adam@534
|
1 (* Copyright (c) 2008-2012, 2015, Adam Chlipala
|
adamc@142
|
2 *
|
adamc@142
|
3 * This work is licensed under a
|
adamc@142
|
4 * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
|
adamc@142
|
5 * Unported License.
|
adamc@142
|
6 * The license text is available at:
|
adamc@142
|
7 * http://creativecommons.org/licenses/by-nc-nd/3.0/
|
adamc@142
|
8 *)
|
adamc@142
|
9
|
adamc@142
|
10 (* begin hide *)
|
adamc@142
|
11 Require Import List.
|
adamc@142
|
12
|
adam@534
|
13 Require Import Cpdt.CpdtTactics Cpdt.MoreSpecif.
|
adamc@142
|
14
|
adamc@142
|
15 Set Implicit Arguments.
|
adam@534
|
16 Set Asymmetric Patterns.
|
adamc@142
|
17 (* end hide *)
|
adamc@142
|
18
|
adamc@142
|
19
|
adamc@142
|
20 (** %\chapter{Proof by Reflection}% *)
|
adamc@142
|
21
|
adam@412
|
22 (** The last chapter highlighted a very heuristic approach to proving. In this chapter, we will study an alternative technique,%\index{proof by reflection}% _proof by reflection_ %\cite{reflection}%. We will write, in Gallina, decision procedures with proofs of correctness, and we will appeal to these procedures in writing very short proofs. Such a proof is checked by running the decision procedure. The term _reflection_ applies because we will need to translate Gallina propositions into values of inductive types representing syntax, so that Gallina programs may analyze them, and translating such a term back to the original form is called _reflecting_ it. *)
|
adamc@142
|
23
|
adamc@142
|
24
|
adamc@142
|
25 (** * Proving Evenness *)
|
adamc@142
|
26
|
adamc@142
|
27 (** Proving that particular natural number constants are even is certainly something we would rather have happen automatically. The Ltac-programming techniques that we learned in the last chapter make it easy to implement such a procedure. *)
|
adamc@142
|
28
|
adamc@142
|
29 Inductive isEven : nat -> Prop :=
|
adamc@144
|
30 | Even_O : isEven O
|
adamc@144
|
31 | Even_SS : forall n, isEven n -> isEven (S (S n)).
|
adamc@142
|
32
|
adamc@148
|
33 (* begin thide *)
|
adamc@142
|
34 Ltac prove_even := repeat constructor.
|
adamc@148
|
35 (* end thide *)
|
adamc@142
|
36
|
adamc@142
|
37 Theorem even_256 : isEven 256.
|
adamc@142
|
38 prove_even.
|
adamc@142
|
39 Qed.
|
adamc@142
|
40
|
adamc@142
|
41 Print even_256.
|
adamc@221
|
42 (** %\vspace{-.15in}% [[
|
adamc@142
|
43 even_256 =
|
adamc@142
|
44 Even_SS
|
adamc@142
|
45 (Even_SS
|
adamc@142
|
46 (Even_SS
|
adamc@142
|
47 (Even_SS
|
adamc@142
|
48 ]]
|
adamc@142
|
49
|
adam@360
|
50 %\noindent%...and so on. This procedure always works (at least on machines with infinite resources), but it has a serious drawback, which we see when we print the proof it generates that 256 is even. The final proof term has length super-linear in the input value. Coq's implicit arguments mechanism is hiding the values given for parameter [n] of [Even_SS], which is why the proof term only appears linear here. Also, proof terms are represented internally as syntax trees, with opportunity for sharing of node representations, but in this chapter we will measure proof term size as simple textual length or as the number of nodes in the term's syntax tree, two measures that are approximately equivalent. Sometimes apparently large proof terms have enough internal sharing that they take up less memory than we expect, but one avoids having to reason about such sharing by ensuring that the size of a sharing-free version of a term is low enough.
|
adam@360
|
51
|
adam@360
|
52 Superlinear evenness proof terms seem like a shame, since we could write a trivial and trustworthy program to verify evenness of constants. The proof checker could simply call our program where needed.
|
adamc@142
|
53
|
adamc@142
|
54 It is also unfortunate not to have static typing guarantees that our tactic always behaves appropriately. Other invocations of similar tactics might fail with dynamic type errors, and we would not know about the bugs behind these errors until we happened to attempt to prove complex enough goals.
|
adamc@142
|
55
|
adam@508
|
56 The techniques of proof by reflection address both complaints. We will be able to write proofs like in the example above with constant size overhead beyond the size of the input, and we will do it with verified decision procedures written in Gallina.
|
adamc@142
|
57
|
adamc@221
|
58 For this example, we begin by using a type from the [MoreSpecif] module (included in the book source) to write a certified evenness checker. *)
|
adamc@142
|
59
|
adam@432
|
60 (* begin hide *)
|
adam@437
|
61 (* begin thide *)
|
adam@432
|
62 Definition paartial := partial.
|
adam@437
|
63 (* end thide *)
|
adam@432
|
64 (* end hide *)
|
adam@432
|
65
|
adamc@142
|
66 Print partial.
|
adamc@221
|
67 (** %\vspace{-.15in}% [[
|
adamc@221
|
68 Inductive partial (P : Prop) : Set := Proved : P -> [P] | Uncertain : [P]
|
adamc@221
|
69 ]]
|
adamc@142
|
70
|
adamc@221
|
71 A [partial P] value is an optional proof of [P]. The notation [[P]] stands for [partial P]. *)
|
adamc@142
|
72
|
adamc@221
|
73 Local Open Scope partial_scope.
|
adamc@142
|
74
|
adamc@142
|
75 (** We bring into scope some notations for the [partial] type. These overlap with some of the notations we have seen previously for specification types, so they were placed in a separate scope that needs separate opening. *)
|
adamc@142
|
76
|
adamc@148
|
77 (* begin thide *)
|
adam@297
|
78 Definition check_even : forall n : nat, [isEven n].
|
adamc@142
|
79 Hint Constructors isEven.
|
adamc@142
|
80
|
adamc@142
|
81 refine (fix F (n : nat) : [isEven n] :=
|
adamc@221
|
82 match n with
|
adamc@142
|
83 | 0 => Yes
|
adamc@142
|
84 | 1 => No
|
adamc@142
|
85 | S (S n') => Reduce (F n')
|
adamc@142
|
86 end); auto.
|
adamc@142
|
87 Defined.
|
adamc@142
|
88
|
adam@461
|
89 (** The function [check_even] may be viewed as a _verified decision procedure_, because its type guarantees that it never returns %\coqdocnotation{%#<tt>#Yes#</tt>#%}% for inputs that are not even.
|
adam@360
|
90
|
adam@360
|
91 Now we can use dependent pattern-matching to write a function that performs a surprising feat. When given a [partial P], this function [partialOut] returns a proof of [P] if the [partial] value contains a proof, and it returns a (useless) proof of [True] otherwise. From the standpoint of ML and Haskell programming, it seems impossible to write such a type, but it is trivial with a [return] annotation. *)
|
adamc@142
|
92
|
adamc@142
|
93 Definition partialOut (P : Prop) (x : [P]) :=
|
adamc@142
|
94 match x return (match x with
|
adamc@142
|
95 | Proved _ => P
|
adamc@142
|
96 | Uncertain => True
|
adamc@142
|
97 end) with
|
adamc@142
|
98 | Proved pf => pf
|
adamc@142
|
99 | Uncertain => I
|
adamc@142
|
100 end.
|
adamc@142
|
101
|
adam@289
|
102 (** It may seem strange to define a function like this. However, it turns out to be very useful in writing a reflective version of our earlier [prove_even] tactic: *)
|
adamc@142
|
103
|
adamc@142
|
104 Ltac prove_even_reflective :=
|
adamc@142
|
105 match goal with
|
adamc@142
|
106 | [ |- isEven ?N] => exact (partialOut (check_even N))
|
adamc@142
|
107 end.
|
adamc@148
|
108 (* end thide *)
|
adamc@142
|
109
|
adam@432
|
110 (** We identify which natural number we are considering, and we "prove" its evenness by pulling the proof out of the appropriate [check_even] call. Recall that the %\index{tactics!exact}%[exact] tactic proves a proposition [P] when given a proof term of precisely type [P]. *)
|
adamc@142
|
111
|
adamc@142
|
112 Theorem even_256' : isEven 256.
|
adamc@142
|
113 prove_even_reflective.
|
adamc@142
|
114 Qed.
|
adamc@142
|
115
|
adamc@142
|
116 Print even_256'.
|
adamc@221
|
117 (** %\vspace{-.15in}% [[
|
adamc@142
|
118 even_256' = partialOut (check_even 256)
|
adamc@142
|
119 : isEven 256
|
adamc@142
|
120 ]]
|
adamc@142
|
121
|
adam@289
|
122 We can see a constant wrapper around the object of the proof. For any even number, this form of proof will suffice. The size of the proof term is now linear in the number being checked, containing two repetitions of the unary form of that number, one of which is hidden above within the implicit argument to [partialOut].
|
adam@289
|
123
|
adam@289
|
124 What happens if we try the tactic with an odd number? *)
|
adamc@142
|
125
|
adamc@142
|
126 Theorem even_255 : isEven 255.
|
adam@360
|
127 (** %\vspace{-.275in}%[[
|
adamc@142
|
128 prove_even_reflective.
|
adam@360
|
129 ]]
|
adamc@142
|
130
|
adam@360
|
131 <<
|
adamc@142
|
132 User error: No matching clauses for match goal
|
adam@360
|
133 >>
|
adamc@142
|
134
|
adamc@142
|
135 Thankfully, the tactic fails. To see more precisely what goes wrong, we can run manually the body of the [match].
|
adamc@142
|
136
|
adam@360
|
137 %\vspace{-.15in}%[[
|
adamc@142
|
138 exact (partialOut (check_even 255)).
|
adam@360
|
139 ]]
|
adamc@142
|
140
|
adam@360
|
141 <<
|
adamc@142
|
142 Error: The term "partialOut (check_even 255)" has type
|
adamc@142
|
143 "match check_even 255 with
|
adamc@142
|
144 | Yes => isEven 255
|
adamc@142
|
145 | No => True
|
adamc@142
|
146 end" while it is expected to have type "isEven 255"
|
adam@360
|
147 >>
|
adamc@142
|
148
|
adam@461
|
149 As usual, the type checker performs no reductions to simplify error messages. If we reduced the first term ourselves, we would see that [check_even 255] reduces to a %\coqdocnotation{%#<tt>#No#</tt>#%}%, so that the first term is equivalent to [True], which certainly does not unify with [isEven 255]. *)
|
adamc@221
|
150
|
adamc@142
|
151 Abort.
|
adamc@143
|
152
|
adam@362
|
153 (** Our tactic [prove_even_reflective] is reflective because it performs a proof search process (a trivial one, in this case) wholly within Gallina, where the only use of Ltac is to translate a goal into an appropriate use of [check_even]. *)
|
adamc@143
|
154
|
adam@360
|
155
|
adam@360
|
156 (** * Reifying the Syntax of a Trivial Tautology Language *)
|
adamc@143
|
157
|
adamc@143
|
158 (** We might also like to have reflective proofs of trivial tautologies like this one: *)
|
adamc@143
|
159
|
adamc@143
|
160 Theorem true_galore : (True /\ True) -> (True \/ (True /\ (True -> True))).
|
adamc@143
|
161 tauto.
|
adamc@143
|
162 Qed.
|
adamc@143
|
163
|
adam@432
|
164 (* begin hide *)
|
adam@437
|
165 (* begin thide *)
|
adam@432
|
166 Definition tg := (and_ind, or_introl).
|
adam@437
|
167 (* end thide *)
|
adam@432
|
168 (* end hide *)
|
adam@432
|
169
|
adamc@143
|
170 Print true_galore.
|
adamc@221
|
171 (** %\vspace{-.15in}% [[
|
adamc@143
|
172 true_galore =
|
adamc@143
|
173 fun H : True /\ True =>
|
adamc@143
|
174 and_ind (fun _ _ : True => or_introl (True /\ (True -> True)) I) H
|
adamc@143
|
175 : True /\ True -> True \/ True /\ (True -> True)
|
adamc@143
|
176 ]]
|
adamc@143
|
177
|
adamc@143
|
178 As we might expect, the proof that [tauto] builds contains explicit applications of natural deduction rules. For large formulas, this can add a linear amount of proof size overhead, beyond the size of the input.
|
adamc@143
|
179
|
adam@432
|
180 To write a reflective procedure for this class of goals, we will need to get into the actual "reflection" part of "proof by reflection." It is impossible to case-analyze a [Prop] in any way in Gallina. We must%\index{reification}% _reify_ [Prop] into some type that we _can_ analyze. This inductive type is a good candidate: *)
|
adamc@143
|
181
|
adamc@148
|
182 (* begin thide *)
|
adamc@143
|
183 Inductive taut : Set :=
|
adamc@143
|
184 | TautTrue : taut
|
adamc@143
|
185 | TautAnd : taut -> taut -> taut
|
adamc@143
|
186 | TautOr : taut -> taut -> taut
|
adamc@143
|
187 | TautImp : taut -> taut -> taut.
|
adamc@143
|
188
|
adam@432
|
189 (** We write a recursive function to _reflect_ this syntax back to [Prop]. Such functions are also called%\index{interpretation function}% _interpretation functions_, and we have used them in previous examples to give semantics to small programming languages. *)
|
adamc@143
|
190
|
adamc@143
|
191 Fixpoint tautDenote (t : taut) : Prop :=
|
adamc@143
|
192 match t with
|
adamc@143
|
193 | TautTrue => True
|
adamc@143
|
194 | TautAnd t1 t2 => tautDenote t1 /\ tautDenote t2
|
adamc@143
|
195 | TautOr t1 t2 => tautDenote t1 \/ tautDenote t2
|
adamc@143
|
196 | TautImp t1 t2 => tautDenote t1 -> tautDenote t2
|
adamc@143
|
197 end.
|
adamc@143
|
198
|
adamc@143
|
199 (** It is easy to prove that every formula in the range of [tautDenote] is true. *)
|
adamc@143
|
200
|
adamc@143
|
201 Theorem tautTrue : forall t, tautDenote t.
|
adamc@143
|
202 induction t; crush.
|
adamc@143
|
203 Qed.
|
adamc@143
|
204
|
adam@360
|
205 (** To use [tautTrue] to prove particular formulas, we need to implement the syntax reification process. A recursive Ltac function does the job. *)
|
adamc@143
|
206
|
adam@360
|
207 Ltac tautReify P :=
|
adamc@143
|
208 match P with
|
adamc@143
|
209 | True => TautTrue
|
adamc@143
|
210 | ?P1 /\ ?P2 =>
|
adam@360
|
211 let t1 := tautReify P1 in
|
adam@360
|
212 let t2 := tautReify P2 in
|
adamc@143
|
213 constr:(TautAnd t1 t2)
|
adamc@143
|
214 | ?P1 \/ ?P2 =>
|
adam@360
|
215 let t1 := tautReify P1 in
|
adam@360
|
216 let t2 := tautReify P2 in
|
adamc@143
|
217 constr:(TautOr t1 t2)
|
adamc@143
|
218 | ?P1 -> ?P2 =>
|
adam@360
|
219 let t1 := tautReify P1 in
|
adam@360
|
220 let t2 := tautReify P2 in
|
adamc@143
|
221 constr:(TautImp t1 t2)
|
adamc@143
|
222 end.
|
adamc@143
|
223
|
adam@461
|
224 (** With [tautReify] available, it is easy to finish our reflective tactic. We look at the goal formula, reify it, and apply [tautTrue] to the reified formula. *)
|
adamc@143
|
225
|
adamc@143
|
226 Ltac obvious :=
|
adamc@143
|
227 match goal with
|
adamc@143
|
228 | [ |- ?P ] =>
|
adam@360
|
229 let t := tautReify P in
|
adamc@143
|
230 exact (tautTrue t)
|
adamc@143
|
231 end.
|
adamc@143
|
232
|
adamc@143
|
233 (** We can verify that [obvious] solves our original example, with a proof term that does not mention details of the proof. *)
|
adamc@148
|
234 (* end thide *)
|
adamc@143
|
235
|
adamc@143
|
236 Theorem true_galore' : (True /\ True) -> (True \/ (True /\ (True -> True))).
|
adamc@143
|
237 obvious.
|
adamc@143
|
238 Qed.
|
adamc@143
|
239
|
adamc@143
|
240 Print true_galore'.
|
adamc@221
|
241 (** %\vspace{-.15in}% [[
|
adamc@143
|
242 true_galore' =
|
adamc@143
|
243 tautTrue
|
adamc@143
|
244 (TautImp (TautAnd TautTrue TautTrue)
|
adamc@143
|
245 (TautOr TautTrue (TautAnd TautTrue (TautImp TautTrue TautTrue))))
|
adamc@143
|
246 : True /\ True -> True \/ True /\ (True -> True)
|
adamc@143
|
247 ]]
|
adamc@143
|
248
|
adam@508
|
249 It is worth considering how the reflective tactic improves on a pure-Ltac implementation. The formula reification process is just as ad-hoc as before, so we gain little there. In general, proofs will be more complicated than formula translation, and the "generic proof rule" that we apply here _is_ on much better formal footing than a recursive Ltac function. The dependent type of the proof guarantees that it "works" on any input formula. This benefit is in addition to the proof-size improvement that we have already seen.
|
adam@360
|
250
|
adam@360
|
251 It may also be worth pointing out that our previous example of evenness testing used a function [partialOut] for sound handling of input goals that the verified decision procedure fails to prove. Here, we prove that our procedure [tautTrue] (recall that an inductive proof may be viewed as a recursive procedure) is able to prove any goal representable in [taut], so no extra step is necessary. *)
|
adamc@144
|
252
|
adamc@144
|
253
|
adamc@145
|
254 (** * A Monoid Expression Simplifier *)
|
adamc@145
|
255
|
adam@432
|
256 (** Proof by reflection does not require encoding of all of the syntax in a goal. We can insert "variables" in our syntax types to allow injection of arbitrary pieces, even if we cannot apply specialized reasoning to them. In this section, we explore that possibility by writing a tactic for normalizing monoid equations. *)
|
adamc@146
|
257
|
adamc@145
|
258 Section monoid.
|
adamc@145
|
259 Variable A : Set.
|
adamc@145
|
260 Variable e : A.
|
adamc@145
|
261 Variable f : A -> A -> A.
|
adamc@145
|
262
|
adamc@145
|
263 Infix "+" := f.
|
adamc@145
|
264
|
adamc@145
|
265 Hypothesis assoc : forall a b c, (a + b) + c = a + (b + c).
|
adamc@145
|
266 Hypothesis identl : forall a, e + a = a.
|
adamc@145
|
267 Hypothesis identr : forall a, a + e = a.
|
adamc@145
|
268
|
adamc@146
|
269 (** We add variables and hypotheses characterizing an arbitrary instance of the algebraic structure of monoids. We have an associative binary operator and an identity element for it.
|
adamc@146
|
270
|
adam@432
|
271 It is easy to define an expression tree type for monoid expressions. A [Var] constructor is a "catch-all" case for subexpressions that we cannot model. These subexpressions could be actual Gallina variables, or they could just use functions that our tactic is unable to understand. *)
|
adamc@146
|
272
|
adamc@148
|
273 (* begin thide *)
|
adamc@145
|
274 Inductive mexp : Set :=
|
adamc@145
|
275 | Ident : mexp
|
adamc@145
|
276 | Var : A -> mexp
|
adamc@145
|
277 | Op : mexp -> mexp -> mexp.
|
adamc@145
|
278
|
adam@360
|
279 (** Next, we write an interpretation function. *)
|
adamc@146
|
280
|
adamc@145
|
281 Fixpoint mdenote (me : mexp) : A :=
|
adamc@145
|
282 match me with
|
adamc@145
|
283 | Ident => e
|
adamc@145
|
284 | Var v => v
|
adamc@145
|
285 | Op me1 me2 => mdenote me1 + mdenote me2
|
adamc@145
|
286 end.
|
adamc@145
|
287
|
adamc@146
|
288 (** We will normalize expressions by flattening them into lists, via associativity, so it is helpful to have a denotation function for lists of monoid values. *)
|
adamc@146
|
289
|
adamc@145
|
290 Fixpoint mldenote (ls : list A) : A :=
|
adamc@145
|
291 match ls with
|
adamc@145
|
292 | nil => e
|
adamc@145
|
293 | x :: ls' => x + mldenote ls'
|
adamc@145
|
294 end.
|
adamc@145
|
295
|
adamc@146
|
296 (** The flattening function itself is easy to implement. *)
|
adamc@146
|
297
|
adamc@145
|
298 Fixpoint flatten (me : mexp) : list A :=
|
adamc@145
|
299 match me with
|
adamc@145
|
300 | Ident => nil
|
adamc@145
|
301 | Var x => x :: nil
|
adamc@145
|
302 | Op me1 me2 => flatten me1 ++ flatten me2
|
adamc@145
|
303 end.
|
adamc@145
|
304
|
adam@461
|
305 (** This function has a straightforward correctness proof in terms of our [denote] functions. *)
|
adamc@146
|
306
|
adamc@146
|
307 Lemma flatten_correct' : forall ml2 ml1,
|
adamc@146
|
308 mldenote ml1 + mldenote ml2 = mldenote (ml1 ++ ml2).
|
adamc@145
|
309 induction ml1; crush.
|
adamc@145
|
310 Qed.
|
adamc@145
|
311
|
adamc@145
|
312 Theorem flatten_correct : forall me, mdenote me = mldenote (flatten me).
|
adamc@145
|
313 Hint Resolve flatten_correct'.
|
adamc@145
|
314
|
adamc@145
|
315 induction me; crush.
|
adamc@145
|
316 Qed.
|
adamc@145
|
317
|
adamc@146
|
318 (** Now it is easy to prove a theorem that will be the main tool behind our simplification tactic. *)
|
adamc@146
|
319
|
adamc@146
|
320 Theorem monoid_reflect : forall me1 me2,
|
adamc@146
|
321 mldenote (flatten me1) = mldenote (flatten me2)
|
adamc@146
|
322 -> mdenote me1 = mdenote me2.
|
adamc@145
|
323 intros; repeat rewrite flatten_correct; assumption.
|
adamc@145
|
324 Qed.
|
adamc@145
|
325
|
adam@360
|
326 (** We implement reification into the [mexp] type. *)
|
adamc@146
|
327
|
adam@360
|
328 Ltac reify me :=
|
adamc@146
|
329 match me with
|
adamc@145
|
330 | e => Ident
|
adamc@146
|
331 | ?me1 + ?me2 =>
|
adam@360
|
332 let r1 := reify me1 in
|
adam@360
|
333 let r2 := reify me2 in
|
adamc@145
|
334 constr:(Op r1 r2)
|
adamc@146
|
335 | _ => constr:(Var me)
|
adamc@145
|
336 end.
|
adamc@145
|
337
|
adam@360
|
338 (** The final [monoid] tactic works on goals that equate two monoid terms. We reify each and change the goal to refer to the reified versions, finishing off by applying [monoid_reflect] and simplifying uses of [mldenote]. Recall that the %\index{tactics!change}%[change] tactic replaces a conclusion formula with another that is definitionally equal to it. *)
|
adamc@146
|
339
|
adamc@145
|
340 Ltac monoid :=
|
adamc@145
|
341 match goal with
|
adamc@146
|
342 | [ |- ?me1 = ?me2 ] =>
|
adam@360
|
343 let r1 := reify me1 in
|
adam@360
|
344 let r2 := reify me2 in
|
adamc@145
|
345 change (mdenote r1 = mdenote r2);
|
adam@360
|
346 apply monoid_reflect; simpl
|
adamc@145
|
347 end.
|
adamc@145
|
348
|
adamc@146
|
349 (** We can make short work of theorems like this one: *)
|
adamc@146
|
350
|
adamc@148
|
351 (* end thide *)
|
adamc@148
|
352
|
adamc@145
|
353 Theorem t1 : forall a b c d, a + b + c + d = a + (b + c) + d.
|
adamc@146
|
354 intros; monoid.
|
adamc@146
|
355 (** [[
|
adamc@146
|
356 ============================
|
adamc@146
|
357 a + (b + (c + (d + e))) = a + (b + (c + (d + e)))
|
adamc@221
|
358
|
adamc@146
|
359 ]]
|
adamc@146
|
360
|
adam@360
|
361 Our tactic has canonicalized both sides of the equality, such that we can finish the proof by reflexivity. *)
|
adamc@146
|
362
|
adamc@145
|
363 reflexivity.
|
adamc@145
|
364 Qed.
|
adamc@146
|
365
|
adamc@146
|
366 (** It is interesting to look at the form of the proof. *)
|
adamc@146
|
367
|
adamc@146
|
368 Print t1.
|
adamc@221
|
369 (** %\vspace{-.15in}% [[
|
adamc@146
|
370 t1 =
|
adamc@146
|
371 fun a b c d : A =>
|
adamc@146
|
372 monoid_reflect (Op (Op (Op (Var a) (Var b)) (Var c)) (Var d))
|
adamc@146
|
373 (Op (Op (Var a) (Op (Var b) (Var c))) (Var d))
|
adam@426
|
374 (eq_refl (a + (b + (c + (d + e)))))
|
adamc@146
|
375 : forall a b c d : A, a + b + c + d = a + (b + c) + d
|
adamc@146
|
376 ]]
|
adamc@146
|
377
|
adam@360
|
378 The proof term contains only restatements of the equality operands in reified form, followed by a use of reflexivity on the shared canonical form. *)
|
adamc@221
|
379
|
adamc@145
|
380 End monoid.
|
adamc@145
|
381
|
adam@360
|
382 (** Extensions of this basic approach are used in the implementations of the %\index{tactics!ring}%[ring] and %\index{tactics!field}%[field] tactics that come packaged with Coq. *)
|
adamc@146
|
383
|
adamc@145
|
384
|
adamc@144
|
385 (** * A Smarter Tautology Solver *)
|
adamc@144
|
386
|
adam@412
|
387 (** Now we are ready to revisit our earlier tautology solver example. We want to broaden the scope of the tactic to include formulas whose truth is not syntactically apparent. We will want to allow injection of arbitrary formulas, like we allowed arbitrary monoid expressions in the last example. Since we are working in a richer theory, it is important to be able to use equalities between different injected formulas. For instance, we cannot prove [P -> P] by translating the formula into a value like [Imp (Var P) (Var P)], because a Gallina function has no way of comparing the two [P]s for equality.
|
adamc@147
|
388
|
adam@572
|
389 To arrive at a nice implementation satisfying these criteria, we introduce the %\index{tactics!quote}%[quote] tactic and its associated library. (Actually, this tactic has apparently gone away in the most recent Coq versions, so this section is of historic interest only.) *)
|
adamc@147
|
390
|
adam@572
|
391 (*Require Import Quote.
|
adamc@144
|
392
|
adamc@148
|
393 (* begin thide *)
|
adamc@144
|
394 Inductive formula : Set :=
|
adamc@144
|
395 | Atomic : index -> formula
|
adamc@144
|
396 | Truth : formula
|
adamc@144
|
397 | Falsehood : formula
|
adamc@144
|
398 | And : formula -> formula -> formula
|
adamc@144
|
399 | Or : formula -> formula -> formula
|
adamc@144
|
400 | Imp : formula -> formula -> formula.
|
adam@362
|
401 (* end thide *)
|
adamc@144
|
402
|
adam@360
|
403 (** The type %\index{Gallina terms!index}%[index] comes from the [Quote] library and represents a countable variable type. The rest of [formula]'s definition should be old hat by now.
|
adamc@147
|
404
|
adam@484
|
405 The [quote] tactic will implement injection from [Prop] into [formula] for us, but it is not quite as smart as we might like. In particular, it wants to treat function types specially, so it gets confused if function types are part of the structure we want to encode syntactically. To trick [quote] into not noticing our uses of function types to express logical implication, we will need to declare a wrapper definition for implication, as we did in the last chapter. *)
|
adamc@144
|
406
|
adamc@144
|
407 Definition imp (P1 P2 : Prop) := P1 -> P2.
|
adamc@144
|
408 Infix "-->" := imp (no associativity, at level 95).
|
adamc@144
|
409
|
adamc@147
|
410 (** Now we can define our denotation function. *)
|
adamc@147
|
411
|
adamc@147
|
412 Definition asgn := varmap Prop.
|
adamc@147
|
413
|
adam@362
|
414 (* begin thide *)
|
adamc@144
|
415 Fixpoint formulaDenote (atomics : asgn) (f : formula) : Prop :=
|
adamc@144
|
416 match f with
|
adamc@144
|
417 | Atomic v => varmap_find False v atomics
|
adamc@144
|
418 | Truth => True
|
adamc@144
|
419 | Falsehood => False
|
adamc@144
|
420 | And f1 f2 => formulaDenote atomics f1 /\ formulaDenote atomics f2
|
adamc@144
|
421 | Or f1 f2 => formulaDenote atomics f1 \/ formulaDenote atomics f2
|
adamc@144
|
422 | Imp f1 f2 => formulaDenote atomics f1 --> formulaDenote atomics f2
|
adamc@144
|
423 end.
|
adam@362
|
424 (* end thide *)
|
adamc@144
|
425
|
adam@461
|
426 (** The %\index{Gallina terms!varmap}%[varmap] type family implements maps from [index] values. In this case, we define an assignment as a map from variables to [Prop]s. Our interpretation function [formulaDenote] works with an assignment, and we use the [varmap_find] function to consult the assignment in the [Atomic] case. The first argument to [varmap_find] is a default value, in case the variable is not found. *)
|
adamc@147
|
427
|
adamc@144
|
428 Section my_tauto.
|
adamc@144
|
429 Variable atomics : asgn.
|
adamc@144
|
430
|
adamc@144
|
431 Definition holds (v : index) := varmap_find False v atomics.
|
adamc@144
|
432
|
adamc@147
|
433 (** We define some shorthand for a particular variable being true, and now we are ready to define some helpful functions based on the [ListSet] module of the standard library, which (unsurprisingly) presents a view of lists as sets. *)
|
adamc@147
|
434
|
adamc@144
|
435 Require Import ListSet.
|
adamc@144
|
436
|
adamc@144
|
437 Definition index_eq : forall x y : index, {x = y} + {x <> y}.
|
adamc@144
|
438 decide equality.
|
adamc@144
|
439 Defined.
|
adamc@144
|
440
|
adamc@144
|
441 Definition add (s : set index) (v : index) := set_add index_eq v s.
|
adamc@147
|
442
|
adamc@221
|
443 Definition In_dec : forall v (s : set index), {In v s} + {~ In v s}.
|
adamc@221
|
444 Local Open Scope specif_scope.
|
adamc@144
|
445
|
adamc@221
|
446 intro; refine (fix F (s : set index) : {In v s} + {~ In v s} :=
|
adamc@221
|
447 match s with
|
adamc@144
|
448 | nil => No
|
adamc@144
|
449 | v' :: s' => index_eq v' v || F s'
|
adamc@144
|
450 end); crush.
|
adamc@144
|
451 Defined.
|
adamc@144
|
452
|
adamc@147
|
453 (** We define what it means for all members of an index set to represent true propositions, and we prove some lemmas about this notion. *)
|
adamc@147
|
454
|
adamc@144
|
455 Fixpoint allTrue (s : set index) : Prop :=
|
adamc@144
|
456 match s with
|
adamc@144
|
457 | nil => True
|
adamc@144
|
458 | v :: s' => holds v /\ allTrue s'
|
adamc@144
|
459 end.
|
adamc@144
|
460
|
adamc@144
|
461 Theorem allTrue_add : forall v s,
|
adamc@144
|
462 allTrue s
|
adamc@144
|
463 -> holds v
|
adamc@144
|
464 -> allTrue (add s v).
|
adamc@144
|
465 induction s; crush;
|
adamc@144
|
466 match goal with
|
adamc@144
|
467 | [ |- context[if ?E then _ else _] ] => destruct E
|
adamc@144
|
468 end; crush.
|
adamc@144
|
469 Qed.
|
adamc@144
|
470
|
adamc@144
|
471 Theorem allTrue_In : forall v s,
|
adamc@144
|
472 allTrue s
|
adamc@144
|
473 -> set_In v s
|
adamc@144
|
474 -> varmap_find False v atomics.
|
adamc@144
|
475 induction s; crush.
|
adamc@144
|
476 Qed.
|
adamc@144
|
477
|
adamc@144
|
478 Hint Resolve allTrue_add allTrue_In.
|
adamc@144
|
479
|
adamc@221
|
480 Local Open Scope partial_scope.
|
adamc@144
|
481
|
adam@484
|
482 (** Now we can write a function [forward] that implements deconstruction of hypotheses, expanding a compound formula into a set of sets of atomic formulas covering all possible cases introduced with use of [Or]. To handle consideration of multiple cases, the function takes in a continuation argument, which will be called once for each case.
|
adam@484
|
483
|
adam@484
|
484 The [forward] function has a dependent type, in the style of Chapter 6, guaranteeing correctness. The arguments to [forward] are a goal formula [f], a set [known] of atomic formulas that we may assume are true, a hypothesis formula [hyp], and a success continuation [cont] that we call when we have extended [known] to hold new truths implied by [hyp]. *)
|
adamc@147
|
485
|
adam@297
|
486 Definition forward : forall (f : formula) (known : set index) (hyp : formula)
|
adam@297
|
487 (cont : forall known', [allTrue known' -> formulaDenote atomics f]),
|
adam@297
|
488 [allTrue known -> formulaDenote atomics hyp -> formulaDenote atomics f].
|
adamc@144
|
489 refine (fix F (f : formula) (known : set index) (hyp : formula)
|
adamc@221
|
490 (cont : forall known', [allTrue known' -> formulaDenote atomics f])
|
adamc@144
|
491 : [allTrue known -> formulaDenote atomics hyp -> formulaDenote atomics f] :=
|
adamc@221
|
492 match hyp with
|
adamc@144
|
493 | Atomic v => Reduce (cont (add known v))
|
adamc@144
|
494 | Truth => Reduce (cont known)
|
adamc@144
|
495 | Falsehood => Yes
|
adamc@144
|
496 | And h1 h2 =>
|
adamc@144
|
497 Reduce (F (Imp h2 f) known h1 (fun known' =>
|
adamc@144
|
498 Reduce (F f known' h2 cont)))
|
adamc@144
|
499 | Or h1 h2 => F f known h1 cont && F f known h2 cont
|
adamc@144
|
500 | Imp _ _ => Reduce (cont known)
|
adamc@144
|
501 end); crush.
|
adamc@144
|
502 Defined.
|
adamc@144
|
503
|
adamc@147
|
504 (** A [backward] function implements analysis of the final goal. It calls [forward] to handle implications. *)
|
adamc@147
|
505
|
adam@362
|
506 (* begin thide *)
|
adam@297
|
507 Definition backward : forall (known : set index) (f : formula),
|
adam@297
|
508 [allTrue known -> formulaDenote atomics f].
|
adamc@221
|
509 refine (fix F (known : set index) (f : formula)
|
adamc@221
|
510 : [allTrue known -> formulaDenote atomics f] :=
|
adamc@221
|
511 match f with
|
adamc@144
|
512 | Atomic v => Reduce (In_dec v known)
|
adamc@144
|
513 | Truth => Yes
|
adamc@144
|
514 | Falsehood => No
|
adamc@144
|
515 | And f1 f2 => F known f1 && F known f2
|
adamc@144
|
516 | Or f1 f2 => F known f1 || F known f2
|
adamc@144
|
517 | Imp f1 f2 => forward f2 known f1 (fun known' => F known' f2)
|
adamc@144
|
518 end); crush; eauto.
|
adamc@144
|
519 Defined.
|
adam@362
|
520 (* end thide *)
|
adamc@144
|
521
|
adamc@147
|
522 (** A simple wrapper around [backward] gives us the usual type of a partial decision procedure. *)
|
adamc@147
|
523
|
adam@297
|
524 Definition my_tauto : forall f : formula, [formulaDenote atomics f].
|
adam@362
|
525 (* begin thide *)
|
adamc@144
|
526 intro; refine (Reduce (backward nil f)); crush.
|
adamc@144
|
527 Defined.
|
adam@362
|
528 (* end thide *)
|
adamc@144
|
529 End my_tauto.
|
adamc@144
|
530
|
adam@360
|
531 (** Our final tactic implementation is now fairly straightforward. First, we [intro] all quantifiers that do not bind [Prop]s. Then we call the [quote] tactic, which implements the reification for us. Finally, we are able to construct an exact proof via [partialOut] and the [my_tauto] Gallina function. *)
|
adamc@147
|
532
|
adamc@144
|
533 Ltac my_tauto :=
|
adamc@144
|
534 repeat match goal with
|
adamc@144
|
535 | [ |- forall x : ?P, _ ] =>
|
adamc@144
|
536 match type of P with
|
adamc@144
|
537 | Prop => fail 1
|
adamc@144
|
538 | _ => intro
|
adamc@144
|
539 end
|
adamc@144
|
540 end;
|
adamc@144
|
541 quote formulaDenote;
|
adamc@144
|
542 match goal with
|
adamc@144
|
543 | [ |- formulaDenote ?m ?f ] => exact (partialOut (my_tauto m f))
|
adamc@144
|
544 end.
|
adamc@148
|
545 (* end thide *)
|
adamc@144
|
546
|
adamc@147
|
547 (** A few examples demonstrate how the tactic works. *)
|
adamc@147
|
548
|
adamc@144
|
549 Theorem mt1 : True.
|
adamc@144
|
550 my_tauto.
|
adamc@144
|
551 Qed.
|
adamc@144
|
552
|
adamc@144
|
553 Print mt1.
|
adamc@221
|
554 (** %\vspace{-.15in}% [[
|
adamc@147
|
555 mt1 = partialOut (my_tauto (Empty_vm Prop) Truth)
|
adamc@147
|
556 : True
|
adamc@147
|
557 ]]
|
adamc@147
|
558
|
adamc@147
|
559 We see [my_tauto] applied with an empty [varmap], since every subformula is handled by [formulaDenote]. *)
|
adamc@144
|
560
|
adamc@144
|
561 Theorem mt2 : forall x y : nat, x = y --> x = y.
|
adamc@144
|
562 my_tauto.
|
adamc@144
|
563 Qed.
|
adamc@144
|
564
|
adam@432
|
565 (* begin hide *)
|
adam@437
|
566 (* begin thide *)
|
adam@432
|
567 Definition nvm := (Node_vm, Empty_vm, End_idx, Left_idx, Right_idx).
|
adam@437
|
568 (* end thide *)
|
adam@432
|
569 (* end hide *)
|
adam@432
|
570
|
adamc@144
|
571 Print mt2.
|
adamc@221
|
572 (** %\vspace{-.15in}% [[
|
adamc@147
|
573 mt2 =
|
adamc@147
|
574 fun x y : nat =>
|
adamc@147
|
575 partialOut
|
adamc@147
|
576 (my_tauto (Node_vm (x = y) (Empty_vm Prop) (Empty_vm Prop))
|
adamc@147
|
577 (Imp (Atomic End_idx) (Atomic End_idx)))
|
adamc@147
|
578 : forall x y : nat, x = y --> x = y
|
adamc@147
|
579 ]]
|
adamc@147
|
580
|
adamc@147
|
581 Crucially, both instances of [x = y] are represented with the same index, [End_idx]. The value of this index only needs to appear once in the [varmap], whose form reveals that [varmap]s are represented as binary trees, where [index] values denote paths from tree roots to leaves. *)
|
adamc@144
|
582
|
adamc@144
|
583 Theorem mt3 : forall x y z,
|
adamc@144
|
584 (x < y /\ y > z) \/ (y > z /\ x < S y)
|
adamc@144
|
585 --> y > z /\ (x < y \/ x < S y).
|
adamc@144
|
586 my_tauto.
|
adamc@144
|
587 Qed.
|
adamc@144
|
588
|
adamc@144
|
589 Print mt3.
|
adamc@221
|
590 (** %\vspace{-.15in}% [[
|
adamc@147
|
591 fun x y z : nat =>
|
adamc@147
|
592 partialOut
|
adamc@147
|
593 (my_tauto
|
adamc@147
|
594 (Node_vm (x < S y) (Node_vm (x < y) (Empty_vm Prop) (Empty_vm Prop))
|
adamc@147
|
595 (Node_vm (y > z) (Empty_vm Prop) (Empty_vm Prop)))
|
adamc@147
|
596 (Imp
|
adamc@147
|
597 (Or (And (Atomic (Left_idx End_idx)) (Atomic (Right_idx End_idx)))
|
adamc@147
|
598 (And (Atomic (Right_idx End_idx)) (Atomic End_idx)))
|
adamc@147
|
599 (And (Atomic (Right_idx End_idx))
|
adamc@147
|
600 (Or (Atomic (Left_idx End_idx)) (Atomic End_idx)))))
|
adamc@147
|
601 : forall x y z : nat,
|
adamc@147
|
602 x < y /\ y > z \/ y > z /\ x < S y --> y > z /\ (x < y \/ x < S y)
|
adamc@147
|
603 ]]
|
adamc@147
|
604
|
adamc@147
|
605 Our goal contained three distinct atomic formulas, and we see that a three-element [varmap] is generated.
|
adamc@147
|
606
|
adamc@147
|
607 It can be interesting to observe differences between the level of repetition in proof terms generated by [my_tauto] and [tauto] for especially trivial theorems. *)
|
adamc@144
|
608
|
adamc@144
|
609 Theorem mt4 : True /\ True /\ True /\ True /\ True /\ True /\ False --> False.
|
adamc@144
|
610 my_tauto.
|
adamc@144
|
611 Qed.
|
adamc@144
|
612
|
adamc@144
|
613 Print mt4.
|
adamc@221
|
614 (** %\vspace{-.15in}% [[
|
adamc@147
|
615 mt4 =
|
adamc@147
|
616 partialOut
|
adamc@147
|
617 (my_tauto (Empty_vm Prop)
|
adamc@147
|
618 (Imp
|
adamc@147
|
619 (And Truth
|
adamc@147
|
620 (And Truth
|
adamc@147
|
621 (And Truth (And Truth (And Truth (And Truth Falsehood))))))
|
adamc@147
|
622 Falsehood))
|
adamc@147
|
623 : True /\ True /\ True /\ True /\ True /\ True /\ False --> False
|
adam@302
|
624 ]]
|
adam@302
|
625 *)
|
adamc@144
|
626
|
adamc@144
|
627 Theorem mt4' : True /\ True /\ True /\ True /\ True /\ True /\ False -> False.
|
adamc@144
|
628 tauto.
|
adamc@144
|
629 Qed.
|
adamc@144
|
630
|
adam@432
|
631 (* begin hide *)
|
adam@437
|
632 (* begin thide *)
|
adam@432
|
633 Definition fi := False_ind.
|
adam@437
|
634 (* end thide *)
|
adam@432
|
635 (* end hide *)
|
adam@432
|
636
|
adamc@144
|
637 Print mt4'.
|
adamc@221
|
638 (** %\vspace{-.15in}% [[
|
adamc@147
|
639 mt4' =
|
adamc@147
|
640 fun H : True /\ True /\ True /\ True /\ True /\ True /\ False =>
|
adamc@147
|
641 and_ind
|
adamc@147
|
642 (fun (_ : True) (H1 : True /\ True /\ True /\ True /\ True /\ False) =>
|
adamc@147
|
643 and_ind
|
adamc@147
|
644 (fun (_ : True) (H3 : True /\ True /\ True /\ True /\ False) =>
|
adamc@147
|
645 and_ind
|
adamc@147
|
646 (fun (_ : True) (H5 : True /\ True /\ True /\ False) =>
|
adamc@147
|
647 and_ind
|
adamc@147
|
648 (fun (_ : True) (H7 : True /\ True /\ False) =>
|
adamc@147
|
649 and_ind
|
adamc@147
|
650 (fun (_ : True) (H9 : True /\ False) =>
|
adamc@147
|
651 and_ind (fun (_ : True) (H11 : False) => False_ind False H11)
|
adamc@147
|
652 H9) H7) H5) H3) H1) H
|
adamc@147
|
653 : True /\ True /\ True /\ True /\ True /\ True /\ False -> False
|
adam@302
|
654 ]]
|
adam@360
|
655
|
adam@360
|
656 The traditional [tauto] tactic introduces a quadratic blow-up in the size of the proof term, whereas proofs produced by [my_tauto] always have linear size. *)
|
adam@572
|
657 *)
|
adamc@147
|
658
|
adam@361
|
659 (** ** Manual Reification of Terms with Variables *)
|
adam@361
|
660
|
adam@362
|
661 (* begin thide *)
|
adam@361
|
662 (** The action of the [quote] tactic above may seem like magic. Somehow it performs equality comparison between subterms of arbitrary types, so that these subterms may be represented with the same reified variable. While [quote] is implemented in OCaml, we can code the reification process completely in Ltac, as well. To make our job simpler, we will represent variables as [nat]s, indexing into a simple list of variable values that may be referenced.
|
adam@361
|
663
|
adam@485
|
664 Step one of the process is to crawl over a term, building a duplicate-free list of all values that appear in positions we will encode as variables. A useful helper function adds an element to a list, preventing duplicates. Note how we use Ltac pattern matching to implement an equality test on Gallina terms; this is simple syntactic equality, not even the richer definitional equality. We also represent lists as nested tuples, to allow different list elements to have different Gallina types. *)
|
adam@361
|
665
|
adam@361
|
666 Ltac inList x xs :=
|
adam@361
|
667 match xs with
|
adam@361
|
668 | tt => false
|
adam@361
|
669 | (x, _) => true
|
adam@361
|
670 | (_, ?xs') => inList x xs'
|
adam@361
|
671 end.
|
adam@361
|
672
|
adam@361
|
673 Ltac addToList x xs :=
|
adam@361
|
674 let b := inList x xs in
|
adam@361
|
675 match b with
|
adam@361
|
676 | true => xs
|
adam@547
|
677 | false => constr:((x, xs))
|
adam@361
|
678 end.
|
adam@361
|
679
|
adam@361
|
680 (** Now we can write our recursive function to calculate the list of variable values we will want to use to represent a term. *)
|
adam@361
|
681
|
adam@361
|
682 Ltac allVars xs e :=
|
adam@361
|
683 match e with
|
adam@361
|
684 | True => xs
|
adam@361
|
685 | False => xs
|
adam@361
|
686 | ?e1 /\ ?e2 =>
|
adam@361
|
687 let xs := allVars xs e1 in
|
adam@361
|
688 allVars xs e2
|
adam@361
|
689 | ?e1 \/ ?e2 =>
|
adam@361
|
690 let xs := allVars xs e1 in
|
adam@361
|
691 allVars xs e2
|
adam@361
|
692 | ?e1 -> ?e2 =>
|
adam@361
|
693 let xs := allVars xs e1 in
|
adam@361
|
694 allVars xs e2
|
adam@361
|
695 | _ => addToList e xs
|
adam@361
|
696 end.
|
adam@361
|
697
|
adam@361
|
698 (** We will also need a way to map a value to its position in a list. *)
|
adam@361
|
699
|
adam@361
|
700 Ltac lookup x xs :=
|
adam@361
|
701 match xs with
|
adam@361
|
702 | (x, _) => O
|
adam@361
|
703 | (_, ?xs') =>
|
adam@361
|
704 let n := lookup x xs' in
|
adam@361
|
705 constr:(S n)
|
adam@361
|
706 end.
|
adam@361
|
707
|
adam@461
|
708 (** The next building block is a procedure for reifying a term, given a list of all allowed variable values. We are free to make this procedure partial, where tactic failure may be triggered upon attempting to reify a term containing subterms not included in the list of variables. The type of the output term is a copy of [formula] where [index] is replaced by [nat], in the type of the constructor for atomic formulas. *)
|
adam@361
|
709
|
adam@361
|
710 Inductive formula' : Set :=
|
adam@361
|
711 | Atomic' : nat -> formula'
|
adam@361
|
712 | Truth' : formula'
|
adam@361
|
713 | Falsehood' : formula'
|
adam@361
|
714 | And' : formula' -> formula' -> formula'
|
adam@361
|
715 | Or' : formula' -> formula' -> formula'
|
adam@361
|
716 | Imp' : formula' -> formula' -> formula'.
|
adam@361
|
717
|
adam@361
|
718 (** Note that, when we write our own Ltac procedure, we can work directly with the normal [->] operator, rather than needing to introduce a wrapper for it. *)
|
adam@361
|
719
|
adam@361
|
720 Ltac reifyTerm xs e :=
|
adam@361
|
721 match e with
|
adam@547
|
722 | True => Truth'
|
adam@547
|
723 | False => Falsehood'
|
adam@361
|
724 | ?e1 /\ ?e2 =>
|
adam@361
|
725 let p1 := reifyTerm xs e1 in
|
adam@361
|
726 let p2 := reifyTerm xs e2 in
|
adam@361
|
727 constr:(And' p1 p2)
|
adam@361
|
728 | ?e1 \/ ?e2 =>
|
adam@361
|
729 let p1 := reifyTerm xs e1 in
|
adam@361
|
730 let p2 := reifyTerm xs e2 in
|
adam@361
|
731 constr:(Or' p1 p2)
|
adam@361
|
732 | ?e1 -> ?e2 =>
|
adam@361
|
733 let p1 := reifyTerm xs e1 in
|
adam@361
|
734 let p2 := reifyTerm xs e2 in
|
adam@361
|
735 constr:(Imp' p1 p2)
|
adam@361
|
736 | _ =>
|
adam@361
|
737 let n := lookup e xs in
|
adam@361
|
738 constr:(Atomic' n)
|
adam@361
|
739 end.
|
adam@361
|
740
|
adam@361
|
741 (** Finally, we bring all the pieces together. *)
|
adam@361
|
742
|
adam@361
|
743 Ltac reify :=
|
adam@361
|
744 match goal with
|
adam@361
|
745 | [ |- ?G ] => let xs := allVars tt G in
|
adam@361
|
746 let p := reifyTerm xs G in
|
adam@361
|
747 pose p
|
adam@361
|
748 end.
|
adam@361
|
749
|
adam@361
|
750 (** A quick test verifies that we are doing reification correctly. *)
|
adam@361
|
751
|
adam@361
|
752 Theorem mt3' : forall x y z,
|
adam@361
|
753 (x < y /\ y > z) \/ (y > z /\ x < S y)
|
adam@361
|
754 -> y > z /\ (x < y \/ x < S y).
|
adam@361
|
755 do 3 intro; reify.
|
adam@361
|
756
|
adam@361
|
757 (** Our simple tactic adds the translated term as a new variable:
|
adam@361
|
758 [[
|
adam@361
|
759 f := Imp'
|
adam@361
|
760 (Or' (And' (Atomic' 2) (Atomic' 1)) (And' (Atomic' 1) (Atomic' 0)))
|
adam@361
|
761 (And' (Atomic' 1) (Or' (Atomic' 2) (Atomic' 0))) : formula'
|
adam@361
|
762 ]]
|
adam@361
|
763 *)
|
adam@361
|
764 Abort.
|
adam@361
|
765
|
adam@361
|
766 (** More work would be needed to complete the reflective tactic, as we must connect our new syntax type with the real meanings of formulas, but the details are the same as in our prior implementation with [quote]. *)
|
adam@362
|
767 (* end thide *)
|
adam@378
|
768
|
adam@378
|
769
|
adam@378
|
770 (** * Building a Reification Tactic that Recurses Under Binders *)
|
adam@378
|
771
|
adam@378
|
772 (** All of our examples so far have stayed away from reifying the syntax of terms that use such features as quantifiers and [fun] function abstractions. Such cases are complicated by the fact that different subterms may be allowed to reference different sets of free variables. Some cleverness is needed to clear this hurdle, but a few simple patterns will suffice. Consider this example of a simple dependently typed term language, where a function abstraction body is represented conveniently with a Coq function. *)
|
adam@378
|
773
|
adam@378
|
774 Inductive type : Type :=
|
adam@378
|
775 | Nat : type
|
adam@378
|
776 | NatFunc : type -> type.
|
adam@378
|
777
|
adam@378
|
778 Inductive term : type -> Type :=
|
adam@378
|
779 | Const : nat -> term Nat
|
adam@378
|
780 | Plus : term Nat -> term Nat -> term Nat
|
adam@378
|
781 | Abs : forall t, (nat -> term t) -> term (NatFunc t).
|
adam@378
|
782
|
adam@378
|
783 Fixpoint typeDenote (t : type) : Type :=
|
adam@378
|
784 match t with
|
adam@378
|
785 | Nat => nat
|
adam@378
|
786 | NatFunc t => nat -> typeDenote t
|
adam@378
|
787 end.
|
adam@378
|
788
|
adam@378
|
789 Fixpoint termDenote t (e : term t) : typeDenote t :=
|
adam@378
|
790 match e with
|
adam@378
|
791 | Const n => n
|
adam@378
|
792 | Plus e1 e2 => termDenote e1 + termDenote e2
|
adam@378
|
793 | Abs _ e1 => fun x => termDenote (e1 x)
|
adam@378
|
794 end.
|
adam@378
|
795
|
adam@484
|
796 (** Here is a %\%naive%{}% first attempt at a reification tactic. *)
|
adam@378
|
797
|
adam@534
|
798 (* begin hide *)
|
adam@534
|
799 Definition red_herring := O.
|
adam@534
|
800 (* end hide *)
|
adam@378
|
801 Ltac refl' e :=
|
adam@378
|
802 match e with
|
adam@378
|
803 | ?E1 + ?E2 =>
|
adam@378
|
804 let r1 := refl' E1 in
|
adam@378
|
805 let r2 := refl' E2 in
|
adam@378
|
806 constr:(Plus r1 r2)
|
adam@378
|
807
|
adam@378
|
808 | fun x : nat => ?E1 =>
|
adam@378
|
809 let r1 := refl' E1 in
|
adam@378
|
810 constr:(Abs (fun x => r1 x))
|
adam@378
|
811
|
adam@378
|
812 | _ => constr:(Const e)
|
adam@378
|
813 end.
|
adam@378
|
814
|
adam@484
|
815 (** Recall that a regular Ltac pattern variable [?X] only matches terms that _do not mention new variables introduced within the pattern_. In our %\%naive%{}% implementation, the case for matching function abstractions matches the function body in a way that prevents it from mentioning the function argument! Our code above plays fast and loose with the function body in a way that leads to independent problems, but we could change the code so that it indeed handles function abstractions that ignore their arguments.
|
adam@378
|
816
|
adam@484
|
817 To handle functions in general, we will use the pattern variable form [@?X], which allows [X] to mention newly introduced variables that are declared explicitly. A use of [@?X] must be followed by a list of the local variables that may be mentioned. The variable [X] then comes to stand for a Gallina function over the values of those variables. For instance: *)
|
adam@378
|
818
|
adam@378
|
819 Reset refl'.
|
adam@534
|
820 (* begin hide *)
|
adam@534
|
821 Reset red_herring.
|
adam@534
|
822 Definition red_herring := O.
|
adam@534
|
823 (* end hide *)
|
adam@378
|
824 Ltac refl' e :=
|
adam@378
|
825 match e with
|
adam@378
|
826 | ?E1 + ?E2 =>
|
adam@378
|
827 let r1 := refl' E1 in
|
adam@378
|
828 let r2 := refl' E2 in
|
adam@378
|
829 constr:(Plus r1 r2)
|
adam@378
|
830
|
adam@378
|
831 | fun x : nat => @?E1 x =>
|
adam@378
|
832 let r1 := refl' E1 in
|
adam@378
|
833 constr:(Abs r1)
|
adam@378
|
834
|
adam@378
|
835 | _ => constr:(Const e)
|
adam@378
|
836 end.
|
adam@378
|
837
|
adam@398
|
838 (** Now, in the abstraction case, we bind [E1] as a function from an [x] value to the value of the abstraction body. Unfortunately, our recursive call there is not destined for success. It will match the same abstraction pattern and trigger another recursive call, and so on through infinite recursion. One last refactoring yields a working procedure. The key idea is to consider every input to [refl'] as _a function over the values of variables introduced during recursion_. *)
|
adam@378
|
839
|
adam@378
|
840 Reset refl'.
|
adam@534
|
841 (* begin hide *)
|
adam@534
|
842 Reset red_herring.
|
adam@534
|
843 (* end hide *)
|
adam@378
|
844 Ltac refl' e :=
|
adam@378
|
845 match eval simpl in e with
|
adam@378
|
846 | fun x : ?T => @?E1 x + @?E2 x =>
|
adam@378
|
847 let r1 := refl' E1 in
|
adam@378
|
848 let r2 := refl' E2 in
|
adam@378
|
849 constr:(fun x => Plus (r1 x) (r2 x))
|
adam@378
|
850
|
adam@378
|
851 | fun (x : ?T) (y : nat) => @?E1 x y =>
|
adam@378
|
852 let r1 := refl' (fun p : T * nat => E1 (fst p) (snd p)) in
|
adam@534
|
853 constr:(fun u => Abs (fun v => r1 (u, v)))
|
adam@378
|
854
|
adam@378
|
855 | _ => constr:(fun x => Const (e x))
|
adam@378
|
856 end.
|
adam@378
|
857
|
adam@378
|
858 (** Note how now even the addition case works in terms of functions, with [@?X] patterns. The abstraction case introduces a new variable by extending the type used to represent the free variables. In particular, the argument to [refl'] used type [T] to represent all free variables. We extend the type to [T * nat] for the type representing free variable values within the abstraction body. A bit of bookkeeping with pairs and their projections produces an appropriate version of the abstraction body to pass in a recursive call. To ensure that all this repackaging of terms does not interfere with pattern matching, we add an extra [simpl] reduction on the function argument, in the first line of the body of [refl'].
|
adam@378
|
859
|
adam@378
|
860 Now one more tactic provides an example of how to apply reification. Let us consider goals that are equalities between terms that can be reified. We want to change such goals into equalities between appropriate calls to [termDenote]. *)
|
adam@378
|
861
|
adam@378
|
862 Ltac refl :=
|
adam@378
|
863 match goal with
|
adam@378
|
864 | [ |- ?E1 = ?E2 ] =>
|
adam@378
|
865 let E1' := refl' (fun _ : unit => E1) in
|
adam@378
|
866 let E2' := refl' (fun _ : unit => E2) in
|
adam@378
|
867 change (termDenote (E1' tt) = termDenote (E2' tt));
|
adam@378
|
868 cbv beta iota delta [fst snd]
|
adam@378
|
869 end.
|
adam@378
|
870
|
adam@378
|
871 Goal (fun (x y : nat) => x + y + 13) = (fun (_ z : nat) => z).
|
adam@378
|
872 refl.
|
adam@378
|
873 (** %\vspace{-.15in}%[[
|
adam@378
|
874 ============================
|
adam@378
|
875 termDenote
|
adam@378
|
876 (Abs
|
adam@378
|
877 (fun y : nat =>
|
adam@378
|
878 Abs (fun y0 : nat => Plus (Plus (Const y) (Const y0)) (Const 13)))) =
|
adam@378
|
879 termDenote (Abs (fun _ : nat => Abs (fun y0 : nat => Const y0)))
|
adam@378
|
880 ]]
|
adam@378
|
881 *)
|
adam@378
|
882
|
adam@378
|
883 Abort.
|
adam@378
|
884
|
adam@484
|
885 (** Our encoding here uses Coq functions to represent binding within the terms we reify, which makes it difficult to implement certain functions over reified terms. An alternative would be to represent variables with numbers. This can be done by writing a slightly smarter reification function that identifies variable references by detecting when term arguments are just compositions of [fst] and [snd]; from the order of the compositions we may read off the variable number. We leave the details as an exercise (though not a trivial one!) for the reader. *)
|