adam@283
|
1 (* Copyright (c) 2008-2010, Adam Chlipala
|
adamc@83
|
2 *
|
adamc@83
|
3 * This work is licensed under a
|
adamc@83
|
4 * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
|
adamc@83
|
5 * Unported License.
|
adamc@83
|
6 * The license text is available at:
|
adamc@83
|
7 * http://creativecommons.org/licenses/by-nc-nd/3.0/
|
adamc@83
|
8 *)
|
adamc@83
|
9
|
adamc@83
|
10 (* begin hide *)
|
adamc@85
|
11 Require Import Arith Bool List.
|
adamc@83
|
12
|
adamc@86
|
13 Require Import Tactics MoreSpecif.
|
adamc@83
|
14
|
adamc@83
|
15 Set Implicit Arguments.
|
adamc@83
|
16 (* end hide *)
|
adamc@83
|
17
|
adamc@83
|
18
|
adamc@83
|
19 (** %\chapter{More Dependent Types}% *)
|
adamc@83
|
20
|
adam@292
|
21 (** Subset types and their relatives help us integrate verification with programming. Though they reorganize the certified programmer's workflow, they tend not to have deep effects on proofs. We write largely the same proofs as we would for classical verification, with some of the structure moved into the programs themselves. It turns out that, when we use dependent types to their full potential, we warp the development and proving process even more than that, picking up %``%#"#free theorems#"#%''% to the extent that often a certified program is hardly more complex than its uncertified counterpart in Haskell or ML.
|
adamc@83
|
22
|
adamc@83
|
23 In particular, we have only scratched the tip of the iceberg that is Coq's inductive definition mechanism. The inductive types we have seen so far have their counterparts in the other proof assistants that we surveyed in Chapter 1. This chapter explores the strange new world of dependent inductive datatypes (that is, dependent inductive types outside [Prop]), a possibility which sets Coq apart from all of the competition not based on type theory. *)
|
adamc@83
|
24
|
adamc@84
|
25
|
adamc@84
|
26 (** * Length-Indexed Lists *)
|
adamc@84
|
27
|
adamc@84
|
28 (** Many introductions to dependent types start out by showing how to use them to eliminate array bounds checks. When the type of an array tells you how many elements it has, your compiler can detect out-of-bounds dereferences statically. Since we are working in a pure functional language, the next best thing is length-indexed lists, which the following code defines. *)
|
adamc@84
|
29
|
adamc@84
|
30 Section ilist.
|
adamc@84
|
31 Variable A : Set.
|
adamc@84
|
32
|
adamc@84
|
33 Inductive ilist : nat -> Set :=
|
adamc@84
|
34 | Nil : ilist O
|
adamc@84
|
35 | Cons : forall n, A -> ilist n -> ilist (S n).
|
adamc@84
|
36
|
adamc@84
|
37 (** We see that, within its section, [ilist] is given type [nat -> Set]. Previously, every inductive type we have seen has either had plain [Set] as its type or has been a predicate with some type ending in [Prop]. The full generality of inductive definitions lets us integrate the expressivity of predicates directly into our normal programming.
|
adamc@84
|
38
|
adamc@84
|
39 The [nat] argument to [ilist] tells us the length of the list. The types of [ilist]'s constructors tell us that a [Nil] list has length [O] and that a [Cons] list has length one greater than the length of its sublist. We may apply [ilist] to any natural number, even natural numbers that are only known at runtime. It is this breaking of the %\textit{%#<i>#phase distinction#</i>#%}% that characterizes [ilist] as %\textit{%#<i>#dependently typed#</i>#%}%.
|
adamc@84
|
40
|
adamc@213
|
41 In expositions of list types, we usually see the length function defined first, but here that would not be a very productive function to code. Instead, let us implement list concatenation. *)
|
adamc@84
|
42
|
adamc@213
|
43 Fixpoint app n1 (ls1 : ilist n1) n2 (ls2 : ilist n2) : ilist (n1 + n2) :=
|
adamc@213
|
44 match ls1 with
|
adamc@213
|
45 | Nil => ls2
|
adamc@213
|
46 | Cons _ x ls1' => Cons x (app ls1' ls2)
|
adamc@213
|
47 end.
|
adamc@84
|
48
|
adamc@213
|
49 (** In Coq version 8.1 and earlier, this definition leads to an error message:
|
adamc@84
|
50
|
adamc@84
|
51 [[
|
adamc@84
|
52 The term "ls2" has type "ilist n2" while it is expected to have type
|
adamc@84
|
53 "ilist (?14 + n2)"
|
adamc@213
|
54
|
adamc@84
|
55 ]]
|
adamc@84
|
56
|
adamc@213
|
57 In Coq's core language, without explicit annotations, Coq does not enrich our typing assumptions in the branches of a [match] expression. It is clear that the unification variable [?14] should be resolved to 0 in this context, so that we have [0 + n2] reducing to [n2], but Coq does not realize that. We cannot fix the problem using just the simple [return] clauses we applied in the last chapter. We need to combine a [return] clause with a new kind of annotation, an [in] clause. This is exactly what the inference heuristics do in Coq 8.2 and later.
|
adamc@213
|
58
|
adamc@213
|
59 Specifically, Coq infers the following definition from the simpler one. *)
|
adamc@84
|
60
|
adamc@100
|
61 (* EX: Implement concatenation *)
|
adamc@100
|
62
|
adamc@100
|
63 (* begin thide *)
|
adamc@213
|
64 Fixpoint app' n1 (ls1 : ilist n1) n2 (ls2 : ilist n2) : ilist (n1 + n2) :=
|
adamc@84
|
65 match ls1 in (ilist n1) return (ilist (n1 + n2)) with
|
adamc@84
|
66 | Nil => ls2
|
adamc@213
|
67 | Cons _ x ls1' => Cons x (app' ls1' ls2)
|
adamc@84
|
68 end.
|
adamc@100
|
69 (* end thide *)
|
adamc@84
|
70
|
adamc@213
|
71 (** Using [return] alone allowed us to express a dependency of the [match] result type on the %\textit{%#<i>#value#</i>#%}% of the discriminee. What [in] adds to our arsenal is a way of expressing a dependency on the %\textit{%#<i>#type#</i>#%}% of the discriminee. Specifically, the [n1] in the [in] clause above is a %\textit{%#<i>#binding occurrence#</i>#%}% whose scope is the [return] clause.
|
adamc@84
|
72
|
adamc@84
|
73 We may use [in] clauses only to bind names for the arguments of an inductive type family. That is, each [in] clause must be an inductive type family name applied to a sequence of underscores and variable names of the proper length. The positions for %\textit{%#<i>#parameters#</i>#%}% to the type family must all be underscores. Parameters are those arguments declared with section variables or with entries to the left of the first colon in an inductive definition. They cannot vary depending on which constructor was used to build the discriminee, so Coq prohibits pointless matches on them. It is those arguments defined in the type to the right of the colon that we may name with [in] clauses.
|
adamc@84
|
74
|
adam@283
|
75 Our [app] function could be typed in so-called %\textit{%#<i>#stratified#</i>#%}% type systems, which avoid true dependency. That is, we could consider the length indices to lists to live in a separate, compile-time-only universe from the lists themselves. This stratification between a compile-time universe and a run-time universe, with no references to the latter in the former, gives rise to the terminology %``%#"#stratified.#"#%''% Our next example would be harder to implement in a stratified system. We write an injection function from regular lists to length-indexed lists. A stratified implementation would need to duplicate the definition of lists across compile-time and run-time versions, and the run-time versions would need to be indexed by the compile-time versions. *)
|
adamc@84
|
76
|
adamc@100
|
77 (* EX: Implement injection from normal lists *)
|
adamc@100
|
78
|
adamc@100
|
79 (* begin thide *)
|
adamc@84
|
80 Fixpoint inject (ls : list A) : ilist (length ls) :=
|
adamc@213
|
81 match ls with
|
adamc@84
|
82 | nil => Nil
|
adamc@84
|
83 | h :: t => Cons h (inject t)
|
adamc@84
|
84 end.
|
adamc@84
|
85
|
adamc@84
|
86 (** We can define an inverse conversion and prove that it really is an inverse. *)
|
adamc@84
|
87
|
adamc@213
|
88 Fixpoint unject n (ls : ilist n) : list A :=
|
adamc@84
|
89 match ls with
|
adamc@84
|
90 | Nil => nil
|
adamc@84
|
91 | Cons _ h t => h :: unject t
|
adamc@84
|
92 end.
|
adamc@84
|
93
|
adamc@84
|
94 Theorem inject_inverse : forall ls, unject (inject ls) = ls.
|
adamc@84
|
95 induction ls; crush.
|
adamc@84
|
96 Qed.
|
adamc@100
|
97 (* end thide *)
|
adamc@100
|
98
|
adamc@100
|
99 (* EX: Implement statically-checked "car"/"hd" *)
|
adamc@84
|
100
|
adam@283
|
101 (** Now let us attempt a function that is surprisingly tricky to write. In ML, the list head function raises an exception when passed an empty list. With length-indexed lists, we can rule out such invalid calls statically, and here is a first attempt at doing so. We write [???] as a placeholder for a term that we do not know how to write, not for any real Coq notation like those introduced in the previous chapter.
|
adamc@84
|
102
|
adamc@84
|
103 [[
|
adamc@84
|
104 Definition hd n (ls : ilist (S n)) : A :=
|
adamc@84
|
105 match ls with
|
adamc@84
|
106 | Nil => ???
|
adamc@84
|
107 | Cons _ h _ => h
|
adamc@84
|
108 end.
|
adamc@213
|
109
|
adamc@213
|
110 ]]
|
adamc@84
|
111
|
adamc@84
|
112 It is not clear what to write for the [Nil] case, so we are stuck before we even turn our function over to the type checker. We could try omitting the [Nil] case:
|
adamc@84
|
113
|
adamc@84
|
114 [[
|
adamc@84
|
115 Definition hd n (ls : ilist (S n)) : A :=
|
adamc@84
|
116 match ls with
|
adamc@84
|
117 | Cons _ h _ => h
|
adamc@84
|
118 end.
|
adamc@84
|
119
|
adamc@84
|
120 Error: Non exhaustive pattern-matching: no clause found for pattern Nil
|
adamc@213
|
121
|
adamc@84
|
122 ]]
|
adamc@84
|
123
|
adam@275
|
124 Unlike in ML, we cannot use inexhaustive pattern matching, because there is no conception of a %\texttt{%#<tt>#Match#</tt>#%}% exception to be thrown. In fact, recent versions of Coq %\textit{%#<i>#do#</i>#%}% allow this, by implicit translation to a [match] that considers all constructors. It is educational to discover that encoding ourselves directly. We might try using an [in] clause somehow.
|
adamc@84
|
125
|
adamc@84
|
126 [[
|
adamc@84
|
127 Definition hd n (ls : ilist (S n)) : A :=
|
adamc@84
|
128 match ls in (ilist (S n)) with
|
adamc@84
|
129 | Cons _ h _ => h
|
adamc@84
|
130 end.
|
adamc@84
|
131
|
adamc@84
|
132 Error: The reference n was not found in the current environment
|
adamc@213
|
133
|
adamc@84
|
134 ]]
|
adamc@84
|
135
|
adamc@84
|
136 In this and other cases, we feel like we want [in] clauses with type family arguments that are not variables. Unfortunately, Coq only supports variables in those positions. A completely general mechanism could only be supported with a solution to the problem of higher-order unification, which is undecidable. There %\textit{%#<i>#are#</i>#%}% useful heuristics for handling non-variable indices which are gradually making their way into Coq, but we will spend some time in this and the next few chapters on effective pattern matching on dependent types using only the primitive [match] annotations.
|
adamc@84
|
137
|
adamc@84
|
138 Our final, working attempt at [hd] uses an auxiliary function and a surprising [return] annotation. *)
|
adamc@84
|
139
|
adamc@100
|
140 (* begin thide *)
|
adamc@84
|
141 Definition hd' n (ls : ilist n) :=
|
adamc@84
|
142 match ls in (ilist n) return (match n with O => unit | S _ => A end) with
|
adamc@84
|
143 | Nil => tt
|
adamc@84
|
144 | Cons _ h _ => h
|
adamc@84
|
145 end.
|
adamc@84
|
146
|
adam@283
|
147 Check hd'.
|
adam@283
|
148 (** %\vspace{-.15in}% [[
|
adam@283
|
149 hd'
|
adam@283
|
150 : forall n : nat, ilist n -> match n with
|
adam@283
|
151 | 0 => unit
|
adam@283
|
152 | S _ => A
|
adam@283
|
153 end
|
adam@283
|
154
|
adam@283
|
155 ]] *)
|
adam@283
|
156
|
adamc@84
|
157 Definition hd n (ls : ilist (S n)) : A := hd' ls.
|
adamc@100
|
158 (* end thide *)
|
adamc@84
|
159
|
adamc@84
|
160 (** We annotate our main [match] with a type that is itself a [match]. We write that the function [hd'] returns [unit] when the list is empty and returns the carried type [A] in all other cases. In the definition of [hd], we just call [hd']. Because the index of [ls] is known to be nonzero, the type checker reduces the [match] in the type of [hd'] to [A]. *)
|
adamc@84
|
161
|
adamc@84
|
162 End ilist.
|
adamc@85
|
163
|
adamc@85
|
164
|
adamc@85
|
165 (** * A Tagless Interpreter *)
|
adamc@85
|
166
|
adamc@85
|
167 (** A favorite example for motivating the power of functional programming is implementation of a simple expression language interpreter. In ML and Haskell, such interpreters are often implemented using an algebraic datatype of values, where at many points it is checked that a value was built with the right constructor of the value type. With dependent types, we can implement a %\textit{%#<i>#tagless#</i>#%}% interpreter that both removes this source of runtime ineffiency and gives us more confidence that our implementation is correct. *)
|
adamc@85
|
168
|
adamc@85
|
169 Inductive type : Set :=
|
adamc@85
|
170 | Nat : type
|
adamc@85
|
171 | Bool : type
|
adamc@85
|
172 | Prod : type -> type -> type.
|
adamc@85
|
173
|
adamc@85
|
174 Inductive exp : type -> Set :=
|
adamc@85
|
175 | NConst : nat -> exp Nat
|
adamc@85
|
176 | Plus : exp Nat -> exp Nat -> exp Nat
|
adamc@85
|
177 | Eq : exp Nat -> exp Nat -> exp Bool
|
adamc@85
|
178
|
adamc@85
|
179 | BConst : bool -> exp Bool
|
adamc@85
|
180 | And : exp Bool -> exp Bool -> exp Bool
|
adamc@85
|
181 | If : forall t, exp Bool -> exp t -> exp t -> exp t
|
adamc@85
|
182
|
adamc@85
|
183 | Pair : forall t1 t2, exp t1 -> exp t2 -> exp (Prod t1 t2)
|
adamc@85
|
184 | Fst : forall t1 t2, exp (Prod t1 t2) -> exp t1
|
adamc@85
|
185 | Snd : forall t1 t2, exp (Prod t1 t2) -> exp t2.
|
adamc@85
|
186
|
adamc@85
|
187 (** We have a standard algebraic datatype [type], defining a type language of naturals, booleans, and product (pair) types. Then we have the indexed inductive type [exp], where the argument to [exp] tells us the encoded type of an expression. In effect, we are defining the typing rules for expressions simultaneously with the syntax.
|
adamc@85
|
188
|
adamc@85
|
189 We can give types and expressions semantics in a new style, based critically on the chance for %\textit{%#<i>#type-level computation#</i>#%}%. *)
|
adamc@85
|
190
|
adamc@85
|
191 Fixpoint typeDenote (t : type) : Set :=
|
adamc@85
|
192 match t with
|
adamc@85
|
193 | Nat => nat
|
adamc@85
|
194 | Bool => bool
|
adamc@85
|
195 | Prod t1 t2 => typeDenote t1 * typeDenote t2
|
adamc@85
|
196 end%type.
|
adamc@85
|
197
|
adam@292
|
198 (** [typeDenote] compiles types of our object language into %``%#"#native#"#%''% Coq types. It is deceptively easy to implement. The only new thing we see is the [%type] annotation, which tells Coq to parse the [match] expression using the notations associated with types. Without this annotation, the [*] would be interpreted as multiplication on naturals, rather than as the product type constructor. [type] is one example of an identifer bound to a %\textit{%#<i>#notation scope#</i>#%}%. We will deal more explicitly with notations and notation scopes in later chapters.
|
adamc@85
|
199
|
adamc@85
|
200 We can define a function [expDenote] that is typed in terms of [typeDenote]. *)
|
adamc@85
|
201
|
adamc@213
|
202 Fixpoint expDenote t (e : exp t) : typeDenote t :=
|
adamc@213
|
203 match e with
|
adamc@85
|
204 | NConst n => n
|
adamc@85
|
205 | Plus e1 e2 => expDenote e1 + expDenote e2
|
adamc@85
|
206 | Eq e1 e2 => if eq_nat_dec (expDenote e1) (expDenote e2) then true else false
|
adamc@85
|
207
|
adamc@85
|
208 | BConst b => b
|
adamc@85
|
209 | And e1 e2 => expDenote e1 && expDenote e2
|
adamc@85
|
210 | If _ e' e1 e2 => if expDenote e' then expDenote e1 else expDenote e2
|
adamc@85
|
211
|
adamc@85
|
212 | Pair _ _ e1 e2 => (expDenote e1, expDenote e2)
|
adamc@85
|
213 | Fst _ _ e' => fst (expDenote e')
|
adamc@85
|
214 | Snd _ _ e' => snd (expDenote e')
|
adamc@85
|
215 end.
|
adamc@85
|
216
|
adamc@213
|
217 (** Despite the fancy type, the function definition is routine. In fact, it is less complicated than what we would write in ML or Haskell 98, since we do not need to worry about pushing final values in and out of an algebraic datatype. The only unusual thing is the use of an expression of the form [if E then true else false] in the [Eq] case. Remember that [eq_nat_dec] has a rich dependent type, rather than a simple boolean type. Coq's native [if] is overloaded to work on a test of any two-constructor type, so we can use [if] to build a simple boolean from the [sumbool] that [eq_nat_dec] returns.
|
adamc@85
|
218
|
adamc@85
|
219 We can implement our old favorite, a constant folding function, and prove it correct. It will be useful to write a function [pairOut] that checks if an [exp] of [Prod] type is a pair, returning its two components if so. Unsurprisingly, a first attempt leads to a type error.
|
adamc@85
|
220
|
adamc@85
|
221 [[
|
adamc@85
|
222 Definition pairOut t1 t2 (e : exp (Prod t1 t2)) : option (exp t1 * exp t2) :=
|
adamc@85
|
223 match e in (exp (Prod t1 t2)) return option (exp t1 * exp t2) with
|
adamc@85
|
224 | Pair _ _ e1 e2 => Some (e1, e2)
|
adamc@85
|
225 | _ => None
|
adamc@85
|
226 end.
|
adamc@85
|
227
|
adamc@85
|
228 Error: The reference t2 was not found in the current environment
|
adamc@213
|
229 ]]
|
adamc@85
|
230
|
adamc@85
|
231 We run again into the problem of not being able to specify non-variable arguments in [in] clauses. The problem would just be hopeless without a use of an [in] clause, though, since the result type of the [match] depends on an argument to [exp]. Our solution will be to use a more general type, as we did for [hd]. First, we define a type-valued function to use in assigning a type to [pairOut]. *)
|
adamc@85
|
232
|
adamc@100
|
233 (* EX: Define a function [pairOut : forall t1 t2, exp (Prod t1 t2) -> option (exp t1 * exp t2)] *)
|
adamc@100
|
234
|
adamc@100
|
235 (* begin thide *)
|
adamc@85
|
236 Definition pairOutType (t : type) :=
|
adamc@85
|
237 match t with
|
adamc@85
|
238 | Prod t1 t2 => option (exp t1 * exp t2)
|
adamc@85
|
239 | _ => unit
|
adamc@85
|
240 end.
|
adamc@85
|
241
|
adamc@85
|
242 (** When passed a type that is a product, [pairOutType] returns our final desired type. On any other input type, [pairOutType] returns [unit], since we do not care about extracting components of non-pairs. Now we can write another helper function to provide the default behavior of [pairOut], which we will apply for inputs that are not literal pairs. *)
|
adamc@85
|
243
|
adamc@85
|
244 Definition pairOutDefault (t : type) :=
|
adamc@85
|
245 match t return (pairOutType t) with
|
adamc@85
|
246 | Prod _ _ => None
|
adamc@85
|
247 | _ => tt
|
adamc@85
|
248 end.
|
adamc@85
|
249
|
adamc@85
|
250 (** Now [pairOut] is deceptively easy to write. *)
|
adamc@85
|
251
|
adamc@85
|
252 Definition pairOut t (e : exp t) :=
|
adamc@85
|
253 match e in (exp t) return (pairOutType t) with
|
adamc@85
|
254 | Pair _ _ e1 e2 => Some (e1, e2)
|
adamc@85
|
255 | _ => pairOutDefault _
|
adamc@85
|
256 end.
|
adamc@100
|
257 (* end thide *)
|
adamc@85
|
258
|
adamc@85
|
259 (** There is one important subtlety in this definition. Coq allows us to use convenient ML-style pattern matching notation, but, internally and in proofs, we see that patterns are expanded out completely, matching one level of inductive structure at a time. Thus, the default case in the [match] above expands out to one case for each constructor of [exp] besides [Pair], and the underscore in [pairOutDefault _] is resolved differently in each case. From an ML or Haskell programmer's perspective, what we have here is type inference determining which code is run (returning either [None] or [tt]), which goes beyond what is possible with type inference guiding parametric polymorphism in Hindley-Milner languages, but is similar to what goes on with Haskell type classes.
|
adamc@85
|
260
|
adamc@213
|
261 With [pairOut] available, we can write [cfold] in a straightforward way. There are really no surprises beyond that Coq verifies that this code has such an expressive type, given the small annotation burden. In some places, we see that Coq's [match] annotation inference is too smart for its own good, and we have to turn that inference off by writing [return _]. *)
|
adamc@85
|
262
|
adamc@204
|
263 Fixpoint cfold t (e : exp t) : exp t :=
|
adamc@204
|
264 match e with
|
adamc@85
|
265 | NConst n => NConst n
|
adamc@85
|
266 | Plus e1 e2 =>
|
adamc@85
|
267 let e1' := cfold e1 in
|
adamc@85
|
268 let e2' := cfold e2 in
|
adamc@204
|
269 match e1', e2' return _ with
|
adamc@85
|
270 | NConst n1, NConst n2 => NConst (n1 + n2)
|
adamc@85
|
271 | _, _ => Plus e1' e2'
|
adamc@85
|
272 end
|
adamc@85
|
273 | Eq e1 e2 =>
|
adamc@85
|
274 let e1' := cfold e1 in
|
adamc@85
|
275 let e2' := cfold e2 in
|
adamc@204
|
276 match e1', e2' return _ with
|
adamc@85
|
277 | NConst n1, NConst n2 => BConst (if eq_nat_dec n1 n2 then true else false)
|
adamc@85
|
278 | _, _ => Eq e1' e2'
|
adamc@85
|
279 end
|
adamc@85
|
280
|
adamc@85
|
281 | BConst b => BConst b
|
adamc@85
|
282 | And e1 e2 =>
|
adamc@85
|
283 let e1' := cfold e1 in
|
adamc@85
|
284 let e2' := cfold e2 in
|
adamc@204
|
285 match e1', e2' return _ with
|
adamc@85
|
286 | BConst b1, BConst b2 => BConst (b1 && b2)
|
adamc@85
|
287 | _, _ => And e1' e2'
|
adamc@85
|
288 end
|
adamc@85
|
289 | If _ e e1 e2 =>
|
adamc@85
|
290 let e' := cfold e in
|
adamc@85
|
291 match e' with
|
adamc@85
|
292 | BConst true => cfold e1
|
adamc@85
|
293 | BConst false => cfold e2
|
adamc@85
|
294 | _ => If e' (cfold e1) (cfold e2)
|
adamc@85
|
295 end
|
adamc@85
|
296
|
adamc@85
|
297 | Pair _ _ e1 e2 => Pair (cfold e1) (cfold e2)
|
adamc@85
|
298 | Fst _ _ e =>
|
adamc@85
|
299 let e' := cfold e in
|
adamc@85
|
300 match pairOut e' with
|
adamc@85
|
301 | Some p => fst p
|
adamc@85
|
302 | None => Fst e'
|
adamc@85
|
303 end
|
adamc@85
|
304 | Snd _ _ e =>
|
adamc@85
|
305 let e' := cfold e in
|
adamc@85
|
306 match pairOut e' with
|
adamc@85
|
307 | Some p => snd p
|
adamc@85
|
308 | None => Snd e'
|
adamc@85
|
309 end
|
adamc@85
|
310 end.
|
adamc@85
|
311
|
adamc@85
|
312 (** The correctness theorem for [cfold] turns out to be easy to prove, once we get over one serious hurdle. *)
|
adamc@85
|
313
|
adamc@85
|
314 Theorem cfold_correct : forall t (e : exp t), expDenote e = expDenote (cfold e).
|
adamc@100
|
315 (* begin thide *)
|
adamc@85
|
316 induction e; crush.
|
adamc@85
|
317
|
adamc@85
|
318 (** The first remaining subgoal is:
|
adamc@85
|
319
|
adamc@85
|
320 [[
|
adamc@85
|
321 expDenote (cfold e1) + expDenote (cfold e2) =
|
adamc@85
|
322 expDenote
|
adamc@85
|
323 match cfold e1 with
|
adamc@85
|
324 | NConst n1 =>
|
adamc@85
|
325 match cfold e2 with
|
adamc@85
|
326 | NConst n2 => NConst (n1 + n2)
|
adamc@85
|
327 | Plus _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
328 | Eq _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
329 | BConst _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
330 | And _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
331 | If _ _ _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
332 | Pair _ _ _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
333 | Fst _ _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
334 | Snd _ _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
335 end
|
adamc@85
|
336 | Plus _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
337 | Eq _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
338 | BConst _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
339 | And _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
340 | If _ _ _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
341 | Pair _ _ _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
342 | Fst _ _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
343 | Snd _ _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
344 end
|
adamc@213
|
345
|
adamc@85
|
346 ]]
|
adamc@85
|
347
|
adamc@85
|
348 We would like to do a case analysis on [cfold e1], and we attempt that in the way that has worked so far.
|
adamc@85
|
349
|
adamc@85
|
350 [[
|
adamc@85
|
351 destruct (cfold e1).
|
adamc@85
|
352
|
adamc@85
|
353 User error: e1 is used in hypothesis e
|
adamc@213
|
354
|
adamc@85
|
355 ]]
|
adamc@85
|
356
|
adamc@85
|
357 Coq gives us another cryptic error message. Like so many others, this one basically means that Coq is not able to build some proof about dependent types. It is hard to generate helpful and specific error messages for problems like this, since that would require some kind of understanding of the dependency structure of a piece of code. We will encounter many examples of case-specific tricks for recovering from errors like this one.
|
adamc@85
|
358
|
adamc@213
|
359 For our current proof, we can use a tactic [dep_destruct] defined in the book [Tactics] module. General elimination/inversion of dependently-typed hypotheses is undecidable, since it must be implemented with [match] expressions that have the restriction on [in] clauses that we have already discussed. [dep_destruct] makes a best effort to handle some common cases, relying upon the more primitive [dependent destruction] tactic that comes with Coq. In a future chapter, we will learn about the explicit manipulation of equality proofs that is behind [dep_destruct]'s implementation in Ltac, but for now, we treat it as a useful black box. *)
|
adamc@85
|
360
|
adamc@85
|
361 dep_destruct (cfold e1).
|
adamc@85
|
362
|
adamc@85
|
363 (** This successfully breaks the subgoal into 5 new subgoals, one for each constructor of [exp] that could produce an [exp Nat]. Note that [dep_destruct] is successful in ruling out the other cases automatically, in effect automating some of the work that we have done manually in implementing functions like [hd] and [pairOut].
|
adamc@85
|
364
|
adamc@213
|
365 This is the only new trick we need to learn to complete the proof. We can back up and give a short, automated proof. The main inconvenience in the proof is that we cannot write a pattern that matches a [match] without including a case for every constructor of the inductive type we match over. *)
|
adamc@85
|
366
|
adamc@85
|
367 Restart.
|
adamc@85
|
368
|
adamc@85
|
369 induction e; crush;
|
adamc@85
|
370 repeat (match goal with
|
adamc@213
|
371 | [ |- context[match cfold ?E with NConst _ => _ | Plus _ _ => _
|
adamc@213
|
372 | Eq _ _ => _ | BConst _ => _ | And _ _ => _
|
adamc@213
|
373 | If _ _ _ _ => _ | Pair _ _ _ _ => _
|
adamc@213
|
374 | Fst _ _ _ => _ | Snd _ _ _ => _ end] ] =>
|
adamc@213
|
375 dep_destruct (cfold E)
|
adamc@213
|
376 | [ |- context[match pairOut (cfold ?E) with Some _ => _
|
adamc@213
|
377 | None => _ end] ] =>
|
adamc@213
|
378 dep_destruct (cfold E)
|
adamc@85
|
379 | [ |- (if ?E then _ else _) = _ ] => destruct E
|
adamc@85
|
380 end; crush).
|
adamc@85
|
381 Qed.
|
adamc@100
|
382 (* end thide *)
|
adamc@86
|
383
|
adamc@86
|
384
|
adamc@103
|
385 (** * Dependently-Typed Red-Black Trees *)
|
adamc@94
|
386
|
adamc@214
|
387 (** Red-black trees are a favorite purely-functional data structure with an interesting invariant. We can use dependent types to enforce that operations on red-black trees preserve the invariant. For simplicity, we specialize our red-black trees to represent sets of [nat]s. *)
|
adamc@100
|
388
|
adamc@94
|
389 Inductive color : Set := Red | Black.
|
adamc@94
|
390
|
adamc@94
|
391 Inductive rbtree : color -> nat -> Set :=
|
adamc@94
|
392 | Leaf : rbtree Black 0
|
adamc@214
|
393 | RedNode : forall n, rbtree Black n -> nat -> rbtree Black n -> rbtree Red n
|
adamc@94
|
394 | BlackNode : forall c1 c2 n, rbtree c1 n -> nat -> rbtree c2 n -> rbtree Black (S n).
|
adamc@94
|
395
|
adamc@214
|
396 (** A value of type [rbtree c d] is a red-black tree node whose root has color [c] and that has black depth [d]. The latter property means that there are no more than [d] black-colored nodes on any path from the root to a leaf. *)
|
adamc@214
|
397
|
adamc@214
|
398 (** At first, it can be unclear that this choice of type indices tracks any useful property. To convince ourselves, we will prove that every red-black tree is balanced. We will phrase our theorem in terms of a depth calculating function that ignores the extra information in the types. It will be useful to parameterize this function over a combining operation, so that we can re-use the same code to calculate the minimum or maximum height among all paths from root to leaf. *)
|
adamc@214
|
399
|
adamc@100
|
400 (* EX: Prove that every [rbtree] is balanced. *)
|
adamc@100
|
401
|
adamc@100
|
402 (* begin thide *)
|
adamc@95
|
403 Require Import Max Min.
|
adamc@95
|
404
|
adamc@95
|
405 Section depth.
|
adamc@95
|
406 Variable f : nat -> nat -> nat.
|
adamc@95
|
407
|
adamc@214
|
408 Fixpoint depth c n (t : rbtree c n) : nat :=
|
adamc@95
|
409 match t with
|
adamc@95
|
410 | Leaf => 0
|
adamc@95
|
411 | RedNode _ t1 _ t2 => S (f (depth t1) (depth t2))
|
adamc@95
|
412 | BlackNode _ _ _ t1 _ t2 => S (f (depth t1) (depth t2))
|
adamc@95
|
413 end.
|
adamc@95
|
414 End depth.
|
adamc@95
|
415
|
adamc@214
|
416 (** Our proof of balanced-ness decomposes naturally into a lower bound and an upper bound. We prove the lower bound first. Unsurprisingly, a tree's black depth provides such a bound on the minimum path length. We use the richly-typed procedure [min_dec] to do case analysis on whether [min X Y] equals [X] or [Y]. *)
|
adamc@214
|
417
|
adam@283
|
418 Check min_dec.
|
adam@283
|
419 (** %\vspace{-.15in}% [[
|
adam@283
|
420 min_dec
|
adam@283
|
421 : forall n m : nat, {min n m = n} + {min n m = m}
|
adam@283
|
422
|
adam@283
|
423 ]] *)
|
adam@283
|
424
|
adamc@95
|
425 Theorem depth_min : forall c n (t : rbtree c n), depth min t >= n.
|
adamc@95
|
426 induction t; crush;
|
adamc@95
|
427 match goal with
|
adamc@95
|
428 | [ |- context[min ?X ?Y] ] => destruct (min_dec X Y)
|
adamc@95
|
429 end; crush.
|
adamc@95
|
430 Qed.
|
adamc@95
|
431
|
adamc@214
|
432 (** There is an analogous upper-bound theorem based on black depth. Unfortunately, a symmetric proof script does not suffice to establish it. *)
|
adamc@214
|
433
|
adamc@214
|
434 Theorem depth_max : forall c n (t : rbtree c n), depth max t <= 2 * n + 1.
|
adamc@214
|
435 induction t; crush;
|
adamc@214
|
436 match goal with
|
adamc@214
|
437 | [ |- context[max ?X ?Y] ] => destruct (max_dec X Y)
|
adamc@214
|
438 end; crush.
|
adamc@214
|
439
|
adamc@214
|
440 (** Two subgoals remain. One of them is: [[
|
adamc@214
|
441 n : nat
|
adamc@214
|
442 t1 : rbtree Black n
|
adamc@214
|
443 n0 : nat
|
adamc@214
|
444 t2 : rbtree Black n
|
adamc@214
|
445 IHt1 : depth max t1 <= n + (n + 0) + 1
|
adamc@214
|
446 IHt2 : depth max t2 <= n + (n + 0) + 1
|
adamc@214
|
447 e : max (depth max t1) (depth max t2) = depth max t1
|
adamc@214
|
448 ============================
|
adamc@214
|
449 S (depth max t1) <= n + (n + 0) + 1
|
adamc@214
|
450
|
adamc@214
|
451 ]]
|
adamc@214
|
452
|
adamc@214
|
453 We see that [IHt1] is %\textit{%#<i>#almost#</i>#%}% the fact we need, but it is not quite strong enough. We will need to strengthen our induction hypothesis to get the proof to go through. *)
|
adamc@214
|
454
|
adamc@214
|
455 Abort.
|
adamc@214
|
456
|
adamc@214
|
457 (** In particular, we prove a lemma that provides a stronger upper bound for trees with black root nodes. We got stuck above in a case about a red root node. Since red nodes have only black children, our IH strengthening will enable us to finish the proof. *)
|
adamc@214
|
458
|
adamc@95
|
459 Lemma depth_max' : forall c n (t : rbtree c n), match c with
|
adamc@95
|
460 | Red => depth max t <= 2 * n + 1
|
adamc@95
|
461 | Black => depth max t <= 2 * n
|
adamc@95
|
462 end.
|
adamc@95
|
463 induction t; crush;
|
adamc@95
|
464 match goal with
|
adamc@95
|
465 | [ |- context[max ?X ?Y] ] => destruct (max_dec X Y)
|
adamc@100
|
466 end; crush;
|
adamc@100
|
467 repeat (match goal with
|
adamc@214
|
468 | [ H : context[match ?C with Red => _ | Black => _ end] |- _ ] =>
|
adamc@214
|
469 destruct C
|
adamc@100
|
470 end; crush).
|
adamc@95
|
471 Qed.
|
adamc@95
|
472
|
adamc@214
|
473 (** The original theorem follows easily from the lemma. We use the tactic [generalize pf], which, when [pf] proves the proposition [P], changes the goal from [Q] to [P -> Q]. It is useful to do this because it makes the truth of [P] manifest syntactically, so that automation machinery can rely on [P], even if that machinery is not smart enough to establish [P] on its own. *)
|
adamc@214
|
474
|
adamc@95
|
475 Theorem depth_max : forall c n (t : rbtree c n), depth max t <= 2 * n + 1.
|
adamc@95
|
476 intros; generalize (depth_max' t); destruct c; crush.
|
adamc@95
|
477 Qed.
|
adamc@95
|
478
|
adamc@214
|
479 (** The final balance theorem establishes that the minimum and maximum path lengths of any tree are within a factor of two of each other. *)
|
adamc@214
|
480
|
adamc@95
|
481 Theorem balanced : forall c n (t : rbtree c n), 2 * depth min t + 1 >= depth max t.
|
adamc@95
|
482 intros; generalize (depth_min t); generalize (depth_max t); crush.
|
adamc@95
|
483 Qed.
|
adamc@100
|
484 (* end thide *)
|
adamc@95
|
485
|
adamc@214
|
486 (** Now we are ready to implement an example operation on our trees, insertion. Insertion can be thought of as breaking the tree invariants locally but then rebalancing. In particular, in intermediate states we find red nodes that may have red children. The type [rtree] captures the idea of such a node, continuing to track black depth as a type index. *)
|
adamc@95
|
487
|
adamc@94
|
488 Inductive rtree : nat -> Set :=
|
adamc@94
|
489 | RedNode' : forall c1 c2 n, rbtree c1 n -> nat -> rbtree c2 n -> rtree n.
|
adamc@94
|
490
|
adamc@214
|
491 (** Before starting to define [insert], we define predicates capturing when a data value is in the set represented by a normal or possibly-invalid tree. *)
|
adamc@214
|
492
|
adamc@96
|
493 Section present.
|
adamc@96
|
494 Variable x : nat.
|
adamc@96
|
495
|
adamc@214
|
496 Fixpoint present c n (t : rbtree c n) : Prop :=
|
adamc@96
|
497 match t with
|
adamc@96
|
498 | Leaf => False
|
adamc@96
|
499 | RedNode _ a y b => present a \/ x = y \/ present b
|
adamc@96
|
500 | BlackNode _ _ _ a y b => present a \/ x = y \/ present b
|
adamc@96
|
501 end.
|
adamc@96
|
502
|
adamc@96
|
503 Definition rpresent n (t : rtree n) : Prop :=
|
adamc@96
|
504 match t with
|
adamc@96
|
505 | RedNode' _ _ _ a y b => present a \/ x = y \/ present b
|
adamc@96
|
506 end.
|
adamc@96
|
507 End present.
|
adamc@96
|
508
|
adamc@214
|
509 (** Insertion relies on two balancing operations. It will be useful to give types to these operations using a relative of the subset types from last chapter. While subset types let us pair a value with a proof about that value, here we want to pair a value with another non-proof dependently-typed value. The [sigT] type fills this role. *)
|
adamc@214
|
510
|
adamc@100
|
511 Locate "{ _ : _ & _ }".
|
adamc@214
|
512 (** [[
|
adamc@214
|
513 Notation Scope
|
adamc@214
|
514 "{ x : A & P }" := sigT (fun x : A => P)
|
adamc@214
|
515 ]] *)
|
adamc@214
|
516
|
adamc@100
|
517 Print sigT.
|
adamc@214
|
518 (** [[
|
adamc@214
|
519 Inductive sigT (A : Type) (P : A -> Type) : Type :=
|
adamc@214
|
520 existT : forall x : A, P x -> sigT P
|
adamc@214
|
521 ]] *)
|
adamc@214
|
522
|
adamc@214
|
523 (** It will be helpful to define a concise notation for the constructor of [sigT]. *)
|
adamc@100
|
524
|
adamc@94
|
525 Notation "{< x >}" := (existT _ _ x).
|
adamc@94
|
526
|
adamc@214
|
527 (** Each balance function is used to construct a new tree whose keys include the keys of two input trees, as well as a new key. One of the two input trees may violate the red-black alternation invariant (that is, it has an [rtree] type), while the other tree is known to be valid. Crucially, the two input trees have the same black depth.
|
adamc@214
|
528
|
adamc@214
|
529 A balance operation may return a tree whose root is of either color. Thus, we use a [sigT] type to package the result tree with the color of its root. Here is the definition of the first balance operation, which applies when the possibly-invalid [rtree] belongs to the left of the valid [rbtree]. *)
|
adamc@214
|
530
|
adamc@94
|
531 Definition balance1 n (a : rtree n) (data : nat) c2 :=
|
adamc@214
|
532 match a in rtree n return rbtree c2 n
|
adamc@214
|
533 -> { c : color & rbtree c (S n) } with
|
adamc@94
|
534 | RedNode' _ _ _ t1 y t2 =>
|
adamc@214
|
535 match t1 in rbtree c n return rbtree _ n -> rbtree c2 n
|
adamc@214
|
536 -> { c : color & rbtree c (S n) } with
|
adamc@214
|
537 | RedNode _ a x b => fun c d =>
|
adamc@214
|
538 {<RedNode (BlackNode a x b) y (BlackNode c data d)>}
|
adamc@94
|
539 | t1' => fun t2 =>
|
adamc@214
|
540 match t2 in rbtree c n return rbtree _ n -> rbtree c2 n
|
adamc@214
|
541 -> { c : color & rbtree c (S n) } with
|
adamc@214
|
542 | RedNode _ b x c => fun a d =>
|
adamc@214
|
543 {<RedNode (BlackNode a y b) x (BlackNode c data d)>}
|
adamc@95
|
544 | b => fun a t => {<BlackNode (RedNode a y b) data t>}
|
adamc@94
|
545 end t1'
|
adamc@94
|
546 end t2
|
adamc@94
|
547 end.
|
adamc@94
|
548
|
adamc@214
|
549 (** We apply a trick that I call the %\textit{%#<i>#convoy pattern#</i>#%}%. Recall that [match] annotations only make it possible to describe a dependence of a [match] %\textit{%#<i>#result type#</i>#%}% on the discriminee. There is no automatic refinement of the types of free variables. However, it is possible to effect such a refinement by finding a way to encode free variable type dependencies in the [match] result type, so that a [return] clause can express the connection.
|
adamc@214
|
550
|
adam@292
|
551 In particular, we can extend the [match] to return %\textit{%#<i>#functions over the free variables whose types we want to refine#</i>#%}%. In the case of [balance1], we only find ourselves wanting to refine the type of one tree variable at a time. We match on one subtree of a node, and we want the type of the other subtree to be refined based on what we learn. We indicate this with a [return] clause starting like [rbtree _ n -> ...], where [n] is bound in an [in] pattern. Such a [match] expression is applied immediately to the %``%#"#old version#"#%''% of the variable to be refined, and the type checker is happy.
|
adamc@214
|
552
|
adam@292
|
553 After writing this code, even I do not understand the precise details of how balancing works. I consulted Chris Okasaki's paper %``%#"#Red-Black Trees in a Functional Setting#"#%''% and transcribed the code to use dependent types. Luckily, the details are not so important here; types alone will tell us that insertion preserves balanced-ness, and we will prove that insertion produces trees containing the right keys.
|
adamc@214
|
554
|
adamc@214
|
555 Here is the symmetric function [balance2], for cases where the possibly-invalid tree appears on the right rather than on the left. *)
|
adamc@214
|
556
|
adamc@94
|
557 Definition balance2 n (a : rtree n) (data : nat) c2 :=
|
adamc@94
|
558 match a in rtree n return rbtree c2 n -> { c : color & rbtree c (S n) } with
|
adamc@94
|
559 | RedNode' _ _ _ t1 z t2 =>
|
adamc@214
|
560 match t1 in rbtree c n return rbtree _ n -> rbtree c2 n
|
adamc@214
|
561 -> { c : color & rbtree c (S n) } with
|
adamc@214
|
562 | RedNode _ b y c => fun d a =>
|
adamc@214
|
563 {<RedNode (BlackNode a data b) y (BlackNode c z d)>}
|
adamc@94
|
564 | t1' => fun t2 =>
|
adamc@214
|
565 match t2 in rbtree c n return rbtree _ n -> rbtree c2 n
|
adamc@214
|
566 -> { c : color & rbtree c (S n) } with
|
adamc@214
|
567 | RedNode _ c z' d => fun b a =>
|
adamc@214
|
568 {<RedNode (BlackNode a data b) z (BlackNode c z' d)>}
|
adamc@95
|
569 | b => fun a t => {<BlackNode t data (RedNode a z b)>}
|
adamc@94
|
570 end t1'
|
adamc@94
|
571 end t2
|
adamc@94
|
572 end.
|
adamc@94
|
573
|
adamc@214
|
574 (** Now we are almost ready to get down to the business of writing an [insert] function. First, we enter a section that declares a variable [x], for the key we want to insert. *)
|
adamc@214
|
575
|
adamc@94
|
576 Section insert.
|
adamc@94
|
577 Variable x : nat.
|
adamc@94
|
578
|
adamc@214
|
579 (** Most of the work of insertion is done by a helper function [ins], whose return types are expressed using a type-level function [insResult]. *)
|
adamc@214
|
580
|
adamc@94
|
581 Definition insResult c n :=
|
adamc@94
|
582 match c with
|
adamc@94
|
583 | Red => rtree n
|
adamc@94
|
584 | Black => { c' : color & rbtree c' n }
|
adamc@94
|
585 end.
|
adamc@94
|
586
|
adamc@214
|
587 (** That is, inserting into a tree with root color [c] and black depth [n], the variety of tree we get out depends on [c]. If we started with a red root, then we get back a possibly-invalid tree of depth [n]. If we started with a black root, we get back a valid tree of depth [n] with a root node of an arbitary color.
|
adamc@214
|
588
|
adamc@214
|
589 Here is the definition of [ins]. Again, we do not want to dwell on the functional details. *)
|
adamc@214
|
590
|
adamc@214
|
591 Fixpoint ins c n (t : rbtree c n) : insResult c n :=
|
adamc@214
|
592 match t with
|
adamc@94
|
593 | Leaf => {< RedNode Leaf x Leaf >}
|
adamc@94
|
594 | RedNode _ a y b =>
|
adamc@94
|
595 if le_lt_dec x y
|
adamc@94
|
596 then RedNode' (projT2 (ins a)) y b
|
adamc@94
|
597 else RedNode' a y (projT2 (ins b))
|
adamc@94
|
598 | BlackNode c1 c2 _ a y b =>
|
adamc@94
|
599 if le_lt_dec x y
|
adamc@94
|
600 then
|
adamc@94
|
601 match c1 return insResult c1 _ -> _ with
|
adamc@94
|
602 | Red => fun ins_a => balance1 ins_a y b
|
adamc@94
|
603 | _ => fun ins_a => {< BlackNode (projT2 ins_a) y b >}
|
adamc@94
|
604 end (ins a)
|
adamc@94
|
605 else
|
adamc@94
|
606 match c2 return insResult c2 _ -> _ with
|
adamc@94
|
607 | Red => fun ins_b => balance2 ins_b y a
|
adamc@94
|
608 | _ => fun ins_b => {< BlackNode a y (projT2 ins_b) >}
|
adamc@94
|
609 end (ins b)
|
adamc@94
|
610 end.
|
adamc@94
|
611
|
adamc@214
|
612 (** The one new trick is a variation of the convoy pattern. In each of the last two pattern matches, we want to take advantage of the typing connection between the trees [a] and [b]. We might naively apply the convoy pattern directly on [a] in the first [match] and on [b] in the second. This satisifies the type checker per se, but it does not satisfy the termination checker. Inside each [match], we would be calling [ins] recursively on a locally-bound variable. The termination checker is not smart enough to trace the dataflow into that variable, so the checker does not know that this recursive argument is smaller than the original argument. We make this fact clearer by applying the convoy pattern on %\textit{%#<i>#the result of a recursive call#</i>#%}%, rather than just on that call's argument.
|
adamc@214
|
613
|
adamc@214
|
614 Finally, we are in the home stretch of our effort to define [insert]. We just need a few more definitions of non-recursive functions. First, we need to give the final characterization of [insert]'s return type. Inserting into a red-rooted tree gives a black-rooted tree where black depth has increased, and inserting into a black-rooted tree gives a tree where black depth has stayed the same and where the root is an arbitrary color. *)
|
adamc@214
|
615
|
adamc@94
|
616 Definition insertResult c n :=
|
adamc@94
|
617 match c with
|
adamc@94
|
618 | Red => rbtree Black (S n)
|
adamc@94
|
619 | Black => { c' : color & rbtree c' n }
|
adamc@94
|
620 end.
|
adamc@94
|
621
|
adamc@214
|
622 (** A simple clean-up procedure translates [insResult]s into [insertResult]s. *)
|
adamc@214
|
623
|
adamc@97
|
624 Definition makeRbtree c n : insResult c n -> insertResult c n :=
|
adamc@214
|
625 match c with
|
adamc@94
|
626 | Red => fun r =>
|
adamc@214
|
627 match r with
|
adamc@94
|
628 | RedNode' _ _ _ a x b => BlackNode a x b
|
adamc@94
|
629 end
|
adamc@94
|
630 | Black => fun r => r
|
adamc@94
|
631 end.
|
adamc@94
|
632
|
adamc@214
|
633 (** We modify Coq's default choice of implicit arguments for [makeRbtree], so that we do not need to specify the [c] and [n] arguments explicitly in later calls. *)
|
adamc@214
|
634
|
adamc@97
|
635 Implicit Arguments makeRbtree [c n].
|
adamc@94
|
636
|
adamc@214
|
637 (** Finally, we define [insert] as a simple composition of [ins] and [makeRbtree]. *)
|
adamc@214
|
638
|
adamc@94
|
639 Definition insert c n (t : rbtree c n) : insertResult c n :=
|
adamc@97
|
640 makeRbtree (ins t).
|
adamc@94
|
641
|
adamc@214
|
642 (** As we noted earlier, the type of [insert] guarantees that it outputs balanced trees whose depths have not increased too much. We also want to know that [insert] operates correctly on trees interpreted as finite sets, so we finish this section with a proof of that fact. *)
|
adamc@214
|
643
|
adamc@95
|
644 Section present.
|
adamc@95
|
645 Variable z : nat.
|
adamc@95
|
646
|
adamc@214
|
647 (** The variable [z] stands for an arbitrary key. We will reason about [z]'s presence in particular trees. As usual, outside the section the theorems we prove will quantify over all possible keys, giving us the facts we wanted.
|
adamc@214
|
648
|
adamc@214
|
649 We start by proving the correctness of the balance operations. It is useful to define a custom tactic [present_balance] that encapsulates the reasoning common to the two proofs. We use the keyword [Ltac] to assign a name to a proof script. This particular script just iterates between [crush] and identification of a tree that is being pattern-matched on and should be destructed. *)
|
adamc@214
|
650
|
adamc@98
|
651 Ltac present_balance :=
|
adamc@98
|
652 crush;
|
adamc@98
|
653 repeat (match goal with
|
adamc@98
|
654 | [ H : context[match ?T with
|
adamc@98
|
655 | Leaf => _
|
adamc@98
|
656 | RedNode _ _ _ _ => _
|
adamc@98
|
657 | BlackNode _ _ _ _ _ _ => _
|
adamc@98
|
658 end] |- _ ] => dep_destruct T
|
adamc@98
|
659 | [ |- context[match ?T with
|
adamc@98
|
660 | Leaf => _
|
adamc@98
|
661 | RedNode _ _ _ _ => _
|
adamc@98
|
662 | BlackNode _ _ _ _ _ _ => _
|
adamc@98
|
663 end] ] => dep_destruct T
|
adamc@98
|
664 end; crush).
|
adamc@98
|
665
|
adamc@214
|
666 (** The balance correctness theorems are simple first-order logic equivalences, where we use the function [projT2] to project the payload of a [sigT] value. *)
|
adamc@214
|
667
|
adam@294
|
668 Lemma present_balance1 : forall n (a : rtree n) (y : nat) c2 (b : rbtree c2 n),
|
adamc@95
|
669 present z (projT2 (balance1 a y b))
|
adamc@95
|
670 <-> rpresent z a \/ z = y \/ present z b.
|
adamc@98
|
671 destruct a; present_balance.
|
adamc@95
|
672 Qed.
|
adamc@95
|
673
|
adamc@213
|
674 Lemma present_balance2 : forall n (a : rtree n) (y : nat) c2 (b : rbtree c2 n),
|
adamc@95
|
675 present z (projT2 (balance2 a y b))
|
adamc@95
|
676 <-> rpresent z a \/ z = y \/ present z b.
|
adamc@98
|
677 destruct a; present_balance.
|
adamc@95
|
678 Qed.
|
adamc@95
|
679
|
adamc@214
|
680 (** To state the theorem for [ins], it is useful to define a new type-level function, since [ins] returns different result types based on the type indices passed to it. Recall that [x] is the section variable standing for the key we are inserting. *)
|
adamc@214
|
681
|
adamc@95
|
682 Definition present_insResult c n :=
|
adamc@95
|
683 match c return (rbtree c n -> insResult c n -> Prop) with
|
adamc@95
|
684 | Red => fun t r => rpresent z r <-> z = x \/ present z t
|
adamc@95
|
685 | Black => fun t r => present z (projT2 r) <-> z = x \/ present z t
|
adamc@95
|
686 end.
|
adamc@95
|
687
|
adamc@214
|
688 (** Now the statement and proof of the [ins] correctness theorem are straightforward, if verbose. We proceed by induction on the structure of a tree, followed by finding case analysis opportunities on expressions we see being analyzed in [if] or [match] expressions. After that, we pattern-match to find opportunities to use the theorems we proved about balancing. Finally, we identify two variables that are asserted by some hypothesis to be equal, and we use that hypothesis to replace one variable with the other everywhere. *)
|
adamc@214
|
689
|
adamc@214
|
690 (** printing * $*$ *)
|
adamc@214
|
691
|
adamc@95
|
692 Theorem present_ins : forall c n (t : rbtree c n),
|
adamc@95
|
693 present_insResult t (ins t).
|
adamc@95
|
694 induction t; crush;
|
adamc@95
|
695 repeat (match goal with
|
adamc@95
|
696 | [ H : context[if ?E then _ else _] |- _ ] => destruct E
|
adamc@95
|
697 | [ |- context[if ?E then _ else _] ] => destruct E
|
adamc@214
|
698 | [ H : context[match ?C with Red => _ | Black => _ end]
|
adamc@214
|
699 |- _ ] => destruct C
|
adamc@95
|
700 end; crush);
|
adamc@95
|
701 try match goal with
|
adamc@95
|
702 | [ H : context[balance1 ?A ?B ?C] |- _ ] =>
|
adamc@95
|
703 generalize (present_balance1 A B C)
|
adamc@95
|
704 end;
|
adamc@95
|
705 try match goal with
|
adamc@95
|
706 | [ H : context[balance2 ?A ?B ?C] |- _ ] =>
|
adamc@95
|
707 generalize (present_balance2 A B C)
|
adamc@95
|
708 end;
|
adamc@95
|
709 try match goal with
|
adamc@95
|
710 | [ |- context[balance1 ?A ?B ?C] ] =>
|
adamc@95
|
711 generalize (present_balance1 A B C)
|
adamc@95
|
712 end;
|
adamc@95
|
713 try match goal with
|
adamc@95
|
714 | [ |- context[balance2 ?A ?B ?C] ] =>
|
adamc@95
|
715 generalize (present_balance2 A B C)
|
adamc@95
|
716 end;
|
adamc@214
|
717 crush;
|
adamc@95
|
718 match goal with
|
adamc@95
|
719 | [ z : nat, x : nat |- _ ] =>
|
adamc@95
|
720 match goal with
|
adamc@95
|
721 | [ H : z = x |- _ ] => rewrite H in *; clear H
|
adamc@95
|
722 end
|
adamc@95
|
723 end;
|
adamc@95
|
724 tauto.
|
adamc@95
|
725 Qed.
|
adamc@95
|
726
|
adamc@214
|
727 (** printing * $\times$ *)
|
adamc@214
|
728
|
adamc@214
|
729 (** The hard work is done. The most readable way to state correctness of [insert] involves splitting the property into two color-specific theorems. We write a tactic to encapsulate the reasoning steps that work to establish both facts. *)
|
adamc@214
|
730
|
adamc@213
|
731 Ltac present_insert :=
|
adamc@213
|
732 unfold insert; intros n t; inversion t;
|
adamc@97
|
733 generalize (present_ins t); simpl;
|
adamc@97
|
734 dep_destruct (ins t); tauto.
|
adamc@97
|
735
|
adamc@95
|
736 Theorem present_insert_Red : forall n (t : rbtree Red n),
|
adamc@95
|
737 present z (insert t)
|
adamc@95
|
738 <-> (z = x \/ present z t).
|
adamc@213
|
739 present_insert.
|
adamc@95
|
740 Qed.
|
adamc@95
|
741
|
adamc@95
|
742 Theorem present_insert_Black : forall n (t : rbtree Black n),
|
adamc@95
|
743 present z (projT2 (insert t))
|
adamc@95
|
744 <-> (z = x \/ present z t).
|
adamc@213
|
745 present_insert.
|
adamc@95
|
746 Qed.
|
adamc@95
|
747 End present.
|
adamc@94
|
748 End insert.
|
adamc@94
|
749
|
adam@283
|
750 (** We can generate executable OCaml code with the command [Recursive Extraction insert], which also automatically outputs the OCaml versions of all of [insert]'s dependencies. In our previous extractions, we wound up with clean OCaml code. Here, we find uses of %\texttt{%#<tt>#Obj.magic#</tt>#%}%, OCaml's unsafe cast operator for tweaking the apparent type of an expression in an arbitrary way. Casts appear for this example because the return type of [insert] depends on the %\textit{%#<i>#value#</i>#%}% of the function's argument, a pattern which OCaml cannot handle. Since Coq's type system is much more expressive than OCaml's, such casts are unavoidable in general. Since the OCaml type-checker is no longer checking full safety of programs, we must rely on Coq's extractor to use casts only in provably safe ways. *)
|
adam@283
|
751
|
adamc@94
|
752
|
adamc@86
|
753 (** * A Certified Regular Expression Matcher *)
|
adamc@86
|
754
|
adamc@93
|
755 (** Another interesting example is regular expressions with dependent types that express which predicates over strings particular regexps implement. We can then assign a dependent type to a regular expression matching function, guaranteeing that it always decides the string property that we expect it to decide.
|
adamc@93
|
756
|
adam@283
|
757 Before defining the syntax of expressions, it is helpful to define an inductive type capturing the meaning of the Kleene star. That is, a string [s] matches regular expression [star e] if and only if [s] can be decomposed into a sequence of substrings that all match [e]. We use Coq's string support, which comes through a combination of the [Strings] library and some parsing notations built into Coq. Operators like [++] and functions like [length] that we know from lists are defined again for strings. Notation scopes help us control which versions we want to use in particular contexts. *)
|
adamc@93
|
758
|
adamc@86
|
759 Require Import Ascii String.
|
adamc@86
|
760 Open Scope string_scope.
|
adamc@86
|
761
|
adamc@91
|
762 Section star.
|
adamc@91
|
763 Variable P : string -> Prop.
|
adamc@91
|
764
|
adamc@91
|
765 Inductive star : string -> Prop :=
|
adamc@91
|
766 | Empty : star ""
|
adamc@91
|
767 | Iter : forall s1 s2,
|
adamc@91
|
768 P s1
|
adamc@91
|
769 -> star s2
|
adamc@91
|
770 -> star (s1 ++ s2).
|
adamc@91
|
771 End star.
|
adamc@91
|
772
|
adam@283
|
773 (** Now we can make our first attempt at defining a [regexp] type that is indexed by predicates on strings. Here is a reasonable-looking definition that is restricted to constant characters and concatenation. We use the constructor [String], which is the analogue of list cons for the type [string], where [""] is like list nil.
|
adamc@93
|
774
|
adamc@93
|
775 [[
|
adamc@93
|
776 Inductive regexp : (string -> Prop) -> Set :=
|
adamc@93
|
777 | Char : forall ch : ascii,
|
adamc@93
|
778 regexp (fun s => s = String ch "")
|
adamc@93
|
779 | Concat : forall (P1 P2 : string -> Prop) (r1 : regexp P1) (r2 : regexp P2),
|
adamc@93
|
780 regexp (fun s => exists s1, exists s2, s = s1 ++ s2 /\ P1 s1 /\ P2 s2).
|
adamc@93
|
781
|
adamc@93
|
782 User error: Large non-propositional inductive types must be in Type
|
adamc@214
|
783
|
adamc@93
|
784 ]]
|
adamc@93
|
785
|
adamc@93
|
786 What is a large inductive type? In Coq, it is an inductive type that has a constructor which quantifies over some type of type [Type]. We have not worked with [Type] very much to this point. Every term of CIC has a type, including [Set] and [Prop], which are assigned type [Type]. The type [string -> Prop] from the failed definition also has type [Type].
|
adamc@93
|
787
|
adamc@93
|
788 It turns out that allowing large inductive types in [Set] leads to contradictions when combined with certain kinds of classical logic reasoning. Thus, by default, such types are ruled out. There is a simple fix for our [regexp] definition, which is to place our new type in [Type]. While fixing the problem, we also expand the list of constructors to cover the remaining regular expression operators. *)
|
adamc@93
|
789
|
adamc@89
|
790 Inductive regexp : (string -> Prop) -> Type :=
|
adamc@86
|
791 | Char : forall ch : ascii,
|
adamc@86
|
792 regexp (fun s => s = String ch "")
|
adamc@86
|
793 | Concat : forall P1 P2 (r1 : regexp P1) (r2 : regexp P2),
|
adamc@87
|
794 regexp (fun s => exists s1, exists s2, s = s1 ++ s2 /\ P1 s1 /\ P2 s2)
|
adamc@87
|
795 | Or : forall P1 P2 (r1 : regexp P1) (r2 : regexp P2),
|
adamc@91
|
796 regexp (fun s => P1 s \/ P2 s)
|
adamc@91
|
797 | Star : forall P (r : regexp P),
|
adamc@91
|
798 regexp (star P).
|
adamc@86
|
799
|
adamc@93
|
800 (** Many theorems about strings are useful for implementing a certified regexp matcher, and few of them are in the [Strings] library. The book source includes statements, proofs, and hint commands for a handful of such omittted theorems. Since they are orthogonal to our use of dependent types, we hide them in the rendered versions of this book. *)
|
adamc@93
|
801
|
adamc@93
|
802 (* begin hide *)
|
adamc@86
|
803 Open Scope specif_scope.
|
adamc@86
|
804
|
adamc@86
|
805 Lemma length_emp : length "" <= 0.
|
adamc@86
|
806 crush.
|
adamc@86
|
807 Qed.
|
adamc@86
|
808
|
adamc@86
|
809 Lemma append_emp : forall s, s = "" ++ s.
|
adamc@86
|
810 crush.
|
adamc@86
|
811 Qed.
|
adamc@86
|
812
|
adamc@86
|
813 Ltac substring :=
|
adamc@86
|
814 crush;
|
adamc@86
|
815 repeat match goal with
|
adamc@86
|
816 | [ |- context[match ?N with O => _ | S _ => _ end] ] => destruct N; crush
|
adamc@86
|
817 end.
|
adamc@86
|
818
|
adamc@86
|
819 Lemma substring_le : forall s n m,
|
adamc@86
|
820 length (substring n m s) <= m.
|
adamc@86
|
821 induction s; substring.
|
adamc@86
|
822 Qed.
|
adamc@86
|
823
|
adamc@86
|
824 Lemma substring_all : forall s,
|
adamc@86
|
825 substring 0 (length s) s = s.
|
adamc@86
|
826 induction s; substring.
|
adamc@86
|
827 Qed.
|
adamc@86
|
828
|
adamc@86
|
829 Lemma substring_none : forall s n,
|
adamc@93
|
830 substring n 0 s = "".
|
adamc@86
|
831 induction s; substring.
|
adamc@86
|
832 Qed.
|
adamc@86
|
833
|
adamc@86
|
834 Hint Rewrite substring_all substring_none : cpdt.
|
adamc@86
|
835
|
adamc@86
|
836 Lemma substring_split : forall s m,
|
adamc@86
|
837 substring 0 m s ++ substring m (length s - m) s = s.
|
adamc@86
|
838 induction s; substring.
|
adamc@86
|
839 Qed.
|
adamc@86
|
840
|
adamc@86
|
841 Lemma length_app1 : forall s1 s2,
|
adamc@86
|
842 length s1 <= length (s1 ++ s2).
|
adamc@86
|
843 induction s1; crush.
|
adamc@86
|
844 Qed.
|
adamc@86
|
845
|
adamc@86
|
846 Hint Resolve length_emp append_emp substring_le substring_split length_app1.
|
adamc@86
|
847
|
adamc@86
|
848 Lemma substring_app_fst : forall s2 s1 n,
|
adamc@86
|
849 length s1 = n
|
adamc@86
|
850 -> substring 0 n (s1 ++ s2) = s1.
|
adamc@86
|
851 induction s1; crush.
|
adamc@86
|
852 Qed.
|
adamc@86
|
853
|
adamc@86
|
854 Lemma substring_app_snd : forall s2 s1 n,
|
adamc@86
|
855 length s1 = n
|
adamc@86
|
856 -> substring n (length (s1 ++ s2) - n) (s1 ++ s2) = s2.
|
adamc@86
|
857 Hint Rewrite <- minus_n_O : cpdt.
|
adamc@86
|
858
|
adamc@86
|
859 induction s1; crush.
|
adamc@86
|
860 Qed.
|
adamc@86
|
861
|
adamc@214
|
862 Hint Rewrite substring_app_fst substring_app_snd using solve [trivial] : cpdt.
|
adamc@93
|
863 (* end hide *)
|
adamc@93
|
864
|
adamc@93
|
865 (** A few auxiliary functions help us in our final matcher definition. The function [split] will be used to implement the regexp concatenation case. *)
|
adamc@86
|
866
|
adamc@86
|
867 Section split.
|
adamc@86
|
868 Variables P1 P2 : string -> Prop.
|
adamc@214
|
869 Variable P1_dec : forall s, {P1 s} + {~ P1 s}.
|
adamc@214
|
870 Variable P2_dec : forall s, {P2 s} + {~ P2 s}.
|
adamc@93
|
871 (** We require a choice of two arbitrary string predicates and functions for deciding them. *)
|
adamc@86
|
872
|
adamc@86
|
873 Variable s : string.
|
adamc@93
|
874 (** Our computation will take place relative to a single fixed string, so it is easiest to make it a [Variable], rather than an explicit argument to our functions. *)
|
adamc@93
|
875
|
adamc@93
|
876 (** [split'] is the workhorse behind [split]. It searches through the possible ways of splitting [s] into two pieces, checking the two predicates against each such pair. [split'] progresses right-to-left, from splitting all of [s] into the first piece to splitting all of [s] into the second piece. It takes an extra argument, [n], which specifies how far along we are in this search process. *)
|
adamc@86
|
877
|
adamc@86
|
878 Definition split' (n : nat) : n <= length s
|
adamc@86
|
879 -> {exists s1, exists s2, length s1 <= n /\ s1 ++ s2 = s /\ P1 s1 /\ P2 s2}
|
adamc@214
|
880 + {forall s1 s2, length s1 <= n -> s1 ++ s2 = s -> ~ P1 s1 \/ ~ P2 s2}.
|
adamc@86
|
881 refine (fix F (n : nat) : n <= length s
|
adamc@86
|
882 -> {exists s1, exists s2, length s1 <= n /\ s1 ++ s2 = s /\ P1 s1 /\ P2 s2}
|
adamc@214
|
883 + {forall s1 s2, length s1 <= n -> s1 ++ s2 = s -> ~ P1 s1 \/ ~ P2 s2} :=
|
adamc@214
|
884 match n with
|
adamc@86
|
885 | O => fun _ => Reduce (P1_dec "" && P2_dec s)
|
adamc@93
|
886 | S n' => fun _ => (P1_dec (substring 0 (S n') s)
|
adamc@93
|
887 && P2_dec (substring (S n') (length s - S n') s))
|
adamc@86
|
888 || F n' _
|
adamc@86
|
889 end); clear F; crush; eauto 7;
|
adamc@86
|
890 match goal with
|
adamc@86
|
891 | [ _ : length ?S <= 0 |- _ ] => destruct S
|
adamc@86
|
892 | [ _ : length ?S' <= S ?N |- _ ] =>
|
adamc@86
|
893 generalize (eq_nat_dec (length S') (S N)); destruct 1
|
adamc@86
|
894 end; crush.
|
adamc@86
|
895 Defined.
|
adamc@86
|
896
|
adamc@93
|
897 (** There is one subtle point in the [split'] code that is worth mentioning. The main body of the function is a [match] on [n]. In the case where [n] is known to be [S n'], we write [S n'] in several places where we might be tempted to write [n]. However, without further work to craft proper [match] annotations, the type-checker does not use the equality between [n] and [S n']. Thus, it is common to see patterns repeated in [match] case bodies in dependently-typed Coq code. We can at least use a [let] expression to avoid copying the pattern more than once, replacing the first case body with:
|
adamc@93
|
898
|
adamc@93
|
899 [[
|
adamc@93
|
900 | S n' => fun _ => let n := S n' in
|
adamc@93
|
901 (P1_dec (substring 0 n s)
|
adamc@93
|
902 && P2_dec (substring n (length s - n) s))
|
adamc@93
|
903 || F n' _
|
adamc@214
|
904
|
adamc@93
|
905 ]]
|
adamc@93
|
906
|
adamc@93
|
907 [split] itself is trivial to implement in terms of [split']. We just ask [split'] to begin its search with [n = length s]. *)
|
adamc@93
|
908
|
adamc@86
|
909 Definition split : {exists s1, exists s2, s = s1 ++ s2 /\ P1 s1 /\ P2 s2}
|
adamc@214
|
910 + {forall s1 s2, s = s1 ++ s2 -> ~ P1 s1 \/ ~ P2 s2}.
|
adamc@86
|
911 refine (Reduce (split' (n := length s) _)); crush; eauto.
|
adamc@86
|
912 Defined.
|
adamc@86
|
913 End split.
|
adamc@86
|
914
|
adamc@86
|
915 Implicit Arguments split [P1 P2].
|
adamc@86
|
916
|
adamc@93
|
917 (* begin hide *)
|
adamc@91
|
918 Lemma app_empty_end : forall s, s ++ "" = s.
|
adamc@91
|
919 induction s; crush.
|
adamc@91
|
920 Qed.
|
adamc@91
|
921
|
adamc@91
|
922 Hint Rewrite app_empty_end : cpdt.
|
adamc@91
|
923
|
adamc@91
|
924 Lemma substring_self : forall s n,
|
adamc@91
|
925 n <= 0
|
adamc@91
|
926 -> substring n (length s - n) s = s.
|
adamc@91
|
927 induction s; substring.
|
adamc@91
|
928 Qed.
|
adamc@91
|
929
|
adamc@91
|
930 Lemma substring_empty : forall s n m,
|
adamc@91
|
931 m <= 0
|
adamc@91
|
932 -> substring n m s = "".
|
adamc@91
|
933 induction s; substring.
|
adamc@91
|
934 Qed.
|
adamc@91
|
935
|
adamc@91
|
936 Hint Rewrite substring_self substring_empty using omega : cpdt.
|
adamc@91
|
937
|
adamc@91
|
938 Lemma substring_split' : forall s n m,
|
adamc@91
|
939 substring n m s ++ substring (n + m) (length s - (n + m)) s
|
adamc@91
|
940 = substring n (length s - n) s.
|
adamc@91
|
941 Hint Rewrite substring_split : cpdt.
|
adamc@91
|
942
|
adamc@91
|
943 induction s; substring.
|
adamc@91
|
944 Qed.
|
adamc@91
|
945
|
adamc@91
|
946 Lemma substring_stack : forall s n2 m1 m2,
|
adamc@91
|
947 m1 <= m2
|
adamc@91
|
948 -> substring 0 m1 (substring n2 m2 s)
|
adamc@91
|
949 = substring n2 m1 s.
|
adamc@91
|
950 induction s; substring.
|
adamc@91
|
951 Qed.
|
adamc@91
|
952
|
adamc@91
|
953 Ltac substring' :=
|
adamc@91
|
954 crush;
|
adamc@91
|
955 repeat match goal with
|
adamc@91
|
956 | [ |- context[match ?N with O => _ | S _ => _ end] ] => case_eq N; crush
|
adamc@91
|
957 end.
|
adamc@91
|
958
|
adamc@91
|
959 Lemma substring_stack' : forall s n1 n2 m1 m2,
|
adamc@91
|
960 n1 + m1 <= m2
|
adamc@91
|
961 -> substring n1 m1 (substring n2 m2 s)
|
adamc@91
|
962 = substring (n1 + n2) m1 s.
|
adamc@91
|
963 induction s; substring';
|
adamc@91
|
964 match goal with
|
adamc@91
|
965 | [ |- substring ?N1 _ _ = substring ?N2 _ _ ] =>
|
adamc@91
|
966 replace N1 with N2; crush
|
adamc@91
|
967 end.
|
adamc@91
|
968 Qed.
|
adamc@91
|
969
|
adamc@91
|
970 Lemma substring_suffix : forall s n,
|
adamc@91
|
971 n <= length s
|
adamc@91
|
972 -> length (substring n (length s - n) s) = length s - n.
|
adamc@91
|
973 induction s; substring.
|
adamc@91
|
974 Qed.
|
adamc@91
|
975
|
adamc@91
|
976 Lemma substring_suffix_emp' : forall s n m,
|
adamc@91
|
977 substring n (S m) s = ""
|
adamc@91
|
978 -> n >= length s.
|
adamc@91
|
979 induction s; crush;
|
adamc@91
|
980 match goal with
|
adamc@91
|
981 | [ |- ?N >= _ ] => destruct N; crush
|
adamc@91
|
982 end;
|
adamc@91
|
983 match goal with
|
adamc@91
|
984 [ |- S ?N >= S ?E ] => assert (N >= E); [ eauto | omega ]
|
adamc@91
|
985 end.
|
adamc@91
|
986 Qed.
|
adamc@91
|
987
|
adamc@91
|
988 Lemma substring_suffix_emp : forall s n m,
|
adamc@92
|
989 substring n m s = ""
|
adamc@92
|
990 -> m > 0
|
adamc@91
|
991 -> n >= length s.
|
adamc@91
|
992 destruct m as [| m]; [crush | intros; apply substring_suffix_emp' with m; assumption].
|
adamc@91
|
993 Qed.
|
adamc@91
|
994
|
adamc@91
|
995 Hint Rewrite substring_stack substring_stack' substring_suffix
|
adamc@91
|
996 using omega : cpdt.
|
adamc@91
|
997
|
adamc@91
|
998 Lemma minus_minus : forall n m1 m2,
|
adamc@91
|
999 m1 + m2 <= n
|
adamc@91
|
1000 -> n - m1 - m2 = n - (m1 + m2).
|
adamc@91
|
1001 intros; omega.
|
adamc@91
|
1002 Qed.
|
adamc@91
|
1003
|
adamc@91
|
1004 Lemma plus_n_Sm' : forall n m : nat, S (n + m) = m + S n.
|
adamc@91
|
1005 intros; omega.
|
adamc@91
|
1006 Qed.
|
adamc@91
|
1007
|
adamc@91
|
1008 Hint Rewrite minus_minus using omega : cpdt.
|
adamc@93
|
1009 (* end hide *)
|
adamc@93
|
1010
|
adamc@93
|
1011 (** One more helper function will come in handy: [dec_star], for implementing another linear search through ways of splitting a string, this time for implementing the Kleene star. *)
|
adamc@91
|
1012
|
adamc@91
|
1013 Section dec_star.
|
adamc@91
|
1014 Variable P : string -> Prop.
|
adamc@214
|
1015 Variable P_dec : forall s, {P s} + {~ P s}.
|
adamc@91
|
1016
|
adamc@93
|
1017 (** Some new lemmas and hints about the [star] type family are useful here. We omit them here; they are included in the book source at this point. *)
|
adamc@93
|
1018
|
adamc@93
|
1019 (* begin hide *)
|
adamc@91
|
1020 Hint Constructors star.
|
adamc@91
|
1021
|
adamc@91
|
1022 Lemma star_empty : forall s,
|
adamc@91
|
1023 length s = 0
|
adamc@91
|
1024 -> star P s.
|
adamc@91
|
1025 destruct s; crush.
|
adamc@91
|
1026 Qed.
|
adamc@91
|
1027
|
adamc@91
|
1028 Lemma star_singleton : forall s, P s -> star P s.
|
adamc@91
|
1029 intros; rewrite <- (app_empty_end s); auto.
|
adamc@91
|
1030 Qed.
|
adamc@91
|
1031
|
adamc@91
|
1032 Lemma star_app : forall s n m,
|
adamc@91
|
1033 P (substring n m s)
|
adamc@91
|
1034 -> star P (substring (n + m) (length s - (n + m)) s)
|
adamc@91
|
1035 -> star P (substring n (length s - n) s).
|
adamc@91
|
1036 induction n; substring;
|
adamc@91
|
1037 match goal with
|
adamc@91
|
1038 | [ H : P (substring ?N ?M ?S) |- _ ] =>
|
adamc@91
|
1039 solve [ rewrite <- (substring_split S M); auto
|
adamc@91
|
1040 | rewrite <- (substring_split' S N M); auto ]
|
adamc@91
|
1041 end.
|
adamc@91
|
1042 Qed.
|
adamc@91
|
1043
|
adamc@91
|
1044 Hint Resolve star_empty star_singleton star_app.
|
adamc@91
|
1045
|
adamc@91
|
1046 Variable s : string.
|
adamc@91
|
1047
|
adamc@91
|
1048 Lemma star_inv : forall s,
|
adamc@91
|
1049 star P s
|
adamc@91
|
1050 -> s = ""
|
adamc@91
|
1051 \/ exists i, i < length s
|
adamc@91
|
1052 /\ P (substring 0 (S i) s)
|
adamc@91
|
1053 /\ star P (substring (S i) (length s - S i) s).
|
adamc@91
|
1054 Hint Extern 1 (exists i : nat, _) =>
|
adamc@91
|
1055 match goal with
|
adamc@91
|
1056 | [ H : P (String _ ?S) |- _ ] => exists (length S); crush
|
adamc@91
|
1057 end.
|
adamc@91
|
1058
|
adamc@91
|
1059 induction 1; [
|
adamc@91
|
1060 crush
|
adamc@91
|
1061 | match goal with
|
adamc@91
|
1062 | [ _ : P ?S |- _ ] => destruct S; crush
|
adamc@91
|
1063 end
|
adamc@91
|
1064 ].
|
adamc@91
|
1065 Qed.
|
adamc@91
|
1066
|
adamc@91
|
1067 Lemma star_substring_inv : forall n,
|
adamc@91
|
1068 n <= length s
|
adamc@91
|
1069 -> star P (substring n (length s - n) s)
|
adamc@91
|
1070 -> substring n (length s - n) s = ""
|
adamc@91
|
1071 \/ exists l, l < length s - n
|
adamc@91
|
1072 /\ P (substring n (S l) s)
|
adamc@91
|
1073 /\ star P (substring (n + S l) (length s - (n + S l)) s).
|
adamc@91
|
1074 Hint Rewrite plus_n_Sm' : cpdt.
|
adamc@91
|
1075
|
adamc@91
|
1076 intros;
|
adamc@91
|
1077 match goal with
|
adamc@91
|
1078 | [ H : star _ _ |- _ ] => generalize (star_inv H); do 3 crush; eauto
|
adamc@91
|
1079 end.
|
adamc@91
|
1080 Qed.
|
adamc@93
|
1081 (* end hide *)
|
adamc@93
|
1082
|
adamc@93
|
1083 (** The function [dec_star''] implements a single iteration of the star. That is, it tries to find a string prefix matching [P], and it calls a parameter function on the remainder of the string. *)
|
adamc@91
|
1084
|
adamc@91
|
1085 Section dec_star''.
|
adamc@91
|
1086 Variable n : nat.
|
adamc@93
|
1087 (** [n] is the length of the prefix of [s] that we have already processed. *)
|
adamc@91
|
1088
|
adamc@91
|
1089 Variable P' : string -> Prop.
|
adamc@91
|
1090 Variable P'_dec : forall n' : nat, n' > n
|
adamc@91
|
1091 -> {P' (substring n' (length s - n') s)}
|
adamc@214
|
1092 + {~ P' (substring n' (length s - n') s)}.
|
adamc@93
|
1093 (** When we use [dec_star''], we will instantiate [P'_dec] with a function for continuing the search for more instances of [P] in [s]. *)
|
adamc@93
|
1094
|
adamc@93
|
1095 (** Now we come to [dec_star''] itself. It takes as an input a natural [l] that records how much of the string has been searched so far, as we did for [split']. The return type expresses that [dec_star''] is looking for an index into [s] that splits [s] into a nonempty prefix and a suffix, such that the prefix satisfies [P] and the suffix satisfies [P']. *)
|
adamc@91
|
1096
|
adamc@91
|
1097 Definition dec_star'' (l : nat)
|
adamc@91
|
1098 : {exists l', S l' <= l
|
adamc@91
|
1099 /\ P (substring n (S l') s) /\ P' (substring (n + S l') (length s - (n + S l')) s)}
|
adamc@91
|
1100 + {forall l', S l' <= l
|
adamc@214
|
1101 -> ~ P (substring n (S l') s)
|
adamc@214
|
1102 \/ ~ P' (substring (n + S l') (length s - (n + S l')) s)}.
|
adamc@91
|
1103 refine (fix F (l : nat) : {exists l', S l' <= l
|
adamc@91
|
1104 /\ P (substring n (S l') s) /\ P' (substring (n + S l') (length s - (n + S l')) s)}
|
adamc@91
|
1105 + {forall l', S l' <= l
|
adamc@214
|
1106 -> ~ P (substring n (S l') s)
|
adamc@214
|
1107 \/ ~ P' (substring (n + S l') (length s - (n + S l')) s)} :=
|
adamc@214
|
1108 match l with
|
adamc@91
|
1109 | O => _
|
adamc@91
|
1110 | S l' =>
|
adamc@91
|
1111 (P_dec (substring n (S l') s) && P'_dec (n' := n + S l') _)
|
adamc@91
|
1112 || F l'
|
adamc@91
|
1113 end); clear F; crush; eauto 7;
|
adamc@91
|
1114 match goal with
|
adamc@91
|
1115 | [ H : ?X <= S ?Y |- _ ] => destruct (eq_nat_dec X (S Y)); crush
|
adamc@91
|
1116 end.
|
adamc@91
|
1117 Defined.
|
adamc@91
|
1118 End dec_star''.
|
adamc@91
|
1119
|
adamc@93
|
1120 (* begin hide *)
|
adamc@92
|
1121 Lemma star_length_contra : forall n,
|
adamc@92
|
1122 length s > n
|
adamc@92
|
1123 -> n >= length s
|
adamc@92
|
1124 -> False.
|
adamc@92
|
1125 crush.
|
adamc@92
|
1126 Qed.
|
adamc@92
|
1127
|
adamc@92
|
1128 Lemma star_length_flip : forall n n',
|
adamc@92
|
1129 length s - n <= S n'
|
adamc@92
|
1130 -> length s > n
|
adamc@92
|
1131 -> length s - n > 0.
|
adamc@92
|
1132 crush.
|
adamc@92
|
1133 Qed.
|
adamc@92
|
1134
|
adamc@92
|
1135 Hint Resolve star_length_contra star_length_flip substring_suffix_emp.
|
adamc@93
|
1136 (* end hide *)
|
adamc@92
|
1137
|
adamc@93
|
1138 (** The work of [dec_star''] is nested inside another linear search by [dec_star'], which provides the final functionality we need, but for arbitrary suffixes of [s], rather than just for [s] overall. *)
|
adamc@93
|
1139
|
adamc@91
|
1140 Definition dec_star' (n n' : nat) : length s - n' <= n
|
adamc@91
|
1141 -> {star P (substring n' (length s - n') s)}
|
adamc@214
|
1142 + {~ star P (substring n' (length s - n') s)}.
|
adamc@214
|
1143 refine (fix F (n n' : nat) : length s - n' <= n
|
adamc@91
|
1144 -> {star P (substring n' (length s - n') s)}
|
adamc@214
|
1145 + {~ star P (substring n' (length s - n') s)} :=
|
adamc@214
|
1146 match n with
|
adamc@91
|
1147 | O => fun _ => Yes
|
adamc@91
|
1148 | S n'' => fun _ =>
|
adamc@91
|
1149 le_gt_dec (length s) n'
|
adamc@91
|
1150 || dec_star'' (n := n') (star P) (fun n0 _ => Reduce (F n'' n0 _)) (length s - n')
|
adamc@92
|
1151 end); clear F; crush; eauto;
|
adamc@92
|
1152 match goal with
|
adamc@92
|
1153 | [ H : star _ _ |- _ ] => apply star_substring_inv in H; crush; eauto
|
adamc@92
|
1154 end;
|
adamc@92
|
1155 match goal with
|
adamc@92
|
1156 | [ H1 : _ < _ - _, H2 : forall l' : nat, _ <= _ - _ -> _ |- _ ] =>
|
adamc@92
|
1157 generalize (H2 _ (lt_le_S _ _ H1)); tauto
|
adamc@92
|
1158 end.
|
adamc@91
|
1159 Defined.
|
adamc@91
|
1160
|
adamc@93
|
1161 (** Finally, we have [dec_star]. It has a straightforward implementation. We introduce a spurious match on [s] so that [simpl] will know to reduce calls to [dec_star]. The heuristic that [simpl] uses is only to unfold identifier definitions when doing so would simplify some [match] expression. *)
|
adamc@93
|
1162
|
adamc@214
|
1163 Definition dec_star : {star P s} + {~ star P s}.
|
adamc@204
|
1164 refine (match s return _ with
|
adamc@91
|
1165 | "" => Reduce (dec_star' (n := length s) 0 _)
|
adamc@91
|
1166 | _ => Reduce (dec_star' (n := length s) 0 _)
|
adamc@91
|
1167 end); crush.
|
adamc@91
|
1168 Defined.
|
adamc@91
|
1169 End dec_star.
|
adamc@91
|
1170
|
adamc@93
|
1171 (* begin hide *)
|
adamc@86
|
1172 Lemma app_cong : forall x1 y1 x2 y2,
|
adamc@86
|
1173 x1 = x2
|
adamc@86
|
1174 -> y1 = y2
|
adamc@86
|
1175 -> x1 ++ y1 = x2 ++ y2.
|
adamc@86
|
1176 congruence.
|
adamc@86
|
1177 Qed.
|
adamc@86
|
1178
|
adamc@86
|
1179 Hint Resolve app_cong.
|
adamc@93
|
1180 (* end hide *)
|
adamc@93
|
1181
|
adamc@93
|
1182 (** With these helper functions completed, the implementation of our [matches] function is refreshingly straightforward. We only need one small piece of specific tactic work beyond what [crush] does for us. *)
|
adamc@86
|
1183
|
adamc@214
|
1184 Definition matches P (r : regexp P) s : {P s} + {~ P s}.
|
adamc@214
|
1185 refine (fix F P (r : regexp P) s : {P s} + {~ P s} :=
|
adamc@86
|
1186 match r with
|
adamc@86
|
1187 | Char ch => string_dec s (String ch "")
|
adamc@86
|
1188 | Concat _ _ r1 r2 => Reduce (split (F _ r1) (F _ r2) s)
|
adamc@87
|
1189 | Or _ _ r1 r2 => F _ r1 s || F _ r2 s
|
adamc@91
|
1190 | Star _ r => dec_star _ _ _
|
adamc@86
|
1191 end); crush;
|
adamc@86
|
1192 match goal with
|
adamc@86
|
1193 | [ H : _ |- _ ] => generalize (H _ _ (refl_equal _))
|
adamc@93
|
1194 end; tauto.
|
adamc@86
|
1195 Defined.
|
adamc@86
|
1196
|
adam@283
|
1197 (** It is interesting to pause briefly to consider alternate implementations of [matches]. Dependent types give us much latitude in how specific correctness properties may be encoded with types. For instance, we could have made [regexp] a non-indexed inductive type, along the lines of what is possible in traditional ML and Haskell. We could then have implemented a recursive function to map [regexp]s to their intended meanings, much as we have done with types and programs in other examples. That style is compatible with the [refine]-based approach that we have used here, and it might be an interesting exercise to redo the code from this subsection in that alternate style or some further encoding of the reader's choice. The main advantage of indexed inductive types is that they generally lead to the smallest amount of code. *)
|
adam@283
|
1198
|
adamc@93
|
1199 (* begin hide *)
|
adamc@86
|
1200 Example hi := Concat (Char "h"%char) (Char "i"%char).
|
adamc@86
|
1201 Eval simpl in matches hi "hi".
|
adamc@86
|
1202 Eval simpl in matches hi "bye".
|
adamc@87
|
1203
|
adamc@87
|
1204 Example a_b := Or (Char "a"%char) (Char "b"%char).
|
adamc@87
|
1205 Eval simpl in matches a_b "".
|
adamc@87
|
1206 Eval simpl in matches a_b "a".
|
adamc@87
|
1207 Eval simpl in matches a_b "aa".
|
adamc@87
|
1208 Eval simpl in matches a_b "b".
|
adam@283
|
1209 (* end hide *)
|
adam@283
|
1210
|
adam@283
|
1211 (** Many regular expression matching problems are easy to test. The reader may run each of the following queries to verify that it gives the correct answer. *)
|
adamc@91
|
1212
|
adamc@91
|
1213 Example a_star := Star (Char "a"%char).
|
adamc@91
|
1214 Eval simpl in matches a_star "".
|
adamc@91
|
1215 Eval simpl in matches a_star "a".
|
adamc@91
|
1216 Eval simpl in matches a_star "b".
|
adamc@91
|
1217 Eval simpl in matches a_star "aa".
|
adam@283
|
1218
|
adam@283
|
1219 (** Evaluation inside Coq does not scale very well, so it is easy to build other tests that run for hours or more. Such cases are better suited to execution with the extracted OCaml code. *)
|
adamc@101
|
1220
|
adamc@101
|
1221
|
adamc@101
|
1222 (** * Exercises *)
|
adamc@101
|
1223
|
adamc@101
|
1224 (** %\begin{enumerate}%#<ol>#
|
adamc@101
|
1225
|
adamc@101
|
1226 %\item%#<li># Define a kind of dependently-typed lists, where a list's type index gives a lower bound on how many of its elements satisfy a particular predicate. In particular, for an arbitrary set [A] and a predicate [P] over it:
|
adamc@101
|
1227 %\begin{enumerate}%#<ol>#
|
adamc@101
|
1228 %\item%#<li># Define a type [plist : nat -> Set]. Each [plist n] should be a list of [A]s, where it is guaranteed that at least [n] distinct elements satisfy [P]. There is wide latitude in choosing how to encode this. You should try to avoid using subset types or any other mechanism based on annotating non-dependent types with propositions after-the-fact.#</li>#
|
adamc@102
|
1229 %\item%#<li># Define a version of list concatenation that works on [plist]s. The type of this new function should express as much information as possible about the output [plist].#</li>#
|
adamc@101
|
1230 %\item%#<li># Define a function [plistOut] for translating [plist]s to normal [list]s.#</li>#
|
adamc@101
|
1231 %\item%#<li># Define a function [plistIn] for translating [list]s to [plist]s. The type of [plistIn] should make it clear that the best bound on [P]-matching elements is chosen. You may assume that you are given a dependently-typed function for deciding instances of [P].#</li>#
|
adamc@101
|
1232 %\item%#<li># Prove that, for any list [ls], [plistOut (plistIn ls) = ls]. This should be the only part of the exercise where you use tactic-based proving.#</li>#
|
adamc@101
|
1233 %\item%#<li># Define a function [grab : forall n (ls : plist (S n)), sig P]. That is, when given a [plist] guaranteed to contain at least one element satisfying [P], [grab] produces such an element. [sig] is the type family of sigma types, and [sig P] is extensionally equivalent to [{x : A | P x}], though the latter form uses an eta-expansion of [P] instead of [P] itself as the predicate.#</li>#
|
adamc@101
|
1234 #</ol>#%\end{enumerate}% #</li>#
|
adamc@101
|
1235
|
adamc@102
|
1236 #</ol>#%\end{enumerate}% *)
|