
Making Discrete Decisions Based on Continuous
Values

by
Benjamin Sherman

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of
Master of Science

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2017
c○ Benjamin Sherman, MMXVII. All rights reserved.

The author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document
in whole or in part in any medium now known or hereafter created.

Author .
Department of Electrical Engineering and Computer Science

May 19, 2017
Certified by. .

Adam Chlipala
Associate Professor of Electrical Engineering and Computer Science

Thesis Supervisor
Certified by. .

Michael Carbin
Jamieson Career Development Assistant Professor

of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Theses

2

Making Discrete Decisions Based on Continuous Values
by

Benjamin Sherman

Submitted to the Department of Electrical Engineering and Computer Science
on May 19, 2017, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

Many safety-critical software systems are cyber-physical systems that compute with
continuous values; confirming their safety requires guaranteeing the accuracy of their
computations. It is impossible for these systems to compute (total and deterministic)
discrete computations (e.g., decisions) based on connected input spaces such as R.
We propose a programming language based on constructive topology, whose types
are spaces and programs are executable continuous maps, that facilitates making
formal guarantees of accuracy of computed results. We demonstrate that discrete
decisions can be made based on continuous values by permitting nondeterminism.
This thesis describes variants of the programming language allowing nondeterminism
and/or partiality, and introduces two tools for creating nondeterministic programs
on spaces. Overlapping pattern matching is a generalization of pattern matching
in functional programming, where patterns need not represent decidable predicates
and also may overlap, allowing potentially nondeterministic behavior in overlapping
regions. Binary covers, which are pairs of predicates such that at least one of them
holds, yield a formal logic for constructing approximate decision procedures.

Thesis Supervisor: Adam Chlipala
Title: Associate Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Michael Carbin
Title: Jamieson Career Development Assistant Professor
of Electrical Engineering and Computer Science

3

4

Acknowledgments
I thank my advisors, Adam Chlipala and Michael Carbin, who contributed to this
thesis in many ways, by helping me to focus, justify, and explain my research, and by
reviewing drafts of this work and similar ones. I am grateful for their support of my
exploration of a subject that is relatively far from their interests.

I was fortunate to work with Luke Sciarappa during the summer of 2016 on related
subjects that led us to the subject of this thesis. Luke taught me about categories
and toposes, and we worked together to understand constructive topology.

Adam, Michael, Luke, and I submitted a draft on similar material to the Logic in
Computer Science (LICS) conference in 2017. We thank the four anonymous reviewers
for their helpful feedback. One review was particularly helpful, noting the possibility
of using open maps as patterns and noticing Remark 4.17.

Tej Chajed, Gabriel Scherer, and Muralidaran Vijayaraghavan read drafts of this
thesis or prior related drafts and provided helpful feedback.

I am grateful for the financial support for my graduate research, which I have
received from an MIT SMA fellowship as well as NSF grant CCF-1512611.

I thank my parents for their love and support.

5

6

Contents

1 Introduction 11
1.1 Example application: approximate root-finding 12
1.2 Why formal topology? . 12

1.2.1 Reasoning about programs as mathematical expressions 12
1.2.2 Computational content of compactness 14

1.3 Discrete decision-making on connected spaces 14
1.4 Terminology and foundations . 16

2 Constructive topology 17
2.1 Introduction via the real numbers . 17
2.2 Formal topology . 20

2.2.1 Inductively generated formal spaces 23
2.2.2 Locales . 24
2.2.3 The computational content of formal topology 26

2.3 Spaces . 27
2.3.1 Discrete spaces . 27
2.3.2 Open subspaces . 28
2.3.3 The Sierpínski space . 29
2.3.4 Disjoint unions (sums) . 29
2.3.5 Products . 31
2.3.6 Metric spaces, including R . 32

2.4 As a programming language . 34
2.4.1 Opens and Σ-valued maps . 35

3 Partiality and nondeterminism 37
3.1 Partiality . 39

3.1.1 Lifted spaces . 41
3.2 Nondeterminism . 44

3.2.1 Nondeterministic powerspaces 45
3.3 Both partiality and nondeterminism 46

3.3.1 Lower powerspaces . 47
3.4 Open maps and open embeddings . 47

3.4.1 Open maps . 48
3.4.2 Open embeddings . 50

3.5 Summary . 54

7

3.6 Variants of the programming language 54

4 Overlapping pattern matching 57
4.1 Example uses of overlapping pattern matching 58

4.1.1 A familiar example . 58
4.1.2 Approximate computation and decision-making 58
4.1.3 Manipulating partial data . 59
4.1.4 “Sheafification” of constructions 61

4.2 Pattern families . 61
4.2.1 Totality . 63
4.2.2 Determinism . 64
4.2.3 Totality and determinism . 66
4.2.4 Syntax of patterns . 67

4.3 Pattern matching with “gluing” conditions 69
4.4 Properties of overlapping pattern matching 75

4.4.1 Partial patterns and lifted spaces 75
4.4.2 Related to Grothendieck pretopologies 76
4.4.3 Evaluation of patterns . 77

5 Binary covers: nondeterministic decision procedures 79
5.1 Binary covers as nondeterministic decisions 79
5.2 Quantification over compact/overt spaces 81

5.2.1 On compact/overt spaces . 81
5.2.2 On compact/overt subspaces 84

5.3 Binary covers on R . 87
5.4 Approximate root-finding . 88

6 Related work 91
6.1 Alternative theories of constructive topology 91
6.2 Related programming formalisms involving continuity, partiality, or

nondeterminism . 91
6.3 Overlapping pattern matching . 92
6.4 Binary covers . 92
6.5 Implementation . 93

7 Discussion and conclusion 95
7.1 Coq implementation . 95
7.2 Programming with a theorem prover 96
7.3 Future work . 96

Bibliography 99

List of symbols 103

8

List of Figures

1-1 Car approaching a yellow light. 15

2-1 Rules that a formal cover relation must satisfy. 21
2-2 Rules that a point of a formal space must satisfy. 22
2-3 Rules that a continuous map of formal spaces must satisfy. 23

3-1 The lattice of categories representing potentially nondeterministic or
partial maps on spaces. 38

3-2 The restriction of the categories of nondeterministic and partial maps
of spaces to the discrete spaces. 39

3-3 A schematic diagram of the lifted space 𝐴⊥. 41
3-4 Summary of categories of morphisms on formal spaces and functors

relating them. 54

4-1 Syntax of patterns . 67

9

10

Chapter 1

Introduction

Many safety-critical software systems are cyber-physical systems that compute with
continuous values, such as space, time, magnitude, and probability; confirming their
safety requires guaranteeing the accuracy of their computations. We claim that for-
mal topology, a constructive theory of topology, provides a suitable theory for building
programs that compute with continuous values. We propose a programming language
based on formal topology, whose types are spaces and programs are executable con-
tinuous maps, that allows execution of programs that manipulate continuous values,
while at the same time allowing reasoning in terms of their mathematical descriptions
and guaranteeing accuracy of computed results. The interfaces defined in constructive
topology give insight into both how to specify such programs and how to compute
with continuous spaces [36, 10, 9, 34].

This thesis examines the problem of making discrete decisions based on continuous
values from the perspective of constructive topology. By topological arguments, any
program 𝑓 : R →𝑐 B that makes a (total and deterministic) discrete decision based
on a real number must be a constant map (i.e., always true or always false). We
demonstrate that decisions can be made based on continuous values by permitting
nondeterminism.

This thesis characterizes two programming language constructs for constructive
topology that make it easier to program with continuous values (particularly involving
nondeterminism):

∙ Overlapping pattern matching (Chapter 4) generalizes pattern matching on in-
ductive types in functional programming. It differs in that patterns need not
correspond to decidable predicates, and patterns are allowed to overlap; an input
satisfying multiple patterns may nondeterministically follow any such branch.
Because spaces often have few decidable predicates, nondeterminism is often
essential for decision-making, and overlapping pattern matching facilitates con-
struction of such programs.

∙ Binary covers (Chapter 5), which are pairs of opens that cover a space, provide
an expressive formal logic of “approximately decidable” properties. Most sig-
nificantly, the logic admits quantification over compact spaces, demonstrating

11

“approximate decidability” of questions such as whether a real-valued function
on a compact space has any roots.

We intend to explain in the remainder of this chapter how this thesis helps to
make sense of making decisions based on continuous values, and how the above tech-
niques make it easier to devise such programs. Section 1.1 describes how a rather
general approximate-root finding function can be written with the above techniques.
Section 1.2 justifies the choice of formal topology as the appropriate formalism for
programming with continuous values, and 1.3 explains informally why it is often dif-
ficult to make decisions based on continuous values, and why nondeterminism may
be necessary.

1.1 Example application: approximate root-finding
Consider the following computational task. Suppose we have an arbitrary continuous
function 𝑓 : 𝐾 →𝑐 R, where 𝐾 is some compact space (such as the unit interval [0, 1]),
and want to determine if it has any roots. In general, it is not decidable whether 𝑓
has any roots [36], but an approximation is possible: fix a tolerance 𝜀 > 0. Then
either, or both, of the following statements must hold:

∙ There is some 𝑥 ∈ 𝐾 such that |𝑓(𝑥)| < 𝜀.

∙ For every 𝑥 ∈ 𝐾, 𝑓(𝑥) ̸= 0.

Though each of the above statements is in general undecidable, we can use the tech-
niques devised in this thesis to define a function that nondeterministically computes
that one of the above two statements holds, in the former case computing such an
𝑥 that is “almost a root.” We will observe in Section 5.4 that the pair of bulleted
statements in fact comprise a binary cover, and that an overlapping pattern match
can be used to construct the program that solves the task.

1.2 Why formal topology?
This section motivates formal topology as a language theory for programming with
continuous values, explaining some desirable properties of such a theory and how
these properties are absent in alternative methods of specifying and computing with
continuous values.

1.2.1 Reasoning about programs as mathematical expressions

A principal desire is to be able to soundly reason about the behavior of programs that
manipulate continuous values as the mathematical expressions that they denote. For
instance, we might hope that the real-valued programs (1 + 𝑥) − 𝑥 and 1 would be
considered equivalent (since the corresponding real-valued mathematical expressions
are equivalent).

12

Notably, floating point lacks this property: in particular, those two programs are
not considered equivalent, and for the value 𝑥 , 1050, for instance, the expression
(1 + 𝑥)− 𝑥 returns 0 rather than 1.

Systems lacking such a connection between the programs and the mathematical ex-
pressions they are supposed to represent are difficult to program with: a programmer
cannot necessarily use a mathematical identity of real-valued expressions to replace
one program with another (which may be faster, simpler, or otherwise more efficient)
without worrying that it might change the program’s behavior. Similarly, compilers
cannot use mathematical identities, either, for the purpose of optimization.

Comparison with floating point

A common approach for computing with real numbers is to use floating-point numbers
as a surrogate. Floating point is intended behave like the real numbers: for instance,
most floating-point operations return the floating-point value closest to the “ideal”
real number result. Unfortunately, this guarantee does not compose well: it is easy
to conceive floating-point programs whose results are arbitrarily erroneous compared
to the ideal real-valued result. For instance, consider the real-valued function [31,
Chapter 9.1]

𝑓 : {𝑥 : R | 𝑥 ̸= 0} → R

𝑓(𝑥) ,
1− cos(𝑥)

𝑥2
,

and its double-precision floating-point approximation using a cosine operation that
returns an answer to within 1 ULP of the ideal answer. Then 𝑓(1.1 × 10−8) is very
close to 1/2 (easily within 10−8), while the floating-point code returns approximately
0.9175. In practice, it is very difficult to bound the error of floating-point functions.

Issues such as overflow, roundoff error, and catastrophic cancellation make it
very difficult to reason about the behavior of floating-point programs. Mathematical
properties of real numbers do not necessarily hold for floating-point programs. For
instance, addition/multiplication of floating-point values is not associative. Accord-
ingly, replacing one floating-point program with another one which is equivalent when
viewed as an expression on real numbers can drastically change behavior. Moreover,
there may not be a single such program with the least error for all inputs [27].

The lack of the connection between floating point and real numbers makes pro-
gramming with floating point a difficult task. A programmer cannot necessarily use a
mathematical identity of real-valued expressions to replace a floating-point program
with another (which may be faster, simpler, or otherwise more efficient) without wor-
rying that it might negatively impact its accuracy. Nor can programmers (without
serious additional verification effort) be reasonably assured that their floating-point
program is at all accurate.

Compilers also face difficulty in handling floating-point programs. Since the source
language of a compiler will generally reflect all details about the low-level float-
ing point, compilers must preserve exact behavior of floating-point programs, even

13

though often the programmer does not rely on such exactness. Accordingly, compilers
are consigned to perform only very limited optimization of floating-point code that
doesn’t change floating point behavior. For instance, they cannot rewrite a program
(1 + 𝑥)− 𝑥 to the constant 1 because floating-point addition is not associative.

So floating point unfortunately lacks a key desideratum for a theory of program-
ming with continuous values.

1.2.2 Computational content of compactness

There are several computational frameworks for computing with real numbers that do
allow reasoning about programs as mathematical expressions. Most can be labeled a
form of exact real arithmetic, meaning that terms in their language faithfully represent
real numbers themselves. A result from computability theory regarding exact real
arithmetic underscores the fundamental importance of topology:

Theorem 1.1. Any computable function1 𝑓 : R→ R is necessarily continuous [49].

So one is not really missing out by restricting attention to continuous maps.
Constructive topology also has an advantage over other frameworks for exact real

arithmetic: the computational content in its definition of compactness. Compactness
is a fundamental topological property of spaces that generalizes the concept of (Ku-
ratowski) finiteness of sets. Compactness is important for many results in analysis.
One such result is that a real-valued continuous function on a compact space has
a minimum value. Unlike other frameworks for exact real arithmetic, constructive
topology allows this value to be computed.

Comparison with Bishop-style constructive analysis

One way to approach programming with real numbers is with Bishop-style construc-
tive analysis, where one develops the theory of metric spaces in a constructive manner.
The c-CoRN library in fact implements Bishop-style constructive analysis within Coq.

However, there are known difficulties with Bishop-style analysis. For instance,
the notions of continuity, compactness, and subspaces do not interact well, unless one
accepts additional axioms2. In particular, Waaldijk [48] proves that in Bishop-style
analysis, if one desires certain basic properties of continuous maps to hold, then one
must accept an axiom called the fan theorem.

1.3 Discrete decision-making on connected spaces

Lamport makes a bold claim with severe implications [18]:

1 In the theory of type II computability.
2 It is theoretically possible to give a computational model of type theory admitting such axioms

via Type II computability theory [2]. However, to compile systems like Coq to such a computational
model would be a difficult task.

14

R

Figure 1-1: An autonomous car approaches a traffic light that has just turned yellow,
and must decide whether to stop before the intersection or proceed through it.

Buridan’s Principle. A discrete decision based upon an input having a
continuous range of values cannot be made in a bounded length of time.

Lamport’s name “Buridan’s Principle” for the above claim comes from the famous
philosophical problem of Buridan’s Ass, which has many variations, but in one form
finds a donkey unable to decide between two equally distant and equally delicious
bails of hay, finally starving to death.

Why must it be so? Lamport argues that ultimately the decision arises by physical
mechanisms, and physics is necessarily continuous. The same argument could be
made from the perspective of computability, given that any computable function also
is necessarily continuous (theorem 1.1). Buridan’s principle can be rephrased as the
topological theorem:

Theorem 1.2. Any continuous map 𝑓 : 𝐴 →𝑐 B from a connected space 𝐴 to the
Booleans is necessarily constant.

Since the connected spaces include those such as R and R𝑛, this theorem precludes
the possibility of computing total, deterministic decisions based on real-valued inputs.

Consider an analogous situation, depicted in Figure 1.3, in which an autonomous
car approaches a yellow light and must decide whether to stop before the intersection
or proceed through it. How can we program the car to safely navigate the intersection,
given the impossibility result of Theorem 1.2?

This thesis argues that nondeterminism makes it possible to make decisions such
as these in bounded time, providing a loophole to work around Buridan’s Principle.
We claim that in each case there is some (open) region, perhaps small, where both
decisions may be made, perhaps from the exact same input. In the case of floating
point, though a floating-point comparison operation is indeed deterministic, there is
effectively nondeterminism in the way measurements are approximated to floating
point, and in the rounding in floating-point arithmetic operations.

This thesis explores how to program nondeterministic functions on spaces, devel-
oping programming-language constructions for computing approximate decisions that
make it easy to reason about what behaviors may occur.

15

1.4 Terminology and foundations
We intend mathematical statements to be interpreted within a constructive and pred-
icative metatheory, potentially formalizable within, for instance, the predicative frag-
ment of Coq (i.e., without use of the Prop universe).

Since all topological notions in this article are pointfree, we will coopt terminology
from classical topology without fear of confusion. For instance, we use the word
“space” rather than “locale” when describing the pointfree analogue of spaces. Because
we want to compute with the mathematical structures, we use the propositions-as-
types correspondence [30] to encode all propositions as types, such that everything
is formalizable within Martin-Löf type theory (as well as the predicative fragment of
Coq). Let 𝒰 denote the universe of types, where the universe level is left implicit,
but we use “small” and “large” to relative sizes of universes.

We use the term “type” to refer to a type, and the term “set” to refer to what is
often called a setoid or a Bishop set: a type together with a distinguished equivalence
relation on it. We use the symbol ≡ to denote intensional equality on members of any
type, reserving = for the equality relation on sets. The reader should assume that if
𝐴 and 𝐵 are both sets, then the notation 𝑓 : 𝐴 → 𝐵 means that 𝑓 is a morphism in
the category of sets (i.e., it maps equivalent elements of 𝐴 to equivalent elements of
𝐵).

Let Ω the (large) set of propositions: 𝒰 endowed with the equivalence relation of
bi-implication. Ω defines a completely distributive lattice with small meets and joins,
and we use lattice notation (⊤, ⊥, ∧, ∨, ≤) accordingly. Propositional functions
𝑃 : 𝐴 → Ω represent the subsets of 𝐴, and for 𝑎 : 𝐴 we use the familiar notation
𝑎 ∈ 𝑃 to denote the proposition 𝑃 (𝑎) : Ω. We use ∪ and ∩ to denote union and
intersection of subsets, respectively.

16

Chapter 2

Constructive topology

This chapter introduces formal topology as a theory of computation with continuous
values. We will develop the idea using the real numbers (or metric spaces, more
generally) as an example. We will identify the computational interface that the real
numbers provide (that is, what observations we are allowed to make on real numbers)
in terms of their “ideal” (implementation-independent) observable properties, and
discover that this interface has the logical structure of a formal topology and is shared
by all formal spaces.

2.1 Introduction via the real numbers

This section introduces formal topology via the example of the real numbers, R. We
begin by defining the real numbers by more conventional means (as Cauchy approxi-
mations) and attempting to define a program that makes a nondeterministic decision
based on a real number in this framework. It is difficult to reason spatially about
which real numbers may be mapped to true or false in this way, because one must rea-
son about the many possible implementations of a given real number. We then adjust
the definition of the real numbers so that they can be specified in an implementation-
independent way, which leads to their definition as a formal space. In this framework,
we first specify how the nondeterministic behavior should behave spatially, and then
derive an implementation (formal proof) that computes the behavior. Because the
specification completely describes the desired behavior, one need not reason about
the form of the implementation beyond the fact that some implementation exists.

The real numbers can be viewed as arbitrarily fine rational-valued approximations
to some well-defined quantity. For instance, given a square with sides of length 1,
the diagonal has length

√
2, which is a real number but not a rational number. That

is, one can produce rational numbers which come ever closer to the length of the
diagonal, though no rational number alone suffices to characterize it. The ability to
produce arbitrarily fine approximations is a useful and well-behaved one: it is this
idea that the real numbers encapsulate.

One standard construction of R is as the set of Cauchy sequences of rational
numbers. A sequence 𝑥 : N → Q is Cauchy if for all 𝜀 : Q+, there is some 𝑁 : N

17

such that for all 𝑚,𝑛 : N where 𝑁 ≤ 𝑛 an 𝑁 ≤ 𝑚, we have 𝑑(𝑥𝑚, 𝑥𝑛) < 𝜀, where
𝑑 : Q×Q→ Q denotes the distance between two rational numbers. Two sequences 𝑥
and 𝑦 are equivalent if the distance between their approximations 𝑑(𝑥𝑛, 𝑦𝑛) tends to
0 as 𝑛 approaches ∞.

This standard definition can be reduced to a simpler one [24]. We can instead
define regular functions RegFunc, functions 𝑥 : Q+ → Q such that for all 𝛿, 𝜀 : Q+,
𝑑(𝑥𝛿, 𝑥𝜀) ≤ 𝛿 + 𝜀. Intuitively, we imagine that 𝑥𝛿 is at most a distance 𝛿 away
from the “true” (but unrepresentable as a rational number) value of 𝑥, such that
𝑑(𝑥𝛿, 𝑥𝜀) ≤ 𝛿 + 𝜀 represents that each approximation is consistent with each other
in approximating the same limiting value, by imagining a notional application of the
triangle inequality,

𝑑(𝑥𝛿, 𝑥𝜀) ≤ 𝑑(𝑥𝛿, 𝑥) + 𝑑(𝑥, 𝑥𝜀) ≤ 𝛿 + 𝜀.

The relational characterization of consistent approximations of a real number also
suffices to characterize when two regular functions implement the same real number:
the real numbers R are the regular functions where two regular functions 𝑥 and 𝑦
are considered equivalent if for all 𝛿, 𝜀 : Q+, 𝑑(𝑥𝛿, 𝑦𝜀) ≤ 𝛿 + 𝜀. For a regular function
𝑥 : RegFunc, let [𝑥] : R be the real number that it implements.

Suppose we want to approximately compute whether a given real number is posi-
tive. It is impossible to do so exactly, so suppose we pick some error tolerance 𝜀 : Q+,
and we wish to define a function 𝑓 : RegFunc → B want the following behavior on
real numbers:

1. If 𝑓(𝑥) = true then [𝑥] > 0.

2. If 𝑓(𝑥) = false, then [𝑥] ≤ 𝜀.

We observe that for any 𝛿 : Q+, [𝑥] − 𝛿 ≤ 𝑥𝛿 ≤ [𝑥] + 𝛿, so with a bit of reason-
ing we find that a valid implementation of 𝑓 is 𝑓(𝑥) , 𝑥𝜀/2 > 𝜀/2 (recalling that
comparison of rational numbers is decidable). It is far from obvious that this defini-
tion of 𝑓 satisfies the expectations defined above, because one must reason about all
implementations of a given real number.

This is an issue with the definition of R, as it does not clearly describe what a real
number is independently of some implementation of that real number as a regular
function, so it is unclear what are properties of real numbers rather than of particular
regular function. We will tease out those properties that suffice to characterize a real
number that

1. are implementation-independent and

2. can be observed by querying any implementation (meaning that if the property
holds, we can observe it to hold by interacting with the implementation).

We call these properties (subsets) open.
Such a characterization would allow us to decouple a real number into a specifi-

cation that says which of these such properties a real number satisfies, and an imple-
mentation which allows computational observation of only those properties (and no

18

additional information), such that we could not care which implementation we are
given, only that we are given any implementation at all (which also serves as a model
to confirm that the specification is consistent).

Examples of open properties of R are · > 0 (i.e., positivity) and · < 𝜀. The
property · ≤ 𝜀 is not open; its interior · < 𝜀 is the largest open included within
it (every subset has an interior). Once we have characterized R as a formal space,
defining the approximate comparison function will reduce to simply finding a formal
proof ⊤ ≤ (· > 0) ∨ (· < 𝜀) that every number is either positive or less than 𝜀 1.

The regular functions come close to explaining R in the terms as above, but don’t
quite work. When a regular function 𝑥 : Q+ → Q is queried for some tolerance 𝜀 : Q+

to produce an answer 𝑥𝜀 = 𝑞, we learn that 𝑑([𝑥], 𝑞) ≤ 𝜀, but we may not necessarily
learn this same fact from a different representative of the same real number. For
instance, we can define the regular functions 0+ and 0− by 0+𝜀 , 𝜀 and 0−𝜀 , −𝜀.
Both of these regular functions implement the real number 0, from 0+ we easily learn
that 0 is nonnegative, which we can never learn by observing 0−. So these types of
observations are not necessarily observable given any implementation.

We can ensure that the regular functions only produce observable properties by
making a small change. Whenever a regular function 𝑥 : RegFunc allows us to observe
that 𝑑([𝑥], 𝑞) ≤ 𝜀, we expect that it should then be able to make tighten this estimate,
that is, it should be able to produce a 𝜀′ > 0 such that 𝜀′ < 𝜀 but still 𝑑([𝑥], 𝑞) ≤ 𝜀′.
Therefore, any estimate that says 𝑑([𝑥], 𝑞) ≤ 𝜀 in fact tells us that 𝑥 is strictly less
than 𝜀 away from 𝑞.

We will claim that after making this adjustment, any observation made with one
implementation can be made with another. First, let’s make the adjustment precise.
To allow an implementation 𝑥 of a real number [𝑥] to make previous approximations
more precise, we need to make a datatype representing previous approximations. For
each 𝑞 : Q and 𝜀 : Q+, let [𝑥] 𝐵𝜀(𝑞) denote the type of evidence that [𝑥] lies in the
open ball of radius 𝜀 around 𝑞 (or equivalently, 𝑑(𝑥, 𝑞) < 𝜀). Then any implementation
𝑥 offers two ways by which we can learn more about [𝑥],

𝜀 : Q+∑︁
𝑞:Q

[𝑥] 𝐵𝜀(𝑞)
approx

[𝑥] 𝐵𝜀(𝑞)∑︁
𝜀′:Q+|𝜀′<𝜀

[𝑥] 𝐵𝜀′(𝑞)
shrink

,

as well as a rule that allows us to “forget” information,

[𝑥] 𝐵𝜀(𝑞) 𝐵𝜀(𝑞) ⊆ 𝐵𝛿(𝑟)

[𝑥] 𝐵𝛿(𝑟)
weaken

.

Proposition 2.1. If [𝑥] = [𝑦], then if [𝑥] 𝐵𝜀(𝑞), we can observe the same of 𝑦 by
applications of the approx and shrink rules.

Proof sketch. By shrink, there is some 𝜀′ : Q+ such that 𝜀′ < 𝜀 and [𝑥] 𝐵𝜀′(𝑞).

1 It will satisfy an even tighter specification, that if 𝑓(𝑥) = false, then [𝑥] is strictly less than 𝜀.

19

Define 𝛿 : Q+ by 𝛿 , 𝜀 − 𝜀′. Then by approx there is some 𝑟 : Q such that
𝑦 𝐵𝛿(𝑟). Since [𝑥] = [𝑦], 𝐵𝜀′(𝑞) and 𝐵𝛿(𝑟) must overlap, and therefore by weaken,
𝑦 𝐵𝜀(𝑞).

Since any open subset is a union of open balls, we can define for any open subset
𝑈 and any implementation 𝑥 of a real number, the type of evidence [𝑥] 𝑈 that [𝑥]
lies in 𝑈 as

[𝑥] 𝑈 ,
⋃︁

{[𝑥] 𝐵𝜀(𝑞) | 𝐵𝜀(𝑞) ⊆ 𝑈}.

We can now specify the task of making the nondeterministic decision as finding a
function that for all implementations 𝑥 of real numbers computes

([𝑥] · > 0) + ([𝑥] · < 𝜀) ,

and returns true in the case of inl and false in the case of inr. Because of the proof
terms that such a function returns, it would be guaranteed to behave as was originally
desired. The derivation of the above function would mirror the definition using regular
functions: we would first use approx(𝜀/2) to determine

∑︀
𝑞:Q[𝑥] 𝐵𝜀(𝑞), and check

to see of the result whether 𝑞 > 𝜀/2, and then use the weaken rule to weaken to
[𝑥] · > 0 if 𝑞 > 𝜀/2 and [𝑥] · < 𝜀 if 𝑞 ≤ 𝜀/2.

This shift succeeds in isolating specifications of real numbers from their implemen-
tations. To specify a real number, it suffices to say what balls 𝐵𝜀(𝑞) it lies in. The
computational rules of an implementation, e.g. approx and shrink, explicitly indi-
cate what the results of the computation mean in terms of the observable properties
of the real number that the implementation represents.

The above characterization is informal and incomplete; the remainder of this chap-
ter will give a rigorous description of formal topology, and in particular Section 2.3.6
will characterize metric spaces. The basic idea in constructing R as a formal space is
to first describe a logic of the balls 𝐵𝜀(𝑞) that completely describes which balls are
covered by unions of other balls. A point is specified by the formal balls that it lies
in, and an implementation of a real number allows one to compute which formal balls
that it lies in, which also serves to guarantee the soundness of the specification of
that real number.

2.2 Formal topology
In this section, we formally describe formal spaces, and then the inductively generated
formal spaces, which will form a category FSpc.

Definition 2.2. A formal space 𝐴 is a preorder 𝒪B(𝐴) together with a relation ▷ :
𝒪B(𝐴) → (𝒪B(𝐴) → Ω) → Ω that satisfies the rules in Figure 2-1.

The intuitive meaning of this structure is that 𝒪B(𝐴) is a set of basic opens on
𝐴, where 𝑎 ≤𝒪B(𝐴) 𝑏 if the basic open 𝑎 is included in the basic open 𝑏. A subset
𝑈 : 𝒪B(𝐴) → Ω represents an arbitrary union of the basic opens in 𝑈 . This means
that every open of 𝐴 can be represented as a subset 𝑈 : 𝒪B(𝐴) → Ω. Then 𝑎 ▷ 𝑈

20

refl
𝑎 ∈ 𝑈

𝑎 ▷ 𝑈
trans

𝑎 ▷ 𝑈 𝑈 ▷ 𝑉

𝑎 ▷ 𝑉
≤-left

𝑎 ≤ 𝑏 𝑏 ▷ 𝑈

𝑎 ▷ 𝑈

≤-right
𝑎 ▷ 𝑈 𝑎 ▷ 𝑉

𝑎 ▷ 𝑈 ↓ 𝑉

Figure 2-1: Rules that a formal cover relation must satisfy.

represents the proposition that the basic open 𝑎 is covered by the open 𝑈 (that is,
the extent of 𝑎 is included in the extent of 𝑈 , though it need not be the case that
directly 𝑎 ∈ 𝑈).

This can be extended to specify the entire covering relation, that is, when an open
𝑈 is covered by another open 𝑉 . We define (overloading the notation ▷ to have either
basic opens or opens on the left side)

𝑈 ▷ 𝑉 , ∀𝑎 ∈ 𝑈. 𝑎 ▷ 𝑉,

which says that 𝑈 is covered by 𝑉 if all of the basic opens comprising 𝑈 are covered
by 𝑉 . With this definition, we can define the (large) set of opens on 𝐴, 𝒪 (𝐴), as
the type 𝒪B(𝐴) → Ω where two opens 𝑈, 𝑉 : 𝒪B(𝐴) → Ω are equivalent if they each
cover each other, i.e., 𝑈 ▷ 𝑉 and 𝑉 ▷ 𝑈 .

The intersection of two basic opens 𝑎 and 𝑏 need not necessarily be a basic open
itself; however, it must necessarily be the union of basic opens 𝑐 which are included
in both 𝑎 and 𝑏. Therefore, we define the operator2 3

↓ : 𝒪B(𝐴) → 𝒪B(𝐴) → (𝒪B(𝐴) → Ω)

𝑎 ↓ 𝑏 ,
⋃︁

{𝑐 : 𝐴 | 𝑐 ≤ 𝑎 and 𝑐 ≤ 𝑏}.

The ↓ operator can be extended to apply to opens just by taking unions, i.e.,

𝑈 ↓ 𝑉 ,
⋃︁
𝑎∈𝑈

⋃︁
𝑏∈𝑉

𝑎 ↓ 𝑏.

Having defined ↓, we can return to understand the rules on a formal cover described
in Figure 2-1. refl says that a basic open is covered by an open that includes that
basic open. ≤-left is similar, saying that if 𝑈 covers a basic open 𝑏, then it covers a
basic open 𝑎 that is included in 𝑏. trans describes transitivity of the cover relation:
if 𝑎 is covered by 𝑈 , and 𝑈 is covered by 𝑉 , then 𝑎 is covered by 𝑉 . ≤-right says

2 For any type 𝐴 and 𝑥 : 𝐴, the notation {𝑥} denotes the singleton subset, 𝜆𝑦. 𝑥 ≡ 𝑦.
3 There are many analogies between the construction of the topos of sheaves on a site and the

construction of the lattice of opens of a formal space. The definition of ↓ operator is just a special
case of the construction of the product of representable presheaves, where the presheaves are over
the category 𝒪B(𝐴) (considering a preorder as a category). We will refrain from pointing out the
other various correspondences.

21

𝑥 𝑎 𝑎 ▷ 𝑈

𝑥 𝑈
split

𝑥 ⊤
meet-0

𝑥 𝑎 𝑥 𝑏

𝑥 𝑎 ↓ 𝑏
meet-2

Figure 2-2: Rules that a point of a formal space must satisfy.

that if a basic open 𝑎 is covered by two opens 𝑈 and 𝑉 , it must be covered by their
intersection.

We should emphasize that these definitions and rules are purely formal: basic
opens are just “symbols” in some sense, rather than subsets as they are in classical
topology. The rules should match spatial intuition but are not justified by it. The
rules can be understood from a computational perspective as well, which is most
apparent when considering the definition of a point in a formal space.

Definition 2.3. A point 𝑥 of a formal space 𝐴 is a subset (𝑥 ·) : 𝒪B(𝐴) → Ω (read
“𝑥 lies in”) satisfying the rules in Figure 2-2. The points of 𝐴 form a set Pt(𝐴) where
two points 𝑥 and 𝑦 are considered equivalent if for all 𝑎 : 𝒪B(𝐴), 𝑥 𝑎 if and only if
𝑦 𝑎.

As with the ↓ operator, we extend 𝑥 · to operate on opens, rather than just
basic opens, by taking a union, 4

𝑥 𝑈 , ∃𝑎 ∈ 𝑈. 𝑥 𝑎.

The symbol ⊤ : 𝒪 (𝐴) denotes the trivially true propositional function (i.e., subset
that is the whole set), and denotes the open that represents the entire space.

Intuitively, 𝑥 𝑎 means that the point 𝑥 lies in the basic open 𝑎. Points are
described by which opens they lie in, but not every collection of basic opens actually
specifies a point. The split rule says that if 𝑥 lies in 𝑎 and if 𝑎 is covered by 𝑈 ,
the 𝑥 lies in 𝑈 . This can also be read computationally. If 𝑥 𝑎, and we provide a
cover 𝑈 of 𝑎 (imagine 𝑈 is very fine), then 𝑥 computes some basic open 𝑏 ∈ 𝑈 such
that 𝑥 𝑏. We call this computation splitting a point with an open cover (following
Palmgren [26]). meet-0 says that a point must lie in the entire space, and meet-2
says that if 𝑥 lies in both 𝑈 and 𝑉 , then it must lie in their intersection. Another
intuitive interpretation is that split allows one to refine information about a point,
meet-0 gives us some information about the point (so there is at least something to
refine), and meet-2 allows us to combine two pieces of information into one.

Definition 2.4. The one-point space * is defined by taking 𝒪B(*) , *, where * also
denotes the preorder with one element tt, and defining the cover relation

tt ▷ 𝑈 , tt ∈ 𝑈.

4The existential quantifier in this definition should be viewed as a dependent pair, where it
is possible to compute the basic open that exists. This definition agrees with formal topology as
formalized in Martin-Löf type theory but differs from Maietti and Sambin [21], who use an existential
quantifier that does not guarantee a computational interpretation.

22

𝑎 ▷ 𝑈

𝑓 *(𝑎) ▷ 𝑓 *(𝑈)
split

⊤ ▷ 𝑓 *(⊤)
meet-0

𝑓 *(𝑎) ↓ 𝑓 *(𝑏) ▷ 𝑓 *(𝑎 ↓ 𝑏)
meet-2

.

Figure 2-3: Rules that a continuous map of formal spaces must satisfy.

One can confirm that this covering relation satisfies the necessary rules. Then
𝒪 (*) ∼= Ω, and therefore we can interpret the subset (𝑥 ·) : 𝒪B(𝐴) → Ω corre-
sponding to a point 𝑥 of a space 𝐴 also as an inverse image map 𝑥* : 𝒪B(𝐴) → 𝒪 (*).
In 𝒪 (*), the ↓ operator corresponds to conjunction of propositions, and ▷ to implica-
tion. We can use this correspondence to generalize the definition of points of a space
to continuous maps from one space to another:

Definition 2.5. A continuous map 𝑓 from a formal space Γ to a formal space 𝐴,
written 𝑓 : Γ →𝑐 𝐴, is a map 𝑓 * : 𝒪B(𝐴) → 𝒪 (Γ) satisfying the rules in Figure 2-3.
The continuous maps from Γ to 𝐴 form a set Γ →𝑐 𝐴 where two maps 𝑓 and 𝑔 are
considered equivalent if for all 𝑎 : 𝒪B(𝐴), 𝑓 *(𝑎) = 𝑔*(𝑎).

2.2.1 Inductively generated formal spaces

Unfortunately, in the general case, it seems impossible to form product spaces for
those formal spaces that have no structure beyond their satisfaction of the laws in
Figure 2-1. This motivates the definition of inductively generated formal spaces by
Coquand et al. [7]. This will be the main category that we work with in this thesis.
As a category, the inductively generated formal spaces, FSpc, have products and
form a full subcategory of the more general class of formal spaces.

For inductively generated formal spaces, the cover relation takes a particular form:
it is generated by an indexed family of axioms of the form 𝑎 ▷ 𝑈 for concrete 𝑎s and
𝑈s.

Definition 2.6. A formal space 𝐴 is inductively generated if for each 𝑎 : 𝒪B(𝐴)
there is an index type 𝐼𝑎 : 𝒰 indexing a family of opens 𝐶𝑎 : 𝐼𝑎 → (𝒪B(𝐴) → Ω)
such that the covering relation is equivalent to the one inductively generated by the
following constructors (which always satisfy the rules in Figure 2-1):

𝑎 ∈ 𝑈

𝑎 ▷ 𝑈
refl

𝑎 ≤ 𝑏 𝑏 ▷ 𝑈

𝑎 ▷ 𝑈
≤-left

𝑖 : 𝐼𝑏 𝑎 ≤ 𝑏 𝑎 ↓ 𝐶𝑏(𝑖) ▷ 𝑈

𝑎 ▷ 𝑈
cov-axiom

.

The covering relation generated by an axiom set (𝐼, 𝐶) is the least covering relation
satisfying 𝑎▷𝐶𝑎(𝑖) for all 𝑎 : 𝒪B(𝐴) and 𝑖 : 𝐼𝑎 [7]. The cov-axiom rule at once ensures
that the required covers are present and that trans and ≤-right hold.

23

Most importantly, inductively generated formal spaces have products [7] and pull-
backs [16] (whereas formal spaces in general may not). Coquand et al. and Vickers
demonstrate inductive generation of all spaces used in this thesis [7, 41, 40, 43, 45].
These constructions are critical in enabling computation over these spaces.

2.2.2 Locales

Formal topology describes spaces with a particular base of opens, but often it is easier
to express certain constructions instead with locale theory, where a space is described
without reference to a particular base. Every formal space determines a locale, but
(predicatively) one cannot in general construct a formal space from a locale.

There are really two key reasons (which are related) why we deal with formal
topology at all, rather than exclusively using locales:

∙ Formal topology is more concrete and, in practice, is useful for giving concrete
methods of constructing spaces (similar to the use of generators and relations
for presenting locales).

∙ Predicatively, a general construction of product spaces and pullbacks does not
appear to be possible for locales [7]. These can only be constructed for (induc-
tively generated) formal spaces.

Once a space has been constructed using formal topology, it is sometimes conve-
nient to shift to the language of locale theory, where no fundamental distinction is
drawn between the basic opens and opens in general.

Definition 2.7. A locale 𝐴 is a distributive lattice 𝒪 (𝐴) that has top and bottom
elements, ⊤ and ⊥, respectively, and that has small joins such that meets distribute
over joins: 5

𝑎 ∧
⋁︁
𝑖:𝐼

𝑏𝑖 =
⋁︁
𝑖:𝐼

𝑎 ∧ 𝑏𝑖.

Theorem 2.8. For any formal space 𝐴, the preorder 𝒪 (𝐴) of opens (defined in
Section 2.2) yields a locale.

Proof sketch. We need to show 𝒪 (𝐴) has the requisite operations. We define

⊤ , 𝜆_. ⊤
⊥ , 𝜆_. ⊥

𝑈 ∧ 𝑉 , 𝑈 ↓ 𝑉⋁︁
𝑖:𝐼

𝑈𝑖 ,
⋃︁
𝑖:𝐼

𝑈𝑖.

5Having small joins means having 𝐼-indexed joins for any small type 𝐼 : 𝒰 . Any lattice of opens
𝒪(𝐴) where ⊤ ̸= ⊥ is necessarily large. Since locale theory is generally impredicative, care must
be taken with defining the predicative analogue presented here. Palmgren [25] offers a more careful
treatment of predicativity and universes in formal topology.

24

One can confirm that these operations are well-defined (in fact, monotone) with
respect to the preorder on 𝒪 (𝐴) and that they satisfy the requisite algebraic laws.

We call the lattice 𝒪 (𝐴) the opens of 𝐴, which describes the observable or “af-
firmable” properties of 𝐴 [39]. If 𝑈 ≤

⋁︀
𝑖:𝐼 𝑉𝑖, we call the family (𝑉𝑖)𝑖:𝐼 an open cover

of 𝑈 .
We next define the points and continuous maps, which are closely analogous to

the version for formal spaces.

Definition 2.9. A point 𝑥 of a space 𝐴 is a subset 𝑥 · : 𝒪 (𝐴) → 𝒰 (read “𝑥 lies
in”) such that

𝑥 𝑈 𝑈 ≤
⋁︁
𝑖:𝐼

𝑉𝑖

∃𝑖 : 𝐼. 𝑥 𝑉𝑖

split
𝑥 ⊤

meet-0
𝑥 𝑈 𝑥 𝑉

𝑥 𝑈 ∧ 𝑉
meet-2

.

By the same reasoning as with formal spaces, we can rephrase these rules so that
they suggest the rules for continuous maps:

𝑈 ≤
⋁︁
𝑖:𝐼

𝑉𝑖

𝑥*(𝑈) ≤ 𝑥*

(︃⋁︁
𝑖:𝐼

𝑉𝑖

)︃ split

⊤ ≤ 𝑥*(⊤)
meet-0

𝑥*(𝑈) ∧ 𝑥*(𝑉) ≤ 𝑥*(𝑈 ∧ 𝑉)
meet-2

.

However, since split implies that 𝑥* preserves small joins and is monotone, this
means that the reversed inequalities in the meet rules must hold, and so we can
simplify these rules to a simpler and more algebraic definition:

Definition 2.10. A continuous map 𝑓 : 𝐴 →𝑐 𝐵 between locales is a map 𝑓 * :
𝒪 (𝐵) → 𝒪 (𝐴) that preserves ⊤, binary meets, and small joins. The map 𝑓 * is

known as the inverse image map.

A continuous map 𝑓 : 𝐴 →𝑐 𝐵 transforms covers on 𝐵 into covers on 𝐴. Locales
and continuous maps form a category.

Definition 2.11. Two spaces 𝐴 and 𝐵 are homeomorphic, written 𝐴 ∼= 𝐵, if they
are isomorphic in the category of continuous maps, that is, if there are continuous
maps 𝑓 : 𝐴 →𝑐 𝐵 and 𝑔 : 𝐵 →𝑐 𝐴 such that 𝑔 ∘ 𝑓 = id𝐴 as well as 𝑓 ∘ 𝑔 = id𝐵.

Definition 2.12 (Specialization order). For two maps 𝑓, 𝑔 : 𝐴 →𝑐 𝐵, define 𝑓 ≤ 𝑔 if
for every 𝑈 : 𝒪 (𝐵), 𝑓 *(𝑈) ≤ 𝑔*(𝑈).

Whenever it is the case that 𝑓 ≤ 𝑔,𝑔 can always behave as 𝑓 . For instance, if 𝑓
and 𝑔 are points, then given an open cover ⊤ ≤

⋁︀
𝑖:𝐼 𝑈𝑖, there is some 𝑖* : 𝐼 such that

𝑓 𝑈𝑖* . If 𝑓 ≤ 𝑔, then 𝑔 𝑈𝑖* as well.

25

Definition 2.13. An open 𝑈 : 𝒪 (𝐴) is positive, written Pos(𝑈) if every open cover
of 𝑈 is nonempty, i.e., if for every small family (𝑉𝑖)𝑖:𝐼 such that 𝑈 ≤

⋁︀
𝑖:𝐼 𝑉𝑖, 𝐼 is

inhabited.

Positivity encodes the notion of being “strictly bigger than ⊥,” and assuming
classical logic, Pos(𝑈) is equivalent to ¬(𝑈 ≤ ⊥).

Proposition 2.14. If 𝑓 : 𝒪 (𝐴) → 𝒪 (𝐵) preserves joins, then for 𝑈 : 𝒪 (𝐵),
Pos(𝑓(𝑈)) implies Pos(𝑈).

Proof. Suppose 𝑈 ≤
⋁︀

𝑖:𝐼 𝑉𝑖. Since 𝑓 preserves joins, it is monotone, so

𝑓(𝑈) ≤ 𝑓

(︃⋁︁
𝑖:𝐼

𝑉𝑖

)︃
=
⋁︁
𝑖:𝐼

𝑓(𝑉𝑖).

Since 𝑓(𝑈) is positive, 𝐼 is inhabited by the above cover, and thus 𝑈 is positive.

2.2.3 The computational content of formal topology

A continuous map 𝑓 : Γ →𝑐 𝐴 (with a point of a space a special case, where Γ ∼= *) is
defined by two pieces of data: its inverse image map 𝑓 * : 𝒪 (𝐴) → 𝒪 (Γ) and a formal
proof that 𝑓 * preserves small joins, ⊤, and binary meets. It is reasonable to consider
the inverse image map 𝑓 * a specification, as it describes the observable behavior of the
output in terms of observable properties of the input. This accords with the fact that
any two continuous maps with the same inverse image maps are considered equal;
the formal proofs of structure preservation can be ignored when reasoning, except for
the requirement that those formal proofs must exist. However, the formal proofs are
necessary for computing concrete results, and so we can consider the formal proof that
𝑓 * preserves joins and finitary meets as the implementation of the behavior specified
by 𝑓 *. It is remarkable, then, that the specification is “complete,” uniquely specifying
a continuous map (by definition) if it exists.

Suppose we define a function 𝑓 : Γ →𝑐 𝐴. The map 𝑓 can be applied to an input
𝑥 : Pt(Γ) to produce an outpoint point 𝑓(𝑥) : Pt(𝐴). How then does one inspect 𝑓(𝑥)
to get concrete results about where the output lies within 𝐴?

One computes concrete results in formal topology by splitting a point with an
open cover. This open cover may be arbitrarily fine. By combining the split and
meet-0 rules, we observe that if we present a point 𝑦 in a space 𝐴 with an open cover
of the whole space ⊤ ≤

⋁︀
𝑖:𝐼 𝑈𝑖, then 𝑦 can compute an 𝑖 : 𝐼 such that 𝑦 lies in 𝑈𝑖. If

a point lies in several opens in an open cover, it may return any index corresponding
to an open it lies in. In the case of the point 𝑓(𝑥) where 𝑓 : Γ →𝑐 𝐴, 𝑓 translates a
cover of 𝐴 into a cover of Γ, from which 𝑥 can then compute some open from that
cover of Γ that it lies in.

For instance, a point 𝑥 : Pt(R), when given a formal proof of the open cover

⊤ ≤
⋁︁
𝑏:B

if 𝑏 then (· < 1) else (· > −1),

26

must either return a concrete Boolean true together with a proof 𝑥 · < 1 or return
false with a proof 𝑥 · > −1. If a point lies in both opens, whether it returns true
or false depends on both the “implementation” of the point (the formal proofs that 𝑥
satisfies split and meet-0) as well as the formal proof of the cover.

In implementing a real number, one must provide a function which, given any
tolerance 𝜀 > 0, produces a rational approximation within that tolerance. Imagine
two implementations of the real number 0, where the first always returns 0, whereas
the second returns 𝜀/2. Consider a formal proof of the above cover of R that proceeds
in the following manner: first, approximate to a tolerance of 1 with the cover ⊤ ≤⋁︀

𝑞:Q𝐵1(𝑞). Then, for a given 𝑞 : Q, if the lower endpoint 𝑞 − 1 of the resulting
approximating interval 𝐵1(𝑞) is at most 0, then prove that 𝐵1(𝑞) ≤ (· < 1), and if
not, prove 𝐵1(𝑞) ≤ (· > −1). With this particular formal covering proof, the first
implementation of 0 will return true, (· < 1), but the second will return false, (· > −1).
However, if this cover is applied to the real number 2, the observation will be false,
no matter the implementation of 2 or the particular proof of the covering.

Note that the meet-2 rule does not figure into this notion of computation. We can
think of maps 𝑥 · : 𝒪 (𝐴) → 𝒪 (*) that satisfy split and meet-0 but not meet-
2 as nondeterministic values (see Chapter 3). But there is a notion of incremental
computation where meet-2 has a computational meaning.

Suppose we probe a point 𝑥 : Pt(𝐴) with a cover ⊤ ≤
⋁︀

𝑖:𝐼 𝑈𝑖 and learn that 𝑥 𝑈𝑖*

for some particular 𝑖* : 𝐼. Then we may decide to further refine our knowledge of 𝑥 by
probing with another open cover 𝑈𝑖* ≤

⋁︀
𝑗:𝐽 𝑉𝑗, or equivalently, 𝑈𝑖* ≤

⋁︀
𝑗:𝐽 𝑈𝑖* ∧ 𝑉𝑗,

to learn that 𝑥 𝑈𝑖* ∧ 𝑉𝑗* for some 𝑗* : 𝐽 . This gives a sort of “sequential com-
position” of splitting with covers. The meet-2 rule allows two independent threads
of computation to be joined. For instance, we might probe 𝑥 with an open cover to
learn 𝑥 𝑈 , and independently with another open cover (of the whole space, not
just 𝑈) to learn that 𝑥 𝑉 . By meet-2, we can combine what we’ve learned to
determine 𝑥 𝑈 ∧𝑉 , and can continue to refine where 𝑥 is with covers of 𝑈 ∧𝑉 . For
nondeterministic values, where meet-2 may not hold, this isn’t satisfied, since (in-
formally) each independent thread of refinement may get a different nondeterministic
realization.

2.3 Spaces

2.3.1 Discrete spaces

The simplest kinds of spaces are those that just represent sets. Let Set denote the
category of sets. The objects of Set are types 𝐴 together with an equivalence relation
=𝐴: 𝐴 → 𝐴 → Ω on 𝐴, and the arrows 𝑓 : 𝐴 → 𝐵 are those equivalence-preserving
functions, that is, functions 𝑓 : 𝐴 → 𝐵 on the underlying types such that for all
𝑎, 𝑎′ : 𝐴, if 𝑎 =𝐴 𝑎′, then 𝑓(𝑎) =𝐵 𝑓(𝑎′).

We will show that it is possible to work with sets within the framework of spaces.
Precisely, we can define a full and faithful functor Discrete : Set → FSpc that exhibits
Set as the discrete spaces, which form a full subcategory of FSpc. Given a set 𝐴

27

(with equivalence relation =𝐴), we construct a formal space whose type of basic opens
is 𝐴, with the inclusion preorder given by =𝐴. We think of a basic open 𝑎 : 𝐴 as
representing the subset (· =𝐴 𝑎) of 𝐴, which is open in the discrete topology (and
hence the preorder defining inclusion of basic opens is discrete). Since every element
𝑎 : 𝐴 represents both an open and a point of the the discrete space, for 𝑎 : 𝐴 we will
use the notation · = 𝑎 to refer to the open, reserving 𝑎 for the point of the space.

In Discrete(𝐴), we have 𝑎 ▷ 𝑈 if and only if there is some 𝑎′ : 𝐴 such that 𝑎 =𝐴 𝑎′

and 𝑎′ ∈ 𝑈 . We can use this to simplify the rules that a point 𝑥 of a discrete space
or a continuous map 𝑓 : Γ →𝑐 𝐴 between discrete spaces must satisfy:

𝑥 𝑎 𝑎 =𝐴 𝑏

𝑥 𝑏
split

∃𝑎 : 𝐴. 𝑥 𝑎
meet-0

𝑥 𝑎 𝑥 𝑏

𝑎 =𝐴 𝑏
meet-2

𝑎 =𝐴 𝑏

𝑓 *(𝑎) =Γ→Ω 𝑓 *(𝑏)
split

∃𝑎 : 𝐴. 𝛾 ∈ 𝑓 *(𝑎)
meet-0

𝛾 ∈ 𝑓 *(𝑎) 𝛾′ ∈ 𝑓 *(𝑏) 𝛾 =Γ 𝛾′

𝑎 =𝐴 𝑏
meet-2

.

We observe that 𝑓 * identifies a relation between Γ and 𝐴. We read 𝛾 ∈ 𝑓 *(𝑎) as
“𝛾 is in the preimage of 𝑎 under 𝑓 ” (which is equivalent to saying that 𝑓 maps 𝛾 to 𝑎).
The split rule says that this relation respects equality on 𝐴. meet-0 says that the
relation is total (from Γ to 𝐴), and meet-2 says that the relation respects equality on
Γ and also that each input maps to at most one output (up to =𝐴). Accordingly, 𝑓 *

is a functional relation from the set Γ to the set 𝐴, so it is in bijective correspondence
with Γ →Set 𝐴, the collection of functions from the set Γ to the set 𝐴, meaning that
the functor Discrete is full and faithful: continuous maps between discrete spaces are
just functions on their underlying sets.

Recall the functor Pt : FSpc → Set which takes a space 𝐴 to its (large) set
of points Pt(𝐴), where two points are considered equal if they lie in the same basic
opens. This is right adjoint to Discrete, i.e., Discrete ⊣ Pt, giving a correspondence
for a set 𝐴 and a space 𝐵

𝐴 →Set Pt(𝐵)

Discrete(𝐴) →𝑐 𝐵
=================

.

2.3.2 Open subspaces

Given a space 𝐴 and an open 𝑈 : 𝒪 (𝐴), we can form the open subspace {𝐴 | 𝑈}
of 𝐴 by making 𝒪 ({𝐴 | 𝑈}) a quotient of 𝒪 (𝐴), identifying opens 𝑃,𝑄 : 𝒪 (𝐴) in
{𝐴 | 𝑈} when 𝑃 ∧𝑈 = 𝑄∧𝑈 . The quotient still defines a space, since the operation
· ∧ 𝑈 : 𝒪 (𝐴) → 𝒪 (𝐴) preserves binary meets and small joins.

28

2.3.3 The Sierpínski space

The Sierpínski space Σ is fundamental in topology, defining the space of possible
“truth values.” Just as the subsets of a set 𝑆 are in correspondence with functions
𝑆 → Ω, the opens of a space 𝐴 are in correspondence with the continuous maps
𝐴 →𝑐 Σ [39],

𝒪 (𝐴) ∼= (𝐴 →𝑐 Σ).

The basic opens of Σ are 𝒪B(Σ) , B≤, where B≤ is B with the “truth order,” i.e.,
where false is strictly less than true. The Sierpínski space has no covering axioms.
We have thus defined Σ.

In particular, we have
(* →𝑐 Σ) ∼= 𝒪 (*) ∼= Ω,

so the points of Σ are just the propositions. Given any point 𝑥 of Σ, the corresponding
proposition is 𝑥 false. In particular, there are points ⊤Σ and ⊥Σ, where ⊤Σ false
but not ⊤Σ false.

2.3.4 Disjoint unions (sums)

We have not come across any characterization of sum spaces in FSpc, so we describe
them here.

From a family of spaces (𝐴𝑖)𝑖:𝐼 parameterized over some index type 𝐼6, we can
form their disjoint union space

∑︀
𝑖:𝐼 𝐴𝑖, which is the coproduct of the 𝐴𝑖s in FSpc.

Intuitively,
∑︀

𝑖:𝐼 𝐴𝑖 pastes all the 𝐴𝑖s together, where points from different spaces are
not considered near each other. When 𝐼 ≡ B (as types), this specializes to binary
sums, which we denote with +. For instance, we have the homeomorphism in FSpc

B ∼= *+ *,

and more generally, for any type 𝐼 (considered as a set with ≡ as its equivalence
relation),

Discrete(𝐼) ∼=
∑︁
𝑖:𝐼

*.

The preorder of basic opens of
∑︀

𝑖:𝐼 𝐴𝑖 is the coproduct of the basic opens of the
constituent spaces,

𝒪B

(︃∑︁
𝑖:𝐼

𝐴𝑖

)︃
,
∑︁
𝑖:𝐼

𝒪B(𝐴𝑖).

The preorder relation for the coproduct preorder
∑︀

𝑖:𝐼 𝒪B(𝐴𝑖) is generated as the

6 In this section, we require the index type 𝐼 to satisfy uniqueness of identity proofs (UIP), which
states that

∀𝑎, 𝑏 : 𝐼. ∀𝑝, 𝑞 : 𝑎 ≡ 𝑏. 𝑝 ≡ 𝑞.

29

inductive type with the single constructor

𝑎 ≤𝐴𝑖
𝑏

(𝑖, 𝑎) ≤∑︀
𝑗:𝐼 𝐴𝑗

(𝑖, 𝑏)
.

The axioms for
∑︀

𝑖:𝐼 𝐴𝑖 are then just a sort of “coproduct” of the axioms of the
constituent spaces. For a basic open (𝑗, 𝑎) : 𝒪B(

∑︀
𝑖:𝐼 𝐴𝑖), for each axiom 𝑎 ▷𝐴𝑗

𝑈 , we
add the axiom

(𝑗, 𝑎) ▷ InDisjunct𝑗(𝑈),

where InDisjunct𝑗 : 𝒪 (𝐴𝑗) → 𝒪 (
∑︀

𝑖:𝐼 𝐴𝑖) is inductively generated by the constructor

𝑎 ∈ 𝑈

(𝑗, 𝑎) ∈ InDisjunct𝑗(𝑈)
.

Theorem 2.15.

𝐴𝑗
∼=

{︃∑︁
𝑖:𝐼

𝐴𝑖 | InDisjunct𝑗(⊤)

}︃

Proof sketch. Define 𝑓 : 𝐴𝑗 →𝑐

{︀∑︀
𝑖:𝐼 𝐴𝑖 | InDisjunct𝑗(⊤)

}︀
to have its inverse image

map 𝑓 * : 𝒪
(︀{︀∑︀

𝑖:𝐼 𝐴𝑖 | InDisjunct𝑗(⊤)
}︀)︀

→ 𝒪 (𝐴𝑗) as the inductive family generated
by the constructor

𝑎 =𝐴𝑗
𝑎′

𝑎′ ∈ 𝑓 *(𝑗, 𝑎) .

Note that with this definition, 𝑓 *(𝑖, 𝑏) = ⊥ whenever 𝑖 ̸≡ 𝑗.
Define 𝑔 :

{︀∑︀
𝑖:𝐼 𝐴𝑖 | InDisjunct𝑗(⊤)

}︀
→𝑐 𝐴𝑗 by

𝑔*(𝑎) , (𝑗, 𝑎).

It should be clear that 𝑓 * and 𝑔* are inverses of each other, so we must just confirm
that 𝑓 * and 𝑔* indeed define continuous maps, which is mostly a calculational matter.
For 𝑓 , split is straightforward. We only note that proving that 𝑔 satisfies meet-0
reduces to

⊤ ▷ InDisjunct𝑗(⊤),

which is exactly the additional covering rule given by the open subspace of 𝑓 ’s output.

Once open embeddings have been defined (Section 3.4.2), this theorem will estab-
lish the open embedding inj𝑗 : 𝐴𝑗 →˓

∑︀
𝑖:𝐼 𝐴𝑖.

30

2.3.5 Products

We next introduce notation and relevant properties for the construction of product
spaces in formal topology7.

For a family of spaces (𝐴𝑖)𝑖:𝐼 parameterized over some index type 𝐼8, we denote
their product in FSpc by

∏︀
𝑖:𝐼 𝐴𝑖. The key idea characterizing the structure of the

product space is that we can make an observation on the product space by choosing
a component and making an observation on that component. Since we can only
make finitely many observations, any open will make non-trivial observations on only
finitely many components.

More precisely, the sub-basic opens of
∏︀

𝑖:𝐼 𝐴𝑖 are also given by the coproduct
preorder

∑︀
𝑖:𝐼 𝒪B(𝐴𝑖). However, we will use the notation [𝑖 ↦→ 𝑎] for 𝑖 : 𝐼 and

𝑎 : 𝒪B(𝐴𝑖) to refer to such a sub-basic open, because it represents the idea that the
𝑖th component lies in 𝑎. Similarly, we can define the open [𝑖 ↦→ 𝑈] : 𝒪 (

∏︀
𝑖:𝐼 𝐴𝑖) for

an arbitrary open 𝑈 : 𝒪 (𝐴𝑖) as inductively generated by the constructor

𝑎 ∈ 𝑈

[𝑖 ↦→ 𝑎] ∈ [𝑖 ↦→ 𝑈] .

The universal property of product spaces says that for any space Γ and maps
𝑓𝑖 : Γ →𝑐 𝐴𝑖, we can construct a continuous map 𝑔 : Γ →𝑐

∏︀
𝑖:𝐼 𝐴𝑖. The inverse image

map acts according to 9

𝑔* : 𝒪SB

(︃∏︁
𝑖:𝐼

𝐴𝑖

)︃
→ 𝒪 (Γ)

𝑔*([𝑖𝑘 ↦→ 𝑎𝑘]) , 𝑓 *
𝑖𝑘
(𝑎𝑘).

If we consider the index type 𝐼 ≡ B, we get the binary products, which we denote
𝐴 × 𝐵 for spaces 𝐴 and 𝐵. We notice that every basic open of 𝐴 × 𝐵 is equivalent
to one of the form

[true ↦→ 𝑈] ∧ [false ↦→ 𝑉]

for 𝑈 : 𝒪 (𝐴) and 𝑉 : 𝒪 (𝐵), and so we may use the notation 𝑈 × 𝑉 : 𝒪B (𝐴×𝐵)
to represent a basic open of 𝐴 × 𝐵 (also known as an open rectangle). Accordingly,
every open of 𝐴×𝐵 can be represented as a union of open rectangles.

Given 𝑓 : Γ →𝑐 𝐴 and 𝑔 : Γ →𝑐 𝐵, we denote by ⟨𝑓, 𝑔⟩ : Γ →𝑐 𝐴 × 𝐵 the “pair”
given by the universal property of products.

7Vickers [42] provides a full definition and characterization.
8 Again we require that 𝐼 satisfy UIP.
9It suffices to only define 𝑔* on its sub-basic opens (𝒪B (

∏︀
𝑖:𝐼 𝐴𝑖)) since 𝑔* will be required to

preserve finitary meets, and the basic opens are just finitary meets of sub-basic opens.

31

2.3.6 Metric spaces, including R

It is possible to extend a set with a metric defined on it (such as Q) to a metrically
complete (i.e., Cauchy complete) formal space (such as R) [41]. This section describes
this construction.

Suppose we are given a metric set, a set 𝑋 with a distance metric relation 𝑑 :
Q+ × 𝑋 × 𝑋 → Ω, where 𝑑(𝜀, 𝑥, 𝑦) indicates the proposition that the distance

between 𝑥 and 𝑦 is at most 𝜀. The predicate 𝑑 must in fact define the closed-ball
relation for a metric, meaning it must satisfy the following rules:10

𝑑(𝜀, 𝑥, 𝑥)
refl

𝑑(𝜀, 𝑥, 𝑦)

𝑑(𝜀, 𝑦, 𝑥)
sym

𝑑(𝛿, 𝑥, 𝑦) 𝑑(𝜀, 𝑦, 𝑧)

𝑑(𝛿 + 𝜀, 𝑥, 𝑧)
triangle

∀𝛿 : Q+. 𝑑(𝜀+ 𝛿, 𝑥, 𝑦)

𝑑(𝜀, 𝑥, 𝑦)
closed

.

The basic opens of the metric completion of 𝑋 (if 𝑋 ≡ Q, this would be R) will
be the formal balls, the type Ball(𝑋) defined by the single constructor

𝜀 : Q+ 𝑥 : 𝑋

𝐵𝜀(𝑥) : Ball(𝑋) .

We define a relation < on balls that indicates when one ball contains another with
“room to spare” all around, and then a relation ≤ on balls indicating containment of
one formal ball within another:

𝐵𝛿(𝑥) < 𝐵𝜀(𝑦) , ∃𝛾 : Q+. 𝑑(𝛾, 𝑥, 𝑦) and 𝛾 + 𝛿 < 𝜀

𝐵𝛿(𝑥) ≤ 𝐵𝜀(𝑦) , ∀𝛾 : Q+. 𝐵𝛿(𝑥) < 𝐵𝜀+𝛾(𝑦).

We then define the metric completion space ℳ(𝑋) of 𝑋 as having the basic opens
Ball(𝑋), and the following axioms:

𝜀 : Q+

⊤ ▷ {𝐵𝜀(𝑞) | 𝑞 : Q}
approx

𝐵𝑞(𝜀) ▷ {𝐵𝜀′(𝑞
′) | 𝐵𝜀′(𝑞

′) < 𝐵𝜀(𝑞)}
shrink

Definition 2.16. A function 𝑓 : 𝑋 → 𝑌 on metric sets 𝑋 and 𝑌 is 𝑘-Lipschitz (for
𝑘 : Q+) if for all 𝑥, 𝑦 : 𝑋 and 𝜀 : Q+, if 𝑑(𝜀, 𝑥, 𝑦) then 𝑑(𝑘𝜀, 𝑓(𝑥), 𝑓(𝑦)).

We proved in Coq that 𝑓 can be extended to a continuous map 𝑔 : ℳ(𝑋) →𝑐

10 This definition of a closed-ball relation is due to O’Connor [24]. We use it so that our Coq
library is compatible with the Coq Repository at Nijmegen (CoRN), which has many constructive
results regarding metric spaces.

32

ℳ(𝑌) defined by the inverse image map11

𝑔* : Ball(𝑌) → 𝒪 (ℳ(𝑋))

𝑔*(𝑏) , {𝐵𝛿(𝑥) | 𝐵𝑘𝛿(𝑓(𝑥)) < 𝑏}.

The fact that 𝑓 is 𝑘-Lipschitz implies that for balls 𝑎, 𝑎′ : Ball(𝑋), if 𝑎 ≤ 𝑎′ and
𝑎′ ∈ 𝑔*(𝑏), then 𝑎 ∈ 𝑔*(𝑏).

Theorem 2.17. 𝑔* preserves joins, ⊤, and binary meets.

Proof sketch. meet-0 For every formal ball 𝐵𝛿(𝑥) of 𝑋, there is a ball of 𝑌 , 𝐵𝛿+𝑘𝛿(𝑓(𝑥)),
such that 𝐵𝛿(𝑥) ≤ 𝑔*(𝐵𝛿+𝑘𝛿(𝑓(𝑥))). Thus ⊤ ≤ 𝑔*(⊤).

meet-2 We are given a ball of 𝑌 , 𝐵𝑘𝛿(𝑓(𝑥)), that lies strictly within two other balls
of 𝑌 , 𝐵𝑘𝛿(𝑓(𝑥)) < 𝐵𝜀(𝑦) and 𝐵𝑘𝛿(𝑓(𝑥)) < 𝐵𝜀′(𝑦

′). We must prove in 𝑋 that

𝐵𝛿(𝑥) ▷ 𝑔
*(𝐵𝜀(𝑦) ↓ 𝐵𝜀′(𝑦

′)).

By the properties of <, we can shrink each of the larger balls by just a bit,
𝛾 : Q+ while maintaining strict containment, so we get 𝐵𝑘𝛿(𝑓(𝑥)) < 𝐵𝜀−𝛾(𝑦)
and 𝐵𝑘𝛿(𝑓(𝑥)) < 𝐵𝜀′−𝛾(𝑦

′). Then for some even smaller tolerance 𝛾′ < 𝛾, we
use the covering axiom approx(𝛾′/𝑘) to derive

𝐵𝛿(𝑥) ▷ {𝐵𝛾′/𝑘(𝑥
′) | 𝑥′ : 𝑋} ↓ 𝐵𝛿(𝑥).

This reduces our problem to showing that any ball of 𝑋 with radius at most
𝛾′/𝑘 that is contained within 𝐵𝛿(𝑥) is covered by 𝑔*(𝐵𝜀(𝑦) ↓ 𝐵𝜀′(𝑦

′)), which in
fact follows by reflexivity, which we will now show. We must only consider the
“worst case,” where we have a ball 𝐵𝛾′/𝑘(𝑧) such that 𝐵𝛾′/𝑘(𝑧) ≤ 𝐵𝛿(𝑥). We
will prove 𝐵𝛾′/𝑘(𝑧) ∈ 𝑔*(𝐵𝜀(𝑦) ↓ 𝐵𝜀′(𝑦

′)). We do so in two steps, showing that
𝐵𝛾′/𝑘(𝑧) ∈ 𝑔*(𝐵𝛾(𝑓(𝑧))) and that 𝐵𝛾(𝑓(𝑧)) ∈ 𝐵𝜀(𝑦) ↓ 𝐵𝜀′(𝑦

′). The former is
almost immediate. The latter is surprisingly intricate, depending on the fact
that 𝑓 is 𝑘-Lipschitz as well as using the triangle inequality.

split We first prove that 𝑔* preserves unary covers, and then proceed by induction
on covering axioms. Preserving unary covers reduces to proving that, given
balls 𝑏 ≤ 𝑏′ in 𝑌 that 𝑔*(𝑏) ≤ 𝑔*(𝑏′), which is follows from the fact that if 𝑎 < 𝑏
and 𝑏 ≤ 𝑏′, then 𝑎 < 𝑏′.

We now proceed by induction on the covering axioms.

In the case of approx(𝜀), given balls 𝐵𝛿(𝑥) : Ball(𝑋) and 𝐵𝛾(𝑦) : Ball(𝑌) such
that 𝐵𝛿(𝑥) ∈ 𝑔*(𝐵𝛾(𝑦)) show that

𝐵𝛿(𝑥) ▷ 𝑔
*(𝐵𝛾(𝑦) ↓ {𝐵𝜀(𝑦

′) | 𝑦′ : 𝑌 }).
11 This definition of the inverse image map is based on a theorem of Vickers (Theorem 4.9 and

Remark 4.10 in [41]) extending 1-Lipschitz functions to their metric completions. Vickers omits the
proof that the inverse image map defines a continuous map, saying it is “routine to check.”

33

To do so, we can find some 𝛼 : Q+ such that 𝛼 < 𝜀/𝑘, and cover 𝐵𝛿(𝑥) with
balls of this radius,

𝐵𝛿(𝑥) ▷ 𝐵𝛿(𝑥) ↓ {𝐵𝛼(𝑥
′) | 𝑥′ : 𝑋}.

Then
𝐵𝛿(𝑥) ↓ {𝐵𝛼(𝑥

′) | 𝑥′ : 𝑋} ▷ 𝑔*(𝐵𝛾(𝑦) ↓ {𝐵𝜀(𝑦
′) | 𝑦′ : 𝑌 })

follows by reflexivity.

In the case of shrink, the covering in fact follows from reflexivity.

The extension of Lipschitz functions from metric sets to their metric completions
can be used to define addition (+ : R × R →𝑐 R), for instance, in conjunction with
facts relating products of spaces and of metric sets, such as [41]

ℳ(𝑋 × 𝑌) ∼= ℳ(𝑋)×ℳ(𝑌).

Since × : R × R →𝑐 R is not Lipschitz, it cannot be defined using the above
construction. However, since it is locally Lipschitz, it can be defined as a “gluing” of
many Lipschitz maps defined on open subspaces using overlapping pattern matching,
as described in Section 4.1.4.

In R, open intervals and open “rays” (e.g., (0 < ·)) are evidently open, as they can
be described as unions of open balls. For instance, we define

(0 < ·) : 𝒪 (R)
(0 < ·) , {𝐵𝜀(𝑥) | 0 ≤ 𝑥− 𝜀}.

In R× R, the relations (<), (̸=) : 𝒪 (R× R) are open. We can define < by

(<) , {(𝐵𝜀(𝑥), 𝐵𝛿(𝑦) | 𝑥+ 𝜀 ≤ 𝑦 − 𝛿}

and then ̸= in terms of that.

2.4 As a programming language

Since FSpc is a cartesian monoidal category (i.e., it has well-behaved products), it
admits a restricted 𝜆-calculus syntax that compiles to continuous maps, which this
thesis uses freely.

Following Escardó [9], we describe the syntax as an inductive family ⊢: list(FSpc) →
𝒰 with constructors

34

(𝑥 : 𝑋) ∈ Γ

Γ ⊢ 𝑥 : 𝑋
var

𝑓 : 𝐴1 × · · · × 𝐴𝑛 →𝑐 𝐵 Γ ⊢ 𝑥1 : 𝐴1 · · · Γ ⊢ 𝑥𝑛 : 𝐴𝑛

Γ ⊢ 𝑓(𝑥1, . . . , 𝑥𝑛) : 𝐵
app

,

where in the var rule (𝑥 : 𝑋) ∈ Γ denotes a witness that 𝑋 is a member of the list
Γ. Let Prod : list(FSpc) → FSpc compute the product of a list of types.

Theorem 2.18. Given any expression Γ ⊢ 𝑒 : 𝐴, we can construct a term J𝑒K :
Prod(Γ) →𝑐 𝐴, and conversely, given a function 𝑓 : Prod(Γ) →𝑐 𝐵, there is an
expression Γ ⊢ 𝑒 : 𝐵.

Proof. First, we construct a continuous map from syntax by induction on its struc-
ture. In the var case, we compute from the witness (𝑥 : 𝑋) ∈ Γ a projection
J𝑥K : Prod(Γ) →𝑐 𝑋. In the app case, we are given maps J𝑥𝑖K : Γ →𝑐 𝐴𝑖 for
𝑖 ∈ 1, . . . 𝑛. We use these maps to build a map 𝑥 : Γ →𝑐 𝐴1 × · · · × 𝐴𝑛 by the
universal property for products, i.e., 𝑥 , ⟨J𝑥1K, . . . , J𝑥𝑛K⟩. Then 𝑓 ∘ 𝑥 : Γ →𝑐 𝐵.

Conversely, given 𝑓 : Prod(Γ) →𝑐 𝐵, we can build the term

Γ ⊢ 𝑓(𝜋1, . . . , 𝜋𝑛) : 𝐵,

where each 𝜋𝑖 is a variable Γ ⊢ 𝜋𝑖 : Γ[𝑖].

This allows us to define a continuous map by introducing variables and applying
continuous maps to them. For instance, we can define a map like

𝑓 : B× R× R→𝑐 R
𝑓(𝑥, 𝑦, 𝑧) , if(𝑥, 𝑦,−𝑦) + 𝑧 × 𝑧

rather than having to manually arrange it as a “linear” composition of continuous
maps. If we don’t want to give a name to a function such as the one above, we may
choose to write it with an “anonymous” lambda,

𝜆(𝑥, 𝑦, 𝑧). if(𝑥, 𝑦,−𝑦) + 𝑧 × 𝑧.

In later chapters, we will expand this syntax. In chapter 3, we will show that
similar languages can be define for representing partial or nondeterministic functions.
In chapter 4, we will add syntax for pattern matching, and in chapter 5, we will allow
quantification over compact spaces (in certain cases).

2.4.1 Opens and Σ-valued maps

For any space 𝐴, there is a correspondence 𝒪 (𝐴) ∼= 𝐴 →𝑐 Σ between opens of 𝐴
and Σ-valued continuous maps on 𝐴. We can use this to describe opens via Σ-valued

35

continuous maps; this is particularly convenient for describing opens of spaces which
are finite products. We will use the notation {𝑥 : 𝐴 | 𝑒} where 𝑒 is a Σ-valued term
that may mention 𝑥, 𝑥 : 𝐴 ⊢ 𝑒 : Σ, to denote the open subspace {𝐴 | J𝑒K}. This
thesis will readily conflate opens and Σ-valued continuous maps, implicitly converting
between the two.

36

Chapter 3

Partiality and nondeterminism

The real line R is connected, meaning that any continuous map 𝑓 : R →𝑐 𝐴 to a
discrete set 𝐴 must be a constant map. In particular, every map 𝑓 : R →𝑐 B is
constant. The practical implications of connectedness are severe: it is impossible
to (continuously) make (non-trivial) discrete decisions over variables that come from
connected spaces such as R.

In order to make decisions, we must give something up. While it is impossible to
make discrete decisions on R that are total and deterministic, we can make decisions
that are either partial (only defined on some open subspace of the input space) or
nondeterministic (could potentially give different answers even when given the exact
same input).

This chapter defines notions of partiality and nondeterminism related to continu-
ous maps and characterizes the open maps and open embeddings as those continuous
maps having partial and/or nondeterministic inverses. While each of these subjects
has been studied in the context of constructive topology, we contribute the integrated
characterization relating them, summarized by Figures 3-1 and 3-4.

Recall that points (or continuous maps) must satisfy split (preserving joins),
meet-0 (preserving ⊤), and meet-2 (preserving binary meets). Each rule corre-
sponds to a computational property. The split rule says that we can refine our
knowledge of a point by “splitting” it with an open cover. The meet-0 rule can be
viewed as a rule enforcing totality: viewing ⊤ as the predicate representing the entire
space, meet-0 says that a point must lie in the entire space. If we were not to require
the meet-0 rule, it would be legal to define a relaxed “point” 𝑥 that does not satisfy
any properties. Accordingly, we can view values 𝑥 that do not necessarily satisfy
meet-0 as partial points, and continuous maps that fail to satisfy meet-0 as partial
continuous maps.

The meet-2 rule can be viewed as enforcing determinism. Spatially, the rule says
that if a point lies in two opens, it must lie in their intersection. Computationally,
it says that it should be possible to reconcile answers given from two independent
lines of “questioning” from the split rule. Relaxed “points” which are not required to
satisfy either meet-0 or meet-2 can be viewed as both partial and nondeterministic.

We can consider categories with spaces as objects but whose maps are like con-
tinuous maps, but the inverse image maps need not necessarily satisfy either meet-0

37

FSpc

FSpc𝑛𝑑 FSpc𝑝

FSpc𝑛𝑑,𝑝

meet-2 meet-0

meet-0 meet-2

Figure 3-1: The lattice of categories representing potentially nondeterministic or
partial maps on spaces.

or meet-2. This gives us a lattice of categories that represent nondeterministic and
partial maps, depicted in Figure 3-11, where each arrow denotes a faithful (“forgetful”)
functor where a particular rule is no longer required for inverse image maps. What
is remarkable about these forgetful functors is that they have right adjoints, such
that they induce a family of (strong) monads on FSpc for representing partiality and
nondeterminism. The remainder of this chapter will characterize these monads.

To understand how partiality and nondeterminism arise by forgetting meet-0
and meet-2, respectively, it is instructive to observe how the categories of partial
and nondeterministic values restrict to the discrete spaces. For discrete spaces, we
have that 𝑎 ▷𝑈 if and only if there is some 𝑎′ such that 𝑎 = 𝑎′ and 𝑎′ ∈ 𝑈 . The split
rule, then, says that an inverse image map must respect the equivalence relations on
the relevant sets. For discrete spaces 𝑎 ↓ 𝑏 is inhabited if and only if 𝑎 = 𝑏, so meet-2
reduces to the requirement

𝑥 𝑎 𝑥 𝑏

𝑎 = 𝑏 .

Accordingly, a point 𝑥 of the space given by a discrete set 𝑆 is a subset (𝑥 ·) of 𝑆 that
has exactly one member: meet-0 says it has at least one member and meet-2 says
it has at most one member. Of course, such subsets are in bijective correspondence
with elements of 𝑆, so that points of the discrete space 𝑆 correspond to elements of
𝑆. A continuous map 𝑓 : 𝑆 →𝑐 𝑇 of discrete spaces is a relation 𝑓 * : 𝑇 → 𝑆 → Ω
which is functional from 𝑆 to 𝑇 , in that for all 𝑠 : 𝑆, there is some 𝑡 : 𝑇 such that
𝑠 ∈ 𝑓 *(𝑡) (by meet-0), and for all 𝑠 : 𝑆 and 𝑡, 𝑡′ : 𝑇 , if 𝑠 ∈ 𝑓 *(𝑡) and 𝑠 ∈ 𝑓 *(𝑡′),
then 𝑡 = 𝑡′ (by meet-2). As functional relations are in bijective correspondence with
functions, so are continuous maps of discrete spaces 𝑆 →𝑐 𝑇 in correspondence with
functions 𝑆 → 𝑇 on their underlying sets.

If we do not require meet-2, the relaxed continuous maps are the multivalued
functions from 𝑆 to 𝑇 ; this justifies the sense in which we consider FSpc𝑛𝑑 to be the
category of nondeterministic maps. If we instead do not require meet-0, the relaxed
continuous maps are the partial functions from 𝑆 to 𝑇 . If we require neither meet-
0 nor meet-2, these relaxed continuous maps are just those (equality-respecting)

1𝑛𝑑 stands for nondeterministic, 𝑝 for partial.

38

relations between 𝑆 and 𝑇 .

Set (· → ·)

Set𝑛𝑑 (·⇒ ·) Set𝑝 (· ⇀ ·)

Set𝑛𝑑,𝑝 (· × · → Ω)

meet-2 meet-0

meet-0 meet-2

Figure 3-2: The restriction of the categories of nondeterministic and partial maps of
spaces to the discrete spaces.

3.1 Partiality

Partiality allows definition of a continuous map that is only defined on an open
subspace of the domain.

Definition 3.1. A partial map 𝑓 from 𝐴 to 𝐵, written 𝑓 : 𝐴
𝑝→𝑐 𝐵, is a map

𝑓 * : 𝒪 (𝐵) → 𝒪 (𝐴) that preserves joins and binary meets, but not necessarily ⊤.

Example. Reconsider the task of approximately comparing a real number with 0. We
can define a partial comparison

cmp : R 𝑝→𝑐 B

by only defining a continuous map on the open subspace {R | · ≠ 0} of R. We specify
its observable behavior with its inverse image map

cmp*(· = true) , · > 0

cmp*(· = false) , · < 0.

The inverse image map cmp* in fact defines a partial map, as cmp* preserves joins
and binary meets, but it is not total, since it fails to preserve ⊤.

Proof. To confirm cmp* preserves binary meets: it suffices to check binary meets of
basic opens, which is only interesting when they differ, so we confirm

cmp*((· = true) ∧ (· = false)) = cmp*(⊥)

= ⊥
= (· > 0) ∧ (· < 0)

= cmp*(· = true) ∧ cmp*(· = false).

39

However, cmp* doesn’t preserve ⊤, since

⊤ � 𝑓 *(⊤) = (· < 0) ∨ (· > 0).

Theorem 3.2. There is a bijective correspondence

𝐴
𝑝→𝑐 𝐵∑︁

𝑈 :𝒪(𝐴)

({𝐴 | 𝑈} →𝑐 𝐵)
=====================

between partial maps and continuous maps defined on some open subspace of the
domain.

Proof. We will show that any 𝑓 : 𝐴
𝑝→𝑐 𝐵 can be considered as a continuous map

𝑓 : {𝐴 | 𝑓 *(⊤)} →𝑐 𝐵. That is, if we consider opens of 𝐴 equivalent whenever they
are equal when met with 𝑓 *(⊤), then 𝑓 * preserves joins and finitary meets up to this
weaker equivalence. Since 𝑓 * already preserves joins and binary meets, it certainly
preserves them with this weaker equivalence on 𝐴. It only remains to prove that 𝑓 *

preserves ⊤ up to this weaker equivalence, which follows the fact that

𝑓 *(⊤) ={𝐴|𝑓*(⊤)} ⊤

since
𝑓 *(⊤) ∧ 𝑓 *(⊤) =𝐴 ⊤ ∧ 𝑓 *(⊤).

Now, we will show the opposite direction: Given some 𝑈 : 𝒪 (𝐴) and 𝑓 : {𝐴 |
𝑈} →𝑐 𝐵, then we can also consider 𝑓 as a partial map 𝑓 : 𝐴

𝑝→𝑐 𝐵. That is, we
know that 𝑓 * preserves joins and finitary meets up to equivalence on {𝐴 | 𝑈}, and
must show that 𝑓 * preserves joins and binary meets on 𝐴. This follows from the fact
that the operation · ∧𝑈 of intersection with 𝑈 preserves joins and binary meets.

Corollary 3.3. There is a bijective correspondence

𝐴
𝑝→𝑐 *

𝒪 (𝐴)
=======

between partial maps from 𝐴 to the one-point space and opens of 𝐴.

Proof. This follows from the above theorem and the fact that * is the terminal object
in FSpc, so there is exactly one continuous map from any space to *.

Corollary 3.4. There is a bijective correspondence

* 𝑝→𝑐 𝐴∑︁
𝑃 :Ω

(𝑃 → Pt(𝐴))
================

40

between partial values of 𝐴 and points of 𝐴 “guarded” by some arbitrary proposition
𝑃 .

Proof. This follows from the correspondence between opens of * and propositions.

This tells us that to prove that a partial point is actually total could require
proving an arbitrary proposition. Assuming classical logic, the proposition 𝑃 is either
true, in which case we indeed have a point of 𝐴, or it is false, in which case no point
of 𝐴 was defined.

We can extend specialization order to partial maps in the obvious way. Just as in
the continuous case, 𝑓 ≤ 𝑔 means that 𝑔 is “at least as defined” as 𝑓 is.

3.1.1 Lifted spaces

As mentioned previously, the “forgetful” functor from FSpc to FSpc𝑝 has a right
adjoint, such that there is a (strong) monad ·⊥ : FSpc → FSpc giving a correspon-
dence

𝐴
𝑝→𝑐 𝐵

𝐴 →𝑐 𝐵⊥
========

between continuous maps and their partial counterparts. By this correspondence, we
can think of the space 𝐵⊥ as the space of partial values. We will call spaces of the
form 𝐵⊥ lifted spaces. Vickers describes them briefly in Topology via Logic [39].

up(𝐴)

⊥

Figure 3-3: A schematic diagram of the lifted space 𝐴⊥.

Figure 3-3 depicts a picture that in some sense represents what 𝐴⊥ looks like: it
has an open subspace up(𝐴) (defined in Section 3.4.2) that looks exactly like 𝐴, and a
single point ⊥ : Pt(𝐴⊥) outside of that open subspace, which represents an undefined
or nonterminating value.

We will now describe the construction of lifted spaces and their properties. Alge-
braically, we can think of the construction of lifted spaces as a free construction on
the lattice of opens. Suppose we want to construct from a space 𝐴 its lifted space
𝐴⊥. Then we want to have an operator ⇓ : 𝒪 (𝐴) → 𝒪 (𝐴⊥) which should preserve
the structure from 𝐴 that we want to keep: joins and binary meets. We will build
such an operator using the structure of 𝐴 as a formal space.

41

Since we want ⇓ to preserve joins, it suffices to define it for basic opens. We will
add in a new top element T as well. Accordingly, the lifted space 𝐴⊥ has basic opens
generated by the constructors

𝑎 : 𝒪B(𝐴)

⇓𝑎 : 𝒪B(𝐴⊥) T : 𝒪B(𝐴⊥)

and the preorder on the basic opens is inductively generated by the constructors

𝑎 ≤𝐴 𝑏

⇓𝑎 ≤𝐴⊥ ⇓𝑏 𝑎 ≤𝐴⊥ T .

We extend ⇓ to operate on opens of 𝐴 so that it preserves joins: for 𝑈 : 𝒪 (𝐴),
⇓𝑈 is generated by the constructor

𝑎 ∈ 𝑈

⇓𝑎 ∈ ⇓𝑈 .

Now we describe the covering axioms in 𝐴⊥. We simply copy over the covering
axioms from 𝐴. For each axiom 𝑎 ▷ 𝑈 in 𝐴, we add the axiom ⇓𝑎 ▷ ⇓𝑈 in 𝐴⊥.

Proposition 3.5. Indeed T is the top element of 𝐴⊥, ⊤ ≤ T.

Proof. It suffices to show that for any basic open 𝑎 : 𝒪B(𝐴⊥), 𝑎 ≤ T, which follows
directly from the definition of ≤𝐴⊥ .

Lifted spaces satisfy a property much stronger than compactness2:

Proposition 3.6. If ⊤ ▷ 𝑈 , then T ∈ 𝑈 .

Proof. It is equivalent to prove that if T▷𝑈 then T ∈ 𝑈 . We can proceed by induction
on the proof of covering. The root node of the proof could not have been the use of
an axiom, because there are no axioms for covering T. Therefore, there must be some
basic open 𝑢 ∈ 𝑈 such that T ≤ 𝑢. Since T is the largest basic open, it must be that
𝑢 ≡ T, so T ∈ 𝑈 .

This means that any covering of 𝐴⊥ is necessarily trivial. What this means is that
one cannot get (nontrivial) information about a point of 𝐴⊥ by splitting the point
with a cover. This makes sense, because we require refinement by splitting to occur
in finite time, and we want to allow 𝐴⊥ to represent points that may be partial. To
get useful information from a point in a lifted space, one should prove that the point
actually lies in ⇓⊤.

Every space 𝐴⊥ has a point ⊥ which has no interesting information: it lies only
in the entire space. This corresponds to the undefined or nonterminating value. We

2 A space is compact if whenever ⊤ ▷ 𝑈 , then there is a (Kuratowski-) finite subset 𝐾 of 𝑈 such
that ⊤ ▷ 𝐾.

42

describe the basic opens that ⊥ lies in by the inverse image map

⊥ · : 𝒪B(𝐴) → 𝒪 (1)

⊥ T , ⊤
⊥ ⇓𝑎 , ⊥.

Proposition 3.7. ⊥ indeed describes a point of 𝐴⊥.

Proof. meet-0 Follows from ⊥ T.

meet-2 Trivially satisfied, since there are no nontrivial intersections of basic opens
that ⊥ lies in.

split Follows from Proposition 3.6.

The idea that ⊥ is the “least defined” point can be made formal, in that it is
minimal in terms of specialization order.

Proposition 3.8. For any (generalized) point 𝑥 : Γ →𝑐 𝐴⊥, ⊥ ≤ 𝑥 (in terms of
specialization order).

Proof. Since ⊥ lies only in T, it suffices to show that ⊤ ≤ 𝑥*(T). However, since
T = ⊤, this is equivalent to ⊤ ≤ 𝑥*(⊤), which is true of every continuous map.

Having established some intuition about what lifted spaces represent, we can
confirm they fulfill their original purpose:

Theorem 3.9. There is the bijective correspondence

𝐴
𝑝→𝑐 𝐵

𝐴 →𝑐 𝐵⊥
========

.

Proof. Given 𝑓 : 𝐴
𝑝→𝑐 𝐵, we define 𝑔 : 𝐴 →𝑐 𝐵⊥ by

𝑔* : 𝒪B(𝐵⊥) → 𝒪 (𝐴)

𝑔*(T) , ⊤
𝑔*(⇓𝑏) , 𝑓 *(𝑏).

The map 𝑔* preserves ⊤ since 𝑔*(T) = ⊤ and preserves joins and binary meets
since 𝑓 * does.

Conversely, given 𝑔 : 𝐴 →𝑐 𝐵⊥, we define 𝑓 : 𝐴
𝑝→𝑐 𝐵 by

𝑓 * : 𝒪 (𝐵) → 𝒪 (𝐴)

𝑓 *(𝑈) , 𝑔*(⇓𝑈).

The map 𝑓 * preserves joins and binary meets since 𝑔* and ⇓ each do.

43

This correspondence in natural in 𝐴 and 𝐵, giving an adjunction and thus a
monad. It remains to show that ·⊥ in fact defines a strong monad. Its tensorial
strength 𝑠 : 𝐴×𝐵⊥

𝑝→𝑐 𝐴×𝐵 is defined by the inverse image map

𝑠* : 𝒪B(𝐴×𝐵) → 𝒪 (𝐴×𝐵⊥)

𝑠*(𝑎× 𝑏) , 𝑎× ⇓𝑏.

The inverse image map 𝑠* preserves joins and binary meets since ⇓ does. We claim
(but do not prove) that 𝑠 satisfies the strong monad laws.

3.2 Nondeterminism

Nondeterminism allows the definitions of programs whose observable behavior might
depend on the exact implementation of their inputs (specifically, the formal proofs
that their inputs preserve joins and finitary meets). Rather than viewing such behav-
ior as breaking the abstraction provided by the equivalence relation on points (since
points that lie in the same opens may be treated differently), we can instead choose to
maintain this abstraction and view such behavior as fundamentally nondeterministic.

For instance, we can perform a nondeterministic approximate comparison of a real
number with 0.

Example. Fix some error tolerance parameter 𝜀 > 0. We may define a total but
nondeterministic approximate comparison with 0

cmp : R 𝑛𝑑→𝑐 B,

allowing error up to 𝜀, by specifying its observable behavior with the inverse image
map

cmp*(· = true) , · > −𝜀

cmp*(· = false) , · < 𝜀.

We can confirm that cmp* in fact defines a nondeterministic map, as it preserves
joins and ⊤, but fails to preserve binary meets.

Proof. Since cmp’s codomain is discrete, it trivially satisfies split. First, we confirm
it preserves ⊤:

cmp*(⊤) = cmp*(· = true) ∨ cmp*(· = false)

= (· > −𝜀) ∨ (· < 𝜀)

= ⊤.

However, it fails to preserve binary meets, since

cmp*((· = true) ∧ (· = false)) = cmp*(⊥) = ⊥

44

but

cmp*(· = true) ∧ cmp*((· = false) = (· > −𝜀) ∧ (· < 𝜀)

= −𝜀 < · < 𝜀,

which is a positive open (thus, not ⊥).

As we might expect, we can perform nondeterministic joins of (generalized) points
in FSpc𝑛𝑑.

Proposition 3.10. For any inhabited index type 𝐼 and space 𝐴, there is the nonde-
terministic map ⊔ :

∏︀
𝑖:𝐼 𝐴

𝑛𝑑→𝑐 𝐴 defined by

(⊔)* : 𝒪 (𝐴) → 𝒪

(︃∏︁
𝑖:𝐼

𝐴

)︃
(⊔)*(𝑎) ,

⋁︁
𝑖:𝐼

[𝑖 ↦→ 𝑎].

Proof. Let 𝑖* : 𝐼 witness that 𝐼 is inhabited. Then this map satisfies meet-0 since

⊤ ≤ [𝑖* ↦→ ⊤] ≤
⋁︁
𝑖:𝐼

[𝑖 ↦→ ⊤] ≤ (⊔)*(⊤).

Given any 𝑎 ▷𝐴 𝑈 , we have

(⊔)*(𝑎) =
⋁︁
𝑖:𝐼

[𝑖 ↦→ 𝑎] ≤
⋁︁
𝑖:𝐼

[𝑖 ↦→ 𝑈] = (⊔)*(𝑈),

so split is satisfied as well.

Computationally, we notice that
⨆︀

𝑖:𝐼 𝑥𝑖 (for 𝑥𝑖 : Γ
𝑛𝑑→𝑐 𝐴) will behave as 𝑥𝑖* .

We can extend specialization order to nondeterministic maps too, in the obvious
way, and in this case 𝑓 ≤ 𝑔 represents that 𝑔 can potentially behave as 𝑓 (though it
may also behave differently, as well).

3.2.1 Nondeterministic powerspaces

As mentioned previously, the “forgetful” functor from FSpc to FSpc𝑛𝑑 has a right
adjoint, such that there is a monad 𝒫+

♦ : FSpc → FSpc giving a correspondence

𝐴
𝑛𝑑→𝑐 𝐵

𝐴 →𝑐 𝒫+
♦ (𝐵)

============

between continuous maps and their nondeterministic counterparts [40]. By this corre-
spondence, we can think of the space 𝒫+

♦ (𝐵) as the space of nondeterministic values.

45

Spaces of the form 𝒫+
♦ (𝐵) are known as positive lower powerspaces (also known as

positive or inhabited Hoare powerlocales).
There is a map ♦ : 𝒪 (𝐴) → 𝒪

(︀
𝒫+
♦ (𝐴)

)︀
(read “possibly”) that can be intuitively

understood in the following sense: if 𝑈 : 𝒪 (𝐴) is interpreted as a property of points
of 𝐴, and a point 𝑠 : * →𝑐 𝒫+

♦ (𝐴) (where * is the one-point space) is interpreted as a
subspace of 𝐴, ♦𝑈 : 𝒪

(︀
𝒫+
♦ (𝐴)

)︀
holds of 𝑠 if 𝑈 holds of some point in 𝑠.

Just like ⇓ for lifted spaces, the ♦ operator preserves all the structure in the lattice
𝒪 (𝐴) that ought to be preserved in 𝒪

(︀
𝒫+
♦ (𝐴)

)︀
: that is, it preserves joins and ⊤.

This implies a particular fact that is critical in the computational properties of the
nondeterministic powerspaces:

Theorem 3.11. For every cover ⊤ ≤
⋁︀

𝑖:𝐼 𝑉𝑖 in 𝐴 there is a cover ⊤ ≤
⋁︀

𝑖:𝐼 ♦𝑉𝑖 in
𝒫+
♦ (𝐴).

Proof. Suppose ⊤ ≤
⋁︀

𝑖:𝐼 𝑉𝑖 in 𝐴. Since ♦ preserves ⊤ and joins,

⋁︁
𝑖:𝐼

♦𝑉𝑖 = ♦

(︃⋁︁
𝑖:𝐼

𝑉𝑖

)︃
= ♦⊤ = ⊤.

The previous theorem can be understood computationally as allowing simulation
of some nondeterministic result.

Classically, the points of 𝒫+
♦ (𝐵) are in correspondence with closed nonempty sub-

spaces of 𝐵. Constructively, these subspaces also are overt [40], which is helpful for
some computational tasks.

The specialization order on 𝒫+
♦ (𝐴) corresponds to subspace inclusion of possible

values.
Vickers [40] describes how to construct this powerspace, as well the powerspace

for FSpc𝑛𝑑,𝑝, predicatively within FSpc.
Vickers [40] shows that 𝒫+

♦ defines a monad, but it remains to show that 𝒫+
♦ in

fact defines a strong monad. Its tensorial strength 𝑠 : 𝐴×𝒫+
♦ (𝐵)

𝑛𝑑→𝑐 𝐴×𝐵 is defined
by the inverse image map

𝑠* : 𝒪B(𝐴×𝐵) → 𝒪
(︀
𝐴× 𝒫+

♦ (𝐵)
)︀

𝑠*(𝑎× 𝑏) , 𝑎× ♦𝑏.

The inverse image map 𝑠* preserves joins and ⊤ since ♦ does.

3.3 Both partiality and nondeterminism
The category FSpc𝑛𝑑,𝑝, where both nondeterminism and partiality are allowed, is
quite similar to FSpc𝑛𝑑, where only nondeterminism is allowed.

In FSpc𝑛𝑑,𝑝, inverse image maps are required only to preserve joins, and need not
preserve any meets. Accordingly, FSpc𝑛𝑑,𝑝 is equivalent to the category of suplattices,
which has been studied in various contexts [37, 40, 15, 4].

46

3.3.1 Lower powerspaces

As mentioned previously, the “forgetful” functor from FSpc to FSpc𝑛𝑑,𝑝 has a right
adjoint, such that there is a monad 𝒫♦ : FSpc → FSpc giving a correspondence

𝐴
𝑛𝑑,𝑝→ 𝑐 𝐵

𝐴 →𝑐 𝒫♦(𝐵)
============

between continuous maps and their nondeterministic and partial counterparts [40]. By
this correspondence, we can think of the space 𝒫♦(𝐵) as the space of nondeterministic
and partial values. Spaces of the form 𝒫♦(𝐵) are known as lower powerspaces (also
known as Hoare powerlocales).

There is a map ♦ : 𝒪 (𝐵) → 𝒪 (𝒫♦(𝐵)) (read “possibly”) which distributes over
joins but not necessarily meets. In particular,

♦𝑈 ≤
⋁︁
𝑖:𝐼

♦𝑉𝑖

holds in 𝒪 (𝒫♦(𝐵)) whenever 𝑈 ≤
⋁︀

𝑖:𝐼 𝑉𝑖 in 𝒪 (𝐵).

The monad 𝒫♦ is, like 𝒫+
♦ , a strong monad, and its tensorial strength is almost

the same: 𝑠 : 𝐴× 𝒫♦(𝐵)
𝑛𝑑,𝑝→ 𝑐 𝐴×𝐵 is defined by the inverse image map

𝑠* : 𝒪B(𝐴×𝐵) → 𝒪 (𝐴× 𝒫♦(𝐵))

𝑠*(𝑎× 𝑏) , 𝑎× ♦𝑏.

The inverse image map 𝑠* preserves joins since ♦ does.

3.4 Open maps and open embeddings

In pattern matching for functional programming, one may pattern match on an in-
ductive type by checking whether it has the form of a particular constructor applied
to some argument (i.e., it is in the image of the map defined by a particular construc-
tor). The analogue of constructors for overlapping pattern matching will be the open
maps and the open embeddings.

In this section, we will observe how open maps can be viewed as continuous maps
that have nondeterministic and partial inverses, and open embeddings can be viewed as
those that have partial (but deterministic) inverses. This is what makes the open maps
and open embeddings relevant for constructing the patterns in overlapping pattern
matching. We will also prove some properties of open maps and open embeddings
that ensure that they will behave well as patterns.

47

3.4.1 Open maps

Definition 3.12 ([35]). A continuous map 𝑓 : 𝐴 →𝑐 𝐵 is an open map if the inverse
image map 𝑓 * : 𝒪 (𝐵) → 𝒪 (𝐴) has a left adjoint 𝑓! : 𝒪 (𝐴) → 𝒪 (𝐵) , called the
direct image map, that satisfies the Frobenius law,

𝑓!(𝑈 ∧ 𝑓 *(𝑉)) = 𝑓!(𝑈) ∧ 𝑉.

That is, 𝑓 is an open map if the image of any open in 𝐴 is open in 𝐵; the direct
image map provides this mapping.

Example. Identity maps id : 𝐴 →𝑐 𝐴 are open maps, and the composition of open
maps is an open map.

Proof. We have id!(𝑈) = 𝑈 , which clearly satisfies id! ⊣ id* since they are all identity
maps. It is also immediate that the Frobenius law holds for id!. Given open maps
𝑓 : 𝐴 →𝑐 𝐵 and 𝑔 : 𝐵 →𝑐 𝐶, we claim that the direct image map is (𝑔 ∘ 𝑓)! = 𝑔! ∘ 𝑓!.
We first confirm the adjunction:

(𝑔 ∘ 𝑓)!(𝑈) ≤ 𝑉 ⇐⇒ 𝑔!(𝑓!(𝑈)) ≤ 𝑉

⇐⇒ 𝑓!(𝑈) ≤ 𝑔*(𝑉) (𝑔! ⊣ 𝑔*)
⇐⇒ 𝑈 ≤ 𝑓 *(𝑔*(𝑉)) (𝑓! ⊣ 𝑓 *)
⇐⇒ 𝑈 ≤ (𝑔 ∘ 𝑓)*𝑉.

It only remains to confirm the Frobenius law for the composition 𝑔! ∘ 𝑓! : 𝒪 (𝐴) →
𝒪 (𝐶):

(𝑔 ∘ 𝑓)!(𝑈 ∧ (𝑔 ∘ 𝑓)*(𝑉)) = 𝑔!(𝑓!(𝑈 ∧ 𝑓 *(𝑔*(𝑉))))

= 𝑔!(𝑓!(𝑈) ∧ 𝑔*(𝑉)) (Frobenius law for 𝑓)
= 𝑔!(𝑓!(𝑈)) ∧ 𝑉

= (𝑔 ∘ 𝑓)!(𝑈) ∧ 𝑉. (Frobenius law for 𝑔)

Proposition 3.13. In the pullback square where 𝑝 and 𝑞 are open maps,

𝐴×𝑋 𝐵 𝐴

𝐵 𝑋

𝜃

𝜙
y

𝑝

𝑞

,

define 𝑓 : 𝐴×𝑋 𝐵 →𝑐 𝑋 by 𝑓 = 𝑝 ∘ 𝜃 = 𝑞 ∘ 𝜙. Then

𝑓!(⊤) = 𝑝!(⊤) ∧ 𝑞!(⊤).

48

Proof. Note that for any 𝑈 : 𝒪 (𝐵), 𝑝*(𝑞!(𝑈)) = 𝜃!(𝜙
*(𝑈)) (proof in section 5.2 of

[28]). Then

𝑝!(⊤) ∧ 𝑞!(⊤) = 𝑝!(⊤ ∧ 𝑝*(𝑞!(⊤))) (Frobenius reciprocity)
= 𝑝!(𝑝

*(𝑞!(⊤)))

= 𝑝!(𝜃!(𝜙
*(⊤))) (the earlier equality)

= 𝑝!(𝜃!(⊤)) (𝜙* preserves ⊤)
= 𝑓!(⊤).

Proposition 3.14. Parallel composition of open maps yields an open map. That is,
given 𝑓 : 𝐴 →𝑐 𝐵 and 𝑔 : 𝑋 →𝑐 𝑌 open, 𝑓 ⊗ 𝑔 : 𝐴×𝑋 →𝑐 𝐵 × 𝑌 is open.

Proof. We claim that the direct image map operates on basic opens (which are open
rectangles of 𝐴×𝑋) by (𝑓 ⊗ 𝑔)!(𝑎× 𝑥) = 𝑓!(𝑎)× 𝑔!(𝑥) (this extends to all opens by
taking joins). We confirm the adjunction (using the fact that every open is a join of
basic opens):

(𝑓 ⊗ 𝑔)!

(︃⋁︁
𝑖:𝐼

𝑎𝑖 × 𝑥𝑖

)︃
≤
⋁︁
𝑗:𝐽

(𝑏𝑗 × 𝑦𝑗) ⇐⇒
⋁︁
𝑖:𝐼

𝑓!(𝑎𝑖)× 𝑔!(𝑥𝑖) ≤
⋁︁
𝑗:𝐽

(𝑏𝑗 × 𝑦𝑗)

⇐⇒ ∀𝑖 : 𝐼. ∃𝑗 : 𝐽. 𝑓!(𝑎𝑖)× 𝑔!(𝑥𝑖) ≤ 𝑏𝑗 × 𝑦𝑗

⇐⇒ ∀𝑖 : 𝐼. ∃𝑗 : 𝐽. (𝑓!(𝑎𝑖) ≤ 𝑏𝑗) and 𝑔!(𝑥𝑖) ≤ 𝑦𝑗

⇐⇒ ∀𝑖 : 𝐼. ∃𝑗 : 𝐽. (𝑎𝑖 ≤ 𝑓 *(𝑏𝑗)) and 𝑥𝑖 ≤ 𝑔*(𝑦𝑗)

⇐⇒ ∀𝑖 : 𝐼. ∃𝑗 : 𝐽. 𝑎𝑖 × 𝑥𝑖 ≤ 𝑓 *(𝑏𝑗)× 𝑔*(𝑦𝑗)

⇐⇒
⋁︁
𝑖:𝐼

𝑎𝑖 × 𝑥𝑖 ≤
⋁︁
𝑗:𝐽

𝑓 *(𝑏𝑗)× 𝑔*(𝑦𝑗)

⇐⇒
⋁︁
𝑖:𝐼

𝑎𝑖 × 𝑥𝑖 ≤ (𝑓 ⊗ 𝑔)*

(︃⋁︁
𝑗:𝐽

𝑏𝑗 × 𝑦𝑗

)︃
.

It suffices to confirm the Frobenius law holds on basic opens [35]:

(𝑓 ⊗ 𝑔)!((𝑎× 𝑥) ∧ (𝑓 ⊗ 𝑔)*(𝑏× 𝑦)) = (𝑓 ⊗ 𝑔)!((𝑎× 𝑥) ∧ (𝑓 *(𝑏)× 𝑔*(𝑦)))

= (𝑓 ⊗ 𝑔)!((𝑎 ∧ 𝑓 *(𝑏))× (𝑥 ∧ 𝑔*(𝑦))

= 𝑓!(𝑎 ∧ 𝑓 *(𝑏))× 𝑔!(𝑥 ∧ 𝑔*(𝑦))

= (𝑓!(𝑎) ∧ 𝑏)× (𝑔!(𝑥) ∧ 𝑦)
(Frobenius law for 𝑓 and 𝑔)

= (𝑓!(𝑎)× 𝑔!(𝑥)) ∧ (𝑏× 𝑦)

= (𝑓 ⊗ 𝑔)!(𝑎× 𝑥) ∧ (𝑏× 𝑦).

49

We will now describe some facts that relate the open maps to nondeterministic
maps.

Proposition 3.15. For any open map 𝑝 : 𝐴 →𝑐 𝐵, there is a (potentially) partial
and nondeterministic inverse map 𝑝−1 : 𝐵

𝑛𝑑,𝑝→ 𝑐 𝐴 defined by

𝑝−1* : 𝒪 (𝐵) → 𝒪 (𝐴)

𝑝−1*(𝑈) , 𝑝!(𝑈).

Proof. We only must prove that 𝑝! preserves joins, which follows from the fact that
𝑝! is a left adjoint (to 𝑝*).

The map {·} : 𝐴 →𝑐 𝒫♦(𝐴), defined as the “return” operation of the 𝒫♦ monad,
is open, with a direct image map taking opens 𝑈 of 𝐴 to ♦𝑈 in 𝒫♦(𝐴).

3.4.2 Open embeddings

Proposition 3.16. An open map 𝑓 : 𝐴 →𝑐 𝐵 factors through its direct image 𝑓!(⊤),
i.e., there is an 𝑓 such that the following diagram commutes:

𝐴 {𝐵 | 𝑓!(⊤)}

𝐵

𝑓

𝑓

𝜄[𝑓!(⊤)]

Proof. This statement is equivalent to that for all 𝑈 : 𝒪 (𝐵), 𝑓 *(𝑈) ≤ 𝑓 *(𝑈 ∧ 𝑓!(⊤)).
This is indeed the case:

𝑓 *(𝑈 ∧ 𝑓!(⊤)) = 𝑓 *(𝑈) ∧ 𝑓 *(𝑓!(⊤)) (𝑓 * preserves meets)
≥ 𝑓 *(𝑈) ∧ ⊤ (𝑓 * ∘ 𝑓! inflationary)
= 𝑓 *(𝑈).

Definition 3.17. A map 𝑓 : 𝐴 →𝑐 𝐵 is an open embedding (or open inclusion) if
𝐴 is homeomorphic to its image under 𝑓 in 𝐵, that is, if there is an open subspace
𝑈 : 𝒪 (𝐵) and homeomorphism 𝑓 : 𝐴 →𝑐 {𝐵 | 𝑈} such that the following diagram
commutes:

𝐴 {𝐵 | 𝑈}

𝐵

𝑓

𝑓−1

𝑓

𝜄[𝑈]

The notation 𝑓 : 𝐴 →˓ 𝐵 indicates that the continuous map 𝑓 : 𝐴 →𝑐 𝐵 is an
open embedding.

50

Theorem 3.18. A map 𝑓 : 𝐴 →𝑐 𝐵 is an open embedding if and only if it is an open
map and its direct image map 𝑓! preserves binary meets.

Proof. Suppose 𝑓 : 𝐴 →𝑐 𝐵 is an open embedding that factors through {𝐵 | 𝑈}, and
let 𝑓 and 𝑓−1 be the maps as in the above diagram. Then its direct image map is
given by

𝑓! : 𝒪 (𝐴) → 𝒪 (𝐵)

𝑓!(𝑉) , 𝑓−1*(𝑉) ∧ 𝑈.

We now confirm that 𝑓! ⊣ 𝑓 *. We have

𝑓!(𝑉) ≤ 𝑊 ⇐⇒ 𝑓−1*(𝑉) ∧ 𝑈 ≤ 𝑊

⇐⇒ 𝑓−1*(𝑉) ∧ 𝑓−1*(𝑓 *(𝑈)) ≤ 𝑊

⇐⇒ 𝑓−1*(𝑉 ∧ 𝑓 *(𝑈)) ≤ 𝑊

⇐⇒ 𝑓−1*(𝑉 ∧ ⊤) ≤ 𝑊

⇐⇒ 𝑓−1*(𝑉) ≤ 𝑊

⇐⇒ 𝑉 ≤ 𝑓 *(𝑊)

Moreover, 𝑓! preserves meets:

𝑓!(𝑉 ∧𝑊) = 𝑓−1*(𝑉 ∧𝑊) ∧ 𝑈

= 𝑓−1*(𝑉) ∧ 𝑓−1*(𝑊) ∧ 𝑈

= (𝑓−1*(𝑉) ∧ 𝑈) ∧ (𝑓−1*(𝑊) ∧ 𝑈)

= 𝑓!(𝑉) ∧ 𝑓!(𝑊).

We also confirm 𝑓! satisfies the Frobenius law:

𝑓!(𝑉 ∧ 𝑓 *(𝑊)) = 𝑓!(𝑉) ∧ 𝑓!(𝑓
*(𝑊)) (𝑓! preserves meets)

= 𝑓!(𝑉) ∧ 𝑓−1*(𝑓 *(𝑊)) ∧ 𝑈

= 𝑓!(𝑉) ∧ 𝑓−1*(𝑓 *(𝑊)) (𝑓!(𝑉) already at most 𝑈)

= 𝑓!(𝑉) ∧ 𝑓−1*(𝑓 *(𝑊 ∧ 𝑈))

= 𝑓!(𝑉) ∧𝑊 ∧ 𝑈

= 𝑓!(𝑉) ∧𝑊 (𝑓!(𝑉) already at most 𝑈)

Thus an open embedding is an open map with a meet-preserving direct image map.
We now prove the converse. Given an open map 𝑓 : 𝐴 →𝑐 𝐵 with a meet-preserving
direct image map 𝑓!, we claim that 𝐴 ∼= {𝐵 | 𝑓!(⊤)}. By Proposition 3.16, we already
have a continuous map 𝑓 : 𝐴 →𝑐 {𝐵 | 𝑓!(⊤)}. We define 𝑔 : {𝐵 | 𝑓!(⊤)} →𝑐 𝐴 by

𝑔* : 𝒪 (𝐴) → 𝒪 ({𝐵 | 𝑓!(⊤)})
𝑔*(𝑉) , 𝑓!(𝑉) ∧ 𝑓!(⊤).

51

We claim 𝑔* indeed defines a continuous map. It preserves joins and binary meets
since it is the composition of 𝑓! and · ∧ 𝑓!(⊤), both of which preserve joins and binary
meets, so it suffices to show that 𝑔*(⊤) = ⊤, which is indeed the case, as

𝑔*(⊤) = 𝑓!(⊤) ∧ 𝑓!(⊤) = 𝑓!(⊤)

which is equivalent to ⊤ in {𝐵 | 𝑓!(⊤)}.

Example. Identity maps id : 𝐴 →˓ 𝐴 are open embeddings, and the composition of
open embeddings is an open embedding.

Proof. We have id!(𝑈) = 𝑈 , which preserves binary meets. Given open maps 𝑓 :
𝐴 →𝑐 𝐵 and 𝑔 : 𝐵 →𝑐 𝐶, the composition 𝑔! ∘ 𝑓! : 𝒪 (𝐴) → 𝒪 (𝐶) preserves binary
meets since 𝑓! and 𝑔! both do.

Proposition 3.19. Parallel composition of open embeddings yields an open embed-
ding. That is, given 𝑓 : 𝐴 →˓ 𝐵 and 𝑔 : 𝑋 →˓ 𝑌 open embeddings, 𝑓 ⊗ 𝑔 : 𝐴×𝑋 →˓
𝐵 × 𝑌 is an open embedding.

Proof. It suffices to confirm that the direct image preserves binary meets, and it
suffices to check this by only checking the basic opens, which in this case are open
rectangles:

(𝑓 ⊗ 𝑔)! ((𝑎1 × 𝑥1) ∧ (𝑎2 × 𝑥2)) = (𝑓 ⊗ 𝑔)! ((𝑎1 ∧ 𝑎2)× (𝑥1 ∧ 𝑥2))

= 𝑓!(𝑎1 ∧ 𝑎2)× 𝑔!(𝑥1 ∧ 𝑥2)

= (𝑓!(𝑎1) ∧ 𝑓!(𝑎2))× (𝑔!(𝑥1) ∧ 𝑔!(𝑥2))
(𝑓! and 𝑔! preserve binary meets)

= (𝑓!(𝑎1)× 𝑔!(𝑥1)) ∧ (𝑓!(𝑎2)× 𝑔!(𝑥2))

= (𝑓 ⊗ 𝑔)!(𝑎1 × 𝑥1) ∧ (𝑓 ⊗ 𝑔)!(𝑎2 × 𝑥2)

Proposition 3.20. The pullback of an open embedding is an open embedding.

Proof. Since (up to homeomorphism) an open embedding is just the inclusion of
an open subspace, it suffices to prove that the pullback of the inclusion of an open
subspace is an open embedding. Given the open inclusion 𝜄[𝑈] : {𝑋 | 𝑈} →˓ 𝑋, for
any map 𝑓 : 𝐴 →𝑐 𝑋 we have the pullback square

{𝐴 | 𝑓 *(𝑈)} 𝐴

{𝑋 | 𝑈} 𝑋

𝜄[𝑓*(𝑈)]

𝑓|𝑈
y

𝑓

𝜄[𝑈]

,

which expresses the fact that the preimage of opens are open. It is possible to confirm
that the diagram commutes and that {𝐴 | 𝑓 *(𝑈)} satisfies the universal property of
pullbacks.

52

The open embeddings are closely related to the partial maps.

Proposition 3.21. Given an open embedding 𝑓 : 𝐴 →˓ 𝐵, the “inverse map” 𝑓−1 :

𝐵
𝑛𝑑,𝑝→ 𝑐 𝐴 that any open map has is in fact deterministic, i.e., 𝑓−1 : 𝐵

𝑝→𝑐 𝐴.

Proof. This follows directly from the fact that 𝑓! preserves joins and binary meets.

We will now observe that the map up : 𝐴 →𝑐 𝐴⊥ that is the “return” operation
of the lifting monad ·⊥ is an open embedding. This allows us to view 𝐴 as an open
subspace of 𝐴⊥. We can define up via the inverse and direct image maps

up* : 𝒪B(𝐴⊥) → 𝒪 (𝐴)

up*(T) , ⊤
up*(⇓𝑎) , 𝑎

up! : 𝒪 (𝐴) → 𝒪 (𝐴⊥)

up!(𝑈) , ⇓𝑈.

Proposition 3.22. This indeed defines an open embedding up : 𝐴 →˓ 𝐴⊥.

Proof. We first confirm up defines a continuous map:

meet-0
up*(⊤) ≥ up*(T) = ⊤.

meet-2 Follows from the facts

T ↓ ⇓𝑎 = ⇓𝑎
⇓𝑎 ↓ ⇓𝑏 = ⇓(𝑎 ↓ 𝑏).

split It suffices to check every axiom of 𝐴⊥: every axiom is of the form ⇓𝑎 ▷𝐴⊥ ⇓𝑈 ,
where 𝑎 ▷𝐴 𝑈 . So we must confirm

up*(⇓𝑎) ▷ up*(⇓𝑈),

which is equivalent to 𝑎 ▷ 𝑈 , which we know by assumption.

We will now confirm that up! = ⇓ preserves joins and binary meets. We observe
that it preserves binary meets since

⇓𝑎 ↓ ⇓𝑏 = ⇓(𝑎 ↓ 𝑏).

It preserves joins since if 𝑎 ▷𝐴 𝑈 then ⇓𝑎 ▷𝐴⊥ ⇓𝑈 .
Finally, it is straightforward to confirm that up! ⊣ up* and that the Frobenius law

holds.

53

3.5 Summary

The open maps and the open embeddings form part of lattice of categories of contin-
uous maps whose inverses are potentially partial and nondeterministic; the inverse of
an open map is partial and nondeterministic, whereas the inverse of an open embed-
ding is partial, but deterministic. This will make the open maps and open embeddings
relevant for pattern matching to produce either continuous maps or nondeterministic
maps on spaces. Figure 3-4 depicts this lattice alongside the original one.

continuous
maps (𝑐)

homeomorph.

nondet. (𝑛𝑑)
𝒫+
♦

surj. & open partial (𝑝)
·⊥

open
embeddings
(𝑜𝑒/ →˓)

nondet. and
partial (𝑛𝑑, 𝑝)

𝒫♦
open (𝑜)

−1

−1 −1

−1

Figure 3-4: A summary of various categories of morphisms on formal spaces and
functors relating them. “Forgetful” functors have tails and are unnamed. Functors
named “−1” denote inverse functions determined by direct image maps. All paths in
the diagram commute except for those involving the (dashed) forgetful functor 𝑜� 𝑐.

Usually, when pattern matching, we do not expect that a single pattern covers
the entire input space, and accordingly we expect that the “inverse” map of a par-
ticular pattern should be partial, rather than total. This explains why we focused
on the open maps and open embeddings, whose inverses are necessarily partial. The
greyed categories in Figure 3-4 describe those categories of maps whose inverses are
in fact total. The inverses of surjective open maps are total but nondeterministic,
and the inverses of homeomorphisms are just regular continuous maps (total and
deterministic).

3.6 Variants of the programming language

We can extend the programming language for FSpc described in Section 2.4 to pro-
gramming languages for nondeterministic or partial variants. This works since each
of these variants describe strong monads 𝑀 that act on FSpc.

54

For any strong monad 𝑀 , we can define a syntax ⊢𝑀 for programming in that
particular language:

(𝑥 : 𝑋) ∈ Γ

Γ ⊢𝑀 𝑥 : 𝑋
var

𝑓 : 𝐴1 × · · · × 𝐴𝑛 →𝑀 𝐵 Γ ⊢𝑀 𝑥1 : 𝐴1 · · · Γ ⊢𝑀 𝑥𝑛 : 𝐴𝑛

Γ ⊢𝑀 𝑓(𝑥1, . . . , 𝑥𝑛) : 𝐵
app

,

Theorem 3.23. Given any expression Γ ⊢𝑀 𝑒 : 𝐴, we can construct a term J𝑒K :
Prod(Γ) →𝑀 𝐴 in the Kleisli category for 𝑀 .

Proof. We proceed by induction on its structure of the syntax. In the var case, we
compute from the witness (𝑥 : 𝑋) ∈ Γ a projection J𝑥K : Prod(Γ) →𝑐 𝑋, which
can also be considered as map in the Kleisli category for 𝑀 . In the app case, we
are given maps J𝑥𝑖K : Γ →𝑀 𝐴𝑖 for 𝑖 ∈ 1, . . . 𝑛. We use these maps to build a
map 𝑥 : Γ →𝑐 𝑀(𝐴1) × · · · × 𝑀(𝐴𝑛) by the universal property for products, i.e.,
𝑥 , ⟨J𝑥1K, . . . , J𝑥𝑛K⟩.

The task then is to define a map 𝑔 : 𝑀(𝐴1 × · · · × 𝐴𝑛) →𝑀 𝐴1 × · · · × 𝐴𝑛 such
that we can produce the composition 𝑓 ∘ 𝑔 ∘ 𝑥 : Γ →𝑀 𝐴1 × · · · × 𝐴𝑛, which has
the right type. This can be accomplished via repeated use of the strength operation
𝐴×𝑀(𝐵) →𝑀 𝐴×𝐵 (in conjunction with other monad operations).

55

56

Chapter 4

Overlapping pattern matching

This chapter introduces a programming construct that ought to be useful for pro-
gramming with spaces: overlapping pattern matches.

Reconsider the approximate root-finding task introduced in Section 1.1. The code

roots𝑓 : * 𝑛𝑑→𝑐 {* | ∀𝑥 ∈ 𝐾. 𝑓(𝑥) ̸= 0}+ {𝑥 : 𝐾 | |𝑓(𝑥)| < 𝜀}

roots𝑓 , case(tt)

{︃
𝜄[∃𝑥 ∈ 𝐾. |𝑓(𝑥)| < 𝜀] (𝑦) ⇒ inr(simulate(𝑦))

𝜄[∀𝑥 ∈ 𝐾. 𝑓(𝑥) ̸= 0] (𝑛) ⇒ inl(𝑛)

accomplishes this task with an overlapping pattern match. The program is nondeter-
ministic (indicated by the flavor of the arrow 𝑛𝑑→𝑐), returning either an inr(𝑥) that is
“almost a root” or a proof indicating that there are no roots in 𝐾. The notations and
auxiliary definitions in this program will be explained over the course of this chapter
and the following one, and we will return to this example to give a more thorough
analysis in section 5.4.

Intuitively, overlapping patterns behave much like traditional pattern matches as
in functional programming, but an input that matches several patterns may nonde-
terministically follow any matching branch.

The syntax of an overlapping pattern match determines a unique map that is
potentially partial and nondeterministic, but there are simple conditions that ensure
that a map is total and deterministic:

1. Totality : together, the cases cover the entire input space.

2. Determinism: patterns are open embeddings, and “maxima” exist for each pair
of branches on their overlap.

Formal (constructive) proofs of these properties contribute to the computational be-
havior of the pattern match.

In the roots𝑓 example, totality is satisfied essentially because either of the two
earlier bulleted statements must hold (Section 5.4 provides further detail).

57

Contributions

∙ We demonstrate (Section 4.1), by informal example, the utility of overlapping
patterns for a variety of purposes, including

– (nondeterministic) approximate computation and decision-making (4.1.2)

– manipulating partial data (4.1.3)

– “sheafification” of constructions (4.1.4).

∙ We describe constructions of a few variations on overlapping pattern matches.
We first characterize what families of patterns may be used if no properties are
assumed about the code for the branches (4.2); these constructions generalize
the conventional notion of pattern matching in functional programming. We
then describe a construction that generalizes the sheaf gluing property of repre-
sentable sheaves, where overlapping branches need not agree exactly (4.3). We
then discuss some additional properties of overlapping patterns (4.4).

4.1 Example uses of overlapping pattern matching

This section presents an informal introduction to overlapping pattern matching, pro-
viding examples that demonstrate its usefulness in a variety of situations.

4.1.1 A familiar example

Here we will fix some notation and define concepts that will be used to explain the
more exotic examples later in this section, by starting with a familiar example: we
can define functions on coproducts (sums) via pattern matching, just as is possible
in any functional programming language:

forget_sign : {R | · < 0}+ {R | · > 0} →𝑐 R

forget_sign(𝑥) , case(𝑥)

{︃
inl(ℓ) ⇒ 𝜄[· < 0] (ℓ)

inr(𝑟) ⇒ 𝜄[· > 0] (𝑟)
.

For general spaces 𝐴 and 𝐵, inl : 𝐴 →˓ 𝐴 + 𝐵 and inr : 𝐵 →˓ 𝐴 + 𝐵 are open
embeddings (theorem 2.15); every pattern must be an open embedding when defining
deterministic functions. To confirm that forget_sign defines a continuous map, we
must check totality and determinism conditions. Since inl and inr together cover the
input space, and since their images are disjoint, the program must be both total and
deterministic.

4.1.2 Approximate computation and decision-making

Connected spaces, such as R, cannot be partitioned into disjoint open subspaces.
Accordingly, it is impossible to make a nontrivial discrete decision over these spaces;

58

for instance, any function 𝑓 : R →𝑐 B must be a constant function. Instead, it
makes sense to allow decisions to be nondeterministic, which can be accomplished
by producing output in the space 𝒫+

♦ (B) of nondeterministic Boolean values, rather
than B.

For any error tolerance 𝜀 > 0, we can approximately compare a real number with
0 using the function

positive?𝜀 : R
𝑛𝑑→𝑐 B

positive?𝜀(𝑥) , case(𝑥)

{︃
𝜄[· > −𝜀] (_) ⇒ true

𝜄[· < 𝜀] (_) ⇒ false
.

To confirm this definition is well-defined, we confirm that the two patterns cover R. If
an input lies in −𝜀 < · < 𝜀, then the resulting behavior is the union of the behaviors
of both branches: true ⊔ false : * 𝑛𝑑→𝑐 B; that is, either decision might be made. Note
that determining whether an input satisfies · > −𝜀 is undecidable (likewise for · < 𝜀).

We can nondeterministically break a real number into an integer and a fractional
part in {R | −𝜀 < · < 1} with

int_frac𝜀 : R
𝑛𝑑→𝑐 Z× {R | −𝜀 < · < 1}

int_frac𝜀(𝑥) , case(𝑥)
{︁
nplus(𝑛, 𝑦) ⇒ (𝑛, 𝑦) ,

where the open map nplus : Z × {R | −𝜀 < · < 1} →𝑜 R adds its arguments. It is
possible for a real number to have several preimages under nplus; one can think of
the pattern match as nondeterministically choosing all possible preimages.

Section 5 describes binary covers, giving many further examples of approximate
decision-making using overlapping patterns.

4.1.3 Manipulating partial data

We can write, for instance, a partial Boolean or operation,

or : B⊥ × B⊥
𝑝→𝑐 B

or(𝑝) , case(𝑝)

⎧⎪⎨⎪⎩
up(true),_ ⇒ true

_, up(true) ⇒ true

up(false), up(false) ⇒ false

.

This example demonstrates that it is possible to pattern match on products as
well as to nest patterns. For instance, up(true) corresponds to the nested pattern

* B B⊥
true up

.

Since B is discrete, its points are open embeddings.
Unlike a short-circuiting “or” operation in most programming languages, this or is

59

strict in neither argument, since

or(up(true),⊥) = or(⊥, up(true)) = true,

and true is a total value.
We must check that the map is deterministic, by ensuring pairs of branches are

compatible on their overlaps. The first and second cases do overlap, but they agree
exactly, and other case pairs are disjoint from each other. So or is well-defined.

As we can see, when constructing a partial map with a pattern match, the patterns
need not cover the entire input space.

Other operations on lifted spaces are naturally expressed with overlapping pat-
terns. For instance, any 𝑓 : 𝐴 →𝑐 𝐵 can be lifted to operate on lifted spaces with the
overlapping pattern

𝑓⊥ : 𝐴⊥
𝑝→𝑐 𝐵

𝑓⊥(𝑥) , case(𝑥)
{︁
up(𝑧) ⇒ 𝑓(𝑧),

which forces its argument to compute the result, but if the input is ⊥, then so is the
result. Since there is only one branch that does not return ⊥, the gluing condition
is satisfied. Lifting of spaces forms a monad, whose join operation can be expressed
with the pattern match

join : (𝐴⊥)⊥
𝑝→𝑐 𝐴

join(𝑥) , case(𝑥)
{︁
up(up(𝑦)) ⇒ 𝑦.

Comparison with Haskell pattern matching

Pattern matching definitions of the form 𝐴1⊥× . . .×𝐴𝑛⊥
𝑝→𝑐 𝐵 may resemble pattern

matches in Haskell. The translated definitions sometimes, but not always, represent
valid Haskell functions. For instance, the partial Boolean or operation corresponds to
the following prospective Haskell definition

or :: Bool -> Bool -> Bool
or True _ = True
or _ True = True
or False False = False

which has overlapping cases, thus making it invalid Haskell code (Haskell gives a
warning and ignores the second case). The problem is that both of the first two
cases apply if both arguments are True, and in Haskell there is no way to guarantee
that the results are compatible in either case. Our pattern matching construction
allows overlapping patterns, since it requires proof that overlapping patterns indeed
are reconcilable on their overlap.

60

4.1.4 “Sheafification” of constructions

Overlapping patterns naturally allow “sheafification” (see Section 4.3) of construc-
tions, yielding a very general tool that aids in defining continuous maps. For instance,
suppose we want to define multiplication on R, where R is defined as a metric com-
pletion of the set Q (as in [41]). Using a straightforward construction to extend a
Lipschitz function over metric sets to their metric completions, it is possible to define
a family of Lipschitz functions that compute multiplication where one argument is
bounded,

scale𝐿 : {R | −𝐿 < · < 𝐿} × R→𝑐 R

for 𝐿 : Q+. Multiplication on R is not Lipschitz and so cannot be defined directly with
the Lipschitz construction. However, multiplication is locally Lipschitz: the family of
bounded multiplication functions defined above cover the entire input domain R×R,
and so it is possible to define multiplication with the overlapping pattern

× : R× R→𝑐 R
𝑥× 𝑦 , case(𝑥){︁

[𝐿 : Q+] 𝜄[−𝐿 < · < 𝐿] (𝑥′) ⇒ scale𝐿(𝑥
′, 𝑦).

The covering condition is clearly satisfied, and the gluing condition is satisfied because
any two branches agree exactly on their region of overlap.

Just as the Lipschitz extension construction can be “sheafified” to allow extension
of locally Lipschitz functions, pattern matching naturally enables “sheafification” of
constructions more generally.

4.2 Pattern families

This section characterizes those families of patterns which may be used to match on a
scrutinee that comes from a space 𝐴, if nothing is to be assumed about the branches.
The idea is that we compose a function 𝑓 : 𝐴

?→𝑐 𝐵 by factoring through a disjoint
sum over collection of spaces representing the possible patterns and branches,

∑︀
𝑖:𝐼 𝑈𝑖,

i.e., a composition
𝐴

∑︀
𝑖:𝐼 𝑈𝑖 𝐵inv 𝑒

of a “pattern matching” part inv followed by the “branch execution” part 𝑒. The
collection of branches (𝑒𝑖 : 𝑈𝑖

?→𝑐 𝐵)𝑖:𝐼 exactly correspond to the branch execution
function 𝑒, but the pattern matching part inv is more interesting; this section will
address those families of patterns which may yield valid functions of this sort.

Semantically, we think of a single pattern as representing a space 𝑈 together
with a map 𝑝 : 𝑈 →𝑐 𝐴 that represents the possibility that the scrutinee can be
represented as a point in the image of 𝑝. For a single pattern 𝑝 : 𝑈 →𝑐 𝐴 to be
somehow implementable, it must have a well-behaved inverse 𝑝−1 : 𝐴

𝑛𝑑,𝑝→ 𝑐 𝑈 that is
partial and also may be nondeterministic. That means that 𝑝 should at the very least

61

be an open map. If we are building a program that is deterministic, then 𝑝−1 should
be deterministic, which implies 𝑝 must be an open embedding. If we are building a
program that is total, then we do not need each 𝑝−1 to be total, but we do need the
collection of them to cover 𝐴.

In general, we have an entire family of patterns 𝑝𝑖 : 𝑈𝑖 →𝑜 𝐴 for 𝑖 : 𝐼 where 𝐼 is
some index type. We can use this to construct the nondeterministic inverse

inv : 𝐴
𝑛𝑑,𝑝→ 𝑐

∑︁
𝑖:𝐼

𝑈𝑖

inv(𝑥) ,
⨆︁
𝑖:𝐼

inj𝑖(𝑝
−1
𝑖 (𝑥)).

Therefore, for any index type 𝐼, any collection of opens maps 𝑝𝑖 : 𝑈𝑖 →𝑜 𝐴 is
a collection of patterns for defining a nondeterministic and partial map using an
overlapping pattern match. Given an arbitrary collection of branches 𝑒𝑖 : 𝑈𝑖

𝑛𝑑,𝑝→ 𝑐

𝐵, or equivalently, 𝑒 :
∑︀

𝑖:𝐼 𝑈𝑖
𝑛𝑑,𝑝→ 𝑐 𝐵, the overlapping pattern match is just the

composition 𝑒 ∘ inv : 𝐴
𝑛𝑑,𝑝→ 𝑐 𝐵. As expected, the overlapping pattern match is a

nondeterministic union of its branches.
For those categories/languages that require totality or determinism, we’d like to

characterize the families of patterns which are suitable in those cases. These will be
subcollections of the collection of pattern families in the nondeterministic and partial
case.

We will observe that they form a lattice of Grothendieck pretopologies. This
structure is useful: it tells us that we there are certain techniques that we can always
use to form pattern families, and that pattern families will have important structural
properties. For instance, the transitivity axiom corresponds to the ability to flatten
nested pattern matches into a single one.

Definition 4.1 ([19]). A Grothendieck pretopology (or basis for a Grothendieck
topology) is an assignment to each space 𝐴 of a collection of families (𝑈𝑖 →𝑐 𝐴)𝑖:𝐼 of
continuous maps, called covering families such that

1. homeomorphisms cover – every family consisting of a single isomorphism {𝑉
∼=→𝑐

𝐴} is a covering family;

2. stability axiom – the collection of covering families is stable under pullback: if
(𝑈𝑖 →𝑐 𝐴)𝑖:𝐼 is a covering family and 𝑓 : 𝑉 →𝑐 𝐴 is any continuous map, then
the family of pullbacks (𝑓 *𝑈𝑖 →𝑐 𝑉)𝑖:𝐼 is a covering family;

3. transitivity axiom – if (𝑈𝑖 →𝑐 𝐴)𝑖∈𝐼 is a covering family and for each 𝑖 also
(𝑈𝑖,𝑗 →𝑐 𝑈𝑖)𝑗:𝐽𝑖 is a covering family, then also the family of composites (𝑈𝑖,𝑗 →𝑐

𝑈𝑖 →𝑐 𝐴)𝑖:𝐼,𝑗:𝐽𝑖 is a covering family.

Proposition 4.2 (Product axiom). In any Grothendieck pretopology, given covering
families (𝑝𝑖 : 𝑈𝑖 →𝑐 𝐴)𝑖:𝐼 and (𝑞𝑗 : 𝑉𝑗 →𝑐 𝐵)𝑗:𝐽 , there is a product covering family
(𝑝𝑖 ⊗ 𝑞𝑗 : 𝑈𝑖 × 𝑉𝑗 →𝑐 𝐴×𝐵)(𝑖,𝑗):𝐼×𝐽 .

62

Proof. First, we use pullback stability along fst : 𝐴×𝐵 →𝑐 𝐴 to produce the covering
family (fst*𝑝𝑖 : 𝑈𝑖 × 𝐵 →𝑐 𝐴 × 𝐵)𝑖:𝐼 . Then, for each 𝑖 : 𝐼, we use pullback stability
along snd : 𝑈𝑖×𝐵 →𝑐 𝐵 to produce the covering family (snd*𝑞𝑗 : 𝑈𝑖×𝑉𝑗 →𝑐 𝑈𝑖×𝐵)𝑗:𝐽 .
Finally, by the transitivity axiom, we get the covering family

(fst*𝑝𝑖 ∘ snd*𝑞𝑗 : 𝑈𝑖 × 𝑉𝑗 →𝑐 𝐴×𝐵)𝑖:𝐼,𝑗:𝐽 .

Then one can confirm that

fst*𝑝𝑖 ∘ snd*𝑞𝑗 = 𝑝𝑖 ⊗ 𝑞𝑗.

Proposition 4.3. The collection of pattern families for FSpc𝑛𝑑,𝑝, that is, open maps
𝑝𝑖 : 𝑈𝑖 →𝑜 𝐴, form a Grothendieck pretopology 𝒥𝑛𝑑,𝑝.

Proof. 1. Homeomorphisms cover, since any homeomorphism is (an open embed-
ding and thus) an open map.

2. Stability follows from the fact that the pullback of an open map against any
continuous map is open (see Proposition C3.1.11 (i) in [15]).

3. Transitivity follows from the fact that open maps are closed under composition.

4.2.1 Totality

If we want to ensure that an overlapping pattern match is total, only requiring that
the branches themselves 𝑒 :

∑︀
𝑖:𝐼 𝑈𝑖

𝑛𝑑→𝑐 𝐵 are total, then it suffices to require that
inv*(⊤) = ⊤, or equivalently,

⊤ ≤
⋁︁
𝑖:𝐼

𝑝𝑖!(⊤),

meaning that the patterns cover the whole input space.

Proposition 4.4. The collection of pattern families for FSpc𝑛𝑑, that is, open maps
𝑝𝑖 : 𝑈𝑖 →𝑜 𝐴 satisfying ⊤ ≤

⋁︀
𝑖:𝐼 𝑝𝑖!(⊤), form a Grothendieck pretopology 𝒥𝑛𝑑.

Proof. 1. An isomorphism 𝑝 : 𝑉 →𝑜 𝐴 satisfies 𝑝!(⊤) = ⊤ and so it alone is a
pattern family on 𝐴.

2. Given a pattern family 𝑝𝑖 : 𝑈𝑖 →𝑜 𝐴 and a continuous map 𝑓 : 𝑉 →𝑐 𝐴, the
pullback object 𝑓 *𝑈𝑖 is homeomorphic to {𝑉 | 𝑓 *(𝑝𝑖!(⊤))}. Using this definition
of the pullback object, we confirm

⋁︁
𝑖:𝐼

(𝑓 *𝑝𝑖)!(⊤) =
⋁︁
𝑖:𝐼

𝑓 *(𝑝𝑖!(⊤)) = 𝑓 *

(︃⋁︁
𝑖:𝐼

𝑝𝑖!(⊤)

)︃
= 𝑓 *(⊤) = ⊤.

63

3. The family of composites indeed covers, since⋁︁
𝑖:𝐼,𝑗:𝐽𝑖

(𝑝𝑖 ∘ 𝑝𝑖,𝑗)!(⊤) =
⋁︁

𝑖:𝐼,𝑗:𝐽𝑖

𝑝𝑖!(𝑝𝑖,𝑗 !(⊤))

=
⋁︁
𝑖:𝐼

𝑝𝑖!

(︃⋁︁
𝑗:𝐽𝑖

𝑝𝑖,𝑗 !(⊤)

)︃
(direct images preserve joins)

=
⋁︁
𝑖:𝐼

𝑝𝑖!(⊤)

= ⊤.

4.2.2 Determinism

Suppose we want to ensure an overlapping pattern match is deterministic, while
allowing any arbitrary family of branches 𝑒 :

∑︀
𝑖:𝐼 𝑈𝑖

𝑝→𝑐 𝐵 (where each branch 𝑒𝑖 is
indeed deterministic).

In this case, we will recover the familiar condition required of pattern matching
in functional programming: disjointness of patterns (i.e., patterns are not allowed to
overlap).

Definition 4.5. A family of open maps 𝑝𝑖 : 𝑈𝑖 →𝑜 𝐴 is pairwise disjoint if whenever
𝑝𝑖!(⊤) ∧ 𝑝𝑗 !(⊤) is positive in 𝐴, then 𝑖 ≡ 𝑗.

Theorem 4.6. The map inv* preserves binary meets if and only if both of the following
conditions hold:

1. Each pattern 𝑝𝑖 : 𝑈𝑖 →𝑜 𝐴 is in fact an open embedding.

2. The patterns are pairwise disjoint.

Proof. First, we prove the two conditions hold if inv* preserves binary meets.

1. It suffices to show that each 𝑝𝑖! preserves binary meets, which follows from the
calculation

𝑝𝑖!(𝑎 ∧ 𝑏) = inv*((𝑖, 𝑎) ∧ (𝑖, 𝑏)) = inv*(𝑖, 𝑎) ∧ inv*(𝑖, 𝑏) = 𝑝𝑖!(𝑎) ∧ 𝑝𝑖!(𝑏).

2. We must show that if 𝑝𝑖!(⊤) ∧ 𝑝𝑗 !(⊤) is positive in 𝐴, then 𝑖 ≡ 𝑗.

𝑝𝑖!(⊤) ∧ 𝑝𝑗 !(⊤) = inv*(𝑖,⊤) ∧ inv*(𝑗,⊤)

= inv*((𝑖,⊤) ∧ (𝑗,⊤)).

Since inv* preserves joins, by Proposition 2.14 if 𝑝𝑖!(⊤) ∧ 𝑝𝑗 !(⊤) is positive, so
is (𝑖,⊤) ∧ (𝑗,⊤), which implies that 𝑖 ≡ 𝑗.

64

Now we prove the converse: if a family 𝑝𝑖 : 𝑈𝑖 →˓ 𝐴 of open embeddings is pairwise
disjoint, its inv map is in fact deterministic. It suffices to prove that inv* preserves
binary meets of basic opens. For any open 𝑎 : 𝒪 (𝐴) and proposition 𝑄, let 𝜒𝑄(𝑎) ,⋁︀

𝑞:𝑄 𝑎. If 𝑄 is true, then 𝜒𝑄(𝑎) = 𝑎 and if 𝑄 is false, then 𝜒𝑄(𝑎) = ⊥.

inv*((𝑘, 𝑎) ∧ (ℓ, 𝑏)) =
⋁︁
𝑖:𝐼

𝑝𝑖!(𝜒𝑖≡𝑘(𝑎) ∧ 𝜒𝑖≡ℓ(𝑏))

=
⋁︁
𝑖:𝐼

𝑝𝑖!(𝜒𝑖≡𝑘(𝑎)) ∧ 𝑝𝑖!(𝜒𝑖≡ℓ(𝑏)) (𝑝𝑖! preserves meets)

=
⋁︁

𝑖:𝐼,𝑗:𝐼

𝑝𝑖!(𝜒𝑖≡𝑘(𝑎)) ∧ 𝑝𝑗 !(𝜒𝑗≡ℓ(𝑏)) (𝑝𝑖s pairwise disjoint)

=

(︃⋁︁
𝑖:𝐼

𝑝𝑖!(𝜒𝑖≡𝑘(𝑎))

)︃
∧

(︃⋁︁
𝑗:𝐼

𝑝𝑗 !(𝜒𝑗≡ℓ(𝑏))

)︃
= inv*(𝑘, 𝑎) ∧ inv*(ℓ, 𝑏).

Proposition 4.7. The collection of pattern families for FSpc𝑝, that is, open em-
beddings 𝑝𝑖 : 𝑈𝑖 →˓ 𝐴 that are pairwise disjoint, form a Grothendieck pretopology
𝒥𝑝.

Proof. 1. Any cover with a single pattern is trivially pairwise disjoint.

2. By Proposition 3.20, the pullback of an open embedding is an open embed-
ding. Thus it remains to confirm that pullback preserves disjointness. From the
computation

(𝑓 *𝑝𝑖)!(⊤) ∧ (𝑓 *𝑝𝑗)!(⊤) = 𝑓 *(𝑝𝑖!(⊤)) ∧ 𝑓 *(𝑝𝑗 !(⊤)) = 𝑓 *(𝑝𝑖!(⊤) ∧ 𝑝𝑗 !(⊤)),

and since 𝑓 * preserves joins, by Proposition 2.14 if (𝑓 *𝑝𝑖)!(⊤) ∧ (𝑓 *𝑝𝑗)!(⊤) is
positive, then so is 𝑝𝑖!(⊤) ∧ 𝑝𝑗 !(⊤), which implies that 𝑖 ≡ 𝑗. Therefore, the
pullback of the cover is still pairwise disjoint.

3. Since the composition of open embeddings is an open embedding, it only remains
to confirm that transitivity preserves disjointness. Suppose we consider two
composites 𝑝𝑖 ∘ 𝑝𝑖,𝑗 and 𝑝𝑖′ ∘ 𝑝𝑖′,𝑗′ such that

(𝑝𝑖 ∘ 𝑝𝑖,𝑗)!(⊤) ∧ (𝑝𝑖′ ∘ 𝑝𝑖′,𝑗′)!(⊤) = 𝑝𝑖!(𝑝𝑖,𝑗 !(⊤)) ∧ 𝑝𝑖′ !(𝑝𝑖′,𝑗′ !(⊤))

is positive. This implies that the larger open

𝑝𝑖!(⊤) ∧ 𝑝𝑖′ !(⊤)

is also positive, and therefore, 𝑖 ≡ 𝑖′. We will now prove that 𝑗 ≡ 𝑗′. Since

65

𝑖 ≡ 𝑖′, by equality induction we can consider them both 𝑖, so that we know that

(𝑝𝑖 ∘ 𝑝𝑖,𝑗)!(⊤) ∧ (𝑝𝑖 ∘ 𝑝𝑖,𝑗′)!(⊤) = 𝑝𝑖!(𝑝𝑖,𝑗 !(⊤)) ∧ 𝑝𝑖!(𝑝𝑖,𝑗′ !(⊤))

= 𝑝𝑖!(𝑝𝑖,𝑗 !(⊤) ∧ 𝑝𝑖,𝑗′ !(⊤)) (𝑝𝑖! preserves meets)

is positive. Note that any direct image map 𝑓! preserves joins, and accordingly,
if 𝑓!(𝑈) is positive then 𝑈 is positive. Therefore,

𝑝𝑖,𝑗 !(⊤) ∧ 𝑝𝑖,𝑗′ !(⊤)

is positive, and by pairwise disjointness of the covering family, we know 𝑗 ≡ 𝑗′.
Therefore, (𝑖, 𝑗) ≡ (𝑖′, 𝑗′).

4.2.3 Totality and determinism

To create a pattern match which is both total and deterministic, we simply combine
the separate conditions for totality and determinism.

Proposition 4.8. The collection of pattern families for FSpc, that is, open em-
beddings 𝑝𝑖 : 𝑈𝑖 →˓ 𝐴 that are pairwise disjoint and cover 𝐴, form a Grothendieck
pretopology 𝒥 = 𝒥𝑛𝑑 ∩ 𝒥𝑝 on FSpc.

Proof. It is straightforward from the definition of a Grothendieck pretopology that
they are closed under arbitrary intersection.

Definition 4.9. An open 𝑈 is clopen (for “closed” and “open”) if it has a Boolean
complement, i.e., there is another open 𝑉 such that 𝑈 ∨ 𝑉 = ⊤ and 𝑈 ∧ 𝑉 = ⊥.

Proposition 4.10. For a pattern family (𝑝𝑖 : 𝑈𝑖 →˓ 𝐴)𝑖:𝐼 on FSpc, if the index type
𝐼 has decidable equality, then for each 𝑖 : 𝐼, 𝑝𝑖!(⊤) is clopen in 𝐴.

Proof. Fix some 𝑖 : 𝐼. We claim that the Boolean complement of 𝑝𝑖!(⊤) is
⋁︀

𝑗:𝐼|𝑗 ̸≡𝑖 𝑝𝑗 !(⊤).
Since 𝐼 has decidable equality, their join is ⊤:

𝑝𝑖!(⊤) ∨
⋁︁

𝑗:𝐼|𝑗 ̸≡𝑖

𝑝𝑗 !(⊤) =
⋁︁
𝑖:𝐼

𝑝𝑖!(⊤) = ⊤.

Pairwise disjointness implies that their meet is ⊥:

𝑝𝑖!(⊤) ∧
⋁︁

𝑗:𝐼|𝑗 ̸≡𝑖

𝑝𝑗 !(⊤) =
⋁︁

𝑗:𝐼|𝑗 ̸≡𝑖

𝑝𝑖!(⊤) ∧ 𝑝𝑗 !(⊤) =
⋁︁

𝑗:𝐼|𝑗 ̸≡𝑖

⊥ = ⊥.

This means that if the index type 𝐼 has decidable equality, the predicate corre-
sponding to any given pattern is decidable. This recovers the usual understanding of
pattern matching in functional programming, where patterns are disjoint and corre-
spond to decidable predicates.

66

4.2.4 Syntax of patterns

We will define the admissable syntax of patterns, where 𝑝 : 𝐴 ⊣ Γ intuitively means
that the syntax 𝑝 provides a “context” of pattern matching variables Γ by pattern
matching on a space 𝐴. For instance, we could have the pattern

(up(𝑥), 𝑦) : 𝐴⊥ ×𝐵 ⊣ 𝑥 : 𝐴, 𝑦 : 𝐵

on a space 𝐴⊥ × 𝐵 that provides variables 𝑥 : 𝐴 and 𝑦 : 𝐵 to be used in the branch
corresponding to that pattern.

𝑓 : * →? 𝐴

𝑓 : 𝐴 ⊣? ·
constant

𝑣 : 𝐴 ⊣? 𝑣 : 𝐴
var

_ : 𝐴 ⊣? ·
wildcard

𝑝 : 𝑈 ⊣? Γ 𝑓 : 𝑈 →? 𝐴

𝑓(𝑝) : 𝐴 ⊣? Γ
compose

𝑝 : 𝐴 ⊣? Γ 𝑞 : 𝐵 ⊣? Δ

𝑝, 𝑞 : 𝐴×𝐵 ⊣? Γ,Δ
product

Figure 4-1: The syntax for patterns. The symbol ? can either be 𝑜, for open maps,
or 𝑜𝑒 for open embeddings.

Figure 4-1 characterizes the syntax of patterns. We can either create patterns of
open maps (when building a nondeterministic function) or open embeddings (when
building a necessarily deterministic continuous map).

Theorem 4.11. For ? instantiated as either 𝑜 (for open maps) or 𝑜𝑒 (for open embed-
dings), given any pattern derivation 𝑝 : 𝐴 ⊣? Γ, there is a map J𝑝K : Prod(Γ)×Δ →? 𝐴
for some space Δ which collects the “discarded variables” from the wildcards.

Proof. By induction on the derivation of the pattern:

constant By assumption, we have a constant map of the right kind.

var We use id : 𝐴 →𝑜𝑒 𝐴 (which is also an open map).

wildcard We also use id : 𝐴 →𝑜𝑒 𝐴, but since we require Γ ∼= *, we set the
“garbage space” Δ to be 𝐴.

compose By induction, we have a map J𝑝K : Γ×Δ →? 𝑈 for some Δ. Then we use
the composition (𝑓 ⊗ idΔ) ∘ J𝑝K : Γ×Δ →? 𝐴, threading through the “garbage”
space Δ.

product By induction, we have maps J𝑝K : Γ1 ×Δ1 →? 𝐴 and J𝑞K : Γ2 ×Δ2 →𝐵.
Regardless of whether ? = 𝑜 or ? = 𝑜𝑒, their parallel composition J𝑝K ⊗ J𝑞K :
Γ1 × Γ2 →? 𝐴 × 𝐵 is also a map of the right kind, which we can use, together
with some homeomorphisms to rearrange the “garbage” spaces Δ1 and Δ2 and
to pass them through.

67

Proposition 4.12. If 𝑝 : 𝐴 ⊣𝑜𝑒 Γ, then 𝑝 : 𝐴 ⊣𝑜 Γ as well.

Proof. Straightforward, following from the fact that every open embedding is an open
map.

Note that the definition of patterns we give here does not admit some structural
rules that may be expected, such as

Strengthening Given 𝑝 : 𝐴 ⊣ Γ, we cannot necessarily derive 𝑝 : 𝐴 ⊣ Δ where Δ is
a sub-list of Γ.

Exchange Given 𝑝 : 𝐴 ⊣ Γ,Δ, we cannot necessarily derive 𝑝 : 𝐴 ⊣ Δ,Γ.

These structural properties aren’t necessary since patterns are providing a context
to be used by the expression language, which does have the corresponding rules
weakening and exchange. Regardless, the wildcard rule still gives a sort of “explicit”
strengthening, allowing the user to discard some variables.

We can now define a general (mostly) syntactic rule for “compiling” the sorts of
pattern matches described in this section.

Theorem 4.13. We can compile the syntax1

Γ ⊢? 𝑠 : 𝐴
∏︁
𝑖:𝐼

𝑝𝑖 : 𝐴𝑖 ⊣¿ 𝐴
∏︁
𝑖:𝐼

Γ, 𝐴𝑖 ⊢? 𝑒𝑖 : 𝐵 (𝑝𝑖)𝑖:𝐼 ∈ 𝒥?

Γ ⊢?

(︁
case(𝑠)

{︁
[𝑖 : 𝐼] 𝑝𝑖 ⇒ 𝑒𝑖

)︁
: 𝐵

case-?

, where ? and ¿ are instantiated with any of the combinations in this table:

? ¿
𝑜𝑒

𝑝 𝑜𝑒
𝑛𝑑 𝑜
𝑛𝑑, 𝑝 𝑜

.

Proof. The syntactic constructions give us maps J𝑠K : Γ
?→𝑐 𝐴, J𝑝𝑖K : 𝐴𝑖 × Δ𝑖 →¿ 𝐴

(for some spaces Δ𝑖 representing discarded variables in the pattern 𝑝𝑖), and 𝑒𝑖 :

Γ×𝐴𝑖
?→𝑐 𝐵. The condition (𝑝𝑖)𝑖:𝐼 ∈ 𝒥? is interpreted to mean that these “compiled”

maps appropriately cover 𝐴, so that we get an appropriately behaved map inv : 𝐴
?→𝑐∑︀

𝑖:𝐼 𝐴𝑖 ×Δ𝑖.
We must produce a map 𝑓 : Γ

?→𝑐 𝐵. We can do so by defining2

𝑓 : Γ
?→𝑐 𝐵

𝑓(𝛾) , let ⟨𝑖, 𝑥⟩ , inv(𝑠(𝛾)) in 𝑒𝑖(𝛾, fst(𝑥)).

1 As mnemonics, 𝐼 stands for index type, 𝑠 stands for scrutinee of a case expression, 𝑝 stands for
pattern, and 𝑒 for expression.

2 While the “let-in” syntax for using the universal property (itself a sort of pattern matching) of
sums has not been formally described, hopefully it is clear how it can be implemented via categorical
semantics.

68

Note that the condition (𝑝𝑖)𝑖:𝐼 ∈ 𝒥? that the patterns lie in the appropriate
Grothendieck topology is trivial when ? = (𝑛𝑑, 𝑝).

4.3 Pattern matching with “gluing” conditions
One limitation of the pattern matching constructions described in the previous section
is that, when determinism is required, patterns are required to be disjoint (and if
totality is also required, then under mild conditions each pattern must be clopen as
well).

But we should be able to produce deterministic functions even when patterns
overlap if we require some notion of compatibility of overlapping branches. The
previous example of the partial Boolean or operation is such a case where the patterns
overlap, but the function is still deterministic, because the outputs are compatible
whenever there is overlap.

There is an analogous concept of a sort of “overlapping pattern matching” in sheaf
theory, which effectively says that if branches are identical when they overlap, one
can glue together the branches to form a single function. This is nice, but in fact we
do not need to require that maps be identical when they overlap; we can get away
with something more permissive. This section will characterize this more permissive
notion of overlapping pattern matching that demands some sort of “compatibiliity”
of overlapping branches.

First, let’s briefly examine the similar concept from sheaf theory. Though we
described four Grothendieck pretopologies in the previous section, we have yet to
define perhaps the most popular Grothendieck pretopology treated in sheaf theory,
which is the open cover topology.

Definition 4.14. The open cover topology states that a collection of maps (𝑝𝑖 : 𝐴𝑖 →˓
𝐴) covers the space 𝐴 if each 𝑝𝑖 is an open embedding and together their images cover
𝐴, i.e.,

⊤ ≤
⋁︁
𝑖:𝐼

𝑝𝑖!(⊤).

Proposition 4.15. The open cover topology is a Grothendieck pretopology.

Proof. A minor variation of the proof of Proposition 4.8, which proved that if one also
demands pairwise disjointness of covers, then one has a Grothendieck pretopology.

The open cover topology is subcanonical, which implies that it is possible to define
a continuous map 𝐴 →𝑐 𝐵 by splitting up 𝐴 into a potentially overlapping collection
of open spaces (𝑈𝑖)𝑖:𝐼 with an a cover (𝑝𝑖 : 𝑈𝑖 →˓ 𝐴)𝑖:𝐼 in the open cover topology
and defining continuous maps 𝑓𝑖 : 𝑈𝑖 →𝑐 𝐵, so long as the 𝑓𝑖s agree on their overlap
(which we will define more precisely soon).

Accordingly, we will restrict our attention to deterministic maps in this section, as
the constructions in the previous section were sufficient in the nondeterministic case.

69

First, we’ll consider the construction of a partial map.
To make the analysis easier, before handing the general syntactic case, we’ll ini-

tially restrict to a simpler scenario, where we directly scrutinize the input, and then
do not use the original input in any of the branches:

𝑓 : 𝐴
𝑝→𝑐 𝐵

𝑓(𝑥) , case(𝑥)
{︁
[𝑖 : 𝐼] 𝑝𝑖(𝑥𝑖) ⇒ 𝑒𝑖(𝑥𝑖) ,

where 𝑖 ranges over the index type 𝐼 : 𝒰 , each 𝑝𝑖 : 𝐴𝑖 →˓ 𝐴 is an open embedding, each
𝑒𝑖 : 𝐴𝑖

𝑝→𝑐 𝐵 is an expression representing a deterministic but partial map, and each
𝑥𝑖 : 𝐴𝑖 is a pattern variable binding. Note that each 𝑝𝑖 must be an open embedding
rather than just an open map, or else a single pattern on its own could introduce
nondeterminism.

We can certainly define an implementation of the case expression that is potentially
nondeterministic

𝑓 : 𝐴
𝑛𝑑,𝑝→ 𝑐 𝐵

𝑓 ,
⨆︁
𝑖:𝐼

𝑒𝑖 ∘ 𝑝−1
𝑖 .

We will now attempt to devise a condition on the branches (rather than any
condition on the patterns) to ensure that 𝑓 is actually deterministic, i.e., that 𝑓 *

preserves binary meets. First, we define a notion of compatibility of continuous
maps that is weaker than equality but strong enough to ensure that the map 𝑓 is
deterministic when overlapping branches are compatible.

Definition 4.16. Two continuous maps 𝑓, 𝑔 : 𝐴 →𝑐 𝐵 have a maximum if the map

(𝑓 ⊔ 𝑔)* : 𝒪 (𝐵) → 𝒪 (𝐴)

(𝑓 ⊔ 𝑔)*(𝑈) , 𝑓 *(𝑈) ∨ 𝑔*(𝑈)

preserves binary meets, which implies that it defines a continuous map 𝑓⊔𝑔 : 𝐴 →𝑐 𝐵.

Trivially, any map has a maximum with itself, 𝑓 ⊔𝑓 = 𝑓 , so if two maps are equal,
then they have a maximum.

Remark 4.17. If 𝑓, 𝑔 : 𝐴 →𝑐 𝐵 have a maximum, then for all 𝑈, 𝑉 : 𝒪 (𝐵),

𝑓 *(𝑈) ∧ 𝑔*(𝑉) ≤ 𝑓 *(𝑉) ∨ 𝑔*(𝑈).

Assuming classical logic, this implies that for every (global) point 𝑥 of 𝐴, either 𝑓(𝑥) ≤
𝑔(𝑥) or 𝑔(𝑥) ≤ 𝑓(𝑥) (in terms of specialization order).

Proof. Since
(𝑓 ⊔ 𝑔)*(𝑈 ∧ 𝑉) = (𝑓 ⊔ 𝑔)*(𝑈) ∧ (𝑓 ⊔ 𝑔)*(𝑉),

70

we have

𝑓 *(𝑈 ∧ 𝑉) ∨ 𝑔*(𝑈 ∧ 𝑉) = (𝑓 *(𝑈) ∨ 𝑔*(𝑈)) ∧ (𝑓 *(𝑉) ∨ 𝑔*(𝑉))

= (𝑓 *(𝑈) ∧ 𝑓 *(𝑉)) ∨ (𝑓 *(𝑈) ∧ 𝑔*(𝑉))

∨ (𝑔*(𝑈) ∧ 𝑓 *(𝑉)) ∨ (𝑔*(𝑈) ∧ 𝑔*(𝑉))

= 𝑓 *(𝑈 ∧ 𝑉) ∨ 𝑔*(𝑈 ∧ 𝑉)

∨ (𝑓 *(𝑈) ∧ 𝑔*(𝑉)) ∨ (𝑔*(𝑈) ∧ 𝑓 *(𝑉))

and thus

(𝑓 *(𝑈) ∧ 𝑔*(𝑉)) ∨ (𝑔*(𝑈) ∧ 𝑓 *(𝑉)) ≤ 𝑓 *(𝑈 ∧ 𝑉) ∨ 𝑔*(𝑈 ∧ 𝑉),

which implies that

𝑓 *(𝑈) ∧ 𝑔*(𝑉) ≤ 𝑓 *(𝑈 ∧ 𝑉) ∨ 𝑔*(𝑈 ∧ 𝑉)

≤ 𝑓 *(𝑉) ∨ 𝑔*(𝑈).

We now prove that assuming classical logic, for any point 𝑥 of 𝐴, either 𝑓(𝑥) ≤ 𝑔(𝑥)
or 𝑔(𝑥) ≤ 𝑓(𝑥). Suppose that 𝑓(𝑥) � 𝑔(𝑥), which means there is some 𝑈 : 𝒪 (𝐵)
such that 𝑓(𝑥) 𝑈 (i.e., 𝑥*(𝑓 *(𝑈)) = ⊤) but not 𝑔(𝑥) 𝑈 (i.e., 𝑥*(𝑔*(𝑈)) = ⊥).
Using the law we derived, we know (for all 𝑉)

𝑥*(𝑓 *(𝑈)) ∧ 𝑥*(𝑔*(𝑉)) ≤ 𝑥*(𝑓 *(𝑉)) ∨ 𝑥*(𝑔*(𝑈)),

and thus
𝑥*(𝑔*(𝑉)) ≤ 𝑥*(𝑓 *(𝑉)),

which means that 𝑔(𝑥) ≤ 𝑓(𝑥).

Example. The maps 𝑡1, 𝑡2 : B→𝑐 Σ defined by

𝑡1(true) , ⊤Σ 𝑡2(true) , ⊥Σ

𝑡1(false) , ⊥Σ 𝑡2(false) , ⊤Σ

have the maximum 𝑓 : B→𝑐 Σ defined by 𝑓(𝑥) , ⊤Σ.

Theorem 4.18 (Determinism). If branches are “compatible” when they overlap: for
each 𝑖, 𝑗 : 𝐼, there is a map 𝑒𝑖𝑗 : 𝐴𝑖 ×𝐴 𝐴𝑗 →𝑐 𝐵 that is the maximum of 𝑒𝑖 ∘ 𝜃𝑖𝑗 and
𝑒𝑗 ∘ 𝜙𝑖𝑗 in the pullback diagram

𝐵

𝐴𝑖 ×𝐴 𝐴𝑗 𝐴𝑖

𝐴𝑗 𝐴

𝜃𝑖𝑗

𝜙𝑖𝑗
y

𝑒𝑖𝑗

𝑝𝑖

𝑒𝑖

𝑝𝑗

𝑒𝑗

71

then the overlapping pattern match 𝑓 is in fact deterministic, i.e., 𝑓 : 𝐴
𝑝→𝑐 𝐵.

Proof. We must show 𝑓 * preserves binary meets. Since 𝑓 * preserves joins, it is mono-
tone, and thus

𝑓 *(𝑈 ∧ 𝑉) ≤ 𝑓 *(𝑈) ∧ 𝑓 *(𝑉),

so it remains only to prove the reverse inequality.

Define 𝑝𝑖𝑗 : 𝐴𝑖 ×𝐴 𝐴𝑗 →˓ 𝐴 by 𝑝𝑖𝑗 = 𝑝𝑗 ∘ 𝜙𝑖𝑗 = 𝑝𝑖 ∘ 𝜃𝑖𝑗. By Proposition 3.13, we
have

𝑝𝑖𝑗 !(⊤) = 𝑝𝑖!(⊤) ∧ 𝑝𝑗 !(⊤).

We first note the equivalence

𝑓 *(𝑈) =
⋁︁
𝑖:𝐼

𝑝𝑖!(𝑒
*
𝑖 (𝑈)) =

⋁︁
𝑖,𝑗:𝐼

𝑝𝑖𝑗 !(𝑒
*
𝑖𝑗(𝑈)).

That the middle expression is at most the right follows from the fact that 𝑒𝑖𝑖 = 𝑒𝑖,
𝑝𝑖𝑖 = 𝑝𝑖. The reverse inequality follows from the following inequality:

𝑝𝑖𝑗 !(𝑒
*
𝑖𝑗(𝑈)) = 𝑝𝑖𝑗 !((𝑒𝑖 ∘ 𝜃𝑖𝑗)

*(𝑈) ∨ (𝑒𝑗 ∘ 𝜙𝑖𝑗)
*(𝑈)) (𝑒𝑖𝑗 “compatible”)

= 𝑝𝑖𝑗 !((𝑒𝑖 ∘ 𝜃𝑖𝑗)
*(𝑈)) ∨ 𝑝𝑖𝑗 !(𝑒𝑗 ∘ 𝜙𝑖𝑗)

*(𝑈)) (𝑝𝑖𝑗 ! preserves joins)
= 𝑝𝑖!(𝜃𝑖𝑗 !(𝜃

*
𝑖𝑗(𝑒

*
𝑖 (𝑈)))) ∨ 𝑝𝑗 !(𝜙𝑖𝑗 !(𝜙

*
𝑖𝑗(𝑒

*
𝑗(𝑈)))) (pullback equations)

= 𝑝𝑖!(𝜃𝑖𝑗 !(⊤) ∧ 𝑒*𝑖 (𝑈)) ∨ 𝑝𝑗 !(𝜙𝑖𝑗 !(⊤) ∧ 𝑒*𝑗(𝑈)) (Frobenius reciprocity)
≤ 𝑝𝑖!(𝑒

*
𝑖 (𝑈)) ∨ 𝑝𝑗 !(𝑒

*
𝑗(𝑈)).

This inequality has a sort of partial converse:

𝑝𝑖𝑗 !(⊤) ∧ 𝑝𝑖!(𝑒
*
𝑖 (𝑈)) = 𝑝𝑖!(𝜃𝑖𝑗 !(⊤)) ∧ 𝑝𝑖!(𝑒

*
𝑖 (𝑈))

= 𝑝𝑖!(𝜃𝑖𝑗 !(⊤) ∧ 𝑒*𝑖 (𝑈)) (𝑝𝑖! preserves meets)
≤ 𝑝𝑖!(𝜃𝑖𝑗 !(⊤) ∧ 𝑒*𝑖 (𝑈)) ∨ 𝑝𝑗 !(𝜙𝑖𝑗 !(⊤) ∧ 𝑒*𝑗(𝑈))

= 𝑝𝑖𝑗 !(𝑒
*
𝑖𝑗(𝑈)).

Note that the direct image map 𝑝𝑖! (as well as the other direct image maps) preserves
meets since 𝑝𝑖 is an open embedding.

72

Putting these arguments together, we can confirm that 𝑓 * preserves meets:

𝑓 *(𝑈) ∧ 𝑓 *(𝑉) =

(︃⋁︁
𝑖:𝐼

𝑝𝑖!(𝑒
*
𝑖 (𝑈))

)︃
∧

(︃⋁︁
𝑗:𝐼

𝑝𝑗 !(𝑒
*
𝑗(𝑉))

)︃
=
⋁︁
𝑖,𝑗:𝐼

𝑝𝑖!(𝑒
*
𝑖 (𝑈)) ∧ 𝑝𝑗 !(𝑒

*
𝑗(𝑉))

=
⋁︁
𝑖,𝑗:𝐼

𝑝𝑖!(⊤) ∧ 𝑝𝑖!(𝑒
*
𝑖 (𝑈)) ∧ 𝑝𝑗 !(⊤) ∧ 𝑝𝑗 !(𝑒

*
𝑗(𝑉))

=
⋁︁
𝑖,𝑗:𝐼

𝑝𝑖𝑗 !(⊤) ∧ 𝑝𝑖!(𝑒
*
𝑖 (𝑈)) ∧ 𝑝𝑖𝑗 !(⊤) ∧ 𝑝𝑗 !(𝑒

*
𝑗(𝑉))

≤
⋁︁
𝑖,𝑗:𝐼

𝑝𝑖𝑗 !(𝑒
*
𝑖𝑗(𝑈)) ∧ 𝑝𝑖𝑗 !(𝑒

*
𝑖𝑗(𝑉)) (previous argument)

=
⋁︁
𝑖,𝑗:𝐼

𝑝𝑖𝑗 !(𝑒
*
𝑖𝑗(𝑈 ∧ 𝑉)) (𝑝𝑖𝑗 ! preserves meets)

= 𝑓 *(𝑈 ∧ 𝑉)

It can be informative to consider the case where every open embedding is just an
inclusion of an open sublocale (which is, up to isomorphism, just as general). Then
the pullback just represents the intersection, noting the homeomorphism

{𝐴 | 𝑝𝑖!(⊤) ∧ 𝑝𝑗 !(⊤)} ∼= 𝐴𝑖 ×𝐴 𝐴𝑗.

If we additionally want totality, it is easy to specify the conditions which guarantee
that, which are effectively the same as in the previous section:

Proposition 4.19 (Totality). If each 𝑒𝑖 : 𝐴𝑖 →𝑐 𝐵 is total, then the overlapping
pattern match 𝑓 is in fact total, i.e., 𝑓 : 𝐴

𝑛𝑑→𝑐 𝐵, if and only if the patterns together
cover 𝐴, that is,

⊤ ≤
⋁︁
𝑖:𝐼

𝑝𝑖!(⊤),

Proof. Given that each 𝑒𝑖 is total, we calculate that

𝑓 *(⊤) =
⋁︁
𝑖:𝐼

𝑝𝑖!(𝑒
*
𝑖 (⊤)) =

⋁︁
𝑖:𝐼

𝑝𝑖!(⊤)

And thus 𝑓 *(⊤) = ⊤ if and only if the patterns together cover 𝐴.

Note that we defined a nondeterministic map in the above definition. If we also
add the previous condition on branches for determinism, we will get a total and
deterministic (i.e., continuous) map.

73

More general syntax

We now return to the more general syntax, where the definition is of the form

𝑓 : Γ →𝑐 𝐵

𝑓(𝛾) , case(𝑠(𝛾))
{︁
[𝑖 : 𝐼] 𝑝𝑖(𝑥𝑖) ⇒ 𝑒𝑖(𝛾, 𝑥𝑖) ,

we had
𝑓 =

⨆︁
𝑖:𝐼

𝑒𝑖 ∘ ⟨id, 𝑝−1
𝑖 ∘ 𝑠⟩.

We can put in a more convenient form,

𝑓 =
⨆︁
𝑖:𝐼

𝑒𝑖 ∘ ⟨id, 𝑝−1
𝑖 ∘ 𝑠⟩

=
⨆︁
𝑖:𝐼

𝑒𝑖 ∘ (id⊗ 𝑝−1
𝑖) ∘ ⟨id, 𝑠⟩

=

(︃⨆︁
𝑖:𝐼

𝑒𝑖 ∘ (id⊗ 𝑝−1
𝑖)

)︃
∘ ⟨id, 𝑠⟩

=

(︃⨆︁
𝑖:𝐼

𝑒𝑖 ∘ (id⊗ 𝑝𝑖)
−1

)︃
∘ ⟨id, 𝑠⟩,

where it becomes apparent that the left parenthesized term takes on the form of a
“simpler” pattern match as we studied earlier,

𝑓 : Γ× 𝐴 →𝑐 𝐵

𝑓(𝑧) , case(𝑧)
{︁
[𝑖 : 𝐼] 𝛾, 𝑝𝑖(𝑥𝑖) ⇒ 𝑒𝑖(𝛾, 𝑥𝑖) ,

such that
𝑓 = 𝑓 ∘ ⟨id, 𝑠⟩.

We can use this decomposition to give sufficient conditions for determinism in the
general case.

Theorem 4.20 (Determinism). If branches are “compatible” when they overlap: for
each 𝑖, 𝑗 : 𝐼, there is a map 𝑒𝑖𝑗 : Γ × (𝐴𝑖 ×𝐴 𝐴𝑗) →𝑐 𝐵 that is the maximum of
𝑒𝑖 ∘ (id⊗ 𝜃𝑖𝑗) and 𝑒𝑗 ∘ (id⊗ 𝜙𝑖𝑗) in the pullback diagram

𝐵

Γ× (𝐴𝑖 ×𝐴 𝐴𝑗) Γ× 𝐴𝑖

Γ× 𝐴𝑗 Γ× 𝐴

id⊗𝜃𝑖𝑗

id⊗𝜙𝑖𝑗

y

𝑒𝑖𝑗

id⊗𝑝𝑖

𝑒𝑖

id⊗𝑝𝑗

𝑒𝑗

74

then the overlapping pattern match 𝑓 is in fact deterministic, i.e., 𝑓 : Γ
𝑝→𝑐 𝐵:

Γ ⊢𝑝 𝑠 : 𝐴∏︁
𝑖:𝐼

𝑝𝑖 : 𝐴𝑖 ⊣𝑜𝑒 𝐴
∏︁
𝑖:𝐼

Γ, 𝐴𝑖 ⊢𝑝 𝑒𝑖 : 𝐵 pairwise branch compat.

Γ ⊢𝑝

(︁
case(𝑠)

{︁
[𝑖 : 𝐼] 𝑝𝑖 ⇒ 𝑒𝑖

)︁
: 𝐵

case-p

Proof. Since 𝑓 = 𝑓 ∘ ⟨id, 𝑠⟩ and since 𝑠 is deterministic, it suffices to confirm that 𝑓
is deterministic.

We must only confirm that our diagram above is actually equivalent to the one
that we would get for 𝑓 from Proposition 4.18,

𝐵

(Γ× 𝐴𝑖)×Γ×𝐴 (Γ× 𝐴𝑗) Γ× 𝐴𝑖

Γ× 𝐴𝑗 Γ× 𝐴

𝜃𝑖𝑗

𝜙𝑖𝑗

y

𝑒𝑖𝑗

id⊗𝑝𝑖

𝑒𝑖

id⊗𝑝𝑗

𝑒𝑗

.

It suffices to confirm that Γ × (𝐴𝑖 ×𝐴 𝐴𝑗) is indeed the pullback of id ⊗ 𝑝𝑖 and
id⊗ 𝑝𝑗. This follows from the fact that the pullback of “parallel” maps such as this is
the product of the pullbacks, and that the pullback of idΓ with itself is Γ.

To define a continuous map that is total and deterministic, we simply combine
the requirements:

Γ ⊢ 𝑠 : 𝐴
∏︁
𝑖:𝐼

𝑝𝑖 : 𝐴𝑖 ⊣𝑜𝑒 𝐴∏︁
𝑖:𝐼

Γ, 𝐴𝑖 ⊢ 𝑒𝑖 : 𝐵 ⊤ ≤
⋁︁
𝑖:𝐼

𝑝𝑖!(⊤) pairwise branch compat.

Γ ⊢
(︁
case(𝑠)

{︁
[𝑖 : 𝐼] 𝑝𝑖 ⇒ 𝑒𝑖

)︁
: 𝐵

case

4.4 Properties of overlapping pattern matching

4.4.1 Partial patterns and lifted spaces

It’s possible to see the conditions for totality of overlapping patterns in another way.
There is a natural correspondence between a partial pattern match

𝑓 : 𝐴
𝑝→𝑐 𝐵

𝑓(𝑥) , case(𝑥)
{︁
[𝑖 : 𝐼] 𝑝𝑖(𝑥𝑖) ⇒ 𝑒𝑖(𝑥𝑖)

75

where each 𝑒𝑖 : 𝐴𝑖
𝑝→𝑐 𝐵 and a total pattern match that instead outputs to a lifted

space,

𝑓 : 𝐴 →𝑐 𝐵⊥

𝑓(𝑥) , case(𝑥)

{︃
[𝑖 : 𝐼] 𝑝𝑖(𝑥𝑖) ⇒ 𝑒𝑖(𝑥𝑖)

_ ⇒ ⊥𝐵

where here we consider each 𝑒𝑖 : 𝐴𝑖 →𝑐 𝐵⊥ as a total map to the lifted space.
We call the additional case a catch-all case. The catch-all case already suffices to

cover the whole space, of course, trivially showing that the totality condition holds
for such a transformed pattern match. Since ⊥𝐵 has maxima with all points of 𝐵, the
additional determinism conditions induced by adding the catch-all case are satisfied
automatically.

It should be apparent that these two pattern match definitions are equivalent.

4.4.2 Related to Grothendieck pretopologies

As the various pattern families we have considered thus far all form Grothendieck
pretopologies, all pattern matches have certain properties. For instance, the facts
that homeomorphisms alone are covers and covers can be composed each correspond
to constructions involving overlapping patterns.

Any homeomorphism is a cover by itself (“reflexivity”), corresponding to a pattern
that may change the “view” of data to an isomorphic space (without breaking it
apart). For instance, given the homeomorphism exp : R →˓ {R | · > 0}, we can define
multiplication on {R | · > 0} using addition on R with the pattern match

mult : {R | · > 0} × {R | · > 0} →𝑐 {R | · > 0}

mult(𝑝) , case(𝑝)
{︁
exp(𝑥), exp(𝑦) ⇒ exp(𝑥+ 𝑦) .

There is also a notion of composition of covers (“transitivity”), which corresponds
to the potential to flatten nested patterns. For instance, the definition

𝑓 : 𝐴⊥ +𝐵⊥
𝑝→𝑐 𝐴+𝐵

𝑓(𝑥) , case(𝑥)

⎧⎨⎩inl(ℓ) ⇒ case(ℓ)
{︁
up(ℓ′) ⇒ inl(ℓ′)

inr(𝑟) ⇒ case(𝑟)
{︁
up(𝑟′) ⇒ inr(𝑟′)

can be flattened into

𝑓(𝑥) , case(𝑥)

{︃
inl(up(ℓ)) ⇒ inl(ℓ)

inr(up(𝑟)) ⇒ inr(𝑟)
.

76

Pulling back covers

Since covering families of open embeddings form a Grothendieck pretopology, given
a cover (𝑝𝑖 : 𝐵𝑖 →˓ 𝐵)𝑖:𝐼 of 𝐵 and a map 𝑓 : 𝐴 →𝑐 𝐵, the family

𝑓 *𝑝𝑖 : {𝐴 | 𝑓 *(𝑝𝑖!(⊤))} →˓ 𝐴 (𝑖 : 𝐼)

of open embeddings pulled back along 𝑓 covers 𝐵, where we have the pullback diagram

{𝐴 | 𝑓 *(𝑝𝑖!(⊤))} 𝐴

𝐵𝑖 𝐵

𝑓*𝑝𝑖

y
𝑓

𝑝𝑖

.

By using pulled-back covers, it is possible to pattern match on an input 𝑥 : 𝐴
by doing a case analysis on 𝑓(𝑥) : 𝐵, such that in each branch it is known that 𝑥
lies in a particular open subspace of 𝐴 (rather than only knowing that 𝑓(𝑥) lies in a
particular open subspace of 𝐵). The introductory example, as explained in section
5.4, uses a pulled-back cover in this way.

4.4.3 Evaluation of patterns

The purpose of this section is to explain how overlapping pattern matches behave
under evaluation (i.e., substitution or composition). Intuitively, when we evaluate an
overlapping pattern match on a value 𝑥, we collect those patterns that 𝑥 falls into,
and the result is the nondeterministic union of the branches corresponding to that
pattern. We will now make this notion formal.

A map 𝑓 : 𝐴
?→𝑐 𝐵 (for ? ∈ {𝑐, 𝑛𝑑, 𝑝, (𝑛𝑑, 𝑝)}) defined by the pattern match

𝑓(𝑥) , case(𝑥)
{︁
[𝑖 : 𝐼] 𝑝𝑖(𝑥𝑖) ⇒ 𝑒𝑖(𝑥𝑖)

where each 𝑝𝑖 : 𝐴𝑖 →𝑜 𝐴 and 𝑒𝑖 : 𝐴𝑖
?→𝑐 𝐵, when evaluated on a (generalized) point

𝑥 : Γ
?→𝑐 𝐴, can be described by

(𝑓 ∘ 𝑥)(𝛾) = case(𝛾)
{︁
[𝑖 : 𝐼] 𝑓 *𝑝𝑖(𝛾𝑖) ⇒ 𝑒𝑖(𝑥𝑖(𝛾𝑖)),

where each 𝑓 *𝑝𝑖 and 𝑥𝑖 come from the pullback diagram

{Γ | 𝑓 *(𝑝𝑖!(⊤))} Γ

𝐴𝑖 𝐴

𝑓*𝑝𝑖

𝑥𝑖
y

𝑥

𝑝𝑖

.

77

In particular, suppose for each 𝑖 : 𝐼, the open

𝑓 *(𝑝𝑖!(⊤)) : 𝒪 (Γ)

is either ⊤ or ⊥. If 𝑥 is a global point, meaning Γ ∼= *, then classically this is the
case. Let 𝐼⊤ and 𝐼⊥ represent the indices where the opens are ⊤ and ⊥, respectively,
and for 𝑖 : 𝐼⊤, let 𝑥𝐴𝑖

: Γ →𝑐 {𝐴 | 𝑝𝑖!(⊤)} be 𝑥 with a restricted range. Then for any
𝑈 : 𝒪 (𝐵),

(𝑓 ∘ 𝑥)*(𝑈) =
⋁︁
𝑖:𝐼

(𝑒𝑖 ∘ 𝑥𝑖)
*(𝑈)

=
⋁︁
𝑖:𝐼⊤

(𝑒𝑖 ∘ 𝑥𝑖)
*(𝑈)

=
⋁︁
𝑖:𝐼⊤

(𝑒𝑖 ∘ 𝑝−1
𝑖 ∘ 𝑥𝐴𝑖

)*(𝑈)

These arguments confirm the intuitive explanation about evaluation of overlapping
patterns: collect the possible branches, apply them to the point, and the behavior
will be the nondeterministic union of those results.

For instance, in section 4.1.3, we found that the partial Boolean or satisfies

or(up(true),⊥) = true.

We confirm this by “pulling back” the pattern match defining or on this input to

or(up(true),⊥) = case(tt)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
_ ⇒ true

abort(𝑥) ⇒ abort(𝑥)

abort(𝑥) ⇒ abort(𝑥)

_ ⇒ ⊥

,

where for any space 𝐴, abort : ∅ →˓ 𝐴 is the trivial embedding of the empty space ∅.
Patterns that match the scrutinee reduce to the embedding id : * →˓ * (the wildcard
pattern), and patterns that it misses entirely reduce to abort. We can then collect
only the possible branches to conclude that

or(up(true),⊥) = ⊥ ⊔ true = true.

78

Chapter 5

Binary covers: nondeterministic
decision procedures

In this section, we develop a theory of binary covers, which are pairs of opens that
cover a given space. These binary covers are useful for computing approximate deci-
sions on spaces, where computing exact decisions might not be possible. For instance,
R has no nontrivial decidable predicates since it is connected, but it admits a wealth
of binary covers.

The basic idea is to generalize the notions of exhaustive reasoning from general
functional programming, where it is possible to compute whether or not decidable
propositions hold. There is a calculus of decidable predicates: they are closed under
conjunction, disjunction, and negation, and universal and existential quantification
over finite1 sets yields decidable predicates as well. We will generalize this calculus
to binary covers, with finite sets generalized to compact/overt spaces.

We can relax the notion of decidable predicates to binary covers. Whereas a
decidable proposition 𝑃 is one where either 𝑃 or ¬𝑃 holds, a binary cover is a pair of
propositions 𝑃 and 𝑄 such that either 𝑃 or 𝑄 holds. In a binary cover, it is possible
that 𝑃 and 𝑄 both hold, which is of course never the case for 𝑃 and ¬𝑃 in decidable
propositions. So every decidable proposition can be interpreted as a binary cover,
but not the other way around.

Translating to spatial language, a decidable predicate on a space 𝐴 is an open
𝑃 of 𝐴 such that there is a disjoint open ¬𝑃 satisfying ⊤ ≤ 𝑃 ∨ ¬𝑃 (equivalently,
𝑃 is clopen). A binary cover is a pair of opens 𝑃 and 𝑄 that cover the space, i.e.,
⊤ ≤ 𝑃 ∨ 𝑄. For example, the positive𝜀 program in Section 4.1.2 covers R with the
pair of opens · > −𝜀 and · < 𝜀. More generally, any overlapping pattern match with
two cases specifies a binary cover of the input space.

5.1 Binary covers as nondeterministic decisions

Definition 5.1. A binary cover of a space 𝐴 is an ordered pair (𝑃,𝑄) of opens of 𝐴
satisfying ⊤ ≤ 𝑃 ∨𝑄.

1 By “finite,” we always mean Kuratowski-finite [14].

79

Proposition 5.2. Binary covers of 𝐴 are in bijective correspondence with nondeter-
ministic Boolean-valued maps 𝐴

𝑛𝑑→𝑐 B.

Proof. Suppose we have a binary cover (𝑃,𝑄) of 𝐴. Then define 𝑓 * : 𝒪 (B) → 𝒪 (𝐴)
by 𝑓 *(· = true) , 𝑃 and 𝑓 *(· = false) , 𝑄. To confirm 𝑓 * defines a nondeterministic
map 𝑓 : 𝐴

𝑛𝑑→𝑐 B, we must confirm 𝑓 * preserves joins and ⊤. Since B, as a discrete
space, has no covering axioms, 𝑓 * trivially preserves joins. And 𝑓 * also preserves ⊤,
since

𝑓 *(⊤) = 𝑓 *((· = true) ∨ (· = false)) = 𝑃 ∨𝑄 = ⊤.

Conversely, given a nondeterministic map 𝑓 : 𝐴
𝑛𝑑→𝑐 𝐵, we get a binary cover of 𝐴

given by
(𝑓 *(· = true), 𝑓 *(· = false)),

which we confirm is covering since

𝑓 *(· = true) ∨ 𝑓 *(· = false) = 𝑓 *((· = true) ∨ (· = false)) = 𝑓 *(⊤) = ⊤.

This establishes two alternative perspectives on approximate decision-making, one
spatial and one more algorithmic in flavor. The algorithmic one makes clear that we
should be able to use Boolean operations to combine binary covers into new ones, just
as we can perform Boolean operations on the decidable predicates. This will yield a
language for approximate decision procedures.

The nondeterminism means that it won’t behave quite like the deterministic de-
cision procedures. We can characterize this algebraically. In Set, B forms a Boolean
algebra. Since the functor Discrete : Set → FSpc is full, faithful, and preserves
binary products and the terminal object, this lifts to an internal Boolean algebra
(within FSpc) on B the space. We can again lift these operations by the functor
NonDet : FSpc → FSpc𝑛𝑑; for instance, the lifted version of the Boolean “and” op-
eration (&& : B × B 𝑛𝑑→𝑐 B) is potentially true if its argument potentially takes on
values whose conjunction is equal to true.

Proposition 5.3. However, the operations on B in FSpc𝑛𝑑 no longer form a Boolean
algebra.

Proof. In particular, there is the nondeterministic value both : * 𝑛𝑑→𝑐 B satisfying

both*(· = true) = both*(· = false) = ⊤,

such that
both || ! both = both ̸= true,

whereas in a Boolean algebra there is the identity 𝑥 || !𝑥 = true.

Though B doesn’t form a Boolean algebra in FSpc𝑛𝑑, it comes close!

80

Proposition 5.4. The space B forms a quasi-Boolean algebra (or de Morgan algebra)
in FSpc𝑛𝑑, meaning that B with &&, ||, true, and false forms a bounded distributive
lattice, and ! is a de Morgan involution, in that it satisfies ! !𝑥 = 𝑥 and !(𝑥 && 𝑦) =
!𝑥 || ! 𝑦.

Proof. It is instructive to observe how the operations act on generalized points Γ 𝑛𝑑→𝑐

B; we will use their equivalent representation as binary covers of Γ. Observe that

(𝑃1, 𝑄1) && (𝑃2, 𝑄2) = (𝑃1 ∧ 𝑃2, 𝑄1 ∨𝑄2)

(𝑃1, 𝑄1) || (𝑃2, 𝑄2) = (𝑃1 ∨ 𝑃2, 𝑄1 ∧𝑄2)

!(𝑃,𝑄) = (𝑄,𝑃)

true = (⊤,⊥)

false = (⊥,⊤).

We can use this to confirm the various laws, for instance, that true is the identity for
&&,

true&& (𝑃,𝑄) = (⊤ ∧ 𝑃,⊥ ∨𝑄) = (𝑃,𝑄).

We similarly can confirm false is the identity for ||, and it is easy to observe that &&
and || are commutative and associative. Absorption of && and || follows from the
similar absorption properties of opens, and likewise for their distributivity properties.

It remains to confirm that ! is a deMorgan involution. We have

! !(𝑃,𝑄) = !(𝑄,𝑃) = (𝑃,𝑄)

and

!((𝑃1, 𝑄1) && (𝑃2, 𝑄2)) = !(𝑃1 ∧ 𝑃2, 𝑄1 ∨𝑄2) = (𝑄1 ∨𝑄2, 𝑃1 ∧ 𝑃2)

= (𝑄1, 𝑃1) || (𝑄2, 𝑃2) = !(𝑃1, 𝑄2) || !(𝑃2, 𝑄2).

That these nondeterministic Boolean operations form a quasi-Boolean algebra is
not very interesting on its own. What makes truly binary covers powerful is that they
admit quantification over compact/overt spaces, which is what we will now show.

5.2 Quantification over compact/overt spaces
When working with sets, if a predicate 𝑃 on a set 𝐴 is decidable and if 𝐴 is finite,
then ∀𝑎 : 𝐴. 𝑃 (𝑎) and ∃𝑎 : 𝐴. 𝑃 (𝑎) are decidable as well. The spatial analogue of the
finite sets are the compact/overt spaces.

5.2.1 On compact/overt spaces

Definition 5.5. A space 𝐴 is compact if for every space Γ, the functor − × ⊤𝐴 :
𝒪 (Γ) → 𝒪 (Γ× 𝐴) has a right adjoint ∀𝐴 : 𝒪 (Γ× 𝐴) → 𝒪 (Γ). That is, for each

81

open 𝑈 : 𝒪 (Γ× 𝐴), there is an open ∀𝐴𝑈 : 𝒪 (Γ) such that for every 𝑉 : 𝒪 (Γ) ,

𝑉 ≤Γ ∀𝐴𝑈 ⇐⇒ 𝑉 ×⊤𝐴 ≤Γ×𝐴 𝑈.

Similarly, a space 𝐴 is overt if for every space Γ, − × ⊤𝐴 has a left adjoint ∃𝐴 :
𝒪 (Γ× 𝐴) → 𝒪 (Γ). That is, for every open 𝑈 : 𝒪 (Γ× 𝐴), there is an open ∃𝐴𝑈 :
𝒪 (Γ) such that for every 𝑉 : 𝒪 (Γ) ,

∃𝐴𝑈 ≤Γ 𝑉 ⇐⇒ 𝑈 ≤Γ×𝐴 𝑉 ×⊤𝐴.

These conditions are the definitions of universal and existential quantification in
terms of adjoints, viewing Γ as some context and opens as truth values in a context.
This definition of compactness is equivalent to the more common one, that every open
cover has finite subcover.

Definition 5.6. A compact/overt space is a space 𝐴 that is both compact and overt,
as well as satisfying an additional property, that says for all Γ and all 𝑃,𝑄 : 𝒪 (Γ× 𝐴),
we have

∀𝐴(𝑃 ∨𝑄) ≤Γ ∀𝐴𝑃 ∨ ∃𝐴𝑄

∀𝐴𝑃 ∧ ∃𝐴𝑄 ≤Γ ∃𝐴(𝑃 ∧𝑄).

Assuming classical logic, all spaces are overt, so it is acceptable intuition (spatially)
to conflate the compact/overt spaces with the compact ones.

These properties allow us to define syntax for quantification of Σ-valued continu-
ous maps on compact/overt spaces:

Γ, 𝑥 : 𝐴 ⊢ 𝑒 : Σ 𝐴 compact
Γ ⊢ ∀𝑥 ∈ 𝐴. 𝑒 : Σ

∀-Σ-form
Γ, 𝑥 : 𝐴 ⊢ 𝑒 : Σ 𝐴 overt

Γ ⊢𝑛𝑑 ∃𝑥 ∈ 𝐴. 𝑒 : Σ
∃-Σ-form

These properties allow us to quantify binary covers over compact/overt spaces,
too. That is, we can add some syntax

Γ, 𝑥 : 𝐴 ⊢𝑛𝑑 𝑒 : B 𝐴 compact/overt
Γ ⊢𝑛𝑑 ∀𝑥 ∈ 𝐴. 𝑒 : B

∀-B-form

Γ, 𝑥 : 𝐴 ⊢𝑛𝑑 𝑒 : B 𝐴 compact/overt
Γ ⊢𝑛𝑑 ∃𝑥 ∈ 𝐴. 𝑒 : B

∃-B-form

that behaves as we’d expect (for a quasi-Boolean algebra, at least). We compile this
syntax by defining quantification functionals of the type (Γ× 𝐴

𝑛𝑑→𝑐 B) → (Γ
𝑛𝑑→𝑐 B).

For a compact/overt space 𝐴, we define a universal quantification functional

∀𝐴 : (Γ× 𝐴
𝑛𝑑→𝑐 B) → (Γ

𝑛𝑑→𝑐 B)
∀𝐴(𝑃,𝑄) , (∀𝐴𝑃, ∃𝐴𝑄),

82

and confirm that this pair of opens is indeed covering with the derivation

⊤Γ ≤ ∀𝐴(⊤Γ×𝐴) (∀𝐴 adjointness)
≤ ∀𝐴(𝑃 ∨𝑄) ((𝑃,𝑄) cover Γ× 𝐴, ∀𝐴 monotone)
≤ ∀𝐴𝑃 ∨ ∃𝐴𝑄. (𝐴 compact/overt)

We can similarly define the existential quantification functional

∃𝐴 : (Γ× 𝐴
𝑛𝑑→𝑐 B) → (Γ

𝑛𝑑→𝑐 B)
∃𝐴(𝑃,𝑄) , (∃𝐴𝑃, ∀𝐴𝑄),

which indeed defines a binary cover for the same reason as ∀𝐴. By inspection, the
two quantifiers are related by the law

¬(∀𝐴𝑓) = ∃𝐴(¬𝑓).

While intuitively it seems that these operations indeed compute some nondeter-
ministic quantification over compact spaces, we can make this statement precise by
showing that these quantification functionals are adjoints to a weakening functional.
To do this, we must first define an order on binary covers that relates their degrees
of truth.

The quasi-Boolean algebra structure determines a preorder that can be placed on
binary covers of any space. For binary covers (𝑃1, 𝑄1) and (𝑃2, 𝑄2) of a space Γ, we
say (𝑃1, 𝑄1) 5 (𝑃2, 𝑄2) if and only if both 𝑃1 ≤ 𝑃2 and 𝑄2 ≤ 𝑄1. We will call this
truth order. (Note that truth order is different from the specialization order.)

For any spaces Γ and 𝐴, the weakening operation,

(− ∘ fst) : (Γ 𝑛𝑑→𝑐 B) → (Γ× 𝐴
𝑛𝑑→𝑐 B),

which acts according to

(− ∘ fst)(𝑈, 𝑉) = (𝑈 ×⊤, 𝑉 ×⊤),

is monotone with respect to truth order. Now we can show that the quantification
operators on binary covers deserve their names.

Theorem 5.7. The existential and universal quantification functionals are left and
right adjoints to weakening, respectively, with respect to truth order, i.e.,

∃𝐴 ⊣ (− ∘ fst) ⊣ ∀𝐴.

Proof. First we prove that ∃𝐴 is left adjoint to weakening: given (𝑃,𝑄) a binary cover

83

of Γ× 𝐴 and (𝑈, 𝑉) a binary cover of Γ, we must show

(𝑃,𝑄) 5 (− ∘ fst)(𝑈, 𝑉) if and only if ∃𝐴(𝑃,𝑄) 5 (𝑈, 𝑉)

(𝑃,𝑄) 5 (𝑈 ×⊤, 𝑉 ×⊤) if and only if (∃𝐴𝑃, ∀𝐴𝑄) 5 (𝑈, 𝑉)

𝑃 ≤ 𝑈 ×⊤ and 𝑉 ×⊤ ≤ 𝑄 if and only if ∃𝐴𝑃 ≤ 𝑈 and 𝑉 ≤ ∀𝐴𝑄.

In the final form, we see that this follows from adjoint properties of the ∃𝐴 and ∀𝐴

operations that act on opens of Γ× 𝐴.
The proof that ∀𝐴 is a right adjoint is a mirror image of the proof regarding

∃𝐴.

5.2.2 On compact/overt subspaces

Sometimes, the space that we might want to quantify over could depend on some
continuous variables in the context. For instance, we may want to quantify a binary
cover 𝑓 : R × R 𝑛𝑑→𝑐 B over the unit simplex in R × R (i.e., the triangle bounded by
(0, 0), (1, 0), and (0, 1)). We will describe a formalism whereby it will be possible to
write this as

∀𝑥 ∈ [0, 1]. ∀𝑦 ∈ [0, 1− 𝑥]. 𝑓(𝑥, 𝑦).

We handle this situation by considering certain spaces whose points represent com-
pact/overt subspaces of some space.

First, we note the connection between the overt spaces and 𝒫♦, which represents
(some) overt subspaces of a space 𝐴 as points of the powerspace 𝒫♦(𝐴).

Proposition 5.8 (Theorem 32 of [43]). Every point of 𝒫♦(𝐴) corresponds to an overt
subspace of 𝐴.2

Similarly, for each space 𝐴 there is a powerspace 𝒫�(𝐴) whose points correspond
with compact subspaces of 𝐴. Vickers describes the construction in detail [45, 40],
but we summarize the salient characteristics. There is a “necessity” modality � :
𝒪 (𝐴) → 𝒪 (𝒫�(𝐴)) that distributes over meets and directed joins (analogous to the
“possibility” modality ♦ : 𝒪 (𝐴) → 𝒪 (𝒫♦(𝐴)) for the lower powerspace). Continuous
maps Γ →𝑐 𝒫�(𝐴) are in bijective correspondence with inverse image maps 𝒪 (𝐴) →
𝒪 (Γ) that preserve meets and directed joins. Like 𝒫♦, 𝒫� is a strong monad.

The powerspace analogue of the compact/overt spaces is called the Vietoris pow-
erspace 𝒫�♦. Points of 𝒫�♦(𝐴) correspond to compact/overt subspaces of 𝐴. The
space 𝒫�♦ has both a “possibility” modality ♦ : 𝒪 (𝐴) → 𝒪 (𝒫�♦(𝐴)) a “necessity”
modality � : 𝒪 (𝐴) → 𝒪 (𝒫�♦(𝐴)) that interact exactly as with the compact/overt
spaces; that is, for any opens 𝑃,𝑄 : 𝒪 (𝐴), the following laws hold:

�(𝑃 ∨𝑄) ≤ �𝑃 ∨ ♦𝑄 (5.1)
�𝑃 ∧ ♦𝑄 ≤ ♦(𝑃 ∧𝑄). (5.2)

2 Specifically, the points of 𝒫♦(𝐴) are in bijective correspondence with the weakly closed (defined
in [43]) overt subspaces of 𝐴.

84

Like for the lower powerspaces, there is the “positive” subspace 𝒫+
�♦(𝐴) of 𝒫�♦(𝐴)

that additionally satisfies ⊤ ≤ ♦⊤ and �⊥ ≤ ⊥.

We can add some additional syntax to make it easier to describe opens (via the
correspondence between Σ-valued maps Γ →𝑐 Σ and opens 𝒪 (Γ)) with these modal-
ities:

Γ ⊢ 𝑠 : 𝒫♦(𝐴) Γ, 𝑥 : 𝐴 ⊢ 𝑒 : Σ

Γ ⊢ ∃𝑥 ∈ 𝑠. 𝑒 : Σ
∃-Σ-sub-form

Γ ⊢ 𝑠 : 𝒫�(𝐴) Γ, 𝑥 : 𝐴 ⊢ 𝑒 : Σ

Γ ⊢ ∀𝑥 ∈ 𝑠. 𝑒 : Σ
∀-Σ-sub-form

.

These are compiled using the correspondence [37]

Σ ∼= 𝒫♦(*) ∼= 𝒫�(*).

Replacing Σ with 𝒫♦(*) in ∃-Σ-sub-form and with 𝒫�(*) in ∀-Σ-sub-form, these
rules just correspond to the bind operation of a strong monad 𝑀 , which composes
maps Γ → 𝑀(𝐴) and Γ× 𝐴 → 𝑀(𝐵) to produce Γ → 𝑀(𝐵).

These properties allow us to quantify binary covers over compact/overt subspaces
as well, implementing the syntax

Γ ⊢ 𝑠 : 𝒫�♦(𝐴) Γ, 𝑥 : 𝐴 ⊢𝑛𝑑 𝑒 : B
Γ ⊢𝑛𝑑 ∀𝑥 ∈ 𝑠. 𝑒 : B

∀-B-sub-form

Γ ⊢ 𝑠 : 𝒫�♦(𝐴) Γ, 𝑥 : 𝐴 ⊢𝑛𝑑 𝑒 : B
Γ ⊢𝑛𝑑 ∃𝑥 ∈ 𝑠. 𝑒 : B

∃-B-sub-form
.

Given any binary cover 𝑓 : Γ× 𝐴
𝑛𝑑→𝑐 B of 𝐴, we define its universal quantification

∀[·]𝑓 : Γ× 𝒫�♦(𝐴)
𝑛𝑑→𝑐 B

∀[·]𝑓 , case(𝑝)

{︃
𝜄[𝜆(𝛾, 𝑠). ∀𝑥 ∈ 𝑠. 𝑓(𝛾, 𝑥) = true] (_) ⇒ true

𝜄[𝜆(𝛾, 𝑠). ∃𝑥 ∈ 𝑠. 𝑓(𝛾, 𝑥) = false] (_) ⇒ false
.

We can confirm this pattern match is covering, i.e.,

⊤ ≤ (𝜆(𝛾, 𝑠). ∀𝑥 ∈ 𝑠. 𝑓(𝛾, 𝑥) = true) ∨ (𝜆(𝛾, 𝑠). ∃𝑥 ∈ 𝑠. 𝑓(𝛾, 𝑥) = false)

85

with the derivation3

⊤ ≤ 𝜆(𝛾, 𝑠). ∀𝑥 ∈ 𝑠. ⊤ (� preserves ⊤)
≤ 𝜆(𝛾, 𝑠). ∀𝑥 ∈ 𝑠. 𝑓(𝑥) = true ∨ 𝑓(𝑥) = false

≤ 𝜆(𝛾, 𝑠). (∀𝑥 ∈ 𝑠. 𝑓(𝑥) = true) ∨ ∃𝑥 ∈ 𝑠. 𝑓(𝑥) = false. (law 5.1)

We can define ∃[·]𝑓 : 𝒫�♦(𝐴)
𝑛𝑑→𝑐 B by composing ∀[·]𝑓 with Boolean negation.

Compact/overt spaces form a convenient class of spaces over which exhaustive rea-
soning is possible. The continuous image of a compact/overt space is compact/overt
(similar to the fact that the image of a finite set under any map is finite). Like fi-
nite subsets, compact/overt subspaces are closed under finitary union, witnessed by
a construction

∪ : 𝒫�♦(𝐴)× 𝒫�♦(𝐴) →𝑐 𝒫�♦(𝐴),

but not necessarily intersection. Naturally, a finite set viewed as a discrete space is
compact/overt.

An alternate understanding of binary covers

An alternative interpretation of binary covers helps explain why the two opens in a
binary cover get “opposite” treatments in the definitions of conjunction and disjunc-
tion. Rather than thinking of a binary cover of 𝐴 as two open sets 𝑃,𝑄 : 𝒪 (𝐴)
such that (informally) 𝐴 ⊆ 𝑃 ∪ 𝑄, we can instead think of it as an open set 𝑃 and
a closed set 𝑄 which is the “set-theoretic” complement of 𝑄, since the complement
of an open set is closed. Then the fact that (𝑃,𝑄) is a binary cover means that
𝑄 ⊆ 𝑃 . Then conjunction computes intersections of the open and closed subspaces,
while disjunction computes unions. Since we are simply “encoding” closed sets with
their open complements, computing the “union” of closed subspaces just corresponds
to taking an intersection of their open representatives. Hence, conjunction computes
intersections of the second components.

This elicits the view of binary covers as “approximate” predicates, sandwiching
a closed subspace inside an open one, with wiggle room for points in between. Any
points in 𝑄 (and thus also 𝑃) will definitely compute to true, while any points outside
of 𝑃 (and thus also outside 𝑄) will definitely compute to false, while in-between points,
which are in 𝑃 but not 𝑄, are allowed to compute either way.

3 The algebraic manipulations in this derivation are justified by the corresponding ones on
𝒫�♦(𝐴). For instance ⊤ ≤ �⊤ implies

𝜆(𝛾, 𝑠). ⊤ ≤ 𝜆(𝛾, 𝑠). ∀𝑥 ∈ 𝑠. ⊤.

86

5.3 Binary covers on R

Here, we will describe some compact/overt subspaces and binary covers of R and use
these to solve some approximate decision problems on R with the calculus of binary
covers.

There is a construction

HeineBorel : {(𝑎, 𝑏) : R× R | 𝑎 < 𝑏} →𝑐 𝒫+
�♦(R)

that demonstrates for endpoints (𝑎, 𝑏) that the closed interval from 𝑎 to 𝑏 is com-
pact/overt and inhabited (a constructive analogue of the Heine-Borel theorem) [46].

We can define binary covers that give approximate order comparisons on R by
defining, for each 𝜀 > 0,

[· < ·]𝜀 : R× R 𝑛𝑑→𝑐 B

[𝑥 < 𝑦]𝜀 , case(𝑥, 𝑦)

{︃
𝜄[𝜆(𝑥, 𝑦). 𝑥 < 𝑦] (_) ⇒ true

𝜄[𝜆(𝑥, 𝑦). 𝑥 > 𝑦 − 𝜀] (_) ⇒ false.

We can use this to approximately query whether an arbitrary continuous map
𝑓 : R→𝑐 R has no roots on a compact/overt subspace of R (such as a closed interval),
with the binary cover

no_roots𝜀 : 𝒫�♦(R)
𝑛𝑑→𝑐 B

no_roots𝜀(𝑠) , ∀𝑥 ∈ 𝑠. [0 < |𝑓(𝑥)|]𝜀.

If we observe true of the result on input 𝑠, then indeed 𝑓 has no roots on 𝑠, while if
we observe false of the result, then there is some 𝑥 ∈ 𝑠 such that |𝑓(𝑥)| < 𝜀.

Perhaps we have two maps 𝑓, 𝑔 : R × R →𝑐 R and wish to confirm, for some
compact/overt space 𝑠 : 𝒫�♦(R) that there is some 𝑥 ∈ [0, 1] such that for every
𝑦 ∈ 𝑠, 𝑓(𝑥, 𝑦) is positive while 𝑔(𝑥, 𝑦) is negative. Then

apart𝜀 : 𝒫�♦(R)
𝑛𝑑→𝑐 B

apart𝜀(𝑠) , ∃𝑥 ∈ [0, 1]. ∀𝑦 ∈ 𝑠. [0 < 𝑓(𝑥, 𝑦)]𝜀 ∧ [𝑔(𝑥, 𝑦) < 0]𝜀.

approximately decides this, where [0, 1] is used as shorthand for HeineBorel(0, 1). Like
the previous query, this one has only false negatives (and its negation has only false
positives). If we observe true, then it is certainly true, while if we observe false, then
for every 𝑥 ∈ [0, 1] there is a 𝑦 ∈ [0, 1] such that either 𝑓(𝑥, 𝑦) < 𝜀 or 𝑔(𝑥, 𝑦) > −𝜀.

87

5.4 Approximate root-finding

Recall the approximate root-finding program from the introduction,

roots𝑓 : * 𝑛𝑑→𝑐 {* | ∀𝑥 ∈ 𝐾. 𝑓(𝑥) ̸= 0}+ {𝑥 : 𝐾 | |𝑓(𝑥)| < 𝜀}

roots𝑓 , case(tt)

{︃
𝜄[∃𝑥 ∈ 𝐾. |𝑓(𝑥)| < 𝜀] (𝑦) ⇒ inr(simulate(𝑦))

𝜄[∀𝑥 ∈ 𝐾. 𝑓(𝑥) ̸= 0] (𝑛) ⇒ inl(𝑛)
.

Now that we have explained compact/overt spaces and binary covers, we are
prepared to understand this code.

We begin by confirming that the two cases cover the entire input space. We can
define a binary cover

[· ≠ 0]𝜀 : R
𝑛𝑑→𝑐 B

[𝑥 ̸= 0]𝜀 , case(𝑥)

{︃
𝜄[· ≠ 0] (_) ⇒ true

𝜄[𝜆𝑥. |𝑥| < 𝜀] (_) ⇒ false

that approximately determines whether a real number is nonzero.
Then the binary cover

no_roots′𝜀 : *
𝑛𝑑→𝑐 B

no_roots′𝜀 , ∀𝑥 ∈ 𝐾. [𝑥 ̸= 0]𝜀

is defined by the same pair of opens as in the definition of roots𝑓 , and hence those
opens cover *.

It remains to define simulate, which in this instance is a map

simulate : {* | ∃𝑥 ∈ 𝐾. |𝑓(𝑥)| < 𝜀} 𝑛𝑑→𝑐 {𝑥 : 𝐾 | |𝑓(𝑥)| < 𝜀},

but in general, for any overt space 𝐴 and open 𝑈 : 𝒪 (𝐴), defines a map

simulate : {* | ∃𝑥 ∈ 𝐴. 𝑈(𝑥)} 𝑛𝑑→𝑐 {𝑥 : 𝐴 | 𝑈(𝑥)}

that, given the existence of some values that satisfy a property 𝑈 of 𝐴, can nonde-
terministically simulate those values. It is defined by the inverse image map

simulate* : 𝒪 ({𝐴 | 𝑈}) → 𝒪 ({* | ∃𝐴𝑈})
simulate*(𝑉) , ∃𝐴(𝑉 ∧ 𝑈).

Proposition 5.9. The inverse image map simulate* preserves joins and ⊤.

Proof. First, we confirm that the output lies in the open subspace 𝑈 of 𝐴, that is,
that simulate* is gives equivalent results on inputs 𝑉 and 𝑊 satisfying 𝑉 ∧𝑈 = 𝑊 ∧𝑈 .
This is straightforward because simulate* immediately applies · ∧ 𝑈 to its argument.

88

The map preserves joins since it is the composition ∃𝐴 ∘ (· ∧ 𝑈), both of which
preserve joins. It preserves ⊤ (or equivalently, 𝑈), since

simulate*(⊤) = ∃𝐴(𝑈),

which is equal to ⊤ in {* | ∃𝐴𝑈}.

The approximate root-finding program roots𝑓 accomplishes the relatively compli-
cated task of approximate root-finding over a very general class of functions with a
very short definition that works by composing some constructs from this chapter and
the previous one. Most of the real computational work is accomplished by the formal
proof that 𝐾 is compact/overt. This gives evidence that the property of being com-
pact/overt corresponds to a very general and composable computational interface for
exhaustive search.4

4Escardó [10] discusses the computational significance of compactness.

89

90

Chapter 6

Related work

6.1 Alternative theories of constructive topology

Synthetic topology gives an alternative computable interpretation of topology that
differs subtly from formal topology and locale theory [9, 20]. Synthetic topology
gives an alternative intuition about overlapping patterns. In this understanding,
data types from a (functional) programming language serve as spaces, and open sets
are semidecidable predicates that take values of some type as arguments; for points in
the open set, the semidecider must halt, whereas for points in the closed complement,
the semidecider should not halt.

In this case, an open cover 𝑈 ≤
⋁︀

𝑖:𝐼 𝑉𝑖 means that whenever 𝑈 halts, then some
semidecider 𝑉𝑖 also halts.

This interpretation is limited to (classically) spatial locales (locales that also make
sense as conventional topological spaces) and covers indexed by recursively enumer-
able sets. But it gives an alternative computational interpretation of overlapping
pattern matching: to run a pattern match, run the semideciders for each case in the
pattern match concurrently. Since the cases must cover the entire space, the semide-
cider for one case will eventually halt and at that point proceed into the branch cor-
responding to that case. However, implementing overlapping patterns naively with
this computational interpretation does not seem particularly efficient.

Taylor’s abstract stone duality [36] is a theory/language for locally compact topo-
logical spaces. The additional dependency of local compactness means that all spaces
are exponentiable, which is convenient as the formulation makes use of such exponen-
tials.

6.2 Related programming formalisms involving con-
tinuity, partiality, or nondeterminism

Marcial-Romero and Escardó [22] define a language with real number computation
which has a foundational family of functions rtest𝑎,𝑏 which map real numbers to
nondeterministic Boolean values. This language also admits nontermination, so it

91

denotes its types as Hoare powerlocales (which corresponds to 𝒫♦ in this thesis).
Establishing totality requires reasoning within their operational model. Our work
differs in a few ways: we describe a general principle for constructing nondeterministic
maps, and we are able to use the positive Hoare powerlocale, which guarantees totality
(at the cost of requiring formal proofs of covering).

Escardó’s defines a language “Real PCF” with a denotational semantics in terms
of cpo’s, in which there is an operation known as a “parallel conditional,” which
corresponds to the internal “or” operation on the Sierpínski space ∨Σ : Σ×Σ →𝑐 Σ in
our formalism. Parallel conditionals applied to construct total deterministic functions
on the real numbers, which differs from most of our examples, whose computations
are total but nondeterministic.

Similarly, Tsuiki’s work on computation with Gray-code based real numbers [38]
is based on “indeterministic” computation, where potentially nonterminating compu-
tations must be interleaved, and those that terminate must agree in their answers.

6.3 Overlapping pattern matching

We are unaware of any other notion of pattern matching that permits patterns where
determining membership is undecidable (without jeopardizing totality).

Coquand [6] gives a topologically motivated explanation of pattern matching for
dependently typed functional programming, describing patterns as (disjoint) parti-
tions of a space.

Müller [23] describes a system for exact real arithmetic that has a datatype of
“lazy Booleans” analogous to our B⊥, as well as an 𝑛-ary choose operation on lazy
Booleans that would be analogous in our language to

choose𝑛 :
∏︁

𝑖:Fin(𝑛)

B⊥
𝑛𝑑,𝑝→ 𝑐 Fin(𝑛)

choose𝑛(𝑏) , case(𝑏)
{︁
[𝑖 : Fin(𝑛)] 𝜄[[𝑖 ↦→ · = true]] (_) ⇒ 𝑖 .

Dijkstra [8] introduces “guarded commands,” a language construct for imperative
programming languages, where a branch can be chosen nondeterministically from a
list of statements each guarded by a Boolean expression.

6.4 Binary covers

Some of the modified Boolean spaces give topological interpretations of well-known
fuzzy logics: B⊥ corresponds to Kleene’s three-valued logic [17], 𝒫+

♦ (B) to Priest’s
logic of paradox [29], and 𝒫♦(B) to Dunn/Belnap’s four-valued logic [13].

dReal is a tool that allows computation of approximate truth values over the real
numbers [12], allowing order comparisons and bounded quantifiers. The calculus of
binary covers presented here, when restricted to R, provides similar computational

92

abilities but with a different foundational framework. In a sense, it shows how it is
possible to generalize the theory behind dReal to spaces other than R.

6.5 Implementation
Using the theory of abstract stone duality, Bauer and Taylor have developed a com-
puter implementation, Marshall, that supports exact real arithmetic computation
based on the Dedekind real numbers [3].

Some aspects of of formal topology have been formalized within the Matita the-
orem prover (another theorem prover implementing Martin-Löf type theory) [1, 5].
Their library is not as concrete as ours; as far as we are aware, they do not construct
any spaces (in an empty context), nor define any continuous maps other than identity
maps and compositions of continuous maps, focusing instead on the relation between
various notions of spaces and maps.

93

94

Chapter 7

Discussion and conclusion

The programs described in this thesis conceivably support reasonably efficient imple-
mentations, thanks to their use of formal topology and (predicative) locale theory.
Formal proofs that inverse image maps preserve meets and joins not only confirm
that they indeed define continuous maps but also provide computational content.

Overlapping pattern matches seem useful for a variety of purposes but in par-
ticular highlight the importance of nondeterminism in constructing programs that
manipulate spaces. The approximate root-finding procedure in the introduction and
the case study of binary covers demonstrate useful nondeterministic programs that
can be constructed with overlapping patterns.

7.1 Coq implementation
We developed a library for formal topology in the predicative fragment of Coq (i.e.,
without use of the Prop universe) [32]. The library includes the following construc-
tions:

∙ the one-point space * and the unique maps 𝐴 →𝑐 *

∙ discrete spaces and a construction that creates a continuous map 𝑓 : 𝐴 →𝑐 𝐵
from a discrete space 𝐴 to any space 𝐵, given for each 𝑎 : 𝐴 a point 𝑓𝑎 : * →𝑐 𝐵

∙ arbitrary type-indexed sum spaces, their injections, and their universal property

∙ arbitrary type-indexed product spaces, their projections, and their universal
property

∙ metric “completion” spaces of metric sets, and a construction for lifting Lipschitz
continuous functions from metric sets to metric completions

∙ lifted spaces (e.g., 𝐴⊥), with implementations of ⊥ : * →𝑐 𝐴⊥ and up : 𝐴 →𝑐 𝐴⊥
as continuous maps

∙ definitions regarding subspaces, and some particular facts about open and closed
subspaces

95

∙ definition of a predicative analogue of locales, and facts relating them to formal
spaces

∙ a simplified overlapping pattern matching construction, where patterns must
correspond to opens of the space of the scrutinee

7.2 Programming with a theorem prover
A continuous map 𝑓 : 𝐴 →𝑐 𝐵 is defined by an inverse image map 𝑓 * : 𝒪 (𝐵) → 𝒪 (𝐴)
that preserves joins, ⊤, and binary meets. We can view 𝑓 * as a complete specification
of the behavior of the behavior of 𝑓 , and it is the formal (and constructive) proofs
that 𝑓 * preserves the relevant structure that serve as the implementation of the com-
putational behavior. It is not enough only to know informally that 𝑓 * preserves the
relevant structure. At the same time, different formal proofs still give equivalent con-
tinuous maps, so (disregarding matters such as computational efficiency) it does not
matter which formal proof is given.

We believe that theorem provers such as Coq are well-suited for programming
in this manner. One can define in Gallina the inverse image map 𝑓 *, and then use
the theorem-proving interface to prove that 𝑓 * preserves the relevant structure. For
instance, in our Coq development, we made heavy use of “proof-relevant” typeclass-
based rewriting1. Without tools such as this, defining the formal proofs may be
potentially tedious. Since the formal proofs are irrelevant to reasoning about programs
(beyond the fact that they exist), their definitions can be left opaque (until it is time
to run/extract programs).

It is possible to avoid the need for proofs by restricting to the language defined
in Section 2.4, which basically only allows composition of existing maps. There are
also no proof obligations in the pattern matching construction for partial and non-
deterministic maps, but there are proof obligations for constructing either total or
deterministic maps. The proof obligations needed for pattern families is always to
show that they belong to a particular Grothendieck pretopology. Given the com-
positional structure of Grothendieck pretopologies, it should be convenient to use a
theorem prover to derive pattern families. This overlapping case splitting would be
similar to using the destruct tactic in Coq to split a term in an inductive type into
possible cases. Viewing pattern families in this way, the obligation that they belong
to a particular Grothendieck pretopology is more like a part of the program struc-
ture, rather than a side condition that must be verified independently of the program
syntax.

7.3 Future work
We are broadly interested in understanding how constructive topology can inform the
design of programming languages for continuous systems.

1That is, rewriting of terms in Type rather that Prop. This feature was added to Coq in version
8.5.

96

Dependent types

For verification of systems, it is desirable to have a full dependently typed language
for expressing programming tasks. For instance, reconsider the problem of an au-
tonomous car that must decide whether or not to stop at a traffic light that has just
turned yellow. We can model the problem as such: we have spaces state_before,
state_after and decision that describe the possible states of the car when the light
turns yellow and when it turns red, respectively, and the decisions that can be made
when the light turns yellow; a dynamics function dynamics : state_before×decision →𝑐

state_after; and an open safe : 𝒪 (state_after) that indicates if a given state is outside
of the intersection, and thus safe. We want to ensure that for every possible car state
𝑠 : state_before there is a decision 𝑑 : decision such that safe(dynamics(𝑠, 𝑑)), but the
decision must be allowed to be made nondeterministically. With dependent types, we
could imagine encoding this task as

∏︁
𝑠:state_before

𝒫+
♦

(︃ ∑︁
𝑑:decision

safe(dynamics(𝑠, 𝑑))

)︃
.

It ought to be possible to accomplish this by taking the gros topos of sheaves over
the site generated by the open cover topology [11]. We do not yet understand how
to extend the partiality and nondeterminism monads to the entire topos, but believe
that approaches from synthetic topology might apply.

Probabilistic programming

Constructive topology provides a good setting for phrasing probability theory in a
constructive manner, and so it should inform the theory and semantics of probabilistic
programming. From any formal space 𝐴 one can construct a space ℛ(𝐴) of probability
distributions on 𝐴 [44, 47].

Simpson [33] describes “random locales,” which are formal spaces which are not
spatial, meaning that they have no analogue in classical topology. These random lo-
cales characterize the properties that occur with probability 1. For instance, Simpson
describes the sublocale Ran of

∏︀
_:N B of random sequences of Boolean values. On

this sublocale, the pattern match

geometric : Ran →𝑐 N

geometric(𝑥) , case(𝑥)
{︁
[𝑛 : N] 𝜄[[𝑛 ↦→ · = true] ∧

⋀︀
𝑘<𝑛[𝑘 ↦→ · = false]] (_) ⇒ 𝑛

which finds the first occurrence of a true in the sequence defines a valid continuous
map (it would not if the codomain were

∏︀
_:N B). Although Ran has no points * →𝑐

Ran, so this geometric cannot be run on any deterministic inputs, Ran does have
nondeterministic points * 𝑛𝑑→𝑐 Ran, so geometric can be run on nondeterministic values.

97

98

Bibliography

[1] Andrea Asperti, Maria Emilia Maietti, Claudio Sacerdoti Coen, Giovanni Sam-
bin, and Silvio Valentini. Formalization of formal topology by means of the
interactive theorem prover Matita. In International Conference on Intelligent
Computer Mathematics, pages 278–280. Springer, 2011.

[2] Andrej Bauer. Realizability as the connection between computable and construc-
tive mathematics. In Lecture notes for a tutorial at a satellite seminar of CCA
2004, 2005.

[3] Andrej Bauer. Efficient computation with Dedekind reals. In Fifth International
Conference on Computability and Complexity in Analysis, pages i–vi, Hagen,
Germany, 2008.

[4] Francesco Ciraulo, Maria Emilia Maietti, and Giovanni Sambin. Convergence in
formal topology: a unifying notion. Journal of Logic and Analysis, 5, 2013.

[5] Claudio Sacerdoti Coen and Enrico Tassi. Formalising overlap algebras in Matita.
Mathematical Structures in Computer Science, 21(04):763–793, 2011.

[6] Thierry Coquand. Pattern matching with dependent types. In Proceedings of
the Workshop on Types for Proofs and Program, pages 66–79, 1992.

[7] Thierry Coquand, Giovanni Sambin, Jan Smith, and Silvio Valentini. Inductively
generated formal topologies. Annals of Pure and Applied Logic, 124(1):71–106,
2003.

[8] Edsger W. Dijkstra. Nondeterminacy and formal derivation of programs. Comm.
ACM, 18(8):453–457, 1975.

[9] Martín Escardó. Synthetic topology: of data types and classical spaces. Elec-
tronic Notes in Theoretical Computer Science, 87:21–156, 2004.

[10] Martín Escardó. Infinite sets that admit fast exhaustive search. In 22nd Annual
IEEE Symposium on Logic in Computer Science (LICS 2007), pages 443–452.
IEEE, 2007.

[11] Michael P Fourman. Continuous truth I: Non-constructive objects. Studies in
Logic and the Foundations of Mathematics, 112:161–180, 1984.

99

[12] Sicun Gao, Jeremy Avigad, and Edmund M Clarke. Delta-decidability over the
reals. In Logic in Computer Science (LICS), 2012 27th Annual IEEE Symposium
on, pages 305–314. IEEE, 2012.

[13] Siegfried Gottwald. Many-valued logic. In Edward N. Zalta, editor, The Stan-
ford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University,
spring 2015 edition, 2015.

[14] Peter T Johnstone. Topos theory. Academic Press, 1977.

[15] Peter T Johnstone. Sketches of an elephant: A topos theory compendium, vol-
ume 2. Oxford University Press, 2002.

[16] Tatsuji Kawai. Localic completion of uniform spaces, 2017.

[17] Stephen Cole Kleene. Introduction to metamathematics. North-Holland, 1952.

[18] Leslie Lamport. Buridan’s principle. Foundations of Physics, 42/8:1056–1066,
October 1984.

[19] S.M. Lane and I. Moerdijk. Sheaves in Geometry and Logic: A First Introduction
to Topos Theory. Hochschultext / Universitext. Springer-Verlag, 1992.

[20] Davorin Lešnik. Synthetic topology and constructive metric spaces. Diss. Uni-
versity of Ljubljana, 2010.

[21] Maria Emilia Maietti and Giovanni Sambin. Why topology in the minimalist
foundation must be pointfree. Logic and Logical Philosophy, 22(2):167–199, 2013.

[22] J Raymundo Marcial-Romero and Martín H Escardó. Semantics of a sequential
language for exact real-number computation. Theoretical Computer Science,
379(1-2):120–141, 2007.

[23] Norbert Th Müller. Enhancing imperative exact real arithmetic with functions
and logic. In Computability and Complexity in Analysis, Ljubljana, 2009.

[24] Russell O’Connor. Certified exact transcendental real number computation in
Coq. In Theorem Proving in Higher Order Logics, pages 246–261. Springer, 2008.

[25] Erik Palmgren. Predicativity problems in point-free topology. In Proceedings
of the Annual European Summer Meeting of the Association for Symbolic Logic,
held in Helsinki, Finland, pages 221–231, 2003.

[26] Erik Palmgren. A constructive and functorial embedding of locally compact
metric spaces into locales. Topology and its Applications, 154(9):1854–1880, 2007.

[27] Pavel Panchekha, Alex Sanchez-Stern, James R Wilcox, and Zachary Tatlock.
Automatically improving accuracy for floating point expressions. ACM SIG-
PLAN Notices, 50(6):1–11, 2015.

100

[28] Maria Cristina Pedicchio and Walter Tholen. Categorical foundations: special
topics in order, topology, algebra, and sheaf theory, volume 97. Cambridge Uni-
versity Press, 2004.

[29] Graham Priest. The logic of paradox. Journal of Philosophical logic, 8(1):219–
241, 1979.

[30] Giovanni Sambin and Silvio Valentini. Building up a toolbox for Martin-Löf
intuitionistic type theory: subset theory. In Giovanni Sambin and Jan Smith,
editors, Twenty-five years of Constructive Type Theory, pages 221–244. Oxford
Logic Guides, 1998.

[31] Robert Sedgewick and Kevin Wayne. Introduction to programming in Java: An
interdsiciplinary approach.

[32] Benjamin Sherman, Luke Sciarappa, and Clément Pit-Claudel. Coq library for
formal topology, May 2017. Available at https://doi.org/10.5281/zenodo.
581231.

[33] Alex Simpson. Measure, randomness and sublocales. Annals of Pure and Applied
Logic, 163(11):1642–1659, 2012.

[34] Alex K Simpson. Lazy functional algorithms for exact real functionals. In Inter-
national Symposium on Mathematical Foundations of Computer Science, pages
456–464. Springer, 1998.

[35] Bas Spitters. Locatedness and overt sublocales. Annals of Pure and Applied
Logic, 162(1):36–54, 2010.

[36] Paul Taylor. A lambda calculus for real analysis. Journal of Logic and Analysis,
2, 2010.

[37] Christopher F Townsend. On the parallel between the suplattice and preframe
approaches to locale theory. Annals of Pure and Applied Logic, 137(1-3):391–412,
2006.

[38] Hideki Tsuiki. Real number computation through gray code embedding. Theor.
Comput. Sci., 284(2):467–485, July 2002.

[39] Steven Vickers. Topology via logic. Cambridge University Press, 1989.

[40] Steven Vickers. The double powerlocale and exponentiation: a case study in
geometric logic. Theory and Applications of Categories, 12(13):372–422, 2004.

[41] Steven Vickers. Localic completion of generalized metric spaces I. Theory and
Applications of Categories, 14(15):328–356, 2005.

[42] Steven Vickers. Some constructive roads to Tychonoff. From Sets and Types
to Topology and Analysis: Towards Practicable Foundations for Constructive
Mathematics, 48:223, 2005.

101

https://doi.org/10.5281/zenodo.581231
https://doi.org/10.5281/zenodo.581231

[43] Steven Vickers. Sublocales in formal topology. The Journal of Symbolic Logic,
72(02):463–482, 2007.

[44] Steven Vickers. A localic theory of lower and upper integrals. Mathematical
Logic Quarterly, 54(1):109–123, 2008.

[45] Steven Vickers. The connected Vietoris powerlocale. Topology and its Applica-
tions, 156(11):1886–1910, 2009.

[46] Steven Vickers. Localic completion of generalized metric spaces II: Powerlocales.
Journal of Logic and Analysis, 1, 2009.

[47] Steven Vickers. A monad of valuation locales. Preprint at http: // www. cs.
bham. ac. uk/ ~sjv/ Riesz. pdf , 2011.

[48] Frank Waaldijk. On the foundations of constructive mathematics–especially in
relation to the theory of continuous functions. Foundations of Science, 10(3):249–
324, 2005.

[49] K. Weihrauch. A simple introduction to computable analysis. Informatik-
Berichte. Fernuniv., Fachbereich Informatik, 1995.

102

http://www.cs.bham.ac.uk/~sjv/Riesz.pdf
http://www.cs.bham.ac.uk/~sjv/Riesz.pdf

List of symbols

·⊥ The lifting monad on spaces. 44, 53, 54, 59, 60, 67, 76

𝐴
𝑛𝑑,𝑝→ 𝑐 𝐵 The set of nondeterministic and partial maps from a space 𝐴 to a space

𝐵. 47, 50, 53, 61, 62, 70, 92

𝐴 ∼= 𝐵 Objects 𝐴 and 𝐵 in a category are isomorphic (usually, either two sets are
isomorphic or two spaces are homeomorphic). 23, 25, 26, 29, 30, 34, 35, 51, 62,
67, 73, 78, 85, 104

𝐴
𝑛𝑑→𝑐 𝐵 The set of nondeterministic maps from a space 𝐴 to a space 𝐵. 44–46, 57,

59, 63, 73, 80–88, 97, 103

𝐴
𝑝→𝑐 𝐵 The set of partial maps from a space 𝐴 to a space 𝐵. 39–41, 43, 44, 53, 59,

60, 64, 70, 72, 75, 76

𝐴 →𝑐 𝐵 The set of continuous maps from a space 𝐴 to a space 𝐵. 11, 12, 15, 23,
25, 26, 28–32, 34, 35, 37, 38, 40, 41, 43, 45–53, 55, 58–63, 69–71, 73, 74, 76–78,
84–87, 92, 95–97

𝑎 ↓ 𝑏 The meet (intersection) of two basic opens 𝑎 and 𝑏 of a space 𝐴 (which is an
open of 𝐴). 21–24, 33, 34, 38, 53

𝑎 ≡ 𝑏 Intensional equality of 𝑎 and 𝑏 (which must have the same type). 16, 21, 29–32,
42, 64–66

𝑎 ▷ 𝑈 The basic open 𝑎 of a space 𝐴 is covered by the open 𝑈 of 𝐴. 20–23, 28, 30,
32–34, 38, 42, 45, 53

𝑓 5 𝑔 The truth order implication 𝑓 implies 𝑔 for binary covers 𝑓, 𝑔 : Γ
𝑛𝑑→𝑐 B. 83, 84

𝑓 ⊗ 𝑔 The parallel composition 𝑓 ⊗ 𝑔 : 𝐴 × 𝑋 →𝑐 𝐵 × 𝑌 of 𝑓 : 𝐴 →𝑐 𝐵 and
𝑔 : 𝑋 →𝑐 𝑌 . 49, 52, 62, 63, 67, 74, 75

𝑓 * The inverse image map 𝑓 * : 𝒪 (𝐵) → 𝒪 (𝐴) of a map of spaces 𝑓 : 𝐴 →? 𝐵. 25

𝑓 ! The direct image map 𝑓! : 𝒪 (𝐴) → 𝒪 (𝐵) of an open map 𝑓 : 𝐴 →𝑜 𝐵. 48

𝑝 ⇒ 𝑒 A branch in a pattern match, where 𝑝 is a pattern such that, if matched, the
expression 𝑒 results. 57–61, 68, 70, 74–78, 85, 87, 88, 92, 97

103

𝑥 𝑈 A point 𝑥 in a space 𝐴 lies in an open 𝑈 of 𝐴. 19, 20, 22, 23, 25, 27–29, 38,
43, 71

𝜄[𝑈] The open embedding 𝜄[𝑈] : {𝐴 | 𝑈} →˓ 𝐴 of an open subspace 𝑈 of 𝐴 into the
entire space. 50, 52, 57–59, 61, 85, 87, 88, 92, 97

♦𝑈 The direct image of an open 𝑈 of 𝐴 in its partial and nondeterministic powerspace
𝒫♦(𝐴) or some subspace of it. 46, 47, 84, 85

𝒪(𝐴) The (large) set of opens of a space 𝐴. 21–31, 33–35, 39–53, 65, 70, 71, 78,
80–82, 84–86, 88, 96, 97, 103

𝒪B(𝐴) The set of basic opens of a space 𝐴. 20–23, 29–31, 42–44, 46, 47, 53

⇐⇒ If and only if. 48, 49, 51, 82

Ω The (large) set of propositions. 16, 20–23, 27–29, 32, 38–40

Σ The Sierpínski space, Σ ∼= *⊥ ∼= 𝒫♦(*). 7, 29, 35, 36, 71, 82, 85

_ A wildcard in a pattern, which matches anything. 59, 67, 76, 78, 85, 87, 88, 92,
97

* Either the type with one element or the space with one point. 22, 23, 26, 27, 29,
40, 41, 46, 57, 59, 67, 78, 80, 85, 88, 89, 95, 97, 104, 105

B The type/set/discrete space of Boolean values. 11, 15, 18, 26, 29, 31, 35, 37, 39,
44, 59, 71, 80–88, 92, 97, 103–105

N The type/set/discrete space of natural numbers. 17, 18, 97

Q The set/discrete space of rational numbers. 17–20, 27, 32–34, 61

R The space of real numbers. 3, 7, 8, 11–15, 17–20, 26, 27, 32, 34, 35, 37, 39, 44, 58,
59, 61, 76, 79, 84, 87, 88, 92, 93

&& Boolean and, && : B× B→𝑐 B. 80, 81

|| Boolean or, || : B× B→𝑐 B. 80, 81

𝒫+
♦ The nondeterministic powerspace monad, 𝒫+

♦ : FSpc → FSpc. 45–47, 54, 59,
92, 97

𝒫♦ The partial & nondeterministic powerspace monad, 𝒫♦ : FSpc → FSpc. 47, 50,
54, 84, 85, 92, 104

𝒫� The compact powerspace monad, 𝒫� : FSpc → FSpc. 84, 85

𝒫�♦ The compact/overt powerspace monad, 𝒫�♦ : FSpc → FSpc. 84–87

𝒰 The type of types, 𝒰 : 𝒰 . 16, 23–25, 34, 70

104

! Boolean negation, ! : B→𝑐 B. 80, 81

⇓ The direct image of an open in its lifting, ⇓ : 𝐴 → 𝐴⊥. 41–44, 46, 53

false Boolean false, false : * →𝑐 B. 11, 17–20, 27, 29, 31, 39, 44, 45, 59, 71, 80, 81,
85–88, 97

true Boolean true, true : * →𝑐 B. 11, 17, 18, 20, 27, 29, 31, 39, 44, 45, 59, 60, 71, 78,
80, 81, 85–88, 92, 97

up The open embedding of a space in its lifting, up : 𝐴 →˓ 𝐴⊥. 53, 59, 60, 67, 76, 95

∅ The empty space. 78

105

	Introduction
	Example application: approximate root-finding
	Why formal topology?
	Reasoning about programs as mathematical expressions
	Computational content of compactness

	Discrete decision-making on connected spaces
	Terminology and foundations

	Constructive topology
	Introduction via the real numbers
	Formal topology
	Inductively generated formal spaces
	Locales
	The computational content of formal topology

	Spaces
	Discrete spaces
	Open subspaces
	The Sierpínski space
	Disjoint unions (sums)
	Products
	Metric spaces, including R

	As a programming language
	Opens and Sierp-valued maps

	Partiality and nondeterminism
	Partiality
	Lifted spaces

	Nondeterminism
	Nondeterministic powerspaces

	Both partiality and nondeterminism
	Lower powerspaces

	Open maps and open embeddings
	Open maps
	Open embeddings

	Summary
	Variants of the programming language

	Overlapping pattern matching
	Example uses of overlapping pattern matching
	A familiar example
	Approximate computation and decision-making
	Manipulating partial data
	``Sheafification'' of constructions

	Pattern families
	Totality
	Determinism
	Totality and determinism
	Syntax of patterns

	Pattern matching with ``gluing'' conditions
	Properties of overlapping pattern matching
	Partial patterns and lifted spaces
	Related to Grothendieck pretopologies
	Evaluation of patterns

	Binary covers: nondeterministic decision procedures
	Binary covers as nondeterministic decisions
	Quantification over compact/overt spaces
	On compact/overt spaces
	On compact/overt subspaces

	Binary covers on R
	Approximate root-finding

	Related work
	Alternative theories of constructive topology
	Related programming formalisms involving continuity, partiality, or nondeterminism
	Overlapping pattern matching
	Binary covers
	Implementation

	Discussion and conclusion
	Coq implementation
	Programming with a theorem prover
	Future work

	Bibliography
	List of symbols

