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We propose CoqSQL, a framework for optimizing relational queries and automatically
synthesizing relational database implementations in the Coq proof assistant, based on
Anders Kaseorg’s and Mohsen Lesani’s Transactions framework. The synthesized codes
support concurrent transaction execution on multiple processors and are accompanied
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Chapter 1

Introduction

1.1 Motivation

Database management systems (DBMSes) are an important part of computer systems.

From online shoppings to social networks, applications rely on databases to store

billions of rows of information. Because of the scale, databases must be performant,

reliable, and safe for concurrent usage. To standardize communication with DBMSes,

the SQL query language has been developed. Developers often use SQL together

with popular database systems, such as MySQL or PostgresSQL, to build application

backends, believing that they are both performant and safe. However, despite being

actively developed, those database systems are far from perfect. For instance, MySQL

reports that there are more than 80,000 total bugs, and 10,000 of them are currently

unresolved [3]. Similarly, PostgreSQL’s bug report mailing list shows a large number

of issue reports every month since its release [6].

On the other side of computer science research, formal methods have increasingly

gained popularity over the past decades. Interactive theorem provers allow developers

to write program specifications together with implementations, and prove their correct-

ness. As a result, the developers can be sure that programs neither perform incorrectly

nor contain undesired side effects. Among those, Coq [9] is a widely adopted system

with its very expressive type systems and proof automation. In this project, we develop
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a system in Coq that synthesizes relational database implementations from declarative

specifications of SQL queries, with strong guarantees that synthesized databases are

completely bug-free. The framework, called CoqSQL, provides a complete specifica-

tion of an SQL subset, allowing users to write high-level programs on top of those SQL

queries. The synthesis process is done automatically, with proof that the generated

implementations are concurrency-safe and sound. In addition, CoqSQL is extensible

by custom implementation strategies without sacrificing its core correctness.

1.2 User Interaction

We start by showing the usage of CoqSQL. Consider an example case of a bookstore

database. A developer wants to build a database that supports storing information

on user accounts, books, and book orders. To start, the database specification mod-

ule must be declared. Note that database schemas and operations must implement

EngineArgs module type in order for CoqSQL to automatically synthesize the imple-

mentation. Chapter 5 discusses the module constraints in detail. The developer then

declares a database schema. In this example case of bookstore, the database contains

three tables. CoqSQL’s internal database structure can be constructed by compiling

the high-level schema.

Module BookStoreDatabaseArgs <: EngineArgs.

Definition schema :=

DATABASE ⟨
TABLE "ACCOUNT" ⟨ "Id" ::: VARCHAR 20; "Balance" ::: UINT ⟩;
TABLE "BOOK" ⟨ "Title" ::: VARCHAR 20; "Isbn" ::: VARCHAR 20; "Price" ::: UINT ⟩;
TABLE "ORDER" ⟨ "AccountId" ::: VARCHAR 20; "BookIsbn" ::: VARCHAR 20 ⟩

⟩.

Definition database := COMPILE schema.

Next, the developer provides the set of SQL methods that may interact with the

database in Gallina with augmented SQL-like style queries. In this case, there are four

methods: addAccount creates a new account with a given ID and an initial balance;
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addBook adds a book to the database; placeOrder places a book order and charges

money from an account; and removeAccount deletes an account and its associated

orders.

Inductive method : Type → Type :=

| addAccount : J VARCHAR 20 K → J UINT K → method unit

| addBook : J VARCHAR 20 K → J VARCHAR 20 K → J UINT K → method unit

| placeOrder : J VARCHAR 20 K → J VARCHAR 20 K → method B
| removeAccount : J VARCHAR 20 K → method unit

Definition implProg Ret (m : method Ret) : Program (SQLMethod database) Ret :=

match m with

| addAccount id bal ⇒
_ ← INSERT INTO "ACCOUNT" VALUES (id ,, bal);

Return tt

| addBook isbn title price ⇒
_ ← INSERT INTO "BOOK" VALUES (isbn ,, title ,, price);

Return tt

| placeOrder id isbn ⇒
bal ← QUERY SELECT VAR("a.Balance") AS "bal"

FROM "ACCOUNT" AS "a" WHERE VAR("a.Id") == VAL(id);

price ← QUERY SELECT VAR("b.Price") AS "price"

FROM "BOOK" AS "b" WHERE VAR("b.Isbn") == VAL(isbn);

match bal, price with

| [ bal’ ], [ price’ ] ⇒
if price’ ≤? bal’ : B
then _ ← INSERT INTO "ORDER" VALUES (id ,, isbn);

_ ← UPDATE "ACCOUNT" SET "Balance" = VAR("Balance") - VAL(price’)

WHERE VAR("Id") == VAL(id);

Return true

else Return false

| _, _ ⇒ Return false

end

| removeAccount id ⇒
_ ← DELETE FROM "ACCOUNT" WHERE VAR("Id") == VAL(id);

_ ← DELETE FROM "ORDER" WHERE VAR("AccountId") == VAL(id);

Return tt

end.

End BookStoreDatabaseArgs.

The developer may now close the module and use the synthesis library to construct

an efficient database implementation with proof of its correctness using one line of

code! Every operation of the implementation is guaranteed to be both correct and

atomic.
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Module BookStoreDatabase := EngineDatabase BookStoreDatabaseArgs.

Check BookStoreDatabase.Impl.

(*

BookStoreDatabase.Impl

: Implementation (Abortable BookStoreDatabaseArgs.method)

*)

Check BookStoreDatabase.Impl_ok.

(*

BookStoreDatabase.Impl_ok

: Simulates

(ThreadsBehavior BookStoreDatabase.Impl)

(superposition

(ThreadsBehavior

(serialImplementation

(abortableObject

(methodObject

(programObject (SQLObject BookStoreDatabaseArgs.database))

BookStoreDatabaseArgs.implProg)))))

(pair nil BookStoreDatabase.T.tStructInitState)

(eq (pair nil (SQLStateInit BookStoreDatabaseArgs.database)))

*)

BookStoreDatabase.Impl is the synthesized implementation, and BookStoreDatabase.Impl_ok

is its proof of correctness (see Chapter 2 for explanation of the type signatures). Exe-

cutable Haskell code can be extracted from the implementation. This concludes the

most normal usage of CoqSQL.

1.3 Workflow

Before diving into the details, we summarize the step-by-step workflow of CoqSQL.

The steps are as described below and in Figure 1-1.

1. A user declares the database schema and writes a high-level program specification

of methods in a conventional SQL language.

2. CoqSQL compiles the high-level SQL methods into naive query plans. This

translation process is unverified. Alternatively, the user may directly write query

plans as specifications instead of using the conventional SQL language.
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3. Optionally, query plans can get repeatedly optimized by user-provided optimiza-

tion scripts. Each optimization step has a proof trace certifying its correctness.

4. CoqSQL synthesizes a database implementation based on the query plans.

Naive implementations are provided in the framework, and the user is free to

extend it with more implementation strategies and proofs of their correctness.

5. The implementation gets extracted to executable Haskell code.

The rest of the paper discusses the thesis project in detail. Chapter 2 provides

an overview of the Transactions framework, which is the foundation of CoqSQL.

Chapter 3 discusses Coq data structures used to build up complex specifications

and implementations of databases. Chapter 4 describes the full formalization of

unnamed SQL and relational algebra in CoqSQL. Chapter 5 walks through naive

implementation strategies that CoqSQL provides, and possible ways to extend them.

Chapter 6 describes an untrusted library in CoqSQL that enhances the user experience.

Lastly, Chapter 7 discusses broadly about research progress in the joint database and

formal method field, as well as possible ideas to improve the work.
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Figure 1-1: Summary of CoqSQL’s workflow. Dashed boxes represent user-provided
codes, solid boxes represent internal representations and implementations not exposed
to users, and dotted boxes represent executable output of the synthesis process. Solid
lines represent the main flow of the framework, thin lines represent interactions
between the core framework and extra components, and dotted lines represent abstract
relationships.
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Chapter 2

Transactions Framework

CoqSQL is built on top of the Transactions framework by Anders Kaseorg and

Mohsen Lesani, which is a system for constructing and verifying modular concurrent

programs. It provides basic transactional data structures, notably concurrent map

structures and registers, and transactional combinators that allow building more

complex objects based on the simpler pieces. This chapter gives a summary of the

framework.

2.1 Terminology

This section describes terminology that is used ubiquitously in the Transactions

framework.

Method A method type is a set of methods of an interface parameterized by their

return types. Arguments to any method are attached as part of the method name.

For instance, the following is an interface for an integer register, consisting of three

methods: get returns the current value of the register; write takes an integer, saves

it to the register, and returns unit; and cas performs a compare-and-swap operation

and returns whether it succeeds.
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Inductive IntRegMethod : Type → Type :=

| get : IntRegMethod Z
| write : Z → IntRegMethod unit

| cas : Z → Z → IntRegMethod B.

Object An object is a transition system parameterized by a method type. It consists

of an internal state type and a possibly nondeterministic transition relation. An object

can be used to represent (1) a basic atomic instruction provided natively in a base

machine, (2) a concrete implementation’s behavior, or (3) an abstract specification of

an interface.

Record Object (Method : Type → Type) :=

{

State : Type;

EvalInstruction : ∀ Ret, Method Ret → State → Ret → State → Prop;

}.

We continue the example by providing the proper semantics for each method.

IntRegObject represents an interface of a base machine’s instructions on an integer

registers.

Inductive EvalIntRegMethod : ∀ Ret, IntRegMethod Ret → Z → Ret → Z → Prop :=

| evalGet : ∀ v, EvalIntRegMethod _ get v v v

| evalWrite : ∀ v v’, EvalIntRegMethod _ (write v’) v tt v’

| evalCasEq : ∀ v v’, EvalIntRegMethod _ (cas v v’) v true v’

| evalCasNeq : ∀ v v’ v’’, v ̸= v’ → EvalIntRegMethod _ (cas v’ v’’) v false v.

Example IntRegObject : Object IntRegMethod :=

{|

State := Z;
EvalInstruction := EvalIntRegMethod;

|}.

Program A program is a shallowly embedded sequence of method calls. It is defined

co-inductively to support infinite loops. The Transactions framework uses “ x ← m; p ”

notation to abbreviate (Bind m (fun x ⇒ p)) . The Noop constructor exists to allow
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Coq’s guardedness condition to be satisfied the case of an infinite loop that does

not involve any method calls. This is necessary when implementing flattenProgram

combinator (see Section 2.2).

CoInductive Program (Method : Type → Type) (Ret : Type) : Type :=

| Bind : ∀ Ret’, Method Ret’ → (Ret’ → Program Method Ret) → Program Method Ret

| Return : Ret → Program Method Ret

| Noop : Program Method Ret → Program Method Ret.

Following is an example of an atomic increment program, which increases the value

of the register by x and returns the updated value. It loops repeatedly until the

compare-and-swap operation succeeds to ensure that the increment goes through.

CoFixpoint IntRegIncrement (x : Z) : Program IntRegMethod Z :=

v ← get;

b ← cas v (x + v);

if b : B
then Return (x + v)

else IntRegIncrement x

Implementation An implementation of a method type describes a way to execute

each method based on a lower level base interface. Extraction of an implementation

gives an executable program that assumes base object methods. We finish the example

of this section with an implementation of a simple counter interface.

Record Implementation (Method : Type → Type) :=

{

ImplInstruction : Type → Type;

implBase : Object ImplInstruction;

implProgram : ∀ Ret, Method Ret → Program ImplInstruction Ret;

}

Inductive CounterInstruction : Type → Type :=

| add : Z → CounterInstruction Z
| reset : CounterInstruction unit.

Example counterImplProg Ret (m : CounterInstruction Ret)

: Program IntRegMethod Ret :=
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match m with

| add x ⇒ IntRegIncrement x

| reset ⇒ _ ← write 0; Return tt

end.

Example counterImpl : Implementation CounterInstruction :=

{|

ImplInstruction := IntRegMethod;

implBase := IntRegObject;

implProgram := counterImplProg;

|}.

2.2 Composable Components

Complex structures can be built from simpler ones using combinators. The Transac-

tions framework provides several combinators that allow composing methods, objects,

programs, and implementations; and transforming one to another. With all the

composable structures, we can build rich and complicated specifications and imple-

mentations in modular ways. At extraction time, composed implementations get

automatically unfolded to sequences of native method calls, ensuring that no perfor-

mance downside is introduced with this modular structure. CoqSQL relies on several

composers in order to build rich database implementations. We shall see them in

action in Chapter 5. Followings are some of the Transactions framework’s combinators,

with explanation.

Pair Two objects can be combined into a pair object. The method type is the disjoint

union of the two method types, and the state type is the product of the two underlying

states. Two implementations can also be combined into a pair implementation.

Definition PairMethod

: (Type → Type) → (Type → Type) → Type → Type. �

Definition pairObject

: ∀ InstructionL InstructionR : Type → Type,

Object InstructionL → Object InstructionR →
Object (PairInstruction InstructionL InstructionR). �

20



Definition pairImplementation

: ∀ MethodL : Type → Type, Implementation MethodL →
∀ MethodR : Type → Type, Implementation MethodR →

Implementation (PairMethod MethodL MethodR). �

Map Objects, programs, and implementations all support instruction mapping (i.e.

method renaming). These combinators change all underlying method calls of a given

structure based on a given mapping function.

Definition methodObject

: ∀ Instruction : Type → Type,

Object Instruction →
∀ Method : Type → Type,

(∀ Ret : Type, Method Ret → Instruction Ret) → Object Method. �

Definition mapProgram

: ∀ Instruction Instruction’ : Type → Type,

(∀ A : Type, Instruction A → Instruction’ A) →
∀ Ret : Type, Program Instruction Ret → Program Instruction’ Ret. �

Definition mapImplementation

: ∀ Method Method’ : Type → Type,

(∀ Ret : Type, Method’ Ret → Method Ret) →
Implementation Method → Implementation Method’. �

Flatten Flatten combinators take a function that maps a high-level method call

to a program with a low-level interface, and inline every high-level method call with

the corresponding low-level program. It is important to note that without Noop ,

flattenProgram would not pass Coq’s guardedness condition because replacing each

method call in an infinite loop with a program consisting of only one Return results in

a repeating loop of flattenProgram calls without any CoFixpoint constructor between

each recursive call.

Definition flattenProgram

: ∀ Method Instruction : Type → Type,

(∀ A : Type, Method A → Program Instruction A) →
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∀ Ret : Type, Program Method Ret → Program Instruction Ret. �

Definition flattenImplementation

: ∀ Method : Type → Type, Implementation Method →
∀ Method’ : Type → Type,

(∀ Ret : Type, Method’ Ret → Program Method Ret) → Implementation Method’. �

Abortable In a system with optimistic concurrency control, at any time, an op-

eration may get aborted when a conflict arises. If it happens, the operation makes

no change to the object’s state and returns nothing. The Transactions framework

includes combinators that facilitate building an abortable method or an abortable

object.

Inductive Abortable (M : Type → Type) : Type → Type :=

| abortable : ∀ R : Type, M R → Abortable M (option R).

Definition abortableObject

: ∀ Instruction : Type → Type,

Object Instruction → Object (Abortable Instruction). �

2.3 Transactional Specifications

Objects in the Transactions framework can be used both as program behaviors and

abstract specifications. This section describes the building blocks for constructing

objects that represent sequential or concurrent semantics, and formalizes the core

relationship between objects.

Sequential Semantics The Transactions framework provides an interface to convert

between an implementation and an object. In the forward direction, an implementation

can get coarsened to an object encoding its sequential semantics by abstracting it to a

program object. A program object’s transition relation is the reflexive transitive closure

of its base object’s transition relation. In other words, a program object accepts any

transition that can be expressed as a sequence of the base object’s transitions that

finishes with a return clause.
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Definition programObject (obj : Object Instruction) : Object (Program Instruction) :=

{|

State := obj.(State);

EvalInstruction := EvalProgram obj;

|}.

Definition coarsen {Method} (impl : Implementation Method) : Object Method :=

methodObject (programObject impl.(implBase)) impl.(implProgram).

On the opposite direction, serialImplementation converts an object to its serial

implementation, in which each method call is implemented as a simple program that

calls the method and returns the result.

Definition serialImplementation (Method : Type → Type) (obj : Object Method) :=

{|

ImplInstruction := Method;

implBase := obj;

implProgram Ret m ⇒ x ← m; Return x

|}

Concurrent Semantics The Transactions framework provides ThreadsBehavior , a

function that converts an implementation to an object encoding its concurrent behavior.

A thread object’s state consists of a list of running programs plus an internal state, and

its transition step involves nondeterministically picking threads to run and spawning

new threads. For the purpose this thesis, we treat ThreadsBehavior as a black box and

skip the detailed discussion about it.

Definition ThreadsBehavior

: ∀ Method : Type → Type, Implementation Method → Object (Interaction Method). �

A superposition of an object captures all of the object’s possible behaviors under

nondeterminism. Its state is an ensemble of the base object’s state, and its transition

relation allows stepping from sst to sst’ if sst’ is not empty and only contains

states that are reachable from at least one state in sst . Applying superposition and

ThreadsBehavior on a sequential semantics object yields another object that represents

the transactional semantics of the same program.
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Definition superposition {Method} (obj : Object Method) : Object Method :=

{|

State := obj.(State) → Prop;

EvalInstruction A m sst a sst’ :=

(∃ y, sst’ y) /\

(∀ st’,

sst’ st’ → ∃ st,

sst st /\ obj.(EvalInstruction) m st a st’);

|}.

Simulation Relation A simulation relationship between two objects is defined in

the framework. Simulates obj1 obj2 st1 s2 holds if every evaluation step of obj1 from

s1 to s1’ can be simulated via an evaluation step of obj2 from s2 to s2’ , and

simulation further relation holds true for s1’ and s2’ . As a result, every behavior

trace produced by obj1 is reproducible by at least one possible evaluation sequence of

obj2 . Thus, if obj1 is a transition system of the synthesized implementation, obj2

is an abstract desired property, and Simulates obj1 obj2 holds for their initial states,

then we are done proving correctness! CoqSQL uses the simulation relation as its

main correctness lemma for the synthesized code (see Section 4.4).

CoInductive Simulates (Interaction : Type → Type)

(Behavior1 Behavior2 : Object Interaction)

(s1 : State Behavior1) (s2 : State Behavior2) : Prop :=

| SimStep :

(∀ (R : Type) (int : Interaction R) (r : R) (s1’ : State Behavior1),

EvalInstruction Behavior1 int s1 r s1’ →
∃ s2’ : State Behavior2,

EvalInstruction Behavior2 int s2 r s2’ & Simulates Behavior1 Behavior2 s1’ s2

’)

→ Simulates Behavior1 Behavior2 s1 s2.

2.4 Predicated Structures

The Transactions framework uses transactional predication [1], a technique for building

transactional implementations based on concurrent data structures. To promote

modularity, the framework defines a predicated structure type, called PStruct , that
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captures necessary properties required by transactional predication. Following is a

part of the definition of PStruct , excluding properties that are only for internal use

by the Transactions framework.

Record PStruct {Method Val} :=

{

...

...

pStructImplProg :

∀ R,

Method R →
Program (PairMethod LocatorMethod (BMapMethod Loc (option Val))) R;

pStructSpec : Object Method;

pStructSpecInit : pStructSpec.(State);

...

...

}.

Basic predicated structures, such as atomic registers and concurrent hashmaps, are

included in the framework. In addition, there exist various combinators for composing

predicated structures, similar to what presented in 2.2.

Definition pairPStruct

: ∀ (Method1 Method2 : Type → Type) (Val : Type),

PStruct Method1 Val → PStruct Method2 Val →
PStruct (Pair.PairMethod Method1 Method2) Val. �

Definition mapPStruct

: ∀ (Method : Type → Type) (Val Val’ : Type)

(f : Val’ → option Val) (g : Val → Val’),

(∀ v : Val, f (g v) = Some v) →
PStruct Method Val → PStruct Method Val’. �

Definition flattenPStruct

: ∀ (Method Method’ : Type → Type) (Val : Type),

(∀ Ret : Type, Method’ Ret → Program Method Ret) →
PStruct Method Val → PStruct Method’ Val. �

After constructing a predicated structure of a desired program, the developer builds

a module satisfying TStructPars module type and feeds it to TStructFun module. This

process produces an implementation of the program described in the given predicated
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structure, and the initial state of its base object, together with the linearizability

proof. The relevant part of TStructPars and TStructFun is presented below.

Module Type TStructPars.

Parameter Method : Type → Type.

Parameter Val : Type.

Parameter pStruct : PStruct Method Val.

...

...

End TStructPars.

Module TStructFun (TStructArgs : TStructPars).

...

...

Definition tStructImpl : Implementation (Abortable (Program TStructArgs.Method)).

Definition tStructInitState : State (implBase tStructImpl).

Definition tStructSpec : Object (Abortable (Program TStructArgs.Method)).

...

Parameter tStructImplLin :

Simulates

(ThreadsBehavior tStructImpl)

(superposition (ThreadsBehavior (serialImplementation tStructSpec)))

(nil, tStructInitState)

(eq (nil, pStructSpecInit TStructArgs.pStruct)).

...

...

End TStructFun.
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Chapter 3

Data Representations

In this chapter, we discuss the data structures that are used to formalize CoqSQL’s

SQL specifications.

3.1 Denotation

An instance of Denotation A B represents a way to translate any object of type A to

another object of type B . Once defined, the notation J a K resolves to the denotation

function call on a : A .

Class Denotation (A B : Type) :=

{ denote : A → B }.

Notation "J X K" := (denote X).

Declaring this typeclass simplifies the process of writing specifications and proofs.

We shall see its advantages more clearly in later sections.

3.2 Type Universes

A type universe is a collection of Coq types with (1) the proofs that every type has

the properties of SQL types, (2) a set of operators between expressions, and (3) the

universe’s “unit” type.
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The Properties of SQL Types

Decidability SQL datatypes must be decidable. In other words, there must be a

computable procedure to determine if two objects of the same SQL type are equal.

This property does not necessarily hold for arbitrary Coq types.

Class Decidable (𝜏 : Type) :=

{ eq_dec : ∀ p q : 𝜏, {p = q} + {p ̸= q} }.

Notation "X =? Y" := (if eq_dec X Y then true else false) (at level 20).

Finiteness A type 𝜏 is finite if there exists a duplicate-free list all that contains

all elements of type 𝜏 . This list exists solely for proof purposes and is not a part of

concrete implementations. The property is used to formalize SQL projections and the

SQL EXISTS predicate (see Chapter 4 for details).

Class Finite (𝜏 : Type) :=

{

all : list 𝜏;

all_NoDup : NoDup all;

all_ok : ∀ t : 𝜏, In t all;

fold := fun (A : Type) (f : 𝜏 → A → A) (init : A) ⇒ fold_right f init all;

}.

SQL Operators

The framework allows constant, unary, and binary operators on SQL expressions.

J 𝑐 : constant 𝜏 K : J𝜏K

J 𝑢 : unary 𝜏 𝜏 ′ K : J𝜏K→ J𝜏 ′K

J 𝑏 : binary 𝜏 𝜏 ′ 𝜏 ′′ K : J𝜏K→ J𝜏 ′K→ J𝜏 ′′K

Every operator and its denotation must be declared during the initialization of a

type universe. This allows CoqSQL to perform static check on queries and formulate
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SQL relational semantics using only a type universe, since all operators are encoded

there.

Unit Type

Additionally, any type universe must contain a unit type. A unit type is a very simple

type with exactly one member. It is used as a placeholder for an empty tuple or an

empty query context.

J unit_t K = {tt_t}

Having formalized all the constraints, we now can define CoqSQL’s type universe

typeclass Types .

Class Types : Type :=

{

type : Type;

denotationType : Denotation type Type;

finiteType : ∀ 𝜏 : type, Finite J𝜏K ;

decidableType : ∀ 𝜏 : type, Decidable J𝜏K ;

unit_t : type;

tt_t : Junit_tK;
unit_t_all : all (T := Junit_tK) = tt_t :: nil;

constant : type → Type;

unary : type → type → Type;

binary : type → type → type → Type;

denotationConstant : ∀ 𝜏, Denotation (constant 𝜏) J𝜏K;
denotationUnary : ∀ 𝜏 𝜏’, Denotation (unary 𝜏 𝜏’) (J𝜏K → J𝜏’K);
denotationBinary : ∀ 𝜏 𝜏’ 𝜏’’, Denotation (binary 𝜏 𝜏 𝜏’) (J𝜏K → J𝜏’K → J𝜏’K);

}.

3.3 Trees, Schemas, and Tuples

We proceed to describe the fundamental structures of objects in CoqSQL.

Trees In CoqSQL, complicated data structures are built by composing simpler

ones, primarily using binary tree structure. CoqSQL has a reasonably standard
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definition for generic binary trees.

Inductive Tree (A : Type) :=

| TreeNode (u v : Tree A)

| TreeLeaf (a : A).

Notation "[ X ]" := (TreeLeaf X).

Infix "�" := TreeNode (at level 20).

Schemas In the standard SQL definition, a schema is a collection of pairs of (𝑥, 𝜏),

where 𝑥 represents the name of an attribute, and 𝜏 represents the attribute’s type. In

CoqSQL, to avoid tedious naming resolution, we drop the attribute names completely

and model a schema as a tree of types. Two symbols are used for schemas: 𝜎 refers to

the schema of a concrete relation, and Γ refers to the schema of an SQL statement’s

typing context.

Definition Schema {TX : Types} := Tree type. (* ’type’ resolves under ’TX’ *)

Tuples A tuple is a dependent structure on a schema, represented as a nested pair

of values corresponding to the schema’s recursive structure. We use ⟨ 𝜎 ⟩ as the

notation for the tuple type of schema 𝜎 .

Fixpoint Tuple {TX : Types} (𝜎 : Schema) : Type :=

match 𝜎 with

| [ 𝜏 ] ⇒ J 𝜏 K
| 𝜎_1 � 𝜎_2 ⇒ Tuple 𝜎_1 × Tuple 𝜎_2

end.

Notation "⟨ 𝜎 ⟩" := (Tuple 𝜎).

As proven in the framework, it follows that any tuple in any type universe is both

decidable and finite.

Instance decidableTuple {TX : Types} (heading : Schema)

: Decidable (Tuple heading). �
Instance finiteTuple {TX : Types} (heading : Schema)

: Finite (Tuple heading). �
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As an example, consider a book schema 𝜎𝑏𝑜𝑜𝑘 with three attributes, and two tuples

𝑡𝐶𝐿𝑅𝑆 and 𝑡𝐶𝑜𝑞𝐴𝑟𝑡 belonging to the schema.

𝜎𝑏𝑜𝑜𝑘 = {Title : VARCHAR 20, Isbn : VARCHAR 20, Price : INTEGER}

𝑡𝐶𝐿𝑅𝑆 = {Title : “Introduction to A...”, Isbn : “9780262033848” , Price : 69}

𝑡𝐶𝑜𝑞𝐴𝑟𝑡 = {Title : “Interactive Theor...”, Isbn : “9783662079645”, Price : 79}

Assuming that there exists a denotation instance for simple SQL types in context,

we can write the schema and the tuples in CoqSQL as follows. Figure 3-1 shows the

schema’s visual representation.

Example BookSchema : Schema := [VARCHAR 20] � ([VARCHAR 20] � [INTEGER]).

Example CLRSTuple : ⟨ BookSchema ⟩ := ("9780262033848",("Introduction to A...",69)).

Example CoqArtTuple : ⟨ BookSchema ⟩ := ("9783662079645",("Interactive Theor...",79)).

VARCHAR 20

INTEGERVARCHAR 20

(“Alice”, (“Alice’s Biography”, 01234567890))

Path 
p = right-left
-> varchar 20

Choice
c = right-left
-> “Alice’s Biography”

VARCHAR 20

INTEGER

right

left

VARCHAR 20

(“Alice”,  (                                                             ,   22 ))

VARCHAR 20

UINT  VARCHAR 20

“920000000”

right

left

Figure 3-1: An example of a schema in CoqSQL. As shown, attribute names are not

part of a schema.

3.4 Paths and Choices

We proceed to describe the data structures and the methods that can be used to

manipulate composed structures.
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Paths A path is a dependently typed object parameterized on a tree, representing a

path from the root to one of the leaves. Pick is a procedure that takes a tree structure

and a path, and returns the value at the corresponding leaf. Equality between two

paths is decidable.

Inductive Path {A : Type} : Tree A → Type :=

| PHere : ∀ {T}, Path [T]

| PLeft : ∀ {X Y}, Path X → Path (X � Y)

| PRight : ∀ {X Y}, Path Y → Path (X � Y).

Fixpoint Pick {A : Type} (tree : Tree A) {struct tree} : Path tree → A :=

match tree with

| [ a ] ⇒ fun p ⇒ a

| u � v ⇒ fun p ⇒
match p with

| PHere ⇒ idProp

| PLeft p’ ⇒ fun f g ⇒ f p’

| PRight p’ ⇒ fun f g ⇒ g p’

end (Pick u) (Pick v)

end.

Arguments Pick {_ _} _.

Instance decidablePath (A : Type) (tree : Tree A) : Decidable (Path tree). �

Following the previous example, we can define a path of BookSchema to point to

one of its attributes. In this case, IsbnPath points to the schema’s Isbn attribute.

Figure 3-2 gives a visual representation of the path and the result of applying Pick

on it.

Example IsbnPath : Path BookSchema := PRight (PLeft PHere).

Eval simpl in (Pick IsbnPath).

(* = VARCHAR 20

: type

*)
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VARCHAR 20

INTEGER

right

left

VARCHAR 20

Figure 3-2: An example of a path structure in CoqSQL. As shown, IsbnPath points

to a leaf of the tree, and picking it returns the value in such leaf.

Choices A choice is a dependently typed object parameterized on a schema and the

type of the attribute to which the choice points. Similar to a path, a choice guarantees

to point to one leaf. Choose is a procedure to project a value of a tuple given a choice.

Update is a procedure to build a new tuple by changing a given tuple’s field. Equality

between two choices is decidable.

Inductive Choice {TX : Types} : Schema → type → Type :=

| CHere : ∀ {𝜏}, Choice [𝜏] 𝜏

| CLeft : ∀ {X Y 𝜏}, Choice X 𝜏 → Choice (X � Y) 𝜏

| CRight : ∀ {X Y 𝜏}, Choice Y 𝜏 → Choice (X � Y) 𝜏.

Fixpoint Choose {TX : Types} {𝜎 : Schema} {𝜏 : type} (ch : Choice 𝜎 𝜏)

: ⟨ 𝜎 ⟩ → J 𝜏 K :=

match ch with

| CHere ⇒ fun g ⇒ g

| CLeft ch’ ⇒ fun g ⇒ Choose ch’ (fst g)

| CRight ch’ ⇒ fun g ⇒ Choose ch’ (snd g)

end.

Fixpoint Update {TX : Types} {𝜎 : Schema} {𝜏 : type} (ch : Choice 𝜎 𝜏)

: J 𝜏 K → ⟨ 𝜎 ⟩ → ⟨ 𝜎 ⟩ :=

match ch with

| CHere ⇒ fun v _ ⇒ v

| CLeft ch’ ⇒ fun v g ⇒ (Update ch’ v (fst g), snd g)

| CRight ch’ ⇒ fun v g ⇒ (fst g, Update ch’ v (snd g))

end.

Instance decidableChoice {TX : Types} (𝜎 : Schema) (𝜏 : type)
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: Decidable (Choice 𝜎 𝜏). �

As an example, IsbnChoice is a choice of BookSchema that points to a leaf node

holding value VARCHAR 20 . Choosing it on a CLRSTuple projects CLRS’s Isbn attribute.

We can also build an almost similar tuple by updating CLRSTuple ’s Isbn attribute with

a new string. Figure 3-3 presents a visual representation of the operations.

Example IsbnChoice : Choice BookSchema (VARCHAR 20) := CRight (CLeft Here).

Eval simpl in (Choose IsbnChoice CLRSTuple)

(* = "9780262033848"

: JVARCHAR 20K
*)

Eval simpl in (Update IsbnChoice "N/A" CLRSTuple)

(* = ("Introduction to A...", ("N/A", 69))

: ⟨ BookSchema ⟩
*)

   (“Introduction to A...”,  (     9780262033848       ,        22 ))

VARCHAR 20

UINT  VARCHAR 20

right

left

Figure 3-3: An example of a choice structure in CoqSQL. As shown, IsbnChoice

points to a leaf whose value is similar to the choice’s parameterized type.
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3.5 Database Structures

With all the basic structures, we are ready to formulate SQL data structures. This

section gives the definitions of the building blocks that form CoqSQL’s database

representation. Every definition is parameterized by a type universe.

Fields A field of a schema is a record consisting of the field’s type and the choice

that points to the field in the schema. There exist coercions from a field to its type

and to its choice structure.

Record Field {TX : Types} (hd : Schema) : Type :=

{

fieldType :> type;

fieldChoice :> Choice hd fieldType;

}.

Arguments fieldType {_ _} _.

Arguments fieldChoice {_ _} _.

Continuing the example, we can declare a field field_Isbn of BookSchema that

encodes the Isbn attribute as follows. Fields for other attributes can also be defined

in a similar manner.

Example IsbnField : Field BookSchema :=

{|

fieldType := VARCHAR 20;

fieldChoice := IsbnChoice;

|}.

Example TitleField : Field BookSchema. �
Example PriceField : Field BookSchema. �

Relations and Indexes A relation consists of a schema and a collection of indexes

in the form of a binary tree. Each index is a list of the schema’s fields, analogously

similar to SQL’s conventional multi-column indexes. An index of a relation is a path

of the relation’s tree of indexes. There is a coercion that implicitly projects a schema

out of a relation.
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Record Relation {TX : Types} :=

{

heading :> Schema;

indexes : Tree (list (Field heading));

}.

Definition Index {TX : Types} (R : Relation) := Path R.(indexes).

We now can declare a relation BookRelation for our book table. Let us assume

there are two indexes in this relation, one solely based on the Isbn attribute and the

other based on the Title and Price attributes. Other relations can also be similarly

defined.

Example BookRelation : Relation :=

{|

heading := BookSchema;

indexes := [ IsbnField :: nil ] � [ TitleField :: PriceField :: nil ];

|}.

Example AccountRelation : Relation. �
Example OrderRelation : Relation. �

Databases and Tables A database is a collection of relations. We use the binary

tree structure to compose multiple relations into a database. We define a table as a

path on a database’s tree of relations.

Definition Database {TX : Types} := Tree Relation.

Definition Table {TX : Types} (DB : Database) := Path DB.

We finish the chapter by building a database structure corresponding to the

example shown in Chapter 1.

Example BookStoreDatabase : Database
:= [AccountRelation] � ([BookRelation] � [OrderRelation]).
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Chapter 4

SQL Specifications

CoqSQL models an SQL database as a transition system with an abstract state.

The transition system, called the SQL specification object, encapsulates the type of

abstract state along with the state-transition step relation for any SQL statement. An

SQL statement is modeled as a method call to an SQL specification object. Different

SQL method calls may be provably equal if they share the same denotation. This

chapter describes the formalization of CoqSQL’s SQL specification object.

4.1 Database Abstract Representation

CoqSQL’s SQL semantics is based on K-Relations [2, 5]. We define the abstract

representation of a relation as a function from a tuple in that relation to the current

number of its appearances. The abstract representation of a database is a function

from a table to the abstract representation of the table’s relation. The initial state

contains no tuples in any table, and is thus represented by the function that returns

zero in all cases.

Definition SQLState {TX : Types} (DB : Database) : Type
:= ∀ (T : Table DB) (R : Relation := Pick T), ⟨ R ⟩ → N.

Definition SQLStateInit {TX : Types} (DB : Database) : SQLState DB := fun _ _ ⇒ 0.
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4.2 Helper Functions

We first discuss helper functions that we declare to facilitate the formalization.

Bool-to-nat Conversion CoqSQL uses notation ‖ X ‖ to represent the conversion

from a Boolean X to a natural number. This conversion allows Boolean values to be

used in relational algebra.

Definition B_to_N (b : B) : N :=

match b with

| true ⇒ 1

| false ⇒ 0

end.

Notation "‖ X ‖" := (B_to_N X) (at level 0).

Dependent Override Dependent override builds a new function similar to a given

function but with exactly one key-value mapping change. Different from the regular

override, overrideDep works on functions with dependent types, where the return

result’s type depends on the input’s type. Note that the procedure requires decidablity

of the function’s argument type.

Section OverrideDep.

Context {Key : Type} {Val : Key → Type} (eq_dec : ∀ p q : Key, {p = q} + {p ̸= q}).

Definition Func := ∀ k, Val k.

Definition overrideDep

(f : Func) (k : Key) (val : Val k) : Func :=

fun k’ ⇒
match eq_dec k’ k with

| left e ⇒ eq_rect_r (fun k’’ : Key ⇒ Val k’’) val e

| right _ ⇒ f k’

end.

Lemma overrideDep_new_val

: ∀ (f : Func) (k : Key) (v : Val k), overrideDep f k v k = v. �
Lemma overrideDep_old_val

: ∀ (f : Func) (k k’ : Key) (v : Val k), k ̸= k’ → overrideDep f k v k’ = f k’. �
End OverrideDep.
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4.3 Query Plans

In CoqSQL, SQL methods are built on top query plans. A query plan represents a

procedure to retrieve data from a database without causing mutation. The language

construct is divided into five parts: expressions, projections, search terms, queries, and

predicates. Figure 4-1 shows examples of relational algebra terms and query plans,

with relation 𝑅 having columns 𝑐1, 𝑐2, 𝑐3 and relation 𝑆 having columns 𝑐4, 𝑐5.

Relational Algebra Terms Query Plan

𝜎c1=𝑣(𝑅)

QueryWhere

(QueryTable R)

(PredEq (ExprField 𝑐1) (ExprValue 𝑣))

Πc1,c5(𝑅 ◁▷ 𝑆)

QueryProj

(QueryJoin (QueryTable 𝑅) (QueryTable 𝑆))

(ProjCombine

(ProjExpr (ExprField (CLeft 𝑐1)))

(ProjExpr (ExprField (CRight 𝑐5))))

{𝑐2 + 𝑐4|(𝑐1, 𝑐2, 𝑐3) ∈

𝑅, (𝑐4, 𝑐5) ∈ 𝑆}

QueryProj

(QueryJoin (QueryTable 𝑅) (QueryTable 𝑆))

(ProjExpr (ExprBinary PLUS

(ProjExpr (ExprField (CLeft 𝑐2)))

(ProjExpr (ExprField (CRight 𝑐4)))))

Figure 4-1: Examples of translation from relational algebras to query plans.
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Expressions An expression represents a scalar value under some context schema.

An expression may be a projection of a field in the context schema, a concrete constant,

or a result of applying one of the type universe’s operators to sub-expressions.

Inductive Expr {TX : Types} : Schema → type → Type :=

| ExprField : ∀ {Γ : Tree type} {𝜏 : type}, Choice Γ 𝜏 → Expr Γ 𝜏

| ExprValue : ∀ {Γ : Schema} {𝜏 : type}, J𝜏K → Expr Γ 𝜏

| ExprConst : ∀ {Γ : Schema} {T : type}, constant T → Expr Γ T

| ExprUnary : ∀ {Γ : Schema} {S T : type}, unary S T → Expr Γ S → Expr Γ T

| ExprBinary : ∀ {Γ : Schema} {S T U : type},

binary S T U → Expr Γ S → Expr Γ T → Expr Γ U

An expression e : Expr Γ 𝜏 is interpreted as a function from e ’s context tuple

(of type ⟨ Γ ⟩ ) to a scalar value of type J𝜏K .

J Γ ⊢ 𝑒 : 𝜏 K : ⟨ Γ ⟩ → J𝜏K

Fixpoint denoteExpr {TX : Types} {Γ : Schema} {𝜏 : type} (expr : Expr Γ 𝜏)

: ⟨ Γ ⟩ → J𝜏K :=

match expr with

| ExprField f ⇒ fun g ⇒ Choose f g

| ExprValue v ⇒ fun g ⇒ v

| ExprConst c ⇒ fun g ⇒ JcK
| ExprUnary f e ⇒ fun g ⇒ JfK (denoteExpr e g)

| ExprBinary f e0 e1 ⇒ fun g ⇒ JfK (denoteExpr e0 g) (denoteExpr e1 g)

end.

Instance DenotationExpr {TX : Types} {Γ : Schema} {𝜏 : type}

: Denotation (Expr Γ T) (⟨ Γ ⟩ → J𝜏K) := {| denote := denoteExpr |}.

Projections A projection represents a conversion from one schema to another,

similar to relational algebra’s projection operation. The main difference is that

CoqSQL’s projection uses the schema’s tree structure to specify the projection while

relational algebra’s projection uses attribute names.
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Inductive Proj {TX : Types} : Schema → Schema → Type :=

| ProjCombine : ∀ {T U V : Schema}, Proj T U → Proj T V → Proj T (U � V)

| ProjStar : ∀ {Γ : Schema}, Proj Γ Γ

| ProjLeft : ∀ {X Y} : Tree type, Proj (X � Y) X

| ProjRight : ∀ {X Y} : Tree type, Proj (X � Y) Y

| ProjExpr : ∀ {Γ : Schema} {T : type}, Expr Γ T → Proj Γ [T].

A projection p : Proj Γ Γ’ is interpreted as a function from a tuple of type ⟨ Γ ⟩

to a tuple of type ⟨ Γ’ ⟩ .

J 𝑝 : Γ⇒ Γ′ K : ⟨ Γ ⟩ → ⟨ Γ′ ⟩

Fixpoint denoteProj {TX : Types} {Γ Γ’ : Schema} (proj : Proj Γ Γ’)

: ⟨ Γ ⟩ → ⟨ Γ’ ⟩ :=

match proj with

| ProjCombine p0 p1 ⇒ fun g ⇒ (denoteProj p0 g, denoteProj p1 g)

| ProjStar ⇒ fun g ⇒ g

| ProjExpr e ⇒ fun g ⇒ denoteExpr e g

| ProjLeft ⇒ fst

| ProjRight ⇒ snd

end.

Instance DenotationProj {TX : Types} {Γ Γ’ : Schema}

: Denotation (Proj Γ Γ’) (⟨ Γ ⟩ → ⟨ Γ’ ⟩) :=

{| denote := denoteProj |}.

Index Search Terms A search term encodes a list of expressions in a context

schema to match a list of fields in a relation schema. There are two constructors.

- SearchTermNil is the base case where the list of fields is empty.

- SearchTermCons adds an expression and field pair on top of another index search

term. Its matching condition is the conjunction of (1) the added expression-field

comparison and (2) the matching result of the remaining fields.

Inductive SearchTerm {TX : Types} {𝜎 : Schema} : Schema → list {Field 𝜎} → Type :=

| SearchTermNil : ∀ Γ : Schema, SearchTerm Γ nil

| SearchTermCons : ∀ (Γ : Schema) (Fs : list (Field 𝜎)) (F : Field 𝜎),

Expr Γ F → SearchTerm Γ Fs → SearchTerm Γ (F :: Fs).
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An index search term m : SearchTerm (𝜎:=𝜎) Γ Fs is interpreted as a function from

m ’s context tuple (of type ⟨ Γ ⟩ ) to a Boolean predicate on the relation schema (of

type ⟨ 𝜎 ⟩ → B ).

J 𝜎,Γ, 𝐹𝑠 ⊢ 𝑚 K : ⟨ Γ ⟩ → ⟨ 𝜎 ⟩ → B

Fixpoint denoteSearchTerm {TX : Types} {𝜎 Γ : Schema} {Fs : list (Field 𝜎))

(st : SearchTerm Γ Fs)

: ⟨ Γ ⟩ → ⟨ 𝜎 ⟩ → B :=

match st with

| SearchTermNil ⇒ fun _ _ ⇒ true

| SearchTermCons f e s ⇒
fun g t ⇒ Choose f t =? denoteExpr e g && denoteSearchTerm s g t

end%B.

Instance DenotationSearchTerm {TX : Types} {𝜎 Γ : Schema} {Fs : list (Field H))

: Denotation (SearchTerm Γ Fs) (⟨ Γ ⟩ → ⟨ 𝜎 ⟩ → B) :=

{| denote := denoteSearchTerm |}.

Update Terms An update term represents a transformation of tuples within the

same schema. Essentially, an update term encodes a list of fields and a list of

expressions to replace those fields when transforming a tuple.

Inductive UpdateTerm {TX : Types} : Schema → Type :=

| UpdateTermNil : ∀ {𝜎}, UpdateTerm H

| UpdateTermCons : ∀ {𝜎} (F : Field 𝜎), Expr 𝜎 F → UpdateTerm 𝜎 → UpdateTerm 𝜎.

An update term u : UpdateTerm 𝜎 is interpreted as a function from a tuple of type

⟨ 𝜎 ⟩ to another tuple of the same type.

Fixpoint denoteUpdateTerm {TX : Types} {𝜎} (ut : UpdateTerm 𝜎) : ⟨ 𝜎 ⟩ → ⟨ 𝜎 ⟩ :=

match ut with

| UpdateTermNil ⇒ fun t ⇒ t

| UpdateTermCons f e u ⇒ fun t ⇒ Update f (denoteExpr e t) (denoteUpdateTerm u t)

end.

Instance DenotationUpdateTerm {TX : Types} {𝜎 : Schema}

: Denotation (UpdateTerm 𝜎) (⟨ 𝜎 → ⟨ 𝜎 ⟩) :=
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{| denote := denoteUpdateTerm |}.

Queries and Predicate In CoqSQL, queries and predicates are defined as mu-

tually inductive types. A query represents a data selection from a database. It is

parameterized by two schemas: the context schema on which the query is performed,

and the structure of the query’s result. A predicate is parameterized by the schema on

which the test is performed. In analogy to SQL, a predicate is what follows a WHERE

clause.

Inductive Query {TX : Types} {DB : Database} : Schema → Schema → Type :=

| QueryTable : ∀ {Γ : Schema} {T : Table DB} (R := Pick T), Query Γ R

| QueryIndex : ∀ {Γ : Schema} {T : Table DB} (R := Pick T),

∀ idx : Index R, SearchTerm Γ (Pick idx) → Query Γ R

| QueryUnion : ∀ {Γ H : Schema}, Query Γ H → Query Γ H → Query Γ H

| QueryDistinct : ∀ {Γ H : Schema}, Query Γ H → Query Γ H

| QueryWhere : ∀ {Γ H : Schema}, Query Γ H → Pred (Γ � H) → Query Γ H

| QueryJoin : ∀ {Γ X Y : Schema},

Query Γ X → Query (Γ � X) Y → Query Γ (X � Y)

| QueryProj : ∀ {Γ X Y : Schema}, Query Γ X → Proj X Y → Query Γ Y

with Pred {X : Types} {DB : Database} : Schema → Type :=

| PredExists : ∀ {Γ 𝜎 : Schema}, Query Γ 𝜎 → Pred Γ

| PredEq : ∀ {Γ : Schema} {𝜏 : type}, Expr Γ 𝜏 → Expr Γ 𝜏 → Pred Γ

| PredNeg : ∀ {Γ : Schema}, Pred Γ → Pred Γ

| PredAnd : ∀ {Γ : Schema}, Pred Γ → Pred Γ → Pred Γ

| PredOr : ∀ {Γ : Schema}, Pred Γ → Pred Γ → Pred Γ

| PredTrue : ∀ {Γ : Schema}, Pred Γ

| PredFalse : ∀ {Γ : Schema}, Pred Γ

| PredCast : ∀ {Γ Γ’ : Schema}, Pred Γ → Proj Γ’ Γ → Pred Γ’

A query q : Query Γ 𝜎 is interpreted as a function from q ’s context tuple (of type

⟨ Γ ⟩ ) to a K-Relations representation of the result (of type ⟨ 𝜎 ⟩ → N ). A predicate

b : Pred Γ is interpreted as a function from b ’s context tuple to a Boolean.

J Γ ⊢ 𝑞 : 𝜎 K : ⟨ Γ ⟩ → ⟨ 𝜎 ⟩ → N

J Γ ⊢ 𝑏 K : ⟨ Γ ⟩ → B
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Fixpoint denoteQuery {TX : Types} {DB : Database} (state : SQLState DB)

{Γ 𝜎 : Schema} (query : Query (DB:=DB) Γ 𝜎) : ⟨ Γ ⟩ → ⟨ 𝜎 ⟩ → N :=

match query with

| QueryTable tb ⇒ fun g t ⇒ state tb t

| QueryIndex tb idx st ⇒ fun g t ⇒ ‖denoteSearchTerm st g t‖ × state tb t

| QueryUnion s0 s1 ⇒ fun g t ⇒ denoteQuery state s0 g t + denoteQuery state s1 g t

| QueryDistinct s ⇒ fun g t ⇒ ‖0 <? denoteQuery state s g t‖
| QueryWhere s p ⇒ fun g t ⇒ ‖denotePred state p (g, t)‖ × denoteQuery state s g t

| QueryJoin s0 s1 ⇒
fun g t ⇒ denoteQuery state s0 g (fst t) ×

denoteQuery state s1 (g, fst t) (snd t)

| QueryProj s p ⇒
fun g t ⇒ fold (fun t’ acc ⇒

acc + ‖t =? denoteProj p t’‖ × (denoteQuery state s g t’)) 0

end

with denotePred {TX : Types} {DB : Database} (state : SQLState DB)

{Γ : Schema} (pred : Pred (DB:=DB) Γ) : ⟨ Γ ⟩ → B :=

match pred with

| PredExists s ⇒
fun g ⇒ fold (fun t acc ⇒ acc || (0 <? denoteQuery state s g t)) false

| PredEq e0 e1 ⇒ fun g ⇒ denoteExpr e0 g =? denoteExpr e1 g

| PredNeg p ⇒ fun g ⇒ negb (denotePred state p g)

| PredAnd p0 p1 ⇒ fun g ⇒ denotePred state p0 g && denotePred state p1 g

| PredOr p0 p1 ⇒ fun g ⇒ denotePred state p0 g || denotePred state p1 g

| PredTrue ⇒ fun _ ⇒ true

| PredFalse ⇒ fun _ ⇒ false

| PredCast pred proj ⇒ fun g ⇒ denotePred state pred (denoteProj proj g)

end%B.

4.4 SQL Methods

An SQL method corresponds to an SQL statement in conventional SQL. CoqSQL

models SQL methods on top of query plans. The following is the inductive definition

of SQL methods, consisting of select, insert, delete, and update clauses.

Inductive SQLMethod (TX : Types) (DB : Database) : Type → Type :=

| SQLSelect : ∀ {𝜎 : Schema}, Query [unit_t] 𝜎 → SQLMethod DB (list ⟨ 𝜎 ⟩)
| SQLInsert : ∀ (T : Table DB) (R := Pick T), ⟨ R ⟩ → SQLMethod DB unit

| SQLDelete : ∀ (T : Table DB) (R := Pick T), Pred R → SQLMethod DB unit

| SQLUpdate : ∀ (T : Table DB) (R := Pick T),

UpdateTerm R → Pred R → SQLMethod DB unit.

An SQL method acts as a label in the transition system. We define an evaluation
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step relation for our SQL specification that shows possible transitions, given an SQL

method, from an SQL state to another state with a return result.

Inductive SQLEval {TX : Types} (DB : Database)

: ∀ {Ret}, SQLMethod DB Ret → SQLState DB → Ret → SQLState DB → Prop :=

| SQLSelectEval :

∀ H st (query : Query [unit_t] H) ret,

(∀ t, count_occ eq_dec ret t = denoteQuery st query tt_t t)

→ SQLEval DB (SQLSelect DB query) st ret st

| SQLInsertEval :

∀ tb tp st,

SQLEval DB (SQLInsert DB tb tp) st tt

(overrideDep eq_dec st tb (fun t ⇒ ‖tp =? t‖ + st tb t))

| SQLDeleteEval :

∀ tb pred st,

SQLEval DB (SQLDelete DB tb pred) st tt

(overrideDep eq_dec st tb (fun t ⇒ ‖negb (denotePred st pred t)‖ × st tb t))

| SQLUpdateEval :

∀ tb ut pred st,

SQLEval DB (SQLUpdate DB tb ut pred) st tt

(overrideDep eq_dec st tb

(fun t ⇒ fold (fun t’ acc ⇒ acc + ‖ if denotePred st pred t’

then t =? denoteUpdateTerm ut t’

else t =? t’ ‖ × st tb t’) 0)).

4.5 SQL Specification Objects

At this point, an SQL specification object for a database can be created using SQLState

as the state and SQLEval as the transition relation. This object represents the correct

behavior that SQL implementations must follow.

Definition SQLObject {TX : Types} (DB : Database) : Object (SQLMethod DB) :=

{|

State := SQLState DB;

EvalInstruction := @SQLEval TX DB;

|}.

To achieve a transactional SQL semantics, a programmer first declares a database

structure and a program for high-level methods on top of the SQL methods from that

database.
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Example ExampleDatabase : Database. �
Example ExampleMethod : Type → Type. �
Example ExampleProgram

: ∀ Ret, ExampleMethod Ret → Program (SQLMethod database) Ret. �

After that, an abortable implementation and its initial state for the methods must

be created. Any strategy to build the implementation is acceptable. In Chapter 6,

we will present a library that automatically creates an implementation for users.

Example ExampleImplementation : Implementation (Abortable ExampleMethod). �
Example ExampleInitialState : ExampleImplementation.(implBase).(State). �

This implementation can be extracted to an executable program via the Trans-

actions framework’s extraction mechanism. To ensure that the implementation is

correct, the developer must prove that the thread behavior of the implementation can

be simulated by the transactional semantics of the SQL specification object’s serial

implementation. This proof is automatically done if the implementation is synthesized

via CoqSQL’s library.

Example ExampleImplementationCorrect

: Simulates

(ThreadsBehavior ExampleImplementation)

(superposition

(ThreadsBehavior

(serialImplementation

(abortableObject

(methodObject

(programObject (SQLObject ExampleDatabase)) ExampleProgram)))))

(pair nil ExampleInitialState)

(eq (pair nil (SQLStateInit ExampleDatabase))). �
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Chapter 5

Implementations

In addition to the complete specifications, CoqSQL comes with naive implementa-

tions of SQL databases. This chapter discusses the strategy that CoqSQL uses to

systematically synthesize the SQL database implementation of any database schema

with the proof of correctness.

5.1 SQL Table Specification Objects

To modularize the synthesis process, we introduce SQL table methods and SQL

table specification objects. They represent low-level database operations and their

semantics. These operations are significantly simpler than ordinary SQL statements.

For instance, SQLTableDelete directly takes a function from a tuple to a Boolean as the

predicate. SQLTableSelectIndex takes a search term (of type SearchTerm Γ (Pick idx) )

and a context tuple (of type ⟨ Γ ⟩ ) that contains free variables in the search term.

CoqSQL first synthesizes the implementation of the low-level SQL table methods.

The synthesis results are later used to build the implementation of the higher-level

SQL methods.

Inductive SQLTableMethod {TX : Types} (DB : Database) : Type → Type :=

| SQLTableSelectTable :

∀ (T : Table DB) (R := Pick T), SQLTableMethod DB (list ⟨ R ⟩)
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| SQLTableSelectIndex :

∀ {Γ : Schema} (T : Table DB) (R := Pick T) (idx : Index R),

⟨ Γ ⟩ → SearchTerm Γ (Pick idx) → SQLTableMethod DB (list ⟨ R ⟩)
| SQLTableInsert :

∀ (T : Table DB) (R := Pick T), ⟨ R ⟩ → SQLTableMethod DB unit

| SQLTableDelete :

∀ (T : Table DB) (R := Pick T), (⟨ R ⟩ → B) → SQLTableMethod DB unit

| SQLTableUpdate :

∀ (T : Table DB) (R := Pick T), (⟨ R ⟩ → ⟨ R ⟩) → SQLTableMethod DB unit.

Definition SQLTableObject {TX : Types} (DB : Database) : Object (SQLTableMethod DB) :=

{|

State := SQLState DB;

EvalInstruction := @SQLTableMethodEval TX DB

|}.

5.2 SQL Table Implementations

Recall that the SQL database structure is a tree of relations. We break the process

of building the implementation of SQL table methods into two cases: the base case

where the database is a singleton tree, and the inductive case where the database is a

tree consisting of two sub-databases.

5.2.1 Single Table Implementation

We use a list of tuples as the concrete representation of a singleton database. The

Transactions framework’s map structure (from unit to a list of tuples) is used as the

base structure. Note that this is a degenerate use of maps as registers.

Module Unit.

Definition t := unit.

Definition eq_dec : ∀ p q : unit, {p = q} + {p ̸= q}. �
End Unit.

Module UnitPMap := PMapFun Unit.

Using a list as the internal representation, implementing a program for SQL table

methods is straightforward. Relevant details are given below. At the end, we prove

that the implementation object simulates the SQL table specification object.
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Section SQLTableList.

Context {TX : Types}

(R : Relation).

Definition ListPStruct := UnitPMap.pStruct.

Definition ListImplProg {Ret} (method : SQLTableMethod [R] Ret)

: Program (Map.MapMethod unit (list ⟨ R ⟩)) Ret :=

match method with

| SQLTableSelectTable _ _ _ ⇒ tps ← Map.get tt;

Return (list_or_nil tps)

| SQLTableInsert _ _ t ⇒ tps ← Map.get tt;

_ ← Map.put tt (t :: (list_or_nil tps));

Return tt

(* More cases *) ...

end.

Definition ListImplObject : Object (SQLTableMethod [R]). �
Definition ListImplInit : ListImplObject.(State). �
Theorem ListImpl_ok :

Simulates ListImplObject (SQLTableObject [R]) ListImplInit (SQLStateInit [R]). �
End SQLTableList.

5.2.2 Table Implementation Composer

For the inductive case, we build a more-complicated database implementation using

the Transactions framework’s pair combinator on top of SQL table methods of the sub-

databases. Logically, the implementation of the composed database simply dispatches

the method calls to the proper lower-level interfaces. The only nontrivial part is

to convince Coq’s type checker that the types of method calls’ arguments match

appropriately with the types of lower-level interfaces.

Section SQLTableProduct.

Context {TX : Types}.

(DL DR : Database).

Definition ProdImplProg {Ret} (method : SQLTableMethod (DL � DR) Ret)

: Program (PairMethod (SQLTableMethod DL) (SQLTableMethod DR)) Ret.

Proof.

match method with

| SQLTableSelectTable _ tb ⇒
match tb in Path schm
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return (match schm return Path schm → _ with

| [ _ ] ⇒ fun _ ⇒ IDProp

| u � v ⇒ fun tb’ ⇒ Program (_ u v) (list ⟨ Pick tb’ ⟩)
end tb) with

| PHere ⇒ idProp

| PLeft tb’ ⇒ ret ← inl (SQLTableSelectTable _ tb’);

Return ret

| PRight tb’ ⇒ ret ← inr (SQLTableSelectTable _ tb’);

Return ret

end

(* More cases *) ...

end.

Definition ProdImplObject : Object (SQLTableMethod (DL � DR)). �
Definition ProdImplInit : ProdImplObject.(State). �
Lemma ProdImpl_ok :

Simulates

ProdImplObject (SQLTableObject (DL � DR))

ProdImplInit (SQLStateInit (DL � DR)). �
End SQLTableProduct.

5.3 Naive Database Engine

Next, we create an implementation object for SQL methods on top of SQL table

methods. We call such implementation a database engine. CoqSQL includes a naive

database engine that performs basic list operations corresponding to SQL query plans

and properly calls SQL table methods for low-level operations.

Section NaiveEngine.

Context {TX : Types}.

(DB : Database).

Fixpoint EngineImplProgQuery {Γ 𝜎} (ctx : ⟨Γ⟩) (query : Query Γ 𝜎)

: Program (SQLTableMethod DB) (list ⟨𝜎⟩) :=

match query in Query Γ 𝜎 return ⟨Γ⟩ → Program (SQLTableMethod DB) (list ⟨𝜎⟩) with

| QueryTable tb ⇒ fun c ⇒ r ← SQLTableSelectTable _ tb;

Return r

| QueryIndex tb idx st ⇒ fun c ⇒ r ← SQLTableSelectIndex _ tb idx c st;

Return r

| QueryUnion s0 s1 ⇒ fun c ⇒ r0 ←− EngineImplProgQuery c s0;

r1 ←− EngineImplProgQuery c s1;

Return (r0 ++ r1)

(* More cases *) ...
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end ctx

with EngineImplProgPred {Γ} (ctx : ⟨Γ⟩) (pred : Pred Γ)

: Program (SQLTableMethod DB) B :=

match pred with

| PredExists s ⇒ fun c ⇒ r ←− EngineImplProgQuery c s;

Return (negb (r =? nil))

| PredEq e0 e1 ⇒ fun c ⇒ Return (denoteExpr e0 c =? denoteExpr e1 c)

(* More cases *) ...

end ctx.

Definition NaiveEngineImplProg {Ret} (method : SQLMethod DB Ret)

: Program (SQLTableMethod DB) Ret :=

match method with

| SQLSelect _ sel ⇒ EngineImplProgQuery (Γ := [unit_t]) tt_t sel

| SQLDelete _ tb pred ⇒
tps ←− EngineImplProgQuery (Γ := [unit_t]) tt_t

(QueryWhere (QueryTable tb) (PredCast pred ProjRight));

_ ← SQLTableDelete _ tb (fun t ⇒ if in_dec eq_dec t tps then true else false);

Return tt

(* More cases *) ...

end.

Definition NaiveEngineImplObject : Object (SQLMethod DB).

Definition NaiveEngineImplInit : NaiveEngineImplObject.(State).

Theorem NaiveEngineImpl_ok :

Simulates

NaiveEngineImplObject (SQLObject DB) NaiveEngineImplInit (SQLStateInit DB). �
End NaiveEngine.

5.4 Synthesis Module

The last step is to glue together the whole pipeline to create an SQL implementation

of the base machine interface. We use flattenPStruct and mapPStruct combinators to

build the predicated structure for any database schema. It follows that the predicated

structure’s behavior simulates the SQL specification object.

Fixpoint SQLVal {TX : Types} (db : Database) : Type :=

match db with

| [ r ] ⇒ list ⟨ r.(heading) ⟩
| tl � tr ⇒ sum (SQLVal tl) (SQLVal tr)

end.

Fixpoint SQLTablePStruct {TX : Types} (db : Database)

51



: PStruct (SQLTableMethod db) (SQLVal db) :=

match db with

| [ r ] ⇒ flattenPStruct (@ListImplProg _ r) (ListPStruct (SQLVal [r]))

| tl � tr ⇒ flattenPStruct (@ProdImplProg _ tl tr)

(pairPStruct (mapPStruct inlInjection (SQLTablePStruct tl))

(mapPStruct inrInjection (SQLTablePStruct tr)))

end.

Definition SQLPStruct {TX : Types} (db : Database)

: PStruct (SQLMethod db) (SQLVal db) :=

flattenPStruct (@BasicEngineImplProg _ _) (SQLTablePStruct db).

Lemma SQLPStructSim {TX : Types} (db : Database)

: Simulates (SQLPStruct db).(pStructSpec) (SQLObject db)

(SQLPStruct db).(pStructSpecInit) (SQLStateInit db). �

The EngineArgs module type encapsulates the necessary information for a database

including the schema, the methods, and the abstract implementation. The EngineDatabase

module, given an instance of EngineArgs , creates an extractable SQL implementation

with its linearizabilty proof. At this point, users can use this module to synthesize a

naive database implementation only by giving a database structure and a program

implementation on top of the SQL abstract methods!

Module Type EngineArgs.

Parameter TX : Types.

Parameter database : Database.

Parameter method : Type → Type.

Parameter implProg : ∀ Ret, method Ret → Program (SQLMethod database) Ret.

End EngineArgs.

Module EngineDatabase (E : EngineArgs).

...

...

Definition pStruct := SQLPStruct database.

...

Definition Impl : Implementation (Abortable method) :=

mapImplementation (mapAbortable implProg) (tStructImpl pStruct tm).

...

Lemma Impl_ok :

Simulates

(ThreadsBehavior Impl)

(superposition

(ThreadsBehavior
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(serialImplementation

(abortableObject (methodObject (programObject (SQLObject _)) implProg)))))

(nil, tStructInitState pStruct tm tmInit)

(eq (nil, SQLStateInit _)). �
End EngineDatabase.

It is important to note that the index structures are not used in our naive database

engine. It is future work to create a more optimized verified engine that takes

advantages of indexes (see Section 7.2).
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Chapter 6

Improving CoqSQL’s Usability

This chapter discusses an attempt to improve CoqSQL’s usability for ordinary users.

At the end, we evaluate CoqSQL by showing a number of complicated use cases that

the framework is able to handle.

6.1 Named-to-Unnamed Translation

CoqSQL uses the unnamed approach to represent SQL schemas to avoid naming

collisions. Although such a representation simplifies SQL formalizations, it makes

writing SQL statements harder for human programmers. The section presents a

more SQL-like language that can be translated to the unnamed SQL presented in

the previous chapters. The translation process is completely unverified, and its sole

purpose is to improve CoqSQL’s usability.

6.1.1 Bounded Index Structure

Inspired by Fiat [4], CoqSQL uses the bounded index structure to encapsulate a

position in a vector. The idea is that the value at the position is encoded in the bounded

index structure. With some custom Ltac, we can make Coq’s typeclass resolution

automatically construct an IndexBound property of a BoundedIndex by searching through

the vector to find the position at which the value matches bindex .
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Class IndexBound {A : Type} (n : N) (a : A) (Bound : Vector.t A n) :=

{

ibound : Fin.t n;

boundi : Bound[@ibound] = a;

}.

Class BoundedIndex {A : Type} (n : N) (Bound : Vector.t A n) :=

{

bindex : A;

indexb : IndexBound bindex Bound

}.

Notation "`` idx" := ({| bindex := idx |}) (at level 0).

6.1.2 Indexed Vector

Next, we define the indexed vector structure. An iVector encapsulates a vector of

values ( vecVals ) and a vector of their names ( vecNames ). This abstraction allows

any position in the vector to be referred to the string value in vecNames . We define

iVectorIndex as a datatype for storing some position in an indexed vector. iVectorAt

projects the value at the corresponding position in vecVals .

Record iVector (A : Type) :=

{

vecSize : N;
vecNames : Vector.t string vecSize;

vecVals : Vector.t A vecSize;

}.

Definition iVectorIndex {A} (v : iVector A) :=

BoundedIndex v.(vecNames).

Definition iVectorAt {A} {v : iVector A} (index : iVectorIndex v) :=

v.(vecVals)[@index.(indexb).(ibound)].

We can “name” every element in a Coq vector v : Vector.t A by building an

indexed vector that has v as its vecVals . Thanks to Coq’s typeclass resolution, a

position in the indexed vector can be constructed from a string that matches some

member of vecNames . After that, the element in vecVals with the exact same position

can be projected using iVectorAt . Following is an example usage of indexed vectors.
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Definition SampleVecVals : Vector N := [1; 2; 3; 4].

Definition SampleVecNames : Vector string := ["A"; "B"; "C"; "D"].

Definition SampleIVector : iVector N :=

{|

vecSize := 4;

vecNames := SampleVecNames;

vecVals := SampleVecNames;

|}.

Definition SampleIndex : iVectorIndex SampleIVector := ``"B".

Eval simpl in (iVectorAt SampleIVector SampleIndex)

(* = 2

: N
*)

6.1.3 Vector-to-Tree Conversion

An indexed vector can be easily translated to a right-heavy tree as shown below. Note

that iVectorTree takes a default value e in case the input vector is empty.

Fixpoint iVectorTree’ {A n} (e : A) (v : Vector.t A n) : Tree A :=

match v with

| [] ⇒ [ e ]

| Vector.cons _ h _ [] ⇒ [ h ]

| Vector.cons _ h _ v’ ⇒ [ h ] � iVectorTree’ e v’

end.

Definition iVectorTree {A} (e : A) (v : iVector A) : Tree A :=

iVectorTree’ e v.(vecVals).

6.1.4 Named Data Representations

We finish this section by showing the named SQL data representations that CoqSQL

uses. The idea is to combine the original tree structure with indexed vectors to build

richer structures that allow uses to specify everything by names.

Schemas A schema for the named representation is a record consisting of the original

schema structure and an indexed vector of the schema’s fields.
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Record NSchema {TX : Types} :=

{

rTree : Schema;

rFields : iVector (Field rTree);

}.

Relations A relation consists of a named schema and a tree of indexes. Note that

we do have names for indexes because conventional SQL statements do not include

indexes.

Record NRelation {TX : Types} :=

{

rState : NSchema;

rIndexes : Tree (list (Field rState.(rTree)));

}.

Databases A database consists of a tree structure of relations and an indexed vector

to use for mapping a table name to the path in the tree structure.

Record NDatabase {TX : Types} :=

{

rRelTree : Tree NRelation;

rPaths : iVector (Path rRelTree);

}.

SQL statements for the named representations are roughly similar to what was

presented in Chapter 4. We skipped the discussion to avoid redundancy in this thesis.

We also define a number of Coq notations to make writing SQL statements intuitive.

Their usages are shown in Section 6.3.

6.2 Simple SQL Type Universe

CoqSQL comes with a type universe instance that encapsulates a subset of SQL

types. It consists of four standard types, including UNIT , BOOL , UINT , and VARCHAR n ,

and the proof that all the types are finite and decidable.
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Inductive SQLType := UNIT | BOOL | UINT | VARCHAR (n : N).

Instance denotationSQLType : Denotation SQLType Type :=

{

denote := fun t ⇒ match t with

| UNIT ⇒ unit

| BOOL ⇒ B
| UINT ⇒ { n : N | n <= 2 ^ 32 - 1 }

| VARCHAR n ⇒ { s : string | length s <= n. }

end

}.

Instance finiteType : ∀ 𝜏 : SQLType, Finite J𝜏K. �
Instance decidableType : ∀ 𝜏 : SQLType, Decidable J𝜏K. �

In addition, the type universe contains a number of SQL binary operations, includ-

ing PLUS , MULT , MINUS , and ISLE . For arithmetic operations, the result value wraps

around upon reaching 232. The preloaded SQL type universe neither includes constant

nor unary operations, but extending it to support more operations is straightforward

for users.

Instance denotationBinary S T U

: Denotation (SQLBinary S T U) (JSK → JTK → JUK) :=

{

denote := fun c ⇒ match c with

| PLUS ⇒ fun e1 e2 ⇒ n_to_UINT (proj1_sig e1 + proj1_sig e2)

| MULT ⇒ fun e1 e2 ⇒ n_to_UINT (proj1_sig e1 × proj1_sig e2)

| SUB ⇒ fun e1 e2 ⇒ n_to_UINT (proj1_sig e1 - proj1_sig e2)

| ISLE ⇒ fun e1 e2 ⇒ proj1_sig e1 ≤? proj1_sig e2

end

}.

Instance SQLTypes : Types :=

{

type := SQLType;

denotationType := denotationSQLType;

...

...

}.
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6.3 Evaluation

We evaluate CoqSQL through a few interesting use cases to show that the framework

is capable of handling complicated SQL queries.

6.3.1 Bookstore Database

We first revisit the example presented in the introduction. The database consists

of three tables ( "ACCOUNT" , "BOOK" , and "ORDER" ) and five methods. We discuss the

interesting features that the implementation uses in detail.

Module BookStoreDatabaseArgs.

...

...

Definition implProg Ret (m : method Ret) : Program (SQLMethod database) Ret :=

match m with

...

...

| placeOrder id isbn ⇒
bal ← QUERY SELECT VAR("a.Balance") AS "bal"

FROM "ACCOUNT" AS "a" WHERE VAR("a.Id") == VAL(id);

price ← QUERY SELECT VAR("b.Price") AS "price"

FROM "BOOK" AS "b" WHERE VAR("b.Isbn") == VAL(isbn);

match bal, price with

| [ bal’ ], [ price’ ] ⇒
if price’ ≤? bal’ : B
then _ ← INSERT INTO "ORDER" VALUES (id ,, isbn);

_ ← UPDATE "ACCOUNT" SET "Balance" = VAR("Balance") - VAL(price’)

WHERE VAR("Id") == VAL(id);

Return true

else Return false

| _, _ ⇒ Return false

end

| removeAccount id ⇒
_ ← DELETE FROM "ACCOUNT" WHERE VAR("Id") == VAL(id);

_ ← DELETE FROM "ORDER" WHERE VAR("AccountId") == VAL(id);

Return tt

end.

End BookStoreDatabaseArgs.
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placeOrder involves a consistency check between values from two separate queries

before calling two atomic SQL operations (one insert clause and one update clause).

The transaction semantics guarantees that either (1) both an order is placed and the

balance is deducted or (2) none of them is completed.

removeAccount shows that the framework is able to handle atomic deletion. In

other words, other SQL executions cannot interleave between the two delete clauses.

Thus, it is guaranteed that if an account is removed, other SQL queries must not see

any order associated with that account.

6.3.2 School Database

Another example is a database for a school’s office of the registrar. Users use the

database to store information about students, faculty, and courses. It involves a

numbers of nontrivial SQL queries. We use this example to show that CoqSQL is

able to handle complicated SQL queries.

Module SchoolDatabaseArgs.

...

...

Definition schema :=

DATABASE ⟨
TABLE "STUDENT" ⟨ "Id" ::: UINT; "Name" ::: VARCHAR 20 ⟩;
TABLE "FACULTY" ⟨ "Id" ::: UINT; "Name" ::: VARCHAR 20 ⟩;
TABLE "COURSE" ⟨ "Id" ::: UINT; "FacultyId" ::: UINT ⟩;
TABLE "REGISTRATION" ⟨ "StudentId" ::: UINT; "CourseId" ::: UINT ⟩

⟩.
...

...

Definition implProg Ret (m : method Ret) : Program (SQLMethod database) Ret :=

match m with

...

...

| allNames ⇒
r ← QUERY

SELECT DISTINCT

(SELECT VAR("s.Name") AS "name" FROM "STUDENT" AS "s")

UNION
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(SELECT VAR("f.Name") AS "name" FROM "FACULTY" AS "f");

Return r

| studentsOfFaculties facultyName ⇒
r ← QUERY

SELECT DISTINCT

SELECT VAR("r.StudentId") AS "id"

FROM "REGISTRATION" AS "r"

JOIN "COURSE" AS "c" JOIN "FACULTY" AS "f"

WHERE VAR("r.CourseId") == VAR("c.Id")

AND VAR("c.FacultyId") == VAR("f.Id")

AND VAR("f.Name") == VAL(facultyName);

Return r

| teachingFaculties ⇒
r ← QUERY

SELECT VAR("f.Name") AS "name"

FROM "FACULTY" AS "f"

WHERE (EXISTS SELECT * FROM "COURSE" AS "c"

WHERE VAR("c.FacultyId") == VAR("f.Id"));

Return r

end.

End SchoolDatabaseArgs.

allNames shows the framework’s ability to synthesize queries involving DISTINCT

and UNION clauses. Note that it successfully merges the query results from two

different relations.

studentsOfFaculties involves joining three relations to find relevant information.

The SQL query involves two comparisons of tuples from different relations and one

comparison with an outside parameter.

teachingFaculties uses an SQL EXISTS predicate where the condition inside the

predicate involves the outer query result.
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Chapter 7

Related Work and Future Research

7.1 Related Work

Verified Relational Database Systems Malecha et al. [7] introduced a fully

verified relational database implementation in Coq with support for efficient data

models, including B+Trees, and query optimization via runtime cost estimation.

Although the system supports most SQL features, it lacks the “ACID” guarantee,

which is essential in any concurrent system. Additionally, the system is not primarily

designed for extensibility and ease of usage. CoqSQL aims to solve both of the

problems (minus the “D” durability part of “ACID”) while still providing a similar

formal correctness guarantee.

SQL Formal Semantics There exist a number of studies in SQL formal semantics,

both from the formal-methods community and the database-theory community. One

approach is to model an SQL relation as a list of tuples [7, 10]. An SQL query

becomes a function that returns a list, and two queries are equivalent if one’s result is

a permutation of the other’s. Although this approach is intuitive, proving correctness

under this semantics is often lengthy and difficult. Another approach, K-Relations [5],

represents an SQL relation as a function mapping from a tuple to the number of its

occurrences. However, in order to have K-Relations semantics for projections, the set
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of all possible tuples must be finite. A workaround has been introduced in HottSQL [2],

which uses univalent types as the values of the function instead of natural numbers.

While this allows the semantics to support projections without a finiteness requirement

via Sigma types, it is not directly computable, and is useful only for proving theorems.

CoqSQL chooses to adopt K-relations as well, but explicitly requires the proof of

finiteness for all SQL types from users.

Proof-Guided Deductive Synthesis Deductive synthesis [8] is a technique used

for synthesizing a computer program from a given specification. Starting from a

declarative goal, the system converts the goal into a theorem-proving task. The task

can be solved using a set of deductive rules. The synthesis process finishes once

the theorem is successfully proved. CoqSQL’s synthesis work is mainly inspired by

Fiat [4], a deductive system that allows users to synthesize programs from declara-

tive specifications with a high level of automation. Users start with an expressive

specification of a program and repeatedly refine the specification until they reach

a concrete implementation. Each refinement step leaves a proof trace showing its

correctness. In CoqSQL, the framework starts from a high-level specification of the

implementation via the Transactions Framework’s abstract object. The framework

then stepwisely synthesizes the implementation as it progresses through proving SQL

correctness theorems.

7.2 Future Research

Overall this research has achieved the goal set at the beginning of the project. However,

there is some room for improvement that we noticed while developing CoqSQL.

More SQL Features CoqSQL supports most SQL features, but not all. In

particular, it would be useful to make CoqSQL support SQL aggregation. One

possible idea is to include aggregator operations into the type universe typeclass.
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Class Types :=

{

...

...

aggregator : type → type → Type;

denotationAggregator : ∀ S T, Denotation (aggregator S T) ((JSK → N) → JTK);
}.

This change makes adding aggregation to our SQL specification trivial. However,

unlike other operations (constant, unary, and binary), the implementation of aggrega-

tion is not as simple because it involves iterating through a concrete SQL representation

(which is not a function from a tuple to a natural number). Furthermore, CoqSQL

would be even more useful if it supported the GROUP BY operation. HottSQL’s

specification desugars a GROUP BY clause into a complex nested SELECT clause.

Unfortunately, we have not spent much time investigating it.

More Efficient Implementations The library included in CoqSQL only provides

users with naive database implementations. While the provided list implementations

are correct, they are arguably inefficient. Modern database systems often use com-

plicated structures such as B+Trees or hash tables to manage data. Therefore, one

important improvement for CoqSQL is to include those structures in the library. It

would be an interesting research problem to make the framework able to synthesize

and choose the most efficient data structure for a database’s representation given that

the information about the SQL statements that will be executed and the set of indexes

that will be used are known beforehand.

SQL Optimization Flow As of now, users are able to show that two SQL state-

ments are equivalent by proving that their denotations are equivalent. It would be

useful if CoqSQL automatically rewrote SQL queries for users to increase their

efficiency. One major improvement is to make the framework pick the correct index

for an SQL query that involves selecting every row in a table and filtering the result

with some predicate.
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