annotate src/Generic.v @ 428:b027b39606ed

Pass through Generic, to incorporate new coqdoc features
author Adam Chlipala <adam@chlipala.net>
date Thu, 26 Jul 2012 11:22:46 -0400
parents 7c2167c3fbb2
children 8077352044b2
rev   line source
adam@398 1 (* Copyright (c) 2008-2010, 2012, Adam Chlipala
adamc@193 2 *
adamc@193 3 * This work is licensed under a
adamc@193 4 * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
adamc@193 5 * Unported License.
adamc@193 6 * The license text is available at:
adamc@193 7 * http://creativecommons.org/licenses/by-nc-nd/3.0/
adamc@193 8 *)
adamc@193 9
adamc@193 10 (* begin hide *)
adamc@195 11 Require Import String List.
adamc@193 12
adam@314 13 Require Import CpdtTactics DepList.
adamc@193 14
adamc@193 15 Set Implicit Arguments.
adamc@193 16 (* end hide *)
adamc@193 17
adam@408 18 (** printing ~> $\leadsto$ *)
adam@408 19
adamc@193 20
adamc@219 21 (** %\chapter{Generic Programming}% *)
adamc@193 22
adam@408 23 (** %\index{generic programming}% _Generic programming_ makes it possible to write functions that operate over different types of data. %\index{parametric polymorphism}%Parametric polymorphism in ML and Haskell is one of the simplest examples. ML-style %\index{module systems}%module systems%~\cite{modules}% and Haskell %\index{type classes}%type classes%~\cite{typeclasses}% are more flexible cases. These language features are often not as powerful as we would like. For instance, while Haskell includes a type class classifying those types whose values can be pretty-printed, per-type pretty-printing is usually either implemented manually or implemented via a %\index{deriving clauses}%[deriving] clause%~\cite{deriving}%, which triggers ad-hoc code generation. Some clever encoding tricks have been used to achieve better within Haskell and other languages, but we can do%\index{datatype-generic programming}% _datatype-generic programming_ much more cleanly with dependent types. Thanks to the expressive power of CIC, we need no special language support.
adamc@193 24
adamc@219 25 Generic programming can often be very useful in Coq developments, so we devote this chapter to studying it. In a proof assistant, there is the new possibility of generic proofs about generic programs, which we also devote some space to. *)
adamc@193 26
adamc@195 27 (** * Reflecting Datatype Definitions *)
adamc@193 28
adam@408 29 (** The key to generic programming with dependent types is%\index{universe types}% _universe types_. This concept should not be confused with the idea of _universes_ from the metatheory of CIC and related languages. Rather, the idea of universe types is to define inductive types that provide _syntactic representations_ of Coq types. We cannot directly write CIC programs that do case analysis on types, but we _can_ case analyze on reflected syntactic versions of those types.
adamc@219 30
adam@358 31 Thus, to begin, we must define a syntactic representation of some class of datatypes. In this chapter, our running example will have to do with basic algebraic datatypes, of the kind found in ML and Haskell, but without additional bells and whistles like type parameters and mutually recursive definitions.
adamc@219 32
adamc@219 33 The first step is to define a representation for constructors of our datatypes. *)
adamc@219 34
adamc@198 35 (* EX: Define a reflected representation of simple algebraic datatypes. *)
adamc@198 36
adamc@198 37 (* begin thide *)
adamc@193 38 Record constructor : Type := Con {
adamc@193 39 nonrecursive : Type;
adamc@193 40 recursive : nat
adamc@193 41 }.
adamc@193 42
adam@286 43 (** The idea is that a constructor represented as [Con T n] has [n] arguments of the type that we are defining. Additionally, all of the other, non-recursive arguments can be encoded in the type [T]. When there are no non-recursive arguments, [T] can be [unit]. When there are two non-recursive arguments, of types [A] and [B], [T] can be [A * B]. We can generalize to any number of arguments via tupling.
adamc@219 44
adamc@219 45 With this definition, it as easy to define a datatype representation in terms of lists of constructors. *)
adamc@219 46
adamc@193 47 Definition datatype := list constructor.
adamc@193 48
adamc@219 49 (** Here are a few example encodings for some common types from the Coq standard library. While our syntax type does not support type parameters directly, we can implement them at the meta level, via functions from types to [datatype]s. *)
adamc@219 50
adamc@193 51 Definition Empty_set_dt : datatype := nil.
adamc@193 52 Definition unit_dt : datatype := Con unit 0 :: nil.
adamc@193 53 Definition bool_dt : datatype := Con unit 0 :: Con unit 0 :: nil.
adamc@193 54 Definition nat_dt : datatype := Con unit 0 :: Con unit 1 :: nil.
adamc@193 55 Definition list_dt (A : Type) : datatype := Con unit 0 :: Con A 1 :: nil.
adamc@219 56
adam@358 57 (** The type [Empty_set] has no constructors, so its representation is the empty list. The type [unit] has one constructor with no arguments, so its one reflected constructor indicates no non-recursive data and [0] recursive arguments. The representation for [bool] just duplicates this single argumentless constructor. We get from [bool] to [nat] by changing one of the constructors to indicate 1 recursive argument. We get from [nat] to [list] by adding a non-recursive argument of a parameter type [A].
adamc@219 58
adamc@219 59 As a further example, we can do the same encoding for a generic binary tree type. *)
adamc@219 60
adamc@198 61 (* end thide *)
adamc@193 62
adamc@193 63 Section tree.
adamc@193 64 Variable A : Type.
adamc@193 65
adamc@193 66 Inductive tree : Type :=
adamc@193 67 | Leaf : A -> tree
adamc@193 68 | Node : tree -> tree -> tree.
adamc@193 69 End tree.
adamc@193 70
adamc@198 71 (* begin thide *)
adamc@193 72 Definition tree_dt (A : Type) : datatype := Con A 0 :: Con unit 2 :: nil.
adamc@193 73
adam@398 74 (** Each datatype representation stands for a family of inductive types. For a specific real datatype and a reputed representation for it, it is useful to define a type of _evidence_ that the datatype is compatible with the encoding. *)
adamc@219 75
adamc@193 76 Section denote.
adamc@193 77 Variable T : Type.
adamc@219 78 (** This variable stands for the concrete datatype that we are interested in. *)
adamc@193 79
adamc@193 80 Definition constructorDenote (c : constructor) :=
adamc@193 81 nonrecursive c -> ilist T (recursive c) -> T.
adam@358 82 (** We write that a constructor is represented as a function returning a [T]. Such a function takes two arguments, which pack together the non-recursive and recursive arguments of the constructor. We represent a tuple of all recursive arguments using the length-indexed list type %\index{Gallina terms!ilist}%[ilist] that we met in Chapter 8. *)
adamc@193 83
adamc@193 84 Definition datatypeDenote := hlist constructorDenote.
adam@358 85 (** Finally, the evidence for type [T] is a %\index{Gallina terms!hlist}%heterogeneous list, including a constructor denotation for every constructor encoding in a datatype encoding. Recall that, since we are inside a section binding [T] as a variable, [constructorDenote] is automatically parameterized by [T]. *)
adamc@219 86
adamc@193 87 End denote.
adamc@198 88 (* end thide *)
adamc@193 89
adamc@219 90 (** Some example pieces of evidence should help clarify the convention. First, we define some helpful notations, providing different ways of writing constructor denotations. There is really just one notation, but we need several versions of it to cover different choices of which variables will be used in the body of a definition. %The ASCII \texttt{\textasciitilde{}>} from the notation will be rendered later as $\leadsto$.% *)
adamc@219 91
adamc@193 92 Notation "[ ! , ! ~> x ]" := ((fun _ _ => x) : constructorDenote _ (Con _ _)).
adamc@193 93 Notation "[ v , ! ~> x ]" := ((fun v _ => x) : constructorDenote _ (Con _ _)).
adamc@219 94 Notation "[ ! , r ~> x ]" := ((fun _ r => x) : constructorDenote _ (Con _ _)).
adamc@219 95 Notation "[ v , r ~> x ]" := ((fun v r => x) : constructorDenote _ (Con _ _)).
adamc@193 96
adamc@198 97 (* begin thide *)
adamc@193 98 Definition Empty_set_den : datatypeDenote Empty_set Empty_set_dt :=
adamc@216 99 HNil.
adamc@193 100 Definition unit_den : datatypeDenote unit unit_dt :=
adamc@216 101 [!, ! ~> tt] ::: HNil.
adamc@193 102 Definition bool_den : datatypeDenote bool bool_dt :=
adamc@216 103 [!, ! ~> true] ::: [!, ! ~> false] ::: HNil.
adamc@193 104 Definition nat_den : datatypeDenote nat nat_dt :=
adamc@219 105 [!, ! ~> O] ::: [!, r ~> S (hd r)] ::: HNil.
adamc@193 106 Definition list_den (A : Type) : datatypeDenote (list A) (list_dt A) :=
adamc@219 107 [!, ! ~> nil] ::: [x, r ~> x :: hd r] ::: HNil.
adamc@193 108 Definition tree_den (A : Type) : datatypeDenote (tree A) (tree_dt A) :=
adamc@219 109 [v, ! ~> Leaf v] ::: [!, r ~> Node (hd r) (hd (tl r))] ::: HNil.
adamc@198 110 (* end thide *)
adamc@194 111
adam@358 112 (** Recall that the [hd] and [tl] calls above operate on richly typed lists, where type indices tell us the lengths of lists, guaranteeing the safety of operations like [hd]. The type annotation attached to each definition provides enough information for Coq to infer list lengths at appropriate points. *)
adam@358 113
adamc@195 114
adamc@195 115 (** * Recursive Definitions *)
adamc@195 116
adamc@198 117 (* EX: Define a generic [size] function. *)
adamc@198 118
adam@408 119 (** We built these encodings of datatypes to help us write datatype-generic recursive functions. To do so, we will want a reflected representation of a%\index{recursion schemes}% _recursion scheme_ for each type, similar to the [T_rect] principle generated automatically for an inductive definition of [T]. A clever reuse of [datatypeDenote] yields a short definition. *)
adamc@219 120
adamc@198 121 (* begin thide *)
adamc@194 122 Definition fixDenote (T : Type) (dt : datatype) :=
adamc@194 123 forall (R : Type), datatypeDenote R dt -> (T -> R).
adamc@194 124
adamc@219 125 (** The idea of a recursion scheme is parameterized by a type and a reputed encoding of it. The principle itself is polymorphic in a type [R], which is the return type of the recursive function that we mean to write. The next argument is a hetergeneous list of one case of the recursive function definition for each datatype constructor. The [datatypeDenote] function turns out to have just the right definition to express the type we need; a set of function cases is just like an alternate set of constructors where we replace the original type [T] with the function result type [R]. Given such a reflected definition, a [fixDenote] invocation returns a function from [T] to [R], which is just what we wanted.
adamc@219 126
adamc@219 127 We are ready to write some example functions now. It will be useful to use one new function from the [DepList] library included in the book source. *)
adamc@219 128
adamc@219 129 Check hmake.
adamc@219 130 (** %\vspace{-.15in}% [[
adamc@219 131 hmake
adamc@219 132 : forall (A : Type) (B : A -> Type),
adam@358 133 (forall x : A, B x) -> forall ls : list A, hlist B ls
adamc@219 134 ]]
adamc@219 135
adam@358 136 The function [hmake] is a kind of [map] alternative that goes from a regular [list] to an [hlist]. We can use it to define a generic size function that counts the number of constructors used to build a value in a datatype. *)
adamc@219 137
adamc@194 138 Definition size T dt (fx : fixDenote T dt) : T -> nat :=
adamc@194 139 fx nat (hmake (B := constructorDenote nat) (fun _ _ r => foldr plus 1 r) dt).
adamc@194 140
adamc@219 141 (** Our definition is parameterized over a recursion scheme [fx]. We instantiate [fx] by passing it the function result type and a set of function cases, where we build the latter with [hmake]. The function argument to [hmake] takes three arguments: the representation of a constructor, its non-recursive arguments, and the results of recursive calls on all of its recursive arguments. We only need the recursive call results here, so we call them [r] and bind the other two inputs with wildcards. The actual case body is simple: we add together the recursive call results and increment the result by one (to account for the current constructor). This [foldr] function is an [hlist]-specific version defined in the [DepList] module.
adamc@219 142
adamc@219 143 It is instructive to build [fixDenote] values for our example types and see what specialized [size] functions result from them. *)
adamc@219 144
adamc@194 145 Definition Empty_set_fix : fixDenote Empty_set Empty_set_dt :=
adamc@194 146 fun R _ emp => match emp with end.
adamc@194 147 Eval compute in size Empty_set_fix.
adamc@219 148 (** %\vspace{-.15in}% [[
adamc@219 149 = fun emp : Empty_set => match emp return nat with
adamc@219 150 end
adamc@219 151 : Empty_set -> nat
adamc@219 152 ]]
adamc@219 153
adamc@219 154 Despite all the fanciness of the generic [size] function, CIC's standard computation rules suffice to normalize the generic function specialization to exactly what we would have written manually. *)
adamc@194 155
adamc@194 156 Definition unit_fix : fixDenote unit unit_dt :=
adamc@216 157 fun R cases _ => (hhd cases) tt INil.
adamc@194 158 Eval compute in size unit_fix.
adamc@219 159 (** %\vspace{-.15in}% [[
adamc@219 160 = fun _ : unit => 1
adamc@219 161 : unit -> nat
adamc@219 162 ]]
adamc@219 163
adamc@219 164 Again normalization gives us the natural function definition. We see this pattern repeated for our other example types. *)
adamc@194 165
adamc@194 166 Definition bool_fix : fixDenote bool bool_dt :=
adamc@194 167 fun R cases b => if b
adamc@216 168 then (hhd cases) tt INil
adamc@216 169 else (hhd (htl cases)) tt INil.
adamc@194 170 Eval compute in size bool_fix.
adamc@219 171 (** %\vspace{-.15in}% [[
adamc@219 172 = fun b : bool => if b then 1 else 1
adamc@219 173 : bool -> nat
adam@302 174 ]]
adam@302 175 *)
adamc@194 176
adamc@194 177 Definition nat_fix : fixDenote nat nat_dt :=
adamc@194 178 fun R cases => fix F (n : nat) : R :=
adamc@194 179 match n with
adamc@216 180 | O => (hhd cases) tt INil
adamc@216 181 | S n' => (hhd (htl cases)) tt (ICons (F n') INil)
adamc@194 182 end.
adamc@219 183
adamc@219 184 (** To peek at the [size] function for [nat], it is useful to avoid full computation, so that the recursive definition of addition is not expanded inline. We can accomplish this with proper flags for the [cbv] reduction strategy. *)
adamc@219 185
adamc@194 186 Eval cbv beta iota delta -[plus] in size nat_fix.
adamc@219 187 (** %\vspace{-.15in}% [[
adamc@219 188 = fix F (n : nat) : nat := match n with
adamc@219 189 | 0 => 1
adamc@219 190 | S n' => F n' + 1
adamc@219 191 end
adamc@219 192 : nat -> nat
adam@302 193 ]]
adam@302 194 *)
adamc@194 195
adamc@194 196 Definition list_fix (A : Type) : fixDenote (list A) (list_dt A) :=
adamc@194 197 fun R cases => fix F (ls : list A) : R :=
adamc@194 198 match ls with
adamc@216 199 | nil => (hhd cases) tt INil
adamc@216 200 | x :: ls' => (hhd (htl cases)) x (ICons (F ls') INil)
adamc@194 201 end.
adamc@194 202 Eval cbv beta iota delta -[plus] in fun A => size (@list_fix A).
adamc@219 203 (** %\vspace{-.15in}% [[
adamc@219 204 = fun A : Type =>
adamc@219 205 fix F (ls : list A) : nat :=
adamc@219 206 match ls with
adamc@219 207 | nil => 1
adamc@219 208 | _ :: ls' => F ls' + 1
adamc@219 209 end
adamc@219 210 : forall A : Type, list A -> nat
adam@302 211 ]]
adam@302 212 *)
adamc@194 213
adamc@194 214 Definition tree_fix (A : Type) : fixDenote (tree A) (tree_dt A) :=
adamc@194 215 fun R cases => fix F (t : tree A) : R :=
adamc@194 216 match t with
adamc@216 217 | Leaf x => (hhd cases) x INil
adamc@216 218 | Node t1 t2 => (hhd (htl cases)) tt (ICons (F t1) (ICons (F t2) INil))
adamc@194 219 end.
adamc@194 220 Eval cbv beta iota delta -[plus] in fun A => size (@tree_fix A).
adamc@219 221 (** %\vspace{-.15in}% [[
adamc@219 222 = fun A : Type =>
adamc@219 223 fix F (t : tree A) : nat :=
adamc@219 224 match t with
adamc@219 225 | Leaf _ => 1
adamc@219 226 | Node t1 t2 => F t1 + (F t2 + 1)
adamc@219 227 end
adamc@219 228 : forall A : Type, tree A -> n
adam@302 229 ]]
adam@302 230 *)
adamc@198 231 (* end thide *)
adamc@195 232
adamc@195 233
adamc@195 234 (** ** Pretty-Printing *)
adamc@195 235
adamc@219 236 (** It is also useful to do generic pretty-printing of datatype values, rendering them as human-readable strings. To do so, we will need a bit of metadata for each constructor. Specifically, we need the name to print for the constructor and the function to use to render its non-recursive arguments. Everything else can be done generically. *)
adamc@219 237
adamc@195 238 Record print_constructor (c : constructor) : Type := PI {
adamc@195 239 printName : string;
adamc@195 240 printNonrec : nonrecursive c -> string
adamc@195 241 }.
adamc@195 242
adamc@219 243 (** It is useful to define a shorthand for applying the constructor [PI]. By applying it explicitly to an unknown application of the constructor [Con], we help type inference work. *)
adamc@219 244
adamc@195 245 Notation "^" := (PI (Con _ _)).
adamc@195 246
adamc@219 247 (** As in earlier examples, we define the type of metadata for a datatype to be a heterogeneous list type collecting metadata for each constructor. *)
adamc@219 248
adamc@195 249 Definition print_datatype := hlist print_constructor.
adamc@195 250
adamc@219 251 (** We will be doing some string manipulation here, so we import the notations associated with strings. *)
adamc@219 252
adamc@219 253 Local Open Scope string_scope.
adamc@219 254
adamc@219 255 (** Now it is easy to implement our generic printer, using another function from [DepList.] *)
adamc@219 256
adamc@219 257 Check hmap.
adamc@219 258 (** %\vspace{-.15in}% [[
adamc@219 259 hmap
adamc@219 260 : forall (A : Type) (B1 B2 : A -> Type),
adamc@219 261 (forall x : A, B1 x -> B2 x) ->
adamc@219 262 forall ls : list A, hlist B1 ls -> hlist B2 ls
adam@302 263 ]]
adam@302 264 *)
adamc@195 265
adamc@195 266 Definition print T dt (pr : print_datatype dt) (fx : fixDenote T dt) : T -> string :=
adamc@195 267 fx string (hmap (B1 := print_constructor) (B2 := constructorDenote string)
adamc@195 268 (fun _ pc x r => printName pc ++ "(" ++ printNonrec pc x
adamc@195 269 ++ foldr (fun s acc => ", " ++ s ++ acc) ")" r) pr).
adamc@195 270
adamc@219 271 (** Some simple tests establish that [print] gets the job done. *)
adamc@219 272
adamc@216 273 Eval compute in print HNil Empty_set_fix.
adamc@219 274 (** %\vspace{-.15in}% [[
adamc@219 275 = fun emp : Empty_set => match emp return string with
adamc@219 276 end
adamc@219 277 : Empty_set -> string
adam@302 278 ]]
adam@302 279 *)
adamc@219 280
adamc@216 281 Eval compute in print (^ "tt" (fun _ => "") ::: HNil) unit_fix.
adamc@219 282 (** %\vspace{-.15in}% [[
adamc@219 283 = fun _ : unit => "tt()"
adamc@219 284 : unit -> string
adam@302 285 ]]
adam@302 286 *)
adamc@219 287
adamc@195 288 Eval compute in print (^ "true" (fun _ => "")
adamc@195 289 ::: ^ "false" (fun _ => "")
adamc@216 290 ::: HNil) bool_fix.
adamc@219 291 (** %\vspace{-.15in}% [[
adamc@219 292 = fun b : bool => if b then "true()" else "false()"
adamc@219 293 : bool -> s
adam@302 294 ]]
adam@302 295 *)
adamc@195 296
adamc@195 297 Definition print_nat := print (^ "O" (fun _ => "")
adamc@195 298 ::: ^ "S" (fun _ => "")
adamc@216 299 ::: HNil) nat_fix.
adamc@195 300 Eval cbv beta iota delta -[append] in print_nat.
adamc@219 301 (** %\vspace{-.15in}% [[
adamc@219 302 = fix F (n : nat) : string :=
adamc@219 303 match n with
adamc@219 304 | 0%nat => "O" ++ "(" ++ "" ++ ")"
adamc@219 305 | S n' => "S" ++ "(" ++ "" ++ ", " ++ F n' ++ ")"
adamc@219 306 end
adamc@219 307 : nat -> string
adam@302 308 ]]
adam@302 309 *)
adamc@219 310
adamc@195 311 Eval simpl in print_nat 0.
adamc@219 312 (** %\vspace{-.15in}% [[
adamc@219 313 = "O()"
adamc@219 314 : string
adam@302 315 ]]
adam@302 316 *)
adamc@219 317
adamc@195 318 Eval simpl in print_nat 1.
adamc@219 319 (** %\vspace{-.15in}% [[
adamc@219 320 = "S(, O())"
adamc@219 321 : string
adam@302 322 ]]
adam@302 323 *)
adamc@219 324
adamc@195 325 Eval simpl in print_nat 2.
adamc@219 326 (** %\vspace{-.15in}% [[
adamc@219 327 = "S(, S(, O()))"
adamc@219 328 : string
adam@302 329 ]]
adam@302 330 *)
adamc@195 331
adamc@195 332 Eval cbv beta iota delta -[append] in fun A (pr : A -> string) =>
adamc@195 333 print (^ "nil" (fun _ => "")
adamc@195 334 ::: ^ "cons" pr
adamc@216 335 ::: HNil) (@list_fix A).
adamc@219 336 (** %\vspace{-.15in}% [[
adamc@219 337 = fun (A : Type) (pr : A -> string) =>
adamc@219 338 fix F (ls : list A) : string :=
adamc@219 339 match ls with
adamc@219 340 | nil => "nil" ++ "(" ++ "" ++ ")"
adamc@219 341 | x :: ls' => "cons" ++ "(" ++ pr x ++ ", " ++ F ls' ++ ")"
adamc@219 342 end
adamc@219 343 : forall A : Type, (A -> string) -> list A -> string
adam@302 344 ]]
adam@302 345 *)
adamc@219 346
adamc@195 347 Eval cbv beta iota delta -[append] in fun A (pr : A -> string) =>
adamc@195 348 print (^ "Leaf" pr
adamc@195 349 ::: ^ "Node" (fun _ => "")
adamc@216 350 ::: HNil) (@tree_fix A).
adamc@219 351 (** %\vspace{-.15in}% [[
adamc@219 352 = fun (A : Type) (pr : A -> string) =>
adamc@219 353 fix F (t : tree A) : string :=
adamc@219 354 match t with
adamc@219 355 | Leaf x => "Leaf" ++ "(" ++ pr x ++ ")"
adamc@219 356 | Node t1 t2 =>
adamc@219 357 "Node" ++ "(" ++ "" ++ ", " ++ F t1 ++ ", " ++ F t2 ++ ")"
adamc@219 358 end
adamc@219 359 : forall A : Type, (A -> string) -> tree A -> string
adam@302 360 ]]
adam@302 361 *)
adamc@196 362
adam@428 363 (* begin hide *)
adam@428 364 Definition append' := append.
adam@428 365 (* end hide *)
adam@428 366
adam@358 367 (** Some of these simplified terms seem overly complex because we have turned off simplification of calls to [append], which is what uses of the [++] operator desugar to. Selective [++] simplification would combine adjacent string literals, yielding more or less the code we would write manually to implement this printing scheme. *)
adam@358 368
adamc@196 369
adamc@196 370 (** ** Mapping *)
adamc@196 371
adamc@219 372 (** By this point, we have developed enough machinery that it is old hat to define a generic function similar to the list [map] function. *)
adamc@219 373
adamc@219 374 Definition map T dt (dd : datatypeDenote T dt) (fx : fixDenote T dt) (f : T -> T)
adamc@219 375 : T -> T :=
adamc@196 376 fx T (hmap (B1 := constructorDenote T) (B2 := constructorDenote T)
adamc@196 377 (fun _ c x r => f (c x r)) dd).
adamc@196 378
adamc@196 379 Eval compute in map Empty_set_den Empty_set_fix.
adamc@219 380 (** %\vspace{-.15in}% [[
adamc@219 381 = fun (_ : Empty_set -> Empty_set) (emp : Empty_set) =>
adamc@219 382 match emp return Empty_set with
adamc@219 383 end
adamc@219 384 : (Empty_set -> Empty_set) -> Empty_set -> Empty_set
adam@302 385 ]]
adam@302 386 *)
adamc@219 387
adamc@196 388 Eval compute in map unit_den unit_fix.
adamc@219 389 (** %\vspace{-.15in}% [[
adamc@219 390 = fun (f : unit -> unit) (_ : unit) => f tt
adamc@219 391 : (unit -> unit) -> unit -> unit
adam@302 392 ]]
adam@302 393 *)
adamc@219 394
adamc@196 395 Eval compute in map bool_den bool_fix.
adamc@219 396 (** %\vspace{-.15in}% [[
adamc@219 397 = fun (f : bool -> bool) (b : bool) => if b then f true else f false
adamc@219 398 : (bool -> bool) -> bool -> bool
adam@302 399 ]]
adam@302 400 *)
adamc@219 401
adamc@196 402 Eval compute in map nat_den nat_fix.
adamc@219 403 (** %\vspace{-.15in}% [[
adamc@219 404 = fun f : nat -> nat =>
adamc@219 405 fix F (n : nat) : nat :=
adamc@219 406 match n with
adamc@219 407 | 0%nat => f 0%nat
adamc@219 408 | S n' => f (S (F n'))
adamc@219 409 end
adamc@219 410 : (nat -> nat) -> nat -> nat
adam@302 411 ]]
adam@302 412 *)
adamc@219 413
adamc@196 414 Eval compute in fun A => map (list_den A) (@list_fix A).
adamc@219 415 (** %\vspace{-.15in}% [[
adamc@219 416 = fun (A : Type) (f : list A -> list A) =>
adamc@219 417 fix F (ls : list A) : list A :=
adamc@219 418 match ls with
adamc@219 419 | nil => f nil
adamc@219 420 | x :: ls' => f (x :: F ls')
adamc@219 421 end
adamc@219 422 : forall A : Type, (list A -> list A) -> list A -> list A
adam@302 423 ]]
adam@302 424 *)
adamc@219 425
adamc@196 426 Eval compute in fun A => map (tree_den A) (@tree_fix A).
adamc@219 427 (** %\vspace{-.15in}% [[
adamc@219 428 = fun (A : Type) (f : tree A -> tree A) =>
adamc@219 429 fix F (t : tree A) : tree A :=
adamc@219 430 match t with
adamc@219 431 | Leaf x => f (Leaf x)
adamc@219 432 | Node t1 t2 => f (Node (F t1) (F t2))
adamc@219 433 end
adamc@219 434 : forall A : Type, (tree A -> tree A) -> tree A -> tree A
adam@302 435 ]]
adam@302 436 *)
adamc@196 437
adam@358 438 (** These [map] functions are just as easy to use as those we write by hand. Can you figure out the input-output pattern that [map_nat S] displays in these examples? *)
adam@358 439
adamc@196 440 Definition map_nat := map nat_den nat_fix.
adamc@196 441 Eval simpl in map_nat S 0.
adamc@219 442 (** %\vspace{-.15in}% [[
adamc@219 443 = 1%nat
adamc@219 444 : nat
adam@302 445 ]]
adam@302 446 *)
adamc@219 447
adamc@196 448 Eval simpl in map_nat S 1.
adamc@219 449 (** %\vspace{-.15in}% [[
adamc@219 450 = 3%nat
adamc@219 451 : nat
adam@302 452 ]]
adam@302 453 *)
adamc@219 454
adamc@196 455 Eval simpl in map_nat S 2.
adamc@219 456 (** %\vspace{-.15in}% [[
adamc@219 457 = 5%nat
adamc@219 458 : nat
adam@302 459 ]]
adam@302 460 *)
adamc@196 461
adam@358 462 (** We get [map_nat S n] = [2 * n + 1], because the mapping process adds an extra [S] at every level of the inductive tree that defines a natural, including at the last level, the [O] constructor. *)
adam@358 463
adamc@196 464
adamc@196 465 (** * Proving Theorems about Recursive Definitions *)
adamc@196 466
adamc@219 467 (** We would like to be able to prove theorems about our generic functions. To do so, we need to establish additional well-formedness properties that must hold of pieces of evidence. *)
adamc@219 468
adamc@196 469 Section ok.
adamc@196 470 Variable T : Type.
adamc@196 471 Variable dt : datatype.
adamc@196 472
adamc@196 473 Variable dd : datatypeDenote T dt.
adamc@196 474 Variable fx : fixDenote T dt.
adamc@196 475
adamc@219 476 (** First, we characterize when a piece of evidence about a datatype is acceptable. The basic idea is that the type [T] should really be an inductive type with the definition given by [dd]. Semantically, inductive types are characterized by the ability to do induction on them. Therefore, we require that the usual induction principle is true, with respect to the constructors given in the encoding [dd]. *)
adamc@219 477
adamc@196 478 Definition datatypeDenoteOk :=
adamc@196 479 forall P : T -> Prop,
adamc@196 480 (forall c (m : member c dt) (x : nonrecursive c) (r : ilist T (recursive c)),
adamc@215 481 (forall i : fin (recursive c), P (get r i))
adamc@196 482 -> P ((hget dd m) x r))
adamc@196 483 -> forall v, P v.
adamc@196 484
adam@408 485 (** This definition can take a while to digest. The quantifier over [m : member c dt] is considering each constructor in turn; like in normal induction principles, each constructor has an associated proof case. The expression [hget dd m] then names the constructor we have selected. After binding [m], we quantify over all possible arguments (encoded with [x] and [r]) to the constructor that [m] selects. Within each specific case, we quantify further over [i : fin (recursive c)] to consider all of our induction hypotheses, one for each recursive argument of the current constructor.
adamc@219 486
adamc@219 487 We have completed half the burden of defining side conditions. The other half comes in characterizing when a recursion scheme [fx] is valid. The natural condition is that [fx] behaves appropriately when applied to any constructor application. *)
adamc@219 488
adamc@196 489 Definition fixDenoteOk :=
adamc@196 490 forall (R : Type) (cases : datatypeDenote R dt)
adamc@196 491 c (m : member c dt)
adamc@196 492 (x : nonrecursive c) (r : ilist T (recursive c)),
adamc@216 493 fx cases ((hget dd m) x r)
adamc@216 494 = (hget cases m) x (imap (fx cases) r).
adamc@219 495
adamc@219 496 (** As for [datatypeDenoteOk], we consider all constructors and all possible arguments to them by quantifying over [m], [x], and [r]. The lefthand side of the equality that follows shows a call to the recursive function on the specific constructor application that we selected. The righthand side shows an application of the function case associated with constructor [m], applied to the non-recursive arguments and to appropriate recursive calls on the recursive arguments. *)
adamc@219 497
adamc@196 498 End ok.
adamc@196 499
adamc@219 500 (** We are now ready to prove that the [size] function we defined earlier always returns positive results. First, we establish a simple lemma. *)
adamc@196 501
adam@359 502 (* begin thide *)
adamc@196 503 Lemma foldr_plus : forall n (ils : ilist nat n),
adamc@196 504 foldr plus 1 ils > 0.
adamc@216 505 induction ils; crush.
adamc@196 506 Qed.
adamc@198 507 (* end thide *)
adamc@196 508
adamc@197 509 Theorem size_positive : forall T dt
adamc@197 510 (dd : datatypeDenote T dt) (fx : fixDenote T dt)
adamc@197 511 (dok : datatypeDenoteOk dd) (fok : fixDenoteOk dd fx)
adamc@196 512 (v : T),
adamc@196 513 size fx v > 0.
adamc@198 514 (* begin thide *)
adamc@219 515 unfold size; intros.
adamc@219 516 (** [[
adamc@219 517 ============================
adamc@219 518 fx nat
adamc@219 519 (hmake
adamc@219 520 (fun (x : constructor) (_ : nonrecursive x)
adamc@219 521 (r : ilist nat (recursive x)) => foldr plus 1%nat r) dt) v > 0
adamc@219 522 ]]
adamc@219 523
adamc@219 524 Our goal is an inequality over a particular call to [size], with its definition expanded. How can we proceed here? We cannot use [induction] directly, because there is no way for Coq to know that [T] is an inductive type. Instead, we need to use the induction principle encoded in our hypothesis [dok] of type [datatypeDenoteOk dd]. Let us try applying it directly.
adamc@219 525 [[
adamc@219 526 apply dok.
adam@358 527 ]]
adam@358 528 %\vspace{-.3in}%
adam@358 529 <<
adamc@219 530 Error: Impossible to unify "datatypeDenoteOk dd" with
adamc@219 531 "fx nat
adamc@219 532 (hmake
adamc@219 533 (fun (x : constructor) (_ : nonrecursive x)
adamc@219 534 (r : ilist nat (recursive x)) => foldr plus 1%nat r) dt) v > 0".
adam@358 535 >>
adamc@219 536
adam@360 537 Matching the type of [dok] with the type of our conclusion requires more than simple first-order unification, so [apply] is not up to the challenge. We can use the %\index{tactics!pattern}%[pattern] tactic to get our goal into a form that makes it apparent exactly what the induction hypothesis is. *)
adamc@219 538
adamc@219 539 pattern v.
adam@358 540 (** %\vspace{-.15in}%[[
adamc@219 541 ============================
adamc@219 542 (fun t : T =>
adamc@219 543 fx nat
adamc@219 544 (hmake
adamc@219 545 (fun (x : constructor) (_ : nonrecursive x)
adamc@219 546 (r : ilist nat (recursive x)) => foldr plus 1%nat r) dt) t > 0) v
adam@302 547 ]]
adam@302 548 *)
adamc@219 549
adamc@219 550 apply dok; crush.
adam@358 551 (** %\vspace{-.15in}%[[
adamc@219 552 H : forall i : fin (recursive c),
adamc@219 553 fx nat
adamc@219 554 (hmake
adamc@219 555 (fun (x : constructor) (_ : nonrecursive x)
adamc@219 556 (r : ilist nat (recursive x)) => foldr plus 1%nat r) dt)
adamc@219 557 (get r i) > 0
adamc@219 558 ============================
adamc@219 559 hget
adamc@219 560 (hmake
adamc@219 561 (fun (x0 : constructor) (_ : nonrecursive x0)
adamc@219 562 (r0 : ilist nat (recursive x0)) => foldr plus 1%nat r0) dt) m x
adamc@219 563 (imap
adamc@219 564 (fx nat
adamc@219 565 (hmake
adamc@219 566 (fun (x0 : constructor) (_ : nonrecursive x0)
adamc@219 567 (r0 : ilist nat (recursive x0)) =>
adamc@219 568 foldr plus 1%nat r0) dt)) r) > 0
adamc@219 569 ]]
adamc@219 570
adamc@219 571 An induction hypothesis [H] is generated, but we turn out not to need it for this example. We can simplify the goal using a library theorem about the composition of [hget] and [hmake]. *)
adamc@219 572
adamc@219 573 rewrite hget_hmake.
adam@358 574 (** %\vspace{-.15in}%[[
adamc@219 575 ============================
adamc@219 576 foldr plus 1%nat
adamc@219 577 (imap
adamc@219 578 (fx nat
adamc@219 579 (hmake
adamc@219 580 (fun (x0 : constructor) (_ : nonrecursive x0)
adamc@219 581 (r0 : ilist nat (recursive x0)) =>
adamc@219 582 foldr plus 1%nat r0) dt)) r) > 0
adamc@219 583 ]]
adamc@219 584
adamc@219 585 The lemma we proved earlier finishes the proof. *)
adamc@219 586
adamc@219 587 apply foldr_plus.
adamc@219 588
adamc@219 589 (** Using hints, we can redo this proof in a nice automated form. *)
adamc@219 590
adamc@219 591 Restart.
adamc@219 592
adam@375 593 Hint Rewrite hget_hmake.
adamc@196 594 Hint Resolve foldr_plus.
adamc@196 595
adamc@197 596 unfold size; intros; pattern v; apply dok; crush.
adamc@196 597 Qed.
adamc@198 598 (* end thide *)
adamc@197 599
adamc@219 600 (** It turned out that, in this example, we only needed to use induction degenerately as case analysis. A more involved theorem may only be proved using induction hypotheses. We will give its proof only in unautomated form and leave effective automation as an exercise for the motivated reader.
adamc@219 601
adamc@219 602 In particular, it ought to be the case that generic [map] applied to an identity function is itself an identity function. *)
adamc@219 603
adamc@197 604 Theorem map_id : forall T dt
adamc@197 605 (dd : datatypeDenote T dt) (fx : fixDenote T dt)
adamc@197 606 (dok : datatypeDenoteOk dd) (fok : fixDenoteOk dd fx)
adamc@197 607 (v : T),
adamc@197 608 map dd fx (fun x => x) v = v.
adamc@198 609 (* begin thide *)
adamc@219 610 (** Let us begin as we did in the last theorem, after adding another useful library equality as a hint. *)
adamc@219 611
adam@375 612 Hint Rewrite hget_hmap.
adamc@197 613
adamc@197 614 unfold map; intros; pattern v; apply dok; crush.
adam@358 615 (** %\vspace{-.15in}%[[
adamc@219 616 H : forall i : fin (recursive c),
adamc@219 617 fx T
adamc@219 618 (hmap
adamc@219 619 (fun (x : constructor) (c : constructorDenote T x)
adamc@219 620 (x0 : nonrecursive x) (r : ilist T (recursive x)) =>
adamc@219 621 c x0 r) dd) (get r i) = get r i
adamc@219 622 ============================
adamc@219 623 hget dd m x
adamc@219 624 (imap
adamc@219 625 (fx T
adamc@219 626 (hmap
adamc@219 627 (fun (x0 : constructor) (c0 : constructorDenote T x0)
adamc@219 628 (x1 : nonrecursive x0) (r0 : ilist T (recursive x0)) =>
adamc@219 629 c0 x1 r0) dd)) r) = hget dd m x r
adamc@219 630 ]]
adamc@197 631
adamc@219 632 Our goal is an equality whose two sides begin with the same function call and initial arguments. We believe that the remaining arguments are in fact equal as well, and the [f_equal] tactic applies this reasoning step for us formally. *)
adamc@219 633
adamc@197 634 f_equal.
adam@358 635 (** %\vspace{-.15in}%[[
adamc@219 636 ============================
adamc@219 637 imap
adamc@219 638 (fx T
adamc@219 639 (hmap
adamc@219 640 (fun (x0 : constructor) (c0 : constructorDenote T x0)
adamc@219 641 (x1 : nonrecursive x0) (r0 : ilist T (recursive x0)) =>
adamc@219 642 c0 x1 r0) dd)) r = r
adamc@219 643 ]]
adamc@219 644
adamc@219 645 At this point, it is helpful to proceed by an inner induction on the heterogeneous list [r] of recursive call results. We could arrive at a cleaner proof by breaking this step out into an explicit lemma, but here we will do the induction inline to save space.*)
adamc@219 646
adamc@219 647 induction r; crush.
adamc@219 648
adam@428 649 (* begin hide *)
adam@428 650 Definition pred' := pred.
adam@428 651 (* end hide *)
adam@428 652
adamc@219 653 (** The base case is discharged automatically, and the inductive case looks like this, where [H] is the outer IH (for induction over [T] values) and [IHn] is the inner IH (for induction over the recursive arguments).
adamc@219 654 [[
adamc@219 655 H : forall i : fin (S n),
adamc@219 656 fx T
adamc@219 657 (hmap
adamc@219 658 (fun (x : constructor) (c : constructorDenote T x)
adamc@219 659 (x0 : nonrecursive x) (r : ilist T (recursive x)) =>
adamc@219 660 c x0 r) dd)
adamc@219 661 (match i in (fin n') return ((fin (pred n') -> T) -> T) with
adamc@219 662 | First n => fun _ : fin n -> T => a
adamc@219 663 | Next n idx' => fun get_ls' : fin n -> T => get_ls' idx'
adamc@219 664 end (get r)) =
adamc@219 665 match i in (fin n') return ((fin (pred n') -> T) -> T) with
adamc@219 666 | First n => fun _ : fin n -> T => a
adamc@219 667 | Next n idx' => fun get_ls' : fin n -> T => get_ls' idx'
adamc@219 668 end (get r)
adamc@219 669 IHr : (forall i : fin n,
adamc@219 670 fx T
adamc@219 671 (hmap
adamc@219 672 (fun (x : constructor) (c : constructorDenote T x)
adamc@219 673 (x0 : nonrecursive x) (r : ilist T (recursive x)) =>
adamc@219 674 c x0 r) dd) (get r i) = get r i) ->
adamc@219 675 imap
adamc@219 676 (fx T
adamc@219 677 (hmap
adamc@219 678 (fun (x : constructor) (c : constructorDenote T x)
adamc@219 679 (x0 : nonrecursive x) (r : ilist T (recursive x)) =>
adamc@219 680 c x0 r) dd)) r = r
adamc@219 681 ============================
adamc@219 682 ICons
adamc@219 683 (fx T
adamc@219 684 (hmap
adamc@219 685 (fun (x0 : constructor) (c0 : constructorDenote T x0)
adamc@219 686 (x1 : nonrecursive x0) (r0 : ilist T (recursive x0)) =>
adamc@219 687 c0 x1 r0) dd) a)
adamc@219 688 (imap
adamc@219 689 (fx T
adamc@219 690 (hmap
adamc@219 691 (fun (x0 : constructor) (c0 : constructorDenote T x0)
adamc@219 692 (x1 : nonrecursive x0) (r0 : ilist T (recursive x0)) =>
adamc@219 693 c0 x1 r0) dd)) r) = ICons a r
adamc@219 694 ]]
adamc@219 695
adamc@219 696 We see another opportunity to apply [f_equal], this time to split our goal into two different equalities over corresponding arguments. After that, the form of the first goal matches our outer induction hypothesis [H], when we give type inference some help by specifying the right quantifier instantiation. *)
adamc@219 697
adamc@219 698 f_equal.
adamc@219 699 apply (H First).
adam@358 700 (** %\vspace{-.15in}%[[
adamc@219 701 ============================
adamc@219 702 imap
adamc@219 703 (fx T
adamc@219 704 (hmap
adamc@219 705 (fun (x0 : constructor) (c0 : constructorDenote T x0)
adamc@219 706 (x1 : nonrecursive x0) (r0 : ilist T (recursive x0)) =>
adamc@219 707 c0 x1 r0) dd)) r = r
adamc@219 708 ]]
adamc@219 709
adamc@219 710 Now the goal matches the inner IH [IHr]. *)
adamc@219 711
adamc@219 712 apply IHr; crush.
adam@358 713 (** %\vspace{-.15in}%[[
adamc@219 714 i : fin n
adamc@219 715 ============================
adamc@219 716 fx T
adamc@219 717 (hmap
adamc@219 718 (fun (x0 : constructor) (c0 : constructorDenote T x0)
adamc@219 719 (x1 : nonrecursive x0) (r0 : ilist T (recursive x0)) =>
adamc@219 720 c0 x1 r0) dd) (get r i) = get r i
adamc@219 721 ]]
adamc@219 722
adamc@219 723 We can finish the proof by applying the outer IH again, specialized to a different [fin] value. *)
adamc@219 724
adamc@216 725 apply (H (Next i)).
adamc@197 726 Qed.
adamc@198 727 (* end thide *)
adam@358 728
adam@358 729 (** The proof involves complex subgoals, but, still, few steps are required, and then we may reuse our work across a variety of datatypes. *)