adam@297
|
1 (* Copyright (c) 2008-2011, Adam Chlipala
|
adamc@83
|
2 *
|
adamc@83
|
3 * This work is licensed under a
|
adamc@83
|
4 * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
|
adamc@83
|
5 * Unported License.
|
adamc@83
|
6 * The license text is available at:
|
adamc@83
|
7 * http://creativecommons.org/licenses/by-nc-nd/3.0/
|
adamc@83
|
8 *)
|
adamc@83
|
9
|
adamc@83
|
10 (* begin hide *)
|
adamc@85
|
11 Require Import Arith Bool List.
|
adamc@83
|
12
|
adam@314
|
13 Require Import CpdtTactics MoreSpecif.
|
adamc@83
|
14
|
adamc@83
|
15 Set Implicit Arguments.
|
adamc@83
|
16 (* end hide *)
|
adamc@83
|
17
|
adamc@83
|
18
|
adamc@83
|
19 (** %\chapter{More Dependent Types}% *)
|
adamc@83
|
20
|
adam@292
|
21 (** Subset types and their relatives help us integrate verification with programming. Though they reorganize the certified programmer's workflow, they tend not to have deep effects on proofs. We write largely the same proofs as we would for classical verification, with some of the structure moved into the programs themselves. It turns out that, when we use dependent types to their full potential, we warp the development and proving process even more than that, picking up %``%#"#free theorems#"#%''% to the extent that often a certified program is hardly more complex than its uncertified counterpart in Haskell or ML.
|
adamc@83
|
22
|
adamc@83
|
23 In particular, we have only scratched the tip of the iceberg that is Coq's inductive definition mechanism. The inductive types we have seen so far have their counterparts in the other proof assistants that we surveyed in Chapter 1. This chapter explores the strange new world of dependent inductive datatypes (that is, dependent inductive types outside [Prop]), a possibility which sets Coq apart from all of the competition not based on type theory. *)
|
adamc@83
|
24
|
adamc@84
|
25
|
adamc@84
|
26 (** * Length-Indexed Lists *)
|
adamc@84
|
27
|
adamc@84
|
28 (** Many introductions to dependent types start out by showing how to use them to eliminate array bounds checks. When the type of an array tells you how many elements it has, your compiler can detect out-of-bounds dereferences statically. Since we are working in a pure functional language, the next best thing is length-indexed lists, which the following code defines. *)
|
adamc@84
|
29
|
adamc@84
|
30 Section ilist.
|
adamc@84
|
31 Variable A : Set.
|
adamc@84
|
32
|
adamc@84
|
33 Inductive ilist : nat -> Set :=
|
adamc@84
|
34 | Nil : ilist O
|
adamc@84
|
35 | Cons : forall n, A -> ilist n -> ilist (S n).
|
adamc@84
|
36
|
adamc@84
|
37 (** We see that, within its section, [ilist] is given type [nat -> Set]. Previously, every inductive type we have seen has either had plain [Set] as its type or has been a predicate with some type ending in [Prop]. The full generality of inductive definitions lets us integrate the expressivity of predicates directly into our normal programming.
|
adamc@84
|
38
|
adamc@84
|
39 The [nat] argument to [ilist] tells us the length of the list. The types of [ilist]'s constructors tell us that a [Nil] list has length [O] and that a [Cons] list has length one greater than the length of its sublist. We may apply [ilist] to any natural number, even natural numbers that are only known at runtime. It is this breaking of the %\textit{%#<i>#phase distinction#</i>#%}% that characterizes [ilist] as %\textit{%#<i>#dependently typed#</i>#%}%.
|
adamc@84
|
40
|
adamc@213
|
41 In expositions of list types, we usually see the length function defined first, but here that would not be a very productive function to code. Instead, let us implement list concatenation. *)
|
adamc@84
|
42
|
adamc@213
|
43 Fixpoint app n1 (ls1 : ilist n1) n2 (ls2 : ilist n2) : ilist (n1 + n2) :=
|
adamc@213
|
44 match ls1 with
|
adamc@213
|
45 | Nil => ls2
|
adamc@213
|
46 | Cons _ x ls1' => Cons x (app ls1' ls2)
|
adamc@213
|
47 end.
|
adamc@84
|
48
|
adamc@213
|
49 (** In Coq version 8.1 and earlier, this definition leads to an error message:
|
adamc@84
|
50
|
adamc@84
|
51 [[
|
adamc@84
|
52 The term "ls2" has type "ilist n2" while it is expected to have type
|
adamc@84
|
53 "ilist (?14 + n2)"
|
adamc@213
|
54
|
adamc@84
|
55 ]]
|
adamc@84
|
56
|
adamc@213
|
57 In Coq's core language, without explicit annotations, Coq does not enrich our typing assumptions in the branches of a [match] expression. It is clear that the unification variable [?14] should be resolved to 0 in this context, so that we have [0 + n2] reducing to [n2], but Coq does not realize that. We cannot fix the problem using just the simple [return] clauses we applied in the last chapter. We need to combine a [return] clause with a new kind of annotation, an [in] clause. This is exactly what the inference heuristics do in Coq 8.2 and later.
|
adamc@213
|
58
|
adamc@213
|
59 Specifically, Coq infers the following definition from the simpler one. *)
|
adamc@84
|
60
|
adamc@100
|
61 (* EX: Implement concatenation *)
|
adamc@100
|
62
|
adamc@100
|
63 (* begin thide *)
|
adamc@213
|
64 Fixpoint app' n1 (ls1 : ilist n1) n2 (ls2 : ilist n2) : ilist (n1 + n2) :=
|
adamc@84
|
65 match ls1 in (ilist n1) return (ilist (n1 + n2)) with
|
adamc@84
|
66 | Nil => ls2
|
adamc@213
|
67 | Cons _ x ls1' => Cons x (app' ls1' ls2)
|
adamc@84
|
68 end.
|
adamc@100
|
69 (* end thide *)
|
adamc@84
|
70
|
adamc@213
|
71 (** Using [return] alone allowed us to express a dependency of the [match] result type on the %\textit{%#<i>#value#</i>#%}% of the discriminee. What [in] adds to our arsenal is a way of expressing a dependency on the %\textit{%#<i>#type#</i>#%}% of the discriminee. Specifically, the [n1] in the [in] clause above is a %\textit{%#<i>#binding occurrence#</i>#%}% whose scope is the [return] clause.
|
adamc@84
|
72
|
adamc@84
|
73 We may use [in] clauses only to bind names for the arguments of an inductive type family. That is, each [in] clause must be an inductive type family name applied to a sequence of underscores and variable names of the proper length. The positions for %\textit{%#<i>#parameters#</i>#%}% to the type family must all be underscores. Parameters are those arguments declared with section variables or with entries to the left of the first colon in an inductive definition. They cannot vary depending on which constructor was used to build the discriminee, so Coq prohibits pointless matches on them. It is those arguments defined in the type to the right of the colon that we may name with [in] clauses.
|
adamc@84
|
74
|
adam@283
|
75 Our [app] function could be typed in so-called %\textit{%#<i>#stratified#</i>#%}% type systems, which avoid true dependency. That is, we could consider the length indices to lists to live in a separate, compile-time-only universe from the lists themselves. This stratification between a compile-time universe and a run-time universe, with no references to the latter in the former, gives rise to the terminology %``%#"#stratified.#"#%''% Our next example would be harder to implement in a stratified system. We write an injection function from regular lists to length-indexed lists. A stratified implementation would need to duplicate the definition of lists across compile-time and run-time versions, and the run-time versions would need to be indexed by the compile-time versions. *)
|
adamc@84
|
76
|
adamc@100
|
77 (* EX: Implement injection from normal lists *)
|
adamc@100
|
78
|
adamc@100
|
79 (* begin thide *)
|
adamc@84
|
80 Fixpoint inject (ls : list A) : ilist (length ls) :=
|
adamc@213
|
81 match ls with
|
adamc@84
|
82 | nil => Nil
|
adamc@84
|
83 | h :: t => Cons h (inject t)
|
adamc@84
|
84 end.
|
adamc@84
|
85
|
adamc@84
|
86 (** We can define an inverse conversion and prove that it really is an inverse. *)
|
adamc@84
|
87
|
adamc@213
|
88 Fixpoint unject n (ls : ilist n) : list A :=
|
adamc@84
|
89 match ls with
|
adamc@84
|
90 | Nil => nil
|
adamc@84
|
91 | Cons _ h t => h :: unject t
|
adamc@84
|
92 end.
|
adamc@84
|
93
|
adamc@84
|
94 Theorem inject_inverse : forall ls, unject (inject ls) = ls.
|
adamc@84
|
95 induction ls; crush.
|
adamc@84
|
96 Qed.
|
adamc@100
|
97 (* end thide *)
|
adamc@100
|
98
|
adamc@100
|
99 (* EX: Implement statically-checked "car"/"hd" *)
|
adamc@84
|
100
|
adam@283
|
101 (** Now let us attempt a function that is surprisingly tricky to write. In ML, the list head function raises an exception when passed an empty list. With length-indexed lists, we can rule out such invalid calls statically, and here is a first attempt at doing so. We write [???] as a placeholder for a term that we do not know how to write, not for any real Coq notation like those introduced in the previous chapter.
|
adamc@84
|
102
|
adamc@84
|
103 [[
|
adamc@84
|
104 Definition hd n (ls : ilist (S n)) : A :=
|
adamc@84
|
105 match ls with
|
adamc@84
|
106 | Nil => ???
|
adamc@84
|
107 | Cons _ h _ => h
|
adamc@84
|
108 end.
|
adamc@213
|
109
|
adamc@213
|
110 ]]
|
adamc@84
|
111
|
adamc@84
|
112 It is not clear what to write for the [Nil] case, so we are stuck before we even turn our function over to the type checker. We could try omitting the [Nil] case:
|
adamc@84
|
113
|
adamc@84
|
114 [[
|
adamc@84
|
115 Definition hd n (ls : ilist (S n)) : A :=
|
adamc@84
|
116 match ls with
|
adamc@84
|
117 | Cons _ h _ => h
|
adamc@84
|
118 end.
|
adamc@84
|
119
|
adamc@84
|
120 Error: Non exhaustive pattern-matching: no clause found for pattern Nil
|
adamc@213
|
121
|
adamc@84
|
122 ]]
|
adamc@84
|
123
|
adam@275
|
124 Unlike in ML, we cannot use inexhaustive pattern matching, because there is no conception of a %\texttt{%#<tt>#Match#</tt>#%}% exception to be thrown. In fact, recent versions of Coq %\textit{%#<i>#do#</i>#%}% allow this, by implicit translation to a [match] that considers all constructors. It is educational to discover that encoding ourselves directly. We might try using an [in] clause somehow.
|
adamc@84
|
125
|
adamc@84
|
126 [[
|
adamc@84
|
127 Definition hd n (ls : ilist (S n)) : A :=
|
adamc@84
|
128 match ls in (ilist (S n)) with
|
adamc@84
|
129 | Cons _ h _ => h
|
adamc@84
|
130 end.
|
adamc@84
|
131
|
adamc@84
|
132 Error: The reference n was not found in the current environment
|
adamc@213
|
133
|
adamc@84
|
134 ]]
|
adamc@84
|
135
|
adamc@84
|
136 In this and other cases, we feel like we want [in] clauses with type family arguments that are not variables. Unfortunately, Coq only supports variables in those positions. A completely general mechanism could only be supported with a solution to the problem of higher-order unification, which is undecidable. There %\textit{%#<i>#are#</i>#%}% useful heuristics for handling non-variable indices which are gradually making their way into Coq, but we will spend some time in this and the next few chapters on effective pattern matching on dependent types using only the primitive [match] annotations.
|
adamc@84
|
137
|
adamc@84
|
138 Our final, working attempt at [hd] uses an auxiliary function and a surprising [return] annotation. *)
|
adamc@84
|
139
|
adamc@100
|
140 (* begin thide *)
|
adamc@84
|
141 Definition hd' n (ls : ilist n) :=
|
adamc@84
|
142 match ls in (ilist n) return (match n with O => unit | S _ => A end) with
|
adamc@84
|
143 | Nil => tt
|
adamc@84
|
144 | Cons _ h _ => h
|
adamc@84
|
145 end.
|
adamc@84
|
146
|
adam@283
|
147 Check hd'.
|
adam@283
|
148 (** %\vspace{-.15in}% [[
|
adam@283
|
149 hd'
|
adam@283
|
150 : forall n : nat, ilist n -> match n with
|
adam@283
|
151 | 0 => unit
|
adam@283
|
152 | S _ => A
|
adam@283
|
153 end
|
adam@283
|
154
|
adam@302
|
155 ]]
|
adam@302
|
156 *)
|
adam@283
|
157
|
adamc@84
|
158 Definition hd n (ls : ilist (S n)) : A := hd' ls.
|
adamc@100
|
159 (* end thide *)
|
adamc@84
|
160
|
adamc@84
|
161 (** We annotate our main [match] with a type that is itself a [match]. We write that the function [hd'] returns [unit] when the list is empty and returns the carried type [A] in all other cases. In the definition of [hd], we just call [hd']. Because the index of [ls] is known to be nonzero, the type checker reduces the [match] in the type of [hd'] to [A]. *)
|
adamc@84
|
162
|
adamc@84
|
163 End ilist.
|
adamc@85
|
164
|
adamc@85
|
165
|
adamc@85
|
166 (** * A Tagless Interpreter *)
|
adamc@85
|
167
|
adam@296
|
168 (** A favorite example for motivating the power of functional programming is implementation of a simple expression language interpreter. In ML and Haskell, such interpreters are often implemented using an algebraic datatype of values, where at many points it is checked that a value was built with the right constructor of the value type. With dependent types, we can implement a %\textit{%#<i>#tagless#</i>#%}% interpreter that both removes this source of runtime inefficiency and gives us more confidence that our implementation is correct. *)
|
adamc@85
|
169
|
adamc@85
|
170 Inductive type : Set :=
|
adamc@85
|
171 | Nat : type
|
adamc@85
|
172 | Bool : type
|
adamc@85
|
173 | Prod : type -> type -> type.
|
adamc@85
|
174
|
adamc@85
|
175 Inductive exp : type -> Set :=
|
adamc@85
|
176 | NConst : nat -> exp Nat
|
adamc@85
|
177 | Plus : exp Nat -> exp Nat -> exp Nat
|
adamc@85
|
178 | Eq : exp Nat -> exp Nat -> exp Bool
|
adamc@85
|
179
|
adamc@85
|
180 | BConst : bool -> exp Bool
|
adamc@85
|
181 | And : exp Bool -> exp Bool -> exp Bool
|
adamc@85
|
182 | If : forall t, exp Bool -> exp t -> exp t -> exp t
|
adamc@85
|
183
|
adamc@85
|
184 | Pair : forall t1 t2, exp t1 -> exp t2 -> exp (Prod t1 t2)
|
adamc@85
|
185 | Fst : forall t1 t2, exp (Prod t1 t2) -> exp t1
|
adamc@85
|
186 | Snd : forall t1 t2, exp (Prod t1 t2) -> exp t2.
|
adamc@85
|
187
|
adamc@85
|
188 (** We have a standard algebraic datatype [type], defining a type language of naturals, booleans, and product (pair) types. Then we have the indexed inductive type [exp], where the argument to [exp] tells us the encoded type of an expression. In effect, we are defining the typing rules for expressions simultaneously with the syntax.
|
adamc@85
|
189
|
adamc@85
|
190 We can give types and expressions semantics in a new style, based critically on the chance for %\textit{%#<i>#type-level computation#</i>#%}%. *)
|
adamc@85
|
191
|
adamc@85
|
192 Fixpoint typeDenote (t : type) : Set :=
|
adamc@85
|
193 match t with
|
adamc@85
|
194 | Nat => nat
|
adamc@85
|
195 | Bool => bool
|
adamc@85
|
196 | Prod t1 t2 => typeDenote t1 * typeDenote t2
|
adamc@85
|
197 end%type.
|
adamc@85
|
198
|
adam@292
|
199 (** [typeDenote] compiles types of our object language into %``%#"#native#"#%''% Coq types. It is deceptively easy to implement. The only new thing we see is the [%type] annotation, which tells Coq to parse the [match] expression using the notations associated with types. Without this annotation, the [*] would be interpreted as multiplication on naturals, rather than as the product type constructor. [type] is one example of an identifer bound to a %\textit{%#<i>#notation scope#</i>#%}%. We will deal more explicitly with notations and notation scopes in later chapters.
|
adamc@85
|
200
|
adamc@85
|
201 We can define a function [expDenote] that is typed in terms of [typeDenote]. *)
|
adamc@85
|
202
|
adamc@213
|
203 Fixpoint expDenote t (e : exp t) : typeDenote t :=
|
adamc@213
|
204 match e with
|
adamc@85
|
205 | NConst n => n
|
adamc@85
|
206 | Plus e1 e2 => expDenote e1 + expDenote e2
|
adamc@85
|
207 | Eq e1 e2 => if eq_nat_dec (expDenote e1) (expDenote e2) then true else false
|
adamc@85
|
208
|
adamc@85
|
209 | BConst b => b
|
adamc@85
|
210 | And e1 e2 => expDenote e1 && expDenote e2
|
adamc@85
|
211 | If _ e' e1 e2 => if expDenote e' then expDenote e1 else expDenote e2
|
adamc@85
|
212
|
adamc@85
|
213 | Pair _ _ e1 e2 => (expDenote e1, expDenote e2)
|
adamc@85
|
214 | Fst _ _ e' => fst (expDenote e')
|
adamc@85
|
215 | Snd _ _ e' => snd (expDenote e')
|
adamc@85
|
216 end.
|
adamc@85
|
217
|
adamc@213
|
218 (** Despite the fancy type, the function definition is routine. In fact, it is less complicated than what we would write in ML or Haskell 98, since we do not need to worry about pushing final values in and out of an algebraic datatype. The only unusual thing is the use of an expression of the form [if E then true else false] in the [Eq] case. Remember that [eq_nat_dec] has a rich dependent type, rather than a simple boolean type. Coq's native [if] is overloaded to work on a test of any two-constructor type, so we can use [if] to build a simple boolean from the [sumbool] that [eq_nat_dec] returns.
|
adamc@85
|
219
|
adamc@85
|
220 We can implement our old favorite, a constant folding function, and prove it correct. It will be useful to write a function [pairOut] that checks if an [exp] of [Prod] type is a pair, returning its two components if so. Unsurprisingly, a first attempt leads to a type error.
|
adamc@85
|
221
|
adamc@85
|
222 [[
|
adamc@85
|
223 Definition pairOut t1 t2 (e : exp (Prod t1 t2)) : option (exp t1 * exp t2) :=
|
adamc@85
|
224 match e in (exp (Prod t1 t2)) return option (exp t1 * exp t2) with
|
adamc@85
|
225 | Pair _ _ e1 e2 => Some (e1, e2)
|
adamc@85
|
226 | _ => None
|
adamc@85
|
227 end.
|
adamc@85
|
228
|
adamc@85
|
229 Error: The reference t2 was not found in the current environment
|
adamc@213
|
230 ]]
|
adamc@85
|
231
|
adamc@85
|
232 We run again into the problem of not being able to specify non-variable arguments in [in] clauses. The problem would just be hopeless without a use of an [in] clause, though, since the result type of the [match] depends on an argument to [exp]. Our solution will be to use a more general type, as we did for [hd]. First, we define a type-valued function to use in assigning a type to [pairOut]. *)
|
adamc@85
|
233
|
adamc@100
|
234 (* EX: Define a function [pairOut : forall t1 t2, exp (Prod t1 t2) -> option (exp t1 * exp t2)] *)
|
adamc@100
|
235
|
adamc@100
|
236 (* begin thide *)
|
adamc@85
|
237 Definition pairOutType (t : type) :=
|
adamc@85
|
238 match t with
|
adamc@85
|
239 | Prod t1 t2 => option (exp t1 * exp t2)
|
adamc@85
|
240 | _ => unit
|
adamc@85
|
241 end.
|
adamc@85
|
242
|
adamc@85
|
243 (** When passed a type that is a product, [pairOutType] returns our final desired type. On any other input type, [pairOutType] returns [unit], since we do not care about extracting components of non-pairs. Now we can write another helper function to provide the default behavior of [pairOut], which we will apply for inputs that are not literal pairs. *)
|
adamc@85
|
244
|
adamc@85
|
245 Definition pairOutDefault (t : type) :=
|
adamc@85
|
246 match t return (pairOutType t) with
|
adamc@85
|
247 | Prod _ _ => None
|
adamc@85
|
248 | _ => tt
|
adamc@85
|
249 end.
|
adamc@85
|
250
|
adamc@85
|
251 (** Now [pairOut] is deceptively easy to write. *)
|
adamc@85
|
252
|
adamc@85
|
253 Definition pairOut t (e : exp t) :=
|
adamc@85
|
254 match e in (exp t) return (pairOutType t) with
|
adamc@85
|
255 | Pair _ _ e1 e2 => Some (e1, e2)
|
adamc@85
|
256 | _ => pairOutDefault _
|
adamc@85
|
257 end.
|
adamc@100
|
258 (* end thide *)
|
adamc@85
|
259
|
adamc@85
|
260 (** There is one important subtlety in this definition. Coq allows us to use convenient ML-style pattern matching notation, but, internally and in proofs, we see that patterns are expanded out completely, matching one level of inductive structure at a time. Thus, the default case in the [match] above expands out to one case for each constructor of [exp] besides [Pair], and the underscore in [pairOutDefault _] is resolved differently in each case. From an ML or Haskell programmer's perspective, what we have here is type inference determining which code is run (returning either [None] or [tt]), which goes beyond what is possible with type inference guiding parametric polymorphism in Hindley-Milner languages, but is similar to what goes on with Haskell type classes.
|
adamc@85
|
261
|
adamc@213
|
262 With [pairOut] available, we can write [cfold] in a straightforward way. There are really no surprises beyond that Coq verifies that this code has such an expressive type, given the small annotation burden. In some places, we see that Coq's [match] annotation inference is too smart for its own good, and we have to turn that inference off by writing [return _]. *)
|
adamc@85
|
263
|
adamc@204
|
264 Fixpoint cfold t (e : exp t) : exp t :=
|
adamc@204
|
265 match e with
|
adamc@85
|
266 | NConst n => NConst n
|
adamc@85
|
267 | Plus e1 e2 =>
|
adamc@85
|
268 let e1' := cfold e1 in
|
adamc@85
|
269 let e2' := cfold e2 in
|
adamc@204
|
270 match e1', e2' return _ with
|
adamc@85
|
271 | NConst n1, NConst n2 => NConst (n1 + n2)
|
adamc@85
|
272 | _, _ => Plus e1' e2'
|
adamc@85
|
273 end
|
adamc@85
|
274 | Eq e1 e2 =>
|
adamc@85
|
275 let e1' := cfold e1 in
|
adamc@85
|
276 let e2' := cfold e2 in
|
adamc@204
|
277 match e1', e2' return _ with
|
adamc@85
|
278 | NConst n1, NConst n2 => BConst (if eq_nat_dec n1 n2 then true else false)
|
adamc@85
|
279 | _, _ => Eq e1' e2'
|
adamc@85
|
280 end
|
adamc@85
|
281
|
adamc@85
|
282 | BConst b => BConst b
|
adamc@85
|
283 | And e1 e2 =>
|
adamc@85
|
284 let e1' := cfold e1 in
|
adamc@85
|
285 let e2' := cfold e2 in
|
adamc@204
|
286 match e1', e2' return _ with
|
adamc@85
|
287 | BConst b1, BConst b2 => BConst (b1 && b2)
|
adamc@85
|
288 | _, _ => And e1' e2'
|
adamc@85
|
289 end
|
adamc@85
|
290 | If _ e e1 e2 =>
|
adamc@85
|
291 let e' := cfold e in
|
adamc@85
|
292 match e' with
|
adamc@85
|
293 | BConst true => cfold e1
|
adamc@85
|
294 | BConst false => cfold e2
|
adamc@85
|
295 | _ => If e' (cfold e1) (cfold e2)
|
adamc@85
|
296 end
|
adamc@85
|
297
|
adamc@85
|
298 | Pair _ _ e1 e2 => Pair (cfold e1) (cfold e2)
|
adamc@85
|
299 | Fst _ _ e =>
|
adamc@85
|
300 let e' := cfold e in
|
adamc@85
|
301 match pairOut e' with
|
adamc@85
|
302 | Some p => fst p
|
adamc@85
|
303 | None => Fst e'
|
adamc@85
|
304 end
|
adamc@85
|
305 | Snd _ _ e =>
|
adamc@85
|
306 let e' := cfold e in
|
adamc@85
|
307 match pairOut e' with
|
adamc@85
|
308 | Some p => snd p
|
adamc@85
|
309 | None => Snd e'
|
adamc@85
|
310 end
|
adamc@85
|
311 end.
|
adamc@85
|
312
|
adamc@85
|
313 (** The correctness theorem for [cfold] turns out to be easy to prove, once we get over one serious hurdle. *)
|
adamc@85
|
314
|
adamc@85
|
315 Theorem cfold_correct : forall t (e : exp t), expDenote e = expDenote (cfold e).
|
adamc@100
|
316 (* begin thide *)
|
adamc@85
|
317 induction e; crush.
|
adamc@85
|
318
|
adamc@85
|
319 (** The first remaining subgoal is:
|
adamc@85
|
320
|
adamc@85
|
321 [[
|
adamc@85
|
322 expDenote (cfold e1) + expDenote (cfold e2) =
|
adamc@85
|
323 expDenote
|
adamc@85
|
324 match cfold e1 with
|
adamc@85
|
325 | NConst n1 =>
|
adamc@85
|
326 match cfold e2 with
|
adamc@85
|
327 | NConst n2 => NConst (n1 + n2)
|
adamc@85
|
328 | Plus _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
329 | Eq _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
330 | BConst _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
331 | And _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
332 | If _ _ _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
333 | Pair _ _ _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
334 | Fst _ _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
335 | Snd _ _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
336 end
|
adamc@85
|
337 | Plus _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
338 | Eq _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
339 | BConst _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
340 | And _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
341 | If _ _ _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
342 | Pair _ _ _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
343 | Fst _ _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
344 | Snd _ _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
345 end
|
adamc@213
|
346
|
adamc@85
|
347 ]]
|
adamc@85
|
348
|
adamc@85
|
349 We would like to do a case analysis on [cfold e1], and we attempt that in the way that has worked so far.
|
adamc@85
|
350
|
adamc@85
|
351 [[
|
adamc@85
|
352 destruct (cfold e1).
|
adamc@85
|
353
|
adamc@85
|
354 User error: e1 is used in hypothesis e
|
adamc@213
|
355
|
adamc@85
|
356 ]]
|
adamc@85
|
357
|
adamc@85
|
358 Coq gives us another cryptic error message. Like so many others, this one basically means that Coq is not able to build some proof about dependent types. It is hard to generate helpful and specific error messages for problems like this, since that would require some kind of understanding of the dependency structure of a piece of code. We will encounter many examples of case-specific tricks for recovering from errors like this one.
|
adamc@85
|
359
|
adamc@213
|
360 For our current proof, we can use a tactic [dep_destruct] defined in the book [Tactics] module. General elimination/inversion of dependently-typed hypotheses is undecidable, since it must be implemented with [match] expressions that have the restriction on [in] clauses that we have already discussed. [dep_destruct] makes a best effort to handle some common cases, relying upon the more primitive [dependent destruction] tactic that comes with Coq. In a future chapter, we will learn about the explicit manipulation of equality proofs that is behind [dep_destruct]'s implementation in Ltac, but for now, we treat it as a useful black box. *)
|
adamc@85
|
361
|
adamc@85
|
362 dep_destruct (cfold e1).
|
adamc@85
|
363
|
adamc@85
|
364 (** This successfully breaks the subgoal into 5 new subgoals, one for each constructor of [exp] that could produce an [exp Nat]. Note that [dep_destruct] is successful in ruling out the other cases automatically, in effect automating some of the work that we have done manually in implementing functions like [hd] and [pairOut].
|
adamc@85
|
365
|
adamc@213
|
366 This is the only new trick we need to learn to complete the proof. We can back up and give a short, automated proof. The main inconvenience in the proof is that we cannot write a pattern that matches a [match] without including a case for every constructor of the inductive type we match over. *)
|
adamc@85
|
367
|
adamc@85
|
368 Restart.
|
adamc@85
|
369
|
adamc@85
|
370 induction e; crush;
|
adamc@85
|
371 repeat (match goal with
|
adamc@213
|
372 | [ |- context[match cfold ?E with NConst _ => _ | Plus _ _ => _
|
adamc@213
|
373 | Eq _ _ => _ | BConst _ => _ | And _ _ => _
|
adamc@213
|
374 | If _ _ _ _ => _ | Pair _ _ _ _ => _
|
adamc@213
|
375 | Fst _ _ _ => _ | Snd _ _ _ => _ end] ] =>
|
adamc@213
|
376 dep_destruct (cfold E)
|
adamc@213
|
377 | [ |- context[match pairOut (cfold ?E) with Some _ => _
|
adamc@213
|
378 | None => _ end] ] =>
|
adamc@213
|
379 dep_destruct (cfold E)
|
adamc@85
|
380 | [ |- (if ?E then _ else _) = _ ] => destruct E
|
adamc@85
|
381 end; crush).
|
adamc@85
|
382 Qed.
|
adamc@100
|
383 (* end thide *)
|
adamc@86
|
384
|
adamc@86
|
385
|
adamc@103
|
386 (** * Dependently-Typed Red-Black Trees *)
|
adamc@94
|
387
|
adamc@214
|
388 (** Red-black trees are a favorite purely-functional data structure with an interesting invariant. We can use dependent types to enforce that operations on red-black trees preserve the invariant. For simplicity, we specialize our red-black trees to represent sets of [nat]s. *)
|
adamc@100
|
389
|
adamc@94
|
390 Inductive color : Set := Red | Black.
|
adamc@94
|
391
|
adamc@94
|
392 Inductive rbtree : color -> nat -> Set :=
|
adamc@94
|
393 | Leaf : rbtree Black 0
|
adamc@214
|
394 | RedNode : forall n, rbtree Black n -> nat -> rbtree Black n -> rbtree Red n
|
adamc@94
|
395 | BlackNode : forall c1 c2 n, rbtree c1 n -> nat -> rbtree c2 n -> rbtree Black (S n).
|
adamc@94
|
396
|
adamc@214
|
397 (** A value of type [rbtree c d] is a red-black tree node whose root has color [c] and that has black depth [d]. The latter property means that there are no more than [d] black-colored nodes on any path from the root to a leaf. *)
|
adamc@214
|
398
|
adamc@214
|
399 (** At first, it can be unclear that this choice of type indices tracks any useful property. To convince ourselves, we will prove that every red-black tree is balanced. We will phrase our theorem in terms of a depth calculating function that ignores the extra information in the types. It will be useful to parameterize this function over a combining operation, so that we can re-use the same code to calculate the minimum or maximum height among all paths from root to leaf. *)
|
adamc@214
|
400
|
adamc@100
|
401 (* EX: Prove that every [rbtree] is balanced. *)
|
adamc@100
|
402
|
adamc@100
|
403 (* begin thide *)
|
adamc@95
|
404 Require Import Max Min.
|
adamc@95
|
405
|
adamc@95
|
406 Section depth.
|
adamc@95
|
407 Variable f : nat -> nat -> nat.
|
adamc@95
|
408
|
adamc@214
|
409 Fixpoint depth c n (t : rbtree c n) : nat :=
|
adamc@95
|
410 match t with
|
adamc@95
|
411 | Leaf => 0
|
adamc@95
|
412 | RedNode _ t1 _ t2 => S (f (depth t1) (depth t2))
|
adamc@95
|
413 | BlackNode _ _ _ t1 _ t2 => S (f (depth t1) (depth t2))
|
adamc@95
|
414 end.
|
adamc@95
|
415 End depth.
|
adamc@95
|
416
|
adamc@214
|
417 (** Our proof of balanced-ness decomposes naturally into a lower bound and an upper bound. We prove the lower bound first. Unsurprisingly, a tree's black depth provides such a bound on the minimum path length. We use the richly-typed procedure [min_dec] to do case analysis on whether [min X Y] equals [X] or [Y]. *)
|
adamc@214
|
418
|
adam@283
|
419 Check min_dec.
|
adam@283
|
420 (** %\vspace{-.15in}% [[
|
adam@283
|
421 min_dec
|
adam@283
|
422 : forall n m : nat, {min n m = n} + {min n m = m}
|
adam@283
|
423
|
adam@302
|
424 ]]
|
adam@302
|
425 *)
|
adam@283
|
426
|
adamc@95
|
427 Theorem depth_min : forall c n (t : rbtree c n), depth min t >= n.
|
adamc@95
|
428 induction t; crush;
|
adamc@95
|
429 match goal with
|
adamc@95
|
430 | [ |- context[min ?X ?Y] ] => destruct (min_dec X Y)
|
adamc@95
|
431 end; crush.
|
adamc@95
|
432 Qed.
|
adamc@95
|
433
|
adamc@214
|
434 (** There is an analogous upper-bound theorem based on black depth. Unfortunately, a symmetric proof script does not suffice to establish it. *)
|
adamc@214
|
435
|
adamc@214
|
436 Theorem depth_max : forall c n (t : rbtree c n), depth max t <= 2 * n + 1.
|
adamc@214
|
437 induction t; crush;
|
adamc@214
|
438 match goal with
|
adamc@214
|
439 | [ |- context[max ?X ?Y] ] => destruct (max_dec X Y)
|
adamc@214
|
440 end; crush.
|
adamc@214
|
441
|
adamc@214
|
442 (** Two subgoals remain. One of them is: [[
|
adamc@214
|
443 n : nat
|
adamc@214
|
444 t1 : rbtree Black n
|
adamc@214
|
445 n0 : nat
|
adamc@214
|
446 t2 : rbtree Black n
|
adamc@214
|
447 IHt1 : depth max t1 <= n + (n + 0) + 1
|
adamc@214
|
448 IHt2 : depth max t2 <= n + (n + 0) + 1
|
adamc@214
|
449 e : max (depth max t1) (depth max t2) = depth max t1
|
adamc@214
|
450 ============================
|
adamc@214
|
451 S (depth max t1) <= n + (n + 0) + 1
|
adamc@214
|
452
|
adamc@214
|
453 ]]
|
adamc@214
|
454
|
adamc@214
|
455 We see that [IHt1] is %\textit{%#<i>#almost#</i>#%}% the fact we need, but it is not quite strong enough. We will need to strengthen our induction hypothesis to get the proof to go through. *)
|
adamc@214
|
456
|
adamc@214
|
457 Abort.
|
adamc@214
|
458
|
adamc@214
|
459 (** In particular, we prove a lemma that provides a stronger upper bound for trees with black root nodes. We got stuck above in a case about a red root node. Since red nodes have only black children, our IH strengthening will enable us to finish the proof. *)
|
adamc@214
|
460
|
adamc@95
|
461 Lemma depth_max' : forall c n (t : rbtree c n), match c with
|
adamc@95
|
462 | Red => depth max t <= 2 * n + 1
|
adamc@95
|
463 | Black => depth max t <= 2 * n
|
adamc@95
|
464 end.
|
adamc@95
|
465 induction t; crush;
|
adamc@95
|
466 match goal with
|
adamc@95
|
467 | [ |- context[max ?X ?Y] ] => destruct (max_dec X Y)
|
adamc@100
|
468 end; crush;
|
adamc@100
|
469 repeat (match goal with
|
adamc@214
|
470 | [ H : context[match ?C with Red => _ | Black => _ end] |- _ ] =>
|
adamc@214
|
471 destruct C
|
adamc@100
|
472 end; crush).
|
adamc@95
|
473 Qed.
|
adamc@95
|
474
|
adamc@214
|
475 (** The original theorem follows easily from the lemma. We use the tactic [generalize pf], which, when [pf] proves the proposition [P], changes the goal from [Q] to [P -> Q]. It is useful to do this because it makes the truth of [P] manifest syntactically, so that automation machinery can rely on [P], even if that machinery is not smart enough to establish [P] on its own. *)
|
adamc@214
|
476
|
adamc@95
|
477 Theorem depth_max : forall c n (t : rbtree c n), depth max t <= 2 * n + 1.
|
adamc@95
|
478 intros; generalize (depth_max' t); destruct c; crush.
|
adamc@95
|
479 Qed.
|
adamc@95
|
480
|
adamc@214
|
481 (** The final balance theorem establishes that the minimum and maximum path lengths of any tree are within a factor of two of each other. *)
|
adamc@214
|
482
|
adamc@95
|
483 Theorem balanced : forall c n (t : rbtree c n), 2 * depth min t + 1 >= depth max t.
|
adamc@95
|
484 intros; generalize (depth_min t); generalize (depth_max t); crush.
|
adamc@95
|
485 Qed.
|
adamc@100
|
486 (* end thide *)
|
adamc@95
|
487
|
adamc@214
|
488 (** Now we are ready to implement an example operation on our trees, insertion. Insertion can be thought of as breaking the tree invariants locally but then rebalancing. In particular, in intermediate states we find red nodes that may have red children. The type [rtree] captures the idea of such a node, continuing to track black depth as a type index. *)
|
adamc@95
|
489
|
adamc@94
|
490 Inductive rtree : nat -> Set :=
|
adamc@94
|
491 | RedNode' : forall c1 c2 n, rbtree c1 n -> nat -> rbtree c2 n -> rtree n.
|
adamc@94
|
492
|
adamc@214
|
493 (** Before starting to define [insert], we define predicates capturing when a data value is in the set represented by a normal or possibly-invalid tree. *)
|
adamc@214
|
494
|
adamc@96
|
495 Section present.
|
adamc@96
|
496 Variable x : nat.
|
adamc@96
|
497
|
adamc@214
|
498 Fixpoint present c n (t : rbtree c n) : Prop :=
|
adamc@96
|
499 match t with
|
adamc@96
|
500 | Leaf => False
|
adamc@96
|
501 | RedNode _ a y b => present a \/ x = y \/ present b
|
adamc@96
|
502 | BlackNode _ _ _ a y b => present a \/ x = y \/ present b
|
adamc@96
|
503 end.
|
adamc@96
|
504
|
adamc@96
|
505 Definition rpresent n (t : rtree n) : Prop :=
|
adamc@96
|
506 match t with
|
adamc@96
|
507 | RedNode' _ _ _ a y b => present a \/ x = y \/ present b
|
adamc@96
|
508 end.
|
adamc@96
|
509 End present.
|
adamc@96
|
510
|
adamc@214
|
511 (** Insertion relies on two balancing operations. It will be useful to give types to these operations using a relative of the subset types from last chapter. While subset types let us pair a value with a proof about that value, here we want to pair a value with another non-proof dependently-typed value. The [sigT] type fills this role. *)
|
adamc@214
|
512
|
adamc@100
|
513 Locate "{ _ : _ & _ }".
|
adamc@214
|
514 (** [[
|
adamc@214
|
515 Notation Scope
|
adamc@214
|
516 "{ x : A & P }" := sigT (fun x : A => P)
|
adam@302
|
517 ]]
|
adam@302
|
518 *)
|
adamc@214
|
519
|
adamc@100
|
520 Print sigT.
|
adamc@214
|
521 (** [[
|
adamc@214
|
522 Inductive sigT (A : Type) (P : A -> Type) : Type :=
|
adamc@214
|
523 existT : forall x : A, P x -> sigT P
|
adam@302
|
524 ]]
|
adam@302
|
525 *)
|
adamc@214
|
526
|
adamc@214
|
527 (** It will be helpful to define a concise notation for the constructor of [sigT]. *)
|
adamc@100
|
528
|
adamc@94
|
529 Notation "{< x >}" := (existT _ _ x).
|
adamc@94
|
530
|
adamc@214
|
531 (** Each balance function is used to construct a new tree whose keys include the keys of two input trees, as well as a new key. One of the two input trees may violate the red-black alternation invariant (that is, it has an [rtree] type), while the other tree is known to be valid. Crucially, the two input trees have the same black depth.
|
adamc@214
|
532
|
adamc@214
|
533 A balance operation may return a tree whose root is of either color. Thus, we use a [sigT] type to package the result tree with the color of its root. Here is the definition of the first balance operation, which applies when the possibly-invalid [rtree] belongs to the left of the valid [rbtree]. *)
|
adamc@214
|
534
|
adamc@94
|
535 Definition balance1 n (a : rtree n) (data : nat) c2 :=
|
adamc@214
|
536 match a in rtree n return rbtree c2 n
|
adamc@214
|
537 -> { c : color & rbtree c (S n) } with
|
adamc@94
|
538 | RedNode' _ _ _ t1 y t2 =>
|
adamc@214
|
539 match t1 in rbtree c n return rbtree _ n -> rbtree c2 n
|
adamc@214
|
540 -> { c : color & rbtree c (S n) } with
|
adamc@214
|
541 | RedNode _ a x b => fun c d =>
|
adamc@214
|
542 {<RedNode (BlackNode a x b) y (BlackNode c data d)>}
|
adamc@94
|
543 | t1' => fun t2 =>
|
adamc@214
|
544 match t2 in rbtree c n return rbtree _ n -> rbtree c2 n
|
adamc@214
|
545 -> { c : color & rbtree c (S n) } with
|
adamc@214
|
546 | RedNode _ b x c => fun a d =>
|
adamc@214
|
547 {<RedNode (BlackNode a y b) x (BlackNode c data d)>}
|
adamc@95
|
548 | b => fun a t => {<BlackNode (RedNode a y b) data t>}
|
adamc@94
|
549 end t1'
|
adamc@94
|
550 end t2
|
adamc@94
|
551 end.
|
adamc@94
|
552
|
adamc@214
|
553 (** We apply a trick that I call the %\textit{%#<i>#convoy pattern#</i>#%}%. Recall that [match] annotations only make it possible to describe a dependence of a [match] %\textit{%#<i>#result type#</i>#%}% on the discriminee. There is no automatic refinement of the types of free variables. However, it is possible to effect such a refinement by finding a way to encode free variable type dependencies in the [match] result type, so that a [return] clause can express the connection.
|
adamc@214
|
554
|
adam@292
|
555 In particular, we can extend the [match] to return %\textit{%#<i>#functions over the free variables whose types we want to refine#</i>#%}%. In the case of [balance1], we only find ourselves wanting to refine the type of one tree variable at a time. We match on one subtree of a node, and we want the type of the other subtree to be refined based on what we learn. We indicate this with a [return] clause starting like [rbtree _ n -> ...], where [n] is bound in an [in] pattern. Such a [match] expression is applied immediately to the %``%#"#old version#"#%''% of the variable to be refined, and the type checker is happy.
|
adamc@214
|
556
|
adam@292
|
557 After writing this code, even I do not understand the precise details of how balancing works. I consulted Chris Okasaki's paper %``%#"#Red-Black Trees in a Functional Setting#"#%''% and transcribed the code to use dependent types. Luckily, the details are not so important here; types alone will tell us that insertion preserves balanced-ness, and we will prove that insertion produces trees containing the right keys.
|
adamc@214
|
558
|
adamc@214
|
559 Here is the symmetric function [balance2], for cases where the possibly-invalid tree appears on the right rather than on the left. *)
|
adamc@214
|
560
|
adamc@94
|
561 Definition balance2 n (a : rtree n) (data : nat) c2 :=
|
adamc@94
|
562 match a in rtree n return rbtree c2 n -> { c : color & rbtree c (S n) } with
|
adamc@94
|
563 | RedNode' _ _ _ t1 z t2 =>
|
adamc@214
|
564 match t1 in rbtree c n return rbtree _ n -> rbtree c2 n
|
adamc@214
|
565 -> { c : color & rbtree c (S n) } with
|
adamc@214
|
566 | RedNode _ b y c => fun d a =>
|
adamc@214
|
567 {<RedNode (BlackNode a data b) y (BlackNode c z d)>}
|
adamc@94
|
568 | t1' => fun t2 =>
|
adamc@214
|
569 match t2 in rbtree c n return rbtree _ n -> rbtree c2 n
|
adamc@214
|
570 -> { c : color & rbtree c (S n) } with
|
adamc@214
|
571 | RedNode _ c z' d => fun b a =>
|
adamc@214
|
572 {<RedNode (BlackNode a data b) z (BlackNode c z' d)>}
|
adamc@95
|
573 | b => fun a t => {<BlackNode t data (RedNode a z b)>}
|
adamc@94
|
574 end t1'
|
adamc@94
|
575 end t2
|
adamc@94
|
576 end.
|
adamc@94
|
577
|
adamc@214
|
578 (** Now we are almost ready to get down to the business of writing an [insert] function. First, we enter a section that declares a variable [x], for the key we want to insert. *)
|
adamc@214
|
579
|
adamc@94
|
580 Section insert.
|
adamc@94
|
581 Variable x : nat.
|
adamc@94
|
582
|
adamc@214
|
583 (** Most of the work of insertion is done by a helper function [ins], whose return types are expressed using a type-level function [insResult]. *)
|
adamc@214
|
584
|
adamc@94
|
585 Definition insResult c n :=
|
adamc@94
|
586 match c with
|
adamc@94
|
587 | Red => rtree n
|
adamc@94
|
588 | Black => { c' : color & rbtree c' n }
|
adamc@94
|
589 end.
|
adamc@94
|
590
|
adam@296
|
591 (** That is, inserting into a tree with root color [c] and black depth [n], the variety of tree we get out depends on [c]. If we started with a red root, then we get back a possibly-invalid tree of depth [n]. If we started with a black root, we get back a valid tree of depth [n] with a root node of an arbitrary color.
|
adamc@214
|
592
|
adamc@214
|
593 Here is the definition of [ins]. Again, we do not want to dwell on the functional details. *)
|
adamc@214
|
594
|
adamc@214
|
595 Fixpoint ins c n (t : rbtree c n) : insResult c n :=
|
adamc@214
|
596 match t with
|
adamc@94
|
597 | Leaf => {< RedNode Leaf x Leaf >}
|
adamc@94
|
598 | RedNode _ a y b =>
|
adamc@94
|
599 if le_lt_dec x y
|
adamc@94
|
600 then RedNode' (projT2 (ins a)) y b
|
adamc@94
|
601 else RedNode' a y (projT2 (ins b))
|
adamc@94
|
602 | BlackNode c1 c2 _ a y b =>
|
adamc@94
|
603 if le_lt_dec x y
|
adamc@94
|
604 then
|
adamc@94
|
605 match c1 return insResult c1 _ -> _ with
|
adamc@94
|
606 | Red => fun ins_a => balance1 ins_a y b
|
adamc@94
|
607 | _ => fun ins_a => {< BlackNode (projT2 ins_a) y b >}
|
adamc@94
|
608 end (ins a)
|
adamc@94
|
609 else
|
adamc@94
|
610 match c2 return insResult c2 _ -> _ with
|
adamc@94
|
611 | Red => fun ins_b => balance2 ins_b y a
|
adamc@94
|
612 | _ => fun ins_b => {< BlackNode a y (projT2 ins_b) >}
|
adamc@94
|
613 end (ins b)
|
adamc@94
|
614 end.
|
adamc@94
|
615
|
adam@296
|
616 (** The one new trick is a variation of the convoy pattern. In each of the last two pattern matches, we want to take advantage of the typing connection between the trees [a] and [b]. We might naively apply the convoy pattern directly on [a] in the first [match] and on [b] in the second. This satisfies the type checker per se, but it does not satisfy the termination checker. Inside each [match], we would be calling [ins] recursively on a locally-bound variable. The termination checker is not smart enough to trace the dataflow into that variable, so the checker does not know that this recursive argument is smaller than the original argument. We make this fact clearer by applying the convoy pattern on %\textit{%#<i>#the result of a recursive call#</i>#%}%, rather than just on that call's argument.
|
adamc@214
|
617
|
adamc@214
|
618 Finally, we are in the home stretch of our effort to define [insert]. We just need a few more definitions of non-recursive functions. First, we need to give the final characterization of [insert]'s return type. Inserting into a red-rooted tree gives a black-rooted tree where black depth has increased, and inserting into a black-rooted tree gives a tree where black depth has stayed the same and where the root is an arbitrary color. *)
|
adamc@214
|
619
|
adamc@94
|
620 Definition insertResult c n :=
|
adamc@94
|
621 match c with
|
adamc@94
|
622 | Red => rbtree Black (S n)
|
adamc@94
|
623 | Black => { c' : color & rbtree c' n }
|
adamc@94
|
624 end.
|
adamc@94
|
625
|
adamc@214
|
626 (** A simple clean-up procedure translates [insResult]s into [insertResult]s. *)
|
adamc@214
|
627
|
adamc@97
|
628 Definition makeRbtree c n : insResult c n -> insertResult c n :=
|
adamc@214
|
629 match c with
|
adamc@94
|
630 | Red => fun r =>
|
adamc@214
|
631 match r with
|
adamc@94
|
632 | RedNode' _ _ _ a x b => BlackNode a x b
|
adamc@94
|
633 end
|
adamc@94
|
634 | Black => fun r => r
|
adamc@94
|
635 end.
|
adamc@94
|
636
|
adamc@214
|
637 (** We modify Coq's default choice of implicit arguments for [makeRbtree], so that we do not need to specify the [c] and [n] arguments explicitly in later calls. *)
|
adamc@214
|
638
|
adamc@97
|
639 Implicit Arguments makeRbtree [c n].
|
adamc@94
|
640
|
adamc@214
|
641 (** Finally, we define [insert] as a simple composition of [ins] and [makeRbtree]. *)
|
adamc@214
|
642
|
adamc@94
|
643 Definition insert c n (t : rbtree c n) : insertResult c n :=
|
adamc@97
|
644 makeRbtree (ins t).
|
adamc@94
|
645
|
adamc@214
|
646 (** As we noted earlier, the type of [insert] guarantees that it outputs balanced trees whose depths have not increased too much. We also want to know that [insert] operates correctly on trees interpreted as finite sets, so we finish this section with a proof of that fact. *)
|
adamc@214
|
647
|
adamc@95
|
648 Section present.
|
adamc@95
|
649 Variable z : nat.
|
adamc@95
|
650
|
adamc@214
|
651 (** The variable [z] stands for an arbitrary key. We will reason about [z]'s presence in particular trees. As usual, outside the section the theorems we prove will quantify over all possible keys, giving us the facts we wanted.
|
adamc@214
|
652
|
adamc@214
|
653 We start by proving the correctness of the balance operations. It is useful to define a custom tactic [present_balance] that encapsulates the reasoning common to the two proofs. We use the keyword [Ltac] to assign a name to a proof script. This particular script just iterates between [crush] and identification of a tree that is being pattern-matched on and should be destructed. *)
|
adamc@214
|
654
|
adamc@98
|
655 Ltac present_balance :=
|
adamc@98
|
656 crush;
|
adamc@98
|
657 repeat (match goal with
|
adamc@98
|
658 | [ H : context[match ?T with
|
adamc@98
|
659 | Leaf => _
|
adamc@98
|
660 | RedNode _ _ _ _ => _
|
adamc@98
|
661 | BlackNode _ _ _ _ _ _ => _
|
adamc@98
|
662 end] |- _ ] => dep_destruct T
|
adamc@98
|
663 | [ |- context[match ?T with
|
adamc@98
|
664 | Leaf => _
|
adamc@98
|
665 | RedNode _ _ _ _ => _
|
adamc@98
|
666 | BlackNode _ _ _ _ _ _ => _
|
adamc@98
|
667 end] ] => dep_destruct T
|
adamc@98
|
668 end; crush).
|
adamc@98
|
669
|
adamc@214
|
670 (** The balance correctness theorems are simple first-order logic equivalences, where we use the function [projT2] to project the payload of a [sigT] value. *)
|
adamc@214
|
671
|
adam@294
|
672 Lemma present_balance1 : forall n (a : rtree n) (y : nat) c2 (b : rbtree c2 n),
|
adamc@95
|
673 present z (projT2 (balance1 a y b))
|
adamc@95
|
674 <-> rpresent z a \/ z = y \/ present z b.
|
adamc@98
|
675 destruct a; present_balance.
|
adamc@95
|
676 Qed.
|
adamc@95
|
677
|
adamc@213
|
678 Lemma present_balance2 : forall n (a : rtree n) (y : nat) c2 (b : rbtree c2 n),
|
adamc@95
|
679 present z (projT2 (balance2 a y b))
|
adamc@95
|
680 <-> rpresent z a \/ z = y \/ present z b.
|
adamc@98
|
681 destruct a; present_balance.
|
adamc@95
|
682 Qed.
|
adamc@95
|
683
|
adamc@214
|
684 (** To state the theorem for [ins], it is useful to define a new type-level function, since [ins] returns different result types based on the type indices passed to it. Recall that [x] is the section variable standing for the key we are inserting. *)
|
adamc@214
|
685
|
adamc@95
|
686 Definition present_insResult c n :=
|
adamc@95
|
687 match c return (rbtree c n -> insResult c n -> Prop) with
|
adamc@95
|
688 | Red => fun t r => rpresent z r <-> z = x \/ present z t
|
adamc@95
|
689 | Black => fun t r => present z (projT2 r) <-> z = x \/ present z t
|
adamc@95
|
690 end.
|
adamc@95
|
691
|
adamc@214
|
692 (** Now the statement and proof of the [ins] correctness theorem are straightforward, if verbose. We proceed by induction on the structure of a tree, followed by finding case analysis opportunities on expressions we see being analyzed in [if] or [match] expressions. After that, we pattern-match to find opportunities to use the theorems we proved about balancing. Finally, we identify two variables that are asserted by some hypothesis to be equal, and we use that hypothesis to replace one variable with the other everywhere. *)
|
adamc@214
|
693
|
adamc@214
|
694 (** printing * $*$ *)
|
adamc@214
|
695
|
adamc@95
|
696 Theorem present_ins : forall c n (t : rbtree c n),
|
adamc@95
|
697 present_insResult t (ins t).
|
adamc@95
|
698 induction t; crush;
|
adamc@95
|
699 repeat (match goal with
|
adamc@95
|
700 | [ H : context[if ?E then _ else _] |- _ ] => destruct E
|
adamc@95
|
701 | [ |- context[if ?E then _ else _] ] => destruct E
|
adamc@214
|
702 | [ H : context[match ?C with Red => _ | Black => _ end]
|
adamc@214
|
703 |- _ ] => destruct C
|
adamc@95
|
704 end; crush);
|
adamc@95
|
705 try match goal with
|
adamc@95
|
706 | [ H : context[balance1 ?A ?B ?C] |- _ ] =>
|
adamc@95
|
707 generalize (present_balance1 A B C)
|
adamc@95
|
708 end;
|
adamc@95
|
709 try match goal with
|
adamc@95
|
710 | [ H : context[balance2 ?A ?B ?C] |- _ ] =>
|
adamc@95
|
711 generalize (present_balance2 A B C)
|
adamc@95
|
712 end;
|
adamc@95
|
713 try match goal with
|
adamc@95
|
714 | [ |- context[balance1 ?A ?B ?C] ] =>
|
adamc@95
|
715 generalize (present_balance1 A B C)
|
adamc@95
|
716 end;
|
adamc@95
|
717 try match goal with
|
adamc@95
|
718 | [ |- context[balance2 ?A ?B ?C] ] =>
|
adamc@95
|
719 generalize (present_balance2 A B C)
|
adamc@95
|
720 end;
|
adamc@214
|
721 crush;
|
adamc@95
|
722 match goal with
|
adamc@95
|
723 | [ z : nat, x : nat |- _ ] =>
|
adamc@95
|
724 match goal with
|
adamc@95
|
725 | [ H : z = x |- _ ] => rewrite H in *; clear H
|
adamc@95
|
726 end
|
adamc@95
|
727 end;
|
adamc@95
|
728 tauto.
|
adamc@95
|
729 Qed.
|
adamc@95
|
730
|
adamc@214
|
731 (** printing * $\times$ *)
|
adamc@214
|
732
|
adamc@214
|
733 (** The hard work is done. The most readable way to state correctness of [insert] involves splitting the property into two color-specific theorems. We write a tactic to encapsulate the reasoning steps that work to establish both facts. *)
|
adamc@214
|
734
|
adamc@213
|
735 Ltac present_insert :=
|
adamc@213
|
736 unfold insert; intros n t; inversion t;
|
adamc@97
|
737 generalize (present_ins t); simpl;
|
adamc@97
|
738 dep_destruct (ins t); tauto.
|
adamc@97
|
739
|
adamc@95
|
740 Theorem present_insert_Red : forall n (t : rbtree Red n),
|
adamc@95
|
741 present z (insert t)
|
adamc@95
|
742 <-> (z = x \/ present z t).
|
adamc@213
|
743 present_insert.
|
adamc@95
|
744 Qed.
|
adamc@95
|
745
|
adamc@95
|
746 Theorem present_insert_Black : forall n (t : rbtree Black n),
|
adamc@95
|
747 present z (projT2 (insert t))
|
adamc@95
|
748 <-> (z = x \/ present z t).
|
adamc@213
|
749 present_insert.
|
adamc@95
|
750 Qed.
|
adamc@95
|
751 End present.
|
adamc@94
|
752 End insert.
|
adamc@94
|
753
|
adam@283
|
754 (** We can generate executable OCaml code with the command [Recursive Extraction insert], which also automatically outputs the OCaml versions of all of [insert]'s dependencies. In our previous extractions, we wound up with clean OCaml code. Here, we find uses of %\texttt{%#<tt>#Obj.magic#</tt>#%}%, OCaml's unsafe cast operator for tweaking the apparent type of an expression in an arbitrary way. Casts appear for this example because the return type of [insert] depends on the %\textit{%#<i>#value#</i>#%}% of the function's argument, a pattern which OCaml cannot handle. Since Coq's type system is much more expressive than OCaml's, such casts are unavoidable in general. Since the OCaml type-checker is no longer checking full safety of programs, we must rely on Coq's extractor to use casts only in provably safe ways. *)
|
adam@283
|
755
|
adamc@94
|
756
|
adamc@86
|
757 (** * A Certified Regular Expression Matcher *)
|
adamc@86
|
758
|
adamc@93
|
759 (** Another interesting example is regular expressions with dependent types that express which predicates over strings particular regexps implement. We can then assign a dependent type to a regular expression matching function, guaranteeing that it always decides the string property that we expect it to decide.
|
adamc@93
|
760
|
adam@283
|
761 Before defining the syntax of expressions, it is helpful to define an inductive type capturing the meaning of the Kleene star. That is, a string [s] matches regular expression [star e] if and only if [s] can be decomposed into a sequence of substrings that all match [e]. We use Coq's string support, which comes through a combination of the [Strings] library and some parsing notations built into Coq. Operators like [++] and functions like [length] that we know from lists are defined again for strings. Notation scopes help us control which versions we want to use in particular contexts. *)
|
adamc@93
|
762
|
adamc@86
|
763 Require Import Ascii String.
|
adamc@86
|
764 Open Scope string_scope.
|
adamc@86
|
765
|
adamc@91
|
766 Section star.
|
adamc@91
|
767 Variable P : string -> Prop.
|
adamc@91
|
768
|
adamc@91
|
769 Inductive star : string -> Prop :=
|
adamc@91
|
770 | Empty : star ""
|
adamc@91
|
771 | Iter : forall s1 s2,
|
adamc@91
|
772 P s1
|
adamc@91
|
773 -> star s2
|
adamc@91
|
774 -> star (s1 ++ s2).
|
adamc@91
|
775 End star.
|
adamc@91
|
776
|
adam@283
|
777 (** Now we can make our first attempt at defining a [regexp] type that is indexed by predicates on strings. Here is a reasonable-looking definition that is restricted to constant characters and concatenation. We use the constructor [String], which is the analogue of list cons for the type [string], where [""] is like list nil.
|
adamc@93
|
778
|
adamc@93
|
779 [[
|
adamc@93
|
780 Inductive regexp : (string -> Prop) -> Set :=
|
adamc@93
|
781 | Char : forall ch : ascii,
|
adamc@93
|
782 regexp (fun s => s = String ch "")
|
adamc@93
|
783 | Concat : forall (P1 P2 : string -> Prop) (r1 : regexp P1) (r2 : regexp P2),
|
adamc@93
|
784 regexp (fun s => exists s1, exists s2, s = s1 ++ s2 /\ P1 s1 /\ P2 s2).
|
adamc@93
|
785
|
adamc@93
|
786 User error: Large non-propositional inductive types must be in Type
|
adamc@214
|
787
|
adamc@93
|
788 ]]
|
adamc@93
|
789
|
adamc@93
|
790 What is a large inductive type? In Coq, it is an inductive type that has a constructor which quantifies over some type of type [Type]. We have not worked with [Type] very much to this point. Every term of CIC has a type, including [Set] and [Prop], which are assigned type [Type]. The type [string -> Prop] from the failed definition also has type [Type].
|
adamc@93
|
791
|
adamc@93
|
792 It turns out that allowing large inductive types in [Set] leads to contradictions when combined with certain kinds of classical logic reasoning. Thus, by default, such types are ruled out. There is a simple fix for our [regexp] definition, which is to place our new type in [Type]. While fixing the problem, we also expand the list of constructors to cover the remaining regular expression operators. *)
|
adamc@93
|
793
|
adamc@89
|
794 Inductive regexp : (string -> Prop) -> Type :=
|
adamc@86
|
795 | Char : forall ch : ascii,
|
adamc@86
|
796 regexp (fun s => s = String ch "")
|
adamc@86
|
797 | Concat : forall P1 P2 (r1 : regexp P1) (r2 : regexp P2),
|
adamc@87
|
798 regexp (fun s => exists s1, exists s2, s = s1 ++ s2 /\ P1 s1 /\ P2 s2)
|
adamc@87
|
799 | Or : forall P1 P2 (r1 : regexp P1) (r2 : regexp P2),
|
adamc@91
|
800 regexp (fun s => P1 s \/ P2 s)
|
adamc@91
|
801 | Star : forall P (r : regexp P),
|
adamc@91
|
802 regexp (star P).
|
adamc@86
|
803
|
adam@296
|
804 (** Many theorems about strings are useful for implementing a certified regexp matcher, and few of them are in the [Strings] library. The book source includes statements, proofs, and hint commands for a handful of such omitted theorems. Since they are orthogonal to our use of dependent types, we hide them in the rendered versions of this book. *)
|
adamc@93
|
805
|
adamc@93
|
806 (* begin hide *)
|
adamc@86
|
807 Open Scope specif_scope.
|
adamc@86
|
808
|
adamc@86
|
809 Lemma length_emp : length "" <= 0.
|
adamc@86
|
810 crush.
|
adamc@86
|
811 Qed.
|
adamc@86
|
812
|
adamc@86
|
813 Lemma append_emp : forall s, s = "" ++ s.
|
adamc@86
|
814 crush.
|
adamc@86
|
815 Qed.
|
adamc@86
|
816
|
adamc@86
|
817 Ltac substring :=
|
adamc@86
|
818 crush;
|
adamc@86
|
819 repeat match goal with
|
adamc@86
|
820 | [ |- context[match ?N with O => _ | S _ => _ end] ] => destruct N; crush
|
adamc@86
|
821 end.
|
adamc@86
|
822
|
adamc@86
|
823 Lemma substring_le : forall s n m,
|
adamc@86
|
824 length (substring n m s) <= m.
|
adamc@86
|
825 induction s; substring.
|
adamc@86
|
826 Qed.
|
adamc@86
|
827
|
adamc@86
|
828 Lemma substring_all : forall s,
|
adamc@86
|
829 substring 0 (length s) s = s.
|
adamc@86
|
830 induction s; substring.
|
adamc@86
|
831 Qed.
|
adamc@86
|
832
|
adamc@86
|
833 Lemma substring_none : forall s n,
|
adamc@93
|
834 substring n 0 s = "".
|
adamc@86
|
835 induction s; substring.
|
adamc@86
|
836 Qed.
|
adamc@86
|
837
|
adamc@86
|
838 Hint Rewrite substring_all substring_none : cpdt.
|
adamc@86
|
839
|
adamc@86
|
840 Lemma substring_split : forall s m,
|
adamc@86
|
841 substring 0 m s ++ substring m (length s - m) s = s.
|
adamc@86
|
842 induction s; substring.
|
adamc@86
|
843 Qed.
|
adamc@86
|
844
|
adamc@86
|
845 Lemma length_app1 : forall s1 s2,
|
adamc@86
|
846 length s1 <= length (s1 ++ s2).
|
adamc@86
|
847 induction s1; crush.
|
adamc@86
|
848 Qed.
|
adamc@86
|
849
|
adamc@86
|
850 Hint Resolve length_emp append_emp substring_le substring_split length_app1.
|
adamc@86
|
851
|
adamc@86
|
852 Lemma substring_app_fst : forall s2 s1 n,
|
adamc@86
|
853 length s1 = n
|
adamc@86
|
854 -> substring 0 n (s1 ++ s2) = s1.
|
adamc@86
|
855 induction s1; crush.
|
adamc@86
|
856 Qed.
|
adamc@86
|
857
|
adamc@86
|
858 Lemma substring_app_snd : forall s2 s1 n,
|
adamc@86
|
859 length s1 = n
|
adamc@86
|
860 -> substring n (length (s1 ++ s2) - n) (s1 ++ s2) = s2.
|
adamc@86
|
861 Hint Rewrite <- minus_n_O : cpdt.
|
adamc@86
|
862
|
adamc@86
|
863 induction s1; crush.
|
adamc@86
|
864 Qed.
|
adamc@86
|
865
|
adamc@214
|
866 Hint Rewrite substring_app_fst substring_app_snd using solve [trivial] : cpdt.
|
adamc@93
|
867 (* end hide *)
|
adamc@93
|
868
|
adamc@93
|
869 (** A few auxiliary functions help us in our final matcher definition. The function [split] will be used to implement the regexp concatenation case. *)
|
adamc@86
|
870
|
adamc@86
|
871 Section split.
|
adamc@86
|
872 Variables P1 P2 : string -> Prop.
|
adamc@214
|
873 Variable P1_dec : forall s, {P1 s} + {~ P1 s}.
|
adamc@214
|
874 Variable P2_dec : forall s, {P2 s} + {~ P2 s}.
|
adamc@93
|
875 (** We require a choice of two arbitrary string predicates and functions for deciding them. *)
|
adamc@86
|
876
|
adamc@86
|
877 Variable s : string.
|
adamc@93
|
878 (** Our computation will take place relative to a single fixed string, so it is easiest to make it a [Variable], rather than an explicit argument to our functions. *)
|
adamc@93
|
879
|
adamc@93
|
880 (** [split'] is the workhorse behind [split]. It searches through the possible ways of splitting [s] into two pieces, checking the two predicates against each such pair. [split'] progresses right-to-left, from splitting all of [s] into the first piece to splitting all of [s] into the second piece. It takes an extra argument, [n], which specifies how far along we are in this search process. *)
|
adamc@86
|
881
|
adam@297
|
882 Definition split' : forall n : nat, n <= length s
|
adamc@86
|
883 -> {exists s1, exists s2, length s1 <= n /\ s1 ++ s2 = s /\ P1 s1 /\ P2 s2}
|
adamc@214
|
884 + {forall s1 s2, length s1 <= n -> s1 ++ s2 = s -> ~ P1 s1 \/ ~ P2 s2}.
|
adamc@86
|
885 refine (fix F (n : nat) : n <= length s
|
adamc@86
|
886 -> {exists s1, exists s2, length s1 <= n /\ s1 ++ s2 = s /\ P1 s1 /\ P2 s2}
|
adamc@214
|
887 + {forall s1 s2, length s1 <= n -> s1 ++ s2 = s -> ~ P1 s1 \/ ~ P2 s2} :=
|
adamc@214
|
888 match n with
|
adamc@86
|
889 | O => fun _ => Reduce (P1_dec "" && P2_dec s)
|
adamc@93
|
890 | S n' => fun _ => (P1_dec (substring 0 (S n') s)
|
adamc@93
|
891 && P2_dec (substring (S n') (length s - S n') s))
|
adamc@86
|
892 || F n' _
|
adamc@86
|
893 end); clear F; crush; eauto 7;
|
adamc@86
|
894 match goal with
|
adamc@86
|
895 | [ _ : length ?S <= 0 |- _ ] => destruct S
|
adamc@86
|
896 | [ _ : length ?S' <= S ?N |- _ ] =>
|
adamc@86
|
897 generalize (eq_nat_dec (length S') (S N)); destruct 1
|
adamc@86
|
898 end; crush.
|
adamc@86
|
899 Defined.
|
adamc@86
|
900
|
adamc@93
|
901 (** There is one subtle point in the [split'] code that is worth mentioning. The main body of the function is a [match] on [n]. In the case where [n] is known to be [S n'], we write [S n'] in several places where we might be tempted to write [n]. However, without further work to craft proper [match] annotations, the type-checker does not use the equality between [n] and [S n']. Thus, it is common to see patterns repeated in [match] case bodies in dependently-typed Coq code. We can at least use a [let] expression to avoid copying the pattern more than once, replacing the first case body with:
|
adamc@93
|
902
|
adamc@93
|
903 [[
|
adamc@93
|
904 | S n' => fun _ => let n := S n' in
|
adamc@93
|
905 (P1_dec (substring 0 n s)
|
adamc@93
|
906 && P2_dec (substring n (length s - n) s))
|
adamc@93
|
907 || F n' _
|
adamc@214
|
908
|
adamc@93
|
909 ]]
|
adamc@93
|
910
|
adamc@93
|
911 [split] itself is trivial to implement in terms of [split']. We just ask [split'] to begin its search with [n = length s]. *)
|
adamc@93
|
912
|
adamc@86
|
913 Definition split : {exists s1, exists s2, s = s1 ++ s2 /\ P1 s1 /\ P2 s2}
|
adamc@214
|
914 + {forall s1 s2, s = s1 ++ s2 -> ~ P1 s1 \/ ~ P2 s2}.
|
adamc@86
|
915 refine (Reduce (split' (n := length s) _)); crush; eauto.
|
adamc@86
|
916 Defined.
|
adamc@86
|
917 End split.
|
adamc@86
|
918
|
adamc@86
|
919 Implicit Arguments split [P1 P2].
|
adamc@86
|
920
|
adamc@93
|
921 (* begin hide *)
|
adamc@91
|
922 Lemma app_empty_end : forall s, s ++ "" = s.
|
adamc@91
|
923 induction s; crush.
|
adamc@91
|
924 Qed.
|
adamc@91
|
925
|
adamc@91
|
926 Hint Rewrite app_empty_end : cpdt.
|
adamc@91
|
927
|
adamc@91
|
928 Lemma substring_self : forall s n,
|
adamc@91
|
929 n <= 0
|
adamc@91
|
930 -> substring n (length s - n) s = s.
|
adamc@91
|
931 induction s; substring.
|
adamc@91
|
932 Qed.
|
adamc@91
|
933
|
adamc@91
|
934 Lemma substring_empty : forall s n m,
|
adamc@91
|
935 m <= 0
|
adamc@91
|
936 -> substring n m s = "".
|
adamc@91
|
937 induction s; substring.
|
adamc@91
|
938 Qed.
|
adamc@91
|
939
|
adamc@91
|
940 Hint Rewrite substring_self substring_empty using omega : cpdt.
|
adamc@91
|
941
|
adamc@91
|
942 Lemma substring_split' : forall s n m,
|
adamc@91
|
943 substring n m s ++ substring (n + m) (length s - (n + m)) s
|
adamc@91
|
944 = substring n (length s - n) s.
|
adamc@91
|
945 Hint Rewrite substring_split : cpdt.
|
adamc@91
|
946
|
adamc@91
|
947 induction s; substring.
|
adamc@91
|
948 Qed.
|
adamc@91
|
949
|
adamc@91
|
950 Lemma substring_stack : forall s n2 m1 m2,
|
adamc@91
|
951 m1 <= m2
|
adamc@91
|
952 -> substring 0 m1 (substring n2 m2 s)
|
adamc@91
|
953 = substring n2 m1 s.
|
adamc@91
|
954 induction s; substring.
|
adamc@91
|
955 Qed.
|
adamc@91
|
956
|
adamc@91
|
957 Ltac substring' :=
|
adamc@91
|
958 crush;
|
adamc@91
|
959 repeat match goal with
|
adamc@91
|
960 | [ |- context[match ?N with O => _ | S _ => _ end] ] => case_eq N; crush
|
adamc@91
|
961 end.
|
adamc@91
|
962
|
adamc@91
|
963 Lemma substring_stack' : forall s n1 n2 m1 m2,
|
adamc@91
|
964 n1 + m1 <= m2
|
adamc@91
|
965 -> substring n1 m1 (substring n2 m2 s)
|
adamc@91
|
966 = substring (n1 + n2) m1 s.
|
adamc@91
|
967 induction s; substring';
|
adamc@91
|
968 match goal with
|
adamc@91
|
969 | [ |- substring ?N1 _ _ = substring ?N2 _ _ ] =>
|
adamc@91
|
970 replace N1 with N2; crush
|
adamc@91
|
971 end.
|
adamc@91
|
972 Qed.
|
adamc@91
|
973
|
adamc@91
|
974 Lemma substring_suffix : forall s n,
|
adamc@91
|
975 n <= length s
|
adamc@91
|
976 -> length (substring n (length s - n) s) = length s - n.
|
adamc@91
|
977 induction s; substring.
|
adamc@91
|
978 Qed.
|
adamc@91
|
979
|
adamc@91
|
980 Lemma substring_suffix_emp' : forall s n m,
|
adamc@91
|
981 substring n (S m) s = ""
|
adamc@91
|
982 -> n >= length s.
|
adamc@91
|
983 induction s; crush;
|
adamc@91
|
984 match goal with
|
adamc@91
|
985 | [ |- ?N >= _ ] => destruct N; crush
|
adamc@91
|
986 end;
|
adamc@91
|
987 match goal with
|
adamc@91
|
988 [ |- S ?N >= S ?E ] => assert (N >= E); [ eauto | omega ]
|
adamc@91
|
989 end.
|
adamc@91
|
990 Qed.
|
adamc@91
|
991
|
adamc@91
|
992 Lemma substring_suffix_emp : forall s n m,
|
adamc@92
|
993 substring n m s = ""
|
adamc@92
|
994 -> m > 0
|
adamc@91
|
995 -> n >= length s.
|
adam@335
|
996 destruct m as [ | m]; [crush | intros; apply substring_suffix_emp' with m; assumption].
|
adamc@91
|
997 Qed.
|
adamc@91
|
998
|
adamc@91
|
999 Hint Rewrite substring_stack substring_stack' substring_suffix
|
adamc@91
|
1000 using omega : cpdt.
|
adamc@91
|
1001
|
adamc@91
|
1002 Lemma minus_minus : forall n m1 m2,
|
adamc@91
|
1003 m1 + m2 <= n
|
adamc@91
|
1004 -> n - m1 - m2 = n - (m1 + m2).
|
adamc@91
|
1005 intros; omega.
|
adamc@91
|
1006 Qed.
|
adamc@91
|
1007
|
adamc@91
|
1008 Lemma plus_n_Sm' : forall n m : nat, S (n + m) = m + S n.
|
adamc@91
|
1009 intros; omega.
|
adamc@91
|
1010 Qed.
|
adamc@91
|
1011
|
adamc@91
|
1012 Hint Rewrite minus_minus using omega : cpdt.
|
adamc@93
|
1013 (* end hide *)
|
adamc@93
|
1014
|
adamc@93
|
1015 (** One more helper function will come in handy: [dec_star], for implementing another linear search through ways of splitting a string, this time for implementing the Kleene star. *)
|
adamc@91
|
1016
|
adamc@91
|
1017 Section dec_star.
|
adamc@91
|
1018 Variable P : string -> Prop.
|
adamc@214
|
1019 Variable P_dec : forall s, {P s} + {~ P s}.
|
adamc@91
|
1020
|
adamc@93
|
1021 (** Some new lemmas and hints about the [star] type family are useful here. We omit them here; they are included in the book source at this point. *)
|
adamc@93
|
1022
|
adamc@93
|
1023 (* begin hide *)
|
adamc@91
|
1024 Hint Constructors star.
|
adamc@91
|
1025
|
adamc@91
|
1026 Lemma star_empty : forall s,
|
adamc@91
|
1027 length s = 0
|
adamc@91
|
1028 -> star P s.
|
adamc@91
|
1029 destruct s; crush.
|
adamc@91
|
1030 Qed.
|
adamc@91
|
1031
|
adamc@91
|
1032 Lemma star_singleton : forall s, P s -> star P s.
|
adamc@91
|
1033 intros; rewrite <- (app_empty_end s); auto.
|
adamc@91
|
1034 Qed.
|
adamc@91
|
1035
|
adamc@91
|
1036 Lemma star_app : forall s n m,
|
adamc@91
|
1037 P (substring n m s)
|
adamc@91
|
1038 -> star P (substring (n + m) (length s - (n + m)) s)
|
adamc@91
|
1039 -> star P (substring n (length s - n) s).
|
adamc@91
|
1040 induction n; substring;
|
adamc@91
|
1041 match goal with
|
adamc@91
|
1042 | [ H : P (substring ?N ?M ?S) |- _ ] =>
|
adamc@91
|
1043 solve [ rewrite <- (substring_split S M); auto
|
adamc@91
|
1044 | rewrite <- (substring_split' S N M); auto ]
|
adamc@91
|
1045 end.
|
adamc@91
|
1046 Qed.
|
adamc@91
|
1047
|
adamc@91
|
1048 Hint Resolve star_empty star_singleton star_app.
|
adamc@91
|
1049
|
adamc@91
|
1050 Variable s : string.
|
adamc@91
|
1051
|
adamc@91
|
1052 Lemma star_inv : forall s,
|
adamc@91
|
1053 star P s
|
adamc@91
|
1054 -> s = ""
|
adamc@91
|
1055 \/ exists i, i < length s
|
adamc@91
|
1056 /\ P (substring 0 (S i) s)
|
adamc@91
|
1057 /\ star P (substring (S i) (length s - S i) s).
|
adamc@91
|
1058 Hint Extern 1 (exists i : nat, _) =>
|
adamc@91
|
1059 match goal with
|
adamc@91
|
1060 | [ H : P (String _ ?S) |- _ ] => exists (length S); crush
|
adamc@91
|
1061 end.
|
adamc@91
|
1062
|
adamc@91
|
1063 induction 1; [
|
adamc@91
|
1064 crush
|
adamc@91
|
1065 | match goal with
|
adamc@91
|
1066 | [ _ : P ?S |- _ ] => destruct S; crush
|
adamc@91
|
1067 end
|
adamc@91
|
1068 ].
|
adamc@91
|
1069 Qed.
|
adamc@91
|
1070
|
adamc@91
|
1071 Lemma star_substring_inv : forall n,
|
adamc@91
|
1072 n <= length s
|
adamc@91
|
1073 -> star P (substring n (length s - n) s)
|
adamc@91
|
1074 -> substring n (length s - n) s = ""
|
adamc@91
|
1075 \/ exists l, l < length s - n
|
adamc@91
|
1076 /\ P (substring n (S l) s)
|
adamc@91
|
1077 /\ star P (substring (n + S l) (length s - (n + S l)) s).
|
adamc@91
|
1078 Hint Rewrite plus_n_Sm' : cpdt.
|
adamc@91
|
1079
|
adamc@91
|
1080 intros;
|
adamc@91
|
1081 match goal with
|
adamc@91
|
1082 | [ H : star _ _ |- _ ] => generalize (star_inv H); do 3 crush; eauto
|
adamc@91
|
1083 end.
|
adamc@91
|
1084 Qed.
|
adamc@93
|
1085 (* end hide *)
|
adamc@93
|
1086
|
adamc@93
|
1087 (** The function [dec_star''] implements a single iteration of the star. That is, it tries to find a string prefix matching [P], and it calls a parameter function on the remainder of the string. *)
|
adamc@91
|
1088
|
adamc@91
|
1089 Section dec_star''.
|
adamc@91
|
1090 Variable n : nat.
|
adamc@93
|
1091 (** [n] is the length of the prefix of [s] that we have already processed. *)
|
adamc@91
|
1092
|
adamc@91
|
1093 Variable P' : string -> Prop.
|
adamc@91
|
1094 Variable P'_dec : forall n' : nat, n' > n
|
adamc@91
|
1095 -> {P' (substring n' (length s - n') s)}
|
adamc@214
|
1096 + {~ P' (substring n' (length s - n') s)}.
|
adamc@93
|
1097 (** When we use [dec_star''], we will instantiate [P'_dec] with a function for continuing the search for more instances of [P] in [s]. *)
|
adamc@93
|
1098
|
adamc@93
|
1099 (** Now we come to [dec_star''] itself. It takes as an input a natural [l] that records how much of the string has been searched so far, as we did for [split']. The return type expresses that [dec_star''] is looking for an index into [s] that splits [s] into a nonempty prefix and a suffix, such that the prefix satisfies [P] and the suffix satisfies [P']. *)
|
adamc@91
|
1100
|
adam@297
|
1101 Definition dec_star'' : forall l : nat,
|
adam@297
|
1102 {exists l', S l' <= l
|
adamc@91
|
1103 /\ P (substring n (S l') s) /\ P' (substring (n + S l') (length s - (n + S l')) s)}
|
adamc@91
|
1104 + {forall l', S l' <= l
|
adamc@214
|
1105 -> ~ P (substring n (S l') s)
|
adamc@214
|
1106 \/ ~ P' (substring (n + S l') (length s - (n + S l')) s)}.
|
adamc@91
|
1107 refine (fix F (l : nat) : {exists l', S l' <= l
|
adamc@91
|
1108 /\ P (substring n (S l') s) /\ P' (substring (n + S l') (length s - (n + S l')) s)}
|
adamc@91
|
1109 + {forall l', S l' <= l
|
adamc@214
|
1110 -> ~ P (substring n (S l') s)
|
adamc@214
|
1111 \/ ~ P' (substring (n + S l') (length s - (n + S l')) s)} :=
|
adamc@214
|
1112 match l with
|
adamc@91
|
1113 | O => _
|
adamc@91
|
1114 | S l' =>
|
adamc@91
|
1115 (P_dec (substring n (S l') s) && P'_dec (n' := n + S l') _)
|
adamc@91
|
1116 || F l'
|
adamc@91
|
1117 end); clear F; crush; eauto 7;
|
adamc@91
|
1118 match goal with
|
adamc@91
|
1119 | [ H : ?X <= S ?Y |- _ ] => destruct (eq_nat_dec X (S Y)); crush
|
adamc@91
|
1120 end.
|
adamc@91
|
1121 Defined.
|
adamc@91
|
1122 End dec_star''.
|
adamc@91
|
1123
|
adamc@93
|
1124 (* begin hide *)
|
adamc@92
|
1125 Lemma star_length_contra : forall n,
|
adamc@92
|
1126 length s > n
|
adamc@92
|
1127 -> n >= length s
|
adamc@92
|
1128 -> False.
|
adamc@92
|
1129 crush.
|
adamc@92
|
1130 Qed.
|
adamc@92
|
1131
|
adamc@92
|
1132 Lemma star_length_flip : forall n n',
|
adamc@92
|
1133 length s - n <= S n'
|
adamc@92
|
1134 -> length s > n
|
adamc@92
|
1135 -> length s - n > 0.
|
adamc@92
|
1136 crush.
|
adamc@92
|
1137 Qed.
|
adamc@92
|
1138
|
adamc@92
|
1139 Hint Resolve star_length_contra star_length_flip substring_suffix_emp.
|
adamc@93
|
1140 (* end hide *)
|
adamc@92
|
1141
|
adamc@93
|
1142 (** The work of [dec_star''] is nested inside another linear search by [dec_star'], which provides the final functionality we need, but for arbitrary suffixes of [s], rather than just for [s] overall. *)
|
adamc@93
|
1143
|
adam@297
|
1144 Definition dec_star' : forall n n' : nat, length s - n' <= n
|
adamc@91
|
1145 -> {star P (substring n' (length s - n') s)}
|
adamc@214
|
1146 + {~ star P (substring n' (length s - n') s)}.
|
adamc@214
|
1147 refine (fix F (n n' : nat) : length s - n' <= n
|
adamc@91
|
1148 -> {star P (substring n' (length s - n') s)}
|
adamc@214
|
1149 + {~ star P (substring n' (length s - n') s)} :=
|
adamc@214
|
1150 match n with
|
adamc@91
|
1151 | O => fun _ => Yes
|
adamc@91
|
1152 | S n'' => fun _ =>
|
adamc@91
|
1153 le_gt_dec (length s) n'
|
adamc@91
|
1154 || dec_star'' (n := n') (star P) (fun n0 _ => Reduce (F n'' n0 _)) (length s - n')
|
adamc@92
|
1155 end); clear F; crush; eauto;
|
adamc@92
|
1156 match goal with
|
adamc@92
|
1157 | [ H : star _ _ |- _ ] => apply star_substring_inv in H; crush; eauto
|
adamc@92
|
1158 end;
|
adamc@92
|
1159 match goal with
|
adamc@92
|
1160 | [ H1 : _ < _ - _, H2 : forall l' : nat, _ <= _ - _ -> _ |- _ ] =>
|
adamc@92
|
1161 generalize (H2 _ (lt_le_S _ _ H1)); tauto
|
adamc@92
|
1162 end.
|
adamc@91
|
1163 Defined.
|
adamc@91
|
1164
|
adamc@93
|
1165 (** Finally, we have [dec_star]. It has a straightforward implementation. We introduce a spurious match on [s] so that [simpl] will know to reduce calls to [dec_star]. The heuristic that [simpl] uses is only to unfold identifier definitions when doing so would simplify some [match] expression. *)
|
adamc@93
|
1166
|
adamc@214
|
1167 Definition dec_star : {star P s} + {~ star P s}.
|
adamc@204
|
1168 refine (match s return _ with
|
adamc@91
|
1169 | "" => Reduce (dec_star' (n := length s) 0 _)
|
adamc@91
|
1170 | _ => Reduce (dec_star' (n := length s) 0 _)
|
adamc@91
|
1171 end); crush.
|
adamc@91
|
1172 Defined.
|
adamc@91
|
1173 End dec_star.
|
adamc@91
|
1174
|
adamc@93
|
1175 (* begin hide *)
|
adamc@86
|
1176 Lemma app_cong : forall x1 y1 x2 y2,
|
adamc@86
|
1177 x1 = x2
|
adamc@86
|
1178 -> y1 = y2
|
adamc@86
|
1179 -> x1 ++ y1 = x2 ++ y2.
|
adamc@86
|
1180 congruence.
|
adamc@86
|
1181 Qed.
|
adamc@86
|
1182
|
adamc@86
|
1183 Hint Resolve app_cong.
|
adamc@93
|
1184 (* end hide *)
|
adamc@93
|
1185
|
adamc@93
|
1186 (** With these helper functions completed, the implementation of our [matches] function is refreshingly straightforward. We only need one small piece of specific tactic work beyond what [crush] does for us. *)
|
adamc@86
|
1187
|
adam@297
|
1188 Definition matches : forall P (r : regexp P) s, {P s} + {~ P s}.
|
adamc@214
|
1189 refine (fix F P (r : regexp P) s : {P s} + {~ P s} :=
|
adamc@86
|
1190 match r with
|
adamc@86
|
1191 | Char ch => string_dec s (String ch "")
|
adamc@86
|
1192 | Concat _ _ r1 r2 => Reduce (split (F _ r1) (F _ r2) s)
|
adamc@87
|
1193 | Or _ _ r1 r2 => F _ r1 s || F _ r2 s
|
adamc@91
|
1194 | Star _ r => dec_star _ _ _
|
adamc@86
|
1195 end); crush;
|
adamc@86
|
1196 match goal with
|
adamc@86
|
1197 | [ H : _ |- _ ] => generalize (H _ _ (refl_equal _))
|
adamc@93
|
1198 end; tauto.
|
adamc@86
|
1199 Defined.
|
adamc@86
|
1200
|
adam@283
|
1201 (** It is interesting to pause briefly to consider alternate implementations of [matches]. Dependent types give us much latitude in how specific correctness properties may be encoded with types. For instance, we could have made [regexp] a non-indexed inductive type, along the lines of what is possible in traditional ML and Haskell. We could then have implemented a recursive function to map [regexp]s to their intended meanings, much as we have done with types and programs in other examples. That style is compatible with the [refine]-based approach that we have used here, and it might be an interesting exercise to redo the code from this subsection in that alternate style or some further encoding of the reader's choice. The main advantage of indexed inductive types is that they generally lead to the smallest amount of code. *)
|
adam@283
|
1202
|
adamc@93
|
1203 (* begin hide *)
|
adamc@86
|
1204 Example hi := Concat (Char "h"%char) (Char "i"%char).
|
adamc@86
|
1205 Eval simpl in matches hi "hi".
|
adamc@86
|
1206 Eval simpl in matches hi "bye".
|
adamc@87
|
1207
|
adamc@87
|
1208 Example a_b := Or (Char "a"%char) (Char "b"%char).
|
adamc@87
|
1209 Eval simpl in matches a_b "".
|
adamc@87
|
1210 Eval simpl in matches a_b "a".
|
adamc@87
|
1211 Eval simpl in matches a_b "aa".
|
adamc@87
|
1212 Eval simpl in matches a_b "b".
|
adam@283
|
1213 (* end hide *)
|
adam@283
|
1214
|
adam@283
|
1215 (** Many regular expression matching problems are easy to test. The reader may run each of the following queries to verify that it gives the correct answer. *)
|
adamc@91
|
1216
|
adamc@91
|
1217 Example a_star := Star (Char "a"%char).
|
adamc@91
|
1218 Eval simpl in matches a_star "".
|
adamc@91
|
1219 Eval simpl in matches a_star "a".
|
adamc@91
|
1220 Eval simpl in matches a_star "b".
|
adamc@91
|
1221 Eval simpl in matches a_star "aa".
|
adam@283
|
1222
|
adam@283
|
1223 (** Evaluation inside Coq does not scale very well, so it is easy to build other tests that run for hours or more. Such cases are better suited to execution with the extracted OCaml code. *)
|
adamc@101
|
1224
|
adamc@101
|
1225
|
adamc@101
|
1226 (** * Exercises *)
|
adamc@101
|
1227
|
adamc@101
|
1228 (** %\begin{enumerate}%#<ol>#
|
adamc@101
|
1229
|
adamc@101
|
1230 %\item%#<li># Define a kind of dependently-typed lists, where a list's type index gives a lower bound on how many of its elements satisfy a particular predicate. In particular, for an arbitrary set [A] and a predicate [P] over it:
|
adamc@101
|
1231 %\begin{enumerate}%#<ol>#
|
adamc@101
|
1232 %\item%#<li># Define a type [plist : nat -> Set]. Each [plist n] should be a list of [A]s, where it is guaranteed that at least [n] distinct elements satisfy [P]. There is wide latitude in choosing how to encode this. You should try to avoid using subset types or any other mechanism based on annotating non-dependent types with propositions after-the-fact.#</li>#
|
adamc@102
|
1233 %\item%#<li># Define a version of list concatenation that works on [plist]s. The type of this new function should express as much information as possible about the output [plist].#</li>#
|
adamc@101
|
1234 %\item%#<li># Define a function [plistOut] for translating [plist]s to normal [list]s.#</li>#
|
adamc@101
|
1235 %\item%#<li># Define a function [plistIn] for translating [list]s to [plist]s. The type of [plistIn] should make it clear that the best bound on [P]-matching elements is chosen. You may assume that you are given a dependently-typed function for deciding instances of [P].#</li>#
|
adamc@101
|
1236 %\item%#<li># Prove that, for any list [ls], [plistOut (plistIn ls) = ls]. This should be the only part of the exercise where you use tactic-based proving.#</li>#
|
adamc@101
|
1237 %\item%#<li># Define a function [grab : forall n (ls : plist (S n)), sig P]. That is, when given a [plist] guaranteed to contain at least one element satisfying [P], [grab] produces such an element. [sig] is the type family of sigma types, and [sig P] is extensionally equivalent to [{x : A | P x}], though the latter form uses an eta-expansion of [P] instead of [P] itself as the predicate.#</li>#
|
adamc@101
|
1238 #</ol>#%\end{enumerate}% #</li>#
|
adamc@101
|
1239
|
adamc@102
|
1240 #</ol>#%\end{enumerate}% *)
|