we compare the performance of code generated by our framework and code produced
by Halide for the blur algorithm with each of the schedules described above. For each benchmark,
we juxtapose the performance of a specific ATL schedule with the corresponding Halide schedule.
Tile sizes were set at 64 × 64 for both ATL and Halide. The outer loops of the benchmark programs
were parallelized, and vectorization was left to the downstream C compiler for ATL programs and
autovectorization for Halide programs. C code generated from ATL was compiled by clang 12.0 with
openmp, fast−math, and O3 flags enabled. A snapshot of Halide was taken in early June 2021 and built
against LLVM 12.0. Halide tiling was set to use the GuardWithIf strategy for loop tails/epilogues. The
benchmark was performed using 2000×2000 input and output buffers on an iMac Pro with a 3.2 GHz
8-Core Skylake Xeon processor.

32

1

y=0
.. ◦

(n−1

y=1

1

x=0
..

)T

◦ (body)T ◦

(
n−1

y=1

m

x=m−1
..

)T
T

◦
n

y=n−1
..

body is defined as:

truncr (n − 2)
flatten
(n−2)/kn

yo=0
◦

(n−2)/kn

yo=0
..

truncr (m − 2)
flatten(

(m−2)/km

xo=0
◦

(m−2)/km

xo=0
..

let buf :=
nk+2

yi=0

mk

xi=0
l[yo × kn + yi; xo × km + xi] ⊕

l[yo × kn + yi; xo × km + xi + 1] ⊕
l[yo × kn + yi; xo × km + xi + 2]

in
(

kn

yi=0

km

xi=0
buf [yi; xi] ⊕ buf [yi + 1; xi] ⊕ buf [yi + 2; xi]

)T
T

Figure 7.2: Tiled schedule expressed in ATL

Halide ATL
two-stage blur 3.75 ms 3.71 ms

tiled blur 1.13 ms 1.24 ms

Figure 7.3: Performance of different schedules for the blur algorithm, our system vs. Halide

It can be seen that for both schedules, our system is able to express a schedule achieving comparable
performance to a roughly equivalent schedule programmed in Halide. Results do not match precisely for
a number of potential reasons: First, Halide automates the splitting off of loop epilogues and prologues,
whereas ATL places the way in which to do this under the control of the programmer. Second,
rather than compiling to C code that goes through the clang front-end and standard optimization
configurations, Halide directly targets LLVM intermediate code and uses a custom configuration of
downstream optimization passes. More importantly, this comparison to Halide (an existing high-
performance, user-schedulable DSL) demonstrates that our language prototype is expressive enough to
be used for generating competitive high-performance code.

7.2 Scatter-to-Gather Optimization
One pattern often found in computational pipelines for array processing, including image processing
and deep learning, involves outputs that must read and compute multiple input values; this process
is called a gather. The natural dual to this idiom, called a scatter, is an operation where each input
writes to multiple elements in the output. Gathers are often more efficient than scatters, especially in
the presence of parallelism, where scattering requires atomic operations to prevent data races.

When computing the gradients in reverse automatic differentiation, computations written purely in
terms of gather produce scatters in the differentiated result [30, 3]. As a result, scatter-to-gather loop
optimizations are particularly useful when optimizing and simplifying derivative code. However, this
kind of program transformation lies outside the expressive range of existing user-schedulable languages
such as Halide, requiring ad-hoc workarounds in order to support automatic differentiation [30].

33

W∑
i=0

B

n=0

K

k=0

C∑
c=0

W

p=0
x[n; c; i] · ([[[i − p < R ∧ 0 ≤ i − p]]] · w[k; c; i − p])

=
W∑

i=0

B

n=0

K

k=0

C∑
c=0

W

p=0
[[[i − p < R ∧ 0 ≤ i − p]]] · (x[n; c; i] · w[k; c; i − p])

=
W∑

i=0

B

n=0

K

k=0

C∑
c=0

W

p=0

R∑
r=0

[[[r = i − p]]] · x[n; c; i] · w[k; c; r]

=
W∑

i=0

B

n=0

K

k=0

W

p=0

C∑
c=0

R∑
r=0

[[[r = i − p]]] · x[n; c; i] · w[k; c; r]

=
B

n=0

W∑
i=0

K

k=0

W

p=0

C∑
c=0

R∑
r=0

[[[r = i − p]]] · x[n; c; i] · w[k; c; r]

=
B

n=0

K

k=0

W∑
i=0

W

p=0

C∑
c=0

R∑
r=0

[[[r = i − p]]] · x[n; c; i] · w[k; c; r]

=
B

n=0

K

k=0

W

p=0

W∑
i=0

C∑
c=0

R∑
r=0

[[[r = i − p]]] · x[n; c; i] · w[k; c; r]

=
B

n=0

K

k=0

W

p=0

C∑
c=0

W∑
i=0

R∑
r=0

[[[r = i − p]]] · x[n; c; i] · w[k; c; r]

=
B

n=0

K

k=0

W

p=0

C∑
c=0

R∑
r=0

W∑
i=0

[[[r = i − p]]] · x[n; c; i] · w[k; c; r]

=
B

n=0

K

k=0

W

p=0

C∑
c=0

R∑
r=0

W∑
i=0

[[[i = p + r]]] · x[n; c; i] · w[k; c; r]

=
B

n=0

K

k=0

W

p=0

C∑
c=0

R∑
r=0

[[[0 ≤ p + r ∧ p + r < W]]] · x[n; c; p + r] · w[k; c; r]

=
B

n=0

K

k=0

W

p=0

C∑
c=0

R∑
r=0

[[[p + r < W]]] · (x[n; c; p + r] · w[k; c; r])

Figure 7.4: Rewrite sequence for scheduling a scatter-to-gather optimization on a simple program

In this section we demonstrate using a simple example where our rewrite framework is capable
of performing this transformation through a series of simple rewrites. Consider the simple scattering
program shown below:

W∑
i=0

B

n=0

K

k=0

C∑
c=0

W

p=0
x[n; c; i] × ([[[i − p < R ∧ 0 ≤ i − p]]] · w[k; c; i − p])

Notably, the form of the scatter involves an outermost summation that cannot be trivially parallelized
and would likely hurt performance. However, we are able to reschedule this program into a more
parallelizable gather program by applying a series of high-level rewrites, verified within our framework,
with the structural ease and abstraction of a paper proof. More specifically, we apply the sequence of
step-by-step transformations shown in Figure 7.4. Each line corresponds to one rewrite written in our
rescheduling framework, resulting in the final program shown below:

B

n=0

K

k=0

W

p=0

C∑
c=0

R∑
r=0

[[[p + r < W]]] · x[n; c; p + r] · w[k; c; r]

In this equivalent form, the summations have been moved inside the loop nests, and the offset when
accessing w has been replaced by an offset when indexing x. The outermost generation loop is now
amenable to thread-level data parallelism. This example demonstrates that our rewrite framework is
capable of expressing scatter-to-gather optimizations.

34

B

n=0

K

k=0

W

p=0

C∑
c=0

R∑
r=0

w[k; c; r] × x[n; c; p + r]

=
B

n=0

K

k=0

W

p=0

C∑
c=0

R∑
r=0

let a := x[n; c; p + r] in w[k; c; r] × a

=
B

n=0

K

k=0

W

p=0

C∑
c=0

let a :=
R

r=0
x[n; c; p + r] in

R∑
r=0

w[k; c; r] × a[r]

=
B

n=0

K

k=0

W

p=0
let a :=

C

c=0

R

r=0
x[n; c; p + r] in

C∑
c=0

R∑
r=0

w[k; c; r] × a[c; r]

=
B

n=0

K

k=0
let a :=

W

p=0

C

c=0

R

r=0
x[n; c; p + r] in

W

p=0

C∑
c=0

R∑
r=0

w[k; c; r] × a[p; c; r]

=
B

n=0
let a :=

W

p=0

C

c=0

R

r=0
x[n; c; p + r] in

K

k=0

W

p=0

C∑
c=0

R∑
r=0

w[k; c; r] × a[p; c; r]

= let a :=
B

n=0

W

p=0

C

c=0

R

r=0
x[n; c; p + r] in

B

n=0

K

k=0

W

p=0

C∑
c=0

R∑
r=0

w[k; c; r] × a[n; p; c; r]

Figure 7.5: Rewrite sequence for scheduling an im2col optimization on a simple convolution

7.3 Im2col
Early convolutional neural networks exploited high-throughput GPUs by transforming batched convolu-
tion operations into matrix multiplies. This transformation worked by first marshalling and duplicating
the input tensor of images and then using existing BLAS subroutines to perform matrix-matrix
multiplies at close to peak machine utilization. Later, GPUs were extended with tensor operations
(smaller granularity matrix-matrix multiplies) and/or replaced with tensor processing units (also
implementing matrix-matrix multiply) to speed up machine-learning pipelines. Throughout these
changes, the data-marshalling-and-duplication transformation (known as im2col, after the Matlab
function) has been essential to exploiting specialized hardware and hand-optimized subroutines.

Usually, the im2col transformation is explained in a series of diagrams that attempt to show how an
image is first packed into a 1D vector, then duplicated and offset to account for translation within the
image domain. Such explanations are further complicated by the presence of additional channel and
batch dimensions within standard specifications of neural-network convolution operations. In Figure
7.5, we show how this transformation can be achieved and explained purely algebraically, via rewriting
in our system. For simplicity we show a 1D version of convolution. (A full 2D version would add in a

vertical image dimension
H

q=0
and vertical filter offset R

s=0.) The essence of the transformation comes

down to binding the read-with-offset subexpression x[n; c; p + r] into an intermediary variable named a
and then simply hoisting this intermediary outside of the nested loops. The resulting computation
of the intermediary a then expresses what is commonly known as the im2col operation, while the
remaining body expresses a standard matrix-matrix multiply.

As with our scatter-to-gather example, this kind of program transformation falls outside the
expressive limits of Halide and similar languages such as TVM. By incorporating it into an expressive
scheduling framework, we also make it possible to apply this transformation at different intermediate
levels of tiling and memory hierarchy, depending on the granularity of the accelerated matrix-matrix
subroutine being targeted.

35

Chapter 8

Implementation Details

In this section, we elaborate on the Coq-related technical details of parts of our framework. This
includes the formulation of the notion of shape and consistency as separate from the type system
of ATL as well as tactic machinery provided for overall safety-checking in a program before
lowering.

8.1 Consistency and Shape
Let us describe the implementation of the formal property of consistency used in our framework that
provides the functionality of the shape function abstraction used throughout this paper. One idiomatic
Coq alternative would be to use dependently typed tensors, so extra checking of shape values would be
unnecessary. However, dependently typed functional programming in Coq today is far from smooth,
so we went with a halfway approach: we use dependent types just to assign a shape type to each
dimensionality, in terms of nested tuples (rather than normal lists, as was the case with the shape
function used in the statements of our previous rewrite theorems), one component per dimension. Then
we apply not a shape function but a (partial) relation to connect expressions with shapes. Consistency
of scalars is defined to be trivially true. Consistency of tensors is defined so that a tensor is consistent
if and only if it is nonempty and every element it contains has the same shape and is also internally
consistent. We are able to prove a consistency lemma for each language construct, so as to enable a
syntax-directed deduction strategy for automated consistency proving and shape deduction.

x : R Scalar Consistency
x ≀ ·

x ≀ s xs ≀ (m, s)
Tensor Consistency

(x :: xs) ≀ (m + 1, s)

Figure 8.1: Consistency

36

∀x. 0 ≤ x < n → e[x/i] ≀ s
Gen Consistency

(
n

i=0
e) ≀ (n, s)

∀x. 0 ≤ x < n → e[x/i] ≀ s
Sum Consistency

(
n∑

i=0
e) ≀ (n, s)

e ≀ s Guard Consistency
([[[p]]] · e) ≀ s

e1 ≀ s e2 ≀ s Bin Consistency
(e1 ⊕ e2) ≀ s

e ≀ (n, s)
Get Consistency

(e[i]) ≀ s

e1 ≀ s ∀x. x ≀ s → Γ ⊢ e2[x/i] ≀ s′
Let Consistency

(let i := e1 in e2) ≀ s′

Figure 8.2: Consistency

8.2 Access Safety
Our framework makes heavy use of the indicator function to guard branches of execution – thus
protecting us from undefined behavior from out-of-bounds accesses on tensors. We provide a tactic
called check_safe to check that all accesses within a given program are valid. In order to do so,
this tactic follows a familiar pattern in our framework where it descends through program structure,
collecting information-rich contexts. Once this tactic happens upon an access, it tries to prove that the
index of that access is nonnegative and less than the length of the tensor. If the procedure succeeds,
then we know that the C compilation of a term will not make out-of-bounds accesses, and thus it does
not matter that C marks out-of-bounds accesses as undefined behavior, rather than always returning
zero as in our semantics. Again, we chose this method vs. using dependent types to assure accesses,
given the logistical baggage of dependent types in Coq today.

37

Chapter 9

Future Work

We have a developed a verified framework for optimizing tensor programs through a series of
algebraic rewrites, and our evaluation shows that this is able to match Halide’s performance
for some important benchmarks. In this section we discuss prospective threads of future and
ongoing work to provide a formally verified stack that supports writing tensor computations in
high-level functional notation, choosing optimizations on them via proof scripts in Coq, feeding
them through verified compilers, and running them on verified hardware, including data-parallel
accelerators – leading to final Coq theorems relating the original functional programs to Verilog
designs and their proper initial memory contents.

9.1 Streamlining the Optimization Process with Automation
User scheduling improves on the default experience of using a compiler. Programmers are used to being
at the mercy of automatic optimizers, where they can influence the process at most by choosing among
coarse-grained command-line flags. Instead, with user scheduling, explicit annotations in programs
control which optimizations apply. However, with languages like Halide, it remains very difficult to add
support for new kinds of scheduling directives, and even experts tend to introduce bugs that endanger
soundness. Our preliminary work presents optimization directives as Coq tactics, or proof-producing
procedures. As a result, no one needs to trust a new optimization directive, since its generated proofs
can be checked from first principles. Coq also provides a Turing-complete tactic language that eases
construction of new directives. The advantage is similar to the classic one for verification, comparing
proof assistants to SMT solvers, where the latter at first appear to provide superior automation but
can also more commonly lead users to “brick walls” of unsolved goals with no recourse to more manual
proof.

However, the granularity of our optimization directives is much finer than in Halide. As a result,
more programmer expertise is required to use them, and even experts will take longer to write scripts
than they would need in Halide. The natural solution is the same as for verification in Coq: develop
higher-level tactics on top of the ones we already wrote. The design space here is somewhat unexplored,
with past user-scheduled languages providing only quite limited vocabularies, with no concern for easy
extension with new directives.

An obvious first step is to draw on the suite of operators in Halide, TVM, and other such languages
for inspiration. Similar abstractions should be feasible to provide with modest to moderate levels of

38

additional automation. One complexity is the need for higher-level tactics to infer sufficient but tight
bounds for tensor comprehensions. To make schedules concise, Halide, for example, lets programmers
elide bounds from most scheduling directives, leaving them instead to be inferred automatically from
context. ATL is currently designed to require affine index expressions and loop bounds, which makes
inferring tight bounds generally decidable. Beyond this, we believe there is opportunity to raise
the abstraction further to blur the boundary between schedule-directed and automatic optimization.
Rather than either manually specifying tiling choices or relying on a fully automatic “autoscheduler,” a
programmer could employ an “auto-tiling” tactic which used a cost model or autotuning to search just
over potential tiling choices, while leaving them free to control which tensors would be tiled and to
perform arbitrary additional scheduling rewrites before and after. An advantage of working in Coq is
that arbitrary outside logic can be employed to infer bounds or make higher-level scheduling decisions
with no risk of affecting correctness, since the ultimate program and proof are still formally checked.

9.2 Increasing the Source Language’s Expressivity
To allow our tools to be used to write and optimize a broader range of tensor kernels, we plan to
explore extensions to the source language ATL. Experience developing particular case-study programs
will inform which extensions we tackle, but here we sketch one that we already have in mind, support
for sliding-window computations.

In our preliminary work, all explicit loop-style behavior comes either from tensor comprehensions
or summations

∑
. Each considers all values of an index variable within a contiguous range of

integers, and quite a variety of access patterns to existing tensors can be phrased in this way. However,
it is difficult to encode general loop accumulators, where one cell of a generated tensor is defined partly
in terms of values filled into other cells of the output by the same loop. Another way to describe the
limitation is that ATL has very good support for “map”-style computations but weak support for
“fold”-style computations, only providing summation as a special case.

Consider a 2D two-stage pipeline that averages 2 × 2 windows of an image. It first averages along
one axis and then along the other.

let Y :=
n

i=0

n

j=0
[[[i > 0]]] · X[i − 1, j] + X[i, j] in

let Z :=
n

i=0

n

j=0
[[[j > 0]]] · Y [i, j − 1] + Y [i, j] in

Z

This organization of the computation is work-efficient (no redundant recomputation) but has poor
locality (the entire Y intermediary buffer is pushed out to memory before any of its values are reused
to compute Z). If we inline the computation of Y into the computation of Z, the trade-off reverses:
we immediately use the Y intermediary values but have to recompute Y [i, j] for Z[i, j + 1] rather than
reusing the already computed value.

If we could interleave the computations of Y and Z, then we could achieve better locality without
sacrificing work-efficiency. In Halide, this kind of optimization is known as a “sliding window”
optimization. If we paused such a computation after computing Z[i, j], we would see that the computed
entries of the Y and Z buffers look like they do in the following image:

Y Z

Given a simultaneous let-binding of both Y and Z, we would like to specify a different way to compute
both buffers together.

We expect to do nontrivial design-space exploration in figuring out the best way to encode such
computations. Our best idea of the moment is a kind of general recursive tensor comprehension. To

39

use the example of a prefix sum, we might encode it as:

X=
n

i=0
(a[i] + [[[i > 0]]] · X[i − 1])

We add a left superscript on the comprehension, naming the final result. The body expression then
carefully references that result, ideally respecting some total order on “recursive calls” to ensure
termination. Such a feature is more difficult than it may seem to encode in Coq, where the functional
programming language Gallina enforces termination of every definition. General recursion is famously
involved to fit in such a language. To that end, we extend the hypothetical recursive comprehension to
also take in a well-founded relation as parameter:

X[λa,b. a+1=b]=
n

i=0
(a[i] + [[[i > 0]]] · X[i − 1])

The relation λa, b. a + 1 = b expresses that recursive calls are only allowed on indices one lower. If
the result tensor X is referenced in the body at any other index, we provide safe default behavior of
returning a type-appropriate zero value. There is a natural alternative, of using dependent types to
ensure all accesses respect the relation, but our experience suggests internalizing that kind of reasoning
to type checking leads to excessive complexity in Coq. The trick we suggest has much in common with
the way we already handle out-of-bounds tensor accesses, where, to support generation of efficient C
code, we require proof that no such accesses actually occur. If this encoding of sliding windows pans
out, then we will require the same kind of proof that recursion relations are always respected. Then
we can generate code to loop over output positions in relation order.

9.3 Verifying Current Lowering to C
Our evaluation of our framework currently uses a trusted lowering process from pure, functional ATL
into low-level, imperative C code. We are conducting ongoing work to verify this compilation process
so as to reduce the trusted portion of our stack.

To do so we begin by formalizing the normal form of ATL that programs are normalized to before
lowering. This is because the normalizing rewrites are the last of the verified transformations in our
framework. We then formalize the specific subset of C that our lowering generates and define its
semantics as a relation transforming starting state, represented as a stack and heap, to a final state
that is what results after the imperative program executes. Our statement of correctness then relates
the functional ATL semantics to the imperative one by stating the computed ATL value must reside in
the specified memory location in the final state produced by the execution of the lowered program.

An ATL program is lowered in a destination-passing style, by passing down and building upon a
continuation that represents the accumulation of the index expression for storage of the computed
values. Given that this is effectively a construct representing where each value of the corresponding
higher-dimensional ATL computed tensor will reside in memory from the execution of its lowering, it’s
no surprise that being able to reason about its effects is the key to proving our top-level statement of
correctness.

Although we eventually intend to retire this specific lowering to a C backend in favor of a new
low-level IR with greater hardware-specifying expressivity, we expect a fair amount of proof structure
and strategy to be not only portable but essential in the verification of compilation to a new target as
well. This is because regardless of the specific target we chose, be it C or some other low-level imperative
language, we expect to have to do similar kinds of algebraic reasoning about the accumulation of the
storage continuation.

9.4 Proof-Generating Compilation to a New Lower-Level IR
Although our current work implements a lowering of ATL into C code, this naive translation is
effectively specialized to a choice of available hardware operations, for instance providing no way to
signal a call to a tensor processing unit (if available) for fast matrix multiply. Therefore, we propose to

40

build a proof-generating translation to a new intermediate language that exposes available hardware
accelerators explicitly. Our starting point is the Exo language already designed and implemented [25].

Exo has been embedded in Python as a practical choice, but it is probably not the right move
for supporting a fully proof-generating pipeline. As we embedded ATL in Coq, we propose to do
the same with Exo. We will explore the tradeoff space between a shallowly embedded version (make
programming with special memories look just like normal Coq functional programming, probably in an
appropriate monad) and a deeply embedded version (define an explicit type of abstract syntax trees).

One important question here is the right kind of formal semantics to apply to ExoL-like programs.
Our current guess is that the final meaning of a program should be in the style of interaction trees [41].
That is, we would work with explicit syntax trees of monadic programs calling stateful primitives from
a menu that may vary from program to program. In this case, the menu is based on which special
memories and instructions are configured. The operations are then (1) creation of special memories,
(2) standard memory operations performed on them, and (3) invocation of special instructions.

Another design dimension here is the separation of semantics and compilation details for special
memories. Exo programs mix interface and implementation, giving literal C code along with each
callable procedure. Instead, standard memory operations could be given without accompanying code,
and special instructions could be presented just as Coq functional programs to express semantics. With
these semantic versions alone, we can develop a rewriting-based refinement framework for programmer-
guided optimization of programs, working at this lower abstraction level than we explored with ATL.
The technique must be adapted to the presence of explicit side effects, unless we come up with a trick
similar to reshape operators, for presentation of these side effects as non-monadic pure code.

9.5 Verified Compilation From the New IR to Machine Code
The next transition must be to a low-level programming language that exposes certain hardware
primitives directly. This new low-level IR will likely be very similar to the subset of C we compile to,
so much of the verification process will likely be similar as well.

We will be starting from an Exo-inspired IR, outputting the Bedrock2 software language at the
center of previous work conducted in end-to-end hardware-software verification [15]. Bedrock2 has
been designed from the start to be flexible in exposing I/O primitives, with the chance to reuse core
compiler proofs as the I/O model changes. The proposed work would stress-test that mechanism as a
connection to accelerators. The top-level specification for an application should involve only simple
I/O: input tensors arrive in memory somehow, then at termination output tensors should be found in
memory. However, the I/O internal to the system’s operation gets more interesting. We want to enable
separate proof of application, software compiler, processor, accelerators, and hardware compiler – it
should be possible to replace any with a more optimized version, without needing to change the proofs
of the others. That means we need to prove software programs against specifications with intricate
dances of moving tensors back and forth between DRAM and scratchpads. Luckily, again, those are
internal implementation details that do not infect the final theorem. However, we must still deal with
the proof-engineering challenges they raise, on the path to that end theorem. Since this whole proposed
project is more performance-oriented than in our past work [15], we expect to occasionally notice the
need for new optimizations that are orthogonal to tensor programs.

9.6 Verification of Hardware Accelerators
Exo programs explain hardware connections by generating C source code. A compilation flow proved
from first principles could use a different style, to simplify assignment of formal semantics to all pieces.
We could adopt a variety of approaches to mechanize the semantics of hardware accelerators, but the
gold standard to detect semantics mistakes is to prove the semantics from both sides, as popularized in
the NSF Expedition on the Science of Deep Specification (DeepSpec) [1], in which Chlipala was a PI.
That is, when formalizing an interface between software and hardware, it pays to prove both software
and hardware against that interface. DeepSpec studied such questions, but without any hardware
accelerators.

To adapt that activity to high-performance computing with tensors, the first research direction
we propose is formal verification of hardware accelerators in Coq. One outgrowth of the DeepSpec

41

work is the Kôika hardware description language and verification framework [5]. Kôika is inspired by
the hardware language Bluespec, which provides higher-level modularity features than found in more
popular languages like Verilog, allowing more techniques from software verification to be ported over,
including proof of libraries against clean interfaces. At the same time, there is a Coq-verified compiler
to Verilog RTL, so the trust story is not endangered by the move to higher-level code. The canonical
examples implemented in Kôika have been general-purpose processors, and work is proceeding on
developing tools to prove their functional correctness, adapting ideas from our predecessor project
Kami [11], where modular proof was given of an infinite family of RISC-V multicore systems with
cache-coherent shared memory.

Though Bluespec itself has been used to implement hardware accelerators, the prior work with Kami
and Kôika has not proved accelerators. We propose to undertake several such proofs in this project.
The exact set of accelerators will be determined by our experiences coding and performance-tuning
example kernels. Our best guess at the moment is that we should tackle a vector ISA extension and
a simple tensor processing unit (TPU). These are interesting for their different styles of hardware
interface.

The vector extension introduces new machine-code instructions, for applying operators in parallel
across arrays. We would almost certainly implement a subset of the standardized vector extension
for the RISC-V architecture family, as we already have a pipelined processor in Kôika for the base
instruction set, whose correctness Coq proof is underway. The new work would involve modifying
that processor to support vector instructions, along with extending our ISA formal specification and
adapting the processor correctness proof.

The TPU would support variants of dense matrix multiplication and perhaps a few other operations.
Its implementation in Kôika would likely look interestingly different from a processor’s. We expect
some of the main complications would be in the use of special registers and memory regions (e.g.,
scratchpads) for communicating large tensors back and forth between processor and accelerator. Indeed,
with this accelerator we do not get out of modifying the processor and its specification and correctness
proof. There are new research challenges in specifying and verifying the two pieces modularly, even
before we bring in proof of software programs. Co-PI Ragan-Kelley has already helped develop a
relatively simple but efficient TPU-like architecture family that functions as a RISC-V co-processor
[18]. We will likely begin by porting parts of that design from Chisel to Kôika and developing a formal
specification of its functionality.

Another nontrivial aspect is adding hardware support for the floating-point numbers assumed by
most tensor kernels. We hope to build upon the Coq library Flocq [4] used by the verified C compiler
CompCert [29]. Perhaps we can implement proof-generating translation of functional programs from
that library to Kôika expressions, providing a convenient path to verified implementations. However,
we are allocating time for significant implementation and proof work to obtain a RISC-V-compatible
implementation.

With these software-hardware interfaces formalized (and validated with proof of the hardware
implementations), we can connect to the Exo-style IR of the prior subsection. The reference implemen-
tation of each special instruction can be proved equivalent to machine-code instructions that are also
given, by referring to what the hardware semantics says about those lower-level instructions. That
exercise validates the rewrites applied to the IR, by grounding them in hardware implementation.

42

Bibliography

[1] Appel, A. W., Beringer, L., Chlipala, A., Pierce, B. C., Shao, Z., Weirich, S., and
Zdancewic, S. Position paper: the science of deep specification. Philosophical Transactions of
the Royal Society A: Mathematical, Physical and Engineering Sciences 375 (2017).

[2] Bauer, M., Treichler, S., Slaughter, E., and Aiken, A. Legion: expressing locality and
independence with logical regions. In SC Conference on High Performance Computing Networking,
Storage and Analysis, SC ’12 (Piscataway, NJ, USA, Nov 2012), IEEE, p. 66.

[3] Bernstein, G., Mara, M., Li, T.-M., Maclaurin, D., and Ragan-Kelley, J. Differentiat-
ing a tensor language, 2020.

[4] Boldo, S., and Melquiond, G. Flocq: A unified library for proving floating-point algorithms
in Coq. In 2011 IEEE 20th Symposium on Computer Arithmetic (2011), pp. 243–252.

[5] Bourgeat, T., Pit-Claudel, C., Chlipala, A., and Arvind. The essence of Bluespec: A
core language for rule-based hardware design. In PLDI’20: Proceedings of the ACM SIGPLAN
2020 Conference on Programming Language Design and Implementation (June 2020).

[6] Chakravarty, M. M. T., Keller, G., Lee, S., McDonell, T. L., and Grover, V.
Accelerating Haskell array codes with multicore GPUs. In Proceedings of the POPL 2011 Workshop
on Declarative Aspects of Multicore Programming (New York, NY, USA, 2011), M. Carro and
J. H. Reppy, Eds., Association for Computing Machinery, pp. 3–14.

[7] Chamberlain, B., Callahan, D., and Zima, H. Parallel programmability and the chapel
language. The International Journal of High Performance Computing Applications 21, 3 (2007),
291–312.

[8] Chamberlain, B. L. The design and implementation of a region-based parallel programming
language. PhD thesis, The University of Washington, 2001.

[9] Chen, C., Chame, J., and Hall, M. CHiLL: A framework for composing high-level loop
transformations. Tech. rep., University of Southern California, 2008.

[10] Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Cowan, M., Shen, H., Wang, L.,
Hu, Y., Ceze, L., Guestrin, C., and Krishnamurthy, A. TVM: An automated end-to-end
optimizing compiler for deep learning. In Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation (Berkeley, CA, USA, 2018), OSDI’18, USENIX Association,
pp. 579–594.

[11] Choi, J., Vijayaraghavan, M., Sherman, B., Chlipala, A., and Arvind. Kami: A
platform for high-level parametric hardware specification and its modular verification. In ICFP’17:
Proceedings of the 22nd ACM SIGPLAN International Conference on Functional Programming
(Sept. 2017).

[12] Delaware, B., Pit-Claudel, C., Gross, J., and Chlipala, A. Fiat: Deductive synthesis of
abstract data types in a proof assistant. In ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015 (2015), pp. 689–700.

43

[13] Delaware, B., Suriyakarn, S., Pit-Claudel, C., Ye, Q., and Chlipala, A. Narcissus:
Correct-by-construction derivation of decoders and encoders from binary formats. In Proc. ICFP
(Aug. 2019).

[14] Donadio, S., Brodman, J. C., Roeder, T., Yotov, K., Barthou, D., Cohen, A.,
Garzarán, M. J., Padua, D. A., and Pingali, K. A language for the compact representation of
multiple program versions. In Languages and Compilers for Parallel Computing, 18th International
Workshop, LCPC 2005 (Berlin, Heidelberg, 2005), Springer Berlin Heidelberg, pp. 136–151.

[15] Erbsen, A., Gruetter, S., Choi, J., Wood, C., and Chlipala, A. Integration verification
across software and hardware for a simple embedded system. In PLDI’21 (2021).

[16] Fatahalian, K., Horn, D. R., Knight, T. J., Leem, L., Houston, M., Park, J. Y., Erez,
M., Ren, M., Aiken, A., Dally, W. J., and Hanrahan, P. Sequoia: Programming the
memory hierarchy. In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (New
York, NY, USA, 2006), SC ’06, Association for Computing Machinery, p. 83–es.

[17] Fu, R., Qin, X., Dardha, O., and Steuwer, M. Row-polymorphic types for strategic
rewriting, 2021.

[18] Genc, H., Kim, S., Amid, A., Haj-Ali, A., Iyer, V., Prakash, P., Zhao, J., Grubb, D.,
Liew, H., Mao, H., Ou, A., Schmidt, C., Steffl, S., Wright, J., Stoica, I., Ragan-
Kelley, J., Asanovic, K., Nikolic, B., and Shao, Y. S. Gemmini: Enabling systematic
deep-learning architecture evaluation via full-stack integration. In Proceedings of the 58th Annual
Design Automation Conference (DAC) (2021).

[19] Graham, R. L., Knuth, D. E., and Patashnik, O. Concrete Mathematics. Addison Wesley,
2011, p. 36–37.

[20] Hagedorn, B., Elliott, A. S., Barthels, H., Bodik, R., and Grover, V. Fireiron: A
scheduling language for high-performance linear algebra on GPUs, 2020.

[21] Hartono, A., Norris, B., and Sadayappan, P. Annotation-based empirical performance
tuning using Orio. In 23rd IEEE International Symposium on Parallel and Distributed Processing,
IPDPS 2009, Rome, Italy, May 23-29, 2009 (Piscataway, NJ, USA, 2009), IEEE, pp. 1–11.

[22] Henriksen, T., Serup, N. G. W., Elsman, M., Henglein, F., and Oancea, C. E. Futhark:
Purely functional GPU-programming with nested parallelism and in-place array updates. In
Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and
Implementation (New York, NY, USA, 2017), PLDI 2017, ACM, pp. 556–571.

[23] Hietala, K., Rand, R., Hung, S.-H., Wu, X., and Hicks, M. A verified optimizer for
quantum circuits. Proceedings of the ACM on Programming Languages 5, POPL (Jan 2021), 1–29.

[24] Hu, Y., Li, T., Anderson, L., Ragan-Kelley, J., and Durand, F. Taichi: a language for
high-performance computation on spatially sparse data structures. ACM Trans. Graph. 38, 6
(2019), 201:1–201:16.

[25] Ikarashi, Y., Bernstein, G. L., Reinking, A., Genc, H., and Ragan-Kelley, J. Exo-
compilation for productive programming of hardware accelerators. Proceedings of the 43rd ACM
SIGPLAN Conference on Programming Language Design and Implementation (2022).

[26] Iverson, K. E. A Programming Language. John Wiley & Sons, Inc., New York, NY, USA, 1962.

[27] Kjolstad, F., Kamil, S., Chou, S., Lugato, D., and Amarasinghe, S. The tensor algebra
compiler. Proceedings of the ACM on Programming Languages 1, OOPSLA (oct 2017), 1–29.

[28] Kommrusch, S., Barollet, T., and Pouchet, L.-N. Proving equivalence between complex
expressions using graph-to-sequence neural models, 2021.

[29] Leroy, X. A Formally Verified Compiler Back-end. Journal of Automated Reasoning 43, 4 (Dec.
2009), 363–446.

44

[30] Li, T.-M., Gharbi, M., Adams, A., Durand, F., and Ragan-Kelley, J. Differentiable
programming for image processing and deep learning in Halide. ACM Trans. Graph. (Proc.
SIGGRAPH) 37, 4 (2018), 139:1–139:13.

[31] Liu, A., Bernstein, G., Chlipala, A., and Ragan-Kelley, J. Verified tensor-program
optimization via high-level scheduling rewrites. In POPL’22: Proceedings of the 49th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Jan. 2022).

[32] Paszke, A., Johnson, D. D., Duvenaud, D., Vytiniotis, D., Radul, A., Johnson, M. J.,
Ragan-Kelley, J., and Maclaurin, D. Getting to the point. index sets and parallelism-
preserving autodiff for pointful array programming. In The 25th ACM SIGPLAN International
Conference on Functional Programming (ICFP) (August 2021), ACM SIGPLAN, ACM.

[33] Pit-Claudel, C., Wang, P., Delaware, B., Gross, J., and Chlipala, A. Extensible
extraction of efficient imperative programs with foreign functions, manually managed memory,
and proofs. In IJCAR’20: Proceedings of the 9th International Joint Conference on Automated
Reasoning (June 2020).

[34] Ragan-Kelley, J., Adams, A., Paris, S., Levoy, M., Amarasinghe, S. P., and Durand,
F. Decoupling algorithms from schedules for easy optimization of image processing pipelines.
ACM Trans. Graph. 31, 4 (2012), 32:1–32:12.

[35] Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., and Amarasinghe, S.
Halide: A Language and Compiler for Optimizing Parallelism, Locality, and Recomputation in
Image Processing Pipelines. In Proc. PLDI (Seattle, 2013), ACM.

[36] Slepak, J., Shivers, O., and Manolios, P. An array-oriented language with static rank
polymorphism. In Programming Languages and Systems (Berlin, Heidelberg, 2014), Z. Shao, Ed.,
Springer Berlin Heidelberg, pp. 27–46.

[37] Smith, G. H., Liu, A., Lyubomirsky, S., Davidson, S., McMahan, J., Taylor, M., Ceze,
L., and Tatlock, Z. Pure tensor program rewriting via access patterns (representation pearl).
In Proceedings of the 5th ACM SIGPLAN International Symposium on Machine Programming
(New York, NY, USA, 2021), MAPS 2021, Association for Computing Machinery, p. 21–31.

[38] Steuwer, M., Fensch, C., Lindley, S., and Dubach, C. Generating performance portable
code using rewrite rules: From high-level functional expressions to high-performance opencl code.
In Proceedings of the 20th ACM SIGPLAN International Conference on Functional Programming
(09 2015), vol. 50, Association for Computing Machinery.

[39] Vasilache, N., Zinenko, O., Theodoridis, T., Goyal, P., DeVito, Z., Moses, W. S.,
Verdoolaege, S., Adams, A., and Cohen, A. Tensor comprehensions: Framework-agnostic
high-performance machine learning abstractions, 2018.

[40] Venkat, A., Rusira, T., Barik, R., Hall, M., and Truong, L. Swirl: High-performance
many-core CPU code generation for deep neural networks. The International Journal of High
Performance Computing Applications 33, 6 (2019), 1275–1289.

[41] Xia, L., Zakowski, Y., He, P., Hur, C., Malecha, G., Pierce, B. C., and Zdancewic,
S. Interaction trees: representing recursive and impure programs in Coq. Proc. ACM Program.
Lang. 4, POPL (2020), 51:1–51:32. Distinguished paper award.

[42] Yi, Q., Seymour, K., You, H., Vuduc, R. W., and Quinlan, D. J. POET: parameterized
optimizations for empirical tuning. In 21st International Parallel and Distributed Processing
Symposium (IPDPS 2007) (Piscataway, NJ, USA, 2007), IEEE, pp. 1–8.

[43] Zhang, Y., Yang, M., Baghdadi, R., Kamil, S., Shun, J., and Amarasinghe, S. P.
Graphit: a high-performance graph DSL. PACMPL 2, OOPSLA (2018), 121:1–121:30.

45

	Introduction
	A Coq Framework
	Contributions
	Overview and Motivating Example

	Related Work
	User-Schedulable Languages
	Rewrite-Based Optimization Systems
	Verified Program Derivation
	Functional Languages

	A Tensor Language
	A Simple Pipeline Example
	Specification
	Types
	Syntax and Semantics

	Verified Rewrite Framework
	Scheduling Rewrites
	Binders and Contexts
	Rewrite Tactics and Automation

	Compilation
	Normalization
	Code Generation

	Reshape Operators
	Compute and Storage Order
	Safe Garbage
	Adjoint Introduction

	Evaluation
	Blur
	Scatter-to-Gather Optimization
	Im2col

	Implementation Details
	Consistency and Shape
	Access Safety

	Future Work
	Streamlining the Optimization Process with Automation
	Increasing the Source Language's Expressivity
	Verifying Current Lowering to C
	Proof-Generating Compilation to a New Lower-Level IR
	Verified Compilation From the New IR to Machine Code
	Verification of Hardware Accelerators

