adam@297
|
1 (* Copyright (c) 2008-2011, Adam Chlipala
|
adamc@83
|
2 *
|
adamc@83
|
3 * This work is licensed under a
|
adamc@83
|
4 * Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
|
adamc@83
|
5 * Unported License.
|
adamc@83
|
6 * The license text is available at:
|
adamc@83
|
7 * http://creativecommons.org/licenses/by-nc-nd/3.0/
|
adamc@83
|
8 *)
|
adamc@83
|
9
|
adamc@83
|
10 (* begin hide *)
|
adamc@85
|
11 Require Import Arith Bool List.
|
adamc@83
|
12
|
adam@314
|
13 Require Import CpdtTactics MoreSpecif.
|
adamc@83
|
14
|
adamc@83
|
15 Set Implicit Arguments.
|
adamc@83
|
16 (* end hide *)
|
adamc@83
|
17
|
adamc@83
|
18
|
adamc@83
|
19 (** %\chapter{More Dependent Types}% *)
|
adamc@83
|
20
|
adam@292
|
21 (** Subset types and their relatives help us integrate verification with programming. Though they reorganize the certified programmer's workflow, they tend not to have deep effects on proofs. We write largely the same proofs as we would for classical verification, with some of the structure moved into the programs themselves. It turns out that, when we use dependent types to their full potential, we warp the development and proving process even more than that, picking up %``%#"#free theorems#"#%''% to the extent that often a certified program is hardly more complex than its uncertified counterpart in Haskell or ML.
|
adamc@83
|
22
|
adam@338
|
23 In particular, we have only scratched the tip of the iceberg that is Coq's inductive definition mechanism. The inductive types we have seen so far have their counterparts in the other proof assistants that we surveyed in Chapter 1. This chapter explores the strange new world of dependent inductive datatypes (that is, dependent inductive types outside [Prop]), a possibility that sets Coq apart from all of the competition not based on type theory. *)
|
adamc@83
|
24
|
adamc@84
|
25
|
adamc@84
|
26 (** * Length-Indexed Lists *)
|
adamc@84
|
27
|
adam@338
|
28 (** Many introductions to dependent types start out by showing how to use them to eliminate array bounds checks%\index{array bounds checks}%. When the type of an array tells you how many elements it has, your compiler can detect out-of-bounds dereferences statically. Since we are working in a pure functional language, the next best thing is length-indexed lists%\index{length-indexed lists}%, which the following code defines. *)
|
adamc@84
|
29
|
adamc@84
|
30 Section ilist.
|
adamc@84
|
31 Variable A : Set.
|
adamc@84
|
32
|
adamc@84
|
33 Inductive ilist : nat -> Set :=
|
adamc@84
|
34 | Nil : ilist O
|
adamc@84
|
35 | Cons : forall n, A -> ilist n -> ilist (S n).
|
adamc@84
|
36
|
adamc@84
|
37 (** We see that, within its section, [ilist] is given type [nat -> Set]. Previously, every inductive type we have seen has either had plain [Set] as its type or has been a predicate with some type ending in [Prop]. The full generality of inductive definitions lets us integrate the expressivity of predicates directly into our normal programming.
|
adamc@84
|
38
|
adam@338
|
39 The [nat] argument to [ilist] tells us the length of the list. The types of [ilist]'s constructors tell us that a [Nil] list has length [O] and that a [Cons] list has length one greater than the length of its tail. We may apply [ilist] to any natural number, even natural numbers that are only known at runtime. It is this breaking of the %\index{phase distinction}\textit{%#<i>#phase distinction#</i>#%}% that characterizes [ilist] as %\textit{%#<i>#dependently typed#</i>#%}%.
|
adamc@84
|
40
|
adamc@213
|
41 In expositions of list types, we usually see the length function defined first, but here that would not be a very productive function to code. Instead, let us implement list concatenation. *)
|
adamc@84
|
42
|
adamc@213
|
43 Fixpoint app n1 (ls1 : ilist n1) n2 (ls2 : ilist n2) : ilist (n1 + n2) :=
|
adamc@213
|
44 match ls1 with
|
adamc@213
|
45 | Nil => ls2
|
adamc@213
|
46 | Cons _ x ls1' => Cons x (app ls1' ls2)
|
adamc@213
|
47 end.
|
adamc@84
|
48
|
adam@338
|
49 (** Past Coq versions signalled an error for this definition. The code is still invalid within Coq's core language, but current Coq versions automatically add annotations to the original program, producing a valid core program. These are the annotations on [match] discriminees that we began to study in the previous chapter. We can rewrite [app] to give the annotations explicitly. *)
|
adamc@100
|
50
|
adamc@100
|
51 (* begin thide *)
|
adam@338
|
52 Fixpoint app' n1 (ls1 : ilist n1) n2 (ls2 : ilist n2) : ilist (n1 + n2) :=
|
adam@338
|
53 match ls1 in (ilist n1) return (ilist (n1 + n2)) with
|
adam@338
|
54 | Nil => ls2
|
adam@338
|
55 | Cons _ x ls1' => Cons x (app' ls1' ls2)
|
adam@338
|
56 end.
|
adamc@100
|
57 (* end thide *)
|
adamc@84
|
58
|
adam@338
|
59 (** Using [return] alone allowed us to express a dependency of the [match] result type on the %\textit{%#<i>#value#</i>#%}% of the discriminee. What %\index{Gallina terms!in}%[in] adds to our arsenal is a way of expressing a dependency on the %\textit{%#<i>#type#</i>#%}% of the discriminee. Specifically, the [n1] in the [in] clause above is a %\textit{%#<i>#binding occurrence#</i>#%}% whose scope is the [return] clause.
|
adamc@84
|
60
|
adamc@84
|
61 We may use [in] clauses only to bind names for the arguments of an inductive type family. That is, each [in] clause must be an inductive type family name applied to a sequence of underscores and variable names of the proper length. The positions for %\textit{%#<i>#parameters#</i>#%}% to the type family must all be underscores. Parameters are those arguments declared with section variables or with entries to the left of the first colon in an inductive definition. They cannot vary depending on which constructor was used to build the discriminee, so Coq prohibits pointless matches on them. It is those arguments defined in the type to the right of the colon that we may name with [in] clauses.
|
adamc@84
|
62
|
adam@338
|
63 Our [app] function could be typed in so-called %\index{stratified type systems}\textit{%#<i>#stratified#</i>#%}% type systems, which avoid true dependency. That is, we could consider the length indices to lists to live in a separate, compile-time-only universe from the lists themselves. This stratification between a compile-time universe and a run-time universe, with no references to the latter in the former, gives rise to the terminology %``%#"#stratified.#"#%''% Our next example would be harder to implement in a stratified system. We write an injection function from regular lists to length-indexed lists. A stratified implementation would need to duplicate the definition of lists across compile-time and run-time versions, and the run-time versions would need to be indexed by the compile-time versions. *)
|
adamc@84
|
64
|
adamc@100
|
65 (* EX: Implement injection from normal lists *)
|
adamc@100
|
66
|
adamc@100
|
67 (* begin thide *)
|
adamc@84
|
68 Fixpoint inject (ls : list A) : ilist (length ls) :=
|
adamc@213
|
69 match ls with
|
adamc@84
|
70 | nil => Nil
|
adamc@84
|
71 | h :: t => Cons h (inject t)
|
adamc@84
|
72 end.
|
adamc@84
|
73
|
adamc@84
|
74 (** We can define an inverse conversion and prove that it really is an inverse. *)
|
adamc@84
|
75
|
adamc@213
|
76 Fixpoint unject n (ls : ilist n) : list A :=
|
adamc@84
|
77 match ls with
|
adamc@84
|
78 | Nil => nil
|
adamc@84
|
79 | Cons _ h t => h :: unject t
|
adamc@84
|
80 end.
|
adamc@84
|
81
|
adamc@84
|
82 Theorem inject_inverse : forall ls, unject (inject ls) = ls.
|
adamc@84
|
83 induction ls; crush.
|
adamc@84
|
84 Qed.
|
adamc@100
|
85 (* end thide *)
|
adamc@100
|
86
|
adam@338
|
87 (* EX: Implement statically checked "car"/"hd" *)
|
adamc@84
|
88
|
adam@283
|
89 (** Now let us attempt a function that is surprisingly tricky to write. In ML, the list head function raises an exception when passed an empty list. With length-indexed lists, we can rule out such invalid calls statically, and here is a first attempt at doing so. We write [???] as a placeholder for a term that we do not know how to write, not for any real Coq notation like those introduced in the previous chapter.
|
adamc@84
|
90
|
adamc@84
|
91 [[
|
adamc@84
|
92 Definition hd n (ls : ilist (S n)) : A :=
|
adamc@84
|
93 match ls with
|
adamc@84
|
94 | Nil => ???
|
adamc@84
|
95 | Cons _ h _ => h
|
adamc@84
|
96 end.
|
adamc@213
|
97
|
adamc@213
|
98 ]]
|
adamc@84
|
99
|
adamc@84
|
100 It is not clear what to write for the [Nil] case, so we are stuck before we even turn our function over to the type checker. We could try omitting the [Nil] case:
|
adamc@84
|
101
|
adamc@84
|
102 [[
|
adamc@84
|
103 Definition hd n (ls : ilist (S n)) : A :=
|
adamc@84
|
104 match ls with
|
adamc@84
|
105 | Cons _ h _ => h
|
adamc@84
|
106 end.
|
adam@338
|
107 ]]
|
adamc@84
|
108
|
adam@338
|
109 <<
|
adamc@84
|
110 Error: Non exhaustive pattern-matching: no clause found for pattern Nil
|
adam@338
|
111 >>
|
adamc@84
|
112
|
adam@275
|
113 Unlike in ML, we cannot use inexhaustive pattern matching, because there is no conception of a %\texttt{%#<tt>#Match#</tt>#%}% exception to be thrown. In fact, recent versions of Coq %\textit{%#<i>#do#</i>#%}% allow this, by implicit translation to a [match] that considers all constructors. It is educational to discover that encoding ourselves directly. We might try using an [in] clause somehow.
|
adamc@84
|
114
|
adamc@84
|
115 [[
|
adamc@84
|
116 Definition hd n (ls : ilist (S n)) : A :=
|
adamc@84
|
117 match ls in (ilist (S n)) with
|
adamc@84
|
118 | Cons _ h _ => h
|
adamc@84
|
119 end.
|
adamc@84
|
120 ]]
|
adamc@84
|
121
|
adam@338
|
122 <<
|
adam@338
|
123 Error: The reference n was not found in the current environment
|
adam@338
|
124 >>
|
adam@338
|
125
|
adam@338
|
126 In this and other cases, we feel like we want [in] clauses with type family arguments that are not variables. Unfortunately, Coq only supports variables in those positions. A completely general mechanism could only be supported with a solution to the problem of higher-order unification%~\cite{HOU}%, which is undecidable. There %\textit{%#<i>#are#</i>#%}% useful heuristics for handling non-variable indices which are gradually making their way into Coq, but we will spend some time in this and the next few chapters on effective pattern matching on dependent types using only the primitive [match] annotations.
|
adamc@84
|
127
|
adamc@84
|
128 Our final, working attempt at [hd] uses an auxiliary function and a surprising [return] annotation. *)
|
adamc@84
|
129
|
adamc@100
|
130 (* begin thide *)
|
adamc@84
|
131 Definition hd' n (ls : ilist n) :=
|
adamc@84
|
132 match ls in (ilist n) return (match n with O => unit | S _ => A end) with
|
adamc@84
|
133 | Nil => tt
|
adamc@84
|
134 | Cons _ h _ => h
|
adamc@84
|
135 end.
|
adamc@84
|
136
|
adam@283
|
137 Check hd'.
|
adam@283
|
138 (** %\vspace{-.15in}% [[
|
adam@283
|
139 hd'
|
adam@283
|
140 : forall n : nat, ilist n -> match n with
|
adam@283
|
141 | 0 => unit
|
adam@283
|
142 | S _ => A
|
adam@283
|
143 end
|
adam@283
|
144
|
adam@302
|
145 ]]
|
adam@302
|
146 *)
|
adam@283
|
147
|
adamc@84
|
148 Definition hd n (ls : ilist (S n)) : A := hd' ls.
|
adamc@100
|
149 (* end thide *)
|
adamc@84
|
150
|
adam@338
|
151 End ilist.
|
adam@338
|
152
|
adamc@84
|
153 (** We annotate our main [match] with a type that is itself a [match]. We write that the function [hd'] returns [unit] when the list is empty and returns the carried type [A] in all other cases. In the definition of [hd], we just call [hd']. Because the index of [ls] is known to be nonzero, the type checker reduces the [match] in the type of [hd'] to [A]. *)
|
adamc@84
|
154
|
adamc@85
|
155
|
adamc@85
|
156 (** * A Tagless Interpreter *)
|
adamc@85
|
157
|
adam@338
|
158 (** A favorite example for motivating the power of functional programming is implementation of a simple expression language interpreter. In ML and Haskell, such interpreters are often implemented using an algebraic datatype of values, where at many points it is checked that a value was built with the right constructor of the value type. With dependent types, we can implement a %\index{tagless interpreters}\textit{%#<i>#tagless#</i>#%}% interpreter that both removes this source of runtime inefficiency and gives us more confidence that our implementation is correct. *)
|
adamc@85
|
159
|
adamc@85
|
160 Inductive type : Set :=
|
adamc@85
|
161 | Nat : type
|
adamc@85
|
162 | Bool : type
|
adamc@85
|
163 | Prod : type -> type -> type.
|
adamc@85
|
164
|
adamc@85
|
165 Inductive exp : type -> Set :=
|
adamc@85
|
166 | NConst : nat -> exp Nat
|
adamc@85
|
167 | Plus : exp Nat -> exp Nat -> exp Nat
|
adamc@85
|
168 | Eq : exp Nat -> exp Nat -> exp Bool
|
adamc@85
|
169
|
adamc@85
|
170 | BConst : bool -> exp Bool
|
adamc@85
|
171 | And : exp Bool -> exp Bool -> exp Bool
|
adamc@85
|
172 | If : forall t, exp Bool -> exp t -> exp t -> exp t
|
adamc@85
|
173
|
adamc@85
|
174 | Pair : forall t1 t2, exp t1 -> exp t2 -> exp (Prod t1 t2)
|
adamc@85
|
175 | Fst : forall t1 t2, exp (Prod t1 t2) -> exp t1
|
adamc@85
|
176 | Snd : forall t1 t2, exp (Prod t1 t2) -> exp t2.
|
adamc@85
|
177
|
adamc@85
|
178 (** We have a standard algebraic datatype [type], defining a type language of naturals, booleans, and product (pair) types. Then we have the indexed inductive type [exp], where the argument to [exp] tells us the encoded type of an expression. In effect, we are defining the typing rules for expressions simultaneously with the syntax.
|
adamc@85
|
179
|
adamc@85
|
180 We can give types and expressions semantics in a new style, based critically on the chance for %\textit{%#<i>#type-level computation#</i>#%}%. *)
|
adamc@85
|
181
|
adamc@85
|
182 Fixpoint typeDenote (t : type) : Set :=
|
adamc@85
|
183 match t with
|
adamc@85
|
184 | Nat => nat
|
adamc@85
|
185 | Bool => bool
|
adamc@85
|
186 | Prod t1 t2 => typeDenote t1 * typeDenote t2
|
adamc@85
|
187 end%type.
|
adamc@85
|
188
|
adam@338
|
189 (** The [typeDenote] function compiles types of our object language into %``%#"#native#"#%''% Coq types. It is deceptively easy to implement. The only new thing we see is the [%][type] annotation, which tells Coq to parse the [match] expression using the notations associated with types. Without this annotation, the [*] would be interpreted as multiplication on naturals, rather than as the product type constructor. The token [type] is one example of an identifer bound to a %\textit{%#<i>#notation scope#</i>#%}%. In this book, we will not go into more detail on notation scopes, but the Coq manual can be consulted for more information.
|
adamc@85
|
190
|
adamc@85
|
191 We can define a function [expDenote] that is typed in terms of [typeDenote]. *)
|
adamc@85
|
192
|
adamc@213
|
193 Fixpoint expDenote t (e : exp t) : typeDenote t :=
|
adamc@213
|
194 match e with
|
adamc@85
|
195 | NConst n => n
|
adamc@85
|
196 | Plus e1 e2 => expDenote e1 + expDenote e2
|
adamc@85
|
197 | Eq e1 e2 => if eq_nat_dec (expDenote e1) (expDenote e2) then true else false
|
adamc@85
|
198
|
adamc@85
|
199 | BConst b => b
|
adamc@85
|
200 | And e1 e2 => expDenote e1 && expDenote e2
|
adamc@85
|
201 | If _ e' e1 e2 => if expDenote e' then expDenote e1 else expDenote e2
|
adamc@85
|
202
|
adamc@85
|
203 | Pair _ _ e1 e2 => (expDenote e1, expDenote e2)
|
adamc@85
|
204 | Fst _ _ e' => fst (expDenote e')
|
adamc@85
|
205 | Snd _ _ e' => snd (expDenote e')
|
adamc@85
|
206 end.
|
adamc@85
|
207
|
adamc@213
|
208 (** Despite the fancy type, the function definition is routine. In fact, it is less complicated than what we would write in ML or Haskell 98, since we do not need to worry about pushing final values in and out of an algebraic datatype. The only unusual thing is the use of an expression of the form [if E then true else false] in the [Eq] case. Remember that [eq_nat_dec] has a rich dependent type, rather than a simple boolean type. Coq's native [if] is overloaded to work on a test of any two-constructor type, so we can use [if] to build a simple boolean from the [sumbool] that [eq_nat_dec] returns.
|
adamc@85
|
209
|
adamc@85
|
210 We can implement our old favorite, a constant folding function, and prove it correct. It will be useful to write a function [pairOut] that checks if an [exp] of [Prod] type is a pair, returning its two components if so. Unsurprisingly, a first attempt leads to a type error.
|
adamc@85
|
211
|
adamc@85
|
212 [[
|
adamc@85
|
213 Definition pairOut t1 t2 (e : exp (Prod t1 t2)) : option (exp t1 * exp t2) :=
|
adamc@85
|
214 match e in (exp (Prod t1 t2)) return option (exp t1 * exp t2) with
|
adamc@85
|
215 | Pair _ _ e1 e2 => Some (e1, e2)
|
adamc@85
|
216 | _ => None
|
adamc@85
|
217 end.
|
adam@338
|
218 ]]
|
adamc@85
|
219
|
adam@338
|
220 <<
|
adamc@85
|
221 Error: The reference t2 was not found in the current environment
|
adam@338
|
222 >>
|
adamc@85
|
223
|
adamc@85
|
224 We run again into the problem of not being able to specify non-variable arguments in [in] clauses. The problem would just be hopeless without a use of an [in] clause, though, since the result type of the [match] depends on an argument to [exp]. Our solution will be to use a more general type, as we did for [hd]. First, we define a type-valued function to use in assigning a type to [pairOut]. *)
|
adamc@85
|
225
|
adamc@100
|
226 (* EX: Define a function [pairOut : forall t1 t2, exp (Prod t1 t2) -> option (exp t1 * exp t2)] *)
|
adamc@100
|
227
|
adamc@100
|
228 (* begin thide *)
|
adamc@85
|
229 Definition pairOutType (t : type) :=
|
adamc@85
|
230 match t with
|
adamc@85
|
231 | Prod t1 t2 => option (exp t1 * exp t2)
|
adamc@85
|
232 | _ => unit
|
adamc@85
|
233 end.
|
adamc@85
|
234
|
adamc@85
|
235 (** When passed a type that is a product, [pairOutType] returns our final desired type. On any other input type, [pairOutType] returns [unit], since we do not care about extracting components of non-pairs. Now we can write another helper function to provide the default behavior of [pairOut], which we will apply for inputs that are not literal pairs. *)
|
adamc@85
|
236
|
adamc@85
|
237 Definition pairOutDefault (t : type) :=
|
adamc@85
|
238 match t return (pairOutType t) with
|
adamc@85
|
239 | Prod _ _ => None
|
adamc@85
|
240 | _ => tt
|
adamc@85
|
241 end.
|
adamc@85
|
242
|
adamc@85
|
243 (** Now [pairOut] is deceptively easy to write. *)
|
adamc@85
|
244
|
adamc@85
|
245 Definition pairOut t (e : exp t) :=
|
adamc@85
|
246 match e in (exp t) return (pairOutType t) with
|
adamc@85
|
247 | Pair _ _ e1 e2 => Some (e1, e2)
|
adamc@85
|
248 | _ => pairOutDefault _
|
adamc@85
|
249 end.
|
adamc@100
|
250 (* end thide *)
|
adamc@85
|
251
|
adam@338
|
252 (** There is one important subtlety in this definition. Coq allows us to use convenient ML-style pattern matching notation, but, internally and in proofs, we see that patterns are expanded out completely, matching one level of inductive structure at a time. Thus, the default case in the [match] above expands out to one case for each constructor of [exp] besides [Pair], and the underscore in [pairOutDefault _] is resolved differently in each case. From an ML or Haskell programmer's perspective, what we have here is type inference determining which code is run (returning either [None] or [tt]), which goes beyond what is possible with type inference guiding parametric polymorphism in Hindley-Milner languages%\index{Hindley-Milner}%, but is similar to what goes on with Haskell type classes%\index{type classes}%.
|
adamc@85
|
253
|
adamc@213
|
254 With [pairOut] available, we can write [cfold] in a straightforward way. There are really no surprises beyond that Coq verifies that this code has such an expressive type, given the small annotation burden. In some places, we see that Coq's [match] annotation inference is too smart for its own good, and we have to turn that inference off by writing [return _]. *)
|
adamc@85
|
255
|
adamc@204
|
256 Fixpoint cfold t (e : exp t) : exp t :=
|
adamc@204
|
257 match e with
|
adamc@85
|
258 | NConst n => NConst n
|
adamc@85
|
259 | Plus e1 e2 =>
|
adamc@85
|
260 let e1' := cfold e1 in
|
adamc@85
|
261 let e2' := cfold e2 in
|
adamc@204
|
262 match e1', e2' return _ with
|
adamc@85
|
263 | NConst n1, NConst n2 => NConst (n1 + n2)
|
adamc@85
|
264 | _, _ => Plus e1' e2'
|
adamc@85
|
265 end
|
adamc@85
|
266 | Eq e1 e2 =>
|
adamc@85
|
267 let e1' := cfold e1 in
|
adamc@85
|
268 let e2' := cfold e2 in
|
adamc@204
|
269 match e1', e2' return _ with
|
adamc@85
|
270 | NConst n1, NConst n2 => BConst (if eq_nat_dec n1 n2 then true else false)
|
adamc@85
|
271 | _, _ => Eq e1' e2'
|
adamc@85
|
272 end
|
adamc@85
|
273
|
adamc@85
|
274 | BConst b => BConst b
|
adamc@85
|
275 | And e1 e2 =>
|
adamc@85
|
276 let e1' := cfold e1 in
|
adamc@85
|
277 let e2' := cfold e2 in
|
adamc@204
|
278 match e1', e2' return _ with
|
adamc@85
|
279 | BConst b1, BConst b2 => BConst (b1 && b2)
|
adamc@85
|
280 | _, _ => And e1' e2'
|
adamc@85
|
281 end
|
adamc@85
|
282 | If _ e e1 e2 =>
|
adamc@85
|
283 let e' := cfold e in
|
adamc@85
|
284 match e' with
|
adamc@85
|
285 | BConst true => cfold e1
|
adamc@85
|
286 | BConst false => cfold e2
|
adamc@85
|
287 | _ => If e' (cfold e1) (cfold e2)
|
adamc@85
|
288 end
|
adamc@85
|
289
|
adamc@85
|
290 | Pair _ _ e1 e2 => Pair (cfold e1) (cfold e2)
|
adamc@85
|
291 | Fst _ _ e =>
|
adamc@85
|
292 let e' := cfold e in
|
adamc@85
|
293 match pairOut e' with
|
adamc@85
|
294 | Some p => fst p
|
adamc@85
|
295 | None => Fst e'
|
adamc@85
|
296 end
|
adamc@85
|
297 | Snd _ _ e =>
|
adamc@85
|
298 let e' := cfold e in
|
adamc@85
|
299 match pairOut e' with
|
adamc@85
|
300 | Some p => snd p
|
adamc@85
|
301 | None => Snd e'
|
adamc@85
|
302 end
|
adamc@85
|
303 end.
|
adamc@85
|
304
|
adamc@85
|
305 (** The correctness theorem for [cfold] turns out to be easy to prove, once we get over one serious hurdle. *)
|
adamc@85
|
306
|
adamc@85
|
307 Theorem cfold_correct : forall t (e : exp t), expDenote e = expDenote (cfold e).
|
adamc@100
|
308 (* begin thide *)
|
adamc@85
|
309 induction e; crush.
|
adamc@85
|
310
|
adamc@85
|
311 (** The first remaining subgoal is:
|
adamc@85
|
312
|
adamc@85
|
313 [[
|
adamc@85
|
314 expDenote (cfold e1) + expDenote (cfold e2) =
|
adamc@85
|
315 expDenote
|
adamc@85
|
316 match cfold e1 with
|
adamc@85
|
317 | NConst n1 =>
|
adamc@85
|
318 match cfold e2 with
|
adamc@85
|
319 | NConst n2 => NConst (n1 + n2)
|
adamc@85
|
320 | Plus _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
321 | Eq _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
322 | BConst _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
323 | And _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
324 | If _ _ _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
325 | Pair _ _ _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
326 | Fst _ _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
327 | Snd _ _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
328 end
|
adamc@85
|
329 | Plus _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
330 | Eq _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
331 | BConst _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
332 | And _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
333 | If _ _ _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
334 | Pair _ _ _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
335 | Fst _ _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
336 | Snd _ _ _ => Plus (cfold e1) (cfold e2)
|
adamc@85
|
337 end
|
adamc@213
|
338
|
adamc@85
|
339 ]]
|
adamc@85
|
340
|
adamc@85
|
341 We would like to do a case analysis on [cfold e1], and we attempt that in the way that has worked so far.
|
adamc@85
|
342
|
adamc@85
|
343 [[
|
adamc@85
|
344 destruct (cfold e1).
|
adam@338
|
345 ]]
|
adamc@85
|
346
|
adam@338
|
347 <<
|
adamc@85
|
348 User error: e1 is used in hypothesis e
|
adam@338
|
349 >>
|
adamc@85
|
350
|
adamc@85
|
351 Coq gives us another cryptic error message. Like so many others, this one basically means that Coq is not able to build some proof about dependent types. It is hard to generate helpful and specific error messages for problems like this, since that would require some kind of understanding of the dependency structure of a piece of code. We will encounter many examples of case-specific tricks for recovering from errors like this one.
|
adamc@85
|
352
|
adam@350
|
353 For our current proof, we can use a tactic [dep_destruct]%\index{tactics!dep\_destruct}% defined in the book [CpdtTactics] module. General elimination/inversion of dependently typed hypotheses is undecidable, since it must be implemented with [match] expressions that have the restriction on [in] clauses that we have already discussed. The tactic [dep_destruct] makes a best effort to handle some common cases, relying upon the more primitive %\index{tactics!dependent destruction}%[dependent destruction] tactic that comes with Coq. In a future chapter, we will learn about the explicit manipulation of equality proofs that is behind [dep_destruct]'s implementation in Ltac, but for now, we treat it as a useful black box. (In Chapter 12, we will also see how [dependent destruction] forces us to make a larger philosophical commitment about our logic than we might like, and we will see some workarounds.) *)
|
adamc@85
|
354
|
adamc@85
|
355 dep_destruct (cfold e1).
|
adamc@85
|
356
|
adamc@85
|
357 (** This successfully breaks the subgoal into 5 new subgoals, one for each constructor of [exp] that could produce an [exp Nat]. Note that [dep_destruct] is successful in ruling out the other cases automatically, in effect automating some of the work that we have done manually in implementing functions like [hd] and [pairOut].
|
adamc@85
|
358
|
adamc@213
|
359 This is the only new trick we need to learn to complete the proof. We can back up and give a short, automated proof. The main inconvenience in the proof is that we cannot write a pattern that matches a [match] without including a case for every constructor of the inductive type we match over. *)
|
adamc@85
|
360
|
adamc@85
|
361 Restart.
|
adamc@85
|
362
|
adamc@85
|
363 induction e; crush;
|
adamc@85
|
364 repeat (match goal with
|
adamc@213
|
365 | [ |- context[match cfold ?E with NConst _ => _ | Plus _ _ => _
|
adamc@213
|
366 | Eq _ _ => _ | BConst _ => _ | And _ _ => _
|
adamc@213
|
367 | If _ _ _ _ => _ | Pair _ _ _ _ => _
|
adamc@213
|
368 | Fst _ _ _ => _ | Snd _ _ _ => _ end] ] =>
|
adamc@213
|
369 dep_destruct (cfold E)
|
adamc@213
|
370 | [ |- context[match pairOut (cfold ?E) with Some _ => _
|
adamc@213
|
371 | None => _ end] ] =>
|
adamc@213
|
372 dep_destruct (cfold E)
|
adamc@85
|
373 | [ |- (if ?E then _ else _) = _ ] => destruct E
|
adamc@85
|
374 end; crush).
|
adamc@85
|
375 Qed.
|
adamc@100
|
376 (* end thide *)
|
adamc@86
|
377
|
adamc@86
|
378
|
adam@338
|
379 (** * Dependently Typed Red-Black Trees *)
|
adamc@94
|
380
|
adam@338
|
381 (** Red-black trees are a favorite purely functional data structure with an interesting invariant. We can use dependent types to enforce that operations on red-black trees preserve the invariant. For simplicity, we specialize our red-black trees to represent sets of [nat]s. *)
|
adamc@100
|
382
|
adamc@94
|
383 Inductive color : Set := Red | Black.
|
adamc@94
|
384
|
adamc@94
|
385 Inductive rbtree : color -> nat -> Set :=
|
adamc@94
|
386 | Leaf : rbtree Black 0
|
adamc@214
|
387 | RedNode : forall n, rbtree Black n -> nat -> rbtree Black n -> rbtree Red n
|
adamc@94
|
388 | BlackNode : forall c1 c2 n, rbtree c1 n -> nat -> rbtree c2 n -> rbtree Black (S n).
|
adamc@94
|
389
|
adamc@214
|
390 (** A value of type [rbtree c d] is a red-black tree node whose root has color [c] and that has black depth [d]. The latter property means that there are no more than [d] black-colored nodes on any path from the root to a leaf. *)
|
adamc@214
|
391
|
adamc@214
|
392 (** At first, it can be unclear that this choice of type indices tracks any useful property. To convince ourselves, we will prove that every red-black tree is balanced. We will phrase our theorem in terms of a depth calculating function that ignores the extra information in the types. It will be useful to parameterize this function over a combining operation, so that we can re-use the same code to calculate the minimum or maximum height among all paths from root to leaf. *)
|
adamc@214
|
393
|
adamc@100
|
394 (* EX: Prove that every [rbtree] is balanced. *)
|
adamc@100
|
395
|
adamc@100
|
396 (* begin thide *)
|
adamc@95
|
397 Require Import Max Min.
|
adamc@95
|
398
|
adamc@95
|
399 Section depth.
|
adamc@95
|
400 Variable f : nat -> nat -> nat.
|
adamc@95
|
401
|
adamc@214
|
402 Fixpoint depth c n (t : rbtree c n) : nat :=
|
adamc@95
|
403 match t with
|
adamc@95
|
404 | Leaf => 0
|
adamc@95
|
405 | RedNode _ t1 _ t2 => S (f (depth t1) (depth t2))
|
adamc@95
|
406 | BlackNode _ _ _ t1 _ t2 => S (f (depth t1) (depth t2))
|
adamc@95
|
407 end.
|
adamc@95
|
408 End depth.
|
adamc@95
|
409
|
adam@338
|
410 (** Our proof of balanced-ness decomposes naturally into a lower bound and an upper bound. We prove the lower bound first. Unsurprisingly, a tree's black depth provides such a bound on the minimum path length. We use the richly typed procedure [min_dec] to do case analysis on whether [min X Y] equals [X] or [Y]. *)
|
adamc@214
|
411
|
adam@283
|
412 Check min_dec.
|
adam@283
|
413 (** %\vspace{-.15in}% [[
|
adam@283
|
414 min_dec
|
adam@283
|
415 : forall n m : nat, {min n m = n} + {min n m = m}
|
adam@302
|
416 ]]
|
adam@302
|
417 *)
|
adam@283
|
418
|
adamc@95
|
419 Theorem depth_min : forall c n (t : rbtree c n), depth min t >= n.
|
adamc@95
|
420 induction t; crush;
|
adamc@95
|
421 match goal with
|
adamc@95
|
422 | [ |- context[min ?X ?Y] ] => destruct (min_dec X Y)
|
adamc@95
|
423 end; crush.
|
adamc@95
|
424 Qed.
|
adamc@95
|
425
|
adamc@214
|
426 (** There is an analogous upper-bound theorem based on black depth. Unfortunately, a symmetric proof script does not suffice to establish it. *)
|
adamc@214
|
427
|
adamc@214
|
428 Theorem depth_max : forall c n (t : rbtree c n), depth max t <= 2 * n + 1.
|
adamc@214
|
429 induction t; crush;
|
adamc@214
|
430 match goal with
|
adamc@214
|
431 | [ |- context[max ?X ?Y] ] => destruct (max_dec X Y)
|
adamc@214
|
432 end; crush.
|
adamc@214
|
433
|
adamc@214
|
434 (** Two subgoals remain. One of them is: [[
|
adamc@214
|
435 n : nat
|
adamc@214
|
436 t1 : rbtree Black n
|
adamc@214
|
437 n0 : nat
|
adamc@214
|
438 t2 : rbtree Black n
|
adamc@214
|
439 IHt1 : depth max t1 <= n + (n + 0) + 1
|
adamc@214
|
440 IHt2 : depth max t2 <= n + (n + 0) + 1
|
adamc@214
|
441 e : max (depth max t1) (depth max t2) = depth max t1
|
adamc@214
|
442 ============================
|
adamc@214
|
443 S (depth max t1) <= n + (n + 0) + 1
|
adamc@214
|
444
|
adamc@214
|
445 ]]
|
adamc@214
|
446
|
adamc@214
|
447 We see that [IHt1] is %\textit{%#<i>#almost#</i>#%}% the fact we need, but it is not quite strong enough. We will need to strengthen our induction hypothesis to get the proof to go through. *)
|
adamc@214
|
448
|
adamc@214
|
449 Abort.
|
adamc@214
|
450
|
adamc@214
|
451 (** In particular, we prove a lemma that provides a stronger upper bound for trees with black root nodes. We got stuck above in a case about a red root node. Since red nodes have only black children, our IH strengthening will enable us to finish the proof. *)
|
adamc@214
|
452
|
adamc@95
|
453 Lemma depth_max' : forall c n (t : rbtree c n), match c with
|
adamc@95
|
454 | Red => depth max t <= 2 * n + 1
|
adamc@95
|
455 | Black => depth max t <= 2 * n
|
adamc@95
|
456 end.
|
adamc@95
|
457 induction t; crush;
|
adamc@95
|
458 match goal with
|
adamc@95
|
459 | [ |- context[max ?X ?Y] ] => destruct (max_dec X Y)
|
adamc@100
|
460 end; crush;
|
adamc@100
|
461 repeat (match goal with
|
adamc@214
|
462 | [ H : context[match ?C with Red => _ | Black => _ end] |- _ ] =>
|
adamc@214
|
463 destruct C
|
adamc@100
|
464 end; crush).
|
adamc@95
|
465 Qed.
|
adamc@95
|
466
|
adam@338
|
467 (** The original theorem follows easily from the lemma. We use the tactic %\index{tactics!generalize}%[generalize pf], which, when [pf] proves the proposition [P], changes the goal from [Q] to [P -> Q]. This transformation is useful because it makes the truth of [P] manifest syntactically, so that automation machinery can rely on [P], even if that machinery is not smart enough to establish [P] on its own. *)
|
adamc@214
|
468
|
adamc@95
|
469 Theorem depth_max : forall c n (t : rbtree c n), depth max t <= 2 * n + 1.
|
adamc@95
|
470 intros; generalize (depth_max' t); destruct c; crush.
|
adamc@95
|
471 Qed.
|
adamc@95
|
472
|
adamc@214
|
473 (** The final balance theorem establishes that the minimum and maximum path lengths of any tree are within a factor of two of each other. *)
|
adamc@214
|
474
|
adamc@95
|
475 Theorem balanced : forall c n (t : rbtree c n), 2 * depth min t + 1 >= depth max t.
|
adamc@95
|
476 intros; generalize (depth_min t); generalize (depth_max t); crush.
|
adamc@95
|
477 Qed.
|
adamc@100
|
478 (* end thide *)
|
adamc@95
|
479
|
adamc@214
|
480 (** Now we are ready to implement an example operation on our trees, insertion. Insertion can be thought of as breaking the tree invariants locally but then rebalancing. In particular, in intermediate states we find red nodes that may have red children. The type [rtree] captures the idea of such a node, continuing to track black depth as a type index. *)
|
adamc@95
|
481
|
adamc@94
|
482 Inductive rtree : nat -> Set :=
|
adamc@94
|
483 | RedNode' : forall c1 c2 n, rbtree c1 n -> nat -> rbtree c2 n -> rtree n.
|
adamc@94
|
484
|
adam@338
|
485 (** Before starting to define [insert], we define predicates capturing when a data value is in the set represented by a normal or possibly invalid tree. *)
|
adamc@214
|
486
|
adamc@96
|
487 Section present.
|
adamc@96
|
488 Variable x : nat.
|
adamc@96
|
489
|
adamc@214
|
490 Fixpoint present c n (t : rbtree c n) : Prop :=
|
adamc@96
|
491 match t with
|
adamc@96
|
492 | Leaf => False
|
adamc@96
|
493 | RedNode _ a y b => present a \/ x = y \/ present b
|
adamc@96
|
494 | BlackNode _ _ _ a y b => present a \/ x = y \/ present b
|
adamc@96
|
495 end.
|
adamc@96
|
496
|
adamc@96
|
497 Definition rpresent n (t : rtree n) : Prop :=
|
adamc@96
|
498 match t with
|
adamc@96
|
499 | RedNode' _ _ _ a y b => present a \/ x = y \/ present b
|
adamc@96
|
500 end.
|
adamc@96
|
501 End present.
|
adamc@96
|
502
|
adam@338
|
503 (** Insertion relies on two balancing operations. It will be useful to give types to these operations using a relative of the subset types from last chapter. While subset types let us pair a value with a proof about that value, here we want to pair a value with another non-proof dependently typed value. The %\index{Gallina terms!sigT}%[sigT] type fills this role. *)
|
adamc@214
|
504
|
adamc@100
|
505 Locate "{ _ : _ & _ }".
|
adamc@214
|
506 (** [[
|
adamc@214
|
507 Notation Scope
|
adamc@214
|
508 "{ x : A & P }" := sigT (fun x : A => P)
|
adam@302
|
509 ]]
|
adam@302
|
510 *)
|
adamc@214
|
511
|
adamc@100
|
512 Print sigT.
|
adamc@214
|
513 (** [[
|
adamc@214
|
514 Inductive sigT (A : Type) (P : A -> Type) : Type :=
|
adamc@214
|
515 existT : forall x : A, P x -> sigT P
|
adam@302
|
516 ]]
|
adam@302
|
517 *)
|
adamc@214
|
518
|
adamc@214
|
519 (** It will be helpful to define a concise notation for the constructor of [sigT]. *)
|
adamc@100
|
520
|
adamc@94
|
521 Notation "{< x >}" := (existT _ _ x).
|
adamc@94
|
522
|
adamc@214
|
523 (** Each balance function is used to construct a new tree whose keys include the keys of two input trees, as well as a new key. One of the two input trees may violate the red-black alternation invariant (that is, it has an [rtree] type), while the other tree is known to be valid. Crucially, the two input trees have the same black depth.
|
adamc@214
|
524
|
adam@338
|
525 A balance operation may return a tree whose root is of either color. Thus, we use a [sigT] type to package the result tree with the color of its root. Here is the definition of the first balance operation, which applies when the possibly invalid [rtree] belongs to the left of the valid [rbtree].
|
adam@338
|
526
|
adam@338
|
527 A quick word of encouragement: After writing this code, even I do not understand the precise details of how balancing works! I consulted Chris Okasaki's paper %``%#"#Red-Black Trees in a Functional Setting#"#%''~\cite{Okasaki}% and transcribed the code to use dependent types. Luckily, the details are not so important here; types alone will tell us that insertion preserves balanced-ness, and we will prove that insertion produces trees containing the right keys.*)
|
adamc@214
|
528
|
adamc@94
|
529 Definition balance1 n (a : rtree n) (data : nat) c2 :=
|
adamc@214
|
530 match a in rtree n return rbtree c2 n
|
adamc@214
|
531 -> { c : color & rbtree c (S n) } with
|
adamc@94
|
532 | RedNode' _ _ _ t1 y t2 =>
|
adamc@214
|
533 match t1 in rbtree c n return rbtree _ n -> rbtree c2 n
|
adamc@214
|
534 -> { c : color & rbtree c (S n) } with
|
adamc@214
|
535 | RedNode _ a x b => fun c d =>
|
adamc@214
|
536 {<RedNode (BlackNode a x b) y (BlackNode c data d)>}
|
adamc@94
|
537 | t1' => fun t2 =>
|
adamc@214
|
538 match t2 in rbtree c n return rbtree _ n -> rbtree c2 n
|
adamc@214
|
539 -> { c : color & rbtree c (S n) } with
|
adamc@214
|
540 | RedNode _ b x c => fun a d =>
|
adamc@214
|
541 {<RedNode (BlackNode a y b) x (BlackNode c data d)>}
|
adamc@95
|
542 | b => fun a t => {<BlackNode (RedNode a y b) data t>}
|
adamc@94
|
543 end t1'
|
adamc@94
|
544 end t2
|
adamc@94
|
545 end.
|
adamc@94
|
546
|
adam@338
|
547 (** We apply a trick that I call the %\index{convoy pattern}\textit{%#<i>#convoy pattern#</i>#%}%. Recall that [match] annotations only make it possible to describe a dependence of a [match] %\textit{%#<i>#result type#</i>#%}% on the discriminee. There is no automatic refinement of the types of free variables. However, it is possible to effect such a refinement by finding a way to encode free variable type dependencies in the [match] result type, so that a [return] clause can express the connection.
|
adamc@214
|
548
|
adam@292
|
549 In particular, we can extend the [match] to return %\textit{%#<i>#functions over the free variables whose types we want to refine#</i>#%}%. In the case of [balance1], we only find ourselves wanting to refine the type of one tree variable at a time. We match on one subtree of a node, and we want the type of the other subtree to be refined based on what we learn. We indicate this with a [return] clause starting like [rbtree _ n -> ...], where [n] is bound in an [in] pattern. Such a [match] expression is applied immediately to the %``%#"#old version#"#%''% of the variable to be refined, and the type checker is happy.
|
adamc@214
|
550
|
adam@338
|
551 Here is the symmetric function [balance2], for cases where the possibly invalid tree appears on the right rather than on the left. *)
|
adamc@214
|
552
|
adamc@94
|
553 Definition balance2 n (a : rtree n) (data : nat) c2 :=
|
adamc@94
|
554 match a in rtree n return rbtree c2 n -> { c : color & rbtree c (S n) } with
|
adamc@94
|
555 | RedNode' _ _ _ t1 z t2 =>
|
adamc@214
|
556 match t1 in rbtree c n return rbtree _ n -> rbtree c2 n
|
adamc@214
|
557 -> { c : color & rbtree c (S n) } with
|
adamc@214
|
558 | RedNode _ b y c => fun d a =>
|
adamc@214
|
559 {<RedNode (BlackNode a data b) y (BlackNode c z d)>}
|
adamc@94
|
560 | t1' => fun t2 =>
|
adamc@214
|
561 match t2 in rbtree c n return rbtree _ n -> rbtree c2 n
|
adamc@214
|
562 -> { c : color & rbtree c (S n) } with
|
adamc@214
|
563 | RedNode _ c z' d => fun b a =>
|
adamc@214
|
564 {<RedNode (BlackNode a data b) z (BlackNode c z' d)>}
|
adamc@95
|
565 | b => fun a t => {<BlackNode t data (RedNode a z b)>}
|
adamc@94
|
566 end t1'
|
adamc@94
|
567 end t2
|
adamc@94
|
568 end.
|
adamc@94
|
569
|
adamc@214
|
570 (** Now we are almost ready to get down to the business of writing an [insert] function. First, we enter a section that declares a variable [x], for the key we want to insert. *)
|
adamc@214
|
571
|
adamc@94
|
572 Section insert.
|
adamc@94
|
573 Variable x : nat.
|
adamc@94
|
574
|
adamc@214
|
575 (** Most of the work of insertion is done by a helper function [ins], whose return types are expressed using a type-level function [insResult]. *)
|
adamc@214
|
576
|
adamc@94
|
577 Definition insResult c n :=
|
adamc@94
|
578 match c with
|
adamc@94
|
579 | Red => rtree n
|
adamc@94
|
580 | Black => { c' : color & rbtree c' n }
|
adamc@94
|
581 end.
|
adamc@94
|
582
|
adam@338
|
583 (** That is, inserting into a tree with root color [c] and black depth [n], the variety of tree we get out depends on [c]. If we started with a red root, then we get back a possibly invalid tree of depth [n]. If we started with a black root, we get back a valid tree of depth [n] with a root node of an arbitrary color.
|
adamc@214
|
584
|
adamc@214
|
585 Here is the definition of [ins]. Again, we do not want to dwell on the functional details. *)
|
adamc@214
|
586
|
adamc@214
|
587 Fixpoint ins c n (t : rbtree c n) : insResult c n :=
|
adamc@214
|
588 match t with
|
adamc@94
|
589 | Leaf => {< RedNode Leaf x Leaf >}
|
adamc@94
|
590 | RedNode _ a y b =>
|
adamc@94
|
591 if le_lt_dec x y
|
adamc@94
|
592 then RedNode' (projT2 (ins a)) y b
|
adamc@94
|
593 else RedNode' a y (projT2 (ins b))
|
adamc@94
|
594 | BlackNode c1 c2 _ a y b =>
|
adamc@94
|
595 if le_lt_dec x y
|
adamc@94
|
596 then
|
adamc@94
|
597 match c1 return insResult c1 _ -> _ with
|
adamc@94
|
598 | Red => fun ins_a => balance1 ins_a y b
|
adamc@94
|
599 | _ => fun ins_a => {< BlackNode (projT2 ins_a) y b >}
|
adamc@94
|
600 end (ins a)
|
adamc@94
|
601 else
|
adamc@94
|
602 match c2 return insResult c2 _ -> _ with
|
adamc@94
|
603 | Red => fun ins_b => balance2 ins_b y a
|
adamc@94
|
604 | _ => fun ins_b => {< BlackNode a y (projT2 ins_b) >}
|
adamc@94
|
605 end (ins b)
|
adamc@94
|
606 end.
|
adamc@94
|
607
|
adam@338
|
608 (** The one new trick is a variation of the convoy pattern. In each of the last two pattern matches, we want to take advantage of the typing connection between the trees [a] and [b]. We might naively apply the convoy pattern directly on [a] in the first [match] and on [b] in the second. This satisfies the type checker per se, but it does not satisfy the termination checker. Inside each [match], we would be calling [ins] recursively on a locally bound variable. The termination checker is not smart enough to trace the dataflow into that variable, so the checker does not know that this recursive argument is smaller than the original argument. We make this fact clearer by applying the convoy pattern on %\textit{%#<i>#the result of a recursive call#</i>#%}%, rather than just on that call's argument.
|
adamc@214
|
609
|
adamc@214
|
610 Finally, we are in the home stretch of our effort to define [insert]. We just need a few more definitions of non-recursive functions. First, we need to give the final characterization of [insert]'s return type. Inserting into a red-rooted tree gives a black-rooted tree where black depth has increased, and inserting into a black-rooted tree gives a tree where black depth has stayed the same and where the root is an arbitrary color. *)
|
adamc@214
|
611
|
adamc@94
|
612 Definition insertResult c n :=
|
adamc@94
|
613 match c with
|
adamc@94
|
614 | Red => rbtree Black (S n)
|
adamc@94
|
615 | Black => { c' : color & rbtree c' n }
|
adamc@94
|
616 end.
|
adamc@94
|
617
|
adamc@214
|
618 (** A simple clean-up procedure translates [insResult]s into [insertResult]s. *)
|
adamc@214
|
619
|
adamc@97
|
620 Definition makeRbtree c n : insResult c n -> insertResult c n :=
|
adamc@214
|
621 match c with
|
adamc@94
|
622 | Red => fun r =>
|
adamc@214
|
623 match r with
|
adamc@94
|
624 | RedNode' _ _ _ a x b => BlackNode a x b
|
adamc@94
|
625 end
|
adamc@94
|
626 | Black => fun r => r
|
adamc@94
|
627 end.
|
adamc@94
|
628
|
adamc@214
|
629 (** We modify Coq's default choice of implicit arguments for [makeRbtree], so that we do not need to specify the [c] and [n] arguments explicitly in later calls. *)
|
adamc@214
|
630
|
adamc@97
|
631 Implicit Arguments makeRbtree [c n].
|
adamc@94
|
632
|
adamc@214
|
633 (** Finally, we define [insert] as a simple composition of [ins] and [makeRbtree]. *)
|
adamc@214
|
634
|
adamc@94
|
635 Definition insert c n (t : rbtree c n) : insertResult c n :=
|
adamc@97
|
636 makeRbtree (ins t).
|
adamc@94
|
637
|
adamc@214
|
638 (** As we noted earlier, the type of [insert] guarantees that it outputs balanced trees whose depths have not increased too much. We also want to know that [insert] operates correctly on trees interpreted as finite sets, so we finish this section with a proof of that fact. *)
|
adamc@214
|
639
|
adamc@95
|
640 Section present.
|
adamc@95
|
641 Variable z : nat.
|
adamc@95
|
642
|
adamc@214
|
643 (** The variable [z] stands for an arbitrary key. We will reason about [z]'s presence in particular trees. As usual, outside the section the theorems we prove will quantify over all possible keys, giving us the facts we wanted.
|
adamc@214
|
644
|
adam@367
|
645 We start by proving the correctness of the balance operations. It is useful to define a custom tactic [present_balance] that encapsulates the reasoning common to the two proofs. We use the keyword %\index{Vernacular commands!Ltac}%[Ltac] to assign a name to a proof script. This particular script just iterates between [crush] and identification of a tree that is being pattern-matched on and should be destructed. *)
|
adamc@214
|
646
|
adamc@98
|
647 Ltac present_balance :=
|
adamc@98
|
648 crush;
|
adamc@98
|
649 repeat (match goal with
|
adam@338
|
650 | [ _ : context[match ?T with
|
adamc@98
|
651 | Leaf => _
|
adamc@98
|
652 | RedNode _ _ _ _ => _
|
adamc@98
|
653 | BlackNode _ _ _ _ _ _ => _
|
adamc@98
|
654 end] |- _ ] => dep_destruct T
|
adamc@98
|
655 | [ |- context[match ?T with
|
adamc@98
|
656 | Leaf => _
|
adamc@98
|
657 | RedNode _ _ _ _ => _
|
adamc@98
|
658 | BlackNode _ _ _ _ _ _ => _
|
adamc@98
|
659 end] ] => dep_destruct T
|
adamc@98
|
660 end; crush).
|
adamc@98
|
661
|
adamc@214
|
662 (** The balance correctness theorems are simple first-order logic equivalences, where we use the function [projT2] to project the payload of a [sigT] value. *)
|
adamc@214
|
663
|
adam@294
|
664 Lemma present_balance1 : forall n (a : rtree n) (y : nat) c2 (b : rbtree c2 n),
|
adamc@95
|
665 present z (projT2 (balance1 a y b))
|
adamc@95
|
666 <-> rpresent z a \/ z = y \/ present z b.
|
adamc@98
|
667 destruct a; present_balance.
|
adamc@95
|
668 Qed.
|
adamc@95
|
669
|
adamc@213
|
670 Lemma present_balance2 : forall n (a : rtree n) (y : nat) c2 (b : rbtree c2 n),
|
adamc@95
|
671 present z (projT2 (balance2 a y b))
|
adamc@95
|
672 <-> rpresent z a \/ z = y \/ present z b.
|
adamc@98
|
673 destruct a; present_balance.
|
adamc@95
|
674 Qed.
|
adamc@95
|
675
|
adamc@214
|
676 (** To state the theorem for [ins], it is useful to define a new type-level function, since [ins] returns different result types based on the type indices passed to it. Recall that [x] is the section variable standing for the key we are inserting. *)
|
adamc@214
|
677
|
adamc@95
|
678 Definition present_insResult c n :=
|
adamc@95
|
679 match c return (rbtree c n -> insResult c n -> Prop) with
|
adamc@95
|
680 | Red => fun t r => rpresent z r <-> z = x \/ present z t
|
adamc@95
|
681 | Black => fun t r => present z (projT2 r) <-> z = x \/ present z t
|
adamc@95
|
682 end.
|
adamc@95
|
683
|
adamc@214
|
684 (** Now the statement and proof of the [ins] correctness theorem are straightforward, if verbose. We proceed by induction on the structure of a tree, followed by finding case analysis opportunities on expressions we see being analyzed in [if] or [match] expressions. After that, we pattern-match to find opportunities to use the theorems we proved about balancing. Finally, we identify two variables that are asserted by some hypothesis to be equal, and we use that hypothesis to replace one variable with the other everywhere. *)
|
adamc@214
|
685
|
adamc@214
|
686 (** printing * $*$ *)
|
adamc@214
|
687
|
adamc@95
|
688 Theorem present_ins : forall c n (t : rbtree c n),
|
adamc@95
|
689 present_insResult t (ins t).
|
adamc@95
|
690 induction t; crush;
|
adamc@95
|
691 repeat (match goal with
|
adam@338
|
692 | [ _ : context[if ?E then _ else _] |- _ ] => destruct E
|
adamc@95
|
693 | [ |- context[if ?E then _ else _] ] => destruct E
|
adam@338
|
694 | [ _ : context[match ?C with Red => _ | Black => _ end]
|
adamc@214
|
695 |- _ ] => destruct C
|
adamc@95
|
696 end; crush);
|
adamc@95
|
697 try match goal with
|
adam@338
|
698 | [ _ : context[balance1 ?A ?B ?C] |- _ ] =>
|
adamc@95
|
699 generalize (present_balance1 A B C)
|
adamc@95
|
700 end;
|
adamc@95
|
701 try match goal with
|
adam@338
|
702 | [ _ : context[balance2 ?A ?B ?C] |- _ ] =>
|
adamc@95
|
703 generalize (present_balance2 A B C)
|
adamc@95
|
704 end;
|
adamc@95
|
705 try match goal with
|
adamc@95
|
706 | [ |- context[balance1 ?A ?B ?C] ] =>
|
adamc@95
|
707 generalize (present_balance1 A B C)
|
adamc@95
|
708 end;
|
adamc@95
|
709 try match goal with
|
adamc@95
|
710 | [ |- context[balance2 ?A ?B ?C] ] =>
|
adamc@95
|
711 generalize (present_balance2 A B C)
|
adamc@95
|
712 end;
|
adamc@214
|
713 crush;
|
adamc@95
|
714 match goal with
|
adamc@95
|
715 | [ z : nat, x : nat |- _ ] =>
|
adamc@95
|
716 match goal with
|
adamc@95
|
717 | [ H : z = x |- _ ] => rewrite H in *; clear H
|
adamc@95
|
718 end
|
adamc@95
|
719 end;
|
adamc@95
|
720 tauto.
|
adamc@95
|
721 Qed.
|
adamc@95
|
722
|
adamc@214
|
723 (** printing * $\times$ *)
|
adamc@214
|
724
|
adamc@214
|
725 (** The hard work is done. The most readable way to state correctness of [insert] involves splitting the property into two color-specific theorems. We write a tactic to encapsulate the reasoning steps that work to establish both facts. *)
|
adamc@214
|
726
|
adamc@213
|
727 Ltac present_insert :=
|
adamc@213
|
728 unfold insert; intros n t; inversion t;
|
adamc@97
|
729 generalize (present_ins t); simpl;
|
adamc@97
|
730 dep_destruct (ins t); tauto.
|
adamc@97
|
731
|
adamc@95
|
732 Theorem present_insert_Red : forall n (t : rbtree Red n),
|
adamc@95
|
733 present z (insert t)
|
adamc@95
|
734 <-> (z = x \/ present z t).
|
adamc@213
|
735 present_insert.
|
adamc@95
|
736 Qed.
|
adamc@95
|
737
|
adamc@95
|
738 Theorem present_insert_Black : forall n (t : rbtree Black n),
|
adamc@95
|
739 present z (projT2 (insert t))
|
adamc@95
|
740 <-> (z = x \/ present z t).
|
adamc@213
|
741 present_insert.
|
adamc@95
|
742 Qed.
|
adamc@95
|
743 End present.
|
adamc@94
|
744 End insert.
|
adamc@94
|
745
|
adam@338
|
746 (** We can generate executable OCaml code with the command %\index{Vernacular commands!Recursive Extraction}%[Recursive Extraction insert], which also automatically outputs the OCaml versions of all of [insert]'s dependencies. In our previous extractions, we wound up with clean OCaml code. Here, we find uses of %\index{Obj.magic}\texttt{%#<tt>#Obj.magic#</tt>#%}%, OCaml's unsafe cast operator for tweaking the apparent type of an expression in an arbitrary way. Casts appear for this example because the return type of [insert] depends on the %\textit{%#<i>#value#</i>#%}% of the function's argument, a pattern which OCaml cannot handle. Since Coq's type system is much more expressive than OCaml's, such casts are unavoidable in general. Since the OCaml type-checker is no longer checking full safety of programs, we must rely on Coq's extractor to use casts only in provably safe ways. *)
|
adam@338
|
747
|
adam@338
|
748 (* begin hide *)
|
adam@338
|
749 Recursive Extraction insert.
|
adam@338
|
750 (* end hide *)
|
adam@283
|
751
|
adamc@94
|
752
|
adamc@86
|
753 (** * A Certified Regular Expression Matcher *)
|
adamc@86
|
754
|
adamc@93
|
755 (** Another interesting example is regular expressions with dependent types that express which predicates over strings particular regexps implement. We can then assign a dependent type to a regular expression matching function, guaranteeing that it always decides the string property that we expect it to decide.
|
adamc@93
|
756
|
adam@338
|
757 Before defining the syntax of expressions, it is helpful to define an inductive type capturing the meaning of the Kleene star. That is, a string [s] matches regular expression [star e] if and only if [s] can be decomposed into a sequence of substrings that all match [e]. We use Coq's string support, which comes through a combination of the [Strings] library and some parsing notations built into Coq. Operators like [++] and functions like [length] that we know from lists are defined again for strings. Notation scopes help us control which versions we want to use in particular contexts.%\index{Vernacular commands!Open Scope}% *)
|
adamc@93
|
758
|
adamc@86
|
759 Require Import Ascii String.
|
adamc@86
|
760 Open Scope string_scope.
|
adamc@86
|
761
|
adamc@91
|
762 Section star.
|
adamc@91
|
763 Variable P : string -> Prop.
|
adamc@91
|
764
|
adamc@91
|
765 Inductive star : string -> Prop :=
|
adamc@91
|
766 | Empty : star ""
|
adamc@91
|
767 | Iter : forall s1 s2,
|
adamc@91
|
768 P s1
|
adamc@91
|
769 -> star s2
|
adamc@91
|
770 -> star (s1 ++ s2).
|
adamc@91
|
771 End star.
|
adamc@91
|
772
|
adam@283
|
773 (** Now we can make our first attempt at defining a [regexp] type that is indexed by predicates on strings. Here is a reasonable-looking definition that is restricted to constant characters and concatenation. We use the constructor [String], which is the analogue of list cons for the type [string], where [""] is like list nil.
|
adamc@93
|
774 [[
|
adamc@93
|
775 Inductive regexp : (string -> Prop) -> Set :=
|
adamc@93
|
776 | Char : forall ch : ascii,
|
adamc@93
|
777 regexp (fun s => s = String ch "")
|
adamc@93
|
778 | Concat : forall (P1 P2 : string -> Prop) (r1 : regexp P1) (r2 : regexp P2),
|
adamc@93
|
779 regexp (fun s => exists s1, exists s2, s = s1 ++ s2 /\ P1 s1 /\ P2 s2).
|
adamc@93
|
780 ]]
|
adamc@93
|
781
|
adam@338
|
782 <<
|
adam@338
|
783 User error: Large non-propositional inductive types must be in Type
|
adam@338
|
784 >>
|
adam@338
|
785
|
adam@338
|
786 What is a %\index{large inductive types}%large inductive type? In Coq, it is an inductive type that has a constructor which quantifies over some type of type [Type]. We have not worked with [Type] very much to this point. Every term of CIC has a type, including [Set] and [Prop], which are assigned type [Type]. The type [string -> Prop] from the failed definition also has type [Type].
|
adamc@93
|
787
|
adamc@93
|
788 It turns out that allowing large inductive types in [Set] leads to contradictions when combined with certain kinds of classical logic reasoning. Thus, by default, such types are ruled out. There is a simple fix for our [regexp] definition, which is to place our new type in [Type]. While fixing the problem, we also expand the list of constructors to cover the remaining regular expression operators. *)
|
adamc@93
|
789
|
adamc@89
|
790 Inductive regexp : (string -> Prop) -> Type :=
|
adamc@86
|
791 | Char : forall ch : ascii,
|
adamc@86
|
792 regexp (fun s => s = String ch "")
|
adamc@86
|
793 | Concat : forall P1 P2 (r1 : regexp P1) (r2 : regexp P2),
|
adamc@87
|
794 regexp (fun s => exists s1, exists s2, s = s1 ++ s2 /\ P1 s1 /\ P2 s2)
|
adamc@87
|
795 | Or : forall P1 P2 (r1 : regexp P1) (r2 : regexp P2),
|
adamc@91
|
796 regexp (fun s => P1 s \/ P2 s)
|
adamc@91
|
797 | Star : forall P (r : regexp P),
|
adamc@91
|
798 regexp (star P).
|
adamc@86
|
799
|
adam@296
|
800 (** Many theorems about strings are useful for implementing a certified regexp matcher, and few of them are in the [Strings] library. The book source includes statements, proofs, and hint commands for a handful of such omitted theorems. Since they are orthogonal to our use of dependent types, we hide them in the rendered versions of this book. *)
|
adamc@93
|
801
|
adamc@93
|
802 (* begin hide *)
|
adamc@86
|
803 Open Scope specif_scope.
|
adamc@86
|
804
|
adamc@86
|
805 Lemma length_emp : length "" <= 0.
|
adamc@86
|
806 crush.
|
adamc@86
|
807 Qed.
|
adamc@86
|
808
|
adamc@86
|
809 Lemma append_emp : forall s, s = "" ++ s.
|
adamc@86
|
810 crush.
|
adamc@86
|
811 Qed.
|
adamc@86
|
812
|
adamc@86
|
813 Ltac substring :=
|
adamc@86
|
814 crush;
|
adamc@86
|
815 repeat match goal with
|
adamc@86
|
816 | [ |- context[match ?N with O => _ | S _ => _ end] ] => destruct N; crush
|
adamc@86
|
817 end.
|
adamc@86
|
818
|
adamc@86
|
819 Lemma substring_le : forall s n m,
|
adamc@86
|
820 length (substring n m s) <= m.
|
adamc@86
|
821 induction s; substring.
|
adamc@86
|
822 Qed.
|
adamc@86
|
823
|
adamc@86
|
824 Lemma substring_all : forall s,
|
adamc@86
|
825 substring 0 (length s) s = s.
|
adamc@86
|
826 induction s; substring.
|
adamc@86
|
827 Qed.
|
adamc@86
|
828
|
adamc@86
|
829 Lemma substring_none : forall s n,
|
adamc@93
|
830 substring n 0 s = "".
|
adamc@86
|
831 induction s; substring.
|
adamc@86
|
832 Qed.
|
adamc@86
|
833
|
adamc@86
|
834 Hint Rewrite substring_all substring_none : cpdt.
|
adamc@86
|
835
|
adamc@86
|
836 Lemma substring_split : forall s m,
|
adamc@86
|
837 substring 0 m s ++ substring m (length s - m) s = s.
|
adamc@86
|
838 induction s; substring.
|
adamc@86
|
839 Qed.
|
adamc@86
|
840
|
adamc@86
|
841 Lemma length_app1 : forall s1 s2,
|
adamc@86
|
842 length s1 <= length (s1 ++ s2).
|
adamc@86
|
843 induction s1; crush.
|
adamc@86
|
844 Qed.
|
adamc@86
|
845
|
adamc@86
|
846 Hint Resolve length_emp append_emp substring_le substring_split length_app1.
|
adamc@86
|
847
|
adamc@86
|
848 Lemma substring_app_fst : forall s2 s1 n,
|
adamc@86
|
849 length s1 = n
|
adamc@86
|
850 -> substring 0 n (s1 ++ s2) = s1.
|
adamc@86
|
851 induction s1; crush.
|
adamc@86
|
852 Qed.
|
adamc@86
|
853
|
adamc@86
|
854 Lemma substring_app_snd : forall s2 s1 n,
|
adamc@86
|
855 length s1 = n
|
adamc@86
|
856 -> substring n (length (s1 ++ s2) - n) (s1 ++ s2) = s2.
|
adamc@86
|
857 Hint Rewrite <- minus_n_O : cpdt.
|
adamc@86
|
858
|
adamc@86
|
859 induction s1; crush.
|
adamc@86
|
860 Qed.
|
adamc@86
|
861
|
adamc@214
|
862 Hint Rewrite substring_app_fst substring_app_snd using solve [trivial] : cpdt.
|
adamc@93
|
863 (* end hide *)
|
adamc@93
|
864
|
adamc@93
|
865 (** A few auxiliary functions help us in our final matcher definition. The function [split] will be used to implement the regexp concatenation case. *)
|
adamc@86
|
866
|
adamc@86
|
867 Section split.
|
adamc@86
|
868 Variables P1 P2 : string -> Prop.
|
adamc@214
|
869 Variable P1_dec : forall s, {P1 s} + {~ P1 s}.
|
adamc@214
|
870 Variable P2_dec : forall s, {P2 s} + {~ P2 s}.
|
adamc@93
|
871 (** We require a choice of two arbitrary string predicates and functions for deciding them. *)
|
adamc@86
|
872
|
adamc@86
|
873 Variable s : string.
|
adamc@93
|
874 (** Our computation will take place relative to a single fixed string, so it is easiest to make it a [Variable], rather than an explicit argument to our functions. *)
|
adamc@93
|
875
|
adam@338
|
876 (** The function [split'] is the workhorse behind [split]. It searches through the possible ways of splitting [s] into two pieces, checking the two predicates against each such pair. The execution of [split'] progresses right-to-left, from splitting all of [s] into the first piece to splitting all of [s] into the second piece. It takes an extra argument, [n], which specifies how far along we are in this search process. *)
|
adamc@86
|
877
|
adam@297
|
878 Definition split' : forall n : nat, n <= length s
|
adamc@86
|
879 -> {exists s1, exists s2, length s1 <= n /\ s1 ++ s2 = s /\ P1 s1 /\ P2 s2}
|
adamc@214
|
880 + {forall s1 s2, length s1 <= n -> s1 ++ s2 = s -> ~ P1 s1 \/ ~ P2 s2}.
|
adamc@86
|
881 refine (fix F (n : nat) : n <= length s
|
adamc@86
|
882 -> {exists s1, exists s2, length s1 <= n /\ s1 ++ s2 = s /\ P1 s1 /\ P2 s2}
|
adamc@214
|
883 + {forall s1 s2, length s1 <= n -> s1 ++ s2 = s -> ~ P1 s1 \/ ~ P2 s2} :=
|
adamc@214
|
884 match n with
|
adamc@86
|
885 | O => fun _ => Reduce (P1_dec "" && P2_dec s)
|
adamc@93
|
886 | S n' => fun _ => (P1_dec (substring 0 (S n') s)
|
adamc@93
|
887 && P2_dec (substring (S n') (length s - S n') s))
|
adamc@86
|
888 || F n' _
|
adamc@86
|
889 end); clear F; crush; eauto 7;
|
adamc@86
|
890 match goal with
|
adamc@86
|
891 | [ _ : length ?S <= 0 |- _ ] => destruct S
|
adam@338
|
892 | [ _ : length ?S' <= S ?N |- _ ] => destruct (eq_nat_dec (length S') (S N))
|
adamc@86
|
893 end; crush.
|
adamc@86
|
894 Defined.
|
adamc@86
|
895
|
adam@338
|
896 (** There is one subtle point in the [split'] code that is worth mentioning. The main body of the function is a [match] on [n]. In the case where [n] is known to be [S n'], we write [S n'] in several places where we might be tempted to write [n]. However, without further work to craft proper [match] annotations, the type-checker does not use the equality between [n] and [S n']. Thus, it is common to see patterns repeated in [match] case bodies in dependently typed Coq code. We can at least use a [let] expression to avoid copying the pattern more than once, replacing the first case body with:
|
adamc@93
|
897 [[
|
adamc@93
|
898 | S n' => fun _ => let n := S n' in
|
adamc@93
|
899 (P1_dec (substring 0 n s)
|
adamc@93
|
900 && P2_dec (substring n (length s - n) s))
|
adamc@93
|
901 || F n' _
|
adamc@214
|
902
|
adamc@93
|
903 ]]
|
adamc@93
|
904
|
adam@338
|
905 The [split] function itself is trivial to implement in terms of [split']. We just ask [split'] to begin its search with [n = length s]. *)
|
adamc@93
|
906
|
adamc@86
|
907 Definition split : {exists s1, exists s2, s = s1 ++ s2 /\ P1 s1 /\ P2 s2}
|
adamc@214
|
908 + {forall s1 s2, s = s1 ++ s2 -> ~ P1 s1 \/ ~ P2 s2}.
|
adamc@86
|
909 refine (Reduce (split' (n := length s) _)); crush; eauto.
|
adamc@86
|
910 Defined.
|
adamc@86
|
911 End split.
|
adamc@86
|
912
|
adamc@86
|
913 Implicit Arguments split [P1 P2].
|
adamc@86
|
914
|
adamc@93
|
915 (* begin hide *)
|
adamc@91
|
916 Lemma app_empty_end : forall s, s ++ "" = s.
|
adamc@91
|
917 induction s; crush.
|
adamc@91
|
918 Qed.
|
adamc@91
|
919
|
adamc@91
|
920 Hint Rewrite app_empty_end : cpdt.
|
adamc@91
|
921
|
adamc@91
|
922 Lemma substring_self : forall s n,
|
adamc@91
|
923 n <= 0
|
adamc@91
|
924 -> substring n (length s - n) s = s.
|
adamc@91
|
925 induction s; substring.
|
adamc@91
|
926 Qed.
|
adamc@91
|
927
|
adamc@91
|
928 Lemma substring_empty : forall s n m,
|
adamc@91
|
929 m <= 0
|
adamc@91
|
930 -> substring n m s = "".
|
adamc@91
|
931 induction s; substring.
|
adamc@91
|
932 Qed.
|
adamc@91
|
933
|
adamc@91
|
934 Hint Rewrite substring_self substring_empty using omega : cpdt.
|
adamc@91
|
935
|
adamc@91
|
936 Lemma substring_split' : forall s n m,
|
adamc@91
|
937 substring n m s ++ substring (n + m) (length s - (n + m)) s
|
adamc@91
|
938 = substring n (length s - n) s.
|
adamc@91
|
939 Hint Rewrite substring_split : cpdt.
|
adamc@91
|
940
|
adamc@91
|
941 induction s; substring.
|
adamc@91
|
942 Qed.
|
adamc@91
|
943
|
adamc@91
|
944 Lemma substring_stack : forall s n2 m1 m2,
|
adamc@91
|
945 m1 <= m2
|
adamc@91
|
946 -> substring 0 m1 (substring n2 m2 s)
|
adamc@91
|
947 = substring n2 m1 s.
|
adamc@91
|
948 induction s; substring.
|
adamc@91
|
949 Qed.
|
adamc@91
|
950
|
adamc@91
|
951 Ltac substring' :=
|
adamc@91
|
952 crush;
|
adamc@91
|
953 repeat match goal with
|
adamc@91
|
954 | [ |- context[match ?N with O => _ | S _ => _ end] ] => case_eq N; crush
|
adamc@91
|
955 end.
|
adamc@91
|
956
|
adamc@91
|
957 Lemma substring_stack' : forall s n1 n2 m1 m2,
|
adamc@91
|
958 n1 + m1 <= m2
|
adamc@91
|
959 -> substring n1 m1 (substring n2 m2 s)
|
adamc@91
|
960 = substring (n1 + n2) m1 s.
|
adamc@91
|
961 induction s; substring';
|
adamc@91
|
962 match goal with
|
adamc@91
|
963 | [ |- substring ?N1 _ _ = substring ?N2 _ _ ] =>
|
adamc@91
|
964 replace N1 with N2; crush
|
adamc@91
|
965 end.
|
adamc@91
|
966 Qed.
|
adamc@91
|
967
|
adamc@91
|
968 Lemma substring_suffix : forall s n,
|
adamc@91
|
969 n <= length s
|
adamc@91
|
970 -> length (substring n (length s - n) s) = length s - n.
|
adamc@91
|
971 induction s; substring.
|
adamc@91
|
972 Qed.
|
adamc@91
|
973
|
adamc@91
|
974 Lemma substring_suffix_emp' : forall s n m,
|
adamc@91
|
975 substring n (S m) s = ""
|
adamc@91
|
976 -> n >= length s.
|
adamc@91
|
977 induction s; crush;
|
adamc@91
|
978 match goal with
|
adamc@91
|
979 | [ |- ?N >= _ ] => destruct N; crush
|
adamc@91
|
980 end;
|
adamc@91
|
981 match goal with
|
adamc@91
|
982 [ |- S ?N >= S ?E ] => assert (N >= E); [ eauto | omega ]
|
adamc@91
|
983 end.
|
adamc@91
|
984 Qed.
|
adamc@91
|
985
|
adamc@91
|
986 Lemma substring_suffix_emp : forall s n m,
|
adamc@92
|
987 substring n m s = ""
|
adamc@92
|
988 -> m > 0
|
adamc@91
|
989 -> n >= length s.
|
adam@335
|
990 destruct m as [ | m]; [crush | intros; apply substring_suffix_emp' with m; assumption].
|
adamc@91
|
991 Qed.
|
adamc@91
|
992
|
adamc@91
|
993 Hint Rewrite substring_stack substring_stack' substring_suffix
|
adamc@91
|
994 using omega : cpdt.
|
adamc@91
|
995
|
adamc@91
|
996 Lemma minus_minus : forall n m1 m2,
|
adamc@91
|
997 m1 + m2 <= n
|
adamc@91
|
998 -> n - m1 - m2 = n - (m1 + m2).
|
adamc@91
|
999 intros; omega.
|
adamc@91
|
1000 Qed.
|
adamc@91
|
1001
|
adamc@91
|
1002 Lemma plus_n_Sm' : forall n m : nat, S (n + m) = m + S n.
|
adamc@91
|
1003 intros; omega.
|
adamc@91
|
1004 Qed.
|
adamc@91
|
1005
|
adamc@91
|
1006 Hint Rewrite minus_minus using omega : cpdt.
|
adamc@93
|
1007 (* end hide *)
|
adamc@93
|
1008
|
adamc@93
|
1009 (** One more helper function will come in handy: [dec_star], for implementing another linear search through ways of splitting a string, this time for implementing the Kleene star. *)
|
adamc@91
|
1010
|
adamc@91
|
1011 Section dec_star.
|
adamc@91
|
1012 Variable P : string -> Prop.
|
adamc@214
|
1013 Variable P_dec : forall s, {P s} + {~ P s}.
|
adamc@91
|
1014
|
adam@338
|
1015 (** Some new lemmas and hints about the [star] type family are useful. We omit them here; they are included in the book source at this point. *)
|
adamc@93
|
1016
|
adamc@93
|
1017 (* begin hide *)
|
adamc@91
|
1018 Hint Constructors star.
|
adamc@91
|
1019
|
adamc@91
|
1020 Lemma star_empty : forall s,
|
adamc@91
|
1021 length s = 0
|
adamc@91
|
1022 -> star P s.
|
adamc@91
|
1023 destruct s; crush.
|
adamc@91
|
1024 Qed.
|
adamc@91
|
1025
|
adamc@91
|
1026 Lemma star_singleton : forall s, P s -> star P s.
|
adamc@91
|
1027 intros; rewrite <- (app_empty_end s); auto.
|
adamc@91
|
1028 Qed.
|
adamc@91
|
1029
|
adamc@91
|
1030 Lemma star_app : forall s n m,
|
adamc@91
|
1031 P (substring n m s)
|
adamc@91
|
1032 -> star P (substring (n + m) (length s - (n + m)) s)
|
adamc@91
|
1033 -> star P (substring n (length s - n) s).
|
adamc@91
|
1034 induction n; substring;
|
adamc@91
|
1035 match goal with
|
adamc@91
|
1036 | [ H : P (substring ?N ?M ?S) |- _ ] =>
|
adamc@91
|
1037 solve [ rewrite <- (substring_split S M); auto
|
adamc@91
|
1038 | rewrite <- (substring_split' S N M); auto ]
|
adamc@91
|
1039 end.
|
adamc@91
|
1040 Qed.
|
adamc@91
|
1041
|
adamc@91
|
1042 Hint Resolve star_empty star_singleton star_app.
|
adamc@91
|
1043
|
adamc@91
|
1044 Variable s : string.
|
adamc@91
|
1045
|
adamc@91
|
1046 Lemma star_inv : forall s,
|
adamc@91
|
1047 star P s
|
adamc@91
|
1048 -> s = ""
|
adamc@91
|
1049 \/ exists i, i < length s
|
adamc@91
|
1050 /\ P (substring 0 (S i) s)
|
adamc@91
|
1051 /\ star P (substring (S i) (length s - S i) s).
|
adamc@91
|
1052 Hint Extern 1 (exists i : nat, _) =>
|
adamc@91
|
1053 match goal with
|
adamc@91
|
1054 | [ H : P (String _ ?S) |- _ ] => exists (length S); crush
|
adamc@91
|
1055 end.
|
adamc@91
|
1056
|
adamc@91
|
1057 induction 1; [
|
adamc@91
|
1058 crush
|
adamc@91
|
1059 | match goal with
|
adamc@91
|
1060 | [ _ : P ?S |- _ ] => destruct S; crush
|
adamc@91
|
1061 end
|
adamc@91
|
1062 ].
|
adamc@91
|
1063 Qed.
|
adamc@91
|
1064
|
adamc@91
|
1065 Lemma star_substring_inv : forall n,
|
adamc@91
|
1066 n <= length s
|
adamc@91
|
1067 -> star P (substring n (length s - n) s)
|
adamc@91
|
1068 -> substring n (length s - n) s = ""
|
adamc@91
|
1069 \/ exists l, l < length s - n
|
adamc@91
|
1070 /\ P (substring n (S l) s)
|
adamc@91
|
1071 /\ star P (substring (n + S l) (length s - (n + S l)) s).
|
adamc@91
|
1072 Hint Rewrite plus_n_Sm' : cpdt.
|
adamc@91
|
1073
|
adamc@91
|
1074 intros;
|
adamc@91
|
1075 match goal with
|
adamc@91
|
1076 | [ H : star _ _ |- _ ] => generalize (star_inv H); do 3 crush; eauto
|
adamc@91
|
1077 end.
|
adamc@91
|
1078 Qed.
|
adamc@93
|
1079 (* end hide *)
|
adamc@93
|
1080
|
adamc@93
|
1081 (** The function [dec_star''] implements a single iteration of the star. That is, it tries to find a string prefix matching [P], and it calls a parameter function on the remainder of the string. *)
|
adamc@91
|
1082
|
adamc@91
|
1083 Section dec_star''.
|
adamc@91
|
1084 Variable n : nat.
|
adamc@93
|
1085 (** [n] is the length of the prefix of [s] that we have already processed. *)
|
adamc@91
|
1086
|
adamc@91
|
1087 Variable P' : string -> Prop.
|
adamc@91
|
1088 Variable P'_dec : forall n' : nat, n' > n
|
adamc@91
|
1089 -> {P' (substring n' (length s - n') s)}
|
adamc@214
|
1090 + {~ P' (substring n' (length s - n') s)}.
|
adamc@93
|
1091 (** When we use [dec_star''], we will instantiate [P'_dec] with a function for continuing the search for more instances of [P] in [s]. *)
|
adamc@93
|
1092
|
adamc@93
|
1093 (** Now we come to [dec_star''] itself. It takes as an input a natural [l] that records how much of the string has been searched so far, as we did for [split']. The return type expresses that [dec_star''] is looking for an index into [s] that splits [s] into a nonempty prefix and a suffix, such that the prefix satisfies [P] and the suffix satisfies [P']. *)
|
adamc@91
|
1094
|
adam@297
|
1095 Definition dec_star'' : forall l : nat,
|
adam@297
|
1096 {exists l', S l' <= l
|
adamc@91
|
1097 /\ P (substring n (S l') s) /\ P' (substring (n + S l') (length s - (n + S l')) s)}
|
adamc@91
|
1098 + {forall l', S l' <= l
|
adamc@214
|
1099 -> ~ P (substring n (S l') s)
|
adamc@214
|
1100 \/ ~ P' (substring (n + S l') (length s - (n + S l')) s)}.
|
adamc@91
|
1101 refine (fix F (l : nat) : {exists l', S l' <= l
|
adamc@91
|
1102 /\ P (substring n (S l') s) /\ P' (substring (n + S l') (length s - (n + S l')) s)}
|
adamc@91
|
1103 + {forall l', S l' <= l
|
adamc@214
|
1104 -> ~ P (substring n (S l') s)
|
adamc@214
|
1105 \/ ~ P' (substring (n + S l') (length s - (n + S l')) s)} :=
|
adamc@214
|
1106 match l with
|
adamc@91
|
1107 | O => _
|
adamc@91
|
1108 | S l' =>
|
adamc@91
|
1109 (P_dec (substring n (S l') s) && P'_dec (n' := n + S l') _)
|
adamc@91
|
1110 || F l'
|
adamc@91
|
1111 end); clear F; crush; eauto 7;
|
adamc@91
|
1112 match goal with
|
adamc@91
|
1113 | [ H : ?X <= S ?Y |- _ ] => destruct (eq_nat_dec X (S Y)); crush
|
adamc@91
|
1114 end.
|
adamc@91
|
1115 Defined.
|
adamc@91
|
1116 End dec_star''.
|
adamc@91
|
1117
|
adamc@93
|
1118 (* begin hide *)
|
adamc@92
|
1119 Lemma star_length_contra : forall n,
|
adamc@92
|
1120 length s > n
|
adamc@92
|
1121 -> n >= length s
|
adamc@92
|
1122 -> False.
|
adamc@92
|
1123 crush.
|
adamc@92
|
1124 Qed.
|
adamc@92
|
1125
|
adamc@92
|
1126 Lemma star_length_flip : forall n n',
|
adamc@92
|
1127 length s - n <= S n'
|
adamc@92
|
1128 -> length s > n
|
adamc@92
|
1129 -> length s - n > 0.
|
adamc@92
|
1130 crush.
|
adamc@92
|
1131 Qed.
|
adamc@92
|
1132
|
adamc@92
|
1133 Hint Resolve star_length_contra star_length_flip substring_suffix_emp.
|
adamc@93
|
1134 (* end hide *)
|
adamc@92
|
1135
|
adamc@93
|
1136 (** The work of [dec_star''] is nested inside another linear search by [dec_star'], which provides the final functionality we need, but for arbitrary suffixes of [s], rather than just for [s] overall. *)
|
adamc@93
|
1137
|
adam@297
|
1138 Definition dec_star' : forall n n' : nat, length s - n' <= n
|
adamc@91
|
1139 -> {star P (substring n' (length s - n') s)}
|
adamc@214
|
1140 + {~ star P (substring n' (length s - n') s)}.
|
adamc@214
|
1141 refine (fix F (n n' : nat) : length s - n' <= n
|
adamc@91
|
1142 -> {star P (substring n' (length s - n') s)}
|
adamc@214
|
1143 + {~ star P (substring n' (length s - n') s)} :=
|
adamc@214
|
1144 match n with
|
adamc@91
|
1145 | O => fun _ => Yes
|
adamc@91
|
1146 | S n'' => fun _ =>
|
adamc@91
|
1147 le_gt_dec (length s) n'
|
adam@338
|
1148 || dec_star'' (n := n') (star P)
|
adam@338
|
1149 (fun n0 _ => Reduce (F n'' n0 _)) (length s - n')
|
adamc@92
|
1150 end); clear F; crush; eauto;
|
adamc@92
|
1151 match goal with
|
adamc@92
|
1152 | [ H : star _ _ |- _ ] => apply star_substring_inv in H; crush; eauto
|
adamc@92
|
1153 end;
|
adamc@92
|
1154 match goal with
|
adamc@92
|
1155 | [ H1 : _ < _ - _, H2 : forall l' : nat, _ <= _ - _ -> _ |- _ ] =>
|
adamc@92
|
1156 generalize (H2 _ (lt_le_S _ _ H1)); tauto
|
adamc@92
|
1157 end.
|
adamc@91
|
1158 Defined.
|
adamc@91
|
1159
|
adamc@93
|
1160 (** Finally, we have [dec_star]. It has a straightforward implementation. We introduce a spurious match on [s] so that [simpl] will know to reduce calls to [dec_star]. The heuristic that [simpl] uses is only to unfold identifier definitions when doing so would simplify some [match] expression. *)
|
adamc@93
|
1161
|
adamc@214
|
1162 Definition dec_star : {star P s} + {~ star P s}.
|
adamc@204
|
1163 refine (match s return _ with
|
adamc@91
|
1164 | "" => Reduce (dec_star' (n := length s) 0 _)
|
adamc@91
|
1165 | _ => Reduce (dec_star' (n := length s) 0 _)
|
adamc@91
|
1166 end); crush.
|
adamc@91
|
1167 Defined.
|
adamc@91
|
1168 End dec_star.
|
adamc@91
|
1169
|
adamc@93
|
1170 (* begin hide *)
|
adamc@86
|
1171 Lemma app_cong : forall x1 y1 x2 y2,
|
adamc@86
|
1172 x1 = x2
|
adamc@86
|
1173 -> y1 = y2
|
adamc@86
|
1174 -> x1 ++ y1 = x2 ++ y2.
|
adamc@86
|
1175 congruence.
|
adamc@86
|
1176 Qed.
|
adamc@86
|
1177
|
adamc@86
|
1178 Hint Resolve app_cong.
|
adamc@93
|
1179 (* end hide *)
|
adamc@93
|
1180
|
adamc@93
|
1181 (** With these helper functions completed, the implementation of our [matches] function is refreshingly straightforward. We only need one small piece of specific tactic work beyond what [crush] does for us. *)
|
adamc@86
|
1182
|
adam@297
|
1183 Definition matches : forall P (r : regexp P) s, {P s} + {~ P s}.
|
adamc@214
|
1184 refine (fix F P (r : regexp P) s : {P s} + {~ P s} :=
|
adamc@86
|
1185 match r with
|
adamc@86
|
1186 | Char ch => string_dec s (String ch "")
|
adamc@86
|
1187 | Concat _ _ r1 r2 => Reduce (split (F _ r1) (F _ r2) s)
|
adamc@87
|
1188 | Or _ _ r1 r2 => F _ r1 s || F _ r2 s
|
adamc@91
|
1189 | Star _ r => dec_star _ _ _
|
adamc@86
|
1190 end); crush;
|
adamc@86
|
1191 match goal with
|
adamc@86
|
1192 | [ H : _ |- _ ] => generalize (H _ _ (refl_equal _))
|
adamc@93
|
1193 end; tauto.
|
adamc@86
|
1194 Defined.
|
adamc@86
|
1195
|
adam@283
|
1196 (** It is interesting to pause briefly to consider alternate implementations of [matches]. Dependent types give us much latitude in how specific correctness properties may be encoded with types. For instance, we could have made [regexp] a non-indexed inductive type, along the lines of what is possible in traditional ML and Haskell. We could then have implemented a recursive function to map [regexp]s to their intended meanings, much as we have done with types and programs in other examples. That style is compatible with the [refine]-based approach that we have used here, and it might be an interesting exercise to redo the code from this subsection in that alternate style or some further encoding of the reader's choice. The main advantage of indexed inductive types is that they generally lead to the smallest amount of code. *)
|
adam@283
|
1197
|
adamc@93
|
1198 (* begin hide *)
|
adamc@86
|
1199 Example hi := Concat (Char "h"%char) (Char "i"%char).
|
adamc@86
|
1200 Eval simpl in matches hi "hi".
|
adamc@86
|
1201 Eval simpl in matches hi "bye".
|
adamc@87
|
1202
|
adamc@87
|
1203 Example a_b := Or (Char "a"%char) (Char "b"%char).
|
adamc@87
|
1204 Eval simpl in matches a_b "".
|
adamc@87
|
1205 Eval simpl in matches a_b "a".
|
adamc@87
|
1206 Eval simpl in matches a_b "aa".
|
adamc@87
|
1207 Eval simpl in matches a_b "b".
|
adam@283
|
1208 (* end hide *)
|
adam@283
|
1209
|
adam@283
|
1210 (** Many regular expression matching problems are easy to test. The reader may run each of the following queries to verify that it gives the correct answer. *)
|
adamc@91
|
1211
|
adamc@91
|
1212 Example a_star := Star (Char "a"%char).
|
adamc@91
|
1213 Eval simpl in matches a_star "".
|
adamc@91
|
1214 Eval simpl in matches a_star "a".
|
adamc@91
|
1215 Eval simpl in matches a_star "b".
|
adamc@91
|
1216 Eval simpl in matches a_star "aa".
|
adam@283
|
1217
|
adam@283
|
1218 (** Evaluation inside Coq does not scale very well, so it is easy to build other tests that run for hours or more. Such cases are better suited to execution with the extracted OCaml code. *)
|
adamc@101
|
1219
|
adamc@101
|
1220
|
adamc@101
|
1221 (** * Exercises *)
|
adamc@101
|
1222
|
adamc@101
|
1223 (** %\begin{enumerate}%#<ol>#
|
adamc@101
|
1224
|
adam@338
|
1225 %\item%#<li># Define a kind of dependently typed lists, where a list's type index gives a lower bound on how many of its elements satisfy a particular predicate. In particular, for an arbitrary set [A] and a predicate [P] over it:
|
adamc@101
|
1226 %\begin{enumerate}%#<ol>#
|
adamc@101
|
1227 %\item%#<li># Define a type [plist : nat -> Set]. Each [plist n] should be a list of [A]s, where it is guaranteed that at least [n] distinct elements satisfy [P]. There is wide latitude in choosing how to encode this. You should try to avoid using subset types or any other mechanism based on annotating non-dependent types with propositions after-the-fact.#</li>#
|
adamc@102
|
1228 %\item%#<li># Define a version of list concatenation that works on [plist]s. The type of this new function should express as much information as possible about the output [plist].#</li>#
|
adamc@101
|
1229 %\item%#<li># Define a function [plistOut] for translating [plist]s to normal [list]s.#</li>#
|
adam@338
|
1230 %\item%#<li># Define a function [plistIn] for translating [list]s to [plist]s. The type of [plistIn] should make it clear that the best bound on [P]-matching elements is chosen. You may assume that you are given a dependently typed function for deciding instances of [P].#</li>#
|
adamc@101
|
1231 %\item%#<li># Prove that, for any list [ls], [plistOut (plistIn ls) = ls]. This should be the only part of the exercise where you use tactic-based proving.#</li>#
|
adam@338
|
1232 %\item%#<li># Define a function [grab : forall n (ls : plist (][S n)), sig P]. That is, when given a [plist] guaranteed to contain at least one element satisfying [P], [grab] produces such an element. The type family [sig] is the one we met earlier for sigma types (i.e., dependent pairs of programs and proofs), and [sig P] is extensionally equivalent to [{][x : A | P x}], though the latter form uses an eta-expansion of [P] instead of [P] itself as the predicate.#</li>#
|
adamc@101
|
1233 #</ol>#%\end{enumerate}% #</li>#
|
adamc@101
|
1234
|
adamc@102
|
1235 #</ol>#%\end{enumerate}% *)
|