A Verified Compiler for an Impure Functional Language

Adam Chlipala Harvard University POPL 2010

What are the engineering principles that make compiler verification worth doing in the real world?

In particular, for **higher-order languages**, which have tricky binder issues

From Mini-ML to Assembly Source language

Target language

```
Lvalues L ::= r | [r + n] | [n]

Rvalues R ::= n | r | [r + n] | [n]

Instructions I ::= L := R | L := R == R | r += n

| jnz R, n

Jumps J ::= halt | fail | jmp R

Basic blocks B ::= (I*, J)

Programs P ::= (B*, B)
```

Two Main Ideas

- It's possible to encode syntax and semantics in a way that avoids all auxiliary operations and lemmas about variables.
- Proofs about this encoding can be automated effectively enough that it is not hard to evolve a compiler and its proof over time.

Phase Structure

Overall Compiler Correctness

Operational Semantics

To verify **compile**, need to prove:

```
compile([x/e2]e1) =
[x/compile(e2)]compile(e1)
```

Hiding Substitution?

$$(\lambda x. x) 1$$

$$Encode \qquad \text{(Higher-Order Abstract Syntax)}$$

$$App (Lam (fn x => x)) (Const 1)$$

App (Lam f)
$$v \Rightarrow \underline{f(v)}$$

No explicit substitution!

Adding HOAS to general-purpose proof assistants creates **unsoundness**!

Automating Proofs

- Propositional simplification, partial evaluation, rewriting, ...
 Perform all useful **inversions** on hypotheses.
 - •Choose IHes to instantiate with unification variables.
- •Finish with **higher-order logic programming** over rules of operational semantics and a few additional lemmas.

Proof Script Re-use

Lines of code added or changed to add new language features

	Definitions	Theorems & Proofs	Time
let	30	0	½ hour
Constants & =	150	10	½ day
fix	70	350	1 day

Almost all has to do with a new binding pattern, not the semantics of **fix**.

Code available in the latest **Lambda Tamer** distribution: http://ltamer.sourceforge.net/

Backup Slides

Manipulating Binders

Which variables does the new expression mention?

Are they available in scope?

let
$$x = \dots in$$
let $y = \dots x$ in
let $u = \dots x$ in
let $z = \dots x$ in
 $y = \dots y$ in

Does the new binding shadow a variable needed here?

De Bruijn Indices

Exactly which variables does this expression expect?

let
$$x = \dots$$
 in

let $y = \dots$ 0 ... in

let $u = \dots$ 1 ... in

let $z = \dots$ 2 ... in

Did we adjust this index properly?

Higher-Order Syntax

```
let (...) (\lambda x.)
let (... x...) (\lambda y.)
let (... x...) (\lambda u.)
let (... x... y...) (\lambda z.)
(\lambda z.)
```

Weak Higher-Order Syntax

```
let (...) (\lambda x : var.
let (... \# x ...) (\lambda y : var.
let (... \# x ...) (\lambda u : var.)
let (... \# x ...) (\lambda u : var.)
(\lambda z ...)
```

Parametric Higher-Order Syntax

```
∀ var:
let (...) (\lambda x : var.
let (\ldots \# x \ldots) (\lambda y : var.
let (\ldots \# x \ldots) (\lambda u : var.
let (... \#x ... \#y ...) (\lambda z.
```

A piece of syntax is a first-class polymorphic function.