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ABSTRACT

The translation of a cryptographic protocol from specification to code has long been a
source of bugs and vulnerabilities. In particular, erroneous state-machine logic has under-
mined the security of many cryptographic implementations. Inspired by a high-profile case
where faulty control flow in TLS state-machine code led to a severe vulnerability, we develop
modular reasoning principles for proving the correctness of a low-level state-machine imple-
mentation against a high-level specification of a distributed message-passing protocol. We
introduce a compact and expressive representation for modeling concurrent state machines
in Coq and connect it to the Interactive Probabilistic Dependency Logic, a process calcu-
lus that comes coupled with an equational logic for simplifying cryptographic proofs. In the
style of process-algebra proof techniques, we simplify verification of concurrent state-machine
implementations by stating algebraic laws by which proofs of multithreaded programs are
derived from those of their component threads.
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Chapter 1

Introduction

For as long as cryptographic protocols have been deployed, there has always been a glaring
gap between the worlds of theory and practice. While a protocol may sport formal guarantees
of security subject to certain assumptions, it is usually another story entirely as to whether
it retains that security when laid out into code by error-prone authors. In light of this
concern, it would be desirable to be able to write out cryptographic protocols in a high-level
specification source language and demonstrate that a low-level reference implementation
preserves the semantics and proven security of the protocol. To this end, we present proof
techniques to verify low-level state machine code, mechanized in the Coq theorem prover.

1.1 Motivating Example: TLS Handshake Vulnerability

To illustrate the problem at hand, we turn our attention to a particularly grievous TLS
vulnerability that plagued OpenSSL 1.0.1g and earlier [1]. During the TLS handshake, the
server and client engage in a stateful interaction to establish cipher settings and session-
specific keys to be used in the encrypted session to follow. In the affected versions, OpenSSL
accepted a ChangeCipherSpec message before the master secret was generated, causing
session-specific keys to be derived from a zero-length master secret [2]. With this in mind,
an attacker in the middle of the connection can inject a ChangeCipherSpec message in both
directions to cause both parties to generate identical, deterministic session keys. From there,
the attacker would know both parties’ shared secret and thus have the ability to decrypt and
modify all encrypted traffic.

The vulnerability arises from a faulty interpretation of the TLS state-machine control
flow. In a correct TLS implementation, a ChangeCipherSpec should be accepted only when
a new cipher is ready to be used. However, in the affected code, the boolean flag new_cipher
tracking this information is actually set as soon as a new cipher type is decided, not when
the cipher parameters have actually been set [2].

1.2 Contributions

To remedy the sort of issues described in the prior section, we provide the following contri-
butions:
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• We present a small-step operational semantics for Interactive Probabilistic Dependency
Logic (IPDL), a high-level language for specifying distributed, message-passing crypto-
graphic protocols that comes coupled with an equational logic for mechanizing security
proofs.

• We construct a compact representation for state-machine programs, aiding in simpli-
fying involved control flow into straight-line code and making more explicit transitions
between individual program states.

• We develop a labeled transition system for state machines, prove trace inclusion be-
tween state machines and IPDL, and develop a notion of simulation for equating the
behavior of IPDL programs to state machines.

• We adapt modular proof techniques from process algebra to connect simulation proofs
of individual threads to those of multithreaded programs.

10



Chapter 2

Related Work

2.1 Formally Verified Cryptography

Given the challenge of designing cryptographic systems and their widespread deployment on
the modern Internet, a variety of formal verification tools have been developed to provide a
high level of assurance in their reported security properties. Broadly speaking, approaches
to formally verified cryptography typically rely on one of two protocol models. On one
hand, some tool authors choose to operate within the Dolev-Yao symbolic model, where
cryptographic primitives are modeled as black-box function symbols and messages as terms
supplied as arguments to these functions [3]. The symbolic model has the benefit of being
conducive to proof autmotation, since one can exhaustively compute the set of messages that
the adversary knows [4].

Though many tools have been written in this vein, including ProVerif [5], Tamarin [6],
DeepSec [7], and others, security guarantees in the symbolic model are weaker than those
granted in the computational model. In this model, cryptographic primitives are mod-
eled as functions on bitstrings and the adversary is seen as a probabilistic polynomial time
Turing machine. Security properties are stated and proven as propositions about proba-
bility distributions. One salient framework for cryptographic proof in ths vein is Universal
Composability (UC), particularly due to its high expressive power and ability to compose
proofs of protocols together in a modular way. Security proofs in UC operate by proving
observational equivalence between the protocol in question and an idealization that serves
as a trusted source of security. Though the computational model provides strong security
guarantees, probabilistic reasoning in this setting has historically proven tricky to automate.
Additionally, the semantics of distributed message-passing protocols complicate proofs of ob-
servational equivalence. In particular, concurrent message passing means one has to wrestle
with nondeterminism and deal with multiple possible interleavings of messages. Capturing
the interactivity in such protocols can involve a lot of proof effort since one must establish
observational equivalence by writing out explicit bisimulations over protocol states [8].

Recent attempts have tried to bring together the best of both worlds. These include
IPDL, a language for specifying distributed protocols in a message-passing style that comes
coupled with an equational logic. By constraining the language to a subset of confluent
protocols, IPDL is able to provide means to prove observational equivalences using simple
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equational reasoning rules, without needing to write out explicit bisimulations. Since the
logic is proven to be sound with respect to the computational model, any proofs established
within IPDL hold within the assumptions of the computational model.

2.2 Proof-generating Compilation

While formal verification of protocol specifications helps to bolster our confidence in their
purported security properties, sticking to this domain brings us no closer to a world where
vulnerability-free cryptographic code is the norm. In order to connect the lessons of protocol
verification to real-world production code, efforts have been made to construct formally
verified compilation schemes that generate code that is secure by construction.

To date, many such efforts are restricted to certain algorithms or subsets thereof. For
instance, Fiat Cryptography introduces a formally verified compilation scheme for translating
high-level Coq code of certain cryptographic primitives into C and x86 assembly [9]. Ikebuchi
et. al produce verified nested state machine code common in protocols like TLS by compiling
down from a high-level functional language, avoiding the laborious and often error-prone
process of writing such code by hand [10].

Ikebuchi et. al’s work makes use of a form of program derivation, where compilation is
framed as a proof search for the existence of a program that satisfies a given spec. This is
made possible by Coq’s powerful Ltac tactic scripting language, which allows one to introduce
existential variables to propositions and fill them in as additional constraints become known.
As a result, Coq is able to guarantee correctness of the compiled program by constructing it
in tandem with its proof.

More comprehensive projects include EverCrypt [11], a suite of verified and performant
cryptographic functions exposed through an agile API. Through the use of generic types,
EverCrypt allows clients to switch between multiple algorithms that provide the same func-
tionality.
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Chapter 3

Small-Step Operational Semantics for
IPDL

As a first step, we showcase a small-step operational semantics for defining the execution of
IPDL programs under the backdrop of an external environment that mediates the exchange
of data between threads. But before doing so, we give a brief overview of IPDL, explaining
its security guarantees and language features.

3.1 Background on IPDL

3.1.1 Security in IPDL

Following in the tradition of UC-style security proofs, cryptographic protocols in IPDL are
modeled as distributed, message-passing systems comprising of communicating parties and
functionalities, ideal services whose security is assumed, like an authenticated communication
channel [12]. Additionally, protocols in UC interact with the external world through two
interfaces: an environmental interface and an attacker interface [12]. The environmental
interface specifies the general I/O mechanism that the parties use to communicate. On the
other hand, the attacker interface details the capabilities of the attacker to undermine the
protocol, like being able to eavesdrop on or tamper with in-flight messages.

Security properties in IPDL are proved by comparing protocols to idealizations wherein
computations are performed by trusted functionalities. Compared to the attacker interface
of a generic protocol, the idealization’s attacker interface is extermely constrained, being
able to only tell whether or not a computation has been carried to completion. A security
proof in this domain typically aims to establish observational equivalence between a protocol
π and an idealization Ideal. The Ideal protocol is typically connected to a simulator whose
job it is to convert the attacker interface of Ideal to that of π. In doing so, it is shown that
a polynomial-time attacker has no means of distinguishing between π and Ideal, and so no
attack launched on π is more powerful than one directed towards Ideal.

Such proofs usually involve long chains of equivalence steps comprising of both exact and
approximate congruences. The former concerns semantic equivalences between protocols,
while the latter is typically applied to take advantage of an indistinguishability assumption.
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Most non-trivial proof effort is confined to establishing exact equivalences, which commonly
involves writing bisimulations. However, bisimulations are tedious to write and require
a disproportionate amount of low-level reasoning, complicating proofs and distracting from
high-level cryptographic details. By limiting the expresssiveness of the language, IPDL is able
to admit general equational-reasoning principles for establishing semantic and approximate
equivalences without the need for explicit hand-written bisimulations.

3.1.2 Language Features

Having covered security in IPDL, we now segue into a slightly informal exposition of the
core language features. At its most basic level, the IPDL language is a process calculus
consisting of two layers: protocols and reactions. Protocols describe systems of concurrent,
interactive channels that are assigned to probabilistic, monadic programs known as reactions.
Reactions are capable of reading from channels, sampling from distributions, and signaling
when a value should be broadcast to other channels. Below, we show a simplified version of
the IPDL syntax more closely mirroring the shallow embedding used in the Coq library.

Types τ ::= τ types
Values v ::= v values (of type τ)
Expressions e ::= e expressions
Distributions d ::= d distributions
Channels c ::= c channels
Reactions R,X ::= ret(e) return

| samp(d) sampling from distribution
| read c channel read
| x : τ ← R;X reaction bind

Protocols P,Q ::= Zero inert protocol
| c ::= R channel assignment
| P∥Q parallel composition
| new c : τ in P local channel generation

Protocols are built from three main constructors: c ::= R assigns to channel c a reaction
R, P1||P2 allows protocols P1 and P2 to engage in concurrent interaction, new c : τ in P
generates a new local channel for private use in P . Zero stands for the inert protocol, which
is primarily used as the identity in parallel composition. Letting unit stand for the unit type,
it can be derived from the new constructor: new c : unit in c ::= ret(())

The basic I/O for IPDL protocols occurs inside reactions: read c retrieves a value that was
broadcast from channel c while c ::= ret(v) broadcasts value v to any protocol that wants
to read from c. The reaction bind construct x : τ ← R;X enables reaction composition,
threading the value x returned by R into reaction X.

To formalize the features we have discussed so far, we present a fragment of the oper-
ational semantics for IPDL below. Protocols possess several stepping relations. P

o:=v−−→ Q
indicates that the reaction assigned to o has terminated, broadcasting value v and yielding
protocol Q. In addition, Gancher et al. [8] define both a small-step internal stepping relation
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P → η and a big-step relation P ⇓ η for relating protocols to distributions over protocols.
For the sake of brevity, we omit these relations and focus our attention on the small-step
output relation, where the syntax has been extended slightly to allow reactions and protocols
to hold intermediate values:

o ::= val(v) o:=v−−→ o ::= v

P
o:=v−−→ P ′

P∥Q o:=v−−→ P ′∥Q[read o := val(v)]

Q
o:=v−−→ Q′

P∥Q o:=v−−→ P [read o := val(v)]∥Q′

P
o:=v−−→ Q o ̸= c

new c : τ in P
o:=v−−→ new c : τ in Q

Assuming we already have big-step semantics defined for expressions and distributions,
the behavior of reactions is specified by a stepping relation from reactions to distributions
over reactions:

e ⇓ v

ret(e)→ unit(val(v)) x : τ ← val(v);S → unit(S[x := v])

d ⇓
∑

i ciunit(vi)
samp(d)→

∑
i ciunit(val(vi))

R→
∑

i ciunit(Ri)

x : τ ← R;X →
∑

i ciunit(x : τ ← Ri;X)

where unit(v) stands for a distribution where Pr[X = v] = 1 and Pr[X = a] = 0 for all a ̸= v.
IPDL’s type system guarantees that, for well-typed IPDL protocols, channel reads are

always in scope and that all channels are assigned unique reactions. For a finer-grained
discussion of the IPDL typing system, we refer the reader to Gancher et. al’s paper [8].

It is worth noting that channels in IPDL may emit outputs in any order. Usually, this
feature poses problems for cryptographic reasoning, since nondeterminism may leak crucial
details about the execution of the protocol that an attacker could then use to undermine
security. However, since reads are blocking in IPDL, a well-typed protocol eventually con-
verges to the same state regardless of channel output order. This notion is formalized through
IPDL’s confluence theorem:

Theorem (Confluence Theorem). If protocol P is well-typed, then:

• If P o:=v−−→ Q and P
o:=v′−−−→ Q′, then v = v′ and Q = Q′.

• If P o1:=v1−−−→ Q1 and P
o2:=v2−−−→ Q2 with o1 ̸= o2, then there exists Q such that Q1

o2:=v2−−−→ Q
and Q2

o1:=v1−−−→ Q.

• If P o:=v−−→ Q and P → η, then there exists η′ such that η
o:=v−−→ η′ and Q→ η′.

• If P → η1 and P → η2, then either η1 = η2, or there exists η such that η1 → η and
η2 → η.
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3.2 Operational Semantics

In this section, we will present an alternate small-step operational semantics for IPDL for
specifying protocol interaction with an external environment with persistent state, modeled
as a dictionary data structure mapping channel names to the data they have outputted so
far. In this way, we aim to develop a metaphor for how IPDL protocols could be executed
in a low-level environment.

To model a form of persistent memory, we use an off-the-shelf finite-map implementa-
tion to represent the dictionary data structure. As shown in the code excerpt below, our
dictionary maps strings to a dynamic data type, implemented in Coq as a record type with
two fields: a bitstring and an integer indicating its width. We choose this representation
for several reasons. For one, this grants IPDL programs the ability to exchange crypto-
graphic data of varying lengths, so that keys, ciphertexts, passwords, etc. do not all have
to be confined to the same length if they need not be. Additionally, we aimed to enhance
compatibility with the match expression in Gallina functions. Since, in general, parameter
inference in dependent pattern matching is undecidable [13], [14], [15], we need to restrict
values to a type for which there is a decidable procedure for equality checking, in order to
more smoothly operate on dynamic values using match expressions.

Definition map (ran : Type) := fmap string ran.

(* Dynamic data type *)
Record dyn := {

width : nat ;
value : width.-bv

}.

(* Dictionary type definition *)
Definition c_state := map (option dyn).

Listing 3.1: Dictionary data structure

Now we transition to the rules of our operational semantics. As a note regarding notation,
we use m $? k to mean a lookup operation in dictionary m for key k, and m $ + (k, v) to
stand for adding key-value pair (k, v) to dictionary m. Additionally, in order to facilitate the
construction of a labeled transition system later, we assign each rule in the operational se-
mantics exactly one label. A Send ch v indicates that a protocol has broadcast value v along
channel ch, whereas Receive ch v signals a read of value v from channel ch. LocalGen ch
is emitted when a protocol has generated a new local channel and assigns it the name ch.
When the state is neither modified nor read from, we generate a Silent label.

The semantics for reactions consists of just three rules. We step directly from Read ch
to Ret v if channel ch is mapped to a value v in the channel state. To handle sampling,
we nondeterministically select a value v from the distribution being sampled from and step
to Ret v. Note that this is only a approximation of probabilistic choice since values can
be chosen in a way that is inconsistent with the distribution e.g choosing zero probability
values from the sample space. Lastly, we allow binds to step if the initial reaction can step
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to Ret v, in which case, we thread v through a continuation holding the next reaction.
For protocols, we start with the rule that handles local channel generation, LEvalNew.

In order to successfully step, we need to ensure that the new channel name generated is not
contained in the set of keys associated with the starting channel state. If this check succeeds,
then we update the state with the new channel, mapping it to a None value to indicate that
the channel is yet to be filled. This measure also prevents naming conflicts between protocols
set in parallel composition with one another.

When we encounter channel assignment, we defer to the labeled stepping relation for
reactions to check whether the assigned reaction can step. If it can, then so does the protocol.
However, when the assigned reaction is a ret, signaling that the channel is ready to broadcast
a value, we update the state with the corresponding value and terminate computation by
stepping to Zero.

When either side of a parallel composition is Zero, we garbage collect the Zero and step
to the other side.

Inductive leval-ipdl : c_state→ c_state→ @ipdl str→ label→ @ipdl str→ Prop :=
| LEvalNew :

forall {w : nat}, forall prog, forall (state: c_state), forall ch,
∼ InMap state ch→
leval-ipdl state (state $+ (ch, None)) (New (w.-bv) prog) (LocalGen ch) (prog ch)

| LEvalRxn:
forall {w: nat}, forall (state : c_state), forall o,
forall (r1 r2: @rxn str (w.-bv)), forall label,

leval-rxn state r1 label r2→
leval-ipdl state state (o ::= r1) label (o ::= r2)

| LEvalTerminateOnReturn :
forall {w : nat}, forall (state : c_state), forall o, forall (v : (w.-bv)),

leval-ipdl state (state $+ (o, Some {| width := w; value := v |})) (o ::= Ret v)
(Send o ({| width := w; value := v |})) Zero

| LEvalGarbageCollectOnLeft :
forall (state : c_state), forall p2,
leval-ipdl state state (Zero ||| p2) Silent p2

| LEvalGarbageCollectOnRight :
forall (state : c_state ), forall p1,
leval-ipdl state state (p1 ||| Zero) Silent p1

| LEvalParsLeft :
forall (state state’ : c_state ), forall p1 p1’ p2 label,

leval-ipdl state state’ p1 label p1’→
disjoint_supp p1 p2→
leval-ipdl state state’ (p1 ||| p2) label (p1’ ||| p2)

| LEvalParsRight :
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forall (state state’ : c_state ), forall p2 p2’ p1 label,
leval-ipdl state state’ p2 label p2’→
disjoint_supp p2 p1→
leval-ipdl state state’ (p1 ||| p2) label (p1 ||| p2’).

Listing 3.2: Operational semantics for protocols

Inductive leval-rxn : forall {w : nat}, c_state→ @rxn str (w.-bv)→ label→
@rxn str (w.-bv)→ Prop :=
| LEvalRead :

forall {w : nat} (state : c_state) (ch : str (w.-bv)) (v : w.-bv),
state $? ch = Some (Some {| width := w; value := v |})→
leval-rxn state (Read ch) (Receive ch {| width := w; value := v |}) (Ret v)

| LEvalSamp :
forall {w : nat} (state : c_state) (dist : Dist (w.-bv)),
forall v, In v (interpDist dist)→
leval-rxn state (Samp dist) Silent (Ret v)

| LEvalBind :
forall {w w’: nat}, forall (state : c_state), forall init,
forall (r : w.-bv→ rxn (w’.-bv)), forall label, forall v,
leval-rxn state init label (Ret v)→
leval-rxn state (Bind (init) r) label (r v).

Listing 3.3: Operational semantics for reactions

Finally, LEvalParsLeft and LEvalParsRight allow us to lift a step to parallel compo-
sition. Crucial to these rules is a notion of a protocol’s support (defined below), encoding
the set of nonlocal channels in current use by a protocol. Importantly, we are only permit-
ted to do the lifting if the supports of both sides of the parallel composition are disjoint.
This restriction helps to bring our semantics in line with the constraints of IPDL’s type
system, which prohibits well-typed protocols from assigning more than one reaction to a
channel. Moreover, support disjointness aids in simplifying proofs by ruling out cases in
which protocols compete to output along the same channels.

Inductive supp_ipdl: @ipdl str→ name_set→ Prop :=
| SuppIPDLZero :

supp_ipdl Zero [::]
| SuppIPDLOut :

forall t o, forall (rxn : @rxn str t),
supp_ipdl (o ::= rxn) [:: o]

| SuppIPDLPars :
forall pr1 pr2 chs1 chs2,
supp_ipdl pr1 chs1→
supp_ipdl pr2 chs2→
supp_ipdl (Par pr1 pr2) (chs1 ++ chs2)

| SuppIPDLNew :
forall t,
forall (new_ch : str t→ ipdl),
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forall chs ch, supp_ipdl (new_ch ch) chs→
supp_ipdl (New t new_ch) chs.

Definition disjoint_supp (pr1 pr2 : @ipdl str) : Prop :=
forall lbls1 lbls2,

supp_ipdl pr1 lbls1→
supp_ipdl pr2 lbls2→
(forall name, (In name lbls1→∼ In name lbls2 ) ∧ (In name lbls2→∼ In name lbls1)).

Listing 3.4: Support definition

SuppIPDLNew highlights another simplification we made to make proofs more tractable.
Instead of adding the freshly generated local channel name, we discard it and simply add all
output channels that exist independent of the choice of local channel name. Unfortunately,
this feature precludes any form of reasoning about local channels generated by New but, in
exchange, allows us to exploit convenient properties about our semantics that would have
been infeasible to prove otherwise. One such example is the invariance of support disjointness.
Let Disj denote a binary relation over IPDL protocols expressing the fact that two protocols
have disjoint supports. Then, we have the following result:

Theorem 1. If Disj p1 p2 and p1 → p′1 then Disj p′1 p2.

Proof. Induct on the proof tree of the small-step relation and appeal to the observation that
no rule introduces new channel names to the support of a protocol or renames existing ones.
Therefore, any name that exists in the support of p′1 must also be inside the support of
p1.

If we had included local channel names in the support, this property would be unprovable
since a New constructor is permitted to add arbitrary channel names from outside of channel
state, which could include those in the support of p2.
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Chapter 4

State Machine Representation

In this section, we detail our state machine representation.

4.1 State machine definition

In our implementation, a state machine is comprised of a step function and a state type. We
let the state type be implicitly parameterized throughout this work. The objective of the
step function is to signal for a potential I/O operation and output the next state given the
current one. This is achieved by forcing step functions to emit a label indicating either a
read from or a write to a channel, and a continuation that, when evaluated, reveals the next
state.

Inductive transition_state {state : Type} : Type :=
| GoNext : state→ transition_state
| Terminate : state→ transition_state.

(* name is an alias for Coq’s string type. *)
Inductive step_op : Type :=

| SilentOp : step_op
| ReadOp : name→ step_op
| WriteOp : name→ dyn→ step_op.

Definition step_range (state : Type) : Type :=
option (step_op * (dyn→ @transition_state state)).

Definition stepT {state : Type} : Type := state→ step_range state.

Listing 4.1: State machine definitions

We introduce a wrapper type over the state type to draw a distinction between passing
and terminating states.

The step_op inductive type provides a means to interface with channel state without
requiring an explicit channel state argument to the step function. If a step function outputs
ReadOp ch, then we need only perform a lookup on the channel state for ch and thread
the resulting data through the continuation. Likewise, if WriteOp ch d is emitted instead,
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we should update the channel state so that channel ch is associated with data d. As the
name suggests, SilentOp indicates no such I/O operation should be performed, leaving the
channel state untouched.

We chose this structure for a number of reasons. By guarding the next state behind a
continuation, we create an explicit syntactic marker for channel reads. Had we instead opted
for a representation whereby channel state was passed into the step function, and updated
alongside program state, we would have no way to detect channel read events. Requiring
I/O labels that parallel those used in our labeled IPDL semantics allows us to meaningfully
bridge the two representations by reasoning about their mutual interactions with channel
state, as we will see in the next chapter. Finally, wrapping the output in an optional type
lets one differentiate between stalling and termination.

4.1.1 Low-level channel state

In order to capture the form of sequential memory access that is common in low-level settings,
we introduce an alternative channel state representation built on top of Coq’s native list type.
With this representation, channel state is instantiated as an associative array, where each
element is a key-value pair bundling a channel’s name with its respective contents. To access
and update channels, we use a fixpoint function to scan through the list in sequential order to
find a match with the input key. Furthermore, we introduce functions for collecting channel
names and converting to the finite-map representation.

Definition channel-pair : Type := name * (option dyn).

Definition channel-array : Type := list (channel-pair).

Fixpoint lookup_assoc {B : Type} (array : list (string * B)) (key : string)
: option B :=

match array with
| [::]⇒ None
| (a, b) :: tail⇒ if String.eqb a key then Some b else (lookup_assoc tail key)
end.

Fixpoint update_assoc {B : Type} (array : list (string * B)) (key : string) (v : B) :
list (string * B) :=

match array with
| [::]⇒ [::]
| (a, b) :: tl⇒
if String.eqb a key then (key, v) :: tl else (a, b) :: update_assoc tl key v
end.

Fixpoint keys_of (array : channel-array) : name_set :=
match array with
| [::]⇒ [::]
| (s, Some _) :: tail⇒ s :: (keys_of tail)
| (s, None) :: tail⇒ s :: keys_of tail
end.
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Fixpoint to_cstate (ch_arr : channel-array) : c_state :=
match ch_arr with
| [:: ]⇒ empty_cstate
| (str, None) :: tl⇒ to_cstate tl $+ (str, None)
| (str, Some v) :: tl⇒ to_cstate tl $+ (str, Some v)
end.

Listing 4.2: Associative array implementation

4.2 Modeling concurrency

With what has been presented so far, we can model all I/O functionality that occurs inside
IPDL reactions. However, to bring the state machine representation closer to parity with
IPDL programs we must have an analogy to parallel composition. In what follows, we
provide a means to compose state machines together and have them engage in concurrent
interaction.

4.2.1 Multi-threaded state representation

We represent multi-threaded state programs with a product type, parameterized by two state
types. Each “thread” of the computation is associated with a bit indicating whether it has
reached termination. Additionally, we define a suite of helper functions for inspecting and
updating the contents of a given thread.

Inductive threadProd {A B : Type} : Type :=
| Prod : A→ B→ threadProd.

Notation "{ tr1 , tr2 }" := (Prod tr1 tr2) (at level 70).

Definition bit := bool.

Definition get_thread {A B : Type} (prod : @threadProd A B) (b : bit) : A + B :=
match prod with

| { x , y }⇒ if b then inr y else inl x
end.

Definition left_thread {A B : Type} (prod : @threadProd A B) : A :=
match prod with

| { x, y }⇒ x
end.

Definition right_thread {A B : Type} (prod : @threadProd A B) : B :=
match prod with
| { x, y }⇒ y
end.
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Definition update_thread {A B : Type}
(prod : @threadProd A B) (val : A + B) : threadProd :=

match prod with
| { l1, l2 }⇒ match val with

| inl a⇒ { a, l2 }
| inr b⇒ { l1, b }
end

end.

Definition threadState {state state’ : Type} : Type :=
@threadProd (state * bit) (state’ * bit).

Definition left_st {A B : Type} (threads : @threadState A B) : A :=
fst (left_thread threads).

Definition right_st {A B : Type} (threads : @threadState A B) : B :=
fst (right_thread threads).

Definition left_term {A B : Type} (threads : @threadState A B) : bool :=
snd (left_thread threads).

Definition right_term {A B : Type} (threads : @threadState A B) : bool :=
snd (right_thread threads).

Definition get_term {A B : Type} (threads : @threadState A B) : bit→ bool :=
(fun i⇒ match get_thread threads i with

| inl (_, term)⇒ term
| inr (_, term)⇒ term
end).

Definition get_st {A B : Type} (threads : @threadState A B) : bit→ A + B :=
(fun i⇒ match get_thread threads i with

| inl (a, _)⇒ inl a
| inr (b, _)⇒ inr b
end).

Listing 4.3: Multi-threaded state representation

4.2.2 Multi-threaded step function

Now that we have the state representation underway, we transition to our multi-threaded
step function implementation. We assume the existence of a scheduler that outputs a bit
representing which thread is ready to step. Coupled with a step_table, associating threads
with their respective step functions, the multi_step function runs the appropriate step
function on the thread selected by the scheduler. If it results in a legitimate step (which
it should if the scheduler is operating correctly), we feedforward the I/O operation and a

24



modified continuation leading to the next state, being careful to update the terminataion flags
if the step results in a termination state. If both threads have terminated, then, accordingly,
we mark termination of the entire state machine.

Definition schedulerT {state state’ : Type} : Type := @threadState state state’→ option bit.

Definition step_table {state state’ : Type} := @threadProd (@stepT state) (@stepT state’).

Definition multi_step {state state’: Type} (scheduler : @schedulerT state state’)
(step_table : @step_table state state’) (threads : @threadState state state’)
: (step_range (@threadState state state’)) :=

let branch := scheduler threads in
match branch with
| Some i⇒ match (get_thread step_table i) with

| inl step⇒ let a := left_st threads in
match step a with
| Some (op, cont)⇒

Some (op, fun val⇒ match cont val with
| GoNext st⇒

GoNext (update_thread threads (inl (st, false)))
| Terminate st⇒

let threads’ := update_thread threads (inl (st, true)) in
if right_term threads then
Terminate threads’ else GoNext threads’

end)
| None⇒ None
end

| inr step’⇒ let b := right_st threads in
match step’ b with
| Some (op, cont)⇒

Some (op, fun val⇒ match cont val with
| GoNext st⇒

GoNext (update_thread threads (inr (st, false)))
| Terminate st⇒

let threads’ := update_thread threads (inr (st, true)) in
if left_term threads then
Terminate threads’ else GoNext threads’

end)
| None⇒ None
end

end
| None⇒ None

end.

Listing 4.4: Multi-threaded step function

25



26



Chapter 5

Refinement and Simulation

Now that we have presented our state-machine representation, we move to developing the
formal machinery to connect state-machine programs to IDPL. To achieve this, we adapt
proof techniques from process algebra to equate the behavior of state-machine code to that
of IPDL. Namely, we will be appealing to a notion of refinement to show that when a state
machine is able to make a step, we can make a matching step in IPDL that exhibits the
same effect on the external environment. Furthermore, we state and prove an algebraic
property of refinement, promoting a modular proof approach for concurrency by which we
can break down a proof of a multithreaded program by proving a refinement property for
each component thread.

5.1 Labeled transition system

To begin, we showcase a labeled transition system for state machines. Each rule of the
lstep_state predicate dictates how a state machine should interact with channel state
according to the output of the step function.

StateSilent marks a silent transition from one state to another when the step function
outputs SilentOp, leaving the channel state untouched. Since no channel reads are required
here, we enforce that the continuation is a constant function by quantifying over all possible
inputs.

On a channel send, which is triggered when a step function outputs WriteOp, we check
that the write destination is actually contained within the channel state before updating
it. Once again, there are no channel reads occuring here, so the continuation ought to be
constant.

Finally, when the step function signals a read, we ensure that the channel we want to
read from is contained in the channel state. If so, we take the value paired with the channel
name and thread it through the continuation to obtain the next state.

Inductive lstep_state {state : Type} : @stepT state→ channel-array→ state→
label→ channel-array→ @transition_state state→ Prop :=
| StateSilent :

forall (step : @stepT state), forall cont ch st st’,
step st = Some (SilentOp, cont) →
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(* Quantification over all channel-state is necessary here to ensure that
output is independent of the input *)
(forall v, cont v = st’)→
lstep_state step ch st Silent ch st’

| StateSend :
forall (step : @stepT state), forall write_to val cont ch ch’ st st’,

step st = Some (WriteOp write_to val, cont)→
In (keys_of ch) write_to→
(forall v, cont v = st’)→
ch’ = update_assoc ch write_to (Some val)→
lstep_state step ch st (Send write_to val) ch’ st’

| StateReceive :
forall (step : @stepT state), forall read_from ch cont st st’ val,

step st = Some (ReadOp read_from, cont)→
In (keys_of ch) read_from→
lookup_assoc ch read_from = Some (Some val)→
cont val = st’→
lstep_state step ch st (Receive read_from val) ch st’.

Listing 5.1: State machine transition system

We derive a labeled transition system for IPDL from our small-step relation.

Definition lstep_ipdl (c1 : c_state) (p1 : @ipdl-bits str) (l :label)
(c2 :c_state) (p2 : @ipdl-bits str) : Prop :=
leval-ipdl c1 c2 (bits_to_ipdl p1) l (bits_to_ipdl p2).

Listing 5.2: IPDL transition system

5.2 Simulation

To connect the behavior of state machines to that of IPDL programs, we introduce a notion
of simulation. Intuitively, we say that a protocol simulates a state machine if, for every
step that the state machine can make, we can make a matching step in the IPDL transition
system that yields the same eventual channel state. Before getting into the formal definition,
we take a brief pause to establish notation and terminology. For the rest of this document,
we identify state machines as pairs of instances of an arbitrary type and a step function over
that type (st, step), where the term “state” is used to refer to the former. We overload the
labeled transition arrow l−→ for both the state-machine and IPDL transition systems, letting
context resolve the question of which is being denoted. With that clarified, we present the
following definition of simulation:

Definition 1. A ternary relation R between channel state, state machines, and IPDL pro-
tocols is said to be a simulation when

• Silent, nonterminating steps match up: if R ch (st, step) pr and (ch, st) −→
(ch′,GoNext st′) then there exists protocol pr′ such that (ch, pr) −→∗ (ch′, pr′) and R
ch′ (st′, step) pr′.
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• Nonsilent, nonterminating steps match up: if R ch (st, step) pr and (ch, st)
l−→

(ch′,GoNext st′) for nonsilent l, there exists channel state ch′′ and protocols pr′, pr′′

such that (ch, pr) −→∗ (ch′′, pr′′), (ch′′, pr′′)
l−→ (ch′, pr′), and R ch′ (st′, step) pr′.

• Terminating steps match up: if R ch (st, step) pr and (ch, st)
l−→ (ch′,Terminate st′)

then there exists channel state ch′′ and protocol pr′′ such that (ch, pr) −→∗ (ch′′, pr′′),
(ch′′, pr′′)

l−→ (ch′,Zero), and R ch′ (st′, step) Zero.

where −→∗ denotes the transitive-reflexive closure over the stepping relation.
Furthermore, such a relation gives rise to a pleasant property for comparing the two

representations: if R is a valid simulation relation and R ch (st, step) pr, then (st, step)
cannot exhibit any more behaviors than pr! In other words, if a simulation exists, we
can be confident that every sequence of moves that a state machine may make can also
be performed by IPDL. This notion is formalized through trace inclusion, and we prove it
here. Let GenState (st, step) tr and GenIPDL pr tr be trace-generation predicates for state
machines and protocols respectively (defined below), expressing the fact that, by collecting
all nonsilent labels, we can generate a trace tr. Then,

Theorem 2 (Trace inclusion). Suppose R is a valid simulation relation. If GenState (st, step)
tr and R ch (st, step) pr, then GenIPDL pr tr.

Proof. Induct on the proof tree of GenState. The base case is when the trace is empty,
in which case we can just apply the GenIPDLNothing constructor. In the inductive cases,
we have GenState (st, step) tr, a stepping relation (ch, st)

l−→ (ch′, st′), and need to show
that GenIPDL pr (l : : tr). We proceed by selecting the appropriate arm of the simulation
assumption that corresponds to the new labeled step and use that to tease out the matching
sequence of IPDL steps that generates l. Then, we apply the inductive hypothesis.

Inductive generate_ipdl : c_state→ @ipdl-bits str→ list label→ Prop :=
| GenIPDLNothing :

forall ch prog,
generate_ipdl ch prog [:: ]

| GenIPDLSilent :
forall ch ch’ prog prog’ tr,
lstep_ipdl ch prog Silent ch’ prog’→
generate_ipdl ch’ prog’ tr→
generate_ipdl ch prog tr

| GenIPDLSend :
forall ch ch’ prog prog’ data tr c,
lstep_ipdl ch prog (Send c data) ch’ prog’→
generate_ipdl ch’ prog’ tr→
generate_ipdl ch prog ((Send c data) :: tr)

| GenIPDLReceive :
forall ch ch’ prog prog’ data tr c,
lstep_ipdl ch prog (Receive c data) ch’ prog’→
generate_ipdl ch’ prog’ tr→
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generate_ipdl ch prog ((Receive c data) :: tr)
| GenIPDLLocal :

forall ch ch’ prog prog’ tr c,
lstep_ipdl ch prog (LocalGen c) ch’ prog’→
generate_ipdl ch’ prog’ tr→
generate_ipdl ch prog ((LocalGen c) :: tr).

Inductive generate_state {state : Type} : @stepT state→
channel-array→ state→ list label→ Prop :=
| GenStNothing :

forall step ch st,
generate_state step ch st [:: ]

| GenStSilent :
forall step ch ch’ st st’ tr,
lstep_state step ch st Silent ch’ (GoNext st’)→
generate_state step ch’ st’ tr→
generate_state step ch st tr

| GenStSend :
forall step ch ch’ st st’ data tr c,
lstep_state step ch st (Send c data) ch’ (GoNext st’)→
generate_state step ch’ st’ tr→
generate_state step ch st ((Send c data) :: tr)

| GenStReceive :
forall step ch ch’ st st’ data tr c,
lstep_state step ch st (Receive c data) ch’ (GoNext st’)→
generate_state step ch’ st’ tr→
generate_state step ch st ((Receive c data) :: tr)

| GenStTerminateLabel :
forall step ch ch’ st l st’,
l <> Silent→
lstep_state step ch st l ch’ (Terminate st’)→
generate_state step ch st [:: l]

| GenStTerminateSilent :
forall step ch ch’ st st’,
lstep_state step ch st Silent ch’ (Terminate st’)→
generate_state step ch st [:: ].

Listing 5.3: Trace-generation predicates

5.3 Refinement

We define refinement (ch, (st, step)) ⩽ pr as there existing a simulation R such that R
ch (st, step) pr. With this definition in hand, we proceed to state and prove an algebraic
property of refinement, namely that, under certain conditions, refinement is a congruence
for parallel composition.

Before we do so, we will focus on some of the simplifying assumptions we made to
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make proving such a property more tractable. For one, we require channel independence
between ch and ch′, meaning that no channel name in ch can be found in ch′ and vice versa.
Furthermore, ch and ch′ must have unique channel names each. Imposing these conditions
ensures that the concatenation of ch and ch′ yields no duplicate channel names and the order
of the concatenation does not affect the outcome of lookup and update operations.

We must also assume that any step functions that comprise the multithreaded state
machine emit proper operations, I/O actions that respect the boundaries of channel state.
Such a step function always requests to read from and write to a channel name that exists
within the channel state. Without this condition, we would have no way of determining the
location of a read or write in a composite state machine where the channel state is formed
by concatenation.

Finally, if (ch, S) ⩽ pr and (ch′, S ′) ⩽ pr′, we must also ensure that the supports of
pr and pr′ are disjoint. In addition to preventing potential violations of IPDL’s write-once
semantics for channels, this condition rules out cases in which threads try to compete to
write to the same channel.

Theorem 3 (Parallel composition refinement). Let S = (st, step), S ′ = (st′, step’), and
S ⊕ S ′ be the multithreaded state machine constructed by composing S and S ′ as detailed
in the last chapter. If (ch, S) ⩽ pr and (ch′, S ′) ⩽ pr′, then (ch ++ ch′, S ⊕ S ′) ⩽ pr∥pr′
provided that

• ch and ch′ are independent.

• step and step’ emit proper operations with respect to ch and ch′ respectively.

• pr and pr′ have disjoint supports.

Proof. According to the refinement assumptions, there exist simulations R and R′ such that
R ch S pr and R′ ch′ S ′ pr′. We construct an inductive predicate R ∥ R′ (defined below as
R_pars in Coq) that we claim serves as a valid simulation relation.

Inductive R_pars {state state’: Type} {step : @stepT state} {step’ : @stepT state’}
{R: channel-array→ state→ @ipdl-bits str→ Prop}
{R’: channel-array→ state’→ @ipdl-bits str→ Prop} :
channel-array→ (@threadState state state’)→ @ipdl-bits str→ Prop :=
| RParsInit :

forall ch ch’ st st’ pr pr’ b b’,
R ch st pr →
R’ ch’ st’ pr’→
channel-independence ch ch’→
disjoint_supp (bits_to_ipdl pr) (bits_to_ipdl pr’)→
proper_op step ch→
proper_op step’ ch’→
ch_unique ch→
ch_unique ch’→
(b = true→ pr = ZeroBits)→
(b’ = true→ pr’ = ZeroBits)→
R_pars (ch ++ ch’) ({(st , b) ,(st’ , b’)}) (ParBits pr pr’)
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| RParsTerm :
forall ch ch’ st st’,

R ch st ZeroBits→
R’ ch’ st’ ZeroBits→
channel-independence ch ch’→
ch_unique ch→
ch_unique ch’→
R_pars (ch ++ ch’) ({(st, true), (st’, true)}) ZeroBits.

Listing 5.4: Explicit simulation relation

In order to establish this claim, we need to show that each arm of the simulation definition
is satisfied by R ∥ R′, yielding four proof obligations:

1. For all state machines S0, S1, S2, channel states ch0, ch1, ch2, and IPDL programs
pr0, pr1,
if (R ∥ R′) (ch0 ++ ch1) (S0⊕S1) (pr0∥pr1) and a silent step is possible (ch0 ++ ch1, S0⊕
S1) −→ (ch2,GoNext S2) then there must exist an IPDL program pr2 that we can reach
from p0∥p1, (ch0 ++ ch1, pr0∥pr1) −→∗ (ch2, pr2) and for which (R ∥ R′) ch2 S2 pr2
holds.

2. For all state machines S0, S1, S2, channel states ch0, ch1, ch2, and IPDL programs
pr0, pr1,
if (R ∥ R′) (ch0 ++ ch1) (S0⊕S1) (pr0∥pr1) and we make a a nonsilent step, (ch0 ++ ch1, S0⊕
S1)

l−→ (ch2,GoNext S2), there must exist intermediate states ch′
2, pr

′
2, and final state

pr2 such that (ch0 ++ ch1, pr0∥pr1) −→∗ (ch′
2, pr

′
2), (ch′

2, pr
′
2)

l−→ (ch2, pr2), and (R ∥ R′)
ch2 S2 pr2 holds.

3. For all state machines S0, S1, S2, channel states ch0, ch1, ch2, and IPDL programs
pr0, pr1,
if (R ∥ R′) (ch0 ++ ch1) (S0⊕S1) (pr0∥pr1) and we make a terminating step, (ch0 ++ ch1, S0⊕
S1)

l−→ (ch2,Terminate S2), there must exist intermediate ch′
2, pr

′
2 such that (ch0 ++ ch1, pr0∥pr1) −→∗

(ch′
2, pr

′
2), (ch′

2, pr
′
2)

l−→ (ch2,Zero), and (R ∥ R′) ch2 S2 Zero holds.

4. (R ∥ R′) (ch ++ ch′) (S ⊕ S ′) (pr∥pr′)

For (1)-(3), we proceed by unfolding the definition of the multi_step step function
covered in the previous chapter and perform a case split over the termination flags of each
thread and then the output of the scheduler. After pruning out degenerate cases, we identify
the thread that made a step. Since only one thread may step at a given time, either S0 or S1

may step but not both. Without loss of generality, assume that S0 stepped to S ′
0, resulting

in S2 = S ′
0 ⊕ S1. The rest of the proof diverges depending on which obligation we aim to

prove.
If we are proving (1), we use the silent-step assumption in conjunction with (ch, S) ⩽ pr

to deduce that there is a pr′0 such that (ch0, pr0) −→∗ (ch0, pr
′
0). The pr2 that proves the

statement would then be pr′0∥pr1.
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(2)-(3) proceed similarly. Like (1), we use the refinement assumption with the stepping
assumption to tease out the matching step in IPDL and locate the appropriate ch′

2, pr
′
2, and

pr2 that emerges from pr0.
To prove (4), we simply apply the RParsInit constructor and use the assumptions laid

out in the theorem statement.
To demonstrate that (R ∥ R′) is still satisfied after each step in (1)-(3), we make use

of the convenient property that all the requisite preconditions are actually invariants with
respect to the state-machine transition system. Channel independence is preserved after
a step since state machines are not allowed to remove bindings from the channel state or
rename existing channel names. For similar reasons, ch_unique and proper_op are both
invariants. As we established in chapter 3, disjoint_supp is also invariant over the IPDL
transition system.

In some stages of the proof, we need to be able to lift single-threaded steps into envi-
ronments where the channel state has been expanded via concatenation. To do so, we make
liberal use of the following lemmas:

Lemma 1 (Lifting in reactions). Let r be an IPDL reaction. If (ch, r) l−→ (ch, r′) then, for
all ch′, (ch ++ ch′, r)

l−→ (ch ++ ch′, r′).

Proof. Induct on the proof tree of the small-step reaction relation. The only I/O that
occurs at the reaction level are read operations, and no lookup outcome is affected by the
concatenation due to the fact that the lookup operation performs a linear scan of the channel
state.

Lemma 2 (Lifting in protocols). Let pr be an IPDL protocol. If (ch, pr)
l−→ (ch′, pr′)

and l does not correspond to local channel generation, then, for all ch′, (ch ++ ch′, pr)
l−→

(ch ++ ch′, pr′).

Proof. Induct on the proof tree of the small-step protocol relation. We can resolve most
cases through direct application of a rule of the small-step relation or by appealing to the
inductive hypothesis. In the case of channel assignment (o := r), we employ Lemma 1.
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Chapter 6

Future Work

In this thesis, we have developed robust conceptual tools to verify the correctness of a low-
level implementation of a cryptographic protocol. However, more work must be done to
account for the full set of features IPDL provides and to extract the most practical benefit
from verified state-machine code.

6.1 Local channel generation

When introducing the main constructs of the IPDL language in chapter 3, we defined the
new c : τ in P constructor as one that allocates a fresh channel c for private use in P . How-
ever, our IPDL semantics and state-machine representation does not adequately implement
access privileges so that one thread cannot read from another thread’s local channel. The
channel state makes no distinction betweeng global and local channels so, from any given
thread’s point of view, a local channel belonging to another thread appears the same as any
other. This stems from the fact that there is no sense of “where a channel was defined” built
into channel state. To address this issue, one would need to rework the channel state and
operational semantics to track channel scope and ensure that all reads in reactions are in
scope.

6.2 Proof-generating compilation

To spare code authors from the labor of writing state-machine implementations by hand, one
could extend our work to automatically derive such code via compilation. Additionally, one
may not even need to certify the implementation separately. In the past, Coq’s tactic engine
has been used successfully to implement proof-generating compilation by framing compilation
as a proof search for equivalence between source and target programs [10]. Ideally, without
much extension, one could use the notion of simulation we have presented in this thesis as
an equivalence relation and use that as a basis for compiling IPDL programs to low-level
state machine code.
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6.3 Lowering to C

Finally, as a way to broaden the impact from the work presented in this thesis, one could
consider ways to connect the state-machine representation to a popular low-level program-
ming language like C. Naturally, this would involve determining an appropriate memory
layout scheme for channel state and rephrasing the various components of the step function
as idiomatic C constructs.
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