annotate src/StackMachine.v @ 14:8aed4562b62b

Typed expression language
author Adam Chlipala <adamc@hcoop.net>
date Wed, 03 Sep 2008 14:26:52 -0400
parents ea400f692b07
children d8c81e19e7d3
rev   line source
adamc@2 1 (* Copyright (c) 2008, Adam Chlipala
adamc@2 2 *
adamc@2 3 * This work is licensed under a
adamc@2 4 * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
adamc@2 5 * Unported License.
adamc@2 6 * The license text is available at:
adamc@2 7 * http://creativecommons.org/licenses/by-nc-nd/3.0/
adamc@2 8 *)
adamc@2 9
adamc@3 10 (* begin hide *)
adamc@2 11 Require Import List.
adamc@2 12
adamc@2 13 Require Import Tactics.
adamc@14 14
adamc@14 15 Set Implicit Arguments.
adamc@3 16 (* end hide *)
adamc@2 17
adamc@2 18
adamc@9 19 (** I will start off by jumping right in to a fully-worked set of examples, building certified compilers from increasingly complicated source languages to stack machines. We will meet a few useful tactics and see how they can be used in manual proofs, and we will also see how easily these proofs can be automated instead. I assume that you have installed Coq and Proof General.
adamc@9 20
adamc@11 21 As always, you can step through the source file %\texttt{%#<tt>#StackMachine.v#</tt>#%}% for this chapter interactively in Proof General. Alternatively, to get a feel for the whole lifecycle of creating a Coq development, you can enter the pieces of source code in this chapter in a new %\texttt{%#<tt>#.v#</tt>#%}% file in an Emacs buffer. If you do the latter, include a line [Require Import List Tactics] at the start of the file, to match some code hidden from the chapter source, and be sure to run the Coq binary %\texttt{%#<tt>#coqtop#</tt>#%}% with the command-line argument %\texttt{%#<tt>#-I SRC#</tt>#%}%, where %\texttt{%#<tt>#SRC#</tt>#%}% is the path to a directory containing the source for this book. In either case, if you have installed Proof General properly, it should start automatically when you visit a %\texttt{%#<tt>#.v#</tt>#%}% buffer in Emacs.
adamc@11 22
adamc@11 23 With Proof General, the portion of a buffer that Coq has processed is highlighted in some way, like being given a blue background. You step through Coq source files by positioning the point at the position you want Coq to run to and pressing C-C C-RET. This can be used both for normal step-by-step coding, by placing the point inside some command past the end of the highlighted region; and for undoing, by placing the point inside the highlighted region. *)
adamc@9 24
adamc@9 25
adamc@2 26 (** * Arithmetic expressions over natural numbers *)
adamc@2 27
adamc@9 28 (** We will begin with that staple of compiler textbooks, arithemtic expressions over a single type of numbers. *)
adamc@9 29
adamc@9 30 (** ** Source language *)
adamc@9 31
adamc@9 32 (** We begin with the syntax of the source language. *)
adamc@2 33
adamc@4 34 Inductive binop : Set := Plus | Times.
adamc@2 35
adamc@9 36 (** Our first line of Coq code should be unsurprising to ML and Haskell programmers. We define an algebraic datatype [binop] to stand for the binary operators of our source language. There are just two wrinkles compared to ML and Haskell. First, we use the keyword [Inductive], in place of %\texttt{%#<tt>#data#</tt>#%}%, %\texttt{%#<tt>#datatype#</tt>#%}%, or %\texttt{%#<tt>#type#</tt>#%}%. This is not just a trivial surface syntax difference; inductive types in Coq are much more expressive than garden variety algebraic datatypes, essentially enabling us to encode all of mathematics, though we begin humbly in this chapter. Second, there is the [: Set] fragment, which declares that we are defining a datatype that should be thought of as a constituent of programs. Later, we will see other options for defining datatypes in the universe of proofs or in an infinite hierarchy of universes, encompassing both programs and proofs, that is useful in higher-order constructions. *)
adamc@9 37
adamc@4 38 Inductive exp : Set :=
adamc@4 39 | Const : nat -> exp
adamc@4 40 | Binop : binop -> exp -> exp -> exp.
adamc@2 41
adamc@9 42 (** Now we define the type of arithmetic expressions. We write that a constant may be built from one argument, a natural number; and a binary operation may be built from a choice of operator and two operand expressions.
adamc@9 43
adamc@9 44 A note for readers following along in the PDF version: coqdoc supports pretty-printing of tokens in LaTeX or HTML. Where you see a right arrow character, the source contains the ASCII text %\texttt{%#<tt>#->#</tt>#%}%. Other examples of this substitution appearing in this chapter are a double right arrow for %\texttt{%#<tt>#=>#</tt>#%}% and the inverted 'A' symbol for %\texttt{%#<tt>#forall#</tt>#%}%. When in doubt about the ASCII version of a symbol, you can consult the chapter source code.
adamc@9 45
adamc@9 46 %\medskip%
adamc@9 47
adamc@9 48 Now we are ready to say what these programs mean. We will do this by writing an interpreter that can be thought of as a trivial operational or denotational semantics. (If you are not familiar with these semantic techniques, no need to worry; we will stick to "common sense" constructions.) *)
adamc@9 49
adamc@4 50 Definition binopDenote (b : binop) : nat -> nat -> nat :=
adamc@4 51 match b with
adamc@4 52 | Plus => plus
adamc@4 53 | Times => mult
adamc@4 54 end.
adamc@2 55
adamc@9 56 (** The meaning of a binary operator is a binary function over naturals, defined with pattern-matching notation analogous to the %\texttt{%#<tt>#case#</tt>#%}% and %\texttt{%#<tt>#match#</tt>#%}% of ML and Haskell, and referring to the functions [plus] and [mult] from the Coq standard library. The keyword [Definition] is Coq's all-purpose notation for binding a term of the programming language to a name, with some associated syntactic sugar, like the notation we see here for defining a function. That sugar could be expanded to yield this definition:
adamc@9 57
adamc@9 58 [[
adamc@9 59 Definition binopDenote : binop -> nat -> nat -> nat := fun (b : binop) =>
adamc@9 60 match b with
adamc@9 61 | Plus => plus
adamc@9 62 | Times => mult
adamc@9 63 end.
adamc@9 64
adamc@9 65 In this example, we could also omit all of the type annotations, arriving at:
adamc@9 66
adamc@9 67 [[
adamc@9 68 Definition binopDenote := fun b =>
adamc@9 69 match b with
adamc@9 70 | Plus => plus
adamc@9 71 | Times => mult
adamc@9 72 end.
adamc@9 73
adamc@9 74 Languages like Haskell and ML have a convenient %\textit{%#<i>#principal typing#</i>#%}% property, which gives us strong guarantees about how effective type inference will be. Unfortunately, Coq's type system is so expressive that any kind of "complete" type inference is impossible, and the task even seems to be hard heuristically in practice. Nonetheless, Coq includes some very helpful heuristics, many of them copying the workings of Haskell and ML type-checkers for programs that fall in simple fragments of Coq's language.
adamc@9 75
adamc@9 76 This is as good a time as any to mention the preponderance of different languages associated with Coq. The theoretical foundation of Coq is a formal system called the %\textit{%#<i>#Calculus of Inductive Constructions (CIC)#</i>#%}%, which is an extension of the older %\textit{%#<i>#Calculus of Constructions (CoC)#</i>#%}%. CIC is quite a spartan foundation, which is helpful for proving metatheory but not so helpful for real development. Still, it is nice to know that it has been proved that CIC enjoys properties like %\textit{%#<i>#strong normalization#</i>#%}%, meaning that every program (and, more importantly, every proof term) terminates; and %\textit{%#<i>#relative consistency#</i>#%}% with systems like versions of Zermelo Fraenkel set theory, which roughly means that you can believe that Coq proofs mean that the corresponding propositions are "really true," if you believe in set theory.
adamc@9 77
adamc@9 78 Coq is actually based on an extension of CIC called %\textit{%#<i>#Gallina#</i>#%}%. The text after the [:=] and before the period in the last code example is a term of Gallina. Gallina adds many useful features that are not compiled internalluy to more primitive CIC features. The important metatheorems about CIC have not been extended to the full breadth of these features, but most Coq users do not seem to lose much sleep over this omission.
adamc@9 79
adamc@9 80 Commands like [Inductive] and [Definition] are part of %\textit{%#<i>#the vernacular#</i>#%}%, which includes all sorts of useful queries and requests to the Coq system.
adamc@9 81
adamc@9 82 Finally, there is %\textit{%#<i>#Ltac#</i>#%}%, Coq's domain-specific language for writing proofs and decision procedures. We will see some basic examples of Ltac later in this chapter, and much of this book is devoted to more involved Ltac examples.
adamc@9 83
adamc@9 84 %\medskip%
adamc@9 85
adamc@9 86 We can give a simple definition of the meaning of an expression: *)
adamc@9 87
adamc@4 88 Fixpoint expDenote (e : exp) : nat :=
adamc@4 89 match e with
adamc@4 90 | Const n => n
adamc@4 91 | Binop b e1 e2 => (binopDenote b) (expDenote e1) (expDenote e2)
adamc@4 92 end.
adamc@2 93
adamc@9 94 (** We declare explicitly that this is a recursive definition, using the keyword [Fixpoint]. The rest should be old hat for functional programmers. *)
adamc@2 95
adamc@9 96
adamc@9 97 (** ** Target language *)
adamc@4 98
adamc@10 99 (** We will compile our source programs onto a simple stack machine, whose syntax is: *)
adamc@2 100
adamc@4 101 Inductive instr : Set :=
adamc@4 102 | IConst : nat -> instr
adamc@4 103 | IBinop : binop -> instr.
adamc@2 104
adamc@4 105 Definition prog := list instr.
adamc@4 106 Definition stack := list nat.
adamc@2 107
adamc@10 108 (** An instruction either pushes a constant onto the stack or pops two arguments, applies a binary operator to them, and pushes the result onto the stack. A program is a list of instructions, and a stack is a list of natural numbers.
adamc@10 109
adamc@10 110 We can give instructions meanings as functions from stacks to optional stacks, where running an instruction results in [None] in case of a stack underflow and results in [Some s'] when the result of execution is the new stack [s']. [::] is the "list cons" operator from the Coq standard library. *)
adamc@10 111
adamc@4 112 Definition instrDenote (i : instr) (s : stack) : option stack :=
adamc@4 113 match i with
adamc@4 114 | IConst n => Some (n :: s)
adamc@4 115 | IBinop b =>
adamc@4 116 match s with
adamc@4 117 | arg1 :: arg2 :: s' => Some ((binopDenote b) arg1 arg2 :: s')
adamc@4 118 | _ => None
adamc@4 119 end
adamc@4 120 end.
adamc@2 121
adamc@10 122 (** With [instrDenote] defined, it is easy to define a function [progDenote], which iterates application of [instrDenote] through a whole program. *)
adamc@10 123
adamc@4 124 Fixpoint progDenote (p : prog) (s : stack) {struct p} : option stack :=
adamc@4 125 match p with
adamc@4 126 | nil => Some s
adamc@4 127 | i :: p' =>
adamc@4 128 match instrDenote i s with
adamc@4 129 | None => None
adamc@4 130 | Some s' => progDenote p' s'
adamc@4 131 end
adamc@4 132 end.
adamc@2 133
adamc@10 134 (** There is one interesting difference compared to our previous example of a [Fixpoint]. This recursive function takes two arguments, [p] and [s]. It is critical for the soundness of Coq that every program terminate, so a shallow syntactic termination check is imposed on every recursive function definition. One of the function parameters must be designated to decrease monotonically across recursive calls. That is, every recursive call must use a version of that argument that has been pulled out of the current argument by some number of [match] expressions. [expDenote] has only one argument, so we did not need to specify which of its arguments decreases. For [progDenote], we resolve the ambiguity by writing [{struct p}] to indicate that argument [p] decreases structurally. *)
adamc@2 135
adamc@4 136
adamc@9 137 (** ** Translation *)
adamc@4 138
adamc@10 139 (** Our compiler itself is now unsurprising. [++] is the list concatenation operator from the Coq standard library. *)
adamc@2 140
adamc@4 141 Fixpoint compile (e : exp) : prog :=
adamc@4 142 match e with
adamc@4 143 | Const n => IConst n :: nil
adamc@4 144 | Binop b e1 e2 => compile e2 ++ compile e1 ++ IBinop b :: nil
adamc@4 145 end.
adamc@2 146
adamc@2 147
adamc@9 148 (** ** Translation correctness *)
adamc@4 149
adamc@11 150 (** We are ready to prove that our compiler is implemented correctly. We can use a new vernacular command [Theorem] to start a correctness proof, in terms of the semantics we defined earlier: *)
adamc@11 151
adamc@11 152 Theorem compileCorrect : forall e, progDenote (compile e) nil = Some (expDenote e :: nil).
adamc@11 153 (* begin hide *)
adamc@11 154 Abort.
adamc@11 155 (* end hide *)
adamc@11 156
adamc@11 157 (** Though a pencil-and-paper proof might clock out at this point, writing "by a routine induction on [e]," it turns out not to make sense to attack this proof directly. We need to use the standard trick of %\textit{%#<i>#strengthening the induction hypothesis#</i>#%}%. We do that by proving an auxiliary lemma:
adamc@11 158 *)
adamc@2 159
adamc@4 160 Lemma compileCorrect' : forall e s p, progDenote (compile e ++ p) s =
adamc@4 161 progDenote p (expDenote e :: s).
adamc@11 162
adamc@11 163 (** After the period in the [Lemma] command, we are in %\textit{%#<i>#the interactive proof-editing mode#</i>#%}%. We find ourselves staring at this ominous screen of text:
adamc@11 164
adamc@11 165 [[
adamc@11 166 1 subgoal
adamc@11 167
adamc@11 168 ============================
adamc@11 169 forall (e : exp) (s : stack) (p : list instr),
adamc@11 170 progDenote (compile e ++ p) s = progDenote p (expDenote e :: s)
adamc@11 171 ]]
adamc@11 172
adamc@11 173 Coq seems to be restating the lemma for us. What we are seeing is a limited case of a more general protocol for describing where we are in a proof. We are told that we have a single subgoal. In general, during a proof, we can have many pending subgoals, each of which is a logical proposition to prove. Subgoals can be proved in any order, but it usually works best to prove them in the order that Coq chooses.
adamc@11 174
adamc@11 175 Next in the output, we see our single subgoal described in full detail. There is a double-dashed line, above which would be our free variables and hypotheses, if we had any. Below the line is the conclusion, which, in general, is to be proved from the hypotheses.
adamc@11 176
adamc@11 177 We manipulate the proof state by running commands called %\textit{%#<i>#tactics#</i>#%}%. Let us start out by running one of the most important tactics:
adamc@11 178 *)
adamc@11 179
adamc@4 180 induction e.
adamc@2 181
adamc@11 182 (** We declare that this proof will proceed by induction on the structure of the expression [e]. This swaps out our initial subgoal for two new subgoals, one for each case of the inductive proof:
adamc@11 183
adamc@11 184 [[
adamc@11 185 2 subgoals
adamc@11 186
adamc@11 187 n : nat
adamc@11 188 ============================
adamc@11 189 forall (s : stack) (p : list instr),
adamc@11 190 progDenote (compile (Const n) ++ p) s =
adamc@11 191 progDenote p (expDenote (Const n) :: s)
adamc@11 192 ]]
adamc@11 193 [[
adamc@11 194 subgoal 2 is:
adamc@11 195 forall (s : stack) (p : list instr),
adamc@11 196 progDenote (compile (Binop b e1 e2) ++ p) s =
adamc@11 197 progDenote p (expDenote (Binop b e1 e2) :: s)
adamc@11 198 ]]
adamc@11 199
adamc@11 200 The first and current subgoal is displayed with the double-dashed line below free variables and hypotheses, while later subgoals are only summarized with their conclusions. We see an example of a free variable in the first subgoal; [n] is a free variable of type [nat]. The conclusion is the original theorem statement where [e] has been replaced by [Const n]. In a similar manner, the second case has [e] replaced by a generalized invocation of the [Binop] expression constructor. We can see that proving both cases corresponds to a standard proof by structural induction.
adamc@11 201
adamc@11 202 We begin the first case with another very common tactic.
adamc@11 203 *)
adamc@11 204
adamc@4 205 intros.
adamc@11 206
adamc@11 207 (** The current subgoal changes to:
adamc@11 208 [[
adamc@11 209
adamc@11 210 n : nat
adamc@11 211 s : stack
adamc@11 212 p : list instr
adamc@11 213 ============================
adamc@11 214 progDenote (compile (Const n) ++ p) s =
adamc@11 215 progDenote p (expDenote (Const n) :: s)
adamc@11 216 ]]
adamc@11 217
adamc@11 218 We see that [intros] changes [forall]-bound variables at the beginning of a goal into free variables.
adamc@11 219
adamc@11 220 To progress further, we need to use the definitions of some of the functions appearing in the goal. The [unfold] tactic replaces an identifier with its definition.
adamc@11 221 *)
adamc@11 222
adamc@4 223 unfold compile.
adamc@11 224
adamc@11 225 (** [[
adamc@11 226
adamc@11 227 n : nat
adamc@11 228 s : stack
adamc@11 229 p : list instr
adamc@11 230 ============================
adamc@11 231 progDenote ((IConst n :: nil) ++ p) s =
adamc@11 232 progDenote p (expDenote (Const n) :: s)
adamc@11 233 ]] *)
adamc@11 234
adamc@4 235 unfold expDenote.
adamc@11 236
adamc@11 237 (** [[
adamc@11 238
adamc@11 239 n : nat
adamc@11 240 s : stack
adamc@11 241 p : list instr
adamc@11 242 ============================
adamc@11 243 progDenote ((IConst n :: nil) ++ p) s = progDenote p (n :: s)
adamc@11 244 ]]
adamc@11 245
adamc@11 246 We only need to unfold the first occurrence of [progDenote] to prove the goal: *)
adamc@11 247
adamc@11 248 unfold progDenote at 1.
adamc@11 249
adamc@11 250 (** [[
adamc@11 251
adamc@11 252 n : nat
adamc@11 253 s : stack
adamc@11 254 p : list instr
adamc@11 255 ============================
adamc@11 256 (fix progDenote (p0 : prog) (s0 : stack) {struct p0} :
adamc@11 257 option stack :=
adamc@11 258 match p0 with
adamc@11 259 | nil => Some s0
adamc@11 260 | i :: p' =>
adamc@11 261 match instrDenote i s0 with
adamc@11 262 | Some s' => progDenote p' s'
adamc@11 263 | None => None (A:=stack)
adamc@11 264 end
adamc@11 265 end) ((IConst n :: nil) ++ p) s =
adamc@11 266 progDenote p (n :: s)
adamc@11 267 ]]
adamc@11 268
adamc@11 269 This last [unfold] has left us with an anonymous fixpoint version of [progDenote], which will generally happen when unfolding recursive definitions. Fortunately, in this case, we can eliminate such complications right away, since the structure of the argument [(IConst n :: nil) ++ p] is known, allowing us to simplify the internal pattern match with the [simpl] tactic:
adamc@11 270 *)
adamc@11 271
adamc@4 272 simpl.
adamc@11 273
adamc@11 274 (** [[
adamc@11 275
adamc@11 276 n : nat
adamc@11 277 s : stack
adamc@11 278 p : list instr
adamc@11 279 ============================
adamc@11 280 (fix progDenote (p0 : prog) (s0 : stack) {struct p0} :
adamc@11 281 option stack :=
adamc@11 282 match p0 with
adamc@11 283 | nil => Some s0
adamc@11 284 | i :: p' =>
adamc@11 285 match instrDenote i s0 with
adamc@11 286 | Some s' => progDenote p' s'
adamc@11 287 | None => None (A:=stack)
adamc@11 288 end
adamc@11 289 end) p (n :: s) = progDenote p (n :: s)
adamc@11 290 ]]
adamc@11 291
adamc@11 292 Now we can unexpand the definition of [progDenote]:
adamc@11 293 *)
adamc@11 294
adamc@11 295 fold progDenote.
adamc@11 296
adamc@11 297 (** [[
adamc@11 298
adamc@11 299 n : nat
adamc@11 300 s : stack
adamc@11 301 p : list instr
adamc@11 302 ============================
adamc@11 303 progDenote p (n :: s) = progDenote p (n :: s)
adamc@11 304 ]]
adamc@11 305
adamc@11 306 It looks like we are at the end of this case, since we have a trivial equality. Indeed, a single tactic finishes us off:
adamc@11 307 *)
adamc@11 308
adamc@4 309 reflexivity.
adamc@2 310
adamc@11 311 (** On to the second inductive case:
adamc@11 312
adamc@11 313 [[
adamc@11 314
adamc@11 315 b : binop
adamc@11 316 e1 : exp
adamc@11 317 IHe1 : forall (s : stack) (p : list instr),
adamc@11 318 progDenote (compile e1 ++ p) s = progDenote p (expDenote e1 :: s)
adamc@11 319 e2 : exp
adamc@11 320 IHe2 : forall (s : stack) (p : list instr),
adamc@11 321 progDenote (compile e2 ++ p) s = progDenote p (expDenote e2 :: s)
adamc@11 322 ============================
adamc@11 323 forall (s : stack) (p : list instr),
adamc@11 324 progDenote (compile (Binop b e1 e2) ++ p) s =
adamc@11 325 progDenote p (expDenote (Binop b e1 e2) :: s)
adamc@11 326 ]]
adamc@11 327
adamc@11 328 We see our first example of hypotheses above the double-dashed line. They are the inductive hypotheses [IHe1] and [IHe2] corresponding to the subterms [e1] and [e2], respectively.
adamc@11 329
adamc@11 330 We start out the same way as before, introducing new free variables and unfolding and folding the appropriate definitions. The seemingly frivolous [unfold]/[fold] pairs are actually accomplishing useful work, because [unfold] will sometimes perform easy simplifications. *)
adamc@11 331
adamc@4 332 intros.
adamc@4 333 unfold compile.
adamc@4 334 fold compile.
adamc@4 335 unfold expDenote.
adamc@4 336 fold expDenote.
adamc@11 337
adamc@11 338 (** Now we arrive at a point where the tactics we have seen so far are insufficient:
adamc@11 339
adamc@11 340 [[
adamc@11 341
adamc@11 342 b : binop
adamc@11 343 e1 : exp
adamc@11 344 IHe1 : forall (s : stack) (p : list instr),
adamc@11 345 progDenote (compile e1 ++ p) s = progDenote p (expDenote e1 :: s)
adamc@11 346 e2 : exp
adamc@11 347 IHe2 : forall (s : stack) (p : list instr),
adamc@11 348 progDenote (compile e2 ++ p) s = progDenote p (expDenote e2 :: s)
adamc@11 349 s : stack
adamc@11 350 p : list instr
adamc@11 351 ============================
adamc@11 352 progDenote ((compile e2 ++ compile e1 ++ IBinop b :: nil) ++ p) s =
adamc@11 353 progDenote p (binopDenote b (expDenote e1) (expDenote e2) :: s)
adamc@11 354 ]]
adamc@11 355
adamc@11 356 What we need is the associative law of list concatenation, available as a theorem [app_ass] in the standard library. *)
adamc@11 357
adamc@11 358 Check app_ass.
adamc@11 359
adamc@11 360 (** [[
adamc@11 361
adamc@11 362 app_ass
adamc@11 363 : forall (A : Type) (l m n : list A), (l ++ m) ++ n = l ++ m ++ n
adamc@11 364 ]]
adamc@11 365
adamc@11 366 We use it to perform a rewrite: *)
adamc@11 367
adamc@4 368 rewrite app_ass.
adamc@11 369
adamc@11 370 (** changing the conclusion to: [[
adamc@11 371
adamc@11 372 progDenote (compile e2 ++ (compile e1 ++ IBinop b :: nil) ++ p) s =
adamc@11 373 progDenote p (binopDenote b (expDenote e1) (expDenote e2) :: s)
adamc@11 374 ]]
adamc@11 375
adamc@11 376 Now we can notice that the lefthand side of the equality matches the lefthand side of the second inductive hypothesis, so we can rewrite with that hypothesis, too: *)
adamc@11 377
adamc@4 378 rewrite IHe2.
adamc@11 379
adamc@11 380 (** [[
adamc@11 381
adamc@11 382 progDenote ((compile e1 ++ IBinop b :: nil) ++ p) (expDenote e2 :: s) =
adamc@11 383 progDenote p (binopDenote b (expDenote e1) (expDenote e2) :: s)
adamc@11 384 ]]
adamc@11 385
adamc@11 386 The same process lets us apply the remaining hypothesis. *)
adamc@11 387
adamc@4 388 rewrite app_ass.
adamc@4 389 rewrite IHe1.
adamc@11 390
adamc@11 391 (** [[
adamc@11 392
adamc@11 393 progDenote ((IBinop b :: nil) ++ p) (expDenote e1 :: expDenote e2 :: s) =
adamc@11 394 progDenote p (binopDenote b (expDenote e1) (expDenote e2) :: s)
adamc@11 395 ]]
adamc@11 396
adamc@11 397 Now we can apply a similar sequence of tactics to that that ended the proof of the first case.
adamc@11 398 *)
adamc@11 399
adamc@11 400 unfold progDenote at 1.
adamc@4 401 simpl.
adamc@11 402 fold progDenote.
adamc@4 403 reflexivity.
adamc@11 404
adamc@11 405 (** And the proof is completed, as indicated by the message:
adamc@11 406
adamc@11 407 [[
adamc@11 408 Proof completed.
adamc@11 409
adamc@11 410 And there lies our first proof. Already, even for simple theorems like this, the final proof script is unstructured and not very enlightening to readers. If we extend this approach to more serious theorems, we arrive at the unreadable proof scripts that are the favorite complaints of opponents of tactic-based proving. Fortunately, Coq has rich support for scripted automation, and we can take advantage of such a scripted tactic (defined elsewhere) to make short work of this lemma. We abort the old proof attempt and start again.
adamc@11 411 *)
adamc@11 412
adamc@4 413 Abort.
adamc@2 414
adamc@4 415 Lemma compileCorrect' : forall e s p, progDenote (compile e ++ p) s =
adamc@4 416 progDenote p (expDenote e :: s).
adamc@4 417 induction e; crush.
adamc@4 418 Qed.
adamc@2 419
adamc@11 420 (** We need only to state the basic inductive proof scheme and call a tactic that automates the tedious reasoning in between. In contrast to the period tactic terminator from our last proof, the semicolon tactic separator supports structured, compositional proofs. The tactic [t1; t2] has the effect of running [t1] and then running [t2] on each remaining subgoal. The semicolon is one of the most fundamental building blocks of effective proof automation. The period terminator is very useful for exploratory proving, where you need to see intermediate proof states, but final proofs of any serious complexity should have just one period, terminating a single compound tactic that probably uses semicolons.
adamc@11 421
adamc@11 422 The proof of our main theorem is now easy. We prove it with four period-terminated tactics, though separating them with semicolons would work as well; the version here is easier to step through. *)
adamc@11 423
adamc@4 424 Theorem compileCorrect : forall e, progDenote (compile e) nil = Some (expDenote e :: nil).
adamc@11 425 intros.
adamc@11 426
adamc@11 427 (** [[
adamc@11 428
adamc@11 429 e : exp
adamc@11 430 ============================
adamc@11 431 progDenote (compile e) nil = Some (expDenote e :: nil)
adamc@11 432 ]]
adamc@11 433
adamc@11 434 At this point, we want to massage the lefthand side to match the statement of [compileCorrect']. A theorem from the standard library is useful: *)
adamc@11 435
adamc@11 436 Check app_nil_end.
adamc@11 437
adamc@11 438 (** [[
adamc@11 439
adamc@11 440 app_nil_end
adamc@11 441 : forall (A : Type) (l : list A), l = l ++ nil
adamc@11 442 ]] *)
adamc@11 443
adamc@4 444 rewrite (app_nil_end (compile e)).
adamc@11 445
adamc@11 446 (** This time, we explicitly specify the value of the variable [l] from the theorem statement, since multiple expressions of list type appear in the conclusion. [rewrite] might choose the wrong place to rewrite if we did not specify which we want.
adamc@11 447
adamc@11 448 [[
adamc@11 449
adamc@11 450 e : exp
adamc@11 451 ============================
adamc@11 452 progDenote (compile e ++ nil) nil = Some (expDenote e :: nil)
adamc@11 453 ]]
adamc@11 454
adamc@11 455 Now we can apply the lemma. *)
adamc@11 456
adamc@4 457 rewrite compileCorrect'.
adamc@11 458
adamc@11 459 (** [[
adamc@11 460
adamc@11 461 e : exp
adamc@11 462 ============================
adamc@11 463 progDenote nil (expDenote e :: nil) = Some (expDenote e :: nil)
adamc@11 464 ]]
adamc@11 465
adamc@11 466 We are almost done. The lefthand and righthand sides can be seen to match by simple symbolic evaluation. That means we are in luck, because Coq identifies any pair of terms as equal whenever they normalize to the same result by symbolic evaluation. By the definition of [progDenote], that is the case here, but we do not need to worry about such details. A simple invocation of [reflexivity] does the normalization and checks that the two results are syntactically equal. *)
adamc@11 467
adamc@4 468 reflexivity.
adamc@4 469 Qed.
adamc@14 470
adamc@14 471
adamc@14 472 (** * Typed expressions *)
adamc@14 473
adamc@14 474 (** In this section, we will build on the initial example by adding additional expression forms that depend on static typing of terms for safety. *)
adamc@14 475
adamc@14 476 (** ** Source language *)
adamc@14 477
adamc@14 478 Inductive type : Set := Nat | Bool.
adamc@14 479
adamc@14 480 Inductive tbinop : type -> type -> type -> Set :=
adamc@14 481 | TPlus : tbinop Nat Nat Nat
adamc@14 482 | TTimes : tbinop Nat Nat Nat
adamc@14 483 | TEq : forall t, tbinop t t Bool
adamc@14 484 | TLt : tbinop Nat Nat Bool.
adamc@14 485
adamc@14 486 Inductive texp : type -> Set :=
adamc@14 487 | TNConst : nat -> texp Nat
adamc@14 488 | TBConst : bool -> texp Bool
adamc@14 489 | TBinop : forall arg1 arg2 res, tbinop arg1 arg2 res -> texp arg1 -> texp arg2 -> texp res.
adamc@14 490
adamc@14 491 Definition typeDenote (t : type) : Set :=
adamc@14 492 match t with
adamc@14 493 | Nat => nat
adamc@14 494 | Bool => bool
adamc@14 495 end.
adamc@14 496
adamc@14 497 Definition eq_bool (b1 b2 : bool) : bool :=
adamc@14 498 match b1, b2 with
adamc@14 499 | true, true => true
adamc@14 500 | false, false => true
adamc@14 501 | _, _ => false
adamc@14 502 end.
adamc@14 503
adamc@14 504 Fixpoint eq_nat (n1 n2 : nat) {struct n1} : bool :=
adamc@14 505 match n1, n2 with
adamc@14 506 | O, O => true
adamc@14 507 | S n1', S n2' => eq_nat n1' n2'
adamc@14 508 | _, _ => false
adamc@14 509 end.
adamc@14 510
adamc@14 511 Fixpoint lt (n1 n2 : nat) {struct n1} : bool :=
adamc@14 512 match n1, n2 with
adamc@14 513 | O, S _ => true
adamc@14 514 | S n1', S n2' => lt n1' n2'
adamc@14 515 | _, _ => false
adamc@14 516 end.
adamc@14 517
adamc@14 518 Definition tbinopDenote arg1 arg2 res (b : tbinop arg1 arg2 res)
adamc@14 519 : typeDenote arg1 -> typeDenote arg2 -> typeDenote res :=
adamc@14 520 match b in (tbinop arg1 arg2 res) return (typeDenote arg1 -> typeDenote arg2 -> typeDenote res) with
adamc@14 521 | TPlus => plus
adamc@14 522 | TTimes => mult
adamc@14 523 | TEq Nat => eq_nat
adamc@14 524 | TEq Bool => eq_bool
adamc@14 525 | TLt => lt
adamc@14 526 end.
adamc@14 527
adamc@14 528 Fixpoint texpDenote t (e : texp t) {struct e} : typeDenote t :=
adamc@14 529 match e in (texp t) return (typeDenote t) with
adamc@14 530 | TNConst n => n
adamc@14 531 | TBConst b => b
adamc@14 532 | TBinop _ _ _ b e1 e2 => (tbinopDenote b) (texpDenote e1) (texpDenote e2)
adamc@14 533 end.
adamc@14 534
adamc@14 535
adamc@14 536 (** ** Target language *)
adamc@14 537
adamc@14 538 Definition tstack := list type.
adamc@14 539
adamc@14 540 Inductive tinstr : tstack -> tstack -> Set :=
adamc@14 541 | TINConst : forall s, nat -> tinstr s (Nat :: s)
adamc@14 542 | TIBConst : forall s, bool -> tinstr s (Bool :: s)
adamc@14 543 | TIBinop : forall arg1 arg2 res s,
adamc@14 544 tbinop arg1 arg2 res
adamc@14 545 -> tinstr (arg1 :: arg2 :: s) (res :: s).
adamc@14 546
adamc@14 547 Inductive tprog : tstack -> tstack -> Set :=
adamc@14 548 | TNil : forall s, tprog s s
adamc@14 549 | TCons : forall s1 s2 s3,
adamc@14 550 tinstr s1 s2
adamc@14 551 -> tprog s2 s3
adamc@14 552 -> tprog s1 s3.
adamc@14 553
adamc@14 554 Fixpoint vstack (ts : tstack) : Set :=
adamc@14 555 match ts with
adamc@14 556 | nil => unit
adamc@14 557 | t :: ts' => typeDenote t * vstack ts'
adamc@14 558 end%type.
adamc@14 559
adamc@14 560 Definition tinstrDenote ts ts' (i : tinstr ts ts') : vstack ts -> vstack ts' :=
adamc@14 561 match i in (tinstr ts ts') return (vstack ts -> vstack ts') with
adamc@14 562 | TINConst _ n => fun s => (n, s)
adamc@14 563 | TIBConst _ b => fun s => (b, s)
adamc@14 564 | TIBinop _ _ _ _ b => fun s =>
adamc@14 565 match s with
adamc@14 566 (arg1, (arg2, s')) => ((tbinopDenote b) arg1 arg2, s')
adamc@14 567 end
adamc@14 568 end.
adamc@14 569
adamc@14 570 Fixpoint tprogDenote ts ts' (p : tprog ts ts') {struct p} : vstack ts -> vstack ts' :=
adamc@14 571 match p in (tprog ts ts') return (vstack ts -> vstack ts') with
adamc@14 572 | TNil _ => fun s => s
adamc@14 573 | TCons _ _ _ i p' => fun s => tprogDenote p' (tinstrDenote i s)
adamc@14 574 end.
adamc@14 575
adamc@14 576
adamc@14 577 (** ** Translation *)
adamc@14 578
adamc@14 579 Fixpoint tconcat ts ts' ts'' (p : tprog ts ts') {struct p} : tprog ts' ts'' -> tprog ts ts'' :=
adamc@14 580 match p in (tprog ts ts') return (tprog ts' ts'' -> tprog ts ts'') with
adamc@14 581 | TNil _ => fun p' => p'
adamc@14 582 | TCons _ _ _ i p1 => fun p' => TCons i (tconcat p1 p')
adamc@14 583 end.
adamc@14 584
adamc@14 585 Fixpoint tcompile t (e : texp t) (ts : tstack) {struct e} : tprog ts (t :: ts) :=
adamc@14 586 match e in (texp t) return (tprog ts (t :: ts)) with
adamc@14 587 | TNConst n => TCons (TINConst _ n) (TNil _)
adamc@14 588 | TBConst b => TCons (TIBConst _ b) (TNil _)
adamc@14 589 | TBinop _ _ _ b e1 e2 => tconcat (tcompile e2 _)
adamc@14 590 (tconcat (tcompile e1 _) (TCons (TIBinop _ b) (TNil _)))
adamc@14 591 end.
adamc@14 592
adamc@14 593 Print tcompile.
adamc@14 594
adamc@14 595
adamc@14 596 (** ** Translation correctness *)
adamc@14 597
adamc@14 598 Lemma tcompileCorrect' : forall t (e : texp t)
adamc@14 599 ts (s : vstack ts),
adamc@14 600 tprogDenote (tcompile e ts) s
adamc@14 601 = (texpDenote e, s).
adamc@14 602 induction e; crush.
adamc@14 603 Abort.
adamc@14 604
adamc@14 605 Lemma tconcatCorrect : forall ts ts' ts'' (p : tprog ts ts') (p' : tprog ts' ts'')
adamc@14 606 (s : vstack ts),
adamc@14 607 tprogDenote (tconcat p p') s
adamc@14 608 = tprogDenote p' (tprogDenote p s).
adamc@14 609 induction p; crush.
adamc@14 610 Qed.
adamc@14 611
adamc@14 612 Hint Rewrite tconcatCorrect : cpdt.
adamc@14 613
adamc@14 614 Lemma tcompileCorrect' : forall t (e : texp t)
adamc@14 615 ts (s : vstack ts),
adamc@14 616 tprogDenote (tcompile e ts) s
adamc@14 617 = (texpDenote e, s).
adamc@14 618 induction e; crush.
adamc@14 619 Qed.
adamc@14 620
adamc@14 621 Hint Rewrite tcompileCorrect' : cpdt.
adamc@14 622
adamc@14 623 Theorem tcompileCorrect : forall t (e : texp t), tprogDenote (tcompile e nil) tt = (texpDenote e, tt).
adamc@14 624 crush.
adamc@14 625 Qed.