A Verified Compiler for an
Impure Functional
Language

Adam Chlipala
Harvard University
POPL 2010

What are the engineering
principles that make compiler
verification worth doing in the

— real world?

—
e

In particular, for higher-order
languages, which have tricky
binder issues

From Mini-ML to Assembly

Source language

e ::=c | e=e | x| ee | fix f(x). e
let x = e in e | ()
(e, e) fst(e) | snd(e) | inl(e) | inr(e)
case e of inl(x) => e | inr(x) => e
ref (e) le | e := e
raise(e) | e handle x => e

Target language

Lvalues
Rvalues
Instructions

Jumps
Basic blocks
Programs

L ::=r | [r + n] | [n]

R ::=n | r | [t +n] | [n]

I ::=L :=R | L :=R==R | r+=n
| jnz R, n

J ::= halt | fail | jmp R

B t:= (I*, J)

P ::= (B*, B)

Two Main ldeas

It's possible to encode syntax and semantics
In a way that avoids all auxiliary operations
and lemmas about variables.

Proofs about this encoding can be
automated effectively enough that it is not
hard to evolve a compiler and its proof over

time.

Phase Structure

-

— —
~

N
Ve TFirst-order source \

Conversion to higher-order/ s/yntax

I
CPS cgnversion
:

Closure co}wersion
Common subexpression elim§nation
\

N

Closed

Flattening = ~

Register allocation/dead code elim.

% s
-
— —-_—

Three-address code

Code generation

Assembly /

v

Th
the

ne and only inductive
rqm about substitution

\ Translations with

/

interesting binding in
both source and
target languages

~7000 LoC (wl/ proofs)
~2000 lines of proof

Overall Compliler Correctness

Semantics

B

Semantics

e ee—

Operational Semantics

) e

(AX. e) v

To verify compile, need to prove:

compile([x/e2]el) =
[x/compile(e2) Jcompile(el)

Hiding Substitution?
(Ax. x) 1

Encode
—

(Higher-Order
Abstract Syntax)

App (Lam (fn x => X)) (Const 1)

App (Lam f) v = f(v)

No explicit substitution!

Adding HOAS to general-purpose proof
</ assistants creates unsoundness!

Closure Semantics

Closure Heap

ﬁ/%

>
-

L B - -
\x. el - 4
tn #m ‘ (x/#m]el

Automating Proofs

Theorem
“By induction on\

/ Case Case

/

*Propositional simplification, partial evaluation, rewriting, ...
*Perform all useful inversions on hypotheses.
Choose IHes to instantiate with unification variables.
*Finish with higher-order logic programming over rules
of operational semantics and a few additional lemmas.

Proof Script Re-use

Lines of code added or changed to add new
language features

Constants & = 150 1/2 day

Almost all has to do with a new binding
pattern, not the semantics of £ix.

Code avalilable in the latest Lambda Tamer distribution:

http://ltamer.sourceforge.net/

Backup Slides

Manipulating Binders

Which variables does the new expression mention?
Are they available in scope?

De Bruijn Indices

Exactly which variables does this expression expect?

>
Did we adjust this index properly?

Higher-Order Syntax

let () (AX

let (X «..) (Ay
let (.. x ...)_ (Au.,

let (X eV <) (Az
cee Z u ...)

e ee—

Weak Higher-Order Syntax

let () (Ax : var

let (#x ...) (Ay var

let (... #x_...) (Au :_var.,

let (... #x #y) (Az
bz .. Fd L

Parametric Higher-Order Syntax

A piece of syntax is a first-class polymorphic function.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

