
Feasibility of Vector Instruction-Set Semantics Using
Abstract Monads

by

Arthur Reiner De Belen
S.B. Computer Science and Engineering, MIT, 2023

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2024

© 2024 Arthur Reiner De Belen. This work is licensed under a CC BY-NC-ND 4.0 license.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce, preserve,

distribute and publicly display copies of the thesis, or release the thesis under an
open-access license.

Authored by: Arthur Reiner De Belen
Department of Electrical Engineering and Computer Science
August 9, 2024

Certified by: Adam Chlipala
Arthur J. Conner (1888) Professor of Computer Science, Thesis Supervisor

Accepted by: Katrina LaCurts
Chair, Master of Engineering Thesis Committee

https://creativecommons.org/licenses/by-nc-nd/4.0/

2

Feasibility of Vector Instruction-Set Semantics Using Abstract
Monads

by

Arthur Reiner De Belen

Submitted to the Department of Electrical Engineering and Computer Science
on August 9, 2024 in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

ABSTRACT

Formalizations of instruction-set semantics help establish formal proofs of correctness of both
hardware designed to implement these instruction sets and the software implemented against
this specification. One such prior work1 formalizes a specification of a subset of the RISC-V
instruction-set architecture using a general-purpose language, Haskell, using its monad and
typeclass support to abstract over effects. Another member of the same family is the RISC-V
V extension, which specifies instructions for operating on multiple data elements in a single
instruction, which is useful for domains with high levels of data parallelism, such as graphics
rendering and machine learning. In this work I examine the question of whether the same
prior work can be extended to formalize the semantics of the vector extension. I answer this
question with a tentative “yes”, backed by a partial specification in Haskell of a small but
nontrivial subset of this vector extension, a translation of the same specification into Coq
using hs-to-coq2, and work towards demonstrating the utility of this specification.

Thesis supervisor: Adam Chlipala
Title: Arthur J. Conner (1888) Professor of Computer Science

1Bourgeat et al., 2023, doi:10.1145/3607833.
2https://github.com/plclub/hs-to-coq

3

https://doi.org/10.1145/3607833

4

Acknowledgments

This thesis would not have been possible without my thesis advisor, Prof. Adam Chlipala,
as well as his PhD student Samuel Gruetter, for their guidance in both the technical and
nontechnical aspects of this project and of my journey through research over the past couple
of years.

I also extend my gratitude to my academic advisor, Prof. Mengjia Yan, for supervising
my academic journey throughout my Bachelor’s and Master’s.

Finally, my gratitude to the friends that have supported me from before MIT and at MIT,
and, last but certainly not least, to my mother, whose sacrifices I owe my college education
to, and so much more.

5

6

Contents

List of Tables 9

1 Background 11

2 Implementation 13
2.1 RISC-V V Extension Programming Model 13
2.2 Scope and Overview . 13
2.3 Overview of Prior RISC-V Specification by Bourgeat et al. [6] 15
2.4 Haskell Specification . 18
2.5 Coq Translation . 21

3 Limitations and Difficulties 25
3.1 Different, Incompatible Numeric Types . 25
3.2 Control-and-Status Registers Affect Semantics 26

4 Future Work and Conclusion 27

References 29

7

8

List of Tables

2.1 Fields of the vtype control and status register and their functionality. 14
2.2 The instructions of the RISC-V V ISA formalized in this thesis 14

9

10

Chapter 1

Background

Much work in recent years has gone into formally specifying correctness of systems down
to machine code, such as (a) CakeML, a verified compiler of a subset of Standard ML to
x86 [1]; (b) CompCert, a commercially available C compiler [2]; and (c) the Verified Software
Toolchain, a software stack building on CompCert’s sequential logic to provide formalized
semantics for a dialect of C supporting shared-memory concurrency [3]. The correctness
proofs of the software in these systems are expressed against an operational semantics for
the instruction-set architecture they target, as the instruction-set architecture (ISA) defines
how a processor supporting this instruction set is expected to behave.

Two prior works on formalizing instruction-set semantics, both for subsets of the RISC-
V ISA family, take two different approaches on how to express them. One such work by
Armstrong et al. [4] formalized sequential semantics for a broad subset of several differ-
ent instruction sets (RISC-V, CHERI-MIPS, and Armv8-A) in a custom domain-specific
language (DSL), Sail, which is itself compilable to both emulators able to boot operating
systems and to definitions compatible with proof assistants Isabelle/HOL, HOL4, and Coq.

Although said formalization for RISC-V has been adopted by the RISC-V International
standards organization [5], Bourgeat et al. in their work formalizing a subset of just the
RISC-V ISA family [6] bring up a potential concern about writing custom DSLs for each
abstraction in the hardware-software stack, which is the need to write translators between
specification languages (i.e., the DSLs for each abstraction) and verification languages, whose
number can grow quadratically with respect to the number of languages.

Bourgeat et al. in the same work demonstrate that it is possible to write instruction-
set semantics using a preexisting general-purpose programming language, Haskell, to avoid
the quadratic problem, although the authors admit it is a tradeoff space due to losing the
advantages of being able to customize the DSL used to their specific use case, specifying ISA
semantics. The same work was also able to use preexisting tools to convert from Haskell
to Coq, for theorem proving about software; as well as from Haskell to Verilog, a hardware
description language which can be used for hardware model-checking. Bourgeat et al. cite
two key features of Haskell which enabled this formalization, which were monads and type
classes.

[7] introduced monads as a way to make managing side effects in functional program-
ming more tenable. Instead of modifying types to also include side-effect information and
modifying functions that use those types as well, monads were defined as a constrained

11

triple of a type constructor M and two methods with signatures unitM :: a -> M a and
bindM :: M a -> (a -> M b) -> M b, and [6] use monads to abstract over effects such as
nondeterministic execution, input/output, and exceptions. Meanwhile, [8] introduced type
classes as a way to define a type together with a set of associated operations that type must
support. [6] uses type classes in two different ways. First, they define a MachineWidth type
class to abstract over both 32-bit and 64-bit register values. Second, and more importantly,
they define a RiscvMachine type class to represent a RISC-V processor to abstract over the
primitives that are needed to represent state and control flow, but also abstracting over the
choice of monad and register width.

However, [6] had implemented specifications for only some of the extensions of the RISC-
V ISA family, namely the I (Integer), M (Integer Multiply/Divide), Zicsr (Control and Status
Registers), A (Atomics), and F (Single Floating-Point) extensions. One of the extensions
not covered by this prior work is the V (Vector) extension.

[9] describes how the primary difference between a vector instruction and a scalar instruc-
tion is that the former specifies more operations within an instruction than the latter, because
emulating vector instructions using scalar instructions would require specifying control flow
and memory access-related bookkeeping that would be implicit in the vector instruction.
According to RISC-V International [10], version 1.0 of the RISC-V Vector Extension aims
to improve software power efficiency through the instruction set’s density of operations per
instruction and mentions that managing power use and data movement may be important
considerations in fields like artificial intelligence, machine learning, and computer vision.

The V extension has been formalized in Sail as a continuation of the work by Armstrong
et al. [5], which supports the claim that the custom DSL could be used for formalizing it.
This thesis seeks to answer the analogous question of whether a general-purpose language
can be used to specify the same extension, by building off of the model produced by [6],
given the difference between the V extension and other extensions previously formalized. I
tentatively answer “yes” based on progress towards formalization of a minimal interesting
fragment of this ISA extension in Haskell and Coq, and I present this progress along with
future work to be done on this formalization and possible limitations thereof.

The remainder of this thesis will be structured as follows. First, I will briefly introduce
the programming model of the RISC-V V ISA, focusing on the significant technical aspects
that differentiate it from previously formalized RISC-V extensions. Then, I will explain the
progress made towards the specification in Haskell and Coq. Next, I will explain possible
limitations and issues encountered in this specification. Finally, I will conclude with discus-
sion of future work in terms of fully formalizing this extension and technical aspects of the
extension that have not been covered by this work but may be of note.

12

Chapter 2

Implementation

2.1 RISC-V V Extension Programming Model

From the RISC-V V specification [11], this extension introduces 32 additional vector registers
of an implementation-defined bitwidth, as well as 7 control-and-status registers. The three
most relevant control-and-status registers (CSRs) to this thesis’ scope are vl, vlenb, and
vtype. The first two of these have simpler definitions than the last. vl holds the number
of data elements that a vector instruction will write to with its results, while vlenb holds
the number of bytes that a vector register has. The reason why these would be useful to
keep track of is that, as supported by RISC-V International’s article on the extension [10],
the assembly written in this extension is meant to be “agnostic” of the actual bitwidth of
the vector registers. This does not imply that one execution of a single vector instruction
should always consume or produce the same amount of data on a processor with 128-bit
vector registers and a processor with 65536-bit vector registers, but that the code for, say,
looping through two arrays of a large size, adding them, and writing back to memory should
work with the same code across both processors, although the number of times that each
vector instruction would be run would differ.

The third CSR, vtype, is comprised of multiple fields whose values affect the semantics
of most of the instructions in the extension. Table 2.1 lists the names of fields relevant to
instruction semantics, with a brief summary of each one’s functionality.

2.2 Scope and Overview

There are on the order of hundreds of instructions in the V extension [11], for operations on
integers, fixed-point, and floating-point data. For scope reasons, the entirety of the extension
could not be formalized, so this work selected the instructions listed in table 2.2 to specify
first, as a proof-of-concept. These instructions together demonstrate critical aspects of the
vector ISA, which are moving data into and out of vector registers and doing computation
on data within vector registers.

The scope of formalization of these instructions consists of two major halves. First, the
RISC-V formalization by [6], written in Haskell, was extended to also decode and execute
the instructions previously mentioned. Then, the same formalization, once extended, was

13

Table 2.1: Fields of the vtype control and status register and their functionality.

Field name Description
vsew (Vector Selected Ele-
ment Width)

Each vector register is assumed to contain multiple data
elements of the same width. This field encodes that as-
sumed bitwidth, for computing, e.g. vl.

vlmul (Vector Register
Grouping)

A single vector instruction may treat a group of con-
tiguous vector registers as a single operand. This field
encodes the number of vector registers per group.

vma and vta (Vector Tail
Agnostic and Vector Mask
Agnostic)

In some cases, an instruction may use a mask to only
write certain elements and not others, or an instruction
only writes to the first portion of bits of a register and not
the remainder. These flags define whether the processor
must leave the bits not written to as they were, or if it is
allowed to arbitrarily overwrite them with 1’s.

Table 2.2: The instructions of the RISC-V V ISA formalized in this thesis

Type of instruction Specific instruction(s)
Configuration-Setting Instructions • vsetvli rd, rs1, vtypei

• vsetivli rd, uimm, vtypei
• vsetvl rd, rs1, rs2

Vector Unit-Stride Instructions • vle<eew>.v vd, (rs1), vm
• vse<eew>.v vs3, (rs1), vm

Vector Load/Store Whole Register Instructions • vl<nf>e<eew>.v vd, (rs1)
• vs<nf>e<eew>.v vs3, (rs1)

Vector Single-Width Integer Add • vadd.vv vd, vs2, vs1, vm

14

translated into Coq using the same tool [6] used, hs-to-coq [12], and progress was made
towards adapting the translated definitions into theorems usable by the Bedrock2 compiler,
a formally verified compiler first introduced in [13] for a C-like language written in Coq
which compiles down to RISC-V assembly.

The following three sections will outline the following. First, more concrete background
will be provided on the RISC-V formalization by [6], to provide context for this thesis’
implementations. Then, the following two sections will outline the implementations in more
detail in Haskell and Coq, respectively. An artifact containing the Haskell implementation,
the Coq translation, and the translation tool used is available at [14].

2.3 Overview of Prior RISC-V Specification by Bourgeat
et al. [6]

This section will first discuss in more detail the Haskell specification of [6]. Then, it will go
over the mechanics of the translation from Haskell to Coq, and finally will go over the parts
of the specification in Coq not directly derived from Haskell.

First, on the Haskell side, as mentioned previously a RISC-V machine is modelled as
an instance of a type class whose type constructor takes two parameters, a monad and an
instance of type class MachineWidth, which represents the type of data stored in registers.
Listing 2.1 shows this type signature as well as some of the relevant methods instances of
this type class are required to implement. Note that in said listing, CSRField represents a
field of one of the control and status registers.

1 class (Monad p, MachineWidth t) => RiscvMachine p t | p −> t where
2 getRegister :: Register −> p t
3 setRegister :: Register −> t −> p ()
4 loadByte :: SourceType −> t −> p Int8
5 storeByte :: SourceType −> t −> Int8 −> p ()
6 getCSRField :: CSRField −> p MachineInt
7 unsafeSetCSRField :: (Integral s) => CSRField −> s −> p ()
8 −− other methods

Listing 2.1: Haskell RiscvMachine abbreviated signature.

The execution of a given instruction is then specified as in Listing 2.2. Note that the
actual execution semantics per instruction is delegated to helper functions which are defined
for each of the extensions formalized and a sentinel value for failed decoding (lines 4 through
13). This code listing also demonstrated the do-notation used in Haskell to chain monadic
actions, in this case being the execution (lines 3-13), followed by the getting and setting of
CSRFields Field.MCycle and Field.MInstRet.

1 execute :: (RiscvMachine p t) => Instruction −> p ()
2 execute inst = do
3 case inst of
4 IInstruction i −> I.execute i
5 MInstruction i −> M.execute i

15

6 AInstruction i −> A.execute i
7 FInstruction i −> F.execute i
8 I64Instruction i −> I64.execute i
9 M64Instruction i −> M64.execute i
10 A64Instruction i −> A64.execute i
11 F64Instruction i −> F64.execute i
12 CSRInstruction i −> CSR.execute i
13 InvalidInstruction i −> raiseExceptionWithInfo 0 2 i
14 cycles <− getCSRField Field.MCycle
15 setCSRField Field .MCycle (cycles + 1)
16 instret <− getCSRField Field.MInstRet
17 setCSRField Field .MInstRet (instret + 1)

Listing 2.2: Haskell execute definition.

As for more detail about the translation, the Haskell definitions of decoding bytes into
instructions and the files defining execution are translated automatically into Coq using
hs-to-coq [12], while other files were manually translated. However, the translating tool
isn’t always able to identify the intended translation of the Haskell constructs used in the
semantics, either because the constructs, while built-in to one of Haskell’s standard libraries,
aren’t supported by the tool; or because the types involved are defined by the specification.
Hence, the translation uses manually written edit files which specify certain translation
patterns to be used. The snippet in Listing 2.3 is from this thesis’ edit files, to give a concrete
example. Lines 2 through 12 and 22 through 25 of this listing refer to converting references
helper functions defined in the vector execution semantics in Haskell into corresponding
helper methods in Coq, while lines 14 through 19 refer to renaming Haskell’s standard-
library methods and types into their Coq equivalents. Note that Int8 and Word8, both used
in Haskell to represent bytes, are mapped to the same type in Coq, w8, which is indicated
by how the translations in lines 22 through 25 map converting between the two Haskell
functions into identity functions in Coq.

1

2 rewrite forall x y, Spec.ExecuteV.take_machineInt x y = List.upto x y
3 skip Spec.ExecuteV.take_machineInt
4

5 rewrite forall x y, Spec.ExecuteV.drop_machineInt x y = List.from x y
6 skip Spec.ExecuteV.drop_machineInt
7

8 rewrite forall x, Spec.ExecuteV.length_machineInt x = Coq.ZArith.BinInt.Z.of_nat (length x)
9 skip Spec.ExecuteV.length_machineInt
10

11 rewrite forall x y, Spec.ExecuteV.index_machineInt x y = List.get x y
12 skip Spec.ExecuteV.index_machineInt
13

14 rename type GHC.Maybe.Maybe = option
15 rename value GHC.Maybe.Just = Some
16 rename value GHC.Maybe.Nothing = None
17

16

18 rename type GHC.Int.Int8 = w8
19 rename type GHC.Word.Word8 = w8
20

21

22 rewrite forall , Spec.ExecuteV.int8_toWord8 = (fun x => x)
23 skip Spec.ExecuteV.int8_toWord8
24 rewrite forall , Spec.ExecuteV.word8_toInt8 = (fun x => x)
25 skip Spec.ExecuteV.word8_toInt8

Listing 2.3: Snippet of edit file for vector extension semantics annotating specific translations
for translation tool to use

Lastly, 4 of the key definitions in the Coq semantics that aren’t directly derived from
Haskell are listed in Listing 2.4. RiscvProgram is most closely a direct, manual translation
of the RiscvMachine definition in Haskell. mcomp_sat in PrimitivesParams represents a
predicate attached to executions defining when a postcondition is satisfied by a monadic
computation. spec_Bind and spec_Return are specific definitions for mcomp_sat for the
two primitives of a monad, Bind and Return, and lastly class Primitives provides similar
definitions for primitive operations of a RISC-V machine.

1 Class RiscvProgram{M}{t}‘{Monad M}‘{MachineWidth t} := mkRiscvProgram {
2 getRegister : Register −> M t;
3 setRegister : Register −> t −> M unit;
4 loadByte : SourceType −> t −> M w8;
5 storeByte : SourceType −> t −> w8 −> M unit;
6 getCSRField : CSRField −> M MachineInt;
7 setCSRField : CSRField −> MachineInt −> M unit;
8 (∗ Other methods omitted ∗)
9 }

10

11 Class PrimitivesParams(Machine: Type) := {
12 mcomp_sat: forall {A: Type}, M A −> Machine −> (A −> Machine −> Prop) −> Prop;
13 (∗ Other methods omitted ∗)
14 }.
15

16 Class mcomp_sat_spec{Machine: Type}(p: PrimitivesParams Machine): Prop := {
17 spec_Bind{A B: Type}: forall (initialL : Machine) (post: B −> Machine −> Prop)
18 (m: M A) (f : A −> M B),
19 (exists mid: A −> Machine −> Prop,
20 mcomp_sat m initialL mid /\
21 (forall a middle, mid a middle −> mcomp_sat (f a) middle post)) <−>
22 mcomp_sat (Bind m f) initialL post;
23

24 spec_Return{A: Type}: forall (initialL : Machine)
25 (post: A −> Machine −> Prop) (a: A),
26 post a initialL <−>
27 mcomp_sat (Return a) initialL post;
28 }.

17

29

30 Class Primitives (primitives_params: PrimitivesParams RiscvMachine): Prop := {
31 #[global] mcomp_sat_ok :: mcomp_sat_spec primitives_params;
32

33 spec_getRegister: forall (initialL : RiscvMachine) (x: Register)
34 (post: word −> RiscvMachine −> Prop),
35 (valid_register x /\
36 match map.get initialL .(getRegs) x with
37 | Some v => post v initialL
38 | None => forall v, is_initial_register_value v −> post v initialL
39 end) \/
40 (x = Register0 /\ post (word.of_Z 0) initialL) −>
41 mcomp_sat (getRegister x) initialL post;
42

43 spec_loadByte: spec_load 1 (Machine.loadByte (RiscvProgram := RVM)) Memory.loadByte;
44

45 spec_storeByte: spec_store 1 (Machine.storeByte (RiscvProgram := RVM)) Memory.storeByte;
46 (∗ Other lemmas omitted ∗)
47 }.

Listing 2.4: Abbreviated definitions for Coq semantics.

2.4 Haskell Specification

This section will first discuss how the Haskell specification was tested before translation into
Coq and then will give a brief overview of implementation.

The implementation in Haskell was evaluated for correctness by simulating RISC-V V
assembly which was produced by compiling test cases written in C using the GCC compiler.
These test cases used compiler intrinsics available for using RISC-V vector instructions di-
rectly and were adapted from [15], which specifies these intrinsics and provided examples for
them.

The steps taken to adapt the previous Haskell specification by [6] to the vector instruc-
tions listed in the previous section include modifying the parser to recognize the binary
encoding of these instructions, modifying the machine representation to support the state
that these instructions read from and write to, and writing out the actual execution.

Besides the definition of additional control and status registers as mentioned earlier, the
primary modification to the type class defined by [6] to represent a RISC-V machine was the
addition of two more primitives, as shown in Listing 2.5. These represent getting and setting
the contents of a vector register. A vector register is represented as an array of bytes for
convenience, as the specification’s semantics divide the contents of a vector register into data
elements whose width is always byte-aligned and is determined by the instruction and/or
control and status registers.

18

1 class (Monad p, MachineWidth t) => RiscvMachine p t | p −> t where
2 −− other previously defined methods
3 getVRegister :: VRegister −> p [Int8]
4 setVRegister :: VRegister −> [Int8] −> p ()

Listing 2.5: Machine definition edits in Haskell.

To demonstrate these primitives in action, Listing 2.6 shows the Haskell definition of
pairwise addition between vectors (starting at line 32 of the listing) as well as a couple
of helper functions. Seen again in this listing is the do-notation mentioned previously for
chaining monadic computation. Of note in this listing is that at lines 34 through 40, CSR
register values are being read and are affecting how the instructions are being executed; for
example, line 63 executes conditionally on whether the CSR register vtypei has been set to
be mask-agnostic or not.

Lines 42-44, 47 and 51-54 demonstrate the setup in computing which vector register and
which part of the vector register correspond to a single data element being operated on from
each of the two operand vector registers. This computation is necessary because the selected
element width, which is the width of the data element, is read from Field.VSEW and isn’t
a constant across all executions of the instruction. Line 47 in particular also gives range
bounds over the total number of data elements to operate on, where the lower bound is
given by CSR field Field.VStart, and the upper by CSR field Field.VL. The latter’s role
is discussed earlier in the thesis, while Field.VStart serves as a record of the “loop counter”
while this instruction executes. The use of Field.VStart is more relevant in the context of
instructions being interrupted midway through, which is outside the scope of this thesis but
is permitted by the specification.

Also of note is the use of the combineBytes helper function at lines 58 and 59 of the
listing. This helper function had already existed previously, but it used the Word8 datatype
to represent a byte, whereas the machine primitive for loading and storing bytes to and
from memory were defined with signatures loadByte :: SourceType -> t -> p Int8
and storeByte :: SourceType -> t -> Int8 -> p () , respectively, necessitating the
int8_toWord8 conversion function. combineBytes at line 58, as well as the definitions
of helper functions getVRegisterElement and setVRegisterElement at lines 1 and 16
respectively, all take advantage of and demonstrate the utility of representing a vector reg-
ister as a list of bytes, as the selected element width is configurable in multiples of bytes.
getVRegisterElement and setVRegisterElement are effectively methods for taking a slice
of an array and replacing a contiguous segment of an array of bytes.

Finally, lines 62, 63, and 66 represent the persistent effects of the vector instruction’s
execution on state. Lines 62 and 63 update the destination vector register based on the
mask bit set in the instruction and the mask-agnostic policy defined by CSR field Field.VMA.
Meanwhile, line 66 updates the tail end of the last destination vector register based on the
tail-agnostic policy defined by CSR field Field.VTA. A concrete example of when this tail
portion may be executed is if Field.VLMul is in effect ½, which may be of use when a future
vector operation is planned which may output data elements that are wider than their inputs.
In this scenario, the back half of the vector register would be the tail in this operation and
would be updated as mentioned previously.

19

1 getVRegisterElement :: forall p t . (RiscvMachine p t) => MachineInt −> VRegister −>
MachineInt −> p [Int8]

2 getVRegisterElement eew baseReg eltIndex =
3 if (eew == 1 || eew == 2 || eew == 4 || eew == 8)
4 then
5 do
6 vlenb <− getCSRField Field.VLenB
7 vregValue <− getVRegister baseReg
8 let value = take_machineInt (eew) (drop_machineInt ((eltIndex ∗ eew)) vregValue) in
9 if (length_machineInt value) == (eew)

10 then return value
11 else raiseException 0 2
12 else
13 raiseException 0 2
14

15

16 setVRegisterElement :: forall p t . (RiscvMachine p t) => MachineInt −> VRegister −>
MachineInt −> [Int8] −> p ()

17 setVRegisterElement eew baseReg eltIndex value =
18 if (eew == 1 || eew == 2 || eew == 4 || eew == 8)
19 then
20 do
21 vlenb <− getCSRField Field.VLenB
22 vregValue <− getVRegister baseReg
23 let newVregValue =
24 (take_machineInt ((eltIndex ∗ eew)) vregValue) ++
25 (value) ++
26 (drop_machineInt (((eltIndex + 1) ∗ eew)) vregValue) in
27 if (length_machineInt newVregValue) == (length_machineInt vregValue)
28 then (setVRegister baseReg newVregValue)
29 else raiseException 0 2
30 else raiseException 0 2
31

32 execute (Vaddvv vd vs1 vs2 vm) =
33 do
34 vstart <− getCSRField Field.VStart
35 vlmul <− getCSRField Field.VLMul
36 vlenb <− getCSRField Field.VLenB
37 vl <− getCSRField Field.VL
38 vma <− getCSRField Field.VMA
39 vta <− getCSRField Field.VTA
40 vsew <− getCSRField Field.VSEW
41 vmask <− getVRegister 0
42 let eew = 2 ^ (fromMaybe 0 (translateWidth_Vtype vsew))
43 maxTail = computeMaxTail vlmul vlenb (eew)
44 eltsPerVReg = (vlenb ∗ 8) ‘quot‘ (eew)
45 in

20

46 do
47 forM_ [vstart ..(vl−1)]
48 (\ i −>
49 do
50 let
51 realVd = vd + ((i ‘quot‘ eltsPerVReg))
52 realVs1 = vs1 + ((i ‘quot‘ eltsPerVReg))
53 realVs2 = vs2 + ((i ‘quot‘ eltsPerVReg))
54 realEltIdx = (i ‘rem‘ eltsPerVReg)
55 vs1value <− getVRegisterElement (eew ‘quot‘ 8) realVs1 realEltIdx
56 vs2value <− getVRegisterElement (eew ‘quot‘ 8) realVs2 realEltIdx
57 let
58 vs1Element = ((combineBytes :: [Word8] −> MachineInt) (map int8_toWord8

vs1value))
59 vs2Element = ((combineBytes :: [Word8] −> MachineInt) (map int8_toWord8

vs2value))
60 vdElement = vs1Element + vs2Element
61 ((setCSRField Field .VStart i))
62 when (vm == 0b1 || (testVectorBit vmask i)) (setVRegisterElement (eew ‘quot‘ 8)

realVd realEltIdx (map word8_toInt8 (splitBytes (eew) vdElement)))
63 when (vm == 0b0 && (not (testVectorBit vmask i) && (vma == 0b1))) (

setVRegisterElement (eew ‘quot‘ 8) realVd realEltIdx (replicate_machineInt (eew
‘quot‘ 8) (complement (zeroBits))))

64 setCSRField Field .VStart i
65)
66 when (vta == 0b1) (forM_ [vl..(maxTail−1)]
67 (\ i −>
68 let realVd = vd + ((i ‘quot‘ eltsPerVReg))
69 realEltIdx = (i ‘rem‘ eltsPerVReg)
70 in do
71 setVRegisterElement (eew ‘quot‘ 8) realVd realEltIdx (

replicate_machineInt (eew ‘quot‘ 8) (complement (zeroBits))
)))

72 setCSRField Field .VStart 0b0

Listing 2.6: Haskell code for vector-vector add implementation.

2.5 Coq Translation

The Haskell specification, once tested on the aforementioned test cases, was then trans-
lated into Coq using preexisting automatic translation tool hs-to-coq [12]. However, this
translation was not fully automatic, for a couple of reasons.

First, hs-to-coq in translating does not necessarily know how to translate all the Haskell
constructs used into Coq, and thus specific find-and-replace patterns were developed for
the translation. For example, Int8 and Word8 in Haskell were both translated as the

21

same type in Coq, so the aforementioned int8_toWord8 conversion function was manu-
ally annotated as being equivalent to the identity function in Coq. Besides this, some of
Haskell’s standard constructs for working with monads (such as Data.Traversable.forM
and Data.Foldable.forM_) were not recognized by the translator because [6] defined their
own monad type for the Coq translation, and so the manual annotation for those two func-
tions would be to mark as equivalent to utility functions that were written in Coq.

Second, the automatic translation only covered directly translating the specification of
the decoding and execution of the instruction and did not, for example, update the Coq rep-
resentation of a RISC-V machine to also have vector registers. Thus, this too was manually
updated for the Coq equivalent of the base RISC-V machine type class, and the preexisting
proofs about instances of this machine were partially updated as well.

The Coq translation of the modified Haskell semantics as contained in the riscv-coq
subfolder of the previously mentioned artifact was successfully compiled by resolving most
proofs, except for proofs less directly relevant to semantics, e.g. encoding and decoding
being inverses. The Coq definitions listed in Listing 2.4 were also modified to support
the equivalent of the operations added in Listing 2.5. Listing 2.7 presents the signature
for the Coq translation of getVRegister and setVRegister, as well as how mcomp_sat,
the definition of a monadic computation satisfying a postcondition, was defined for these
primitives. spec_getVRegister and spec_setVRegister can be interpreted as stating that
if the vector register argument to these primitives is within the 32 vector registers, and either
the value read from or written to the vector register along with the rest of the machine state
satisfy the postcondition, then the respective operations’ execution will result in state that
satisfies the postcondition.

1 Class RiscvProgram{M}{t}‘{Monad M}‘{MachineWidth t} := mkRiscvProgram {
2 (∗ Unmodified lines omitted ∗)
3 getVRegister : VRegister −> M (list w8);
4 setVRegister : VRegister −> (list w8) −> M unit;
5 };
6

7 Class Primitives (primitives_params: PrimitivesParams RiscvMachine): Prop := {
8 (∗ Unmodified lines omitted ∗)
9 spec_getVRegister: forall (initialL : RiscvMachine) (x: Register)

10 (post: (list w8) −> RiscvMachine −> Prop),
11 (valid_vregister x /\
12 match map.get initialL .(getVRegs) x with
13 | Some v => post v initialL
14 | None => forall v, is_initial_vregister_value v −> post v initialL
15 end) −>
16 mcomp_sat (getVRegister x) initialL post;
17

18 spec_setVRegister: forall (initialL : RiscvMachine) (x: VRegister) (v: list w8)
19 (post: unit −> RiscvMachine −> Prop),
20 (valid_vregister x /\ valid_vregister_value v /\ post tt (withVRegs (map.put initialL .(

getVRegs) x v) initialL)) −>
21 mcomp_sat (setVRegister x v) initialL post;
22

22

23 (∗ Unmodified lines omitted ∗)
24 }.

Listing 2.7: Computation-satisfies-postcondition predicate for new primitives.

However, I was unable to adapt the Coq translation into theorems suitable for inter-
operation with the compiler theorems for Bedrock2 in terms of precondition-postcondition
semantics. In the next chapter I will discuss the reasons why this was not completed as well
as other limitations and difficulties encountered in the Haskell and Coq implementations.

23

24

Chapter 3

Limitations and Difficulties

In spite of the partial success to which the specification of the selected vector instructions
in Coq and Haskell were executed, I identify two main difficulties that were encountered in
this translation.

3.1 Different, Incompatible Numeric Types

First, unlike the extensions previously formalized by [6], the type of data element that a
vector register contains is not fixed. In other words, a 128-bit vector register may hold 16
8-bit elements or 2 64-bit elements, and the intended interpretation is up to the context of
the function being executed.

For the previous formalizations, a single type class MachineWidth was sufficient to rep-
resent a register value, and arithmetic could be done solely between members of that type
class, before being converted back to bytes if being written to memory. However, given
this flexibility in the vector specification, conversion between a vector register as an array of
bytes and as an array of data elements has to be defined for every allowed data element type.
This includes 8, 16, 32, and 64-bit integer types, as well as, though not covered within this
thesis, fixed-point and floating-point values. Care will also need to be taken to ensure that
overflow and edge cases for arithmetic for each of these types is properly handled in Coq and
Haskell. An additional concern in terms of arithmetic edge cases is that the vector extension
supports multiple variations of some arithmetic operations, depending on behavior on over-
flow. For example, the vector add formalized in this thesis is supposed to wrap around on
overflow (although this wasn’t tested empirically in Haskell), while there are also variants
of the same for data-element widening (i.e., the output is twice the bitwidth of the inputs)
and add-with-carry. Prior work on building a live-verification framework atop Bedrock2 also
observed the complication of supporting multiple distinct numeric types simultaneously [16],
noting Coq’s lack of subtyping as another contributing factor.

Aside from this, much of the Haskell formalization relied on manipulating lists of bytes;
however, a source of friction on this was that Haskell’s functions with lists and integers (e.g.,
indexing into a list, taking the first few elements) used a different integer type (Integer)
than the integer type used to store integers in the machine’s control and status registers
(MachineInt, which is an alias for Haskell’s Int64). The effects of this can be seen in

25

Listing 2.6, where helper functions with suffix _machineInt (e.g. replicate_machineInt,
drop_machineInt) are used. These helper functions are wrappers around the Haskell standard-
library functions on lists, using fromIntegral to convert between the integer types; however,
fromIntegral is not supported by the translation tool from Haskell to Coq, hence these
helper functions were also manually rewritten for the Coq translation.

3.2 Control-and-Status Registers Affect Semantics

The other primary difficulty encountered in implementing this specification in Coq is that
unlike the extensions previously formalized by [6], the values read from and written to the
control and status registers affect the execution of instructions. This can be seen in Listing
2.4, where under Primitives, specifications for reading from and writing to a register are
defined, as well as loading and storing from memory. However, no equivalent was previously
defined for Machine.getCSRField and Machine.unsafeSetCSRField, the CSR methods of
type-class RiscvMachine listed in Listing 2.1.

This hinders the use of the Coq specification in the Bedrock2 compiler because the view
that the compiler proofs had of a RISC-V machine prior to the formalization of the vector
extension did not track either vector registers or CSRs. This additional state in the model of
a RISC-V processor pervades through other theorems that use the RISC-V machine due to
type mismatches and tactics not being strongly typed. Besides this, new semantics have to
be defined for when an abstract machine’s execution of binding the returned value of a CSR
register satisfies a given postcondition, which may be more nuanced than at first glance since
CSRs are not unique to the vector extension and thus may have other semantic significance
elsewhere.

26

Chapter 4

Future Work and Conclusion

Besides completing the formalization of the vector instructions mentioned in this thesis,
there are many more instructions in the same vector extension to be formalized. In this
section I will go over interesting technical details of the vector instructions which may be
worth exploring in a future extension of this thesis, followed by a conclusion.

Earlier in this thesis, it was mentioned that mask-agnostic and tail-agnostic flags were
available for configuration. Currently, the specification is implemented deterministically, i.e.
if the mask-agnostic flag is set, then all data elements not written to will be overwritten,
which does conform to the specification but may be too specific, as a processor technically
has the leeway to leave the elements undisturbed or leave some undisturbed and overwrite
others.

Besides this, currently the specification is hardcoded to 64-bit vector registers, with a
smallest data element supported of 8 bits. However, both the vector bit length and the
smallest data element supported can both be higher and are implementation-defined, so
parametrizing the specification over these values would be useful.

Finally, it would be of use to actually examine whether Bedrock2 can use these instruc-
tions to reduce code size while preserving verifiable correctness, through implementing a
verified vectorization phase in the compiler.

In conclusion, based on progress towards formalizing a subset of the RISC-V vector
extension using Haskell, it has been shown that the past work of [6] in formalizing RISC-V
using abstract monads can be extended to vector instructions, although not without caveats
particular to vector instructions and the RISC-V V extension.

27

28

References

[1] R. Kumar, M. O. Myreen, M. Norrish, and S. Owens. “CakeML: a verified implemen-
tation of ML”. In: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. POPL ’14. San Diego, California, USA: As-
sociation for Computing Machinery, 2014, pp. 179–191. isbn: 9781450325448. doi:
10.1145/2535838.2535841. url: https://doi.org/10.1145/2535838.2535841.

[2] X. Leroy, S. Blazy, D. Kästner, B. Schommer, M. Pister, and C. Ferdinand. “CompCert-
a formally verified optimizing compiler”. In: ERTS 2016: Embedded Real Time Software
and Systems, 8th European Congress. 2016.

[3] A. W. Appel. “Verified Software Toolchain: (Invited Talk)”. In: European Symposium
on Programming. Springer. 2011, pp. 1–17.

[4] A. Armstrong et al. “ISA semantics for ARMv8-a, RISC-v, and CHERI-MIPS”. In: Pro-
ceedings of the 46th Annual ACM SIGPLAN Symposium on Principles of Programming
Languages. POPL ’19. Cascais, Portugal: Association for Computing Machinery, 2019.
doi: 10.1145/3290384. url: https://doi.org/10.1145/3290384.

[5] RISC-V International. RISCV Sail Model. url: https://github.com/riscv/sail-riscv.
[6] T. Bourgeat, I. Clester, A. Erbsen, S. Gruetter, P. Singh, A. Wright, and A. Chlipala.

“Flexible Instruction-Set Semantics via Abstract Monads (Experience Report)”. In:
Proc. ACM Program. Lang. 7.ICFP (Aug. 2023). doi: 10.1145/3607833. url: https:
//doi.org/10.1145/3607833.

[7] P. Wadler. “The essence of functional programming”. In: Proceedings of the 19th ACM
SIGPLAN-SIGACT symposium on Principles of Programming Languages. 1992, pp. 1–
14.

[8] P. Wadler and S. Blott. “How to make ad-hoc polymorphism less ad hoc”. In: Proceed-
ings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. POPL ’89. Austin, Texas, USA: Association for Computing Machinery,
1989, pp. 60–76. isbn: 0897912942. doi: 10.1145/75277.75283. url: https://doi.org/
10.1145/75277.75283.

[9] R. Espasa, M. Valero, and J. E. Smith. “Vector architectures: past, present and future”.
In: Proceedings of the 12th International Conference on Supercomputing. 1998, pp. 425–
432.

[10] R.-V. International. RISC-V Vector Processing is Taking Off | SiFive. 2022. url: https:
//riscv.org/blog/2022/06/risc-v-vector-processing- is- taking-off-sifive/ (visited on
07/31/2024).

29

https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/3290384
https://doi.org/10.1145/3290384
https://github.com/riscv/sail-riscv
https://doi.org/10.1145/3607833
https://doi.org/10.1145/3607833
https://doi.org/10.1145/3607833
https://doi.org/10.1145/75277.75283
https://doi.org/10.1145/75277.75283
https://doi.org/10.1145/75277.75283
https://riscv.org/blog/2022/06/risc-v-vector-processing-is-taking-off-sifive/
https://riscv.org/blog/2022/06/risc-v-vector-processing-is-taking-off-sifive/

[11] RISC-V International. riscv-v-spec. url: https://github.com/riscv/riscv-v-spec.

[12] The Penn PL Club. hs-to-coq. url: https://github.com/plclub/hs-to-coq.

[13] A. Erbsen, S. Gruetter, J. Choi, C. Wood, and A. Chlipala. “Integration verification
across software and hardware for a simple embedded system”. In: Proceedings of the
42nd ACM SIGPLAN International Conference on Programming Language Design and
Implementation. PLDI 2021. Virtual, Canada: Association for Computing Machinery,
2021, pp. 604–619. isbn: 9781450383912. doi: 10.1145/3453483.3454065. url: https:
//doi.org/10.1145/3453483.3454065.

[14] Arthur De Belen. Thesis artifact. url: https://github.com/0adb/deBelen-reinerdb-
meng-eecs-2024-artifact.

[15] RISC-V Non-ISA Specifications. rvv-intrinsic-doc. url: https ://github.com/riscv-
non-isa/rvv-intrinsic-doc/tree/v0.11.x.

[16] S. Gruetter, V. Fukala, and A. Chlipala. “Live Verification in an Interactive Proof
Assistant”. In: Proc. ACM Program. Lang. 8.PLDI (June 2024). doi: 10.1145/3656439.
url: https://doi.org/10.1145/3656439.

30

https://github.com/riscv/riscv-v-spec
https://github.com/plclub/hs-to-coq
https://doi.org/10.1145/3453483.3454065
https://doi.org/10.1145/3453483.3454065
https://doi.org/10.1145/3453483.3454065
https://github.com/0adb/deBelen-reinerdb-meng-eecs-2024-artifact
https://github.com/0adb/deBelen-reinerdb-meng-eecs-2024-artifact
https://github.com/riscv-non-isa/rvv-intrinsic-doc/tree/v0.11.x
https://github.com/riscv-non-isa/rvv-intrinsic-doc/tree/v0.11.x
https://doi.org/10.1145/3656439
https://doi.org/10.1145/3656439

	Title page
	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	1 Background
	2 Implementation
	2.1 RISC-V V Extension Programming Model
	2.2 Scope and Overview
	2.3 Overview of Prior RISC-V Specification by Bourgeat et al.
	2.4 Haskell Specification
	2.5 Coq Translation

	3 Limitations and Difficulties
	3.1 Different, Incompatible Numeric Types
	3.2 Control-and-Status Registers Affect Semantics

	4 Future Work and Conclusion
	References

