annotate src/MoreDep.v @ 98:696726af9530

Prettify rbtree a bit more
author Adam Chlipala <adamc@hcoop.net>
date Tue, 07 Oct 2008 22:14:39 -0400
parents e579e1e64bde
children 070f4de92311
rev   line source
adamc@83 1 (* Copyright (c) 2008, Adam Chlipala
adamc@83 2 *
adamc@83 3 * This work is licensed under a
adamc@83 4 * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
adamc@83 5 * Unported License.
adamc@83 6 * The license text is available at:
adamc@83 7 * http://creativecommons.org/licenses/by-nc-nd/3.0/
adamc@83 8 *)
adamc@83 9
adamc@83 10 (* begin hide *)
adamc@85 11 Require Import Arith Bool List.
adamc@83 12
adamc@86 13 Require Import Tactics MoreSpecif.
adamc@83 14
adamc@83 15 Set Implicit Arguments.
adamc@83 16 (* end hide *)
adamc@83 17
adamc@83 18
adamc@83 19 (** %\chapter{More Dependent Types}% *)
adamc@83 20
adamc@83 21 (** Subset types and their relatives help us integrate verification with programming. Though they reorganize the certified programmer's workflow, they tend not to have deep effects on proofs. We write largely the same proofs as we would for classical verification, with some of the structure moved into the programs themselves. It turns out that, when we use dependent types to their full potential, we warp the development and proving process even more than that, picking up "free theorems" to the extent that often a certified program is hardly more complex than its uncertified counterpart in Haskell or ML.
adamc@83 22
adamc@83 23 In particular, we have only scratched the tip of the iceberg that is Coq's inductive definition mechanism. The inductive types we have seen so far have their counterparts in the other proof assistants that we surveyed in Chapter 1. This chapter explores the strange new world of dependent inductive datatypes (that is, dependent inductive types outside [Prop]), a possibility which sets Coq apart from all of the competition not based on type theory. *)
adamc@83 24
adamc@84 25
adamc@84 26 (** * Length-Indexed Lists *)
adamc@84 27
adamc@84 28 (** Many introductions to dependent types start out by showing how to use them to eliminate array bounds checks. When the type of an array tells you how many elements it has, your compiler can detect out-of-bounds dereferences statically. Since we are working in a pure functional language, the next best thing is length-indexed lists, which the following code defines. *)
adamc@84 29
adamc@84 30 Section ilist.
adamc@84 31 Variable A : Set.
adamc@84 32
adamc@84 33 Inductive ilist : nat -> Set :=
adamc@84 34 | Nil : ilist O
adamc@84 35 | Cons : forall n, A -> ilist n -> ilist (S n).
adamc@84 36
adamc@84 37 (** We see that, within its section, [ilist] is given type [nat -> Set]. Previously, every inductive type we have seen has either had plain [Set] as its type or has been a predicate with some type ending in [Prop]. The full generality of inductive definitions lets us integrate the expressivity of predicates directly into our normal programming.
adamc@84 38
adamc@84 39 The [nat] argument to [ilist] tells us the length of the list. The types of [ilist]'s constructors tell us that a [Nil] list has length [O] and that a [Cons] list has length one greater than the length of its sublist. We may apply [ilist] to any natural number, even natural numbers that are only known at runtime. It is this breaking of the %\textit{%#<i>#phase distinction#</i>#%}% that characterizes [ilist] as %\textit{%#<i>#dependently typed#</i>#%}%.
adamc@84 40
adamc@84 41 In expositions of list types, we usually see the length function defined first, but here that would not be a very productive function to code. Instead, let us implement list concatenation.
adamc@84 42
adamc@84 43 [[
adamc@84 44 Fixpoint app n1 (ls1 : ilist n1) n2 (ls2 : ilist n2) {struct ls1} : ilist (n1 + n2) :=
adamc@84 45 match ls1 with
adamc@84 46 | Nil => ls2
adamc@84 47 | Cons _ x ls1' => Cons x (app ls1' ls2)
adamc@84 48 end.
adamc@84 49
adamc@84 50 Coq is not happy with this definition:
adamc@84 51
adamc@84 52 [[
adamc@84 53 The term "ls2" has type "ilist n2" while it is expected to have type
adamc@84 54 "ilist (?14 + n2)"
adamc@84 55 ]]
adamc@84 56
adamc@84 57 We see the return of a problem we have considered before. Without explicit annotations, Coq does not enrich our typing assumptions in the branches of a [match] expression. It is clear that the unification variable [?14] should be resolved to 0 in this context, so that we have [0 + n2] reducing to [n2], but Coq does not realize that. We cannot fix the problem using just the simple [return] clauses we applied in the last chapter. We need to combine a [return] clause with a new kind of annotation, an [in] clause. *)
adamc@84 58
adamc@84 59 Fixpoint app n1 (ls1 : ilist n1) n2 (ls2 : ilist n2) {struct ls1} : ilist (n1 + n2) :=
adamc@84 60 match ls1 in (ilist n1) return (ilist (n1 + n2)) with
adamc@84 61 | Nil => ls2
adamc@84 62 | Cons _ x ls1' => Cons x (app ls1' ls2)
adamc@84 63 end.
adamc@84 64
adamc@84 65 (** This version of [app] passes the type checker. Using [return] alone allowed us to express a dependency of the [match] result type on the %\textit{%#<i>#value#</i>#%}% of the discriminee. What [in] adds to our arsenal is a way of expressing a dependency on the %\textit{%#<i>#type#</i>#%}% of the discriminee. Specifically, the [n1] in the [in] clause above is a %\textit{%#<i>#binding occurrence#</i>#%}% whose scope is the [return] clause.
adamc@84 66
adamc@84 67 We may use [in] clauses only to bind names for the arguments of an inductive type family. That is, each [in] clause must be an inductive type family name applied to a sequence of underscores and variable names of the proper length. The positions for %\textit{%#<i>#parameters#</i>#%}% to the type family must all be underscores. Parameters are those arguments declared with section variables or with entries to the left of the first colon in an inductive definition. They cannot vary depending on which constructor was used to build the discriminee, so Coq prohibits pointless matches on them. It is those arguments defined in the type to the right of the colon that we may name with [in] clauses.
adamc@84 68
adamc@84 69 Our [app] function could be typed in so-called %\textit{%#<i>#stratified#</i>#%}% type systems, which avoid true dependency. We could consider the length indices to lists to live in a separate, compile-time-only universe from the lists themselves. Our next example would be harder to implement in a stratified system. We write an injection function from regular lists to length-indexed lists. A stratified implementation would need to duplicate the definition of lists across compile-time and run-time versions, and the run-time versions would need to be indexed by the compile-time versions. *)
adamc@84 70
adamc@84 71 Fixpoint inject (ls : list A) : ilist (length ls) :=
adamc@84 72 match ls return (ilist (length ls)) with
adamc@84 73 | nil => Nil
adamc@84 74 | h :: t => Cons h (inject t)
adamc@84 75 end.
adamc@84 76
adamc@84 77 (** We can define an inverse conversion and prove that it really is an inverse. *)
adamc@84 78
adamc@84 79 Fixpoint unject n (ls : ilist n) {struct ls} : list A :=
adamc@84 80 match ls with
adamc@84 81 | Nil => nil
adamc@84 82 | Cons _ h t => h :: unject t
adamc@84 83 end.
adamc@84 84
adamc@84 85 Theorem inject_inverse : forall ls, unject (inject ls) = ls.
adamc@84 86 induction ls; crush.
adamc@84 87 Qed.
adamc@84 88
adamc@84 89 (** Now let us attempt a function that is surprisingly tricky to write. In ML, the list head function raises an exception when passed an empty list. With length-indexed lists, we can rule out such invalid calls statically, and here is a first attempt at doing so.
adamc@84 90
adamc@84 91 [[
adamc@84 92 Definition hd n (ls : ilist (S n)) : A :=
adamc@84 93 match ls with
adamc@84 94 | Nil => ???
adamc@84 95 | Cons _ h _ => h
adamc@84 96 end.
adamc@84 97
adamc@84 98 It is not clear what to write for the [Nil] case, so we are stuck before we even turn our function over to the type checker. We could try omitting the [Nil] case:
adamc@84 99
adamc@84 100 [[
adamc@84 101 Definition hd n (ls : ilist (S n)) : A :=
adamc@84 102 match ls with
adamc@84 103 | Cons _ h _ => h
adamc@84 104 end.
adamc@84 105
adamc@84 106 [[
adamc@84 107 Error: Non exhaustive pattern-matching: no clause found for pattern Nil
adamc@84 108 ]]
adamc@84 109
adamc@84 110 Unlike in ML, we cannot use inexhaustive pattern matching, becuase there is no conception of a %\texttt{%#<tt>#Match#</tt>#%}% exception to be thrown. We might try using an [in] clause somehow.
adamc@84 111
adamc@84 112 [[
adamc@84 113 Definition hd n (ls : ilist (S n)) : A :=
adamc@84 114 match ls in (ilist (S n)) with
adamc@84 115 | Cons _ h _ => h
adamc@84 116 end.
adamc@84 117
adamc@84 118 [[
adamc@84 119 Error: The reference n was not found in the current environment
adamc@84 120 ]]
adamc@84 121
adamc@84 122 In this and other cases, we feel like we want [in] clauses with type family arguments that are not variables. Unfortunately, Coq only supports variables in those positions. A completely general mechanism could only be supported with a solution to the problem of higher-order unification, which is undecidable. There %\textit{%#<i>#are#</i>#%}% useful heuristics for handling non-variable indices which are gradually making their way into Coq, but we will spend some time in this and the next few chapters on effective pattern matching on dependent types using only the primitive [match] annotations.
adamc@84 123
adamc@84 124 Our final, working attempt at [hd] uses an auxiliary function and a surprising [return] annotation. *)
adamc@84 125
adamc@84 126 Definition hd' n (ls : ilist n) :=
adamc@84 127 match ls in (ilist n) return (match n with O => unit | S _ => A end) with
adamc@84 128 | Nil => tt
adamc@84 129 | Cons _ h _ => h
adamc@84 130 end.
adamc@84 131
adamc@84 132 Definition hd n (ls : ilist (S n)) : A := hd' ls.
adamc@84 133
adamc@84 134 (** We annotate our main [match] with a type that is itself a [match]. We write that the function [hd'] returns [unit] when the list is empty and returns the carried type [A] in all other cases. In the definition of [hd], we just call [hd']. Because the index of [ls] is known to be nonzero, the type checker reduces the [match] in the type of [hd'] to [A]. *)
adamc@84 135
adamc@84 136 End ilist.
adamc@85 137
adamc@85 138
adamc@85 139 (** * A Tagless Interpreter *)
adamc@85 140
adamc@85 141 (** A favorite example for motivating the power of functional programming is implementation of a simple expression language interpreter. In ML and Haskell, such interpreters are often implemented using an algebraic datatype of values, where at many points it is checked that a value was built with the right constructor of the value type. With dependent types, we can implement a %\textit{%#<i>#tagless#</i>#%}% interpreter that both removes this source of runtime ineffiency and gives us more confidence that our implementation is correct. *)
adamc@85 142
adamc@85 143 Inductive type : Set :=
adamc@85 144 | Nat : type
adamc@85 145 | Bool : type
adamc@85 146 | Prod : type -> type -> type.
adamc@85 147
adamc@85 148 Inductive exp : type -> Set :=
adamc@85 149 | NConst : nat -> exp Nat
adamc@85 150 | Plus : exp Nat -> exp Nat -> exp Nat
adamc@85 151 | Eq : exp Nat -> exp Nat -> exp Bool
adamc@85 152
adamc@85 153 | BConst : bool -> exp Bool
adamc@85 154 | And : exp Bool -> exp Bool -> exp Bool
adamc@85 155 | If : forall t, exp Bool -> exp t -> exp t -> exp t
adamc@85 156
adamc@85 157 | Pair : forall t1 t2, exp t1 -> exp t2 -> exp (Prod t1 t2)
adamc@85 158 | Fst : forall t1 t2, exp (Prod t1 t2) -> exp t1
adamc@85 159 | Snd : forall t1 t2, exp (Prod t1 t2) -> exp t2.
adamc@85 160
adamc@85 161 (** We have a standard algebraic datatype [type], defining a type language of naturals, booleans, and product (pair) types. Then we have the indexed inductive type [exp], where the argument to [exp] tells us the encoded type of an expression. In effect, we are defining the typing rules for expressions simultaneously with the syntax.
adamc@85 162
adamc@85 163 We can give types and expressions semantics in a new style, based critically on the chance for %\textit{%#<i>#type-level computation#</i>#%}%. *)
adamc@85 164
adamc@85 165 Fixpoint typeDenote (t : type) : Set :=
adamc@85 166 match t with
adamc@85 167 | Nat => nat
adamc@85 168 | Bool => bool
adamc@85 169 | Prod t1 t2 => typeDenote t1 * typeDenote t2
adamc@85 170 end%type.
adamc@85 171
adamc@85 172 (** [typeDenote] compiles types of our object language into "native" Coq types. It is deceptively easy to implement. The only new thing we see is the [%type] annotation, which tells Coq to parse the [match] expression using the notations associated with types. Without this annotation, the [*] would be interpreted as multiplication on naturals, rather than as the product type constructor. [type] is one example of an identifer bound to a %\textit{%#<i>#notation scope#</i>#%}%. We will deal more explicitly with notations and notation scopes in later chapters.
adamc@85 173
adamc@85 174 We can define a function [expDenote] that is typed in terms of [typeDenote]. *)
adamc@85 175
adamc@85 176 Fixpoint expDenote t (e : exp t) {struct e} : typeDenote t :=
adamc@85 177 match e in (exp t) return (typeDenote t) with
adamc@85 178 | NConst n => n
adamc@85 179 | Plus e1 e2 => expDenote e1 + expDenote e2
adamc@85 180 | Eq e1 e2 => if eq_nat_dec (expDenote e1) (expDenote e2) then true else false
adamc@85 181
adamc@85 182 | BConst b => b
adamc@85 183 | And e1 e2 => expDenote e1 && expDenote e2
adamc@85 184 | If _ e' e1 e2 => if expDenote e' then expDenote e1 else expDenote e2
adamc@85 185
adamc@85 186 | Pair _ _ e1 e2 => (expDenote e1, expDenote e2)
adamc@85 187 | Fst _ _ e' => fst (expDenote e')
adamc@85 188 | Snd _ _ e' => snd (expDenote e')
adamc@85 189 end.
adamc@85 190
adamc@85 191 (** Again we find that an [in] annotation is essential for type-checking a function. Besides that, the definition is routine. In fact, it is less complicated than what we would write in ML or Haskell 98, since we do not need to worry about pushing final values in and out of an algebraic datatype. The only unusual thing is the use of an expression of the form [if E then true else false] in the [Eq] case. Remember that [eq_nat_dec] has a rich dependent type, rather than a simple boolean type. Coq's native [if] is overloaded to work on a test of any two-constructor type, so we can use [if] to build a simple boolean from the [sumbool] that [eq_nat_dec] returns.
adamc@85 192
adamc@85 193 We can implement our old favorite, a constant folding function, and prove it correct. It will be useful to write a function [pairOut] that checks if an [exp] of [Prod] type is a pair, returning its two components if so. Unsurprisingly, a first attempt leads to a type error.
adamc@85 194
adamc@85 195 [[
adamc@85 196 Definition pairOut t1 t2 (e : exp (Prod t1 t2)) : option (exp t1 * exp t2) :=
adamc@85 197 match e in (exp (Prod t1 t2)) return option (exp t1 * exp t2) with
adamc@85 198 | Pair _ _ e1 e2 => Some (e1, e2)
adamc@85 199 | _ => None
adamc@85 200 end.
adamc@85 201
adamc@85 202 [[
adamc@85 203 Error: The reference t2 was not found in the current environment
adamc@85 204 ]]
adamc@85 205
adamc@85 206 We run again into the problem of not being able to specify non-variable arguments in [in] clauses. The problem would just be hopeless without a use of an [in] clause, though, since the result type of the [match] depends on an argument to [exp]. Our solution will be to use a more general type, as we did for [hd]. First, we define a type-valued function to use in assigning a type to [pairOut]. *)
adamc@85 207
adamc@85 208 Definition pairOutType (t : type) :=
adamc@85 209 match t with
adamc@85 210 | Prod t1 t2 => option (exp t1 * exp t2)
adamc@85 211 | _ => unit
adamc@85 212 end.
adamc@85 213
adamc@85 214 (** When passed a type that is a product, [pairOutType] returns our final desired type. On any other input type, [pairOutType] returns [unit], since we do not care about extracting components of non-pairs. Now we can write another helper function to provide the default behavior of [pairOut], which we will apply for inputs that are not literal pairs. *)
adamc@85 215
adamc@85 216 Definition pairOutDefault (t : type) :=
adamc@85 217 match t return (pairOutType t) with
adamc@85 218 | Prod _ _ => None
adamc@85 219 | _ => tt
adamc@85 220 end.
adamc@85 221
adamc@85 222 (** Now [pairOut] is deceptively easy to write. *)
adamc@85 223
adamc@85 224 Definition pairOut t (e : exp t) :=
adamc@85 225 match e in (exp t) return (pairOutType t) with
adamc@85 226 | Pair _ _ e1 e2 => Some (e1, e2)
adamc@85 227 | _ => pairOutDefault _
adamc@85 228 end.
adamc@85 229
adamc@85 230 (** There is one important subtlety in this definition. Coq allows us to use convenient ML-style pattern matching notation, but, internally and in proofs, we see that patterns are expanded out completely, matching one level of inductive structure at a time. Thus, the default case in the [match] above expands out to one case for each constructor of [exp] besides [Pair], and the underscore in [pairOutDefault _] is resolved differently in each case. From an ML or Haskell programmer's perspective, what we have here is type inference determining which code is run (returning either [None] or [tt]), which goes beyond what is possible with type inference guiding parametric polymorphism in Hindley-Milner languages, but is similar to what goes on with Haskell type classes.
adamc@85 231
adamc@85 232 With [pairOut] available, we can write [cfold] in a straightforward way. There are really no surprises beyond that Coq verifies that this code has such an expressive type, given the small annotation burden. *)
adamc@85 233
adamc@85 234 Fixpoint cfold t (e : exp t) {struct e} : exp t :=
adamc@85 235 match e in (exp t) return (exp t) with
adamc@85 236 | NConst n => NConst n
adamc@85 237 | Plus e1 e2 =>
adamc@85 238 let e1' := cfold e1 in
adamc@85 239 let e2' := cfold e2 in
adamc@85 240 match e1', e2' with
adamc@85 241 | NConst n1, NConst n2 => NConst (n1 + n2)
adamc@85 242 | _, _ => Plus e1' e2'
adamc@85 243 end
adamc@85 244 | Eq e1 e2 =>
adamc@85 245 let e1' := cfold e1 in
adamc@85 246 let e2' := cfold e2 in
adamc@85 247 match e1', e2' with
adamc@85 248 | NConst n1, NConst n2 => BConst (if eq_nat_dec n1 n2 then true else false)
adamc@85 249 | _, _ => Eq e1' e2'
adamc@85 250 end
adamc@85 251
adamc@85 252 | BConst b => BConst b
adamc@85 253 | And e1 e2 =>
adamc@85 254 let e1' := cfold e1 in
adamc@85 255 let e2' := cfold e2 in
adamc@85 256 match e1', e2' with
adamc@85 257 | BConst b1, BConst b2 => BConst (b1 && b2)
adamc@85 258 | _, _ => And e1' e2'
adamc@85 259 end
adamc@85 260 | If _ e e1 e2 =>
adamc@85 261 let e' := cfold e in
adamc@85 262 match e' with
adamc@85 263 | BConst true => cfold e1
adamc@85 264 | BConst false => cfold e2
adamc@85 265 | _ => If e' (cfold e1) (cfold e2)
adamc@85 266 end
adamc@85 267
adamc@85 268 | Pair _ _ e1 e2 => Pair (cfold e1) (cfold e2)
adamc@85 269 | Fst _ _ e =>
adamc@85 270 let e' := cfold e in
adamc@85 271 match pairOut e' with
adamc@85 272 | Some p => fst p
adamc@85 273 | None => Fst e'
adamc@85 274 end
adamc@85 275 | Snd _ _ e =>
adamc@85 276 let e' := cfold e in
adamc@85 277 match pairOut e' with
adamc@85 278 | Some p => snd p
adamc@85 279 | None => Snd e'
adamc@85 280 end
adamc@85 281 end.
adamc@85 282
adamc@85 283 (** The correctness theorem for [cfold] turns out to be easy to prove, once we get over one serious hurdle. *)
adamc@85 284
adamc@85 285 Theorem cfold_correct : forall t (e : exp t), expDenote e = expDenote (cfold e).
adamc@85 286 induction e; crush.
adamc@85 287
adamc@85 288 (** The first remaining subgoal is:
adamc@85 289
adamc@85 290 [[
adamc@85 291
adamc@85 292 expDenote (cfold e1) + expDenote (cfold e2) =
adamc@85 293 expDenote
adamc@85 294 match cfold e1 with
adamc@85 295 | NConst n1 =>
adamc@85 296 match cfold e2 with
adamc@85 297 | NConst n2 => NConst (n1 + n2)
adamc@85 298 | Plus _ _ => Plus (cfold e1) (cfold e2)
adamc@85 299 | Eq _ _ => Plus (cfold e1) (cfold e2)
adamc@85 300 | BConst _ => Plus (cfold e1) (cfold e2)
adamc@85 301 | And _ _ => Plus (cfold e1) (cfold e2)
adamc@85 302 | If _ _ _ _ => Plus (cfold e1) (cfold e2)
adamc@85 303 | Pair _ _ _ _ => Plus (cfold e1) (cfold e2)
adamc@85 304 | Fst _ _ _ => Plus (cfold e1) (cfold e2)
adamc@85 305 | Snd _ _ _ => Plus (cfold e1) (cfold e2)
adamc@85 306 end
adamc@85 307 | Plus _ _ => Plus (cfold e1) (cfold e2)
adamc@85 308 | Eq _ _ => Plus (cfold e1) (cfold e2)
adamc@85 309 | BConst _ => Plus (cfold e1) (cfold e2)
adamc@85 310 | And _ _ => Plus (cfold e1) (cfold e2)
adamc@85 311 | If _ _ _ _ => Plus (cfold e1) (cfold e2)
adamc@85 312 | Pair _ _ _ _ => Plus (cfold e1) (cfold e2)
adamc@85 313 | Fst _ _ _ => Plus (cfold e1) (cfold e2)
adamc@85 314 | Snd _ _ _ => Plus (cfold e1) (cfold e2)
adamc@85 315 end
adamc@85 316 ]]
adamc@85 317
adamc@85 318 We would like to do a case analysis on [cfold e1], and we attempt that in the way that has worked so far.
adamc@85 319
adamc@85 320 [[
adamc@85 321 destruct (cfold e1).
adamc@85 322
adamc@85 323 [[
adamc@85 324 User error: e1 is used in hypothesis e
adamc@85 325 ]]
adamc@85 326
adamc@85 327 Coq gives us another cryptic error message. Like so many others, this one basically means that Coq is not able to build some proof about dependent types. It is hard to generate helpful and specific error messages for problems like this, since that would require some kind of understanding of the dependency structure of a piece of code. We will encounter many examples of case-specific tricks for recovering from errors like this one.
adamc@85 328
adamc@85 329 For our current proof, we can use a tactic [dep_destruct] defined in the book [Tactics] module. General elimination/inversion of dependently-typed hypotheses is undecidable, since it must be implemented with [match] expressions that have the restriction on [in] clauses that we have already discussed. [dep_destruct] makes a best effort to handle some common cases. In a future chapter, we will learn about the explicit manipulation of equality proofs that is behind [dep_destruct]'s implementation in Ltac, but for now, we treat it as a useful black box. *)
adamc@85 330
adamc@85 331 dep_destruct (cfold e1).
adamc@85 332
adamc@85 333 (** This successfully breaks the subgoal into 5 new subgoals, one for each constructor of [exp] that could produce an [exp Nat]. Note that [dep_destruct] is successful in ruling out the other cases automatically, in effect automating some of the work that we have done manually in implementing functions like [hd] and [pairOut].
adamc@85 334
adamc@85 335 This is the only new trick we need to learn to complete the proof. We can back up and give a short, automated proof. *)
adamc@85 336
adamc@85 337 Restart.
adamc@85 338
adamc@85 339 induction e; crush;
adamc@85 340 repeat (match goal with
adamc@85 341 | [ |- context[cfold ?E] ] => dep_destruct (cfold E)
adamc@85 342 | [ |- (if ?E then _ else _) = _ ] => destruct E
adamc@85 343 end; crush).
adamc@85 344 Qed.
adamc@86 345
adamc@86 346
adamc@94 347 (** Dependently-Typed Red-Black Trees *)
adamc@94 348
adamc@94 349 Inductive color : Set := Red | Black.
adamc@94 350
adamc@94 351 Inductive rbtree : color -> nat -> Set :=
adamc@94 352 | Leaf : rbtree Black 0
adamc@94 353 | RedNode : forall n, rbtree Black n -> nat-> rbtree Black n -> rbtree Red n
adamc@94 354 | BlackNode : forall c1 c2 n, rbtree c1 n -> nat -> rbtree c2 n -> rbtree Black (S n).
adamc@94 355
adamc@95 356 Require Import Max Min.
adamc@95 357
adamc@95 358 Section depth.
adamc@95 359 Variable f : nat -> nat -> nat.
adamc@95 360
adamc@95 361 Fixpoint depth c n (t : rbtree c n) {struct t} : nat :=
adamc@95 362 match t with
adamc@95 363 | Leaf => 0
adamc@95 364 | RedNode _ t1 _ t2 => S (f (depth t1) (depth t2))
adamc@95 365 | BlackNode _ _ _ t1 _ t2 => S (f (depth t1) (depth t2))
adamc@95 366 end.
adamc@95 367 End depth.
adamc@95 368
adamc@95 369 Theorem depth_min : forall c n (t : rbtree c n), depth min t >= n.
adamc@95 370 induction t; crush;
adamc@95 371 match goal with
adamc@95 372 | [ |- context[min ?X ?Y] ] => destruct (min_dec X Y)
adamc@95 373 end; crush.
adamc@95 374 Qed.
adamc@95 375
adamc@95 376 Lemma depth_max' : forall c n (t : rbtree c n), match c with
adamc@95 377 | Red => depth max t <= 2 * n + 1
adamc@95 378 | Black => depth max t <= 2 * n
adamc@95 379 end.
adamc@95 380 induction t; crush;
adamc@95 381 match goal with
adamc@95 382 | [ |- context[max ?X ?Y] ] => destruct (max_dec X Y)
adamc@95 383 end; crush.
adamc@95 384
adamc@95 385 destruct c1; crush.
adamc@95 386 destruct c2; crush.
adamc@95 387 Qed.
adamc@95 388
adamc@95 389 Theorem depth_max : forall c n (t : rbtree c n), depth max t <= 2 * n + 1.
adamc@95 390 intros; generalize (depth_max' t); destruct c; crush.
adamc@95 391 Qed.
adamc@95 392
adamc@95 393 Theorem balanced : forall c n (t : rbtree c n), 2 * depth min t + 1 >= depth max t.
adamc@95 394 intros; generalize (depth_min t); generalize (depth_max t); crush.
adamc@95 395 Qed.
adamc@95 396
adamc@95 397
adamc@94 398 Inductive rtree : nat -> Set :=
adamc@94 399 | RedNode' : forall c1 c2 n, rbtree c1 n -> nat -> rbtree c2 n -> rtree n.
adamc@94 400
adamc@96 401 Section present.
adamc@96 402 Variable x : nat.
adamc@96 403
adamc@96 404 Fixpoint present c n (t : rbtree c n) {struct t} : Prop :=
adamc@96 405 match t with
adamc@96 406 | Leaf => False
adamc@96 407 | RedNode _ a y b => present a \/ x = y \/ present b
adamc@96 408 | BlackNode _ _ _ a y b => present a \/ x = y \/ present b
adamc@96 409 end.
adamc@96 410
adamc@96 411 Definition rpresent n (t : rtree n) : Prop :=
adamc@96 412 match t with
adamc@96 413 | RedNode' _ _ _ a y b => present a \/ x = y \/ present b
adamc@96 414 end.
adamc@96 415 End present.
adamc@96 416
adamc@94 417 Notation "{< x >}" := (existT _ _ x).
adamc@94 418
adamc@94 419 Definition balance1 n (a : rtree n) (data : nat) c2 :=
adamc@94 420 match a in rtree n return rbtree c2 n -> { c : color & rbtree c (S n) } with
adamc@94 421 | RedNode' _ _ _ t1 y t2 =>
adamc@94 422 match t1 in rbtree c n return rbtree _ n -> rbtree c2 n -> { c : color & rbtree c (S n) } with
adamc@94 423 | RedNode _ a x b => fun c d => {<RedNode (BlackNode a x b) y (BlackNode c data d)>}
adamc@94 424 | t1' => fun t2 =>
adamc@94 425 match t2 in rbtree c n return rbtree _ n -> rbtree c2 n -> { c : color & rbtree c (S n) } with
adamc@94 426 | RedNode _ b x c => fun a d => {<RedNode (BlackNode a y b) x (BlackNode c data d)>}
adamc@95 427 | b => fun a t => {<BlackNode (RedNode a y b) data t>}
adamc@94 428 end t1'
adamc@94 429 end t2
adamc@94 430 end.
adamc@94 431
adamc@94 432 Definition balance2 n (a : rtree n) (data : nat) c2 :=
adamc@94 433 match a in rtree n return rbtree c2 n -> { c : color & rbtree c (S n) } with
adamc@94 434 | RedNode' _ _ _ t1 z t2 =>
adamc@94 435 match t1 in rbtree c n return rbtree _ n -> rbtree c2 n -> { c : color & rbtree c (S n) } with
adamc@94 436 | RedNode _ b y c => fun d a => {<RedNode (BlackNode a data b) y (BlackNode c z d)>}
adamc@94 437 | t1' => fun t2 =>
adamc@94 438 match t2 in rbtree c n return rbtree _ n -> rbtree c2 n -> { c : color & rbtree c (S n) } with
adamc@94 439 | RedNode _ c z' d => fun b a => {<RedNode (BlackNode a data b) z (BlackNode c z' d)>}
adamc@95 440 | b => fun a t => {<BlackNode t data (RedNode a z b)>}
adamc@94 441 end t1'
adamc@94 442 end t2
adamc@94 443 end.
adamc@94 444
adamc@94 445 Section insert.
adamc@94 446 Variable x : nat.
adamc@94 447
adamc@94 448 Definition insResult c n :=
adamc@94 449 match c with
adamc@94 450 | Red => rtree n
adamc@94 451 | Black => { c' : color & rbtree c' n }
adamc@94 452 end.
adamc@94 453
adamc@94 454 Fixpoint ins c n (t : rbtree c n) {struct t} : insResult c n :=
adamc@94 455 match t in (rbtree c n) return (insResult c n) with
adamc@94 456 | Leaf => {< RedNode Leaf x Leaf >}
adamc@94 457 | RedNode _ a y b =>
adamc@94 458 if le_lt_dec x y
adamc@94 459 then RedNode' (projT2 (ins a)) y b
adamc@94 460 else RedNode' a y (projT2 (ins b))
adamc@94 461 | BlackNode c1 c2 _ a y b =>
adamc@94 462 if le_lt_dec x y
adamc@94 463 then
adamc@94 464 match c1 return insResult c1 _ -> _ with
adamc@94 465 | Red => fun ins_a => balance1 ins_a y b
adamc@94 466 | _ => fun ins_a => {< BlackNode (projT2 ins_a) y b >}
adamc@94 467 end (ins a)
adamc@94 468 else
adamc@94 469 match c2 return insResult c2 _ -> _ with
adamc@94 470 | Red => fun ins_b => balance2 ins_b y a
adamc@94 471 | _ => fun ins_b => {< BlackNode a y (projT2 ins_b) >}
adamc@94 472 end (ins b)
adamc@94 473 end.
adamc@94 474
adamc@94 475 Definition insertResult c n :=
adamc@94 476 match c with
adamc@94 477 | Red => rbtree Black (S n)
adamc@94 478 | Black => { c' : color & rbtree c' n }
adamc@94 479 end.
adamc@94 480
adamc@97 481 Definition makeRbtree c n : insResult c n -> insertResult c n :=
adamc@94 482 match c return insResult c n -> insertResult c n with
adamc@94 483 | Red => fun r =>
adamc@94 484 match r in rtree n return insertResult Red n with
adamc@94 485 | RedNode' _ _ _ a x b => BlackNode a x b
adamc@94 486 end
adamc@94 487 | Black => fun r => r
adamc@94 488 end.
adamc@94 489
adamc@97 490 Implicit Arguments makeRbtree [c n].
adamc@94 491
adamc@94 492 Definition insert c n (t : rbtree c n) : insertResult c n :=
adamc@97 493 makeRbtree (ins t).
adamc@94 494
adamc@95 495 Section present.
adamc@95 496 Variable z : nat.
adamc@95 497
adamc@98 498 Ltac present_balance :=
adamc@98 499 crush;
adamc@98 500 repeat (match goal with
adamc@98 501 | [ H : context[match ?T with
adamc@98 502 | Leaf => _
adamc@98 503 | RedNode _ _ _ _ => _
adamc@98 504 | BlackNode _ _ _ _ _ _ => _
adamc@98 505 end] |- _ ] => dep_destruct T
adamc@98 506 | [ |- context[match ?T with
adamc@98 507 | Leaf => _
adamc@98 508 | RedNode _ _ _ _ => _
adamc@98 509 | BlackNode _ _ _ _ _ _ => _
adamc@98 510 end] ] => dep_destruct T
adamc@98 511 end; crush).
adamc@98 512
adamc@95 513 Lemma present_balance1 : forall n (a : rtree n) (y : nat) c2 (b : rbtree c2 n) ,
adamc@95 514 present z (projT2 (balance1 a y b))
adamc@95 515 <-> rpresent z a \/ z = y \/ present z b.
adamc@98 516 destruct a; present_balance.
adamc@95 517 Qed.
adamc@95 518
adamc@95 519 Lemma present_balance2 : forall n (a : rtree n) (y : nat) c2 (b : rbtree c2 n) ,
adamc@95 520 present z (projT2 (balance2 a y b))
adamc@95 521 <-> rpresent z a \/ z = y \/ present z b.
adamc@98 522 destruct a; present_balance.
adamc@95 523 Qed.
adamc@95 524
adamc@95 525 Definition present_insResult c n :=
adamc@95 526 match c return (rbtree c n -> insResult c n -> Prop) with
adamc@95 527 | Red => fun t r => rpresent z r <-> z = x \/ present z t
adamc@95 528 | Black => fun t r => present z (projT2 r) <-> z = x \/ present z t
adamc@95 529 end.
adamc@95 530
adamc@95 531 Theorem present_ins : forall c n (t : rbtree c n),
adamc@95 532 present_insResult t (ins t).
adamc@95 533 induction t; crush;
adamc@95 534 repeat (match goal with
adamc@95 535 | [ H : context[if ?E then _ else _] |- _ ] => destruct E
adamc@95 536 | [ |- context[if ?E then _ else _] ] => destruct E
adamc@95 537 | [ H : context[match ?C with Red => _ | Black => _ end] |- _ ] => destruct C
adamc@95 538 end; crush);
adamc@95 539 try match goal with
adamc@95 540 | [ H : context[balance1 ?A ?B ?C] |- _ ] =>
adamc@95 541 generalize (present_balance1 A B C)
adamc@95 542 end;
adamc@95 543 try match goal with
adamc@95 544 | [ H : context[balance2 ?A ?B ?C] |- _ ] =>
adamc@95 545 generalize (present_balance2 A B C)
adamc@95 546 end;
adamc@95 547 try match goal with
adamc@95 548 | [ |- context[balance1 ?A ?B ?C] ] =>
adamc@95 549 generalize (present_balance1 A B C)
adamc@95 550 end;
adamc@95 551 try match goal with
adamc@95 552 | [ |- context[balance2 ?A ?B ?C] ] =>
adamc@95 553 generalize (present_balance2 A B C)
adamc@95 554 end;
adamc@95 555 intuition;
adamc@95 556 match goal with
adamc@95 557 | [ z : nat, x : nat |- _ ] =>
adamc@95 558 match goal with
adamc@95 559 | [ H : z = x |- _ ] => rewrite H in *; clear H
adamc@95 560 end
adamc@95 561 end;
adamc@95 562 tauto.
adamc@95 563 Qed.
adamc@95 564
adamc@97 565 Ltac present_insert t :=
adamc@97 566 unfold insert; inversion t;
adamc@97 567 generalize (present_ins t); simpl;
adamc@97 568 dep_destruct (ins t); tauto.
adamc@97 569
adamc@95 570 Theorem present_insert_Red : forall n (t : rbtree Red n),
adamc@95 571 present z (insert t)
adamc@95 572 <-> (z = x \/ present z t).
adamc@97 573 intros; present_insert t.
adamc@95 574 Qed.
adamc@95 575
adamc@95 576 Theorem present_insert_Black : forall n (t : rbtree Black n),
adamc@95 577 present z (projT2 (insert t))
adamc@95 578 <-> (z = x \/ present z t).
adamc@97 579 intros; present_insert t.
adamc@95 580 Qed.
adamc@95 581 End present.
adamc@94 582 End insert.
adamc@94 583
adamc@94 584
adamc@86 585 (** * A Certified Regular Expression Matcher *)
adamc@86 586
adamc@93 587 (** Another interesting example is regular expressions with dependent types that express which predicates over strings particular regexps implement. We can then assign a dependent type to a regular expression matching function, guaranteeing that it always decides the string property that we expect it to decide.
adamc@93 588
adamc@93 589 Before defining the syntax of expressions, it is helpful to define an inductive type capturing the meaning of the Kleene star. We use Coq's string support, which comes through a combination of the [Strings] library and some parsing notations built into Coq. Operators like [++] and functions like [length] that we know from lists are defined again for strings. Notation scopes help us control which versions we want to use in particular contexts. *)
adamc@93 590
adamc@86 591 Require Import Ascii String.
adamc@86 592 Open Scope string_scope.
adamc@86 593
adamc@91 594 Section star.
adamc@91 595 Variable P : string -> Prop.
adamc@91 596
adamc@91 597 Inductive star : string -> Prop :=
adamc@91 598 | Empty : star ""
adamc@91 599 | Iter : forall s1 s2,
adamc@91 600 P s1
adamc@91 601 -> star s2
adamc@91 602 -> star (s1 ++ s2).
adamc@91 603 End star.
adamc@91 604
adamc@93 605 (** Now we can make our first attempt at defining a [regexp] type that is indexed by predicates on strings. Here is a reasonable-looking definition that is restricted to constant characters and concatenation.
adamc@93 606
adamc@93 607 [[
adamc@93 608 Inductive regexp : (string -> Prop) -> Set :=
adamc@93 609 | Char : forall ch : ascii,
adamc@93 610 regexp (fun s => s = String ch "")
adamc@93 611 | Concat : forall (P1 P2 : string -> Prop) (r1 : regexp P1) (r2 : regexp P2),
adamc@93 612 regexp (fun s => exists s1, exists s2, s = s1 ++ s2 /\ P1 s1 /\ P2 s2).
adamc@93 613
adamc@93 614 [[
adamc@93 615 User error: Large non-propositional inductive types must be in Type
adamc@93 616 ]]
adamc@93 617
adamc@93 618 What is a large inductive type? In Coq, it is an inductive type that has a constructor which quantifies over some type of type [Type]. We have not worked with [Type] very much to this point. Every term of CIC has a type, including [Set] and [Prop], which are assigned type [Type]. The type [string -> Prop] from the failed definition also has type [Type].
adamc@93 619
adamc@93 620 It turns out that allowing large inductive types in [Set] leads to contradictions when combined with certain kinds of classical logic reasoning. Thus, by default, such types are ruled out. There is a simple fix for our [regexp] definition, which is to place our new type in [Type]. While fixing the problem, we also expand the list of constructors to cover the remaining regular expression operators. *)
adamc@93 621
adamc@89 622 Inductive regexp : (string -> Prop) -> Type :=
adamc@86 623 | Char : forall ch : ascii,
adamc@86 624 regexp (fun s => s = String ch "")
adamc@86 625 | Concat : forall P1 P2 (r1 : regexp P1) (r2 : regexp P2),
adamc@87 626 regexp (fun s => exists s1, exists s2, s = s1 ++ s2 /\ P1 s1 /\ P2 s2)
adamc@87 627 | Or : forall P1 P2 (r1 : regexp P1) (r2 : regexp P2),
adamc@91 628 regexp (fun s => P1 s \/ P2 s)
adamc@91 629 | Star : forall P (r : regexp P),
adamc@91 630 regexp (star P).
adamc@86 631
adamc@93 632 (** Many theorems about strings are useful for implementing a certified regexp matcher, and few of them are in the [Strings] library. The book source includes statements, proofs, and hint commands for a handful of such omittted theorems. Since they are orthogonal to our use of dependent types, we hide them in the rendered versions of this book. *)
adamc@93 633
adamc@93 634 (* begin hide *)
adamc@86 635 Open Scope specif_scope.
adamc@86 636
adamc@86 637 Lemma length_emp : length "" <= 0.
adamc@86 638 crush.
adamc@86 639 Qed.
adamc@86 640
adamc@86 641 Lemma append_emp : forall s, s = "" ++ s.
adamc@86 642 crush.
adamc@86 643 Qed.
adamc@86 644
adamc@86 645 Ltac substring :=
adamc@86 646 crush;
adamc@86 647 repeat match goal with
adamc@86 648 | [ |- context[match ?N with O => _ | S _ => _ end] ] => destruct N; crush
adamc@86 649 end.
adamc@86 650
adamc@86 651 Lemma substring_le : forall s n m,
adamc@86 652 length (substring n m s) <= m.
adamc@86 653 induction s; substring.
adamc@86 654 Qed.
adamc@86 655
adamc@86 656 Lemma substring_all : forall s,
adamc@86 657 substring 0 (length s) s = s.
adamc@86 658 induction s; substring.
adamc@86 659 Qed.
adamc@86 660
adamc@86 661 Lemma substring_none : forall s n,
adamc@93 662 substring n 0 s = "".
adamc@86 663 induction s; substring.
adamc@86 664 Qed.
adamc@86 665
adamc@86 666 Hint Rewrite substring_all substring_none : cpdt.
adamc@86 667
adamc@86 668 Lemma substring_split : forall s m,
adamc@86 669 substring 0 m s ++ substring m (length s - m) s = s.
adamc@86 670 induction s; substring.
adamc@86 671 Qed.
adamc@86 672
adamc@86 673 Lemma length_app1 : forall s1 s2,
adamc@86 674 length s1 <= length (s1 ++ s2).
adamc@86 675 induction s1; crush.
adamc@86 676 Qed.
adamc@86 677
adamc@86 678 Hint Resolve length_emp append_emp substring_le substring_split length_app1.
adamc@86 679
adamc@86 680 Lemma substring_app_fst : forall s2 s1 n,
adamc@86 681 length s1 = n
adamc@86 682 -> substring 0 n (s1 ++ s2) = s1.
adamc@86 683 induction s1; crush.
adamc@86 684 Qed.
adamc@86 685
adamc@86 686 Lemma substring_app_snd : forall s2 s1 n,
adamc@86 687 length s1 = n
adamc@86 688 -> substring n (length (s1 ++ s2) - n) (s1 ++ s2) = s2.
adamc@86 689 Hint Rewrite <- minus_n_O : cpdt.
adamc@86 690
adamc@86 691 induction s1; crush.
adamc@86 692 Qed.
adamc@86 693
adamc@91 694 Hint Rewrite substring_app_fst substring_app_snd using (trivial; fail) : cpdt.
adamc@93 695 (* end hide *)
adamc@93 696
adamc@93 697 (** A few auxiliary functions help us in our final matcher definition. The function [split] will be used to implement the regexp concatenation case. *)
adamc@86 698
adamc@86 699 Section split.
adamc@86 700 Variables P1 P2 : string -> Prop.
adamc@91 701 Variable P1_dec : forall s, {P1 s} + { ~P1 s}.
adamc@91 702 Variable P2_dec : forall s, {P2 s} + { ~P2 s}.
adamc@93 703 (** We require a choice of two arbitrary string predicates and functions for deciding them. *)
adamc@86 704
adamc@86 705 Variable s : string.
adamc@93 706 (** Our computation will take place relative to a single fixed string, so it is easiest to make it a [Variable], rather than an explicit argument to our functions. *)
adamc@93 707
adamc@93 708 (** [split'] is the workhorse behind [split]. It searches through the possible ways of splitting [s] into two pieces, checking the two predicates against each such pair. [split'] progresses right-to-left, from splitting all of [s] into the first piece to splitting all of [s] into the second piece. It takes an extra argument, [n], which specifies how far along we are in this search process. *)
adamc@86 709
adamc@86 710 Definition split' (n : nat) : n <= length s
adamc@86 711 -> {exists s1, exists s2, length s1 <= n /\ s1 ++ s2 = s /\ P1 s1 /\ P2 s2}
adamc@86 712 + {forall s1 s2, length s1 <= n -> s1 ++ s2 = s -> ~P1 s1 \/ ~P2 s2}.
adamc@86 713 refine (fix F (n : nat) : n <= length s
adamc@86 714 -> {exists s1, exists s2, length s1 <= n /\ s1 ++ s2 = s /\ P1 s1 /\ P2 s2}
adamc@86 715 + {forall s1 s2, length s1 <= n -> s1 ++ s2 = s -> ~P1 s1 \/ ~P2 s2} :=
adamc@86 716 match n return n <= length s
adamc@86 717 -> {exists s1, exists s2, length s1 <= n /\ s1 ++ s2 = s /\ P1 s1 /\ P2 s2}
adamc@86 718 + {forall s1 s2, length s1 <= n -> s1 ++ s2 = s -> ~P1 s1 \/ ~P2 s2} with
adamc@86 719 | O => fun _ => Reduce (P1_dec "" && P2_dec s)
adamc@93 720 | S n' => fun _ => (P1_dec (substring 0 (S n') s)
adamc@93 721 && P2_dec (substring (S n') (length s - S n') s))
adamc@86 722 || F n' _
adamc@86 723 end); clear F; crush; eauto 7;
adamc@86 724 match goal with
adamc@86 725 | [ _ : length ?S <= 0 |- _ ] => destruct S
adamc@86 726 | [ _ : length ?S' <= S ?N |- _ ] =>
adamc@86 727 generalize (eq_nat_dec (length S') (S N)); destruct 1
adamc@86 728 end; crush.
adamc@86 729 Defined.
adamc@86 730
adamc@93 731 (** There is one subtle point in the [split'] code that is worth mentioning. The main body of the function is a [match] on [n]. In the case where [n] is known to be [S n'], we write [S n'] in several places where we might be tempted to write [n]. However, without further work to craft proper [match] annotations, the type-checker does not use the equality between [n] and [S n']. Thus, it is common to see patterns repeated in [match] case bodies in dependently-typed Coq code. We can at least use a [let] expression to avoid copying the pattern more than once, replacing the first case body with:
adamc@93 732
adamc@93 733 [[
adamc@93 734
adamc@93 735 | S n' => fun _ => let n := S n' in
adamc@93 736 (P1_dec (substring 0 n s)
adamc@93 737 && P2_dec (substring n (length s - n) s))
adamc@93 738 || F n' _
adamc@93 739 ]]
adamc@93 740
adamc@93 741 [split] itself is trivial to implement in terms of [split']. We just ask [split'] to begin its search with [n = length s]. *)
adamc@93 742
adamc@86 743 Definition split : {exists s1, exists s2, s = s1 ++ s2 /\ P1 s1 /\ P2 s2}
adamc@86 744 + {forall s1 s2, s = s1 ++ s2 -> ~P1 s1 \/ ~P2 s2}.
adamc@86 745 refine (Reduce (split' (n := length s) _)); crush; eauto.
adamc@86 746 Defined.
adamc@86 747 End split.
adamc@86 748
adamc@86 749 Implicit Arguments split [P1 P2].
adamc@86 750
adamc@93 751 (* begin hide *)
adamc@91 752 Lemma app_empty_end : forall s, s ++ "" = s.
adamc@91 753 induction s; crush.
adamc@91 754 Qed.
adamc@91 755
adamc@91 756 Hint Rewrite app_empty_end : cpdt.
adamc@91 757
adamc@91 758 Lemma substring_self : forall s n,
adamc@91 759 n <= 0
adamc@91 760 -> substring n (length s - n) s = s.
adamc@91 761 induction s; substring.
adamc@91 762 Qed.
adamc@91 763
adamc@91 764 Lemma substring_empty : forall s n m,
adamc@91 765 m <= 0
adamc@91 766 -> substring n m s = "".
adamc@91 767 induction s; substring.
adamc@91 768 Qed.
adamc@91 769
adamc@91 770 Hint Rewrite substring_self substring_empty using omega : cpdt.
adamc@91 771
adamc@91 772 Lemma substring_split' : forall s n m,
adamc@91 773 substring n m s ++ substring (n + m) (length s - (n + m)) s
adamc@91 774 = substring n (length s - n) s.
adamc@91 775 Hint Rewrite substring_split : cpdt.
adamc@91 776
adamc@91 777 induction s; substring.
adamc@91 778 Qed.
adamc@91 779
adamc@91 780 Lemma substring_stack : forall s n2 m1 m2,
adamc@91 781 m1 <= m2
adamc@91 782 -> substring 0 m1 (substring n2 m2 s)
adamc@91 783 = substring n2 m1 s.
adamc@91 784 induction s; substring.
adamc@91 785 Qed.
adamc@91 786
adamc@91 787 Ltac substring' :=
adamc@91 788 crush;
adamc@91 789 repeat match goal with
adamc@91 790 | [ |- context[match ?N with O => _ | S _ => _ end] ] => case_eq N; crush
adamc@91 791 end.
adamc@91 792
adamc@91 793 Lemma substring_stack' : forall s n1 n2 m1 m2,
adamc@91 794 n1 + m1 <= m2
adamc@91 795 -> substring n1 m1 (substring n2 m2 s)
adamc@91 796 = substring (n1 + n2) m1 s.
adamc@91 797 induction s; substring';
adamc@91 798 match goal with
adamc@91 799 | [ |- substring ?N1 _ _ = substring ?N2 _ _ ] =>
adamc@91 800 replace N1 with N2; crush
adamc@91 801 end.
adamc@91 802 Qed.
adamc@91 803
adamc@91 804 Lemma substring_suffix : forall s n,
adamc@91 805 n <= length s
adamc@91 806 -> length (substring n (length s - n) s) = length s - n.
adamc@91 807 induction s; substring.
adamc@91 808 Qed.
adamc@91 809
adamc@91 810 Lemma substring_suffix_emp' : forall s n m,
adamc@91 811 substring n (S m) s = ""
adamc@91 812 -> n >= length s.
adamc@91 813 induction s; crush;
adamc@91 814 match goal with
adamc@91 815 | [ |- ?N >= _ ] => destruct N; crush
adamc@91 816 end;
adamc@91 817 match goal with
adamc@91 818 [ |- S ?N >= S ?E ] => assert (N >= E); [ eauto | omega ]
adamc@91 819 end.
adamc@91 820 Qed.
adamc@91 821
adamc@91 822 Lemma substring_suffix_emp : forall s n m,
adamc@92 823 substring n m s = ""
adamc@92 824 -> m > 0
adamc@91 825 -> n >= length s.
adamc@91 826 destruct m as [| m]; [crush | intros; apply substring_suffix_emp' with m; assumption].
adamc@91 827 Qed.
adamc@91 828
adamc@91 829 Hint Rewrite substring_stack substring_stack' substring_suffix
adamc@91 830 using omega : cpdt.
adamc@91 831
adamc@91 832 Lemma minus_minus : forall n m1 m2,
adamc@91 833 m1 + m2 <= n
adamc@91 834 -> n - m1 - m2 = n - (m1 + m2).
adamc@91 835 intros; omega.
adamc@91 836 Qed.
adamc@91 837
adamc@91 838 Lemma plus_n_Sm' : forall n m : nat, S (n + m) = m + S n.
adamc@91 839 intros; omega.
adamc@91 840 Qed.
adamc@91 841
adamc@91 842 Hint Rewrite minus_minus using omega : cpdt.
adamc@93 843 (* end hide *)
adamc@93 844
adamc@93 845 (** One more helper function will come in handy: [dec_star], for implementing another linear search through ways of splitting a string, this time for implementing the Kleene star. *)
adamc@91 846
adamc@91 847 Section dec_star.
adamc@91 848 Variable P : string -> Prop.
adamc@91 849 Variable P_dec : forall s, {P s} + { ~P s}.
adamc@91 850
adamc@93 851 (** Some new lemmas and hints about the [star] type family are useful here. We omit them here; they are included in the book source at this point. *)
adamc@93 852
adamc@93 853 (* begin hide *)
adamc@91 854 Hint Constructors star.
adamc@91 855
adamc@91 856 Lemma star_empty : forall s,
adamc@91 857 length s = 0
adamc@91 858 -> star P s.
adamc@91 859 destruct s; crush.
adamc@91 860 Qed.
adamc@91 861
adamc@91 862 Lemma star_singleton : forall s, P s -> star P s.
adamc@91 863 intros; rewrite <- (app_empty_end s); auto.
adamc@91 864 Qed.
adamc@91 865
adamc@91 866 Lemma star_app : forall s n m,
adamc@91 867 P (substring n m s)
adamc@91 868 -> star P (substring (n + m) (length s - (n + m)) s)
adamc@91 869 -> star P (substring n (length s - n) s).
adamc@91 870 induction n; substring;
adamc@91 871 match goal with
adamc@91 872 | [ H : P (substring ?N ?M ?S) |- _ ] =>
adamc@91 873 solve [ rewrite <- (substring_split S M); auto
adamc@91 874 | rewrite <- (substring_split' S N M); auto ]
adamc@91 875 end.
adamc@91 876 Qed.
adamc@91 877
adamc@91 878 Hint Resolve star_empty star_singleton star_app.
adamc@91 879
adamc@91 880 Variable s : string.
adamc@91 881
adamc@91 882 Lemma star_inv : forall s,
adamc@91 883 star P s
adamc@91 884 -> s = ""
adamc@91 885 \/ exists i, i < length s
adamc@91 886 /\ P (substring 0 (S i) s)
adamc@91 887 /\ star P (substring (S i) (length s - S i) s).
adamc@91 888 Hint Extern 1 (exists i : nat, _) =>
adamc@91 889 match goal with
adamc@91 890 | [ H : P (String _ ?S) |- _ ] => exists (length S); crush
adamc@91 891 end.
adamc@91 892
adamc@91 893 induction 1; [
adamc@91 894 crush
adamc@91 895 | match goal with
adamc@91 896 | [ _ : P ?S |- _ ] => destruct S; crush
adamc@91 897 end
adamc@91 898 ].
adamc@91 899 Qed.
adamc@91 900
adamc@91 901 Lemma star_substring_inv : forall n,
adamc@91 902 n <= length s
adamc@91 903 -> star P (substring n (length s - n) s)
adamc@91 904 -> substring n (length s - n) s = ""
adamc@91 905 \/ exists l, l < length s - n
adamc@91 906 /\ P (substring n (S l) s)
adamc@91 907 /\ star P (substring (n + S l) (length s - (n + S l)) s).
adamc@91 908 Hint Rewrite plus_n_Sm' : cpdt.
adamc@91 909
adamc@91 910 intros;
adamc@91 911 match goal with
adamc@91 912 | [ H : star _ _ |- _ ] => generalize (star_inv H); do 3 crush; eauto
adamc@91 913 end.
adamc@91 914 Qed.
adamc@93 915 (* end hide *)
adamc@93 916
adamc@93 917 (** The function [dec_star''] implements a single iteration of the star. That is, it tries to find a string prefix matching [P], and it calls a parameter function on the remainder of the string. *)
adamc@91 918
adamc@91 919 Section dec_star''.
adamc@91 920 Variable n : nat.
adamc@93 921 (** [n] is the length of the prefix of [s] that we have already processed. *)
adamc@91 922
adamc@91 923 Variable P' : string -> Prop.
adamc@91 924 Variable P'_dec : forall n' : nat, n' > n
adamc@91 925 -> {P' (substring n' (length s - n') s)}
adamc@91 926 + { ~P' (substring n' (length s - n') s)}.
adamc@93 927 (** When we use [dec_star''], we will instantiate [P'_dec] with a function for continuing the search for more instances of [P] in [s]. *)
adamc@93 928
adamc@93 929 (** Now we come to [dec_star''] itself. It takes as an input a natural [l] that records how much of the string has been searched so far, as we did for [split']. The return type expresses that [dec_star''] is looking for an index into [s] that splits [s] into a nonempty prefix and a suffix, such that the prefix satisfies [P] and the suffix satisfies [P']. *)
adamc@91 930
adamc@91 931 Definition dec_star'' (l : nat)
adamc@91 932 : {exists l', S l' <= l
adamc@91 933 /\ P (substring n (S l') s) /\ P' (substring (n + S l') (length s - (n + S l')) s)}
adamc@91 934 + {forall l', S l' <= l
adamc@93 935 -> ~P (substring n (S l') s)
adamc@93 936 \/ ~P' (substring (n + S l') (length s - (n + S l')) s)}.
adamc@91 937 refine (fix F (l : nat) : {exists l', S l' <= l
adamc@91 938 /\ P (substring n (S l') s) /\ P' (substring (n + S l') (length s - (n + S l')) s)}
adamc@91 939 + {forall l', S l' <= l
adamc@93 940 -> ~P (substring n (S l') s)
adamc@93 941 \/ ~P' (substring (n + S l') (length s - (n + S l')) s)} :=
adamc@91 942 match l return {exists l', S l' <= l
adamc@91 943 /\ P (substring n (S l') s) /\ P' (substring (n + S l') (length s - (n + S l')) s)}
adamc@91 944 + {forall l', S l' <= l ->
adamc@93 945 ~P (substring n (S l') s)
adamc@93 946 \/ ~P' (substring (n + S l') (length s - (n + S l')) s)} with
adamc@91 947 | O => _
adamc@91 948 | S l' =>
adamc@91 949 (P_dec (substring n (S l') s) && P'_dec (n' := n + S l') _)
adamc@91 950 || F l'
adamc@91 951 end); clear F; crush; eauto 7;
adamc@91 952 match goal with
adamc@91 953 | [ H : ?X <= S ?Y |- _ ] => destruct (eq_nat_dec X (S Y)); crush
adamc@91 954 end.
adamc@91 955 Defined.
adamc@91 956 End dec_star''.
adamc@91 957
adamc@93 958 (* begin hide *)
adamc@92 959 Lemma star_length_contra : forall n,
adamc@92 960 length s > n
adamc@92 961 -> n >= length s
adamc@92 962 -> False.
adamc@92 963 crush.
adamc@92 964 Qed.
adamc@92 965
adamc@92 966 Lemma star_length_flip : forall n n',
adamc@92 967 length s - n <= S n'
adamc@92 968 -> length s > n
adamc@92 969 -> length s - n > 0.
adamc@92 970 crush.
adamc@92 971 Qed.
adamc@92 972
adamc@92 973 Hint Resolve star_length_contra star_length_flip substring_suffix_emp.
adamc@93 974 (* end hide *)
adamc@92 975
adamc@93 976 (** The work of [dec_star''] is nested inside another linear search by [dec_star'], which provides the final functionality we need, but for arbitrary suffixes of [s], rather than just for [s] overall. *)
adamc@93 977
adamc@91 978 Definition dec_star' (n n' : nat) : length s - n' <= n
adamc@91 979 -> {star P (substring n' (length s - n') s)}
adamc@93 980 + { ~star P (substring n' (length s - n') s)}.
adamc@91 981 refine (fix F (n n' : nat) {struct n} : length s - n' <= n
adamc@91 982 -> {star P (substring n' (length s - n') s)}
adamc@93 983 + { ~star P (substring n' (length s - n') s)} :=
adamc@91 984 match n return length s - n' <= n
adamc@91 985 -> {star P (substring n' (length s - n') s)}
adamc@93 986 + { ~star P (substring n' (length s - n') s)} with
adamc@91 987 | O => fun _ => Yes
adamc@91 988 | S n'' => fun _ =>
adamc@91 989 le_gt_dec (length s) n'
adamc@91 990 || dec_star'' (n := n') (star P) (fun n0 _ => Reduce (F n'' n0 _)) (length s - n')
adamc@92 991 end); clear F; crush; eauto;
adamc@92 992 match goal with
adamc@92 993 | [ H : star _ _ |- _ ] => apply star_substring_inv in H; crush; eauto
adamc@92 994 end;
adamc@92 995 match goal with
adamc@92 996 | [ H1 : _ < _ - _, H2 : forall l' : nat, _ <= _ - _ -> _ |- _ ] =>
adamc@92 997 generalize (H2 _ (lt_le_S _ _ H1)); tauto
adamc@92 998 end.
adamc@91 999 Defined.
adamc@91 1000
adamc@93 1001 (** Finally, we have [dec_star]. It has a straightforward implementation. We introduce a spurious match on [s] so that [simpl] will know to reduce calls to [dec_star]. The heuristic that [simpl] uses is only to unfold identifier definitions when doing so would simplify some [match] expression. *)
adamc@93 1002
adamc@91 1003 Definition dec_star : {star P s} + { ~star P s}.
adamc@91 1004 refine (match s with
adamc@91 1005 | "" => Reduce (dec_star' (n := length s) 0 _)
adamc@91 1006 | _ => Reduce (dec_star' (n := length s) 0 _)
adamc@91 1007 end); crush.
adamc@91 1008 Defined.
adamc@91 1009 End dec_star.
adamc@91 1010
adamc@93 1011 (* begin hide *)
adamc@86 1012 Lemma app_cong : forall x1 y1 x2 y2,
adamc@86 1013 x1 = x2
adamc@86 1014 -> y1 = y2
adamc@86 1015 -> x1 ++ y1 = x2 ++ y2.
adamc@86 1016 congruence.
adamc@86 1017 Qed.
adamc@86 1018
adamc@86 1019 Hint Resolve app_cong.
adamc@93 1020 (* end hide *)
adamc@93 1021
adamc@93 1022 (** With these helper functions completed, the implementation of our [matches] function is refreshingly straightforward. We only need one small piece of specific tactic work beyond what [crush] does for us. *)
adamc@86 1023
adamc@86 1024 Definition matches P (r : regexp P) s : {P s} + { ~P s}.
adamc@86 1025 refine (fix F P (r : regexp P) s : {P s} + { ~P s} :=
adamc@86 1026 match r with
adamc@86 1027 | Char ch => string_dec s (String ch "")
adamc@86 1028 | Concat _ _ r1 r2 => Reduce (split (F _ r1) (F _ r2) s)
adamc@87 1029 | Or _ _ r1 r2 => F _ r1 s || F _ r2 s
adamc@91 1030 | Star _ r => dec_star _ _ _
adamc@86 1031 end); crush;
adamc@86 1032 match goal with
adamc@86 1033 | [ H : _ |- _ ] => generalize (H _ _ (refl_equal _))
adamc@93 1034 end; tauto.
adamc@86 1035 Defined.
adamc@86 1036
adamc@93 1037 (* begin hide *)
adamc@86 1038 Example hi := Concat (Char "h"%char) (Char "i"%char).
adamc@86 1039 Eval simpl in matches hi "hi".
adamc@86 1040 Eval simpl in matches hi "bye".
adamc@87 1041
adamc@87 1042 Example a_b := Or (Char "a"%char) (Char "b"%char).
adamc@87 1043 Eval simpl in matches a_b "".
adamc@87 1044 Eval simpl in matches a_b "a".
adamc@87 1045 Eval simpl in matches a_b "aa".
adamc@87 1046 Eval simpl in matches a_b "b".
adamc@91 1047
adamc@91 1048 Example a_star := Star (Char "a"%char).
adamc@91 1049 Eval simpl in matches a_star "".
adamc@91 1050 Eval simpl in matches a_star "a".
adamc@91 1051 Eval simpl in matches a_star "b".
adamc@91 1052 Eval simpl in matches a_star "aa".
adamc@93 1053 (* end hide *)