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Abstract. Semantic preservation by compilers for higher-order languages
can be verified using simple syntactic methods. At the heart of classic
techniques are relations between source-level and target-level values. Un-
fortunately, these relations are specific to particular compilers, leading
to correctness theorems that have nothing to say about linking programs
with functions compiled by other compilers or written by hand in the tar-
get language. Theorems based on logical relations manage to avoid this
problem, but at a cost: standard logical relations do not apply directly
to programs with non-termination or impurity, and extensions to han-
dle those features are relatively complicated, compared to the classical
compiler verification literature.

In this paper, we present a new approach to “open” compiler correctness
theorems that is “syntactic” in the sense that the core relations do not
refer to semantics. Though the technique is much more elementary than
previous proposals, it scales up nicely to realistic languages. In particular,
untyped and impure programs may be handled simply, while previous
work has addressed neither in this context.

Our approach is based on the observation that it is an unnecessary hand-
icap to consider proofs as black boxes. We identify some theorem-specific
proof skeletons, such that we can define an algebra of nondeterministic
compilations and their proofs, and we can compose any two compila-
tions to produce a correct-by-construction result. We have prototyped
these ideas with a Coq implementation of multiple CPS translations for
an untyped Mini-ML source language with recursive functions, sums,
products, mutable references, and exceptions.

1 Introduction

Compiler verification is a long-standing area of interest within computer science.
Because it is relatively straightforward to give precise semantics to programming
languages, we can state clear theorems characterizing when a compiler is correct.
Such a compiler preserves the observable behavior of programs. Verification holds
the promise of decreasing the cost of building compilers that operate correctly
most of the time.

Mechanized compiler verification, where a computer checks the proofs, was
first studied seriously by Moore (1989), who used the Boyer-Moore prover to
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verify an entire programming language stack, culminating in a first-order lan-
guage called Piton. However, only in the last 10 years has the research area re-
ally taken off, probably due to a mixture of increases in hardware capacity and
improvements to theorem-proving algorithms and implementations. The Com-
pCert verified C compiler project (Leroy 2006) is one of the best-known among
the recent projects.

There have also been many studies of compiler verification for functional
languages (Minamide and Okuma 2003; Tian 2006; Chlipala 2007; Dargaye and
Leroy 2007; Chlipala 2008; Benton and Hur 2009; Chlipala 2010). At the core
of each of these proofs is some relation between intermediate values occurring
in program execution. By ensuring that source and compiled programs maintain
related values throughout execution, one can prove semantic preservation induc-
tively. The different proofs may be be divided usefully into the broad categories
of “syntactic” and “semantic” proofs.

Syntactic proofs use value relations that do not mention the semantics of pro-
grams. Instead, a source function f is said to be related to a target function g if g
is the result of compiling f with this particular compiler. The syntactic approach
leads to some very straightforward proofs that, for simple object languages, are
tractable to write out in full detail as natural deduction proof trees. A serious
downside, however, is that a correctness theorem of this kind has nothing to say
about linking with target language functions produced by a different compiler
or written by hand. Essentially no real programs run only code produced by a
single compiler, so this downside is more than just theoretical.

Semantic proofs use variants of the classic technique of logical relations (Plotkin
1973), which defines binary relations by recursion on object language type struc-
ture. Some of our past work for strongly-normalizing languages (Chlipala 2007,
2008) applied this standard technology. Benton and Hur (2009) consider more
ambitious verification problems, applying step-indexed logical relations (Ahmed
2006) and >>-closure (Pitts and Stark 1998) to treat an object language with
general-recursive functions.

The approach of Benton and Hur adds significant complexity beyond that
of syntactic techniques. Step-indexed logical relations break cycles in relation
definitions by introducing explicit accounting of how many steps programs run
for, and>>-closure involves explicit reasoning about evaluation contexts. Classic
syntactic proofs avoid both dimensions of complexity by using simple induction
over evaluation derivations; details that semantic proofs incorporate in their
logical relations are instead present implicitly in the inductive structure of proofs.

The popularity of the syntactic approach to type soundness (Wright and
Felleisen 1994) provides evidence that most languages researchers prefer the
“syntactic” style over the “semantic” style. Can this preference be reconciled
with the need for compositional theorems? The history of step-indexed logical
relations provides a hint at the answer. The idea originated in the work on foun-
dational proof-carrying code (Appel and McAllester 2001), where it formed a
semantic counterpart to a parallel line of work on syntactic techniques (Hamid
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et al. 2003). The foundations of these syntactic techniques can be adapted nat-
urally to the problem of compiler verification.

In this paper, we propose a new technique that combines some of the benefits
of syntactic and semantic proofs. The technique handles compilation of untyped
and impure languages, which had not previously been verified in compositional
ways. We can verify individual compilers in isolation and later use their cor-
rectness theorems abstractly to reason about the results of linking their output
programs. We can hand-craft target-level programs and reason abstractly about
linking them with the outputs of any verified compilers.

In the next section, we review classical syntactic techniques for verifying CPS
translations for functional languages, finishing with an explanation of why these
techniques are not sufficiently compositional. The next section introduces a re-
lational framework for more compositional proofs. We show how to prove prop-
erties of programs built with multiple compilers and with some hand-crafted
code, relying only on a common set of requirements on translations. Our first
framework is not sufficient for reasoning about compiling most higher-order func-
tions, which motivates an extension, presented in the following section. We then
describe how this framework can be adapted to a language with most of the
key dynamic features of core ML, and we summarize how we implemented the
framework and the example theorems in Coq.

As our theorems are mechanized in Coq, we will focus in this paper on pre-
senting the main ideas in an understandable way. We ignore issues of term well-
formedness and omit some side conditions, and the proofs we give are not very
detailed. The Coq development can be consulted for the rigorous details.

2 Syntactic Proofs of Semantic Preservation

Throughout this article, our running example will be translation to continuation-
passing style (CPS), which consumes normal programs in lambda calculi and
produces programs where functions never return. Instead, functions are rewritten
to take explicit “return pointers” as new arguments. We further restrict the
target languages to enforce that computations are broken down into sequences
of primitive operations.

We start with the basic untyped lambda calculus with boolean constants.
Booleans form a simple, non-trivial domain of values whose representation can
be preserved by CPS translation, allowing us to phrase our final correctness
theorem in terms of preservation of boolean results.

Boolean constants b ::= > | ⊥
Variables x

Expressions e ::= b | x | e e | λx. e

A simple call-by-value, big-step operational semantics explains the meanings
of closed expressions. We choose an environment semantics to simplify the proofs
that will follow. Judgments have the form σ; e ⇓ v, indicating that expression e
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evaluates to result v in environment σ. An environment is a partial map from
variables to values, and we write σ{x 7→ v} for the extension of σ with a mapping
from x to v.

Values v ::= b | 〈σ, λx. e〉

σ;x ⇓ σ(x) σ; b ⇓ b σ;λx. e ⇓ 〈σ, λx. e〉
σ; e1 ⇓ 〈σ′, λx. e〉 σ; e2 ⇓ v σ′{x 7→ v}; e ⇓ v′

σ; e1 e2 ⇓ v′

The CPS version of this language forces explicit sequencing and forces all
function calls to appear in tail positions. We add pairs to the language, because
they are useful in implementing CPS translations.

Primops p ::= b | λx. e | (x, x) | x.1 | x.2
Expressions e ::= halt(x) | x x | let x = p in e

Values v ::= b | 〈σ, λx. e〉 | (v, v)

The target language has its own big-step semantics.

σ; b ⇓ b σ;λx. e ⇓ 〈σ, λx. e〉 σ; (x1, x2) ⇓ (σ(x1), σ(x2))
σ(x) = (v1, v2)
σ;x.1 ⇓ v1

σ(x) = (v1, v2)
σ;x.2 ⇓ v2 σ; halt(x) ⇓ σ(x)

σ(x1) = 〈σ′, λx. e〉 σ′{x 7→ σ(x2)}; e ⇓ v
σ;x1 x2 ⇓ v

σ; p ⇓ v σ{x 7→ v}; e ⇓ v′

σ; let x = p in e ⇓ v′

We use a higher-order, one-pass CPS translation, based on that of Danvy
and Filinski (1992). Where var is the type of variables, sexp the type of source
expressions, and cexp the type of target expressions, the translation b·c has type
sexp→ (var→ cexp)→ cexp. The second argument is a “continuation” that de-
scribes what to do with the result of executing the first argument’s compilation;
this result should be placed in a variable, and that variable should be passed as
the continuation’s argument. We will write λ̂ for the meta language’s function
abstraction, and we write meta language function application of f to x as f(x),
to distinguish from an object language application f x.

bbc = λ̂k. let x = b in k(x)

bxc = λ̂k. k(x)

bλx. ec = λ̂k. let f = (λp. let x = p.1 in let k′ = p.2 in bec (λ̂r. k′ r)) in k(f)

be1 e2c = λ̂k. be1c (λ̂f. be2c (λ̂x. let k′ = (λr. k(r)) in let p = (x, k′) in f p))

Every function is transformed to a take a pair as an argument. The first
field of the pair is the original argument, while the second field is the return
continuation. In the translation of a source-level λ, the function body is passed
a continuation built by lifting an object language continuation variable k′ into a
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meta language continuation λ̂r. k′ r. At each call site, the current continuation k
is reified into an object language function k′ by wrapping it in an object language
abstraction λr. k(r).

Finally, we can define the overall program translation b·cP by choosing an ap-
propriate initial continuation. In particular, we define becP = bec (λ̂x. halt(x)).

We would like to prove that this translation preserves the observable behavior
of programs. For simplicity, let us consider terminating programs only.

Theorem 1 (Semantic preservation). ∀e, b. ·; e ⇓ b⇒ ·; becP ⇓ b

To prove Theorem 1, we will need to come up with a stronger induction
hypothesis. To do so, it turns out to be useful to define a CPS translation for
values. We overload the notation b·c for this translation, since context will make
it clear when we are referring to the expression or value translation.

bbc = b

b〈σ, λx. e〉c =
〈
bσc , λp. let x = p.1 in let k′ = p.2 in bec (λ̂r. k′ r)

〉
We write bσc for the pointwise application of value compilation to a source-level
substitution.

Now we can state and prove the main inductive lemma.

Lemma 1. ∀σ, e, v. σ; e ⇓ v ⇒ ∀k, v′. (∀x, σ′ ⊇ bσc . σ′(x) = bvc ⇒ σ′; k(x) ⇓
v′)⇒ bσc ; bec k ⇓ v′

Proof. By induction on the derivation of σ; e ⇓ v. ut

Theorem 1 follows as an easy corollary. We take k to be λ̂x. halt(x), which
makes σ′; k(x) ⇓ v′ equivalent to v′ = bvc.

2.1 Optimizing Tail Calls

This simple CPS translation will sometimes build a new continuation when an old
continuation could have been reused. This happens in tail positions, where the
last thing that a function does is call another function. We have a continuation
variable k in scope that could be passed in the final function call, but we instead
define a new function λr. k r, the eta-expansion of k.

A simple modification to the algorithm suffices to optimize tail calls. We
define a type cont of continuations, whose values are variables Var(x) and meta-
level functions Fun(f), with f of type var→ cexp. A binary operator � applies a
continuation to a variable.

Var(k) � x = k x

Fun(f) � x = f(x)
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We also define a notation letK x = K in e for local binding of a continuation.

(letK x = Var(k) in e) = e{x 7→ k}
(letK x = Fun(f) in e) = let x = (λy. f(y)) in e

Our revised translation b·cT has type sexp→ cont→ cexp. The basic logic is
the same as before, but we use the new continuation type to detect tail calls.

bbcT = λ̂k. let x = b in k � x
bxcT = λ̂k. k � x

bλx. ecT = λ̂k. let f = (λp. let x = p.1 in let k′ = p.2 in becT (Var(k′))) in k � f
be1 e2cT = λ̂k. be1cT (Func(λ̂f. be2cT (Func(λ̂x. letK k′ = k in let p = (x, k′) in f p))))

The overall program translation is becPT = becT (Fun(λ̂x. halt(x))).

We can prove a correctness theorem for the new translation.

Theorem 2 (Semantic preservation). ∀e, b. ·; e ⇓ b⇒ ·; becPT ⇓ b

Again we need a lemma expressing a stronger induction hypothesis, and again
we define value compilation to allow us to state the lemma.

bbcT = b

b〈σ, λx. e〉cT = 〈bσcT , λp. let x = p.1 in let k′ = p.2 in becT (Var(k′))〉

Lemma 2. ∀σ, e, v. σ; e ⇓ v ⇒ ∀k, v′. (∀x, σ′ ⊇ bσcT . σ′(x) = bvcT ⇒ σ′; k �
x ⇓ v′)⇒ bσcT ; becT k ⇓ v′

Proof. By induction on the derivation of σ; e ⇓ v. ut

2.2 The Problem

Our two translations make different optimization choices, but they follow the
same calling convention. Thus, it is reasonable to expect that we can pick and
choose parts of a source program to compile with each translation, and the
resulting program will still behave correctly. The following theorem embodies
one case of our expectations. We use the source-level abbreviation let x = e1 in e2
for (λx. e2) e1.

Theorem 3 (Linking).

∀e1, e2, b. ·; (let f = λx. e1 in e2) ⇓ b⇒ ·; (let f = bλx. e1c in be2cPT ) ⇓ b

We have a program e2 that uses a function with body e1. Perhaps e1 is
from a library that was compiled using the old, non-optimizing compiler, and
perhaps we do not want to have to recompile that library. Nonetheless, we want
to compile e2 using the new compiler that optimizes tail calls. Theorem 3 asserts
that this kind of linking is always sound, up to boolean results.
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Theorem 3 is true, and we will prove it in a later section. We might be
tempted to prove the theorem with a method specialized to the combination of
our two translations, but that approach does not scale well. What happens when
the optimizing compiler evolves still further, and we still want to link with the
same legacy code? What happens if we want to link with legacy code produced by
multiple old compiler versions, or if we want to link with a library that contains
hand-written CPS code? We must prove a linking theorem for each combination.
The process is very unmodular; the programmer assembling code that depends
on a set of compilers must understand all of the compilers and their interactions,
if he is to prove his linking theorem.

We could restate our semantic preservation theorems using step-indexed log-
ical relations. This would let us apply those theorems abstractly to prove linking
theorems without revisiting any of the details of our compilation strategies. In
the introduction, we explained why such semantic methods introduce a non-
trivial layer of new complexity. The remainder of this paper is dedicated to
presenting a new technique that lets us follow the proof outlines from this sec-
tion while gaining the chance to compose these theorems abstractly. We can
write straightforward proofs of compiler correctness, such that our compiler’s
outputs can later be composed soundly with outputs of other compilers that we
knew nothing about.

3 Compilation Relations

The idea of step-indexed logical relations (Appel and McAllester 2001) originated
in the context of foundational proof-carrying code (FPCC) (Appel 2001). In
that setting, the challenge was to give denotational semantics to a type system
expressive enough to apply to compiled ML programs. Step indices helped break
troubling cycles in the definitions of the meanings of types.

Concurrently to the development of the semantic approach to FPCC, a com-
peting syntactic approach (Hamid et al. 2003) was also in progress. While the
semantic approach compiled types into relations over machine values, the syn-
tactic approach followed the more common style of applying syntactic typing
rules to assembly programs. Both approaches make it possible to believe that
an assembly program satisfies a safety policy, without needing to trust in the
soundness of any type system.

The two lines of work have their benefits and drawbacks. The semantic ap-
proach made it easier to integrate new types into an existing proof, since, in that
setting, a type is just a particular kind of relation over machine values. On the
other hand, in the syntactic setting, coming up with a proof in the first place was
arguably easier by a significant margin, since proofs proceeded by elementary
techniques familiar to scholars of type systems.

More recently, the over-specificity of syntactic FPCC implementations has
been addressed using the family of program logics called Certified Assembly
Programming (CAP) (Hamid and Shao 2004). Several different Hoare logics ap-
plicable to assembly programs have been generalized into OCAP (Feng et al.
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2007), a logic parameterized by sets of specification languages, such that deriva-
tions apply safely to broader classes of specifications than those they were im-
plemented with.

The work we will present here was born from pondering the analogies be-
tween FPCC and compiler verification. Both have evolved distinct syntactic and
semantic approaches, with similar pros and cons. Ideas from semantic FPCC
have previously been adapted towards enabling compositional compiler verifica-
tion. What follows is the result of our attempt to adapt the ideas of syntactic
FPCC and CAP to the same setting.

In FPCC and general verification of low-level programs, the main objects of
interest are specifications which are relations over single values, machine states,
blocks of code, etc.. In compiler verification, we care about relations over pairs
of values, states, programs, etc.. Such relations connect source and compiled
versions of programs.

Each CAP derivation is parameterized by a set of specifications for a subset
of the possible code labels. Rules of the logics make it possible to link together
compatible specification sets and their derivations. Similarly, the theorems to
follow will be phrased in terms of particular compilers, represented as relations
between programs. We will prove that it is sound to combine these results via
unions of compilation relations.

3.1 Compilers as Relations

Our approach must be specialized to particular translation tasks. For the rest of
the paper, we stick with the example of CPS translation, though the techniques
generalize to other cases.

What follows is the first cut at a characterization of a compiler that is correct
in a composable way.

Definition 1. A compilation is a pair (RE, RF) such that:

– RE is a relation over sexp× (var→ cexp)× cexp.
– RF is a relation over sexp × cexp, where both expressions are considered

as function bodies with argument variable x. (We alpha-vary expressions
implicitly as needed to maintain this property.)

– For every (f1, f2) ∈ RF, there exist expression f ′2 and variables p and k such
that:
• (f1, (λ̂x. k x), f ′2) ∈ RE

• ∀σ, v, F, r. (∀σ′ ⊇ σ{x 7→ v}{k 7→ F}. σ′; f ′2 ⇓ r) ⇒ σ{p 7→ (v, F )}; f2 ⇓
r, where we implicitly alpha-convert f2 to call its argument variable p

For compilation (RE, RF), the relation RE is a nondeterministic compiler for
expressions, while RF is a nondeterministic compiler for function bodies.

The third condition of Definition 1 expresses the calling convention. The
condition essentially says that, if f1 can be compiled to f2, then there exists
some f ′2 that represents the part of f2 after a function preamble. We need to
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know that composing a standard preamble with f ′2 leads to code that behaves
operationally like an appropriate call to f2, following the calling convention of
passing a pair of the primary argument and a continuation.

Note that both relations within a compilation quantify over potentially open
expressions. The free variables of such expressions may end up being filled with
values produced by different compilers. Separating expressions from substitu-
tions σ helps us orchestrate this sharing of responsibility.

Our example CPS translations can be phrased as compilations.

Definition 2. Define C = (CE, CF) as:

– CE = {(e1, k, e2) | e2 = be1c k}
– CF = {(f1, f2) | (λx. f2) = bλx. f1c}

From the operational semantics of the CPS language, it is easy to verify that
C satisfies the conditions for a compilation.

The tail-call-optimizing compiler can also be expressed as a compilation.

Definition 3. Define CT = (CTE , CTF ) as:

– CTE = {(e1, k, e2) | ∃k′. e2 = be1cT k′ ∧ k = (λ̂x. k′ � x)}
– CTF = {(f1, f2) | (λx. f2) = bλx. f1cT }

3.2 Compilation Correctness

We can define a relation between source- and target-level values, parameterized
by a compilation.

C ` b ∼ b
(f1, f2) ∈ CF ∀x ∈ dom(σ1). C ` σ1(x) ∼ σ2(x)

C ` 〈σ1, λx. f1〉 ∼ 〈σ2, λx. f2〉

A boolean value must be compiled to itself, but our relation gives some
leeway in the compilation of functions. A function λx. f1 must be compiled to
some function λx. f2. However, we permit any translation included in CF, the
compilation’s relation for function bodies. This involves a choice not only of f2
but also of a target-level substitution σ2, which in effect expresses how each free
variable of f1 has been compiled. We check the compatibility of σ1 and σ2 by
requiring that their mappings respect the ∼ relation. With this relation, we can
give a quite general definition of what it means for a compilation to handle a
specific program correctly.

Definition 4 (local compilation correctness). For compilations A (mnemonic
for “all compilers used to build a particular final program”) and S (mnemonic
for “self”), and for source-level substitution σ, expression e, and value v, define
A ` σ; e ⇓ v @ S to mean that the following condition holds for every substitution
σ′, continuation k, and target-level expression e′:

– If:
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• (e, k, e′) ∈ SE

• ∀x ∈ dom(σ). A ` σ(x) ∼ σ′(x)
– Then there exists target-level value v′ such that:
• A ` v ∼ v′
• ∀r. (∀x, σ′′ ⊇ σ′.σ′′(x) = v′ ⇒ σ′′; k(x) ⇓ r)⇒ σ′; e′ ⇓ r

Informally, the desired correctness condition for compilation S is that, for
any suitable compilation A and source expression e evaluating to v in σ, we have
A ` σ; e ⇓ v @ S. We can give a formal characterization of when A is “suitable.”

Definition 5 (compilation inclusion). Say C ⊆ C ′ if and only if CE ⊆ C ′E
and CF ⊆ C ′F.

We are almost ready to state this section’s final correctness property for com-
pilations. To do so in a way that enables later composition, we choose a skeleton
for proofs about CPS translations. This skeleton should be general enough to ap-
ply to translation strategies that we have not yet thought up. In this section, we
fix a skeleton that enforces proof by simple structural induction over source-level
evaluation derivations. Later sections consider alternate choices.

Definition 6 (compilation correctness). A compilation S is correct if and
only if the following conditions hold for any A such that S ⊆ A:

– ∀σ, x ∈ dom(σ). A ` σ;x ⇓ σ(x) @ S
– ∀σ, b. A ` σ; b ⇓ b @ S
– ∀σ, e. A ` σ;λx. e ⇓ 〈σ, λx. e〉@ S

– ∀σ, e1, e2, σ′, e, v, v′. σ; e1 ⇓ 〈σ′, λx. e〉 ∧ σ; e2 ⇓ v ∧ σ′{x 7→ v}; e ⇓ v′
∧ A ` σ; e1 ⇓ 〈σ′, λx. e〉@ A ∧A ` σ; e2 ⇓ v @ A ∧A ` σ′{x 7→ v}; e ⇓ v′ @ A
⇒ A ` σ; e1 e2 ⇓ v′ @ S

The form of these conditions is determined directly by the induction princi-
ple that we have chosen, structural induction over evaluation derivations. The
conditions are essentially the base and inductive cases required in the proofs
of Lemmas 1 and 2. It is like we are manually stating the obligations to prove
∀σ, e, v. σ; e ⇓ v ⇒ A ` σ; e ⇓ v @ S, by induction on the derivation of σ; e ⇓ v.
Each case comes from a rule of the operational semantics, and each case has as
premises not only the subderivations of the rule, but also an inductive hypothesis
for each subderivation.

The final condition does not quite match the corresponding obligation within
this kind of induction. The conclusion is of the form A ` · @ S, indicating that
we are only obligated to establish the condition relative to the behavior of the
current compiler; while the inductive hypotheses are of the form A ` · @ A,
indicating that we are permitted to assume the theorem we are proving for all
compilers, including the current compiler. Intuitively, each node of the big-step
evaluation proof tree is tagged with the compiler responsible for that step. A
step’s subderivations may be the responsibilities of other compilers.

Theorem 4 (soundness). For any correct compilation C, we have ∀σ, e, v. σ; e ⇓
v ⇒ C ` σ; e ⇓ v @ C.
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Proof. By induction on the derivation of σ; e ⇓ v. The correctness obligations
of C are precisely what we need to establish each inductive case, since we can
show C ⊆ C trivially. ut

Theorem 5. Compilations C and CT are correct.

Proof. The proofs are nearly identical to those of Lemmas 1 and 2, respectively.
ut

In the previous section, we proved Theorems 1 and 2, characterizing the
correctness of our two translations. These theorems now follow as easy corollaries
of Theorems 4 and 5.

3.3 Linking

The next step in our agenda is to provide tools to reason about compilers coop-
erating to produce a single output program.

Definition 7 (compilation union). For compilations C and C ′, define C ∪
C ′ = (CE∪C ′E, CF∪C ′F). It is easy to verify that compilation unions are, in fact,
compilations.

Critically, compilation union preserves our correctness property.

Theorem 6. For correct compilations C and C ′, their union C ∪ C ′ is also
correct.

Proof. We prove each obligation of Definition 6 with the same procedure. For
each, we have that some (e1, k, e2) ∈ (C ∪ C ′)E. By construction, this means
(e1, k, e2) ∈ CE or (e1, k, e2) ∈ C ′E. Each of the cases follows by the corresponding
correctness obligation of C or C ′. ut

Recall Theorem 3, which we put off proving until now:

∀e1, e2, b. ·; (let f = λx. e1 in e2) ⇓ b⇒ ·; (let f = bλx. e1c in be2cPT ) ⇓ b

The machinery we have built up makes it possible to prove this theorem
without revisiting the details of either CPS translation.

Proof. By the semantics of the source and target languages, the body of the
theorem is equivalent to:

·{f 7→ 〈·, λx. e1〉}; e2 ⇓ b⇒ ·{f 7→ 〈·, bλx. e1c〉}; be2cT (Fun(λ̂x. halt(x))) ⇓ b

By Theorem 6, we can deduce that C∪CT is correct, establishing the premise
by Theorem 5. Thus, by Theorem 4, the hypothesis of our current theorem
implies C ∪ CT ` ·{f 7→ 〈·, λx. e1〉}; e2 ⇓ b @ C ∪ CT .

We would like to use Definition 4 to deduce our final conclusion from this
local correctness fact. Definition 4 includes two conditions that we must prove.
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First, we need (e2, λ̂x. halt(x), be2cT (Fun(λ̂x. halt(x)))) ∈ (C ∪ CT )E. This
tuple is in CTE by construction, and it follows trivially that it must belong to the
union as well.

Next, we need ∀x ∈ dom(σ1). C ∪ CT ` σ1(x) ∼ σ2(x), for σ1 = ·{f 7→
〈·, λx. e1〉} and σ2 = ·{f 7→ 〈·, bλx. e1c〉}. This obligation reduces to C ∪ CT `
〈·, λx. e1〉 ∼ 〈·, bλx. e1c〉. The inference rule for compatibility of function values
gives us two more obligations.

The first of these is (e1, e′1) ∈ (C ∪ CT )F, where e′1 is the body of bλx. e1c.
The tuple belongs to CF by construction, and so it belongs to the union as well.

The second of the obligations is ∀x ∈ dom(σ1). C ∪ CT ` σ1(x) ∼ σ2(x),
where σ1 = σ2 = ·, so the obligation holds vacuously.

Thus, we have succeeded in applying Definition 4, so we know that there
exists some v such that C ∪ CT ` b ∼ v and

∀r, y 6= f. · {f 7→ 〈·, bλx. e1c〉}{y 7→ v}; (Fun(λ̂x. halt(x))) � y ⇓ r
⇒ ·{f 7→ 〈·, bλx. e1c〉}; be2cT (Fun(λ̂x. halt(x))) ⇓ r

The antecedent of this implication reduces to r = v, so, by instantiating the
quantifier with that equation, we get the final evaluation fact that we are looking
for, but with v instead of b. We conclude by inversion on C ∪ CT ` b ∼ v, which
gives us b = v. ut

3.4 Linking Handwritten Code

Our framework of compilations also supports another version of the linking theo-
rem, which could be relevant to linking compiled programs with hand-optimized
versions of some functions. We state the theorem in terms of our simplest CPS
translation, but it can be adapted easily to apply to any correct compilation.
We also specialize this theorem to functions from booleans to booleans; more
complicated statements admit broader policies.

Theorem 7. Let e1 be a source-level function body and e2 be a source-level
expression intended to be the body of a “let” that binds λx. e1, where e2 only
passes booleans to the function defined by e1. Let e′1 be the body of an arbitrary
realization of λx. e1 in the CPS language. Assume e′1 is a correct implementation,
in the sense that, if the following hold for all σ, b1, F , b2, and r:

– σ{x 7→ b1}; e1 ⇓ b2
– ∀y, k, σ′ ⊇ bσc {x 7→ (b1, F )}. σ′(y) = b2 ∧ σ′(k) = F ⇒ σ′; k y ⇓ r

...then we have:

– bσc {x 7→ (b1, F )}; e′1 ⇓ r

If this obligation is satisfied, then:

∀b. ·; (let f = λx. e1 in e2) ⇓ b⇒ ·; (let f = (λp. let x = p.1 in let k = p.2 in e′1) in be2cP) ⇓ b
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Proof. First, we define a compilation CH embodying just the representation of
e1 as e′1.

– CHE = {(e1, (λ̂x. k x), e′1)}
– CHF = {(e1, let x = p.1 in let k = p.2 in e′1)}

It is easy to show that this is a compilation, since the definition has been
crafted to satisfy the relevant property. Establishing compilation correctness is
not much harder. Definition 6 allows us to prove correctness inductively, but
we do not need any inductive hypotheses, since we deal only with a single ex-
pression. Whatever the top-level AST constructor of e1 is, we prove that case of
correctness without referring to any of the evaluation subderivations or induc-
tive hypotheses. The remaining correctness cases are contradictory, since they
deal with compilation of expressions that cannot possibly equal e1. The rest of
the proof follows the outline of Theorem 3’s proof from the end of the previous
subsection. ut

The technique embodied in this theorem is quite general. Whenever one can
give a standalone proof that a CPS-level function body acts like some source-
level counterpart, the former is a sound substitute for the latter. For first-order
functions, this obligation tends not to be problematic. However, one cannot in
general prove the correctness of a higher-order function in this way. A proof
needs to know the CPS-level behavior of functional arguments when called at
particular parameters. The relation ∼ only makes it possible to conclude that
a function and its compiled version belong to the current compilation. What
is missing is a way to structure a well-founded induction so that it is legal to
assume that any such call to a functional argument behaves correctly.

The next section addresses this problem by weakening the definition of com-
pilation correctness.

4 Composable Proofs via Strong Induction

The discussion at the end of the last section was not quite accurate. Some hand-
written higher-order functions can be verified as correct compilations. Specifi-
cally, if the source-level function body immediately calls a functional argument,
then Definition 6 includes the correctness of the CPS-level version of that func-
tion evaluation as an inductive hypothesis. We only run into trouble for any calls
appearing later in the evaluation process.

This problem would show up in verifying a compiler that applies high-level
algebraic rewrite rules. The correctness of a rule might depend on a function call
that appears deeply nested within the source program’s evaluation tree. Since
Definition 6 is based on standard rule induction, inductive hypotheses are only
made available for immediate subderivations.

All this suggests that it would be profitable to construct a new definition
based on strong rule induction, where we have an inductive hypothesis for every
recursive child of the current proof tree, not just the immediate children. To
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accomplish this, it is helpful to define an auxiliary judgment that characterizes
which additional expressions will be evaluated in the course of evaluating a par-
ticular starting expression. We write σ1; e1 @ σ2; e2 for the fact that evaluating
e2 in σ2 will trigger evaluation of e1 in σ1.

σ; e1 @ σ; e1 e2 σ; e2 @ σ; e1 e2

σ; e1 ⇓ 〈σ′, λx. e〉 σ; e2 ⇓ v
σ′{x 7→ v}; e @ σ; e1 e2

σ1; e1 @ σ2; e2 σ2; e2 @ σ3; e3
σ1; e1 @ σ3; e3

Definition 8 (compilation strong-correctness). A compilation S is strong-
correct if and only if the following condition holds for any A such that S ⊆ A.

For all σ, e, and v, if the following are true:

– σ; e ⇓ v
– ∀σ′, e′, v′. σ′; e′ ⇓ v′ ∧ σ′; e′ @ σ; e⇒ A ` σ′; e′ ⇓ v′ @ A

...then:

– A ` σ; e ⇓ v @ S

Theorem 8 (soundness). For any strong-correct compilation C, we have ∀σ, e, v. σ; e ⇓
v ⇒ C ` σ; e ⇓ v @ C.

Proof. By strong induction on the derivation of σ; e ⇓ v. As in the proof of
Theorem 4, the correctness obligation of C is precisely what we need to establish
each inductive case. ut

Theorem 9. Every correct compilation is also strong-correct.

Proof. Each definition’s correctness conditions make explicit a particular induc-
tion scheme. The inclusion we want is a simple consequence of the fact that
normal induction is a special case of strong induction. ut

Theorem 10. For strong-correct compilations C and C ′, their union C ∪C ′ is
also strong-correct.

Proof. Following the same outline as Theorem 6. ut

4.1 An Example of Linking a Handwritten Higher-Order Function

Assume that we have added pairs to the source language and extended the se-
mantics and compilation machinery in the obvious way to support the extension.
Consider the following program.

swap = λp. (p.2, p.1)
map = λp. (p.1 p.2.1, p.1 p.2.2)

swapMap = λp. swap (map p)
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The function swap switches the order of the components of a pair, and the
function map takes as input a pair of a function and another pair, building a
new pair by applying the function componentwise to the old pair. The function
swapMap is the composition of swap and map.

We can implement a specialized CPS-level version of swapMap, where we
manually inline the calls to swap and map.

swapMap′ = λp. let p′ = p.1 in let k = p.2 in let f = p′.1 in let d = p′.2 in

let k1 = (λr1.
let k2 = (λr2.let y = (r2, r1) in k y) in

let d2 = d.2 in let z = (d2, k2) in f z) in

let d1 = d.1 in let z = (d1, k1) in f z

We would like to reason about linking swapMap′ with compiled programs.
A good first step is a lemma characterizing the behavior of swapMap. We write
swapMapB for the body of swapApp, without the initial λ.

Lemma 3. If σ; swapMapB ⇓ v, then there exist σ′, f , v1, v2, v′1, and v′2 such
that:

– σ(p) = (〈σ′, λy. f〉 , (v1, v2))
– σ′{y 7→ v1}; f ⇓ v′1
– σ′{y 7→ v2}; f ⇓ v′2
– v = (v′2, v

′
1)

– σ′{y 7→ v1}; f @ σ; swapMapB
– σ′{y 7→ v2}; f @ σ; swapMapB

Proof. By repeated inversion on the evaluation derivation for swapMapB. ut

Theorem 11. For any source-level expression e,

∀b. ·; (let f = swapMap in e) ⇓ b⇒ ·; (let f = swapMap′ in becP) ⇓ b

Proof. As in Theorem 7, we start by defining a compilation CS embodying just
the representation of swapMap as swapMap′. We write swapMapB′ for the body
of swapMap′ and write swapMapB′′ for swapMapB′ without its initial two let
bindings.

– CSE = {(swapMapB, (λ̂x. k x), swapMapB′′)}
– CSF = {(swapMapB, swapMapB′)}

It follows easily that CS is a compilation. We want to establish that it is
strong-correct, so we must show, for any A ⊇ CS , that A ` σ; e ⇓ v @ CS for
any σ, e, and v satisfying certain conditions. The definition of strong-correctness
allows us to assume local correctness of any environment-expression pair that
is evaluated in the course of evaluating e at σ, with the exception of the initial
pair σ; e.

From Definition 4, we can read off what we must prove. We know σ; e ⇓ v. We
assume (e, k′, e′) ∈ CSE , so e = swapMapB, k′ = (λ̂x. k x), and e′ = swapMapB′′;
and we assume ∀x ∈ dom(σ). A ` σ(x) ∼ σ′(x). We must find v′ such that
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– A ` v ∼ v′
– ∀r. (∀x, σ′′ ⊇ σ′.σ′′(x) = v′ ⇒ σ′′; k x ⇓ r)⇒ σ′; swapMapB′′ ⇓ r

Our evaluation hypothesis matches the premise of Lemma 3 exactly, so there
exist σ′′, f , v1, v2, v′1, and v′2 such that:

– σ(p) = (〈σ′′, λy. f〉 , (v1, v2))
– σ′′{y 7→ v1}; f ⇓ v′1
– σ′′{y 7→ v2}; f ⇓ v′2
– v = (v′2, v

′
1)

– σ′′{y 7→ v1}; f @ σ; swapMapB
– σ′′{y 7→ v2}; f @ σ; swapMapB

The first and fifth items on this list give us exactly what we need to instantiate
our inductive hypothesis. The same holds for the second and sixth items. Each
instantiation gives us the existence of a CPS-level value compatible with the
result from the source level. The rest of the proof of strong-correctness follows
by the operational semantics of swapMap′.

This establishes that CS is strong-correct. By Theorems 5 and 9, C is also
strong-correct. By Theorem 10, C ∪ CS is strong-correct. The rest of the proof
follows the outline of Theorem 7. ut

5 Scaling Up to More Expressive Object Languages

We have extended the basic techniques of the previous sections to apply to a
significant untyped Mini-ML language. This object language contains recursive
functions, pairs, sums, mutable references, and exceptions. Its syntax is as fol-
lows.

e ::= x | e e | fix f(x). e | let x = e in e | () | (e, e) | fst(e) | snd(e) | inl(e) | inr(e)
| (case e of inl(x)⇒ e | inr(x)⇒ e) | ref(e) | !e | e := e | raise(e) | e handle x⇒ e

Step-indexed logical relations have been used to handle most of these features.
Some cleverness is needed to figure out how to adapt that technique to each
new feature. In contrast, our syntactic approach can be applied more or less
mechanically to any family of traditional, non-compositional syntactic proofs.

We have proved all of the main theorems from the paper, with respect to this
Mini-ML language. It was straightforward to adapt our proof of CPS translation
from earlier work on a verified Mini-ML compiler (Chlipala 2010). We added
some new lines of boilerplate code, explicitly stating each of the new correctness
conditions, where before they had been generated automatically by the induction
tactic. Besides that boilerplate, we had to add or modify under 10 lines of proof,
since we had written the original proof in a highly automated style.

Theorem 11, which considers a manual implementation of swapMap, differs
the most for the expanded language, compared to the version we sketched earlier.
Evaluating a call to this higher-order function involves two calls to a functional
argument, each of which may mutate the reference heap, and each of which may
terminate the original call early by raising an exception. The extended version
of Lemma 3 accounts for both dimensions.
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6 Implementation

We have checked all of the proofs mechanically in Coq. The theorems of this
paper are included in the examples/Compose directory of the latest distribution
of our Lambda Tamer library, available from:

http://ltamer.sourceforge.net/

We encode syntax with parametric higher-order abstract syntax (Chlipala
2008) and encode semantics with substitution-free operational semantics (Chli-
pala 2010). In this style, explicit heaps of closures appear in evaluation judg-
ments. These closure heaps show up sprinkled throughout the implemented ver-
sions of the definitions from the paper.

We represent compilations as modules in Coq’s module system, which is in-
fluenced by ML module systems (MacQueen 1984). Each variety of correctness
condition corresponds to a different module signature. The soundness theorem
for each of these is realized as a functor from a compilation to a set of useful the-
orems. Compilation union is a two-argument functor, and correct compilations
are translated into strong-correct compilations by another functor.

The whole development comes to about 3200 lines of code. The correctness
proof for naive CPS translation is under 400 lines long, and the proof for the
tail-call-optimizing version is also under 400 lines. A majority of the lines in each
are boilerplate implied by the framework.

7 Discussion

The strong induction formulation of compilation correctness seems to be very
permissive, but we do not mean to argue that this is precisely the formulation
that should be used in practice. Further study is needed to determine which
(sound) correctness conditions best enable the range of important compilation
strategies. We only mean to recommend the general recipe of identifying proof
skeletons common to many traditional syntactic proofs. Such a skeleton can
be adapted without much new cleverness to yield a compositional framework.
These derived frameworks are more elementary than the semantic frameworks
developed to address similar concerns, and so they are more accessible to most
of the community of people who might want to verify compilers.

Our implementations to date have only dealt with CPS translation, the first
phase in the verified compiler that we built previously (Chlipala 2010). We are
hopeful that the ideas generalize uneventfully to compilation of higher-order lan-
guages in general. We see no obstacle to handling translations that use the results
of program analyses, since compilation relations may be defined via existential
quantification over sound analysis results.

The formalism in this paper has only addressed translating facts about termi-
nating source-level executions into facts about target-level execution. We believe
that our technique is quite compatible with syntactic proofs based on coinduc-
tive big-step operational semantics (Leroy and Grall 2009), which facilitates
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reasoning about nontermination in a style more suitable than that of small-step
semantics to compiler verification.

An important dimension requiring further study is flexible support for com-
piling programs with mutable state. Our implementation fixes the convention
that compiler outputs allocate new mutable references in lock-step with the
corresponding input programs. This precludes, for instance, automatic memo-
ization, where the compiler allocates new target-level references that have no
source-level counterparts. We could generalize the framework to support such
scenarios by parameterizing the ∼ relation by a map from source-level refer-
ences to target-level references. To support practical compilation strategies, it
may also be necessary to add further degrees of freedom to the definition of
compilations, such that custom relations between source and compiled program
states can be specified.

One important metric for evaluating verification approaches has not been
very visible in this paper: the cost of dealing with details in a mechanical proof
assistant. Compared to semantic approaches, we avoid reasoning about individ-
ual execution steps and about contexts, by using big-step semantics; and we
avoid calculating step indices, by inducting over proof tree depths instead. Our
relation @ is fulfilling much the same role as step indices; we could replace our
strong rule induction by strong induction over depths of evaluation derivations,
which are very close to step indices. We save time by avoiding any such complex
reasoning, where possible, by proving compilers correct according to the simpler
correctness conditions, and then using Theorem 9 to lift these results into re-
sults about strong induction. This is the case for both of our CPS translations.
In contrast, the semantic, compositional compiler proofs that we are aware of
reason directly using step indices. Logical step-indexed logical relations (Dreyer
et al. 2009) also address this weakness, via a modal logic that hides step indices;
a modality must still be used explicitly in relation definitions and dealt with
explicitly in proofs.

Compositional compiler correctness has a close connection to fully abstract
compilation. Ahmed and Blume (2008) prove that typed closure conversion is
fully abstract, in the sense that two source programs are observationally equiv-
alent if and only if their compilations are. Our syntactic proofs of compiler cor-
rectness can be used to provide similar guarantees in a “proof-carrying code” set-
ting: Our theorems do not tell us anything about general contextual equivalence
of compiled programs, but we do get strong guarantees about any “contexts”
shipped as programs that come with proofs of equivalence to source programs,
relative to arbitrary correct compilations.

In summary, we have shown how elementary syntactic proof techniques can
be adapted to verification of compilers for higher-order languages, in a way
that supports sound linking with code produced in unanticipated ways. The
wide range of interesting program properties guarantees that there will always
be opportunity to develop useful new proof techniques, both “syntactic” and
“semantic,” and we have argued that the need for compositionality does not
force us to leave syntactic methods behind.
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Xavier Leroy and Hervé Grall. Coinductive big-step operational semantics. Inf.
Comput., 207(2):284–304, 2009.

David MacQueen. Modules for Standard ML. In Proc. LFP, pages 198–207,
1984.

Yasuhiko Minamide and Koji Okuma. Verifying CPS transformations in Is-
abelle/HOL. In Proc. MERLIN, pages 1–8, 2003.

J Strother Moore. A mechanically verified language implementation. J. Auto-
mated Reasoning, 5(4):461–492, 1989.



20 Adam Chlipala

A. M. Pitts and I. D. B. Stark. Operational reasoning for functions with local
state. Higher Order Operational Techniques in Semantics, 1998.

G. D. Plotkin. Lambda-definability and logical relations. Memorandum SAI-
RM-4, University of Edinburgh, 1973.

Ye Henry Tian. Mechanically verifying correctness of CPS compilation. In Proc.
CATS, pages 41–51, 2006.

Andrew K. Wright and Matthias Felleisen. A syntactic approach to type sound-
ness. Inf. Comput., 115(1):38–94, 1994.


